Mikonranta, Lauri; Friman, Ville-Petri; Laakso, Jouni
2012-01-01
Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm) caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.
Praveen, Chandni; Jesudhasan, Palmy R; Reimers, Robert S; Pillai, Suresh D
2013-09-01
Microbial pathogens in municipal sewage sludges need to be inactivated prior to environmental disposal. The efficacy of high energy (10 MeV) e-beam irradiation to inactivate a variety of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge was evaluated. Both bacterial and viral pathogens and indicator organisms are susceptible to e-beam irradiation. However, as expected there was a significant difference in their respective e-beam irradiation sensitivity. Somatic coliphages, bacterial endospores and enteric viruses were more resistant compared to bacterial pathogens. The current US EPA mandated 10 kGy minimum dose was capable of achieving significant reduction of both bacterial and viral pathogens. Somatic coliphages can be used as a microbial indicator for monitoring e-beam processes in terms of pathogen inactivation in sewage sludges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Potential antibacterial activity of some Saudi Arabia honey
Hegazi, Ahmed G.; Guthami, Faiz M. Al; Gethami, Ahmed F. M. Al; Allah, Fyrouz M. Abd; Saleh, Ashraf A.; Fouad, Ehab A.
2017-01-01
Aim: The aim of this study was to investigate the potential antibacterial activity of some Saudi Arabia honey against selected bacterial strains of medical importance. Materials and Methods: A total of 10 Saudi Arabia honey used to evaluate their antimicrobial activity against some antibiotic-resistant pathogenic bacterial strains. The bacterial strains were Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. Results: The antibacterial activity of Saudi honey against five bacterial strains showed different levels of inhibition according to the type of honey. The overall results showed that the potential activity was differing according to the pathogen and honey type. Conclusion: It could be concluded that the Saudi honey inhibit the growth of bacterial strains and that honey can be used as complementary antimicrobial agent against selected pathogenic bacteria. PMID:28344408
NASA Astrophysics Data System (ADS)
Kaushik, Rajni; Balasubramanian, Rajasekhar
2012-01-01
Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.
Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions
Kimmey, Jacqueline M.; Stallings, Christina L.
2016-01-01
Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens. PMID:27866924
Within-host evolution decreases virulence in an opportunistic bacterial pathogen.
Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo
2015-08-19
Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.
Antibacterial activity of some medicinal plants against selected human pathogenic bacteria
Khan, Usman Ali; Niaz, Zeeshan; Qasim, Muhammad; Khan, Jafar; Tayyaba; Rehman, Bushra
2013-01-01
Medicinal plants are traditionally used for the treatment of human infections. The present study was undertaken to investigate Bergenia ciliata, Jasminum officinale, and Santalum album for their potential activity against human bacterial pathogens. B. ciliata, J. officinale, and S. album extracts were prepared in cold and hot water. The activity of plant extracts and selected antibiotics was evaluated against five bacterial pathogens including Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli using agar well diffusion method. Among the three medicinal plants, B. ciliata extracts displayed potential activity against bacterial pathogens. Cold water extract of Bergenia ciliate showed the highest activity against B. subtilis, which is comparable with a zone of inhibition exhibited by ceftriaxone and erythromycin. J. officinale and S. album extracts demonstrated variable antibacterial activity. Further studies are needed to explore the novel antibacterial bioactive molecules. PMID:24294497
Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.
Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A
2008-04-01
To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.
Genomic selection for Bacterial Cold Water Disease resistance in rainbow trout
USDA-ARS?s Scientific Manuscript database
Selective breeding is an effective strategy to improve resistance to specific pathogens, and thus has the potential to mitigate antibiotic use in aquaculture. Large family sizes of aquaculture species permits family-based selective breeding programs, but the need for specific-pathogen-free nucleus p...
Starliper, C.E.
2008-01-01
There are a number of significant diseases among cultured and free-ranging freshwater fishes that have a bacterial etiology; these represent a variety of gram-negative and gram-positive genera. Confirmatory diagnosis of these diseases involves primary isolation of the causative bacterium on bacteriologic media. Frequently used "general" bacteriologic media simply provide the essential nutrients for growth. For most of the major pathogens, however, there are differential and/or selective media that facilitate primary recovery. Some specialized media are available as "ready-to-use" from suppliers, while others must be prepared. Differential media employ various types of indicator systems, such as pH indicators, that allow diagnosticians to observe assimilation of selected substrates. An advantage to the use of differential media for primary isolation is that they hasten bacterial characterization by yielding the appropriate positive or negative result for a particular substrate, often leading to a presumptive identification. Selective media also incorporate agent(s) that inhibit the growth of contaminants typically encountered with samples from aquatic environments. Media that incorporate differential and/or selective components are ideally based on characters that are unique to the targeted bacterium, and their use can reduce the time associated with diagnosis and facilitate early intervention in affected fish populations. In this review, the concepts of general and differential/selective bacteriologic media and their use and development for fish pathogens are discussed. The media routinely employed for primary isolation of the significant bacterial pathogens of fishes are presented. ?? Wildlife Disease Association 2008.
Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis
Rohmer, Laurence; Hocquet, Didier; Miller, Samuel I.
2011-01-01
It is interesting to speculate that the evolutionary drive of microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Environments in animals that pathogens colonize have also driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, some genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained in some circumstances by loss of function due to mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies. PMID:21600774
Predation on multiple trophic levels shapes the evolution of pathogen virulence.
Friman, Ville-Petri; Lindstedt, Carita; Hiltunen, Teppo; Laakso, Jouni; Mappes, Johanna
2009-08-25
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.
Brooks, Lauren E; Ul-Hasan, Sabah; Chan, Benjamin K; Sistrom, Mark J
2018-01-01
Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection-representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments-specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance-the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections.
USDA-ARS?s Scientific Manuscript database
Selective breeding is an effective strategy to improve resistance to specific pathogens, and thus has the potential to mitigate antibiotic use in aquaculture. Large family sizes of aquaculture species permits family-based selective breeding programs, but the need for specific-pathogen-free nucleus p...
Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.
Ashida, Hiroshi; Sasakawa, Chihiro
2015-01-01
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria
Ashida, Hiroshi; Sasakawa, Chihiro
2016-01-01
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections. PMID:26779450
Nithya, Angamuthu; Babu, Subramanian
2017-03-14
The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.
Nandi, Ankita; Dan, Suhas Kumar; Banerjee, Goutam; Ghosh, Pinki; Ghosh, Koushik; Ringø, Einar; Ray, Arun Kumar
2017-03-01
In this study, a total of 121 bacterial strains were isolated from the gastrointestinal tract of four teleostean species, namely striped snakehead (Channa striatus), striped dwarf catfish (Mystus vittatus), orangefin labeo (Labeo calbasu) and mrigal carp (Cirrhinus mrigala), among which 8 isolates showed promising antibacterial activity against four potential fish pathogens, Aeromonas hydrophila, Aeromonas salmonicida, Aeromonas sobria and Pseudomonas fluorescens and were non-hemolytic. The isolates were further screened in response to fish bile tolerance and extracellular digestive enzyme activity. Two bacterial strains MVF1 and MVH7 showed highest tolerance and extracellular enzymes activities, and selected for further studies. Antagonistic activity of these two isolates was further confirmed by in vitro growth inhibition assay against four selected fish pathogens in liquid medium. Finally, these two bacterial strains MVF1 and MVH7 were selected as potential probiotic candidates and thus identification by partial 16S rRNA gene sequence analysis. The bacterial isolates MVF1 and MVH7 were identified as two strains of Bacillus sp.
A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome
Yao, Jiangwei; Carter, Robert A.; Vuagniaux, Grégoire; Barbier, Maryse; Rosch, Jason W.
2016-01-01
Broad-spectrum antibiotic therapy decimates the gut microbiome, resulting in a variety of negative health consequences. Debio 1452 is a staphylococcus-selective enoyl-acyl carrier protein reductase (FabI) inhibitor under clinical development and was used to determine whether treatment with pathogen-selective antibiotics would minimize disturbance to the microbiome. The effect of oral Debio 1452 on the microbiota of mice was compared to the effects of four commonly used broad-spectrum oral antibiotics. During the 10 days of oral Debio 1452 treatment, there was minimal disturbance to the gut bacterial abundance and composition, with only the unclassified S24-7 taxon reduced at days 6 and 10. In comparison, broad-spectrum oral antibiotics caused ∼100- to 4,000-fold decreases in gut bacterial abundance and severely altered the microbial composition. The gut bacterial abundance and composition of Debio 1452-treated mice were indistinguishable from those of untreated mice 2 days after the antibiotic treatment was stopped. In contrast, the bacterial abundance in broad-spectrum-antibiotic-treated mice took up to 7 days to recover, and the gut composition of the broad-spectrum-antibiotic-treated mice remained different from that of the control group 20 days after the cessation of antibiotic treatment. These results illustrate that a pathogen-selective approach to antibiotic development will minimize disturbance to the gut microbiome. PMID:27161626
Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans
Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo
2012-01-01
Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122
Ul-Hasan, Sabah; Chan, Benjamin K.; Sistrom, Mark J.
2018-01-01
ABSTRACT Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection—representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments—specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance—the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections. PMID:29719870
Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David
2014-01-01
The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by compatible/incompatible/null-interacting bacteria to higher populations; however, the level of colonization differed significantly depending on the type of bacterial species used. PMID:24936863
Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe.
Xu, Shengnan; Wang, Qinghua; Zhang, Qingyang; Zhang, Leilei; Zuo, Limin; Jiang, Jian-Dong; Hu, Hai-Yu
2017-10-18
The identification of bacterial pathogens is the critical first step in conquering infection diseases. A novel turn-on fluorescent probe for the selective sensing of nitroreductase (NTR) activity and its initial applications in rapid, real-time detection and identification of ESKAPE pathogens have been reported.
NASA Astrophysics Data System (ADS)
Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.
2018-02-01
Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.
Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection.
Qi, Peng; Wan, Yi; Zhang, Dun
2013-01-15
This work presents the synthesis of bacteria-mediated bioimprinted films for selective bacterial detection. Marine pathogen sulfate-reducing bacteria (SRB) were chosen as the template bacteria. Chitosan (CS) doped with reduced graphene sheets (RGSs) was electrodeposited on an indium tin oxide electrode, and the resulting RGSs-CS hybrid film served as a platform for bacterial attachment. The electrodeposition conditions were optimized to obtain RGSs-CS hybrid films with excellent electrochemical performance. A layer of nonconductive CS film was deposited to embed the pathogen, and acetone was used to wash away the bacterial templates. Electrochemical impedance spectroscopy was performed to characterize the stepwise modification process and monitor the SRB population. Faradic impedance measurements revealed that the charge transfer resistance (R(ct)) increased with increased SRB concentration. A linear relationship between ΔR(ct) and the logarithm of SRB concentration was obtained within the concentration range of 1.0×10(4)cfum L(-1) to 1.0×10(8)cfum L(-1). The impedimetric sensor showed good selectivity towards SRB based on size and shape. Hence, selectivity for bacterial detection can be improved if the bioimprinting technique is combined with other bio-recognition elements. Copyright © 2012 Elsevier B.V. All rights reserved.
Management of select bacterial and parasitic conditions of raptors.
Willette, Michelle; Ponder, Julia; Cruz-Martinez, Luis; Arent, Lori; Bueno Padilla, Irene; de Francisco, Olga Nicolas; Redig, Patrick
2009-09-01
Raptors are susceptible to a broad array of established and emerging bacterial and parasitic diseases, including babesiosis, chlamydiosis, clostridiosis, coccidiosis, cryptosporidiosis, malaria, mycobacteriosis, pasteurellosis, salmonellosis, trichomoniasis, and pododermatitis. Many of these conditions are opportunistic and can be easily managed or averted with proper preventive measures related to captive management, husbandry and diet, and veterinary care. Once infected, treatment must be prompt, appropriate, and judicious. This article examines the significance, diagnosis, management, and prevention of select bacterial and parasitic pathogens of raptors.
Cardoso, M D; Lemos, L S; Roges, E M; de Moura, J F; Tavares, D C; Matias, C A R; Rodrigues, D P; Siciliano, S
2018-05-01
To perform a microbiological survey regarding the presence, prevalence and characterization of Aeromonas sp. and Vibrio sp. in debilitated wrecked marine birds recovered from the centre-north coast of the state of Rio de Janeiro, Brazil. Swabs obtained from 116 alive and debilitated wrecked marine birds, comprising 19 species, from the study area were evaluated by biochemical methods. Antimicrobial susceptibility tests and pathogenicity gene screening were performed for bacterial strains of public health importance. Vibrio sp. and Aeromonas sp. were identified, as well as certain pathogenic genes and resistance to selected antimicrobials. This study demonstrates that the identified bacteria, mainly Vibrio sp., are fairly prevalent and widespread among several species of seabirds and highlights the importance of migratory birds in bacterial dispersion. In addition, it demonstrates the importance of the bacterial strains regarding their pathogenic potential. Therefore, seabirds can act as bacterial reservoirs, and their monitoring is of the utmost importance in a public health context. The study comprehensively evaluates the importance of seabirds as bacteria of public health importance reservoirs, since birds comprising several pathogenic bacterial species were evaluated. © 2018 The Society for Applied Microbiology.
Elucidating Duramycin's Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope.
Hasim, Sahar; Allison, David P; Mendez, Berlin; Farmer, Abigail T; Pelletier, Dale A; Retterer, Scott T; Campagna, Shawn R; Reynolds, Todd B; Doktycz, Mitchel J
2018-01-01
The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus -derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin's mode of action and a better understanding of its selectivity.
Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H
2016-12-16
Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.
Khan, Raees; Roy, Nazish; Choi, Kihyuck
2018-01-01
The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS resistance seems to be prevalent in microbial species and limited knowledge exists about TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to assess the enrichment of potentially pathogenic genera in TCS contaminated environments. A TCS-resistant gene (TRG) database was constructed and experimentally validated to predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was performed to define the distribution of TCS-resistant determinants in major pathogens. Microbiome analysis of TCS contaminated soil samples was also performed to investigate the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resistance could be accurately predicted using genome-wide in silico analysis against TRG database. Predicted TCS resistant phenotypes were observed in all of the tested bacterial strains (N = 17), and heterologous expression of selected TCS resistant genes from those strains conferred expected levels of TCS resistance in an alternative host Escherichia coli. Moreover, genome-wide analysis revealed that potential TCS resistance determinants were abundant among the majority of human-associated pathogens (79%) and soil-borne plant pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase (ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the only known effective target for TCS, was either co-localized with other TCS resistance determinants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS contaminated environments. We conclude that TCS may not be as effective against the majority of bacterial pathogens as previously presumed. Further, the excessive use of this biocide in natural environments may selectively enrich for not only TCS-resistant bacterial pathogens, but possibly for additional resistance to multiple antibiotics. PMID:29420585
Oral and endotracheal tubes colonization by periodontal bacteria: a case-control ICU study.
Porto, A N; Cortelli, S C; Borges, A H; Matos, F Z; Aquino, D R; Miranda, T B; Oliveira Costa, F; Aranha, A F; Cortelli, J R
2016-03-01
Periodontal infection is a possible risk factor for respiratory disorders; however, no studies have assessed the colonization of periodontal pathogens in endotracheal tubes (ET). This case-control study analyzed whether periodontal pathogens are able to colonize ET of dentate and edentulous patients in intensive care units (ICU) and whether oral and ET periodontal pathogen profiles have any correlation between these patients. We selected 18 dentate and 18 edentulous patients from 78 eligible ICU patients. Oral clinical examination including probing depth, clinical attachment level, gingival index , and plaque index was performed by a single examiner, followed by oral and ET sampling and processing by quantitative polymerase chain reaction (total bacterial load, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia). Data were statistically analyzed by Mann-Whitney U, two-way analysis of variance (p < 0.05). Among dentate, there was no correlation between clinical parameters and ET bacterial levels. Both dentate and edentulous patients showed similar ET bacterial levels. Dentate patients showed no correlation between oral and ET bacterial levels, while edentulous patients showed positive correlations between oral and ET levels of A. actinomycetemcomitans, P. gingivalis, and T. forsythia. Periodontal pathogens can colonize ET and the oral cavity of ICU patients. Periodontal pathogen profiles tend to be similar between dentate and edentulous ICU patients. In ICU patients, oral cavity represents a source of ET contamination. Although accompanied by higher oral bacterial levels, teeth do not seem to influence ET bacterial profiles.
Chapuis, Élodie; Pagès, Sylvie; Emelianoff, Vanya; Givaudan, Alain; Ferdy, Jean-Baptiste
2011-01-31
The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict.
Transport of selected bacterial pathogens in agricultural soil and quartz sand.
Schinner, Tim; Letzner, Adrian; Liedtke, Stefan; Castro, Felipe D; Eydelnant, Irwin A; Tufenkji, Nathalie
2010-02-01
The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions. Copyright 2008 Elsevier Ltd. All rights reserved.
Rahim, K; Qasim, M; Rahman, H; Khan, T A; Ahmad, I; Khan, N; Ullah, A; Basit, A; Saleha, S
2016-08-01
Chronic wound infections impose major medical and economic costs on health-care systems, cause significant morbidity, mortality and prolonged hospitalisation. The presence of biofilm producing bacteria in these wounds is considered as an important virulence factor that leads to chronic implications including ulceration. The undertaken study aimed to isolate and identify the biofilm aerobic bacterial pathogens from patients with chronic wound infections, and determine their antibiotics resistance profiles Method: During this study, swab specimens were collected from patients with chronic wounds at teaching hospitals of Peshawar, Pakistan between May 2013 and June 2014. The isolated aerobic bacterial pathogens were identified on the basis of standard cultural characteristics and biochemical tests. Antibiotics resistance profiles of biofilm producing bacteria against selected antibiotics were then determined. Among the chronic wound infections, diabetic foot ulcers were most common 37 (37%), followed by surgical ulcers 27 (27%). Chronic wounds were common in male patients older than 40 years. Among the total 163 isolated bacterial pathogens the most prevalent bacterial species were Pseudomonas aeruginosa 44 (27%), Klebsiella pneumoniae 26 (16%), Staphylococcus species 22 (14%) and Streptococcus spp. 21 (13%). The isolation rate of bacterial pathogens was high among patients with diabetic foot ulcers 83 (50.9%). Among bacterial isolates, 108 (66.2%) were observed as biofilm producers while 55 (33.8%) did not form biofilm in our model. The investigated biofilm producing bacterial isolates showed comparatively high resistance against tested antibiotics compared to non-biofilm producing bacterial isolates. The most effective antibiotics were amikacine and cefepime against all isolates. Increased multidrug resistance in biofilm producing bacteria associated with chronic wounds was observed in this study. Judicious use of antibiotics is needed to control the wound associated biofilm associated pathogens.
Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong
2011-02-01
Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.
Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope
Hasim, Sahar; Allison, David P.; Mendez, Berlin; ...
2018-02-14
The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less
Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasim, Sahar; Allison, David P.; Mendez, Berlin
The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity.more » Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE) in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.« less
Bacterial fatty acid metabolism in modern antibiotic discovery.
Yao, Jiangwei; Rock, Charles O
2017-11-01
Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.
Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area
Mukherjee, Nabanita; Dowd, Scot E.; Wise, Andy; Kedia, Sapna; Vohra, Varun; Banerjee, Pratik
2014-01-01
Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA) utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc.) within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water). Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities) may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users. PMID:25479039
Russian vaccines against especially dangerous bacterial pathogens
Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L
2014-01-01
In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506
Yan, Muxia; Li, Weidong; Zhou, Zhenwen; Peng, Hongxia; Luo, Ziyan; Xu, Ling
2017-01-01
In this work, loop-mediated isothermal amplification based detection assay using bacterial culture and bacterial colony for various common pathogens direct detection had been established, evaluated and further applied. A total of five species of common pathogens and nine detection targets (tlh, tdh and trh for V. Parahaemolyticus, rfbE, stx1 and stx2 for E. coli, oprI for P. aeruginosa, invA for Salmonella and hylA for L. monocytogenes) were performed on bacterial culture and bacterial colony LAMP. To evaluate and optimize this assay, a total of 116 standard strains were included. Then, for each detected targets, 20 random selected strains were applied. Results were determined through both visual observation of the changed color by naked eye and electrophoresis, which increased the accuracy of survey. The minimum adding quantity of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 45 min with 25 μl reaction volume. The detection limit of bacterial culture LAMP and PCR assay were determined to be 10 2 and 10 4 or 10 5 CFU/reaction, respectively. No false positive amplification was observed when subjecting the bacterial -LAMP assay to 116 reference strains. This was the first report of colony-LAMP and culture-LAMP assay, which had been demonstrated to be a fast, reliable, cost-effective and simple method on detection of various common pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miller, Melissa A.; Byrne, Barbara A.; Jang, Spencer S.; Dodd, Erin M.; Dorfmeier, Elene; Harris, Michael D.; Ames, Jack; Paradies, David; Worcester, Karen; Jessup, David A.; Miller, Woutrina A.
2009-01-01
Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health. PMID:19720009
Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg
2016-01-01
Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.
Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez
2013-11-01
Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.
Mechanisms of Bacterial Colonization of the Respiratory Tract
Siegel, Steven J.; Weiser, Jeffrey N.
2016-01-01
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis. PMID:26488280
Sex and virulence in Escherichia coli: an evolutionary perspective
Wirth, Thierry; Falush, Daniel; Lan, Ruiting; Colles, Frances; Mensa, Patience; Wieler, Lothar H; Karch, Helge; Reeves, Peter R; Maiden, Martin CJ; Ochman, Howard; Achtman, Mark
2006-01-01
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response. PMID:16689791
Brogaard, Louise; Klitgaard, Kirstine; Heegaard, Peter M H; Hansen, Mette Sif; Jensen, Tim Kåre; Skovgaard, Kerstin
2015-05-28
Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection.
USDA-ARS?s Scientific Manuscript database
Clostridium perfringens is the fourth leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of $342M USD per year. In addition to being a foodborne pathogen, C. perfringens is also an economically important poultry pathogen and is one of the known etiologic agents...
Selective propensity of bovine jugular vein material to bacterial adhesions: An in-vitro study.
Jalal, Zakaria; Galmiche, Louise; Lebeaux, David; Villemain, Olivier; Brugada, Georgia; Patel, Mehul; Ghigo, Jean-Marc; Beloin, Christophe; Boudjemline, Younes
2015-11-01
Percutaneous pulmonary valve implantation (PPVI) using Melody valve made of bovine jugular vein is safe and effective. However, infective endocarditis has been reported for unclear reasons. We sought to assess the impact of valvular substrates on selective bacterial adhesion. Three valved stents (Melody valve, homemade stents with bovine and porcine pericardium) were tested in-vitro for bacterial adhesion using Staphylococcus aureus and Streptococcus sanguinis strains. Bacterial adhesion was higher on bovine jugular venous wall for S. aureus and on Melody valvular leaflets for S. sanguinis in control groups and significantly increased in traumatized Melody valvular leaflets with both bacteria (traumatized vs non traumatized: p=0.05). Bacterial adhesion was lower on bovine pericardial leaflets. Selective adhesion of S. aureus and S. sanguinis pathogenic strains to Melody valve tissue was noted on healthy tissue and increased after implantation procedural steps. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong
2015-09-01
The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.
Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling
Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron
2014-01-01
The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens. PMID:24813421
Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling
NASA Astrophysics Data System (ADS)
Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David J.; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron
2014-07-01
The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.
Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate.
Mohamed, Mohamed F; Brezden, Anna; Mohammad, Haroon; Chmielewski, Jean; Seleem, Mohamed N
2017-04-01
The worldwide emergence of antibiotic resistance represents a serious medical threat. The ability of these resistant pathogens to form biofilms that are highly tolerant to antibiotics further aggravates the situation and leads to recurring infections. Thus, new therapeutic approaches that adopt novel mechanisms of action are urgently needed. To address this significant problem, we conjugated the antibiotic kanamycin with a novel antimicrobial peptide (P14LRR) to develop a kanamycin peptide conjugate (P14KanS). Antibacterial activities were evaluated in vitro and in vivo using a Caenorhabditis elegans model. Additionally, the mechanism of action, antibiofilm activity and anti-inflammatory effect of P14KanS were investigated. P14KanS exhibited potent antimicrobial activity against ESKAPE pathogens. P14KanS demonstrated a ≥128-fold improvement in MIC relative to kanamycin against kanamycin-resistant strains. Mechanistic studies confirmed that P14KanS exerts its antibacterial effect by selectively disrupting the bacterial cell membrane. Unlike many antibiotics, P14KanS demonstrated rapid bactericidal activity against stationary phases of both Gram-positive and Gram-negative pathogens. Moreover, P14KanS was superior in disrupting adherent bacterial biofilms and in killing intracellular pathogens as compared to conventional antibiotics. Furthermore, P14KanS demonstrated potent anti-inflammatory activity via the suppression of LPS-induced proinflammatory cytokines. Finally, P14KanS protected C. elegans from lethal infections of both Gram-positive and Gram-negative pathogens. The potent in vitro and in vivo activity of P14KanS warrants further investigation as a potential therapeutic agent for bacterial infections. This study demonstrates that equipping kanamycin with an antimicrobial peptide is a promising method to tackle bacterial biofilms and address bacterial resistance to aminoglycosides. Copyright © 2017 Elsevier B.V. All rights reserved.
Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal
Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.
2015-01-01
The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763
Rapid Dispersion of Polymicrobial Wound Biofilms with Depolymerase Enzymes
2013-11-01
selective precipitation of proteins. Biotechnol. Techniques, 1999. 13:391-393. Otto M: Bacterial evasion of antimicrobial peptides by biofilm...bacterial pathogenesis mechanisms, virulence factors, and antimicrobial resistance vary greatly between pathogens associated with war wounds, one...bacteria from antimicrobials , antibodies, and circulating immune cells (figure, stage 5). Thus, approaches that disrupt or dissolve the biofilm
Comparison of bactericidal efficiency of 7.5 MeV X-rays, gamma-rays, and 10 MeV e-beams
NASA Astrophysics Data System (ADS)
Song, Beom-Seok; Lee, Yunjong; Moon, Byeong-Geum; Go, Seon-Min; Park, Jong-Heum; Kim, Jae-Kyung; Jung, Koo; Kim, Dong-Ho; Ryu, Sang-Ryeol
2016-08-01
This study was performed to verify the feasibility of 7.5 MeV X-rays for food pasteurization through a comparison of the bactericidal efficiency with those of other sources for selected bacterial pathogens. No significant differences were observed between the overall bactericidal efficiency for beef-inoculated pathogens based on the uncertainty of the absorbed dose and variations in bacterial counts. This result supported that all three irradiation sources were effective for inactivation of food-borne bacteria and that 7.5 MeV X-rays may be used for food pasteurization.
Chiu, Tai-Chia
2014-01-01
Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089
Chiu, Tai-Chia
2014-04-28
Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.
Friedrich, Torben; Rahmann, Sven; Weigel, Wilfried; Rabsch, Wolfgang; Fruth, Angelika; Ron, Eliora; Gunzer, Florian; Dandekar, Thomas; Hacker, Jörg; Müller, Tobias; Dobrindt, Ulrich
2010-10-21
The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics.
Sensitizing pathogens to antibiotics using the CRISPR-Cas system.
Goren, Moran; Yosef, Ido; Qimron, Udi
2017-01-01
The extensive use of antibiotics over the last century has resulted in a significant artificial selection pressure for antibiotic-resistant pathogens to evolve. Various strategies to fight these pathogens have been introduced including new antibiotics, naturally-derived enzymes/peptides that specifically target pathogens and bacteriophages that lyse these pathogens. A new tool has recently been introduced in the fight against drug-resistant pathogens-the prokaryotic defense mechanism-clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) system. The CRISPR-Cas system acts as a nuclease that can be guided to cleave any target DNA, allowing sophisticated, yet feasible, manipulations of pathogens. Here, we review pioneering studies that use the CRISPR-Cas system to specifically edit bacterial populations, eliminate their resistance genes and combine these two strategies in order to produce an artificial selection pressure for antibiotic-sensitive pathogens. We suggest that intelligent design of this system, along with efficient delivery tools into pathogens, may significantly reduce the threat of antibiotic-resistant pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diagnosis of bacterial vaginosis by Amsel's criteria.
Iftikhar, Razia
2003-02-01
To evaluate Amsel's criteria for the diagnosis of bacterial vaginosis in reproductive age group. Prospective study. This study was conducted in a private hospital in Jeddah, K.S.A between January, 2001 and January, 2002. Patients attending the clinic with complaint of vaginal discharge were selected and screened out for bacterial vaginosis on the basis of Amsel's criteria. Ot of 100 cases 35 (35%) cases were diagnosed as bacterial vaginosis, 25 (25%) were of Candida albicans and 15 (15%) were suffering from trichomoniasis. No pathogen was found in 25 patients. Amsel's criteria is an accurate test for the diagnosis of bacterial vaginosis.
Microbiology: Detection of Bacterial Pathogens and Their Occurrence.
ERIC Educational Resources Information Center
Reasoner, Donald J.
1978-01-01
Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)
Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan
2014-01-01
The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147
Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A
2012-08-16
Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.
2014-01-01
SUMMARY Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced. PMID:25278574
Macrophage Autophagy and Bacterial Infections
Bah, Aïcha; Vergne, Isabelle
2017-01-01
Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens. PMID:29163544
Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D
2016-12-01
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
NASA Astrophysics Data System (ADS)
Trang, Vu Thi; Dinh, Ngo Xuan; Lan, Hoang; Tam, Le Thi; Huy, Tran Quang; Tuan, Pham Anh; Phan, Vu Ngoc; Le, Anh-Tuan
2018-02-01
Magnetic nanomaterials, as a promising platform for the fast and sensitive detection of bacterial pathogens, have attracted increasing interest from researchers in recent years. In this work, by utilizing a two-step synthetic technique consisting of co-precipitation and subsequent hydrothermal reaction, followed by functionalization steps with (3-aminopropyl)triethoxysilane (APTES) and the antibody against Salmonella enteritidis, antibody-conjugated Fe3O4-Ag@APTES hetero-nanocomposites were successfully prepared. Due to the specific antibody, the developed Fe3O4-Ag@APTES@SE-Ab conjugates are capable of selectively capturing S. enteritidis at a low concentration of about 101 CFU/mL. Moreover, the prepared magnetic conjugates also revealed that the S. enteritidis could be rapidly removed from water solution in 20 min by using an external magnetic field with a removal efficiency obtained of ˜ 91.36%. These results indicated that the Fe3O4-Ag@APTES@SE-Ab conjugates are promising for the rapid selective capture and removal of bacterial pathogens from aqueous environments, and can be used for improving the detection quality of pathogens in water samples using immunosensor-based diagnostic tests.
Transcriptome landscape of a bacterial pathogen under plant immunity.
Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi
2018-03-27
Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.
He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo
2012-01-01
Background To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. Methods and Findings First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 103 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. Conclusions The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions. PMID:22479577
He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo
2012-01-01
To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3) CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species antagonistic, supportive or co-operative to specific pathogens in the orchard managed under different environmental conditions.
Pathogen characteristics reveal novel antibacterial approaches for interstitial lung disease.
Lu, Hai-Wen; Ji, Xiao-Bin; Liang, Shuo; Fan, Li-Chao; Bai, Jiu-Wu; Chen, Ke-Bing; Zhou, Yin; Li, Hui-Ping; Xu, Jin-Fu
2014-12-01
Interstitial lung disease (ILD) is a clinical disorder associated with changes of lung structure. Concurrent infection is a serious complication and one of the major factors that exacerbates ILD. Pathogen screening is a critical step in early diagnosis and proper treatment of ILD with secondary infection. Here we analyzed distribution and drug susceptibility of pathogens isolated from hospitalized ILD patients from January, 2007 to December, 2008 and compared them to bacterial drug resistance data in CHINET during the same period. The main specimens were from sputum culture, lavage fluid culture, lung biopsy tissue culture, and pleural effusion culture and bacterial or fungal cultures were performed on these specimens accordingly. Drug susceptibility was tested for positive bacterial cultures using disk diffusion (Kirby-Bauer method) and E Test strips in which results were determined based on the criteria of CLSI (2007). A total of 371 pathogen strains from ILD patients, including 306 bacterial strains and 65 fungal strains were isolated and cultured. Five main bacterial strains and their distribution were as follows: Klebsiella pneumoniae (31.7%), Pseudomonas aeruginosa (20.6%), Acinetobacter (12.7%), Enterobacter cloacae (8.2%), and Staphylococcus aureus (7.8%). The results showed that ILD patients who had anti-infection treatment tended to have Gram-negative bacteria, whether they acquired an infection in the hospital or elsewhere. Drug resistance screening indicated that aminoglycosides and carbapenems had lower antibiotic resistance rates. In addition, we found that the usage of immunosuppressants was associated with the increased infection rate and number of pathogens that were isolated. In conclusion, aminoglycosides and carbapenems may be selected as a priority for secondary infection to control ILD progression. Meanwhile, the use of anti-MRSA/MRCNS drugs may be considered for Staphylococcus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.
Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S
2016-02-01
Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.
Herd diagnosis of low pathogen diarrhoea in growing pigs - a pilot study.
Pedersen, Ken Steen; Johansen, Markku; Angen, Oystein; Jorsal, Sven Erik; Nielsen, Jens Peter; Jensen, Tim K; Guedes, Roberto; Ståhl, Marie; Bækbo, Poul
2014-01-01
The major indication for antibiotic use in Danish pigs is treatment of intestinal diseases post weaning. Clinical decisions on antibiotic batch medication are often based on inspection of diarrhoeic pools on the pen floor. In some of these treated diarrhoea outbreaks, intestinal pathogens can only be demonstrated in a small number of pigs within the treated group (low pathogen diarrhoea). Termination of antibiotic batch medication in herds suffering from such diarrhoea could potentially reduce the consumption of antibiotics in the pig industry. The objective of the present pilot study was to suggest criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. Data previously collected from 20 Danish herds were used to create a case series of clinical diarrhoea outbreaks normally subjected to antibiotic treatment. In the present study, these diarrhoea outbreaks were classified as low pathogen (<15% of the pigs having bacterial intestinal disease) (n =5 outbreaks) or high pathogen (≥15% of the pigs having bacterial intestinal disease) (n =15 outbreaks). Based on the case series, different diagnostic procedures were explored, and criteria for herd diagnosis of low pathogen diarrhoea were suggested. The effect of sampling variation was explored by simulation. The diagnostic procedure with the highest combined herd-level sensitivity and specificity was qPCR testing of a pooled sample containing 20 randomly selected faecal samples. The criteria for a positive test result (high pathogen diarrhoea outbreak) were an average of 1.5 diarrhoeic faecal pools on the floor of each pen in the room under investigation and a pathogenic bacterial load ≥35,000 per gram in the faecal pool tested by qPCR. The bacterial load was the sum of Lawsonia intracellularis, Brachyspira pilosicoli and Escherichia coli F4 and F18 bacteria per gram faeces. The herd-diagnostic performance was (herd-level) diagnostic sensitivity =0.99, diagnostic specificity =0.80, positive predictive value =0.94 and negative predictive value =0.96. The pilot study suggests criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. The suggested criteria should now be evaluated, and the effect of terminating antibiotic batch medication in herds identified as suffering from low pathogen diarrhoea should be explored.
Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.
2016-01-01
Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaborin, Alexander; Smith, Daniel; Garfield, Kevin
We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less
Zaborin, Alexander; Smith, Daniel; Garfield, Kevin; ...
2014-09-23
We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in ~75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candidamore » taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a “commensal lifestyle.” However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style.« less
Cui, Yue; Walcott, Ronald
2017-01-01
ABSTRACT Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds (P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds (P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds (P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. PMID:28130295
Kaur, Ravinder; Wischmeyer, Jareth; Morris, Matthew; Pichichero, Michael E
2017-11-01
We compared the recovery of potential respiratory bacterial pathogens and normal flora from nasopharyngeal specimens collected from children during health and at the onset of acute otitis media (AOM) by selective direct-plating and overnight broth-enrichment. Overall, 3442 nasal wash (NW) samples collected from young children were analysed from a 10-year prospective study. NWs were cultured by (1) direct-plating to TSAII/5 % sheep blood agar and chocolate agar plates and (2) overnight broth-enrichment in BacT/ALERT SA-broth followed by plating. Standard microbiology techniques were applied to identify three dominant respiratory bacterial pathogens: Streptococcus pneumoniae (Spn), Haemophilus influenzae (Hflu) and Moraxella catarrhalis (Mcat) as well as two common nasal flora, Staphylococcus aureus (SA) and alpha-haemolytic Streptococci (AHS).Results/Key findings. Direct-plating of NW resulted in isolation of Spn from 37.8 %, Hflu from 13.6 % and Mcat from 33.2 % of samples. In comparison, overnight broth-enrichment isolated fewer Spn (30.1 %), Hflu (6.2 %) and Mcat (16.2 %) (P<0.001-0.0001). Broth-enrichment resulted in significant increased isolation of SA (6.0 %) and AHS (30.1 %) (P<0.0001). Competition between bacterial species in broth when both species were detected by direct-plating was assessed, and it was found that SA and AHS out-competed other species during broth-enrichment when samples were collected from healthy children but not during AOM. In middle ear fluids (MEF) at the onset of AOM, broth-enrichment resulted in higher recovery of Spn (+10.4 %, P<0.001), Hflu (+4.4 %, P=0.39) and Mcat (+13.5 %, <0.001). Broth-enrichment significantly reduces the accurate detection of bacterial respiratory pathogens and increases identification of SA and AHS in NW. Broth-enrichment improves detection of bacterial respiratory pathogens in MEF samples.
Cui, Yue; Walcott, Ronald; Chen, Jinru
2017-04-01
Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds ( P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds ( P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds ( P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. Copyright © 2017 American Society for Microbiology.
Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*
Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.
2011-01-01
In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982
Wide screening of phage-displayed libraries identifies immune targets in planta.
Rioja, Cristina; Van Wees, Saskia C; Charlton, Keith A; Pieterse, Corné M J; Lorenzo, Oscar; García-Sánchez, Susana
2013-01-01
Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2 × 10(7) different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.
Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection
Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung
2017-01-01
Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531
Gowrisankar, Ganesan; Chelliah, Ramachandran; Ramakrishnan, Sudha Rani; Elumalai, Vetrimurugan; Dhanamadhavan, Saravanan; Brindha, Karthikeyan; Antony, Usha; Elango, Lakshmanan
2017-01-01
During floods, human exposure to pathogens through contaminated water leads to the outbreak of epidemic diseases. This research presents the first extensive assessment of surface and groundwater samples collected immediately after a flood (December 2015) and post-flood (April 2016) from the Adyar River of Chennai, a major city in India, for major ions, trace metals, bacterial population, and pathogens. Severe rains in a short period of time resulted in flooding which inundated the wells, allowing the entry of sewage contaminated river water into the groundwater zone. This has led to bacterial counts and chemical ions exceeding Bureau of Indian Standard’s recommended limits in most flood affected areas. Pathogens isolated from the groundwater showed resistance to antibiotics, namely ceftriaxone, doxycycline and nalidixic acid. However, they were sensitive to chloramphenicol, ciprofloxacin, norfloxacin, and tetracycline. Determining the antibiotic susceptibility of pathogens will help in the treatment of humans affected by contaminated water through an appropriate selection of prescribed medication. PMID:28994821
Chairatana, Phoom; Zheng, Tengfei
2015-01-01
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin–β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt–Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt–Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt–Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt–Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore–antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression. PMID:28717471
Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito
2017-12-22
Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.
KAWAI, Kazuhiro; INADA, Mika; ITO, Keiko; HASHIMOTO, Koji; NIKAIDO, Masaru; HATA, Eiji; KATSUDA, Ken; KIKU, Yoshio; TAGAWA, Yuichi; HAYASHI, Tomohito
2017-01-01
Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program. PMID:29093278
Screening and characterization of selected drugs having antibacterial potential.
Javed, Hina; Tabassum, Sobia; Erum, Shazia; Murtaza, Iram; Muhammad, Aish; Amin, Farhana; Nisar, Muhammad Farrukh
2018-05-01
Due to ever increasing antibiotic resistance offered by pathogenic bacterial strains and side effects of synthetic antibiotics, thereof, there is a need to explore the effective phytochemicals from natural resources. In order to help overcoming the problem of effective natural drug and the side effects posed by the use of the synthetic drugs, five different plants namely Thymus vulgaris, Lavandula angustifolia, Rosmarinus officinalis, Cymbopogon citratus and Achillea millefolium were selected to study their antibacterial potential. Antibacterial activity and minimum inhibitory concentration (MIC) checked against the selected bacterial strains. As compared to other test plants, ethanolic extract of Rosmarinus officinalis leaves showed the most promising inhibitory effect i.e: inhibition zone (18.17± 0.44mm) against Klebsiella pneumoniae and the lowest inhibition (15.5±0.29mm) against Pseudomonas aeruginosa and Escherichia coli (p<0.05). The MIC values were recorded in the range of 1 to 20mg/ml. Screening of the selected extracts for the test plants additionally indicate some unique variations. Results were further confirmed through TLC for alkaloids and terpenoids (15% sulphuric acid and Dragedroff's reagent) in ethanolic extract. Characterization of Rosmarinus officinalis of ethanolic extract was carried out using column chromatography. The appearance of orange crystals may indicate the presence of alkaloidal bioactive compounds which need to be further investigated. The tested plants may have a potential for fighting against some infectious diseases caused by selected human pathogenic bacterial strains. This knowledge may incite a gateway to effective drug search and so on.
Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V
2010-12-01
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M
2018-05-05
Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scalfaro, Concetta; Iacobino, Angelo; Nardis, Chiara; Franciosa, Giovanna
2017-04-01
The antagonistic activity against gastrointestinal bacterial pathogens is an important property of probiotic bacteria and a desirable feature for pre-selection of novel strains with probiotic potential. Pre-screening of candidate probiotics for antibacterial activity should be based on in vitro and in vivo tests. This study investigated whether the protective activity of probiotic bacteria against gastrointestinal bacterial pathogens can be evaluated using Galleria mellonella larvae as an in vivo model. Larvae were pre-inoculated with either of two widely used probiotic bacteria, Lactobacillus rhamnosus GG or Clostridium butyricum Miyairi 588, and then challenged with Salmonella enterica Typhimurium, enteropathogenic Escherichia coli or Listeria monocytogenes. Survival rates increased in the probiotic pretreated larvae compared with control larvae inoculated with pathogens only. The hemocyte density increased as well in the probiotic pretreated larvae, indicating that both probiotics induce an immune response in the larvae. The antibacterial activity of probiotics against the pathogens was also assayed by an in vitro agar spot test: results were partially consistent with those obtained by the G. mellonella protection assay. The results obtained, as a whole, suggest that G. mellonella larvae are a potentially useful in vivo model that can complement in vitro assays for pre-screening of candidate probiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nagel, Raimund; Turrini, Paula C G; Nett, Ryan S; Leach, Jan E; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J
2017-05-01
Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA 4 , an additional step beyond production of the penultimate precursor GA 9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA 4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Nagel, Raimund; Turrini, Paula C. G.; Nett, Ryan S.; Leach, Jan E.; Verdier, Valérie; Van Sluys, Marie-Anne; Peters, Reuben J.
2016-01-01
Summary Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the gibberellin (GA) phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid (JA) mediated defense response.Here the function of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae investigated in over 100 isolates.The Xoc operon leads to production of the bioactive GA4, an additional step beyond production of the penultimate precursor GA9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (>90%), but absent in the other major oryzae pathovar.These results indicate selective pressure for production of GA4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice. PMID:28134995
Rasool, Muhammad H; Siddique, Abu B; Saqalein, Muhammad; Asghar, Muhammad J; Zahoor, Muhammad A; Aslam, Bilal; Shafiq, Humerah B; Nisar, Muhammad A
2016-03-01
To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. One hundred and forty-one (100%) samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus) (66%), Escherichia coli (E.coli) (48.5%), Salmonella typhi (S. Typhi) (27.7%), Pseudomonas aeruginosa (P. aeruginosa) (8.5%), and Staphylococcus aureus (S. aureus) (4.3%). Single pathogen was detected in 20 (14.2%) samples whereas combinations were found in 121 (85.8%) samples. Bacillus cereus and E.coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p less than 0.05) differences against all isolates as compared with other antibiotics used in this study.
Classification of select category A and B bacteria by Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Samuels, Alan C.; Snyder, A. Peter; St. Amant, Diane; Emge, Darren K.; Minter, Jennifer; Campbell, Mark; Tripathi, Ashish
2008-04-01
Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FTIR spectra. We investigated the classification ability of the Fourier transform infrared (FTIR) spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation. Various 2-D PC plots provided differential degrees of separation with respect to the four viable, bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. FT spectra were separated from that of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia species were distinctly separated from the remaining dataset and could also be classified by growth media. This work provided evidence that FTIR spectroscopy can separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents.
Luo, Gang; Angelidaki, Irini
2014-09-01
The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Naz, Sadia; Ngo, Tony; Farooq, Umar
2017-01-01
Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099
Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben
2017-01-01
The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.
Geisinger, Edward
2017-01-01
Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515
Hao, Xiuli; Lüthje, Freja L; Qin, Yanan; McDevitt, Sylvia Franke; Lutay, Nataliya; Hobman, Jon L; Asiani, Karishma; Soncini, Fernando C; German, Nadezhda; Zhang, Siyu; Zhu, Yong-Guan; Rensing, Christopher
2015-07-01
The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.
Beceiro, Alejandro; Tomás, María
2013-01-01
SUMMARY Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. PMID:23554414
Borchert, D; Sheridan, L; Papatsoris, A; Faruquz, Z; Barua, J M; Junaid, I; Pati, Y; Chinegwundoh, F; Buchholz, N
2008-04-01
The spiralling costs of antibiotic therapy, the appearance of multiresistant bacteria and more importantly for patients and clinicians, unsatisfactory therapeutic options in recurrent urinary tract infection (RUTI) calls for alternative and advanced medical solutions. So far no sufficient means to successfully prevent painful and disabling RUTI has been found. Even though long-term oral antibiotic treatment has been used with some success as a therapeutic option, this is no longer secure due to the development of bacterial resistance. One promising alternative is the use of live microorganisms (probiotics) to prevent and treat recurrent complicated and uncomplicated urinary tract infection (UTI).The human normal bacterial flora is increasingly recognised as an important defence to infection. Since the advent of antibiotic treatment five decades ago, a linear relation between antibiotic use and reduction in pathogenic bacteria has become established as medical conventional wisdom. But with the use of antibiotics the beneficial bacterial flora hosted by the human body is destroyed and pathogenic bacteria are selectively enabled to overgrow internal and external surfaces. The benign bacterial flora is crucial for body function and oervgrowth with pathogenic microorganisms leads to illness. Thus the concept of supporting the human body's normal flora with live microorganisms conferring a beneficial health effect is an important medical strategy.
Bacterial reproductive pathogens of cats and dogs.
Graham, Elizabeth M; Taylor, David J
2012-05-01
With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.
Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.
Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin
2017-05-15
The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent
2014-04-01
Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.
Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.
2014-01-01
Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390
Association between Selected Oral Pathogens and Gastric Precancerous Lesions
Salazar, Christian R.; Sun, Jinghua; Li, Yihong; Francois, Fritz; Corby, Patricia; Perez-Perez, Guillermo; Dasanayake, Ananda; Pei, Zhiheng; Chen, Yu
2013-01-01
We examined whether colonization of selected oral pathogens is associated with gastric precancerous lesions in a cross-sectional study. A total of 119 participants were included, of which 37 were cases of chronic atrophic gastritis, intestinal metaplasia, or dysplasia. An oral examination was performed to measure periodontal indices. Plaque and saliva samples were tested with real-time quantitative PCR for DNA levels of pathogens related to periodontal disease (Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, Actinobacillus actinomycetemcomitans) and dental caries (Streptococcus mutans and S. sobrinus). There were no consistent associations between DNA levels of selected bacterial species and gastric precancerous lesions, although an elevated but non-significant odds ratio (OR) for gastric precancerous lesions was observed in relation to increasing colonization of A. actinomycetemcomitans (OR = 1.36 for one standard deviation increase, 95% Confidence Interval = 0.87–2.12), P. gingivalis (OR = 1.12, 0.67–1.88) and T. denticola (OR = 1.34, 0.83–2.12) measured in plaque. To assess the influence of specific long-term infection, stratified analyses by levels of periodontal indices were conducted. A. actinomycetemcomitans was significantly associated with gastric precancerous lesions (OR = 2.51, 1.13–5.56) among those with ≥ median of percent tooth sites with PD≥3 mm, compared with no association among those below the median (OR = 0.86, 0.43–1.72). A significantly stronger relationship was observed between the cumulative bacterial burden score of periodontal disease-related pathogens and gastric precancerous lesions among those with higher versus lower levels of periodontal disease indices (p-values for interactions: 0.03–0.06). Among individuals with periodontal disease, high levels of colonization of periodontal pathogens are associated with an increased risk of gastric precancerous lesions. PMID:23308100
Lewis, Amanda L; Hensler, Mary E; Varki, Ajit; Nizet, Victor
2006-04-21
Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.
Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David
2017-12-01
Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.
A quantum-dot-based fluoroassay for detection of food-borne pathogens.
Mohamadi, Elaheh; Moghaddasi, Mohammadali; Farahbakhsh, Afshin; Kazemi, Abbass
2017-09-01
Evaluation of the distribution capability of food-borne pathogens existing in food products by taking the advantage of quantum dots (QDs) for their photoluminescence properties was carried out. Bacteria namely Escherichia coli (E. coli) labelled with CdSe-QDs were examined both on an Agar nutrient and ground fish substrates in order to observe their growth rate in different environments in the Lab. A sample with an appropriate concentration ratio 10 7 CFU/mL of bacteria/CdSe-QDs was empirically selected from the samples which were grown on the Agar containing plates. The selected sample was also tested on a ground fish substrate as a real food sample. The bacterial growth was observed under the irradiation of UV light and the growth patterns were investigated for 3 successive days. The growth patterns indicated that E. coli can stay alive and can be distributed on food products so that the growth can be easily monitored. This approach makes bacterial growth on food products detectable so that it can be used as a bacteria-QD assay for an easy detection of food borne pathogens grown on a food sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of effectors from Fusarium graminearum
USDA-ARS?s Scientific Manuscript database
Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and quality by producing various mycotoxins. Effectors play an important role in the pathogenesis of many bacterial and fungal pathogens. In this study, 26 effector candidates were selected for investiga...
Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for select...
Coincidental loss of bacterial virulence in multi-enemy microbial communities.
Zhang, Ji; Ketola, Tarmo; Örmälä-Odegrip, Anni-Maria; Mappes, Johanna; Laakso, Jouni
2014-01-01
The coincidental virulence evolution hypothesis suggests that outside-host selection, such as predation, parasitism and resource competition can indirectly affect the virulence of environmentally-growing bacterial pathogens. While there are some examples of coincidental environmental selection for virulence, it is also possible that the resource acquisition and enemy defence is selecting against it. To test these ideas we conducted an evolutionary experiment by exposing the opportunistic pathogen bacterium Serratia marcescens to the particle-feeding ciliate Tetrahymena thermophila, the surface-feeding amoeba Acanthamoeba castellanii, and the lytic bacteriophage Semad11, in all possible combinations in a simulated pond water environment. After 8 weeks the virulence of the 384 evolved clones were quantified with fruit fly Drosophila melanogaster oral infection model, and several other life-history traits were measured. We found that in comparison to ancestor bacteria, evolutionary treatments reduced the virulence in most of the treatments, but this reduction was not clearly related to any changes in other life-history traits. This suggests that virulence traits do not evolve in close relation with these life-history traits, or that different traits might link to virulence in different selective environments, for example via resource allocation trade-offs.
Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.
Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon
2017-10-01
Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases
Urban aerosols harbor diverse and dynamic bacterial populations
Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.
2007-01-01
Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744
Banerjee, Goutam; Nandi, Ankita; Ray, Arun Kumar
2017-01-01
In the present investigation, probiotic potential (antagonistic activity, enzyme production, hemolytic activity, biosafety, antibiotic sensitivity and bile tolerance level) of Bacillus subtilis LR1 was evaluated. Bacteriocin produced by the bacterial strain B. subtilis LR1 isolated from the gastrointestinal tract of Labeo rohita was purified and characterized. The molecular weight of the purified bacteriocin was ~50 kDa in 12 % Native PAGE and showed inhibitory activity against four fish pathogens such as Bacillus mycoides, Aeromonas salmonicida, Pseudomonas fluorescens and Aeromonas hydrophila. The purified bacteriocin was maximally active at temperature 40 °C and pH 7.0, while none of the tested surfactants affect the bacteriocin activity. Extracellular enzyme activity of the selected bacterial strain was also evaluated. Amylase activity was estimated to be highest (38.23 ± 1.15 µg of maltose liberated mg -1 protein ml -1 of culture filtrate) followed by cellulase and protease activity. The selected bacterium was sensitive to most of the antibiotics used in this experiment, can tolerate 0.25 % bile salt and non-hemolytic in nature. Finally, the efficiency of the proposed probiotic candidate was evaluated in in vivo condition. It was detected that the bacterial strain can effectively reduce bacterial pathogenicity in Indian major carps.
Pollution impacts on bacterioplankton diversity in a tropical urban coastal lagoon system.
Salloto, Gigliola R B; Cardoso, Alexander M; Coutinho, Felipe H; Pinto, Leonardo H; Vieira, Ricardo P; Chaia, Catia; Lima, Joyce L; Albano, Rodolpho M; Martins, Orlando B; Clementino, Maysa M
2012-01-01
Despite a great number of published studies addressing estuarine, freshwater and marine bacterial diversity, few have examined urban coastal lagoons in tropical habitats. There is an increasing interest in monitoring opportunistic pathogens as well as indigenous microbial community members in these water bodies by current molecular and microbiological approaches. In this work, bacterial isolates were obtained through selective plate dilution methods to evaluate antibiotic resistances. In addition, 16S rRNA gene libraries were prepared from environmental waters and mixed cultures grown in BHI medium inoculated with Jacarepaguá lagoon waters. Denaturing gradient gel electrophoresis (DGGE) analyses showed distinct community profiles between environmental communities from each studied site and their cultured counterparts. A total of 497 bacterial sequences were analyzed by MOTHUR, yielding 245 operational taxonomic units (OTUs) grouped at 97% similarity. CCA diagrams showcased how several environmental variables affect the distribution of 18 bacterial orders throughout the three distinct habitats. UniFrac metrics and Venn diagrams revealed that bacterial communities retrieved through each experimental approach were significantly different and that only one OTU, closely related to Vibrio cholerae, was shared between them. Potentially pathogenic bacteria were isolated from most sampled environments, fifty percent of which showed antibiotic resistance.
Pollution Impacts on Bacterioplankton Diversity in a Tropical Urban Coastal Lagoon System
Salloto, Gigliola R. B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Pinto, Leonardo H.; Vieira, Ricardo P.; Chaia, Catia; Lima, Joyce L.; Albano, Rodolpho M.; Martins, Orlando B.; Clementino, Maysa M.
2012-01-01
Despite a great number of published studies addressing estuarine, freshwater and marine bacterial diversity, few have examined urban coastal lagoons in tropical habitats. There is an increasing interest in monitoring opportunistic pathogens as well as indigenous microbial community members in these water bodies by current molecular and microbiological approaches. In this work, bacterial isolates were obtained through selective plate dilution methods to evaluate antibiotic resistances. In addition, 16S rRNA gene libraries were prepared from environmental waters and mixed cultures grown in BHI medium inoculated with Jacarepaguá lagoon waters. Denaturing gradient gel electrophoresis (DGGE) analyses showed distinct community profiles between environmental communities from each studied site and their cultured counterparts. A total of 497 bacterial sequences were analyzed by MOTHUR, yielding 245 operational taxonomic units (OTUs) grouped at 97% similarity. CCA diagrams showcased how several environmental variables affect the distribution of 18 bacterial orders throughout the three distinct habitats. UniFrac metrics and Venn diagrams revealed that bacterial communities retrieved through each experimental approach were significantly different and that only one OTU, closely related to Vibrio cholerae, was shared between them. Potentially pathogenic bacteria were isolated from most sampled environments, fifty percent of which showed antibiotic resistance. PMID:23226484
Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.
Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa
2013-06-01
More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.
Identification of secreted bacterial proteins by noncanonical amino acid tagging
Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.
2014-01-01
Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637
In-vitro effect of edta-tris-lysozyme solutions on selected pathogenic bacteria.
Wooley, R E; Blue, J L
1975-02-01
The in-vitro effect of EDTA-Tris-lysozyme solution on 16 pathogenic bacteria of medical or veterinary importance was determined. Marked decreases in bacterial count occurred with Pseudomonas aeruginosa, Escherichia coli, Moraxella osloensis and Campylobacter fetus, and smaller decreses with Salmonella typhimurium, Shigella boydii, Aeromonas hydrophila, proteus mirabilis, Listeria monocytogenes and Erysipelothrix insidiosa. The test solution had no effect on Klebsiella ozaenae, Brucella canis, Cornynebacterium pyogenes, Coryne, renale, Streptococcus equi and staphylococcus aureus.
Changes in Soil Bacterial Communities and Diversity in Response to Long-Term Silver Exposure
Silver-induced selective pressure is becoming increasingly important due to the growing use of silver (Ag) as an antimicrobial agent in biomedical and commercial products. With demonstrated links between environmental resistomes and clinical pathogens, it is important to identif...
Wang, Shu-Xia; Zhang, Jia-Ming; Wu, Kai; Chen, Juan; Shi, Jian-Feng
2014-08-01
To investigate the pathogenic infection and its drug resistance in expressed prostatic secretion (EPS) and its correlation with serum PSA, and provide some evidence for the systematic and normalized diagnosis and treatment of prostatitis. Three EPS swabs were collected from each of the 320 prostatis patients following measurement of the serum PSA level, 1 for bacterial culture and identification, 1 for detection of Mycoplasma and drug sensitivity, and the other for examination of Chlamydia trachomatis antigen by colloidal gold immunoblot. Totally 244 strains were isolated from the 320 EPS samples, including 188 bacterial strains (dominated by Staphylococcus and sensitive to vancomycin or linezolid) and 44 Mycoplasma and Chlamydia strains (mainly Ureaplasma urealyticum and susceptible to josamycin or doxycycline). The serum PSA level was significantly higher in the pathogen-positive than in the pathogen-negative group ([6.98 +/- 0.56] microg/L vs [2.32 +/- 0.12] microg/L, P < 0.05). Prostatitis may lead to the elevation of the serum PSA level and the pathogens involved vary in their resistance to different antibacterial spectrums. Therefore, appropriate and individualized antibiotic therapy should be selected according to etiological diagnosis and the results of drug sensitivity test.
Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale
2016-12-01
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.
Keane, O M; Budd, K E; Flynn, J; McCoy, F
2013-09-21
Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.
Kurz, C.Léopold; Chauvet, Sophie; Andrès, Emmanuel; Aurouze, Marianne; Vallet, Isabelle; Michel, Gérard P.F.; Uh, Mitch; Celli, Jean; Filloux, Alain; de Bentzmann, Sophie; Steinmetz, Ivo; Hoffmann, Jules A.; Finlay, B.Brett; Gorvel, Jean-Pierre; Ferrandon, Dominique; Ewbank, Jonathan J.
2003-01-01
The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode’s intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin produc tion. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity. PMID:12660152
Bacterial pneumonia as an influenza complication.
Martin-Loeches, Ignacio; van Someren Gréve, Frank; Schultz, Marcus J
2017-04-01
The pathogenesis and impact of coinfection, in particular bacterial coinfection, in influenza are incompletely understood. This review summarizes results from studies on bacterial coinfection in the recent pandemic influenza outbreak. Systemic immune mechanisms play a key role in the development of coinfection based on the complexity of the interaction of the host and the viral and bacterial pathogens. Several studies were performed to determine the point prevalence of bacterial coinfection in influenza. Coinfection in influenza is frequent in critically ill patients with Streptococcus pneumoniae being the most frequent bacterial pathogen and higher rates of potentially resistant pathogens over the years. Bacterial pneumonia is certainly an influenza complication. The recent epidemiology findings have helped to partially resolve the contribution of different pathogens. Immunosuppression is a risk factor for bacterial coinfection in influenza, and the epidemiology of coinfection has changed over the years during the last influenza pandemic, and these recent findings should be taken into account during present outbreaks.
Leydet, Brian F.; Liang, Fang-Ting
2013-01-01
There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850
Selection of Protease Inhibitors to Prevent or Attenuate Inflammatory Processes
2007-08-01
selective kinin BI-receptor antagonists would not produce undesirable side effects [Campos et al., 2006]. The constitutive expression of B2-receptors on...This metabolic fragment of bradykinin prevents the deleterious effects of endotoxin (LPS) in both anesthetized rats and in isolated rat aortic...bacterial pathogens, such as Pseudomonas aeruginosa, Vibrio cholerae and Neisseria gonorrhoeae. These bacteria all produce type IV pili (Tfp) composed
Sharma, Alok; Pathak, Ashutosh; Sahgal, Manvika; Meyer, Jean-Marie; Wray, Victor; Johri, Bhavdish N
2007-11-01
Pythium and Phytophthora species are associated with damping-off diseases in vegetable nurseries and reduce seedling stand and yield. In this study, bacterial isolates were selected on the basis of in vitro antagonism potential to inhibit mycelial growth of damping-off pathogens along with plant growth properties for field assessment in wet and winter seasons. We demonstrate efficacy of bacterial isolates to protect chile and tomato plants under natural vegetable nursery and artificially created pathogen-infested (Pythium and Phytophthora spp.) nursery conditions. After 21 days of sowing, chile and tomato plants were harvested and analysed for peroxidase and phenylalanine ammonia-lyase activities. Pseudomonas sp. strains FQP PB-3, FQA PB-3 and GRP(3 )were most effective in increasing shoot length (P > 0.05%) in both artificial and natural field sites. For example, Pseudomonas sp. FQA PB-3 treatment increased shoot length by 40% in the artificial Pythium 4746 infested nursery site in chile plants in the wet season. The bacterial treatments significantly increased the activity of peroxidase and phenylalanine ammonia-lyase in chile and tomato plant tissues, which are well known as indicators of an active lignification process. Thus, we conclude that treatment with potential bacterial plant growth promoting agents help plants against pathogen invasion by modulating plant peroxidase and phenylalanine ammonia-lyase activities.
Dunière, Lysiane; Gleizal, Audrey; Chaucheyras-Durand, Frédérique; Chevallier, Isabelle; Thévenot-Sergentet, Delphine
2011-01-01
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (105 CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (106 CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain. PMID:21984243
Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael
2014-07-14
Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.
Eyal, Zohar; Matzov, Donna; Krupkin, Miri; Wekselman, Itai; Paukner, Susanne; Zimmerman, Ella; Rozenberg, Haim; Bashan, Anat; Yonath, Ada
2015-01-01
The emergence of bacterial multidrug resistance to antibiotics threatens to cause regression to the preantibiotic era. Here we present the crystal structure of the large ribosomal subunit from Staphylococcus aureus, a versatile Gram-positive aggressive pathogen, and its complexes with the known antibiotics linezolid and telithromycin, as well as with a new, highly potent pleuromutilin derivative, BC-3205. These crystal structures shed light on specific structural motifs of the S. aureus ribosome and the binding modes of the aforementioned antibiotics. Moreover, by analyzing the ribosome structure and comparing it with those of nonpathogenic bacterial models, we identified some unique internal and peripheral structural motifs that may be potential candidates for improving known antibiotics and for use in the design of selective antibiotic drugs against S. aureus. PMID:26464510
Quorum quenching quandary: resistance to antivirulence compounds
Maeda, Toshinari; García-Contreras, Rodolfo; Pu, Mingming; Sheng, Lili; Garcia, Luis Rene; Tomás, Maria; Wood, Thomas K
2012-01-01
Quorum sensing (QS) is the regulation of gene expression in response to the concentration of small signal molecules, and its inactivation has been suggested to have great potential to attenuate microbial virulence. It is assumed that unlike antimicrobials, inhibition of QS should cause less Darwinian selection pressure for bacterial resistance. Using the opportunistic pathogen Pseudomonas aeruginosa, we demonstrate here that bacterial resistance arises rapidly to the best-characterized compound that inhibits QS (brominated furanone C-30) due to mutations that increase the efflux of C-30. Critically, the C-30-resistant mutant mexR was more pathogenic to Caenorhabditis elegans in the presence of C-30, and the same mutation arises in bacteria responsible for chronic cystic fibrosis infections. Therefore, bacteria may evolve resistance to many new pharmaceuticals thought impervious to resistance. PMID:21918575
Common themes in microbial pathogenicity revisited.
Finlay, B B; Falkow, S
1997-01-01
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics. PMID:9184008
Rapid Bacterial Detection via an All-Electronic CMOS Biosensor
Nikkhoo, Nasim; Cumby, Nichole; Gulak, P. Glenn; Maxwell, Karen L.
2016-01-01
The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185
USDA-ARS?s Scientific Manuscript database
Campylobacter is one of the most commonly reported bacterial causes of human foodborne illness and epidemiological evidence indicates poultry and poultry products as significant sources of human Campylobacter infection. In an effort to reduce colonization of enteric pathogens in poultry, scientists...
Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara
2016-01-01
The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species. Our findings provide evidence of intestinal bacterial population altered by a presence of the pathogen in shrimp intestines and intestinal bacterial stability might provide colonization resistance against the invading pathogen in the host shrimp. Hence, intestinal microbial ecology management may potentially contribute to disease prevention in aquaculture. Copyright © 2015 Elsevier Inc. All rights reserved.
Gugala, Natalie; Lemire, Joe A; Turner, Raymond J
2017-06-01
The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.
Walsh, Christopher T
2017-07-01
Antibiotics are a therapeutic class that, once deployed, select for resistant bacterial pathogens and so shorten their useful life cycles. As a consequence new versions of antibiotics are constantly needed. Among the antibiotic natural products, morphed peptide scaffolds, converting conformationally mobile, short-lived linear peptides into compact, rigidified small molecule frameworks, act on a wide range of bacterial targets. Advances in bacterial genome mining, biosynthetic gene cluster prediction and expression, and mass spectroscopic structure analysis suggests many more peptides, modified both in side chains and peptide backbones, await discovery. Such molecules may turn up new bacterial targets and be starting points for combinatorial or semisynthetic manipulations to optimize activity and pharmacology parameters.
Sortase A Inhibitors: Recent Advances and Future Perspectives.
Cascioferro, Stella; Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Schillaci, Domenico; Daidone, Giuseppe
2015-12-10
Here, we describe the most promising small synthetic organic compounds that act as potent Sortase A inhibitors and cater the potential to be developed as antivirulence drugs. Sortase A is a polypeptide of 206 amino acids, which catalyzes two sequential reactions: (i) thioesterification and (ii) transpeptidation. Sortase A is involved in the process of bacterial adhesion by anchoring LPXTG-containing proteins to lipid II. Sortase A inhibitors do not affect bacterial growth, but they restrain the virulence of pathogenic bacterial strains, thereby preventing infections caused by Staphylococcus aureus or other Gram-positive bacteria. The efficacy of the most promising inhibitors needs to be comprehensively evaluated in in vivo models of infection, in order to select compounds eligible for the treatment of bacterial infections in humans.
Purcell, M.K.; Murray, A.L.; Elz, A.; Park, L.K.; Marcquenski, S.V.; Winton, J.R.; Alcorn, S.W.; Pascho, R.J.; Elliott, D.G.
2008-01-01
In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. in this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection. ?? Copyright by the American Fisheries Society 2008.
Purcell, Maureen K; Murray, Anthony L; Elz, Anna; Park, Linda K; Marcquenski, Susan V; Winton, James R; Alcorn, Stewart W; Pascho, Ronald J; Elliott, Diane G
2008-12-01
In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from 1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. In this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection.
Cognitive skills and bacterial load: comparative evidence of costs of cognitive proficiency in birds
NASA Astrophysics Data System (ADS)
Soler, Juan José; Peralta-Sánchez, Juan Manuel; Martín-Vivaldi, Manuel; Martín-Platero, Antonio Manuel; Flensted-Jensen, Einar; Møller, Anders Pape
2012-02-01
Parasite-mediated selection may affect the evolution of cognitive abilities because parasites may influence development of the brain, but also learning capacity. Here, we tested some predictions of this hypothesis by analyzing the relationship between complex behaviours (feeding innovations (as a measure of behavioural flexibility) and ability to detect foreign eggs in their nests (i.e. a measure of discriminatory ability)) and abundance of microorganisms in different species of birds. A positive relationship would be predicted if these cognitive abilities implied a larger number of visited environments, while if these skills favoured detection and avoidance of risky environments, a negative relationship would be the prediction. Bacterial loads of eggshells, estimated for mesophilic and potentially pathogenic bacteria (i.e. Enterococcus, Staphylococcus and Enterobacteriaceae), were used as a surrogate of probability of contact with pathogenic bacteria. We found that bird species with higher feeding innovation rates and rejection rates of experimental brood parasitic eggs had higher density of bacteria on their eggshells than the average species. Since the analysed groups of microorganisms include pathogenic bacteria, these results suggest that both feeding innovation and ability to recognize foreign eggs are costly and highlight the importance of parasite-mediated selection in explaining the evolution of cognitive abilities in animals.
Gao, Ke; Lai, Yutian; Huang, Jian; Wang, Yifan; Wang, Xiaowei; Che, Guowei
2017-04-20
Surgical procedure is the main method of treating lung cancer. Meanwhile, postoperative pneumonia (POP) is the major cause of perioperative mortality in lung cancer surgery. The preoperative pathogenic airway bacterial colonization is an independent risk factor causing postoperative pulmonary complications (PPC). This cross-sectional study aimed to explore the relationship between preoperative pathogenic airway bacterial colonization and POP in lung cancer and to identify the high-risk factors of preoperative pathogenic airway bacterial colonization. A total of 125 patients with non-small cell lung cancer (NSCLC) underwent thoracic surgery in six hospitals of Chengdu between May 2015 and January 2016. Preoperative pathogenic airway bacterial colonization was detected in all patients via fiber bronchoscopy. Patients' PPC, high-risk factors, clinical characteristics, and the serum surfactant protein D (SP-D) level were also analyzed. The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients was 15.2% (19/125). Up to 22 strains were identified in the colonization positive group, with Gram-negative bacteria being dominant (86.36%, 19/22). High-risk factors of pathogenic airway bacterial colonization were age (≥75 yr) and smoking index (≥400 cigarettes/year). PPC incidence was significantly higher in the colonization-positive group (42.11%, 8/19) than that in the colonization-negative group (16.04%, 17/106)(P=0.021). POP incidence was significantly higher in the colonization-positive group (26.32%, 5/19) than that in the colonization-negative group (6.60%, 7/106)(P=0.019). The serum SP-D level of patients in the colonization-positive group was remarkably higher than that in the colonization-negative group [(31.25±6.09) vs (28.17±5.23)](P=0.023). The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients with POP was 41.67% (5/12). This value was 3.4 times higher than that among the patients without POP (OR=3.363, 95%CI: 1.467-7.711). An intimate correlation was observed between POP and pathogenic airway bacterial colonization in lung cancer. The high-risk factors of pathogenic airway bacterial colonization were age and smoking index.
Tracking the establishment of local endemic populations of an emergent enteric pathogen
Holt, Kathryn E.; Thieu Nga, Tran Vu; Thanh, Duy Pham; Vinh, Ha; Kim, Dong Wook; Vu Tra, My Phan; Campbell, James I.; Hoang, Nguyen Van Minh; Vinh, Nguyen Thanh; Minh, Pham Van; Thuy, Cao Thu; Nga, Tran Thi Thu; Thompson, Corinne; Dung, Tran Thi Ngoc; Nhu, Nguyen Thi Khanh; Vinh, Phat Voong; Tuyet, Pham Thi Ngoc; Phuc, Hoang Le; Lien, Nguyen Thi Nam; Phu, Bui Duc; Ai, Nguyen Thi Thuy; Tien, Nguyen Manh; Dong, Nguyen; Parry, Christopher M.; Hien, Tran Tinh; Farrar, Jeremy J.; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.; Baker, Stephen
2013-01-01
Shigella sonnei is a human-adapted pathogen that is emerging globally as the dominant agent of bacterial dysentery. To investigate local establishment, we sequenced the genomes of 263 Vietnamese S. sonnei isolated over 15 y. Our data show that S. sonnei was introduced into Vietnam in the 1980s and has undergone localized clonal expansion, punctuated by genomic fixation events through periodic selective sweeps. We uncover geographical spread, spatially restricted frontier populations, and convergent evolution through local gene pool sampling. This work provides a unique, high-resolution insight into the microevolution of a pioneering human pathogen during its establishment in a new host population. PMID:24082120
Wales, Andrew D.; Davies, Robert H.
2015-01-01
Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations. PMID:27025641
Ramachandran, Padmanabhan; Fitzwater, Sean Patrick; Aneja, Satinder; Verghese, Valsan Philip; Kumar, Vishwajeet; Nedunchelian, Krishnamoorthy; Wadhwa, Nitya; Veeraraghavan, Balaji; Kumar, Rashmi; Meeran, Mohamed; Kapil, Arti; Jasmine, Sudha; Kumar, Aarti; Suresh, Saradha; Bhatnagar, Shinjini; Thomas, Kurien; Awasthi, Shally; Santosham, Mathuram; Chandran, Aruna
2013-01-01
Background & objectives: Haemophilus influenzae type b (Hib) is one of the leading bacterial causes of invasive disease in populations without access to Hib conjugate vaccines (Hib-CV). India has recently decided to introduce Hib-CV into the routine immunization programme in selected States. Longitudinal data quantifying the burden of bacterial meningitis and the proportion of disease caused by various bacteria are needed to track the impact of Hib-CV once introduced. A hospital-based sentinel surveillance network was established at four places in the country and this study reports the results of this ongoing surveillance. Methods: Children aged 1 to 23 months with suspected bacterial meningitis were enrolled in Chennai, Lucknow, New Delhi, and Vellore between July 2008 and June 2010. All cerebrospinal fluid (CSF) samples were tested using cytological, biochemical, and culture methods. Samples with abnormal CSF (≥10 WBC per μl) were tested by latex agglutination test for common paediatric bacterial meningitis pathogens. Results: A total of 708 patients with abnormal CSF were identified, 89 of whom had a bacterial pathogen confirmed. Hib accounted for the majority of bacteriologically confirmed cases, 62 (70%), while Streptococcus pneumoniae and group B Streptococcus were identified in 12 (13%) and seven (8%) cases, respectively. The other eight cases were a mix of other bacteria. The proportion of abnormal CSF and probable bacterial meningitis that was caused by Hib was 74 and 58 per cent lower at Christian Medical College (CMC), Vellore, which had a 41 per cent coverage of Hib-CV among all suspected meningitis cases, compared to the combined average proportion at the other three centres where a coverage between 1 and 8 per cent was seen (P<0.001 and P= 0.05, respectively). Interpretation & conclusions: Hib was found to be the predominant cause of bacterial meningitis in young children in diverse geographic locations in India. Possible indications of herd immunity was seen at CMC compared to sites with low immunization coverage with Hib-CV. As Hib is the most common pathogen in bacterial meningitis, Hib-CV would have a large impact on bacterial meningitis in Indian children. PMID:23703338
Ramachandran, Padmanabhan; Fitzwater, Sean Patrick; Aneja, Satinder; Verghese, Valsan Philip; Kumar, Vishwajeet; Nedunchelian, Krishnamoorthy; Wadhwa, Nitya; Veeraraghavan, Balaji; Kumar, Rashmi; Meeran, Mohamed; Kapil, Arti; Jasmine, Sudha; Kumar, Aarti; Suresh, Saradha; Bhatnagar, Shinjini; Thomas, Kurien; Awasthi, Shally; Santosham, Mathuram; Chandran, Aruna
2013-04-01
Haemophilus influenzae type b (Hib) is one of the leading bacterial causes of invasive disease in populations without access to Hib conjugate vaccines (Hib-CV). India has recently decided to introduce Hib-CV into the routine immunization programme in selected States. Longitudinal data quantifying the burden of bacterial meningitis and the proportion of disease caused by various bacteria are needed to track the impact of Hib-CV once introduced. A hospital-based sentinel surveillance network was established at four places in the country and this study reports the results of this ongoing surveillance. Children aged 1 to 23 months with suspected bacterial meningitis were enrolled in Chennai, Lucknow, New Delhi, and Vellore between July 2008 and June 2010. All cerebrospinal fluid (CSF) samples were tested using cytological, biochemical, and culture methods. Samples with abnormal CSF (≥10 WBC per μl) were tested by latex agglutination test for common paediatric bacterial meningitis pathogens. A total of 708 patients with abnormal CSF were identified, 89 of whom had a bacterial pathogen confirmed. Hib accounted for the majority of bacteriologically confirmed cases, 62 (70%), while Streptococcus pneumoniae and group B Streptococcus were identified in 12 (13%) and seven (8%) cases, respectively. The other eight cases were a mix of other bacteria. The proportion of abnormal CSF and probable bacterial meningitis that was caused by Hib was 74 and 58 per cent lower at Christian Medical College (CMC), Vellore, which had a 41 per cent coverage of Hib-CV among all suspected meningitis cases, compared to the combined average proportion at the other three centres where a coverage between 1 and 8 per cent was seen (P<0.001 and P= 0.05, respectively). Hib was found to be the predominant cause of bacterial meningitis in young children in diverse geographic locations in India. Possible indications of herd immunity was seen at CMC compared to sites with low immunization coverage with Hib-CV. As Hib is the most common pathogen in bacterial meningitis, Hib-CV would have a large impact on bacterial meningitis in Indian children.
Pinheiro, Ana; Woof, Jenny M.; Abi-Rached, Laurent; Parham, Peter; Esteves, Pedro J.
2013-01-01
IgA is the predominant immunoglobulin isotype in mucosal tissues and external secretions, playing important roles both in defense against pathogens and in maintenance of commensal microbiota. Considering the complexity of its interactions with the surrounding environment, IgA is a likely target for diversifying or positive selection. To investigate this possibility, the action of natural selection on IgA was examined in depth with six different methods: CODEML from the PAML package and the SLAC, FEL, REL, MEME and FUBAR methods implemented in the Datamonkey webserver. In considering just primate IgA, these analyses show that diversifying selection targeted five positions of the Cα1 and Cα2 domains of IgA. Extending the analysis to include other mammals identified 18 positively selected sites: ten in Cα1, five in Cα2 and three in Cα3. All but one of these positions display variation in polarity and charge. Their structural locations suggest they indirectly influence the conformation of sites on IgA that are critical for interaction with host IgA receptors and also with proteins produced by mucosal pathogens that prevent their elimination by IgA-mediated effector mechanisms. Demonstrating the plasticity of IgA in the evolution of different groups of mammals, only two of the eighteen selected positions in all mammals are included in the five selected positions in primates. That IgA residues subject to positive selection impact sites targeted both by host receptors and subversive pathogen ligands highlights the evolutionary arms race playing out between mammals and pathogens, and further emphasizes the importance of IgA in protection against mucosal pathogens. PMID:24019941
Lee, Won Young; Kim, Mincheol; Jablonski, Piotr G.; Choe, Jae Chun; Lee, Sang-im
2014-01-01
Inhibitory effect of incubation on microbial growth has extensively been studied in wild bird populations using culture-based methods and conflicting results exist on whether incubation selectively affects the growth of microbes on the egg surface. In this study, we employed culture-independent methods, quantitative PCR and 16S rRNA gene pyrosequencing, to elucidate the effect of incubation on the bacterial abundance and bacterial community composition on the eggshells of the Eurasian Magpie (Pica pica). We found that total bacterial abundance increased and diversity decreased on incubated eggs while there were no changes on non-incubated eggs. Interestingly, Gram-positive Bacillus, which include mostly harmless species, became dominant and genus Pseudomonas, which include opportunistic avian egg pathogens, were significantly reduced after incubation. These results suggest that avian incubation in temperate regions may promote the growth of harmless (or benevolent) bacteria and suppress the growth of pathogenic bacterial taxa and consequently reduce the diversity of microbes on the egg surface. We hypothesize that this may occur due to difference in sensitivity to dehydration on the egg surface among microbes, combined with the introduction of Bacillus from bird feathers and due to the presence of antibiotics that certain bacteria produce. PMID:25089821
Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan
2017-03-01
Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min
2014-04-01
To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Qadri, S. M.; Lee, G. C.; Ueno, Y.; Burdette, J. M.
1993-01-01
Although most respiratory tract infections are caused by viruses, bacterial pathogens are responsible for higher morbidity and mortality. Because virtually nothing is known about the etiology of bacterial respiratory pathogens in Saudi Arabia, this study examined the incidence of these organisms in 5426 patients over a 1-year period. Of the bacterial pathogens isolated from 904 patients, the most common organism was Hemophilus influenzae (31%), followed by pneumococci (22%), Pseudomonas aeruginosa (16%), and others (31%). Because the first two organisms accounted for more than 50% of isolates, their susceptibility to commonly used antibiotics was also reviewed. The results are presented here. PMID:8496993
Synthetic analogs of bacterial quorum sensors
Iyer, Rashi [Los Alamos, NM; Ganguly, Kumkum [Los Alamos, NM; Silks, Louis A [Los Alamos, NM
2011-12-06
Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.
Synthetic analogs of bacterial quorum sensors
Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.
2013-01-08
Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.
'Drugs from bugs': bacterial effector proteins as promising biological (immune-) therapeutics.
Rüter, Christian; Hardwidge, Philip R
2014-02-01
Immune system malfunctions cause many of the most severe human diseases. The immune system has evolved primarily to control bacterial, viral, fungal, and parasitic infections. In turn, over millions of years of coevolution, microbial pathogens have evolved various mechanisms to control and modulate the host immune system for their own benefit and survival. For example, many bacterial pathogens use virulence proteins to modulate and exploit target cell mechanisms. Our understanding of these bacterial strategies opens novel possibilities to exploit 'microbial knowledge' to control excessive immune reactions. Gaining access to strategies of microbial pathogens could lead to potentially huge benefits for the therapy of inflammatory diseases. Most work on bacterial pathogen effector proteins has the long-term aim of neutralizing the infectious capabilities of the pathogen. However, attenuated pathogens and microbial products have been used for over a century with overwhelming success in the form of vaccines to induce specific immune responses that protect against the respective infectious diseases. In this review, we focus on bacterial effector and virulence proteins capable of modulating and suppressing distinct signaling pathways with potentially desirable immune-modulating effects for treating unrelated inflammatory diseases. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.
2013-01-01
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624
Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C
2013-04-01
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.
Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne
2018-06-08
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton.
Steele-Mortimer, O; Knodler, L A; Finlay, B B
2000-02-01
The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.
Host-pathogen interactions: A cholera surveillance system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Aaron T.
2016-02-22
Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.
Truong, Quang Lam; Seo, Tae Won; Yoon, Byung-Il; Kim, Hyeon-Cheol; Han, Jeong Hee; Hahn, Tae-Wook
2013-12-30
In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.
Ahn, Il-Pyung; Lee, Sang-Woo; Kim, Min Gab; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul
2011-01-01
A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt. PMID:21710203
Wittebole, Xavier; De Roock, Sophie; Opal, Steven M
2014-01-01
The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy. PMID:23973944
Deng, Meihong; Loughran, Patricia; Gibson, Gregory; Sodhi, Chhinder; Watkins, Simon; Hackam, David
2013-01-01
The morbidity associated with bacterial sepsis is the result of host immune responses to pathogens, which are dependent on pathogen recognition by pattern recognition receptors, such as TLR4. TLR4 is expressed on a range of cell types, yet the mechanisms by which cell-specific functions of TLR4 lead to an integrated sepsis response are poorly understood. To address this, we generated mice in which TLR4 was specifically deleted from myeloid cells (LysMTLR4KO) or hepatocytes (HCTLR4KO) and then determined survival, bacterial counts, host inflammatory responses, and organ injury in a model of cecal ligation and puncture (CLP), with or without antibiotics. LysM-TLR4 was required for phagocytosis and efficient bacterial clearance in the absence of antibiotics. Survival, the magnitude of the systemic and local inflammatory responses, and liver damage were associated with bacterial levels. HCTLR4 was required for efficient LPS clearance from the circulation, and deletion of HCTLR4 was associated with enhanced macrophage phagocytosis, lower bacterial levels, and improved survival in CLP without antibiotics. Antibiotic administration during CLP revealed an important role for hepatocyte LPS clearance in limiting sepsis-induced inflammation and organ injury. Our work defines cell type–selective roles for TLR4 in coordinating complex immune responses to bacterial sepsis and suggests that future strategies for modulating microbial molecule recognition should account for varying roles of pattern recognition receptors in multiple cell populations. PMID:23562812
Pruvost, O; Roumagnac, P; Gaube, C; Chiroleu, F; Gagnevin, L
2005-01-01
Mango bacterial black spot, caused by Xanthomonas campestris pv. mangiferaeindicae, is a potentially severe disease in several tropical and subtropical areas. Data describing the life cycle of the pathogen are needed for improving integrated pest management strategies. Because of the important bacterial microflora associated with mango leaves, isolation of the pathogen is often difficult using nonselective agar media. A previously developed medium, BVGA, failed to inhibit several Gram-negative saprophytic bacteria, especially those belonging to Enterobacteriaceae. Two new semiselective media were developed. The selectivity of KC and NCTM3 media was achieved using cephalexin 40 mg l(-1), kasugamycin 20 mg l(-1) and neomycin 1 mg l(-1), cephalexin 100 mg l(-1), trimethoprime 5 mg l(-1), pivmecillinam 100 mg l(-1) respectively. Plating efficiencies ranged from 76 to 104% and from 78 to 132% for KC and NCTM3 respectively. The new media allowed the growth of X. campestris pv. mangiferaeindicae whatever its country of isolation. The pathogen was repeatedly isolated with these media from asymptomatic leaves sampled in growth chamber experiments. This work provides a description of new semiselective media, which should be valuable tools to study the ecology and epidemiology of X. campestris pv. mangiferaeindicae.
Bozkurt, I A; Soylu, S; Mirik, M; Ulubas Serce, C; Baysal, Ö
2014-11-01
This study aimed to isolate and identify the causal organism causing hyperplastic outgrowths (knots) on stems and branches of pomegranate trees in the Eastern Mediterranean region of Turkey. Bacterial colonies were isolated from young knots on plates containing selective nutrient media. Biochemical tests, fatty acid analysis and PCR were performed to identify possible causal disease agent. Representative isolates were identified as Pseudomonas.pv.savastanoi (Psv) using biochemical tests, fatty acid profiling and PCR. Following inoculation of pomegranate plants (cv. hicaz) with bacterial suspensions, 25 of 54 bacterial isolates caused typical knots at the site of inoculation. PCR analysis, using specific primer for Psv, generated a single amplicon from all isolates. The similarity of the sequence of Turkish pomegranate isolate was 99% similar to the corresponding gene sequences of Psv in the databases. Based on symptoms, biochemical, molecular, pathogenicity tests and sequence analyses, the disease agent of knots observed on the pomegranate trees is Psv. To the best of our knowledge, this research has revealed pomegranate as a natural host of Psv, which extends the list of host plant species affected by the pathogen in the world and Turkey. Pomegranate trees were affected by the disease with outgrowths (galls or knot) disease. Currently, there is no published study on disease agent(s) causing the galls or knots on pomegranate trees in worldwide. Bacterial colonies were isolated from young knots. The causal agent of the knot Pseudomonas savastanoi pv.savastanoi (Psv) was identified based on symptoms, biochemical, molecular methods, pathogenicity tests and sequence analysis. To the best of our knowledge, this is the first report of Psv on pomegranate as a natural host, which extends the growing list of plant species affected by this bacterium in the world and Turkey. © 2014 The Society for Applied Microbiology.
BACTERIAL WATERBORNE PATHOGENS
Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...
Future challenges in the elimination of bacterial meningitis.
Bottomley, Matthew J; Serruto, Davide; Sáfadi, Marco Aurélio Palazzi; Klugman, Keith P
2012-05-30
Despite the widespread implementation of several effective vaccines over the past few decades, bacterial meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Group B Streptococcus (GBS) still results in unacceptably high levels of human mortality and morbidity. A residual disease burden due to bacterial meningitis is also apparent due to a number of persistent or emerging pathogens, including Mycobacterium tuberculosis, Escherichia coli, Staphylococcus aureus, Salmonella spp. and Streptococcus suis. Here, we review the current status of bacterial meningitis caused by these pathogens, highlighting how past and present vaccination programs have attempted to counter these pathogens. We discuss how improved pathogen surveillance, implementation of current vaccines, and development of novel vaccines may be expected to further reduce bacterial meningitis and related diseases in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bacterial detection: from microscope to smartphone.
Gopinath, Subash C B; Tang, Thean-Hock; Chen, Yeng; Citartan, Marimuthu; Lakshmipriya, Thangavel
2014-10-15
The ubiquitous nature of bacteria enables them to survive in a wide variety of environments. Hence, the rise of various pathogenic species that are harmful to human health raises the need for the development of accurate sensing systems. Sensing systems are necessary for diagnosis and epidemiological control of pathogenic organism, especially in the food-borne pathogen and sanitary water treatment facility' bacterial populations. Bacterial sensing for the purpose of diagnosis can function in three ways: bacterial morphological visualization, specific detection of bacterial component and whole cell detection. This paper provides an overview of the currently available bacterial detection systems that ranges from microscopic observation to state-of-the-art smartphone-based detection. Copyright © 2014 Elsevier B.V. All rights reserved.
Sequestration and Scavenging of Iron in Infection
Parrow, Nermi L.; Fleming, Robert E.
2013-01-01
The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen. PMID:23836822
Prasai, Tanka P.; Walsh, Kerry B.; Bhattarai, Surya P.; Midmore, David J.; Van, Thi T. H.; Moore, Robert J.; Stanley, Dragana
2016-01-01
A range of feed supplements, including antibiotics, have been commonly used in poultry production to improve health and productivity. Alternative methods are needed to suppress pathogen loads and maintain productivity. As an alternative to antibiotics use, we investigated the ability of biochar, bentonite and zeolite as separate 4% feed additives, to selectively remove pathogens without reducing microbial richness and diversity in the gut. Neither biochar, bentonite nor zeolite made any significant alterations to the overall richness and diversity of intestinal bacterial community. However, reduction of some bacterial species, including some potential pathogens was detected. The microbiota of bentonite fed animals were lacking all members of the order Campylobacterales. Specifically, the following operational taxonomic units (OTUs) were absent: an OTU 100% identical to Campylobacter jejuni; an OTU 99% identical to Helicobacter pullorum; multiple Gallibacterium anatis (>97%) related OTUs; Bacteroides dorei (99%) and Clostridium aldenense (95%) related OTUs. Biochar and zeolite treatments had similar but milder effects compared to bentonite. Zeolite amended feed was also associated with significant reduction in the phylum Proteobacteria. All three additives showed potential for the control of major poultry zoonotic pathogens. PMID:27116607
MHC standing genetic variation and pathogen resistance in wild Atlantic salmon
Dionne, Mélanie; Miller, Kristina M.; Dodson, Julian J.; Bernatchez, Louis
2009-01-01
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment. PMID:19414470
Jani, Andrea J.; Briggs, Cheryl J.
2014-01-01
Symbiotic microbial communities may interact with infectious pathogens sharing a common host. The microbiome may limit pathogen infection or, conversely, an invading pathogen can disturb the microbiome. Documentation of such relationships during naturally occurring disease outbreaks is rare, and identifying causal links from field observations is difficult. This study documented the effects of an amphibian skin pathogen of global conservation concern [the chytrid fungus Batrachochytrium dendrobatidis (Bd)] on the skin-associated bacterial microbiome of the endangered frog, Rana sierrae, using a combination of population surveys and laboratory experiments. We examined covariation of pathogen infection and bacterial microbiome composition in wild frogs, demonstrating a strong and consistent correlation between Bd infection load and bacterial community composition in multiple R. sierrae populations. Despite the correlation between Bd infection load and bacterial community composition, we observed 100% mortality of postmetamorphic frogs during a Bd epizootic, suggesting that the relationship between Bd and bacterial communities was not linked to variation in resistance to mortal disease and that Bd infection altered bacterial communities. In a controlled experiment, Bd infection significantly altered the R. sierrae microbiome, demonstrating a causal relationship. The response of microbial communities to Bd infection was remarkably consistent: Several bacterial taxa showed the same response to Bd infection across multiple field populations and the laboratory experiment, indicating a somewhat predictable interaction between Bd and the microbiome. The laboratory experiment demonstrates that Bd infection causes changes to amphibian skin bacterial communities, whereas the laboratory and field results together strongly support Bd disturbance as a driver of bacterial community change during natural disease dynamics. PMID:25385615
Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael
2014-01-01
Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days. PMID:25026086
Etiology of respiratory disease in non-vaccinated, non-medicated calves in rearing herds.
Autio, T; Pohjanvirta, T; Holopainen, R; Rikula, U; Pentikäinen, J; Huovilainen, A; Rusanen, H; Soveri, T; Sihvonen, L; Pelkonen, S
2007-01-31
The aim of this study was to examine the occurrence of bacterial, mycoplasmal and viral pathogens in the lower respiratory tract of calves in all-in all-out calf-rearing units. According to clinical status, non-medicated calves with and without respiratory disease signs were selected of the 40 herds investigated to analyse the micro-organisms present in healthy and diseased calves. Tracheobronchial lavage (TBL) and paired serum samples were analysed for bacteria, mycoplasmas, respiratory syncytial virus (RSV), parainfluenza virus 3 (PIV3), bovine corona virus (BCV) and bovine adenovirus (BAV). Pasteurella multocida was the most common bacterial pathogen. It was isolated from 34% of the TBL samples in 28 herds and was associated with clinical respiratory disease (p < 0.05) when other pathogenic bacteria or mycoplasma were present in the sample. Mannheimia spp. and Histophilus somni were rarely found. Mycoplasma bovis was not detected at all. Ureaplasma diversum was associated with clinical respiratory disease (p < 0.05). TBL samples from healthy or suspect calves were more often negative in bacterial culture than samples from diseased calves (p < 0.05). No viral infections were detected in six herds, while 16-21 herds had RSV, BCV, BAV or PIV3. In the herds that had calves seroconverted to BCV, respiratory shedding of BCV was more frequently observed than faecal shedding. This study showed that the microbial combinations behind BRD were diverse between herds. M. bovis, an emerging pathogen in many countries, was not detected.
The LBP Gene and Its Association with Resistance to Aeromonas hydrophila in Tilapia
Fu, Gui Hong; Liu, Feng; Xia, Jun Hong; Yue, Gen Hua
2014-01-01
Resistance to pathogens is important for the sustainability and profitability of food fish production. In immune-related genes, the lipopolysaccharide-binding protein (LBP) gene is an important mediator of the inflammatory reaction. We analyzed the cDNA and genomic structure of the LBP gene in tilapia. The full-length cDNA (1901 bp) of the gene contained a 1416 bp open reading frame, encoding 471 amino acid residues. Its genomic sequence was 5577 bp, comprising 15 exons and 14 introns. Under normal conditions, the gene was constitutively expressed in all examined tissues. The highest expression was detected in intestine and kidney. We examined the responses of the gene to challenges with two bacterial pathogens Streptcoccus agalactiae and Aeromonas hydrophila. The gene was significantly upregulated in kidney and spleen post-infection with S. agalactiae and A. hydrophila, respectively. However, the expression profiles of the gene after the challenge with the two pathogens were different. Furthermore, we identified three SNPs in the gene. There were significant associations (p < 0.05) of two of the three SNPs with the resistance to A. hydrophila, but not with the resistance to S. agalactiae or growth performance. These results suggest that the LBP gene is involved in the acute-phase immunologic response to the bacterial infections, and the responses to the two bacterial pathogens are different. The two SNPs associated with the resistance to A. hydrophila may be useful in the selection of tilapia resistant to A. hydrophila. PMID:25470022
Lee, Seonghee; Rojas, Clemencia M.; Ishiga, Yasuhiro; Pandey, Sona; Mysore, Kirankumar S.
2013-01-01
Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae. PMID:24349286
Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang
2016-10-01
The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.
2015-01-01
On the basis of recently reported abyssinone II and olympicin A, a series of chemically modified flavonoid phytochemicals were synthesized and evaluated against Mycobacterium tuberculosis and a panel of Gram-positive and -negative bacterial pathogens. Some of the synthesized compounds exhibited good antibacterial activities against Gram-positive pathogens including methicillin resistant Staphylococcus aureus with minimum inhibitory concentration as low as 0.39 μg/mL. SAR analysis revealed that the 2-hydrophobic substituent and the 4-hydrogen bond donor/acceptor of the 4-chromanone scaffold together with the hydroxy groups at 5- and 7-positions enhanced antibacterial activities; the 2′,4′-dihydroxylated A ring and the lipophilic substituted B ring of chalcone derivatives were pharmacophoric elements for antibacterial activities. Mode of action studies performed on selected compounds revealed that they dissipated the bacterial membrane potential, resulting in the inhibition of macromolecular biosynthesis; further studies showed that selected compounds inhibited DNA topoisomerase IV, suggesting complex mechanisms of actions for compounds in this series. PMID:25238443
Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.
Campos-Calderón, Liliana; Ábrego-Sánchez, Leyda; Solórzano-Morales, Antony; Alberti, Alberto; Tore, Gessica; Zobba, Rosanna; Jiménez-Rocha, Ana E; Dolz, Gaby
2016-10-01
Although vector-borne diseases are globally widespread with considerable impact on animal production and on public health, few reports document their presence in Central America. This study focuses on the detection and molecular identification of species belonging to selected bacterial genera (Ehrlichia, Anaplasma and Rickettsia) in ticks sampled from dogs in Costa Rica by targeting several genes: 16S rRNA/dsb genes for Ehrlichia; 16S rRNA/groEL genes for Anaplasma, and ompA/gltA/groEL genes for Rickettsia. PCR and sequence analyses provides evidences of Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum infection in Rhipicephalus sanguineus s.l ticks, and allow establishing the presence of Rickettsia monacensis in Ixodes boliviensis. Furthermore, the presence of recently discovered Mediterranean A. platys-like strains is reported for the first time in Central America. Results provide new background on geographical distribution of selected tick-transmitted bacterial pathogens in Costa Rica and on their molecular epidemiology, and are pivotal to the development of effective and reliable diagnostic tools in Central America. Copyright © 2016 Elsevier GmbH. All rights reserved.
The Impact of Oxygen on Bacterial Enteric Pathogens.
Wallace, N; Zani, A; Abrams, E; Sun, Y
2016-01-01
Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Shestov, Maksim; Ontañón, Santiago; Tozeren, Aydin
2015-10-13
Bacterial infections comprise a global health challenge as the incidences of antibiotic resistance increase. Pathogenic potential of bacteria has been shown to be context dependent, varying in response to environment and even within the strains of the same genus. We used the KEGG repository and extensive literature searches to identify among the 2527 bacterial genomes in the literature those implicated as pathogenic to the host, including those which show pathogenicity in a context dependent manner. Using data on the gene contents of these genomes, we identified sets of genes highly abundant in pathogenic but relatively absent in commensal strains and vice versa. In addition, we carried out genome comparison within a genus for the seventeen largest genera in our genome collection. We projected the resultant lists of ortholog genes onto KEGG bacterial pathways to identify clusters and circuits, which can be linked to either pathogenicity or synergy. Gene circuits relatively abundant in nonpathogenic bacteria often mediated biosynthesis of antibiotics. Other synergy-linked circuits reduced drug-induced toxicity. Pathogen-abundant gene circuits included modules in one-carbon folate, two-component system, type-3 secretion system, and peptidoglycan biosynthesis. Antibiotics-resistant bacterial strains possessed genes modulating phagocytosis, vesicle trafficking, cytoskeletal reorganization, and regulation of the inflammatory response. Our study also identified bacterial genera containing a circuit, elements of which were previously linked to Alzheimer's disease. Present study produces for the first time, a signature, in the form of a robust list of gene circuitry whose presence or absence could potentially define the pathogenicity of a microbiome. Extensive literature search substantiated a bulk majority of the commensal and pathogenic circuitry in our predicted list. Scanning microbiome libraries for these circuitry motifs will provide further insights into the complex and context dependent pathogenicity of bacteria.
Lopez-Romero, Julio Cesar; González-Ríos, Humberto; Borges, Anabela; Simões, Manuel
2015-01-01
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), may be used to surpass or reduce this problem. The objective of this study was to determine the antibacterial effect and mode of action of selected essential oils (EOs) components: carveol, carvone, citronellol, and citronellal, against Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed for the selected EOs components. Moreover, physicochemical bacterial surface characterization, bacterial surface charge, membrane integrity, and K + leakage assays were carried out to investigate the antimicrobial mode of action of EOs components. Citronellol was the most effective molecule against both pathogens, followed by citronellal, carveol, and carvone. Changes in the hydrophobicity, surface charge, and membrane integrity with the subsequent K + leakage from E. coli and S. aureus were observed after exposure to EOs. This study demonstrates that the selected EOs have significant antimicrobial activity against the bacteria tested, acting on the cell surface and causing the disruption of the bacterial membrane. Moreover, these molecules are interesting alternatives to conventional antimicrobials for the control of microbial infections. PMID:26221178
Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S
2013-01-01
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.
Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.
2013-01-01
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure. PMID:24204801
Leach, J E; White, F F
1996-01-01
Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.
Xylella genomics and bacterial pathogenicity to plants.
Dow, J M; Daniels, M J
2000-12-01
Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.
From grazing resistance to pathogenesis: the coincidental evolution of virulence factors.
Adiba, Sandrine; Nizak, Clément; van Baalen, Minus; Denamur, Erick; Depaulis, Frantz
2010-08-11
To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.
NASA Astrophysics Data System (ADS)
Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro
2008-06-01
An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.
Gupta, Prachi; Song, Biqin; Neto, Catherine; Camesano, Terri A
2016-06-15
Cranberry juice has been long used to prevent infections because of its effect on the adhesion of the bacteria to the host surface. Proanthocyanidins (PACs) comprise of one of the major classes of phytochemicals found in cranberry, which have been extensively studied and found effective in combating adhesion of pathogenic bacteria. The role of other cranberry constituents in impacting bacterial adhesion haven't been studied very well. In this study, cranberry juice fractions were prepared, characterized and tested for their effect on the surface adhesion of the pathogenic clinical bacterial strain E. coli B78 and non-pathogenic control E. coli HB101. The preparations tested included crude cranberry juice extract (CCE); three fractions containing flavonoid classes including proanthocyanidins, anthocyanins and flavonols; selected sub-fractions, and commercially available flavonol glycoside, quercetin-3-O-galactoside. Atomic force microscopy (AFM) was used to quantify the adhesion forces between the bacterial surface and the AFM probe after the treatment with the cranberry fractions. Adhesion forces of the non-pathogenic, non fimbriated lab strain HB101 are small (average force 0.19 nN) and do not change with cranberry treatments, whereas the adhesion forces of the pathogenic, Dr adhesion E. coli strain B78 (average force of 0.42 nN) show a significant decrease when treated with cranberry juice extract or fractions (average force of 0.31 nN, 0.37 nN and 0.39 nN with CCE, Fraction 7 and Fraction 4 respectively). In particular, the fractions that contained flavonols in addition to PACs were more efficient at lowering the force of adhesion (average force of 0.31 nN-0.18 nN between different sub-fractions containing flavonols and PACs). The sub-fractions containing flavonol glycosides (from juice, fruit and commercial quercetin) all resulted in reduced adhesion of the pathogenic bacteria to the model probe. This strongly suggests the anti adhesive role of other classes of cranberry compounds in conjunction with already known PACs and may have implications for development of alternative anti bacterial treatments.
Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki
2016-01-01
Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950
Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens.
Ireton, Keith
2013-07-17
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell-cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at 'tricellular junctions'--specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.
Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki
2016-06-01
Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.
Bacterial Pathogens Associated with Community-acquired Pneumonia in Children Aged Below Five Years.
Das, Anusmita; Patgiri, Saurav J; Saikia, Lahari; Dowerah, Pritikar; Nath, Reema
2016-03-01
To determine the spectrum of bacterial pathogens causing community-acquired pneumonia in children below 5 years of age. Children aged below 5 years satisfying the WHO criteria for pneumonia, severe pneumonia or very severe pneumonia, and with the presence of lung infiltrates on chest X-ray were enrolled. Two respiratory samples, one for culture and the other for PCR analysis, and a blood sample for culture were collected from every child. Of the 180 samples processed, bacterial pathogens were detected in 64.4%. Streptococcus pneumoniae and Hemophilus influenzae were most frequently detected. The performance of PCR analysis and culture were identical for the typical bacterial pathogens; atypical pathogens were detected by PCR analysis only. S. pneumoniae and H. influenza were the most commonly detected organisms from respiratory secretions of children with community acquired pneumonia.
Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.
Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid
2011-04-01
Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria (Lactobacilli) that help in preservation of vaginal health and ecosystem as being one of the probiotic bacteria.
Selection of Surrogate Bacteria for Use in Food Safety Challenge Studies: A Review.
Hu, Mengyi; Gurtler, Joshua B
2017-09-01
Nonpathogenic surrogate bacteria are prevalently used in a variety of food challenge studies in place of foodborne pathogens such as Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, and Clostridium botulinum because of safety and sanitary concerns. Surrogate bacteria should have growth characteristics and/or inactivation kinetics similar to those of target pathogens under given conditions in challenge studies. It is of great importance to carefully select and validate potential surrogate bacteria when verifying microbial inactivation processes. A validated surrogate responds similar to the targeted pathogen when tested for inactivation kinetics, growth parameters, or survivability under given conditions in agreement with appropriate statistical analyses. However, a considerable number of food studies involving putative surrogate bacteria lack convincing validation sources or adequate validation processes. Most of the validation information for surrogates in these studies is anecdotal and has been collected from previous publications but may not be sufficient for given conditions in the study at hand. This review is limited to an overview of select studies and discussion of the general criteria and approaches for selecting potential surrogate bacteria under given conditions. The review also includes a list of documented bacterial pathogen surrogates and their corresponding food products and treatments to provide guidance for future studies.
Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M
2013-04-29
Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described.
Hui, Yew Woh; Dykes, Gary A
2012-08-01
The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.
Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds
Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan
2013-01-01
Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710
Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang
2016-01-01
Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159
Mechanisms of resistance to linalool in Salmonella Senftenberg and their role in survival on basil.
Kalily, Emmanuel; Hollander, Amit; Korin, Ben; Cymerman, Itamar; Yaron, Sima
2016-11-01
Fresh produce contaminated with human pathogens raises vital and ecological questions about bacterial survival strategies. Such occurrence was basil harboring Salmonella enterica serovar Senftenberg that caused an outbreak in 2007. This host was unanticipated due to its production of antibacterial substances, including linalool. We show that linalool perforates bacterial membranes, resulting in increased permeability and leakage of vital molecules. It also inhibits cell motility and causes bacterial aggregation. Linalool-resistance was investigated by identification and characterization of S. Senftenberg mutants that perform altered resistance. Resistance mechanisms include selective permeability, regulated efflux/influx and chemotaxis-controlled motility. Moreover, survival of S. Senftenberg on basil leaves was substantially affected by McpL, a putative chemotaxis-related receptor, and RfaG, a component of the lipopolysaccharide production pathway, both have a role in resistance to linalool. Results reveal that adaptation to linalool occurs in nature by concurrent mechanisms. This adaption raises concerns about pathogens adaptation to new hosts including antimicrobial-compound-producing plants. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Nguyen, Bidong D.; Cunningham, Doreen; Liang, Xiaofei; Chen, Xin; Toone, Eric J.; Raetz, Christian R. H.; Zhou, Pei; Valdivia, Raphael H.
2011-01-01
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole (“inclusion”) that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents. PMID:21628561
Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang
2016-02-19
Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.
O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa
Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon
2015-01-01
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068
O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.
Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline
2015-12-01
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Abera, Gerema
2017-01-01
The study was conducted from November 2015 to April 2016 to estimate the prevalence of clinical and subclinical mastitis in lactating cows, to assess the associated risk factors, and to isolate the major bacterial pathogens in dairy farms in selected district of Eastern Harrarghe Zone, Eastern Ethiopia. The study was carried out in 384 dairy cows based on data collection, farm visit, animal examination, California mastitis test (CMT), and isolation bacterial pathogens using standard techniques. In the present study the overall mastitis at cow level was 247 (64.3%). The prevalence of clinical and subclinical mastitis and quarter level prevalence for clinical and subclinical mastitis were 12.5% and 51.8% at cow level and 10.7% and 46.4% at quarter level, respectively. Clinically, 101 (6.6%) quarters which belong to 75 (19.5%) animals were found to be with blind teat. In the present study prevalence of mastitis was significantly associated with parity and age (p < 0.05). Bacteriological examination of milk sample revealed 187 isolates where coagulase negative Staphylococcus species (CNS) (34.2%) was the predominant species while Streptococcus faecalis (2.1%) was identified as the least bacteria. The present study concluded that prevalence of mastitis particularly the subclinical mastitis was major problem of dairy cows in the area and hence warrants serious attention. PMID:28352648
Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse,; Isaacs, Natasha M.
2013-01-01
The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfbO157) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but notCryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfbO157, STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2, stx1, and rfbO157 genes, but no genes were related exclusively to an individual MST marker. The human source pharmaceuticals (HSPs) acetaminophen and caffeine were correlated with Giardia, and the presence of HSPs proved to be more useful than MST markers in distinguishing the occurrence of Giardia. The HSPs caffeine and carbamazepine were correlated with the sum total of pathogen genes detected in a sample, demonstrating the value of using HSPs as an indicator of fecally derived pathogens. Sites influenced by urban land use with less forest were more likely to have greater FIB and Giardia densities and sum of the array of pathogen genes. Sites dominated by shallow carbonate bedrock in the upstream catchment were likely to have greater FIB densities and higher sum totals of pathogen genes but no correlation with Giardia detection. Our study provides a range of specific environmental, chemical, geologic, and land-use variables related to occurrence and distribution of FIB and selected bacterial and protozoan pathogens in Pennsylvania streams. The information presented could be useful for resource managers in understanding bacterial and protozoan pathogen occurrence and their relation to fecal indicator bacteria in similar settings.
NASA Astrophysics Data System (ADS)
Akhir, Nor Azurah Mat; Nadzirin, Nurul; Mohamed, Rahmah; Firdaus-Raih, Mohd
2015-09-01
Hypothetical proteins of bacterial pathogens represent a large numbers of novel biological mechanisms which could belong to essential pathways in the bacteria. They lack functional characterizations mainly due to the inability of sequence homology based methods to detect functional relationships in the absence of detectable sequence similarity. The dataset derived from this study showed 550 candidates conserved in genomes that has pathogenicity information and only present in the Burkholderiales order. The dataset has been narrowed down to taxonomic clusters. Ten proteins were selected for ORF amplification, seven of them were successfully amplified, and only four proteins were successfully expressed. These proteins will be great candidates in determining the true function via structural biology.
Mihajilov-Krstev, Tatjana; Kitić, Dusanka; Radnović, Dragan; Ristić, Mihajlo; Mihajlović-Ukropina, Mira; Zlatković, Bojan
2011-08-01
Plant species Satureja kitaibelii Wierzb. ex Heuff. is used as a spice and as a natural preservative for food and herbal tea, owing to its characteristic scent and flavor as well as high antimicrobial activity. In the present study, the antimicrobial activity of isolated essential oil of S. kitaibelii was tested against a panel of 30 pathogenic microorganisms (foodborne microbes, selected multiresistant bacterial isolates from the patient wounds and dermatophyte isolates). Limonene (15.54%), p-cymene (9.99%), and borneol (8.91%) appeared as the main components in 44 identified compounds representing 98.44% of the oil. Essential oil of S. kitaibelii showed significant activity against a wide spectrum of foodborne microbes (MIC=0.18-25.5 microg mL(-1)) and multiresistant bacterial isolates (MIC=6.25-50.0 microg mL(-1)), as well as against dermatophyte strains (MIC=12.5-50.0 microg mL(-1)). These results demonstrate that S. kitaibelii essential oil could be used as a natural potential antimicrobial agent against pathogenic strains in the treatment of foodborne disease, wound and skin infections.
Wang, Keri; Senthil-Kumar, Muthappa; Ryu, Choong-Min; Kang, Li; Mysore, Kirankumar S.
2012-01-01
Bacterial pathogens colonize a host plant by growing between the cells by utilizing the nutrients present in apoplastic space. While successful pathogens manipulate the plant cell membrane to retrieve more nutrients from the cell, the counteracting plant defense mechanism against nonhost pathogens to restrict the nutrient efflux into the apoplast is not clear. To identify the genes involved in nonhost resistance against bacterial pathogens, we developed a virus-induced gene-silencing-based fast-forward genetics screen in Nicotiana benthamiana. Silencing of N. benthamiana SQUALENE SYNTHASE, a key gene in phytosterol biosynthesis, not only compromised nonhost resistance to few pathovars of Pseudomonas syringae and Xanthomonas campestris, but also enhanced the growth of the host pathogen P. syringae pv tabaci by increasing nutrient efflux into the apoplast. An Arabidopsis (Arabidopsis thaliana) sterol methyltransferase mutant (sterol methyltransferase2) involved in sterol biosynthesis also compromised plant innate immunity against bacterial pathogens. The Arabidopsis cytochrome P450 CYP710A1, which encodes C22-sterol desaturase that converts β-sitosterol to stigmasterol, was dramatically induced upon inoculation with nonhost pathogens. An Arabidopsis Atcyp710A1 null mutant compromised both nonhost and basal resistance while overexpressors of AtCYP710A1 enhanced resistance to host pathogens. Our data implicate the involvement of sterols in plant innate immunity against bacterial infections by regulating nutrient efflux into the apoplast. PMID:22298683
Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater.
Ferguson, Andrew S; Layton, Alice C; Mailloux, Brian J; Culligan, Patricia J; Williams, Daniel E; Smartt, Abby E; Sayler, Gary S; Feighery, John; McKay, Larry D; Knappett, Peter S K; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md Jahangir; Streatfield, P Kim; Yunus, Mohammad; van Geen, Alexander
2012-08-01
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater
Ferguson, Andrew S.; Layton, Alice C.; Mailloux, Brian J; Culligan, Patricia J.; Williams, Daniel E.; Smartt, Abby E.; Sayler, Gary S.; Feighery, John; McKay, Larry; Knappett, Peter S.K.; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md. Jahangir; Streatfield, P. Kim; Yunus, Mohammad; van Geen, Alexander
2012-01-01
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. PMID:22705866
The disease complex of the gypsy moth. II. Aerobic bacterial pathogens
J.D. Podgwaite; R.W. Campbell
1972-01-01
Eighty-six pathogenic aerobic bacterial isolates from diseased gypsy moth larvae collected in both sparse and dense populations were characterized and identified as members of the families Bacillaceae, Enterobacteriaceae, Lactobacillaceae, Pseudomonadaceae, and Achromobacteraceae. The commonest pathogens were Streptococcus faecalis, Bacillus cereus, Bacillus...
Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm
Mellouk, Nora; Enninga, Jost
2016-01-01
Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296
Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.
Mellouk, Nora; Enninga, Jost
2016-01-01
Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.
Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.
McGuffie, Matthew J; Hong, Jin; Bahng, Joong Hwan; Glynos, Emmanouil; Green, Peter F; Kotov, Nicholas A; Younger, John G; VanEpps, J Scott
2016-01-01
Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices. Copyright © 2015 Elsevier Inc. All rights reserved.
Bacterial 'immunity' against bacteriophages.
Abedon, Stephen T
2012-01-01
Vertebrate animals possess multiple anti-pathogen defenses. Individual mechanisms usually are differentiated into those that are immunologically adaptive vs. more "primitive" anti-pathogen phenomena described as innate responses. Here I frame defenses used by bacteria against bacteriophages as analogous to these animal immune functions. Included are numerous anti-phage defenses in addition to the adaptive immunity associated with CRISPR/cas systems. As these other anti-pathogen mechanisms are non-adaptive they can be described as making up an innate bacterial immunity. This exercise was undertaken in light of the recent excitement over the discovery that CRISPR/cas systems can serve, as noted, as a form of bacterial adaptive immunity. The broader goal, however, is to gain novel insight into bacterial defenses against phages by fitting these mechanisms into considerations of how multicellular organisms also defend themselves against pathogens. This commentary can be viewed in addition as a bid toward integrating these numerous bacterial anti-phage defenses into a more unified immunology.
Zhang, Bao-cun; Sun, Li; Xiao, Zhi-zhong; Hu, Yong-hua
2014-06-01
Rock bream Oplegnathus fasciatus is an important economic fish species. In this study, we evaluated the appropriateness of six housekeeping genes as internal controls for quantitative real-time PCR (RT-qPCR) analysis of gene expression in rock bream before and after pathogen infection. The expression of the selected genes in eight tissues infected with Vibrio alginolyticus or megalocytivirus was determined by RT-qPCR, and the PCR data were analyzed with geNorm and NormFinder algorithms. The results showed that before pathogen infection, mediator of RNA polymerase II transcription subunit 8 and β-actin were ranked as the most stable genes across the examined tissues. After bacterial or viral infection, the stabilities of the housekeeping genes varied to significant extents in tissue-dependent manners, and no single pair of genes was identified as suitable references for all tissues for either of the pathogen stimuli. In addition, for the majority of tissues, the most stable genes during bacterial infection differed from those during viral infection. Nevertheless, optimum reference genes were identified for each tissue under different conditions. Taken together, these results indicate that tissue type and the nature of the infectious agent used in the study can all influence the choice of normalization factors, and that the optimum reference genes identified in this study will provide a useful guidance for the selection of internal controls in future RT-PCR study of gene expression in rock bream. Copyright © 2014 Elsevier B.V. All rights reserved.
Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin
2011-01-01
The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.
A bacterial genetic selection system for ubiquitylation cascade discovery.
Levin-Kravets, Olga; Tanner, Neta; Shohat, Noa; Attali, Ilan; Keren-Kaplan, Tal; Shusterman, Anna; Artzi, Shay; Varvak, Alexander; Reshef, Yael; Shi, Xiaojing; Zucker, Ori; Baram, Tamir; Katina, Corine; Pilzer, Inbar; Ben-Aroya, Shay; Prag, Gali
2016-11-01
About one-third of the eukaryotic proteome undergoes ubiquitylation, but the enzymatic cascades leading to substrate modification are largely unknown. We present a genetic selection tool that utilizes Escherichia coli, which lack deubiquitylases, to identify interactions along ubiquitylation cascades. Coexpression of split antibiotic resistance protein tethered to ubiquitin and ubiquitylation target together with a functional ubiquitylation apparatus results in a covalent assembly of the resistance protein, giving rise to bacterial growth on selective media. We applied the selection system to uncover an E3 ligase from the pathogenic bacteria EHEC and to identify the epsin ENTH domain as an ultraweak ubiquitin-binding domain. The latter was complemented with a structure-function analysis of the ENTH-ubiquitin interface. We also constructed and screened a yeast fusion library, discovering Sem1 as a novel ubiquitylation substrate of Rsp5 E3 ligase. Collectively, our selection system provides a robust high-throughput approach for genetic studies of ubiquitylation cascades and for small-molecule modulator screening.
Kwon, Seunghyug; Schweizer, Marin L; Perencevich, Eli N
2012-01-26
Hospital-associated infections (HAIs) are associated with a considerable burden of disease and direct costs greater than $17 billion. The pathogens that cause the majority of serious HAIs are Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, referred as ESCKAPE. We aimed to determine the amount of funding the National Institute of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) allocates to research on antimicrobial resistant pathogens, particularly ESCKAPE pathogens. The NIH Research Portfolio Online Reporting Tools (RePORT) database was used to identify NIAID antimicrobial resistance research grants funded in 2007-2009 using the terms "antibiotic resistance," "antimicrobial resistance," and "hospital-associated infection." Funding for antimicrobial resistance grants has increased from 2007-2009. Antimicrobial resistance funding for bacterial pathogens has seen a smaller increase than non-bacterial pathogens. The total funding for all ESKCAPE pathogens was $ 22,005,943 in 2007, $ 30,810,153 in 2008 and $ 49,801,227 in 2009. S. aureus grants received $ 29,193,264 in FY2009, the highest funding amount of all the ESCKAPE pathogens. Based on 2009 funding data, approximately $1,565 of research money was spent per S. aureus related death and $750 of was spent per C. difficile related death. Although the funding for ESCKAPE pathogens has increased from 2007 to 2009, funding levels for antimicrobial resistant bacteria-related grants is still lower than funding for antimicrobial resistant non-bacterial pathogens. Efforts may be needed to improve research funding for resistant-bacterial pathogens, particularly as their clinical burden increases.
Pulkkinen, K.; Suomalainen, L.-R.; Read, A. F.; Ebert, D.; Rintamäki, P.; Valtonen, E. T.
2010-01-01
Ecological changes affect pathogen epidemiology and evolution and may trigger the emergence of novel diseases. Aquaculture radically alters the ecology of fish and their pathogens. Here we show an increase in the occurrence of the bacterial fish disease Flavobacterium columnare in salmon fingerlings at a fish farm in northern Finland over 23 years. We hypothesize that this emergence was owing to evolutionary changes in bacterial virulence. We base this argument on several observations. First, the emergence was associated with increased severity of symptoms. Second, F. columnare strains vary in virulence, with more lethal strains inducing more severe symptoms prior to death. Third, more virulent strains have greater infectivity, higher tissue-degrading capacity and higher growth rates. Fourth, pathogen strains co-occur, so that strains compete. Fifth, F. columnare can transmit efficiently from dead fish, and maintain infectivity in sterilized water for months, strongly reducing the fitness cost of host death likely experienced by the pathogen in nature. Moreover, this saprophytic infectiousness means that chemotherapy strongly select for strains that rapidly kill their hosts: dead fish remain infectious; treated fish do not. Finally, high stocking densities of homogeneous subsets of fish greatly enhance transmission opportunities. We suggest that fish farms provide an environment that promotes the circulation of more virulent strains of F. columnare. This effect is intensified by the recent increases in summer water temperature. More generally, we predict that intensive fish farming will lead to the evolution of more virulent pathogens. PMID:19864284
Kwon, Jieun; Mistry, Tina; Ren, Jinhong; Johnson, Michael E; Mehboob, Shahila
2018-01-01
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peng, Peichao; Cheng, Xiaoxing; Wang, Guoqing; Qian, Minping; Gao, Huafang; Han, Bei; Chen, Yusheng; Hu, Yinghui; Geng, Rong; Hu, Chengping; Zhang, Wei; Yang, Jingping; Wan, Huanying; Yu, Qin; Wei, Liping; Li, Jiashu; Tian, Guizhen; Wang, Qiuyue; Hu, Ke; Wang, Siqin; Wang, Ruiqin; Du, Juan; He, Bei; Ma, Jianjun; Zhong, Xiaoning; Mu, Lan; Cai, Shaoxi; Zhu, Xiangdong; Xing, Wanli; Yu, Jun; Deng, Minghua; Gao, Zhancheng
2012-01-01
Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship. Trial Registration ClinicalTrials.gov NCT00567827 PMID:22719933
Bowman, L. M.; Holt, P. G.
2001-01-01
Infant rats primed during the first week of life with soluble antigen displayed adult-equivalent levels of T-helper 2 (Th2)-dependent immunological memory development as revealed by production of secondary immunoglobulin G1 (IgG1) antibody responses to subsequent challenge, but in contrast to adults failed to prime for Th1-dependent IgG2b responses. We demonstrate that this Th2 bias in immune function can be redressed by oral administration to neonates of a bacterial extract (Broncho-Vaxom OM-85) comprising lyophilized fractions of several common respiratory tract bacterial pathogens. Animals given OM-85 displayed a selective upregulation in primary and secondary IgG2b responses, accompanied by increased gamma interferon and decreased interleukin-4 production (both antigen specific and polyclonal), and increased capacity for development of Th1-dependent delayed hypersensitivity to the challenge antigen. We hypothesize that the bacterial extract functions via enhancement of the process of postnatal maturation of Th1 function, which is normally driven by stimuli from the gastrointestinal commensal microflora. PMID:11349036
Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano
Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.
2016-01-01
Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426
Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.
Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S
2016-11-15
Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.
Targeting human pathogenic bacteria by siderophores: A proteomics review.
Ferreira, Daniela; Seca, Ana M L; C G A, Diana; Silva, Artur M S
2016-08-11
Human bacterial infections are still a major public health problem throughout the world. Therefore it is fundamental to understand how pathogenic bacteria interact with their human host and to develop more advanced drugs or vaccines in response to the increasing bacterial resistance. Since iron is essential to bacterial survival and growth inside the host tissues, these microorganisms have developed highly efficient iron-acquisition systems; the most common one involves the secretion of iron chelators into the extracellular environment, known as siderophores, and the corresponding siderophore-membrane receptors or transporters responsible for the iron uptake. In the past few decades, several biochemical methods and genetic screens have been employed to track down and identify these iron-scavenging molecules. However, compared with the previous "static" approaches, proteomic identification is revealing far more molecules through full protein mapping and becoming more rapid and selective, leading the scientific and medical community to consider standardizing proteomic tools for clinical biomarker detection of bacterial infectious diseases. In this review, we focus on human pathogenic Gram-negative bacteria and discuss the importance of siderophores in their virulence and the available proteomic strategies to identify siderophore-related proteins and their expression level under different growth conditions. The promising use of siderophore antibiotics to overcome bacterial resistance and the future of proteomics in the routine clinical care are also mentioned. Proteomic strategies to identify siderophore-related proteins and their expression level can be helpful to control and/or find a cure of infectious deseases especially if related with multidrug resistance. Siderophores are low-molecular-weight compounds produced by bacteria which can become clinical biomarkers and/or antibiotics used mainly in "Trojan horse" type strategies. Due to the above mention we think that the promising use of siderophore to overcome bacterial resistance and the future of proteomics in the routine clinical care is a hot topic that should be discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System
Zeller, Simon L.; Brandl, Helmut; Schmid, Bernhard
2007-01-01
Belowground microorganisms are known to influence plants' performance by altering the soil environment. Plant pathogens such as cyanide-producing strains of the rhizobacterium Pseudomonas may show strong host-plant selectivity. We analyzed interactions between different host plants and Pseudomonas strains and tested if these can be linked to the cyanide sensitivity of host plants, the cyanide production of bacterial strains or the plant identity from which strains had been isolated. Eight strains (four cyanide producing) were isolated from roots of four weed species and then re-inoculated on the four weed and two additional crop species. Bacterial strain composition varied strongly among the four weed species. Although all six plant species showed different reductions in root growth when cyanide was artificially applied to seedlings, they were generally not negatively affected by inoculation with cyanide-producing bacterial strains. We found a highly significant plant species x bacterial strain interaction. Partitioning this interaction into contrasts showed that it was entirely due to a strongly negative effect of a bacterial strain (Pseudomonas kilonensis/brassicacearum, isolated from Galium mollugo) on Echinochloa crus-galli. This exotic weed may not have become adapted to the bacterial strain isolated from a native weed. Our findings suggest that host-specific rhizobacteria hold some promise as biological weed-control agents. PMID:17786217
Asad, Shadaba; Opal, Steven M
2008-01-01
Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens. PMID:19040778
Oates, Stori C; Miller, Melissa A; Byrne, Barbara A; Chouicha, Nadira; Hardin, Dane; Jessup, David; Dominik, Clare; Roug, Annette; Schriewer, Alexander; Jang, Spencer S; Miller, Woutrina A
2012-07-01
Marine mammals are at risk for infection by fecal-associated zoonotic pathogens when they swim and feed in polluted nearshore marine waters. Because of their tendency to consume 25-30% of their body weight per day in coastal filter-feeding invertebrates, southern sea otters (Enhydra lutris nereis) can act as sentinels of marine ecosystem health in California. Feces from domestic and wildlife species were tested to determine prevalence, potential virulence, and diversity of selected opportunistic enteric bacterial pathogens in the Monterey Bay region. We hypothesized that if sea otters are sentinels of coastal health, and fecal pollution flows from land to sea, then sea otters and terrestrial animals might share the same enteric bacterial species and strains. Twenty-eight percent of fecal samples tested during 2007-2010 were positive for one or more potential pathogens. Campylobacter spp. were isolated most frequently, with an overall prevalence of 11%, followed by Vibrio cholerae (9%), Salmonella spp. (6%), V. parahaemolyticus (5%), and V. alginolyticus (3%). Sea otters were found positive for all target bacteria, exhibiting similar prevalences for Campylobacter and Salmonella spp. but greater prevalences for Vibrio spp. when compared to terrestrial animals. Fifteen Salmonella serotypes were detected, 11 of which were isolated from opossums. This is the first report of sea otter infection by S. enterica Heidelberg, a serotype also associated with human clinical disease. Similar strains of S. enterica Typhimurium were identified in otters, opossums, and gulls, suggesting the possibility of land-sea transfer of enteric bacterial pathogens from terrestrial sources to sea otters.
Experimental single-strain mobilomics reveals events that shape pathogen emergence
Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.; ...
2016-07-04
Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less
Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...
Liu, Bing; Li, Jian-Feng; Ao, Ying; Qu, Jinwang; Li, Zhangqun; Su, Jianbin; Zhang, Yang; Liu, Jun; Feng, Dongru; Qi, Kangbiao; He, Yanming; Wang, Jinfa; Wang, Hong-Bin
2012-01-01
Plant innate immunity relies on successful detection of microbe-associated molecular patterns (MAMPs) of invading microbes via pattern recognition receptors (PRRs) at the plant cell surface. Here, we report two homologous rice (Oryza sativa) lysin motif–containing proteins, LYP4 and LYP6, as dual functional PRRs sensing bacterial peptidoglycan (PGN) and fungal chitin. Live cell imaging and microsomal fractionation consistently revealed the plasma membrane localization of these proteins in rice cells. Transcription of these two genes could be induced rapidly upon exposure to bacterial pathogens or diverse MAMPs. Both proteins selectively bound PGN and chitin but not lipopolysaccharide (LPS) in vitro. Accordingly, silencing of either LYP specifically impaired PGN- or chitin- but not LPS-induced defense responses in rice, including reactive oxygen species generation, defense gene activation, and callose deposition, leading to compromised resistance against bacterial pathogen Xanthomonas oryzae and fungal pathogen Magnaporthe oryzae. Interestingly, pretreatment with excess PGN dramatically attenuated the alkalinization response of rice cells to chitin but not to flagellin; vice versa, pretreatment with chitin attenuated the response to PGN, suggesting that PGN and chitin engage overlapping perception components in rice. Collectively, our data support the notion that LYP4 and LYP6 are promiscuous PRRs for PGN and chitin in rice innate immunity. PMID:22872757
Hard, J.J.; Elliott, D.G.; Pascho, R.J.; Chase, D.M.; Park, L.K.; Winton, J.R.; Campton, D.E.
2006-01-01
We evaluated genetic variation in ability of Chinook salmon (Oncorhynchus tshawytscha) to resist two bacterial pathogens: Renibacterium salmoninarum, the agent of bacterial kidney disease (BKD), and Listonella anguillarum, an agent of vibriosis. After measuring R. salmoninarum antigen in 499 adults by enzyme-linked immunosorbent assay (ELISA), we mated each of 12 males with high or low antigen levels to two females with low to moderate levels and exposed subsets of their progeny to each pathogen separately. We found no correlation between R. salmoninarum antigen level in parents and survival of their progeny following pathogen exposure. We estimated high heritability for resistance to R. salmoninarum (survival h2 = 0.890 ?? 0.256 (mean ?? standard error)) independent of parental antigen level, but low heritability for resistance to L. anguillarum (h2 = 0.128 ?? 0.078). The genetic correlation between these survivals (rA = -0.204 ?? 0.309) was near zero. The genetic and phenotypic correlations between survival and antigen levels among surviving progeny exposed to R. salmoninarum were both negative (rA = -0.716 ?? 0.140; rP = -0.378 ?? 0.041), indicating that variation in antigen level is linked to survival. These results suggest that selective culling of female broodstock with high antigen titers, which is effective in controlling BKD in salmon hatcheries, will not affect resistance of their progeny. ?? 2006 NRC.
Bacterial phylogeny structures soil resistomes across habitats
NASA Astrophysics Data System (ADS)
Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam
2014-05-01
Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.
Genotypic characterization of bacteria cultured from duck faeces.
Murphy, J; Devane, M L; Robson, B; Gilpin, B J
2005-01-01
To characterize the bacterial composition of mallard duck faeces and determine if novel bacterial species are present that could be utilized as potential indicators of avian faecal contamination. Combined samples of fresh faeces from four ducks were serially diluted and plated onto six different media selected to allow the growth of a range of organisms at 42 degrees C under three atmospheric conditions: aerobic, microaerophilic and anaerobic. Forty-seven morphologically dissimilar isolates were purified and partial sequencing of the16S rRNA indicated at least 31 bacterial species. Twenty of these could be identified to the species level including pathogenic species of Bacillus, Campylobacter, Clostridium and Streptococcus. Other species identified included: Enterococcus, Escherichia, Megamonas, Cellulosimicrobium, Neisseria, Staphylococcus and Veillonella. Potentially novel species, which could represent bacteria specific to avian fauna included Bacillus, Corynebacterium, Macrococcus and Peptostreptococcus, while four isolates had <97% similarity to known bacterial species in the available databases. A survey of the natural microflora of the mallard duck and its hybrid with the grey duck identified both bacteria that are potentially human pathogenic and putative novel bacteria species as determined by 16S rRNA sequencing. This study provides further evidence that duck faeces is a potential human health hazard, and has identified bacteria potentially useful for distinguishing duck faeces from other faecal sources.
Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.
Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun
2009-03-01
Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.
Non-pathogenic microflora of a spring water with regenerative properties.
Nicoletti, Giovanni; Corbella, Marta; Jaber, Omar; Marone, Piero; Scevola, Daniele; Faga, Angela
2015-11-01
The Comano spring water (Comano, Italy) has been demonstrated to improve skin regeneration, not only by increasing keratinocyte proliferation and migration, but also by modulating the regenerated collagen and elastic fibers in the dermis. However, such biological properties may not be entirely explained by its mineral composition only. As the non-pathogenic bacterial populations have demonstrated an active role in different biological processes, the potential presence of non-pathogenic bacterial species within the Comano spring water was investigated in order to identify any possible correlation between these bacterial populations and the demonstrated biological properties of this water. The water was collected at the spring using an aseptic procedure and multiple cultures were carried out. A total of 9 different strains were isolated, which were Aeromonas hydrophila , Brevundimonas vesicularis , Chromobacterium violaceum , Citrobacter youngae , Empedobacter brevis , Pantoea agglomerans , Pseudomonas putida , Pseudomonas stutzeri and Streptococcus mitis . All the isolated bacterial strains, although showing a rare potential virulence, demonstrated peculiar and favorable metabolic attitudes in controlling environmental pollution. The therapeutical effects of certain spring waters are currently being proven as correlated not only to their peculiar mineral composition, but also to the complex activity of their resident non-pathogenic bacterial populations. Although the present study provided only preliminary data, some of the non-pathogenic bacterial populations that were identified in the Comano spring water are likely to produce molecular mediators with a role in the wound healing process that, thus far, remain unknown. Numerous other unknown bacterial species, comprehensively termed DNA-rich 'dark matter', are likely to contribute to the Comano water regenerative properties as well. Therefore, the non-pathogenic bacterial populations of the Comano spring water are possibly credited for its demonstrated regenerative properties.
Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D
2013-10-01
The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Biofilms in Water, Its role and impact in human disease transmission
2008-01-01
increasing realization of the importance of the world’s oceans as a source of potentially pathogenic microorganisms. Human bacterial pathogens...colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 2008, 46:249-254. A new microplate model for...Polz M: Diversity, sources, and detection of human bacterial pathogens in the marine environment. In Oceans and Health: Pathogens in the Marine
A mathematical model for expected time to extinction of pathogenic bacteria through antibiotic
NASA Astrophysics Data System (ADS)
Ghosh, M. K.; Nandi, S.; Roy, P. K.
2016-04-01
Application of antibiotics in human system to prevent bacterial diseases like Gastritis, Ulcers, Meningitis, Pneumonia and Gonorrhea are indispensable. Antibiotics saved innumerable lives and continue to be a strong support for therapeutic application against pathogenic bacteria. In human system, bacterial diseases occur when pathogenic bacteria gets into the body and begin to reproduce and crowd out healthy bacteria. In this process, immature bacteria releases enzyme which is essential for bacterial cell-wall biosynthesis. After complete formation of cell wall, immature bacteria are converted to mature or virulent bacteria which are harmful to us during bacterial infections. Use of antibiotics as drug inhibits the bacterial cell wall formation. After application of antibiotics within body, the released bacterial enzyme binds with antibiotic molecule instead of its functional site during the cell wall synthesis in a competitive inhibition approach. As a consequence, the bacterial cell-wall formation as well as maturation process of pathogenic bacteria is halted and the disease is cured with lysis of bacterial cells. With this idea, a mathematical model has been developed in the present research investigation to review the inhibition of biosynthesis of bacterial cell wall by the application of antibiotics as drug in the light of enzyme kinetics. This approach helps to estimate the expected time to extinction of the pathogenic bacteria. Our mathematical approach based on the enzyme kinetic model for finding out expected time to extinction contributes favorable results for understanding of disease dynamics. Analytical and numerical results based on simulated findings validate our mathematical model.
2013-01-01
Background Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes. Results We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing. Conclusions Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms. PMID:24252298
Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.
Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P
2017-10-01
High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.
Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan
2017-03-01
Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inhibitors Selective for Mycobacterial Versus Human Proteasomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, G.; Li, D; Sorio de Carvalho, L
Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-onemore » compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.« less
RecA: a universal drug target in pathogenic bacteria.
Pavlopoulou, Athanasia
2018-01-01
The spread of bacterial infectious diseases due to the development of resistance to antibiotic drugs in pathogenic bacteria is an emerging global concern. Therefore, the efficacious management and prevention of bacterial infections are major public health challenges. RecA is a pleiotropic recombinase protein that has been demonstrated to be implicated strongly in the bacterial drug resistance, survival and pathogenicity. In this minireview, RecA's role in the development of antibiotic resistance and its potential as an antimicrobial drug target are discussed.
Sharma, Manan; Reynnells, Russell
2016-08-01
Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.
Zoonotic bacterial meningitis in human adults.
van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik
2016-09-13
To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.
Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borucki, M
2010-01-05
The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift andmore » provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.« less
Parmar, Krupa M; Dafale, Nishant A; Tikariha, Hitesh; Purohit, Hemant J
2018-05-01
Combating bacterial pathogens has become a global concern especially when the antibiotics and chemical agents are failing to control the spread due to its resistance. Bacteriophages act as a safe biocontrol agent by selectively lysing the bacterial pathogens without affecting the natural beneficial microflora. The present study describes the screening of prominent enteric pathogens NDK1, NDK2, NDK3, and NDK4 (Escherichia, Klebsiella, Enterobacter, and Serratia) mostly observed in domestic wastewater; against which KNP1, KNP2, KNP3, and KNP4 phages were isolated. To analyze their potential role in eradicating enteric pathogens and toxicity issue, these bacteriophages were sequenced using next-generation sequencing and characterized based on its genomic content. The isolated bacteriophages were homologous to Escherichia phage (KNP1), Klebsiella phage (KNP2), Enterobacter phage (KNP3), Serratia phage (KNP4), and belonged to Myoviridae family of Caudovirales except for the unclassified KNP4 phage. Draft genome analysis revealed the presence of lytic enzymes such as holing and lysozyme in KNP1 phage, endolysin in KNP2 phage, and endopeptidase with holin in KNP3 phage. The absence of any lysogenic and virulent genes makes this bacteriophage suitable candidate for preparation of phage cocktail to combat the pathogens present in wastewater. However, KNP4 contained a virulent gene rendering it unsuitable to be used as a biocontrol agent. These findings make the phages (KNP1-KNP3) as a promising alternative for the biocontrol of pathogens in wastewater which is the main culprit to spread these dominated pathogens in different natural water bodies. This study also necessitates for genomic screening of bacteriophages for lysogenic and virulence genes prior to its use as a biocontrol agent.
Molecular assessment of bacterial pathogens - a contribution to drinking water safety.
Brettar, Ingrid; Höfle, Manfred G
2008-06-01
Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.
[Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].
Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna
2005-01-01
Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.
Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles.
Kirstein, Inga V; Kirmizi, Sidika; Wichels, Antje; Garin-Fernandez, Alexa; Erler, Rene; Löder, Martin; Gerdts, Gunnar
2016-09-01
The taxonomic composition of biofilms on marine microplastics is widely unknown. Recent sequencing results indicate that potentially pathogenic Vibrio spp. might be present on floating microplastics. Hence, these particles might function as vectors for the dispersal of pathogens. Microplastics and water samples collected in the North and Baltic Sea were subjected to selective enrichment for pathogenic Vibrio species. Bacterial colonies were isolated from CHROMagar™Vibrio and assigned to Vibrio spp. on the species level by MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionisation - Time of Flight Mass Spectrometry). Respective polymers were identified by ATR FT-IR (Attenuated Total Reflectance Fourier Transform - Infrared Spectroscopy). We discovered potentially pathogenic Vibrio parahaemolyticus on a number of microplastic particles, e.g. polyethylene, polypropylene and polystyrene from North/Baltic Sea. This study confirms the indicated occurrence of potentially pathogenic bacteria on marine microplastics and highlights the urgent need for detailed biogeographical analyses of marine microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Water relations in the interaction of foliar bacterial pathogens with plants.
Beattie, Gwyn A
2011-01-01
This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces. Copyright © 2011 by Annual Reviews. All rights reserved.
Friman, Ville-Petri; Buckling, Angus
2014-01-01
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085
USDA-ARS?s Scientific Manuscript database
Molecular detection of bacterial pathogens based on LAMP methods is a faster and simpler approach than conventional culture methods. Although different LAMP-based methods for pathogenic bacterial detection are available, a systematic comparison of these different LAMP assays has not been performed. ...
Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans
Caza, Mélissa; Kronstad, James W.
2013-01-01
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900
Efficacy of commercially available wipes for disinfection of pulse oximeter sensors.
Nandy, Poulomi; Lucas, Anne D; Gonzalez, Elizabeth A; Hitchins, Victoria M
2016-03-01
This study examined the effectiveness of commercially available disinfecting wipes and cosmetic wipes in disinfecting pulse oximeter sensors contaminated with pathogenic bacterial surrogates. Surrogates of potential biological warfare agents and bacterial pathogens associated with hospital-acquired infections (HAIs) were spotted on test surfaces, with and without an artificial test soil (sebum), allowed to dry, and then cleaned with different commercially available cleaning and disinfecting wipes or sterile gauze soaked in water, bleach (diluted 1:10), or 70% isopropanol. The percentage of microbial survival and an analytical estimation of remaining test soil on devices were determined. Wipes containing sodium hypochlorite as the active ingredient and gauze soaked in bleach (1:10) were the most effective in removing both vegetative bacteria and spores. In the presence of selective disinfectants, sebum had a protective effect on vegetative bacteria, but not on spores. The presence of sebum reduces the cleaning efficiency of some commercially available wipes for some select microbes. Various commercial wipes performed significantly better than the designated cleaning agent (70% isopropanol) in disinfecting the oximetry sensor. Cosmetic wipes were not more effective than the disinfecting wipes in removing sebum. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. All rights reserved.
Bird feathers as potential sources of pathogenic microorganisms: a new look at old diseases.
Miskiewicz, Andrzej; Kowalczyk, Paweł; Oraibi, Sanaa Mahdi; Cybulska, Krystyna; Misiewicz, Anna
2018-02-19
This article describes methods of treatment for avian zoonoses, modern antibiotic therapy and drug resistance of selected pathogens, which pose a threat to the population's health. A tabular form has been used to present the current data from the European Union from 2011 to 2017 regarding human morbidity and mortality and the costs incurred by national health systems for the treatment of zoonoses occurring in humans and animals. Moreover, the paper includes descriptions of selected diseases, which indirectly affect birds. Scientists can obtain information regarding the occurrence of particular diseases, their aetiology, epidemiology, incubation period and symptoms caused by dangerous microorganisms and parasites. This information should be of particular interest for people who have frequent contact with birds, such as ornithologists, as well as veterinarians, farm staff, owners of accompanying animals and zoological workers. This paper presents a review used for identification and genetic characterization of bacterial strains isolated from a variety of environmental sources, e.g., bird feathers along with their practical application. We describe the bacterial, viral and fungal serotypes present on avian feathers after the slaughter process. This review also enables us to effectively identify several of the early stages of infectious diseases from heterogeneous avian research material.
Plant-bacterial pathogen interactions mediated by type III effectors.
Feng, Feng; Zhou, Jian-Min
2012-08-01
Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Acute bacterial and viral meningitis.
Bartt, Russell
2012-12-01
Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.
Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
Tang, Yanyan; Zhen, Li; Liu, Jingqing; Wu, Jianmin
2013-03-05
For appropriate selection of antibiotics in the treatment of pathogen infection, rapid antibiotic susceptibility testing (AST) is urgently needed in clinical practice. This study reports the utilization of a microfluidic pH sensor for monitoring bacterial growth rate in culture media spiked with different kinds of antibiotics. The microfluidic pH sensor was fabricated by integration of pH-sensitive chitosan hydrogel with poly(dimethylsiloxane) (PDMS) microfluidic channels. For facilitating the reflectometric interference spectroscopic measurements, the chitosan hydrogel was coated on an electrochemically etched porous silicon chip, which was used as the substrate of the microfluidic channel. Real-time observation of the pH change in the microchannel can be realized by Fourier transform reflectometric interference spectroscopy (FT-RIFS), in which the effective optical thickness (EOT) was selected as the optical signal for indicating the reversible swelling process of chitosan hydrogel stimulated by pH change. With this microfluidic pH sensor, we demonstrate that confinement of bacterial cells in a nanoliter size channel allows rapid accumulation of metabolic products and eliminates the need for long-time preincubation, thus reducing the whole detection time. On the basis of this technology, the whole bacterial growth curve can be obtained in less than 2 h, and consequently rapid AST can be realized. Compared with conventional methods, the AST data acquired from the bacterial growth curve can provide more detailed information for studying the antimicrobial behavior of antibiotics during different stages. Furthermore, the new technology also provides a convenient method for rapid minimal inhibition concentration (MIC) determination of individual antibiotics or the combinations of antibiotics against human pathogens that will find application in clinical and point-of-care medicine.
Khalaf, Eman M; Raizada, Manish N
2018-01-01
The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens ( Rhizoctonia solani , Fusarium graminearum , Phytophthora capsici , Pythium aphanideratum ). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea , the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus . All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro , respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus , and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins.
Khalaf, Eman M.; Raizada, Manish N.
2018-01-01
The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus, and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins. PMID:29459850
Evaluating bacterial pathogen DNA preservation in museum osteological collections
Barnes, Ian; Thomas, Mark G
2005-01-01
Reports of bacterial pathogen DNA sequences obtained from archaeological bone specimens raise the possibility of greatly improving our understanding of the history of infectious diseases. However, the survival of pathogen DNA over long time periods is poorly characterized, and scepticism remains about the reliability of these data. In order to explore the survival of bacterial pathogen DNA in bone specimens, we analysed samples from 59 eighteenth and twentieth century individuals known to have been infected with either Mycobacterium tuberculosis or Treponema pallidum. No reproducible evidence of surviving pathogen DNA was obtained, despite the use of extraction and PCR-amplification methods determined to be highly sensitive. These data suggest that previous studies need to be interpreted with caution, and we propose that a much greater emphasis is placed on understanding how pathogen DNA survives in archaeological material, and how its presence can be properly verified and used. PMID:16608682
Genetic reprogramming of host cells by bacterial pathogens.
Tran Van Nhieu, Guy; Arbibe, Laurence
2009-10-29
During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.
[Injudicious and excessive use of antibiotics: public health and salmon aquaculture in Chile].
Millanao B, Ana; Barrientos H, Marcela; Gómez C, Carolina; Tomova, Alexandra; Buschmann, Alejandro; Dölz, Humberto; Cabello, Felipe C
2011-01-01
Salmon aquaculture was one of the major growing and exporting industries in Chile. Its development was accompanied by an increasing and excessive use of large amounts of antimicrobials, such as quinolones, tetracyclines and florfenicol. The examination of the sanitary conditions in the industry as part of a more general investigation into the uncontrolled and extensive dissemination of the ISA virus epizootic in 2008, found numerous and wide-ranging shortcomings and limitations in management of preventive fish health. There was a growing industrial use of large amounts of antimicrobials as an attempt at prophylaxis of bacterial infections resulting from widespread unsanitary and unhealthy fish rearing conditions. As might be expected, these attempts were unsuccessful and this heavy antimicrobial use failed to prevent viral and parasitic epizootics. Comparative analysis of the amounts of antimicrobials, especially quinolones, consumed in salmon aquaculture and in human medicine in Chile robustly suggests that the most important selective pressure for antibiotic resistant bacteria in the country will be excessive antibiotic use in this industry. This excessive use will facilitate selection of resistant bacteria and resistance genes in water environments. The commonality of antibiotic resistance genes and the mobilome between environmental aquatic bacteria, fish pathogens and pathogens of terrestrial animals and humans suggests that horizontal gene transfer occurs between the resistome of these apparently independent and isolated bacterial populations. Thus, excessive antibiotic use in the marine environment in aquaculture is not innocuous and can potentially negatively affect therapy of bacterial infections of humans and terrestrial animals.
Shen, Yubang; Fu, Gui Hong; Liu, Feng; Yue, Gen Hua
2015-08-01
Tilapia is a group of cultured teleost fishes whose production is threatened by some diseases. Identification of DNA markers associated with disease resistance in candidate genes may facilitate to accelerate the selection of disease resistance. The gene encoding a duodenase, which can trigger immune response, has not been studied in fish. We characterized the cDNA of duodenase-1 gene of hybrid tilapia. Its ORF is 759 bp, encoding a serine protease of 252 amino acids. This gene consisted of five exons and four introns. Its expression was detected in all 10 tissues examined, and it was highly expressed in the intestine and kidney. After a challenge with the bacterial pathogen, Streptococcus agalactiae, its expression was up-regulated significantly in the intestine, liver and spleen. We identified seven SNPs in the gene and found that four of them were significantly associated with the resistance to S. agalactiae (P < 0.05). The CGTCC haplotype, CAGTC/CGGTC and CGTCC/CGTCC diplotype were significantly associated with the resistance to S. agalactiae (P = 0.00, 0.04 and < 0.0001, respectively). In addition, one SNP was associated significantly with growth traits (P < 0.05). These findings suggest that the duodenase-1 gene plays an important role in the resistance to S. agalactiae in tilapia. The SNP markers in the duodenase-1 gene associated with resistance to the bacterial pathogen, may facilitate the selection of tilapia resistant to the bacterial disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanism of pathogen recognition by human dectin-2.
Feinberg, Hadar; Jégouzo, Sabine A F; Rex, Maximus J; Drickamer, Kurt; Weis, William I; Taylor, Maureen E
2017-08-11
Dectin-2, a C-type lectin on macrophages and other cells of the innate immune system, functions in response to pathogens, particularly fungi. The carbohydrate-recognition domain (CRD) in dectin-2 is linked to a transmembrane sequence that interacts with the common Fc receptor γ subunit to initiate immune signaling. The molecular mechanism by which dectin-2 selectively binds to pathogens has been investigated by characterizing the CRD expressed in a bacterial system. Competition binding studies indicated that the CRD binds to monosaccharides with modest affinity and that affinity was greatly enhanced for mannose-linked α1-2 or α1-4 to a second mannose residue. Glycan array analysis confirmed selective binding of the CRD to glycans that contain Manα1-2Man epitopes. Crystals of the CRD in complex with a mammalian-type high-mannose Man 9 GlcNAc 2 oligosaccharide exhibited interaction with Manα1-2Man on two different termini of the glycan, with the reducing-end mannose residue ligated to Ca 2+ in a primary binding site and the nonreducing terminal mannose residue occupying an adjacent secondary site. Comparison of the binding sites in DC-SIGN and langerin, two other pathogen-binding receptors of the innate immune system, revealed why these two binding sites accommodate only terminal Manα1-2Man structures, whereas dectin-2 can bind Manα1-2Man in internal positions in mannans and other polysaccharides. The specificity and geometry of the dectin-2-binding site provide the molecular mechanism for binding of dectin-2 to fungal mannans and also to bacterial lipopolysaccharides, capsular polysaccharides, and lipoarabinomannans that contain the Manα1-2Man disaccharide unit. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
McEvoy, K; Hayes, J; Kealey, C; Brady, D
2016-09-01
Antimicrobial resistance poses a significant global healthcare predicament. An attractive approach to the dilemma of drug-resistant bacteria is the development and use of agents that interfere with the ability of pathogens to adhere to human tissue. The influence of sweet whey protein concentrate (SWPC), and selected hydrolysates of this material, on host-pathogen interactions of Cronobacter sakazakii (ATCC 29544) was investigated. CaCo-2 cell line was selected as a suitable model for the human intestinal epithelium. Cronobacter sakazakiiATCC 29544 was identified as the strain with the highest adhesion efficiency. SWPC reduced its association by 80% (P < 0·01), invasion 35% (P < 0·01), and translocation >95% (P < 0·001). SWPC enzymatically modified with lipase, trypsin and pepsin had variable effects on these behaviours with the most significant effect exhibited with the lipase treatment. SWPC produced an almost total inhibition of translocation of C. sakazakii across a CaCo-2 cell monolayer. Lipase and pepsin treated SWPC also reduced translocation by 75% and 90% respectively. However, trypsin treatment nullified the effect SWPC had on translocation. The presence of viable bacterial cells and SWPC both increased expression of IL-8 following Cronobacter invasion into CaCo-2 cells. Factors governing adherence, invasion and translocation of Cronobacter spp. to human intestinal cells are multi-factorial and digested milk products exhibit varying effects dependant on their enzyme modification and protein lipid content. These findings contribute to our, as yet, incomplete understanding of Cronobacter pathogenesis, and suggest that SWPC in whole and enzymatically hydrolysed forms, may provide a cost-effective source of bioactive materials with inhibitory effects on bacterial virulence. © 2016 The Society for Applied Microbiology.
Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.
LaRocca, Timothy J; Stivison, Elizabeth A; Hod, Eldad A; Spitalnik, Steven L; Cowan, Peter J; Randis, Tara M; Ratner, Adam J
2014-08-26
A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family. Copyright © 2014 LaRocca et al.
Prevalence of gastrointestinal bacterial pathogens in a population of zoo animals.
Stirling, J; Griffith, M; Blair, I; Cormican, M; Dooley, J S G; Goldsmith, C E; Glover, S G; Loughrey, A; Lowery, C J; Matsuda, M; McClurg, R; McCorry, K; McDowell, D; McMahon, A; Cherie Millar, B; Nagano, Y; Rao, J R; Rooney, P J; Smyth, M; Snelling, W J; Xu, J; Moore, J E
2008-04-01
Faecal prevalence of gastrointestinal bacterial pathogens, including Campylobacter, Escherichia coli O157:H7, Salmonella, Shigella, Yersinia, as well as Arcobacter, were examined in 317 faecal specimens from 44 animal species in Belfast Zoological Gardens, during July-September 2006. Thermophilic campylobacters including Campylobacter jejuni, Campylobacter coli and Campylobacter lari, were the most frequently isolated pathogens, where members of this genus were isolated from 11 animal species (11 of 44; 25%). Yersinia spp. were isolated from seven animal species (seven of 44; 15.9%) and included, Yersinia enterocolitica (five of seven isolates; 71.4%) and one isolate each of Yersinia frederiksenii and Yersinia kristensenii. Only one isolate of Salmonella was obtained throughout the entire study, which was an isolate of Salmonella dublin (O 1,9,12: H g, p), originating from tiger faeces after enrichment. None of the animal species found in public contact areas of the zoo were positive for any gastrointestinal bacterial pathogens. Also, water from the lake in the centre of the grounds, was examined for the same bacterial pathogens and was found to contain C. jejuni. This study is the first report on the isolation of a number of important bacterial pathogens from a variety of novel host species, C. jejuni from the red kangaroo (Macropus rufus), C. lari from a maned wolf (Chrysocyon brachyurus), Y. kristensenii from a vicugna (Vicugna vicugna) and Y. enterocolitica from a maned wolf and red panda (Ailurus fulgens). In conclusion, this study demonstrated that the faeces of animals in public contact areas of the zoo were not positive for the bacterial gastrointestinal pathogens examined. This is reassuring for the public health of visitors, particularly children, who enjoy this educational and recreational resource.
Rebollar, Eria A; Antwis, Rachael E; Becker, Matthew H; Belden, Lisa K; Bletz, Molly C; Brucker, Robert M; Harrison, Xavier A; Hughey, Myra C; Kueneman, Jordan G; Loudon, Andrew H; McKenzie, Valerie; Medina, Daniel; Minbiole, Kevin P C; Rollins-Smith, Louise A; Walke, Jenifer B; Weiss, Sophie; Woodhams, Douglas C; Harris, Reid N
2016-01-01
Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.
Effect of an essential oil-containing dentifrice on dental plaque microbial composition.
Charles, C H; Vincent, J W; Borycheski, L; Amatnieks, Y; Sarina, M; Qaqish, J; Proskin, H M
2000-09-01
To determine the effect of 6 months use of an essential oil-containing (EO) antiplaque/antigingivitis fluoride dentifrice on the balance of the oral microbial flora and on the emergence of resistant microbial forms by analysis of dental plaque and saliva. The dentifrice essential oils consisted of a fixed combination of thymol, menthol, methyl salicylate, and eucalyptol. An identical fluoride-containing dentifrice without the essential oils served as the control. A subgroup of 66 subjects from a clinical trial population of 321 was randomly selected for characterization of their dental plaque microflora. Saliva was also cultured to monitor for the emergence of opportunistic pathogens. Supragingival plaque and saliva were harvested at baseline, after which subjects received a dental prophylaxis. Subjects were sampled again after 3 and 6 months of product use prior to clinical examination. Plaque was characterized for microbial content by phase contrast microscopy for recognizable cellular morphotypes and by cultivation on nonselective and selective culture media. Determination of the minimum inhibitory concentrations of the test agent against selected Actinomyces and Veillonella isolated bacterial species was conducted at all time points to monitor for the potential development of bacterial resistance. There were no statistically significant differences between the microbial flora obtained from subjects using the essential oil-containing dentifrice and the vehicle control for all parameters and time periods except for the percentage of spirochetes at 6 months and for percentage of "other" microorganisms at 3 months. The EO group exhibited a lower adjusted mean for both parameters. Additionally, there was no evidence of the development of bacterial resistance to the antimicrobial activity of the essential oils or the emergence of opportunistic pathogens.
Sekar, Ashokkumar; Kim, Myoungjin; Jeong, Hyeong Chul; Kim, Keun
2018-05-28
Lactobacillus pentosus K1-23 was selected from among 25 lactic acid bacterial strains owing to its high inhibitory activity against several pathogenic bacteria, including Escherichia coli , Salmonella typhimurium , S. gallinarum , Staphylococcus aureus , Pseudomonas aeruginosa , Clostridium perfringens , and Listeria monocytogenes . Additionally, among 13 strains of Aureobasidium spp., A. pullulans NRRL 58012 was shown to produce the highest amount of β-glucan (15.45 ± 0.07%) and was selected. Next, the optimal conditions for a solid-phase mixed culture with these two different microorganisms (one bacterium and one yeast) were determined. The optimal inoculum sizes for L. pentosus and A. pullulans were 1% and 5%, respectively. The appropriate inoculation time for L. pentosus K1-23 was 3 days after the inoculation of A. pullulans to initiate fermentation. The addition of 0.5% corn steep powder and 0.1% FeSO₄ to the basal medium resulted in the increased production of lactic acid bacterial cells and β-glucan. The following optimal conditions for solid-phase mixed culture were also statistically determined by using the response surface method: 37.84°C, pH 5.25, moisture content of 60.82%, and culture time of 6.08 days for L. pentosus ; and 24.11°C, pH 5.65, moisture content of 60.08%, and culture time of 5.71 days for A. pullulans. Using the predicted optimal conditions, the experimental production values of L. pentosus cells and β-glucan were 3.15 ± 0.10 × 10⁸ CFU/g and 13.41 ± 0.04%, respectively. This mixed culture may function as a highly efficient antibiotic substitute based on the combined action of its anti-pathogenic bacterial and immune-enhancing activities.
Effects of triclosan on bacterial community composition and ...
Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, Vibrio, a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm) can induce a significant Vibrio growth response (68–1,700 fold increases) in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary), Doctors Arm Canal (Big Pine Key, FL), and Clam Bank Landing (North Inlet Estuary, Georgetown, SC). Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of Vibrionaceae (17-fold), Pseudoalteromonadaceae (65-fold), Alteromonadaceae (108-fold), Colwelliaceae (430-fold), and Oceanospirillaceae (1,494-fold). While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to u
PhytoPath: an integrative resource for plant pathogen genomics.
Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian
2016-01-04
PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A
2018-04-01
Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.
Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk
2016-07-01
The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.
Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis.
Zhang, Yong; Hu, Yangbo; Yang, Baoyu; Ma, Fang; Lu, Pei; Li, Lamei; Wan, Chengsong; Rayner, Simon; Chen, Shiyun
2010-10-25
Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals.
Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis
Zhang, Yong; Hu, Yangbo; Yang, Baoyu; Ma, Fang; Lu, Pei; Li, Lamei; Wan, Chengsong; Rayner, Simon; Chen, Shiyun
2010-01-01
Background Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. Methodology/Principal Findings We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. Conclusions/Significance Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals. PMID:21049039
Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W
2012-01-01
This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food. Copyright © 2012 Elsevier Inc. All rights reserved.
Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion
Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich
2004-01-01
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570
Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu
2016-01-01
Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117
Martinez, Vanesa G.; Escoda-Ferran, Cristina; Tadeu Simões, Inês; Arai, Satoko; Orta Mascaró, Marc; Carreras, Esther; Martínez-Florensa, Mario; Yelamos, José; Miyazaki, Toru; Lozano, Francisco
2014-01-01
Apoptosis inhibitor of macrophages (AIMs), a homologue of human Spα, is a mouse soluble member of the scavenger receptor cysteine-rich superfamily (SRCR-SF). This family integrates a group of proteins expressed by innate and adaptive immune cells for which no unifying function has yet been described. Pleiotropic functions have been ascribed to AIM, from viability support in lymphocytes during thymic selection to lipid metabolism and anti-inflammatory effects in autoimmune pathologies. In the present report, the pathogen binding properties of AIM have been explored. By using a recombinant form of AIM (rAIM) expressed in mammalian cells, it is shown that this protein is able to bind and aggregate Gram-positive and Gram-negative bacteria, as well as pathogenic and saprophytic fungal species. Importantly, endogenous AIM from mouse serum also binds to microorganisms and secretion of AIM was rapidly induced in mouse spleen macrophages following exposure to conserved microbial cell wall components. Cytokine release induced by well-known bacterial and fungal Toll-like receptor (TLR) ligands on mouse splenocytes was also inhibited in the presence of rAIM. Furthermore, mouse models of pathogen-associated molecular patterns (PAMPs)-induced septic shock of bacterial and fungal origin showed that serum AIM levels changed in a time-dependent manner. Altogether, these data suggest that AIM plays a general homeostatic role by supporting innate humoral defense during pathogen aggression. PMID:24583716
Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.
Longo, Ana V; Zamudio, Kelly R
2017-09-01
Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.
Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh
2015-03-15
Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.
Phage selection for bacterial cheats leads to population decline
Vasse, Marie; Torres-Barceló, Clara; Hochberg, Michael E.
2015-01-01
While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. PMID:26538598
Identification of Cell-Binding Adhesins of Leptospira interrogans
Evangelista, Karen V.; Hahn, Beth; Wunder, Elsio A.; Ko, Albert I.; Haake, David A.; Coburn, Jenifer
2014-01-01
Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1–130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and vaccines. PMID:25275630
Leung, Lisa M; Fondrie, William E; Doi, Yohei; Johnson, J Kristie; Strickland, Dudley K; Ernst, Robert K; Goodlett, David R
2017-07-25
Rapid diagnostics that enable identification of infectious agents improve patient outcomes, antimicrobial stewardship, and length of hospital stay. Current methods for pathogen detection in the clinical laboratory include biological culture, nucleic acid amplification, ribosomal protein characterization, and genome sequencing. Pathogen identification from single colonies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of high abundance proteins is gaining popularity in clinical laboratories. Here, we present a novel and complementary approach that utilizes essential microbial glycolipids as chemical fingerprints for identification of individual bacterial species. Gram-positive and negative bacterial glycolipids were extracted using a single optimized protocol. Extracts of the clinically significant ESKAPE pathogens: E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa, and E nterobacter spp. were analyzed by MALDI-TOF-MS in negative ion mode to obtain glycolipid mass spectra. A library of glycolipid mass spectra from 50 microbial entries was developed that allowed bacterial speciation of the ESKAPE pathogens, as well as identification of pathogens directly from blood bottles without culture on solid medium and determination of antimicrobial peptide resistance. These results demonstrate that bacterial glycolipid mass spectra represent chemical barcodes that identify pathogens, potentially providing a useful alternative to existing diagnostics.
Billmyre, R Blake; Clancey, Shelly Applen; Heitman, Joseph
2017-09-26
Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1 , which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.
USDA-ARS?s Scientific Manuscript database
Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that often are not used by those who are diagn...
Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping
2014-01-01
The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705
Barry, Kevin C; Ingolia, Nicholas T; Vance, Russell E
2017-01-01
The inducible innate immune response to infection requires a concerted process of gene expression that is regulated at multiple levels. Most global analyses of the innate immune response have focused on transcription induced by defined immunostimulatory ligands, such as lipopolysaccharide. However, the response to pathogens involves additional complexity, as pathogens interfere with virtually every step of gene expression. How cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate protective responses remains unclear. We previously discovered that a pathogen-mediated blockade of host protein synthesis provokes the production of specific pro-inflammatory cytokines. It remains unclear how these cytokines are produced despite the global pathogen-induced block of translation. We addressed this question by using parallel RNAseq and ribosome profiling to characterize the response of macrophages to infection with the intracellular bacterial pathogen Legionella pneumophila. Our results reveal that mRNA superinduction is required for the inducible immune response to a bacterial pathogen. DOI: http://dx.doi.org/10.7554/eLife.22707.001 PMID:28383283
Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows.
Jeon, Soo Jin; Cunha, Federico; Vieira-Neto, Achilles; Bicalho, Rodrigo C; Lima, Svetlana; Bicalho, Marcela L; Galvão, Klibs N
2017-08-25
Metritis is an inflammatory disease of the uterus caused by bacterial infection, particularly Bacteroides, Porphyromonas, and Fusobacterium. Bacteria from the environment, feces, or vagina are believed to be the only sources of uterine contamination. Blood seeps into the uterus after calving; therefore, we hypothesized that blood could also be a seeding source of uterine bacteria. Herein, we compared bacterial communities from blood, feces, and uterine samples from the same cows at 0 and 2 days postpartum using deep sequencing and qPCR. The vaginal microbiome 7 days before calving was also compared. There was a unique structure of bacterial communities by sample type. Principal coordinate analysis revealed two distinct clusters for blood and feces, whereas vaginal and uterine bacterial communities were more scattered, indicating greater variability. Cluster analysis indicated that uterine bacterial communities were more similar to fecal bacterial communities than vaginal and blood bacterial communities. Nonetheless, there were core genera shared by all blood, feces, vaginal, and uterine samples. Major uterine pathogens such as Bacteroides, Porphyromonas, and Fusobacterium were part of the core genera in blood, feces, and vagina. Other uterine pathogens such as Prevotella and Helcococcus were not part of the core genera in vaginal samples. In addition, uterine pathogens showed a strong and significant interaction with each other in the network of blood microbiota, but not in feces or vagina. These microbial interactions in blood may be an important component of disease etiology. The copy number of total bacteria in blood and uterus was correlated; the same did not occur in other sites. Bacteroides heparinolyticus was more abundant in the uterus on day 0, and both B. heparinolyticus and Fusobacterium necrophorum were more abundant in the uterus than in the blood and feces on day 2. This indicates that B. heparinolyticus has a tropism for the uterus, whereas both pathogens thrive in the uterine environment early postpartum. Blood harbored a unique microbiome that contained the main uterine pathogens such as Bacteroides, Porphyromonas, and Fusobacterium. The presence of these pathogens in blood shortly after calving shows the feasibility of hematogenous spread of uterine pathogens in cows.
Xu, Xiangming; Passey, Thomas; Wei, Feng; Saville, Robert; Harrison, Richard J.
2015-01-01
A phenomenon of yield decline due to weak plant growth in strawberry was recently observed in non-chemo-fumigated soils, which was not associated with the soil fungal pathogen Verticillium dahliae, the main target of fumigation. Amplicon-based metagenomics was used to profile soil microbiota in order to identify microbial organisms that may have caused the yield decline. A total of 36 soil samples were obtained in 2013 and 2014 from four sites for metagenomic studies; two of the four sites had a yield-decline problem, the other two did not. More than 2000 fungal or bacterial operational taxonomy units (OTUs) were found in these samples. Relative abundance of individual OTUs was statistically compared for differences between samples from sites with or without yield decline. A total of 721 individual comparisons were statistically significant – involving 366 unique bacterial and 44 unique fungal OTUs. Based on further selection criteria, we focused on 34 bacterial and 17 fungal OTUs and found that yield decline resulted probably from one or more of the following four factors: (1) low abundance of Bacillus and Pseudomonas populations, which are well known for their ability of supressing pathogen development and/or promoting plant growth; (2) lack of the nematophagous fungus (Paecilomyces species); (3) a high level of two non-specific fungal root rot pathogens; and (4) wet soil conditions. This study demonstrated the usefulness of an amplicon-based metagenomics approach to profile soil microbiota and to detect differential abundance in microbes. PMID:26504572
Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis
Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid
2011-01-01
Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. Materials and Methods: In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results: Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. Conclusion: The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria (Lactobacilli) that help in preservation of vaginal health and ecosystem as being one of the probiotic bacteria. PMID:22540089
Endobiotic bacteria and their pathogenic potential in cnidarian tentacles
NASA Astrophysics Data System (ADS)
Schuett, Christian; Doepke, Hilke
2010-09-01
Endobiotic bacteria colonize the tentacles of cnidaria. This paper provides first insight into the bacterial spectrum and its potential of pathogenic activities inside four cnidarian species. Sample material originating from Scottish waters comprises the jellyfish species Cyanea capillata and C. lamarckii, hydrozoa Tubularia indivisa and sea anemone Sagartia elegans. Mixed cultures of endobiotic bacteria, pure cultures selected on basis of haemolysis, but also lyophilized samples were prepared from tentacles and used for DGGE-profiling with subsequent phylogenetic analysis of 16S rDNA fragments. Bacteria were detected in each of the cnidarian species tested. Twenty-one bacterial species including four groups of closely related organisms were found in culture material. The species within these groups could not be differentiated from each other (one group of Pseudoalteromonas spp., two groups of Shewanella spp., one group of Vibrio spp.). Each of the hosts exhibits a specific endobacterial spectrum. Solely Cyanea lamarckii harboured Moritella viscosa. Only in Cyanea capillata, members of the Shewanella group #2 and the species Pseudoalteromonas arctica, Shewanella violacea, Sulfitobacter pontiacus and Arcobacter butzleri were detected. Hydrozoa Tubularia indivisa provided an amazingly wide spectrum of nine bacterial species. Exclusively, in the sea anemone Sagartia elegans, the bacterial species P. aliena was found. Overall eleven bacterial species detected were described recently as novel species. Four 16S rDNA fragments generated from lyophilized material displayed extremely low relationship to their next neighbours. These organisms are regarded as members of the endobiotic “terra incognita”. Since the origin of cnidarian toxins is unclear, the possible pathogenic activity of endobiotic bacteria has to be taken into account. Literature data show that their next neighbours display an interesting diversity of haemolytic, septicaemic and necrotic actions including the production of cytotoxins, tetrodotoxin and R-toxin. Findings of haemolysis tests support the literature data. The potential producers are Endozoicimonas elysicola, Moritella viscosa, Photobacterium profundum, P. aliena, P. tetraodonis, Shewanella waksmanii, Vibrio splendidus, V. aestuarius, Arcobacter butzleri.
21 CFR 558.630 - Tylosin and sulfamethazine.
Code of Federal Regulations, 2013 CFR
2013-04-01
... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and...; prevention of swine dysentery associated with Brachyspira hyodysenteriae; and control of swine pneumonias...
21 CFR 558.630 - Tylosin and sulfamethazine.
Code of Federal Regulations, 2014 CFR
2014-04-01
... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and... dysentery (vibrionic); control of swine pneumonias caused by bacterial pathogens (Pasteurella multocida and...; prevention of swine dysentery associated with Brachyspira hyodysenteriae; and control of swine pneumonias...
Rybakova, Daria; Mancinelli, Riccardo; Wikström, Mariann; Birch-Jensen, Ann-Sofie; Postma, Joeke; Ehlers, Ralf-Udo; Goertz, Simon; Berg, Gabriele
2017-09-01
Although the plant microbiome is crucial for plant health, little is known about the significance of the seed microbiome. Here, we studied indigenous bacterial communities associated with the seeds in different cultivars of oilseed rape and their interactions with symbiotic and pathogenic microorganisms. We found a high bacterial diversity expressed by tight bacterial co-occurrence networks within the rape seed microbiome, as identified by llumina MiSeq amplicon sequencing. In total, 8362 operational taxonomic units (OTUs) of 40 bacterial phyla with a predominance of Proteobacteria (56%) were found. The three cultivars that were analyzed shared only one third of the OTUs. The shared core of OTUs consisted mainly of Alphaproteobacteria (33%). Each cultivar was characterized by having its own unique bacterial structure, diversity, and proportion of unique microorganisms (25%). The cultivar with the lowest bacterial abundance, diversity, and the highest predicted bacterial metabolic activity rate contained the highest abundance of potential pathogens within the seed. This data corresponded with the observation that seedlings belonging to this cultivar responded more strongly to the seed treatments with bacterial inoculants than other cultivars. Cultivars containing higher indigenous diversity were characterized as having a higher colonization resistance against beneficial and pathogenic microorganisms. Our results were confirmed by microscopic images of the seed microbiota. The structure of the seed microbiome is an important factor in the development of colonization resistance against pathogens. It also has a strong influence on the response of seedlings to biological seed treatments. These novel insights into seed microbiome structure will enable the development of next generation strategies combining both biocontrol and breeding approaches to address world agricultural challenges.
Targeting bacterial secretion systems: benefits of disarmament in the microcosm.
Baron, Christian; Coombes, Brian
2007-03-01
Secretion systems are used by many bacterial pathogens for the delivery of virulence factors to the extracellular space or directly into host cells. They are attractive targets for the development of novel anti-virulence drugs as their inactivation would lead to pathogen attenuation or avirulence, followed by clearance of the bacteria by the immune system. This review will present the state of knowledge on the assembly and function of type II, type III and type IV secretion systems in Gram-negative bacteria focusing on insights provided by structural analyses of several key components. The suitability of transcription factors regulating the expression of secretion system components and of ATPases, lytic transglycosylases and protein assembly factors as drug targets will be discussed. Recent progress using innovative in vivo as well as in vitro screening strategies led to a first set of secretion system inhibitors with potential for further development as anti-infectives. The discovery of such inhibitors offers exciting and innovative opportunities to further develop these anti-virulence drugs into monotherapy or in combination with classical antibiotics. Bacterial growth per se would not be inhibited by such drugs so that the selection for mutations causing resistance could be reduced. Secretion system inhibitors may therefore avoid many of the problems associated with classical antibiotics and may constitute a valuable addition to our arsenal for the treatment of bacterial infections.
Microbiological safety of drinking water: United States and global perspectives.
Ford, T E
1999-01-01
Waterborne disease statistics only begin to estimate the global burden of infectious diseases from contaminated drinking water. Diarrheal disease is dramatically underreported and etiologies seldom diagnosed. This review examines available data on waterborne disease incidence both in the United States and globally together with its limitations. The waterborne route of transmission is examined for bacterial, protozoal, and viral pathogens that either are frequently associated with drinking water (e.g., Shigella spp.), or for which there is strong evidence implicating the waterborne route of transmission (e.g., Leptospira spp.). In addition, crucial areas of research are discussed, including risks from selection of treatment-resistant pathogens, importance of environmental reservoirs, and new methodologies for pathogen-specific monitoring. To accurately assess risks from waterborne disease, it is necessary to understand pathogen distribution and survival strategies within water distribution systems and to apply methodologies that can detect not only the presence, but also the viability and infectivity of the pathogen. Images Figure 1 Figure 2 PMID:10229718
Pathogen Presence in European Starlings Inhabiting Commercial Piggeries in South Australia.
Pearson, Hayley E; Lapidge, Steven J; Hernández-Jover, Marta; Toribio, Jenny-Ann L M L
2016-06-01
The majority of bacterial diarrhea-causing illnesses in domestic pigs result from infection with Escherichia coli, Salmonella spp., or Campylobacter spp. These bacterial enteropathogens also correspond with the most-common bacteria isolated from wild birds. Additionally, viral pathogens such as avian influenza virus (AIV), West Nile virus (WNV, including Kunjin disease), and Newcastle disease virus (NDV) may also be carried and transmitted by birds in Australia. Introduced European starlings (Sturnus vulgarus) are one of the most-frequently reported birds on piggeries in Australia. The presence of the three bacterial pathogens, Salmonella spp., Campylobacter spp., and Escherichia coli , as well as the three viral pathogens AIV, WNV, and NDV, were evaluated in starlings captured on four commercial piggeries in South Australia. A total of 473 starlings were captured on the four piggeries in 2008 and 2009. A cloacal swab was taken from each bird and cultured for bacterial identification, with follow-up serotyping of any positives, whilst fifty samples were analyzed by PCR for the three target viral pathogens. There was no AIV, WNV, or NDV detected in the 50 starlings sampled. Escherichia coli was found to be present in the starling populations on all four piggeries whilst Salmonella spp. and Campylobacter jejuni were found to be present only in the starling population sampled on one piggery. Serotyping identified pig-pathogenic strains of the bacteria. The prevalence of these production-limiting bacterial pathogens in starlings, coupled with the large starling populations often found inside piggeries during daylight hours in the summer months, presents a disease transmission risk and jeopardizes piggery disease management. Removal of starlings from agricultural enterprises (as shown by international studies), or prevention of starling access to animal feed and water, could substantially reduce the risk of transmission of enterobacterial pathogens from starlings to livestock.
Haack, Sheridan K.; Duris, Joseph W.
2013-01-01
Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.
Wei, Zhong; Huang, Jianfeng; Yang, Tianjie; Jousset, Alexandre; Xu, Yangchun; Shen, Qirong; Friman, Ville-Petri
2017-10-01
Microbe-based biocontrol applications hold the potential to become an efficient way to control plant pathogen disease outbreaks in the future. However, their efficiency is still very variable, which could be due to their sensitivity to the abiotic environmental conditions.Here, we assessed how environmental temperature variation correlates with ability of Ralstonia pickettii , an endophytic bacterial biocontrol agent, to suppress the Ralstonia solanacearum pathogen during different tomato crop seasons in China.We found that suppression of the pathogen was highest when the seasonal mean temperatures were around 20 °C and rapidly decreased with increasing mean crop season temperatures. Interestingly, low levels of disease incidence did not correlate with low pathogen or high biocontrol agent absolute densities. Instead, the biocontrol to pathogen density ratio was a more important predictor of disease incidence levels between different crop seasons. To understand this mechanistically, we measured the growth and strength of competition between the biocontrol agent and the pathogen over a naturally occurring temperature gradient in vitro . We found that the biocontrol strain grew relatively faster at low temperature ranges, and the pathogen at high temperature ranges, and that similar to field experiments, pathogen suppression peaked at 20 °C.Together, our results suggest that temperature-mediated changes in the strength of bacterial competition could potentially explain the variable R. solanacearum biocontrol outcomes between different crop seasons in China. Synthesis and applications . Our results suggest that abiotic environmental conditions, such as temperature, can affect the efficacy of biocontrol applications. Thus, in order to develop more consistent biocontrol applications in the future, we might need to find and isolate bacterial strains that can retain their functionality regardless of the changing environmental conditions.
A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.
Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil
2005-05-01
SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.
Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria
Cahoon, Laty A.; Seifert, H. Steven
2011-01-01
Summary Some pathogenic microbes utilize homologous recombination to generate antigenic variability in targets of immune surveillance. These specialized systems rely on the cellular recombination machinery to catalyze dedicated, high-frequency reactions that provide extensive diversity in the genes encoding surface antigens. A description of the specific mechanisms that allow unusually high rates of recombination without deleterious effects on the genome in the well characterized pilin antigenic variation systems of Neisseria gonorrhoeae and Neisseria meningitidis is presented. We will also draw parallels to selected bacterial and eukaryotic antigenic variation systems, and suggest the most pressing unanswered questions related to understanding these important processes. PMID:21812841
Lehtinen, Sonja; Blanquart, François; Croucher, Nicholas J.; Turner, Paul; Lipsitch, Marc; Fraser, Christophe
2017-01-01
Understanding how changes in antibiotic consumption affect the prevalence of antibiotic resistance in bacterial pathogens is important for public health. In a number of bacterial species, including Streptococcus pneumoniae, the prevalence of resistance has remained relatively stable despite prolonged selection pressure from antibiotics. The evolutionary processes allowing the robust coexistence of antibiotic sensitive and resistant strains are not fully understood. While allelic diversity can be maintained at a locus by direct balancing selection, there is no evidence for such selection acting in the case of resistance. In this work, we propose a mechanism for maintaining coexistence at the resistance locus: linkage to a second locus that is under balancing selection and that modulates the fitness effect of resistance. We show that duration of carriage plays such a role, with long duration of carriage increasing the fitness advantage gained from resistance. We therefore predict that resistance will be more common in strains with a long duration of carriage and that mechanisms maintaining diversity in duration of carriage will also maintain diversity in antibiotic resistance. We test these predictions in S. pneumoniae and find that the duration of carriage of a serotype is indeed positively correlated with the prevalence of resistance in that serotype. These findings suggest heterogeneity in duration of carriage is a partial explanation for the coexistence of sensitive and resistant strains and that factors determining bacterial duration of carriage will also affect the prevalence of resistance. PMID:28096340
Radiation-treated ready-to-eat (RTE) chicken breast Adobo for immuno-compromised patients.
Feliciano, Chitho P; De Guzman, Zenaida M; Tolentino, Levelyn Mitos M; Cobar, Maria Lucia C; Abrera, Gina B
2014-11-15
Usually in hospitals low-bacterial diets are served to immuno-compromised patients (ICPs). However, low-bacterial diets still pose a high risk of microbial infections and limit the food selection of the patients. Thus, pathogen-free dishes must be made available. This study presents the development of pathogen-free ready-to-eat (RTE) Filipino ethnic food chicken breast Adobo, sterilized by exposure to high-dose gamma rays (25 kGy) in combination with conventional treatments. Frozen vacuum-packed samples artificially inoculated with Escherichia coli, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium, were exposed to 25 kGy gamma radiation for complete sterilization. Microbial quality and sterility of the samples were analysed following 15, 30, and 60 days of storage at -4°C. The effects of high-dose gamma irradiation on the nutritional quality and sensory characteristics of RTE chicken breast Adobo were also evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dual-mode acoustic wave biosensors microarrays
NASA Astrophysics Data System (ADS)
Auner, Gregory W.; Shreve, Gina; Ying, Hao; Newaz, Golam; Hughes, Chantelle; Xu, Jianzeng
2003-04-01
We have develop highly sensitive and selective acoustic wave biosensor arrays with signal analysis systems to provide a fingerprint for the real-time identification and quantification of a wide array of bacterial pathogens and environmental health hazards. We have developed an unique highly sensitive dual mode acoustic wave platform prototype that, when combined with phage based selective detection elements, form a durable bacteria sensor. Arrays of these new real-time biosensors are integrated to form a biosensor array on a chip. This research and development program optimizes advanced piezoelectric aluminum nitride wide bandgap semiconductors, novel micromachining processes, advanced device structures, selective phage displays development and immobilization techniques, and system integration and signal analysis technology to develop the biosensor arrays. The dual sensor platform can be programmed to sense in a gas, vapor or liquid environment by switching between acoustic wave resonate modes. Such a dual mode sensor has tremendous implications for applications involving monitoring of pathogenic microorganisms in the clinical setting due to their ability to detect airborne pathogens. This provides a number of applications including hospital settings such as intensive care or other in-patient wards for the reduction of nosocomial infections and maintenance of sterile environments in surgical suites. Monitoring for airborn pathogen transmission in public transportation areas such as airplanes may be useful for implementation of strategies for redution of airborn transmission routes. The ability to use the same sensor in the liquid sensing mode is important for tracing the source of airborn pathogens to local liquid sources. Sensing of pathogens in saliva will be useful for sensing oral pathogens and support of decision-making strategies regarding prevention of transmission and support of treatment strategies.
Evolution of bacterial virulence.
Diard, Médéric; Hardt, Wolf-Dietrich
2017-09-01
Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Host response to bovine respiratory pathogens.
Czuprynski, Charles J
2009-12-01
Bovine respiratory disease (BRD) involves complex interactions amongst viral and bacterial pathogens that can lead to intense pulmonary inflammation (fibrinous pleuropneumonia). Viral infection greatly increases the susceptibility of cattle to secondary infection of the lung with bacterial pathogens like Mannheimia haemolytica and Histophilus somni. The underlying reason for this viral/bacterial synergism, and the manner in which cattle respond to the virulence strategies of the bacterial pathogens, is incompletely understood. Bovine herpesvirus type 1 (BHV-1) infection of bronchial epithelial cells in vitro enhances the binding of M. haemolytica and triggers release of inflammatory mediators that attract and enhance binding of neutrophils. An exotoxin (leukotoxin) released from M. haemolytica further stimulates release of inflammatory mediators and causes leukocyte death. Cattle infected with H. somni frequently display vasculitis. Exposure of bovine endothelial cells to H. somnii or its lipooligosaccharide (LOS) increases endothelium permeability, and makes the surface of the endothelial cells pro-coagulant. These processes are amplified in the presence of platelets. The above findings demonstrate that bovine respiratory pathogens (BHV-1, M. haemolytica and H. somni) interact with leukocytes and other cells (epithelial and endothelial cells) leading to the inflammation that characterizes BRD.
Exploiting Quorum Sensing To Confuse Bacterial Pathogens
LaSarre, Breah
2013-01-01
SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618
Song, Geun C; Choi, Hye K; Ryu, Choong-Min
2015-01-01
3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.
Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik
2015-07-01
Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.
Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.
2012-01-01
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread. PMID:22457628
Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L
2012-01-01
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.
Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi
2017-01-01
The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (P<0.0001). Human rhinovirus, HPIV-3, adenovirus, Streptococcus pneumonia, and Klebsiella pneumaniae had significant involvement in coinfections with P values of 0.0001, 0.009 and 0.0001, 0.0001 and 0.001 respectively. Further investigations are required to better understand the clinical roles of the isolated pathogens and their seasonality. PMID:28346512
Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive.
Varo, A; Raya-Ortega, M C; Trapero, A
2016-09-01
To identify potential biological control agents against Verticillium wilt in olive through a mass screening approach. A total of 47 strains and nine mixtures of micro-organisms were evaluated against Verticillium dahliae in a three stage screening: (i) in vitro, by the effect on the mycelial growth and spore germination of the pathogen; (ii) in natural infested soil, by the effect on the reduction of microsclerotia of the pathogen; (iii) in planta, by the effect on the infection of olive plants under controlled conditions. Various fungal and bacterial strains and mixtures inhibited the pathogen and showed consistent biocontrol activity against Verticillium wilt of olive. The screening has resulted in promising fungi and bacteria strains with antagonistic activity against Verticillium, such as two non-pathogenic Fusarium oxysporum, one Phoma sp., one Pseudomonas fluorescens and two mixtures of micro-organisms that may possess multiple modes of action. This study provides a practical basis for the potential use of selected strains as biocontrol agents for the protection of olive plants against V. dahliae infection. In addition, our study presented an effective method to evaluate antagonistic micro-organisms of V. dahliae in olive. © 2016 The Society for Applied Microbiology.
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira
Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.
2016-01-01
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts. PMID:26890609
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.
Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M
2016-02-01
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Bacteriophage-Based Pathogen Detection
NASA Astrophysics Data System (ADS)
Ripp, Steven
Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.
Risk factors for community-acquired bacterial meningitis.
Lundbo, Lene Fogt; Benfield, Thomas
2017-06-01
Bacterial meningitis is a significant burden of disease and mortality in all age groups worldwide despite the development of effective conjugated vaccines. The pathogenesis of bacterial meningitis is based on complex and incompletely understood host-pathogen interactions. Some of these are pathogen-specific, while some are shared between different bacteria. We searched the database PubMed to identify host risk factors for bacterial meningitis caused by the pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type b, because they are three most common causative bacteria beyond the neonatal period. We describe a number of risk factors; including socioeconomic factors, age, genetic variation of the host and underlying medical conditions associated with increased susceptibility to invasive bacterial infections in both children and adults. As conjugated vaccines are available for these infections, it is of utmost importance to identify high risk patients to be able to prevent invasive disease.
Role of quorum sensing in bacterial infections
Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo
2015-01-01
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150
Staying alive: Vibrio cholerae’s cycle of environmental survival, transmission, and dissemination
Jones, Christopher J.; Yildiz, Fitnat H.
2015-01-01
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide (1). Increasingly, the crucial role of non-host environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, as these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen, Vibrio cholerae, to describe recent advances in our understanding of how pathogens survive between hosts and highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry and exit from human hosts. PMID:27227302
Bishai, David; Liu, Liang; Shiau, Stephanie; Wang, Harrison; Tsai, Cindy; Liao, Margaret; Prakash, Shivaani; Howard, Tracy
2011-06-01
The purpose of this study was to estimate the risk of acquiring pathogenic bacteria as a result of shaking hands at graduation ceremonies. School officials participating in graduation ceremonies at elementary, secondary, and postsecondary schools were recruited. Specimens were collected before and immediately following graduation. Cultures identified any pathogenic bacteria in each specimen. Subjects shook a total of 5,209 hands. Staphylococcus aureus was separately detected on one pregraduation right hand, one postgraduation right hand, and one postgraduation left hand. Nonpathogenic bacteria were collected in 93% of specimens. Pregraduation and postgraduation specimens were of different strains. We measured a risk of one new bacterial acquisition in a sample exposed to 5,209 handshakes yielding an overall estimate of 0.019 pathogens acquired per handshake. We conclude that a single handshake at a graduation offers only a small risk of bacterial pathogen acquisition.
Jacobs, Jonathan M; Babujee, Lavanya; Meng, Fanhong; Milling, Annett; Allen, Caitilyn
2012-01-01
Plant xylem fluid is considered a nutrient-poor environment, but the bacterial wilt pathogen Ralstonia solanacearum is well adapted to it, growing to 10(8) to 10(9) CFU/g tomato stem. To better understand how R. solanacearum succeeds in this habitat, we analyzed the transcriptomes of two phylogenetically distinct R. solanacearum strains that both wilt tomato, strains UW551 (phylotype II) and GMI1000 (phylotype I). We profiled bacterial gene expression at ~6 × 10(8) CFU/ml in culture or in plant xylem during early tomato bacterial wilt pathogenesis. Despite phylogenetic differences, these two strains expressed their 3,477 common orthologous genes in generally similar patterns, with about 12% of their transcriptomes significantly altered in planta versus in rich medium. Several primary metabolic pathways were highly expressed during pathogenesis. These pathways included sucrose uptake and catabolism, and components of these pathways were encoded by genes in the scrABY cluster. A UW551 scrA mutant was significantly reduced in virulence on resistant and susceptible tomato as well as on potato and the epidemiologically important weed host Solanum dulcamara. Functional scrA contributed to pathogen competitive fitness during colonization of tomato xylem, which contained ~300 µM sucrose. scrA expression was induced by sucrose, but to a much greater degree by growth in planta. Unexpectedly, 45% of the genes directly regulated by HrpB, the transcriptional activator of the type 3 secretion system (T3SS), were upregulated in planta at high cell densities. This result modifies a regulatory model based on bacterial behavior in culture, where this key virulence factor is repressed at high cell densities. The active transcription of these genes in wilting plants suggests that T3SS has a biological role throughout the disease cycle. IMPORTANCE Ralstonia solanacearum is a widespread plant pathogen that causes bacterial wilt disease. It inflicts serious crop losses on tropical farmers, with major economic and human consequences. It is also a model for the many destructive microbes that colonize the water-conducting plant xylem tissue, which is low in nutrients and oxygen. We extracted bacteria from infected tomato plants and globally identified the biological functions that R. solanacearum expresses during plant pathogenesis. This revealed the unexpected presence of sucrose in tomato xylem fluid and the pathogen's dependence on host sucrose for virulence on tomato, potato, and the common weed bittersweet nightshade. Further, R. solanacearum was highly responsive to the plant environment, expressing several metabolic and virulence functions quite differently in the plant than in pure culture. These results reinforce the utility of studying pathogens in interaction with hosts and suggest that selecting for reduced sucrose levels could generate wilt-resistant crops.
Laaksonen, Sauli; Oksanen, Antti; Julmi, Jérôme; Zweifel, Claudio; Fredriksson-Ahomaa, Maria; Stephan, Roger
2017-01-03
Various food-producing animals were recognized in recent years as healthy carriers of bacterial pathogens causing human illness. In northern Fennoscandia, the husbandry of semi-domesticated reindeer (Rangifer tarandus tarandus) is a traditional livelihood and meat is the main product. This study determined the presence of selected foodborne pathogens, methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in healthy semi-domesticated reindeer at slaughter in northern Finland and Norway. All 470 reindeer fecal samples tested negative for Salmonella spp., whereas L. monocytogenes was detected in 3%, Yersinia spp. in 10%, and Shiga toxins genes (stx1 and/or stx2) in 33% of the samples. Listeria monocytogenes isolates belonged to the serotype 1/2a (14/15) and 4b, Yersinia spp. were identified mainly as Y. kristensenii (30/46) and Y. enterocolitica (8/46), and stx2 predominated among the Shiga toxin genes (stx2 alone or in combination with stx1 was found in 25% of the samples). With regard to the frequency and distribution of stx1/stx2, striking differences were evident among the 10 different areas of origin. Hence, reindeer could constitute a reservoir for Shiga toxin-producing E. coli (STEC), but strain isolation and characterization is required for verification purposes and to assess the potential human pathogenicity of strains. On the other hand, the favorable antibiotic resistance profiles (only 5% of 95 E. coli isolates were resistant to one or more of the tested antibiotics) and the absence of MRSA and ESBL-producing Enterobacteriaceae (when applying selective methods) suggest only a limited risk of transmission to humans. Healthy semi-domesticated reindeer in northern Finland and Norway can be carriers of certain bacterial foodborne pathogens. Strict compliance with good hygiene practices during any step of slaughter (in particular during dehiding and evisceration) is therefore of central importance to avoid carcass contamination and to prevent foodborne pathogens from entering the food chain.
Aquino, Ruth; Gonzáles, Emely; Samaniego, Sol; Rivera, Juan; Cedeño, Virna; Urbina, Yrene; Diringer, Benoit
2017-01-01
To molecularly characterize the pathogenic bacteria of the respiratory tract isolated from patients with cystic fibrosis (CF) in Peru. Bacterial communities cultured from sputum samples of pediatric and adult patients with CF admitted to the Edgardo Rebagliati Martins National Hospital and the National Institute of Child Health were characterized. Standard microbiological techniques were used for bacterial culture, and gene sequencing of 16S rRNA and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and tandem MALDI-TOF mass spectrometry (MALDI TOF/TOF) were used for molecular characterization. Seventeen bacterial strains were characterized by 16S rRNA sequencing, and the identified pathogenic bacteria were Pseudomonas aeruginosa (31.5%), Staphylococcus aureus (12.6%), Pseudomonas spp. (11.8%), and Klebsiella oxytoca (3.1%). MALDI-TOF analysis generated a series of spectra representative of each isolated bacterial species, whereas MALDI TOF/TOF analysis identified the peptides and proteins of the most common strains and provided data on pathogenicity and sensitivity to antibiotics. The primary pathogenic microorganisms found in the respiratory tract of patients with CF in Peru were the same as those found in other countries. This study is the first to perform 16S rRNA sequencing as well as MALDI-TOF and MALDI-TOF/TOF analysis of the bacterial pathogens circulating in Peru. The inclusion of proteomic analysis further allowed for the identification of native microorganisms involved in CF.
de Keijzer, Jeroen; van den Broek, Lambertus A. M.; Ketelaar, Tijs; van Lammeren, André A. M.
2012-01-01
Since its emergence in Northwest Europe as a pathogen that infects trunks and branches of Aesculus spp. (the horse chestnuts) approximately one decade ago, Pseudomonas syringae pv. aesculi has rapidly established itself as major threat to these trees. Infected trees exhibit extensive necrosis of phloem and cambium, which can ultimately lead to dieback. The events after host entry leading to extensive necrosis are not well documented. In this work, the histopathology of this interaction is investigated and heat-treatment is explored as method to eradicate bacteria associated with established infections. The early wound-repair responses of A. hippocastanum, both in absence and presence of P. s. pv. aesculi, included cell wall lignification by a distinct layer of phloem and cortex parenchyma cells. The same cells also deposited suberin lamellae later on, suggesting this layer functions in compartmentalizing healthy from disrupted tissues. However, monitoring bacterial ingress, its construction appeared inadequate to constrain pathogen spread. Microscopic evaluation of bacterial dispersal in situ using immunolabelling and GFP-tagging of P. s. pv. aesculi, revealed two discriminative types of bacterial colonization. The forefront of lesions was found to contain densely packed bacteria, while necrotic areas housed bacterial aggregates with scattered individuals embedded in an extracellular matrix of bacterial origin containing alginate. The endophytic localization and ability of P. s. pv aesculi to create a protective matrix render it poorly accessible for control agents. To circumvent this, a method based on selective bacterial lethality at 39°C was conceived and successfully tested on A. hippocastanum saplings, providing proof of concept for controlling this disease by heat-treatment. This may be applicable for curing other tree cankers, caused by related phytopathogens. PMID:22808044
de Keijzer, Jeroen; van den Broek, Lambertus A M; Ketelaar, Tijs; van Lammeren, André A M
2012-01-01
Since its emergence in Northwest Europe as a pathogen that infects trunks and branches of Aesculus spp. (the horse chestnuts) approximately one decade ago, Pseudomonas syringae pv. aesculi has rapidly established itself as major threat to these trees. Infected trees exhibit extensive necrosis of phloem and cambium, which can ultimately lead to dieback. The events after host entry leading to extensive necrosis are not well documented. In this work, the histopathology of this interaction is investigated and heat-treatment is explored as method to eradicate bacteria associated with established infections. The early wound-repair responses of A. hippocastanum, both in absence and presence of P. s. pv. aesculi, included cell wall lignification by a distinct layer of phloem and cortex parenchyma cells. The same cells also deposited suberin lamellae later on, suggesting this layer functions in compartmentalizing healthy from disrupted tissues. However, monitoring bacterial ingress, its construction appeared inadequate to constrain pathogen spread. Microscopic evaluation of bacterial dispersal in situ using immunolabelling and GFP-tagging of P. s. pv. aesculi, revealed two discriminative types of bacterial colonization. The forefront of lesions was found to contain densely packed bacteria, while necrotic areas housed bacterial aggregates with scattered individuals embedded in an extracellular matrix of bacterial origin containing alginate. The endophytic localization and ability of P. s. pv aesculi to create a protective matrix render it poorly accessible for control agents. To circumvent this, a method based on selective bacterial lethality at 39 °C was conceived and successfully tested on A. hippocastanum saplings, providing proof of concept for controlling this disease by heat-treatment. This may be applicable for curing other tree cankers, caused by related phytopathogens.
Loudon, Andrew H.; Holland, Jessica A.; Umile, Thomas P.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; Harris, Reid N.
2014-01-01
Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd. PMID:25191317
Sharifi, Rouhallah; Ryu, Choong-Min
2016-01-01
Biological control (biocontrol) agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR). Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs) are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 h post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen colonization. This study provides new evidence for bacterial VOC-elicited plant ISR that protects Arabidopsis plants from infection by the necrotrophic fungus B. cinerea. Our work reveals that bacterial VOCs primarily act via an indirect mechanism to elicit plant ISR, and have a major role in biocontrol against fungal pathogens. PMID:26941721
The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.
Eason, Mia M; Fan, Xin
2014-09-01
Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.
Song, Hong-Yan; Qiu, Bao-Feng; Liu, Chun; Zhu, Shun-Xing; Wang, Sheng-Cun; Miao, Jin; Jing, Jing; Shao, Yi-Xiang
2014-01-01
The clone library method using PCR amplification of the 16S ribosomal RNA (rRNA) gene was used to identify pathogens from corneal scrapings of C57BL/6-corneal opacity (B6-Co) mice with bacterial keratitis. All 10 samples from the eyes with bacterial keratitis showed positive PCR results. All 10 samples from the normal cornea showed negative PCR results. In all 10 PCR-positive samples, the predominant and second most predominant species accounted for 20.9 to 40.6% and 14.7 to 26.1%, respectively, of each clone library. The predominant species were Staphylococcus lentus, Pseudomonas aeruginosa, and Staphylococcus epidermidis. The microbiota analysis detected a diverse group of microbiota in the eyes of B6-Co mice with bacterial keratitis and showed that the causative pathogens could be determined based on percentages of bacterial species in the clone libraries. The bacterial species detected in this study were mostly in accordance with results of studies on clinical bacterial keratitis in human eyes. Based on the results of our previous studies and this study, the B6-Co mouse should be considered a favorable model for studying bacterial keratitis. PMID:25312507
Bacterial meningitis - principles of antimicrobial treatment.
Jawień, Miroslaw; Garlicki, Aleksander M
2013-01-01
Bacterial meningitis is associated with significant morbidity and mortality despite the availability of effective antimicrobial therapy. The management approach to patients with suspected or proven bacterial meningitis includes emergent cerebrospinal fluid analysis and initiation of appropriate antimicrobial and adjunctive therapies. The choice of empirical antimicrobial therapy is based on the patient's age and underlying disease status; once the infecting pathogen is isolated, antimicrobial therapy can be modified for optimal treatment. Successful treatment of bacterial meningitis requires the knowledge on epidemiology including prevalence of antimicrobial resistant pathogens, pathogenesis of meningitis, pharmacokinetics and pharmacodynamics of antimicrobial agents. The emergence of antibiotic-resistant bacterial strains in recent years has necessitated the development of new strategies for empiric antimicrobial therapy for bacterial meningitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, Sean Damien
2013-05-01
The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.
Feng, Yao-Ze; Elmasry, Gamal; Sun, Da-Wen; Scannell, Amalia G M; Walsh, Des; Morcy, Noha
2013-06-01
Bacterial pathogens are the main culprits for outbreaks of food-borne illnesses. This study aimed to use the hyperspectral imaging technique as a non-destructive tool for quantitative and direct determination of Enterobacteriaceae loads on chicken fillets. Partial least squares regression (PLSR) models were established and the best model using full wavelengths was obtained in the spectral range 930-1450 nm with coefficients of determination R(2)≥ 0.82 and root mean squared errors (RMSEs) ≤ 0.47 log(10)CFUg(-1). In further development of simplified models, second derivative spectra and weighted PLS regression coefficients (BW) were utilised to select important wavelengths. However, the three wavelengths (930, 1121 and 1345 nm) selected from BW were competent and more preferred for predicting Enterobacteriaceae loads with R(2) of 0.89, 0.86 and 0.87 and RMSEs of 0.33, 0.40 and 0.45 log(10)CFUg(-1) for calibration, cross-validation and prediction, respectively. Besides, the constructed prediction map provided the distribution of Enterobacteriaceae bacteria on chicken fillets, which cannot be achieved by conventional methods. It was demonstrated that hyperspectral imaging is a potential tool for determining food sanitation and detecting bacterial pathogens on food matrix without using complicated laboratory regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems.
Karavolos, Michail H; Winzer, Klaus; Williams, Paul; Khan, C M Anjam
2013-02-01
The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and β-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication. © 2012 Blackwell Publishing Ltd.
Molecular Signatures of Nicotinoid-Pathogen Synergy in the Termite Gut
Sen, Ruchira; Raychoudhury, Rhitoban; Cai, Yunpeng; Sun, Yijun; Lietze, Verena-Ulrike; Peterson, Brittany F.; Scharf, Michael E.; Boucias, Drion G.
2015-01-01
Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae), bacteria (Serratia marcescens) or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes) exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies. PMID:25837376
AUTOMATED BIOCHEMICAL IDENTIFICATION OF BACTERIAL FISH PATHOGENS USING THE ABBOTT QUANTUM II
The Quantum II, originally designed by Abbott Diagnostics for automated rapid identification of members of Enterobacteriaceae, was adapted for the identification of bacterial fish pathogens. he instrument operates as a spectrophotometer at a wavelength of 492.600 nm. ample cartri...
Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus
USDA-ARS?s Scientific Manuscript database
Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...
Genomic diversity and evolution of the fish pathogen Flavobacterium psychrophilum
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum...
Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.
Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle
2017-07-05
Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.
Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.
Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta
2013-09-01
Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Bacterial Adaptation to Antibiotics through Regulatory RNAs.
Felden, Brice; Cattoir, Vincent
2018-05-01
The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance. Copyright © 2018 American Society for Microbiology.
Bacterial pathogens of the bovine respiratory disease complex.
Griffin, Dee; Chengappa, M M; Kuszak, Jennifer; McVey, D Scott
2010-07-01
Pneumonia caused by the bacterial pathogens discussed in this article is the most significant cause of morbidity and mortality of the BRDC. Most of these infectious bacteria are not capable of inducing significant disease without the presence of other predisposing environmental factors, physiologic stressors, or concurrent infections. Mannheimia haemolytica is the most common and serious of these bacterial agents and is therefore also the most highly characterized. There are other important bacterial pathogens of BRD, such as Pasteurella multocida, Histophulus somni, and Mycoplasma bovis. Mixed infections with these organisms do occur. These pathogens have unique and common virulence factors but the resulting pneumonic lesions may be similar. Although the amount and quality of research associated with BRD has increased, vaccination and therapeutic practices are not fully successful. A greater understanding of the virulence mechanisms of the infecting bacteria and pathogenesis of pneumonia, as well as the characteristics of the organisms that allow tissue persistence, may lead to improved management, therapeutics, and vaccines. Copyright 2010 Elsevier Inc. All rights reserved.
Sugar transporters for intercellular exchange and nutrition of pathogens.
Chen, Li-Qing; Hou, Bi-Huei; Lalonde, Sylvie; Takanaga, Hitomi; Hartung, Mara L; Qu, Xiao-Qing; Guo, Woei-Jiun; Kim, Jung-Gun; Underwood, William; Chaudhuri, Bhavna; Chermak, Diane; Antony, Ginny; White, Frank F; Somerville, Shauna C; Mudgett, Mary Beth; Frommer, Wolf B
2010-11-25
Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
Setterington, Emma B.; Alocilja, Evangelyn C.
2012-01-01
Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629
Hajishengallis, George; Lamont, Richard J
2016-06-01
Many diseases that originate on mucosal membranes ensue from the action of polymicrobial communities of indigenous organisms working in concert to disrupt homeostatic mechanisms. Multilevel physical and chemical communication systems among constituent organisms underlie polymicrobial synergy and dictate the community's pathogenic potential or nososymbiocity, that is, disease arising from living together with a susceptible host. Functional specialization of community participants, often originating from metabolic codependence, has given rise to several newly appreciated designations within the commensal-to-pathogen spectrum. Accessory pathogens, while inherently commensal in a particular microenvironment, nonetheless enhance the colonization or metabolic activity of pathogens. Keystone pathogens (bacterial drivers or alpha-bugs) exert their influence at low abundance by modulating both the composition and levels of community participants and by manipulating host responses. Pathobionts (or bacterial passengers) exploit disrupted host homeostasis to flourish and promote inflammatory disease. In this review we discuss how commensal or pathogenic properties of organisms are not intrinsic features, and have to be considered within the context of both the microbial community in which they reside and the host immune status. Copyright © 2016 Elsevier Ltd. All rights reserved.
O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David
2015-01-01
Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.
O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David
2015-01-01
Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni. PMID:25715048
Endosymbiont Dominated Bacterial Communities in a Dwarf Spider
Vanthournout, Bram; Hendrickx, Frederik
2015-01-01
The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947
Domingo, Esteban; Perales, Celia
2018-05-01
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Etayash, Hashem; Jiang, Keren; Thundat, Thomas; Kaur, Kamaljit
2014-02-04
Real-time, label-free detection of Gram-positive bacteria with high selectivity and sensitivity is demonstrated using an interdigitated impedimetric array functionalized with naturally produced antimicrobial peptide from class IIa bacteriocins. The antimicrobial peptide, leucocin A, was chemically synthesized and covalently immobilized on interdigitated gold microelectrodes via the interaction between the C-terminal carboxylic acid of the peptide and free amines of a preattached thiolated linker. Exposing the peptide sensor to various concentrations of Gram-positive bacteria generated reproducible impedance spectra that detected peptide-bacteria interactions at a concentration of 1 cell/μL. The peptide sensor also selectively detected Listeria monocytogenes from other Gram-positive strains at a concentration of 10(3) cfu mL(-1). The study highlights that short peptide ligands from bacteriocin class offer high selectivity in bacterial detection and can be used in developing a robust, portable biosensor device to efficiently detect pathogenic Gram-positive bacteria in food samples.
Damborg, P; Broens, E M; Chomel, B B; Guenther, S; Pasmans, F; Wagenaar, J A; Weese, J S; Wieler, L H; Windahl, U; Vanrompay, D; Guardabassi, L
2016-07-01
The close contact between household pets and people offers favourable conditions for bacterial transmission. In this article, the aetiology, prevalence, transmission, impact on human health and preventative measures are summarized for selected bacterial zoonoses transmissible by household pets. Six zoonoses representing distinct transmission routes were selected arbitrarily based on the available information on incidence and severity of pet-associated disease caused by zoonotic bacteria: bite infections and cat scratch disease (physical injuries), psittacosis (inhalation), leptospirosis (contact with urine), and campylobacteriosis and salmonellosis (faecal-oral ingestion). Antimicrobial resistance was also included due to the recent emergence of multidrug-resistant bacteria of zoonotic potential in dogs and cats. There is a general lack of data on pathogen prevalence in the relevant pet population and on the incidence of human infections attributable to pets. In order to address these gaps in knowledge, and to minimize the risk of human infection, actions at several levels are recommended, including: (1) coordinated surveillance of zoonotic pathogens and antimicrobial resistance in household pets, (2) studies to estimate the burden of human disease attributable to pets and to identify risk behaviours facilitating transmission, and (3) education of those in charge of pets, animal caretakers, veterinarians and human medical healthcare practitioners on the potential zoonotic risks associated with exposure to pets. Disease-specific recommendations include incentives to undertake research aimed at the development of new diagnostic tests, veterinary-specific antimicrobial products and vaccines, as well as initiatives to promote best practices in veterinary diagnostic laboratories and prudent antimicrobial usage. Copyright © 2016. Published by Elsevier Ltd.
Sundin, George W; Castiblanco, Luisa F; Yuan, Xiaochen; Zeng, Quan; Yang, Ching-Hong
2016-12-01
Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex. © 2016 BSPP and John Wiley & Sons Ltd.
Kirsch, Petra; Jores, Jörg; Wieler, Lothar H
2004-01-01
Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded virulence features are responsible for the formation of so called attaching and effacing (AE) lesions in the intestinal epithelium. Due to its wide distribution in animal pathogens, LEE encoded antigens are suitable vaccine antigens. Acquisition and structure of the LEE pathogenicity island is the crucial point of numerous investigations. However, the evolution of the LEE, its origin and further spread in E. coli, are far from being resolved.
Bacterial and parasitic diseases of parrots.
Doneley, Robert J T
2009-09-01
As wild-caught birds become increasingly rare in aviculture, there is a corresponding decline in the incidence of bacterial and parasitic problems and an increase in the recognition of the importance of maintaining health through better nutrition and husbandry. Nevertheless, the relatively close confines of captivity mean an increased pathogen load in the environment in which companion and aviary parrots live. This increased pathogen load leads to greater exposure of these birds to bacteria and parasites, and consequently a greater risk of infection and disease. This article discusses bacterial and parasitic infections in companion and aviary parrots. It includes the origins, pathogens, diagnosis, treatment, and some of the associated risk factors.
How the study of Listeria monocytogenes has led to new concepts in biology.
Rolhion, Nathalie; Cossart, Pascale
2017-06-01
The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.
Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.
Pareja, Maria Eugenia Mansilla; Colombo, Maria I
2013-01-01
Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.
Spittel, Susanne; Hoedemaker, Martina
2012-01-01
In the following field study, the commercial PathoProof Mastitis PCR Assay, a real-time PCR for identifying eleven mastitis pathogens and the staphylococcal beta-lactamase gene, was compared with conventional bacterial culture. For this purpose, 681 udder quarter samples from 173 clinically healthy cows with varying somatic cell count from four dairy herds in the region of Osnabrück, Lower Saxony, Germany, were collected between July 2010 and February 2011 and subjected to PCR and bacterial culture. The frequency of positive pathogen signals was markedly higher with PCR compared with culture (70.6% vs. 32.2%). This was accompanied by a substantial higher percentage of multiple pathogen identifications and a lower percentage of single identifications in the PCR compared with bacterial culture. Using bacterial culture as gold standard, moderate to high sensitivities (76.9-100%) and specificities (63.3-98.7%) were calculated for six out of seven pathogens with sufficient detection numbers. For Enterococcus spp, the sensitivity was only 9.1%. When the PCR results of pooled udder quarter samples of the 173 cows were compared with the single udder quarter samples, in 72% of the cases, major pathogen DNA was either not found in both types of samples, or in the case of a positive pool sample, the respective pathogens were found in at least one udder quarter sample. With both methods, the most frequently detected mastitis pathogens were coryneform bacteria (PCR: Corynebacterium bovis), coagulase-negative staphylococci (CNS) and Staphylococcus (S.) aureus, followed by Arcanobacterium pyogenes/Peptoniphilus indolicus with PCR, and then with both methods, Streptococcus uberis. The staphylococcal beta-lactamase gene was found in 27.7% of the S. aureus and in 37.0% of the CNS identifications.
Randazzo, Cinzia L; Russo, Nunziatina; Pino, Alessandra; Mazzaglia, Agata; Ferrante, Margherita; Conti, Gea Oliveri; Caggia, Cinzia
2018-05-01
This work investigates the effects of different combinations of selected lactic acid bacteria strains on Lactobacillus species occurrence, on safety and on sensory traits of natural green table olives, produced at large factory scale. Olives belonging to Nocellara Etnea cv were processed in a 6% NaCl brine and inoculated with six different bacterial cultures, using selected strains belonging to Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus pentosus species. The fermentation process was strongly influenced by the added starters and the identification of lactic acid bacteria isolated throughout the process confirms that L. pentosus dominated all fermentations, followed by L. plantarum, whereas L. casei was never detected. Pathogens were never found, while histamine and tyrosine were detected in control and in two experimental samples. The samples with the lowest final pH values showed a safer profile and the most appreciated sensory traits. The present study highlights that selected starters promote prevalence of L. pentosus over the autochthonous microbiota throughout the whole process of Nocellara Etnea olives. Copyright © 2018. Published by Elsevier Ltd.
2013-01-01
Background The US CDC estimates over 2 million foodborne illnesses are annually caused by 4 major enteropathogens: non-typhoid Salmonella spp., Campylobacter spp., Shigella spp. and Yersinia enterocoltica. While data suggest a number of costly and morbid chronic sequelae associated with these infections, pathogen-specific risk estimates are lacking. We utilized a US Department of Defense medical encounter database to evaluate the risk of several gastrointestinal disorders following select foodborne infections. Methods We identified subjects with acute gastroenteritis between 1998 to 2009 attributed to Salmonella (nontyphoidal) spp., Shigella spp., Campylobacter spp. or Yersinia enterocolitica and matched each with up to 4 unexposed subjects. Medical history was analyzed for the duration of military service time (or a minimum of 1 year) to assess for incident chronic gastrointestinal disorders. Relative risks were calculated using modified Poisson regression while controlling for the effect of covariates. Results A total of 1,753 pathogen-specific gastroenteritis cases (Campylobacter: 738, Salmonella: 624, Shigella: 376, Yersinia: 17) were identified and followed for a median of 3.8 years. The incidence (per 100,000 person-years) of PI sequelae among exposed was as follows: irritable bowel syndrome (IBS), 3.0; dyspepsia, 1.8; constipation, 3.9; gastroesophageal reflux disease (GERD), 9.7. In multivariate analyses, we found pathogen-specific increased risk of IBS, dyspepsia, constipation and GERD. Conclusions These data confirm previous studies demonstrating risk of chronic gastrointestinal sequelae following bacterial enteric infections and highlight additional preventable burden of disease which may inform better food security policies and practices, and prompt further research into pathogenic mechanisms. PMID:23510245
Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria
USDA-ARS?s Scientific Manuscript database
Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...
A Protein Nanopore-Based Approach for Bacteria Sensing
NASA Astrophysics Data System (ADS)
Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor
2016-11-01
We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.
Breaking into the epithelial apical–junctional complex — news from pathogen hackers
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2012-01-01
The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310
Breaking into the epithelial apical-junctional complex--news from pathogen hackers.
Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James
2004-02-01
The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.
Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.
Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana
2016-12-01
ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.
Huy, Nguyen Tien; Hang, Le Thi Thuy; Boamah, Daniel; Lan, Nguyen Thi Phuong; Van Thanh, Phan; Watanabe, Kiwao; Huong, Vu Thi Thu; Kikuchi, Mihoko; Ariyoshi, Koya; Morita, Kouichi; Hirayama, Kenji
2012-12-01
Several loop-mediated isothermal amplification (LAMP) assays have been developed to detect common causative pathogens of bacterial meningitis (BM). However, no LAMP assay is reported to detect Streptococcus agalactiae and Streptococcus suis, which are also among common pathogens of BM. Moreover, it is laborious and expensive by performing multiple reactions for each sample to detect bacterial pathogen. Thus, we aimed to design and develop a single-tube LAMP assay capable of detecting multiple bacterial species, based on the nucleotide sequences of the 16S rRNA genes of the bacteria. The nucleotide sequences of the 16S rRNA genes of main pathogens involved in BM were aligned to identify conserved regions, which were further used to design broad range specific LAMP assay primers. We successfully designed a set of broad range specific LAMP assay primers for simultaneous detection of four species including Staphylococcus aureus, Streptococcus pneumoniae, S. suis and S. agalactiae. The broad range LAMP assay was highly specific without cross-reactivity with other bacteria including Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. The sensitivity of our LAMP assay was 100-1000 times higher compared with the conventional PCR assay. The bacterial species could be identified after digestion of the LAMP products with restriction endonuclease DdeI and HaeIII. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Söderqvist, Karin
2017-01-01
As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw ( e.g . leafy vegetables and tomatoes) and processed ( e.g . chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g . when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g . cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage.
Söderqvist, Karin
2017-01-01
ABSTRACT As part of a trend toward healthy convenience foods, ready-to-eat (RTE) mixed-ingredient salads have become popular products among consumers. A mixed-ingredient salad contains combinations of raw (e.g. leafy vegetables and tomatoes) and processed (e.g. chicken, salmon, ham, pasta and couscous) ingredients. Contamination of leafy vegetables can occur during any step in the production chain and, since there is no step that kills pathogens, a completely safe final product can never be guaranteed. Meat ingredients, for example poultry meat and ham, are generally heat-treated before preparation, but may be contaminated after this treatment, e.g. when diced or sliced. When several ingredients are mixed together, cross-contamination may occur. Preparation of mixed-ingredient salads requires human handling, which presents an additional risk of bacterial contamination. With high-protein ingredients, e.g. cooked meat, the mixed-ingredient salad represents an excellent substrate for bacterial growth. This article reviews current knowledge regarding human bacterial pathogen prevalence in mixed-ingredient salads and the potential for pathogen growth in this product during storage. PMID:29230273
el-Abyad, M S; el-Sayed, M A; el-Shanshoury, A R; el-Sabbagh, S M
1996-01-01
Thirty-seven actinomycete species isolated from fertile cultivated soils in Egypt were screened for the production of antimicrobial compounds against a variety of test organisms. Most of the isolates exhibited antimicrobial activities against Gram-positive, Gram-negative, and acid-fast bacteria, yeasts and filamentous fungi, with special attention to fungal and bacterial pathogens of tomato. On starch-nitrate agar, 14 strains were active against Fusarium oxysporum f.sp. lycopersici (the cause of Fusarium wilt), 18 against Verticillium albo-atrum (the cause of Verticillium wilt), and 18 against Alternaria solani (the cause of early blight). In liquid media, 14 isolates antagonized Pseudomonas solanacearum (the cause of bacterial wilt) and 20 antagonized Clavibacter michiganensis ssp. michiganensis (the cause of bacterial canker). The most active antagonists of the pathogenic microorganisms studied were found to be Streptomyces pulcher, S. canescens (syn. S. albidoflavus) and S. citreofluorescens (syn. S. anulatus). The antagonistic activities of S. pulcher and S. canescens against pathogenic fungi were assessed on solid media, and those of S. pulcher and S. citreofluorescens against pathogenic bacteria in liquid media under shaking conditions. The optimum culture conditions were determined.
Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota
Boutin, Sébastien; Bernatchez, Louis; Audet, Céline; Derôme, Nicolas
2013-01-01
Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier. PMID:24376845
Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun
2014-01-01
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes. PMID:24185846
Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun; Cha, Hyung Joon
2014-01-01
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.
Dandoy, C E; Ardura, M I; Papanicolaou, G A; Auletta, J J
2017-08-01
Bacterial bloodstream infections (BSI) cause significant transplant-related morbidity and mortality following allogeneic hematopoietic cell transplantation (allo-HCT). This manuscript reviews the risk factors for and the bacterial pathogens causing BSIs in allo-HCT recipients in the contemporary transplant period. In addition, it offers insight into emerging resistant pathogens and reviews clinical management considerations to treat and strategies to prevent BSIs in allo-HCT patients.
ERIC Educational Resources Information Center
Flannery, Maura C.
1997-01-01
Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)
Is there a role for lactobacilli in prevention of urogenital and intestinal infections?
Reid, G; Bruce, A W; McGroarty, J A; Cheng, K J; Costerton, J W
1990-01-01
This review describes the importance of microbial adhesion in the ecology of the urogenital and intestinal tracts and the influence of host and microbial factors in bacterial interference. In a recent revival of interest in bacterial interference, lactobacillus administration has been studied as a means of treating and preventing disease. Although evidence is conflicting, Lactobacillus acidophilus appears to be involved in beneficial antagonistic and cooperative reactions that interfere with establishment of pathogens in the gastrointestinal tract. The mechanisms of action are believed to involve competitive exclusion and production of inhibitory substances, including bacteriocins. These characteristics, as well as demonstrated adherence abilities in vitro, led to selection of certain Lactobacillus strains for clinical studies of cystitis. Weekly intravaginal Lactobacillus therapy reduced the recurrence rate of uncomplicated lower urinary tract infections in women. Use of Lactobacillus strains resistant to Nonoxynol-9, a spermicide that kills members of the protective normal vaginal flora, may have potential for use in women with recurrent cystitis using this contraceptive agent. In veterinary studies, bacterial interference by administration of probiotics has also been beneficial in disease prevention in animals. Carefully selected bacterial mixtures integrate with the gastrointestinal flora of the animals and can confer disease resistance and improve physiological function. Additional human and animal trials are needed to determine the practical, long-term usefulness of bacterial interference as a protective mechanism against infectious diseases. Images PMID:2224835
Manipulating the banana rhizosphere microbiome for biological control of Panama disease.
Xue, Chao; Penton, C Ryan; Shen, Zongzhuan; Zhang, Ruifu; Huang, Qiwei; Li, Rong; Ruan, Yunze; Shen, Qirong
2015-08-05
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.
Ocular surface culture changes in patients after septoplasty.
Ozkiriş, Mahmut; Kapusuz Gencer, Zeliha; Kader, Ciğdem; Saydam, Levent
2014-01-01
To investigate the interrelationships between pre- and postoperative microbiological changes by taking samples from both eyes of 40 patients who underwent septoplasty due to septal deviation. Forty patients diagnosed with septal deviation who underwent a septoplasty operation under general anesthesia were enrolled in this study. The study was conducted on 40 patients who met the inclusion criteria and attended follow-up visits. One day before the operation and 48 h after the operation, cultures were taken individually from the conjunctivas and puncta of both eyes and sent to the microbiology laboratory. Patients who were candidates for nasal surgery due to their symptoms and clinical examination results were randomly selected and 40 of these completed the study. No statistically significant differences in bacterial growth were observed between the eyes before the operation (P > 0.05). There were, however, statistically significant differences between the eyes in terms of bacterial growth in the postoperative period (P < 0.05). Pathogenic bacterial cultures were grown in 47 eyes in the postoperative period, and this finding was statistically significant. In the eye cultures, the most commonly isolated pathogens were S. epidermidis, and S. aureus. Although the indicated microorganisms isolated from the patient groups were grown in cultures, there were neither clinical symptoms nor signs related to ocular infections.
Manipulating the banana rhizosphere microbiome for biological control of Panama disease
Xue, Chao; Ryan Penton, C.; Shen, Zongzhuan; Zhang, Ruifu; Huang, Qiwei; Li, Rong; Ruan, Yunze; Shen, Qirong
2015-01-01
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease. PMID:26242751
Antwis, Rachael E; Preziosi, Richard F; Harrison, Xavier A; Garner, Trenton W J
2015-06-01
Microbiomes associated with multicellular organisms influence the disease susceptibility of hosts. The potential exists for such bacteria to protect wildlife from infectious diseases, particularly in the case of the globally distributed and highly virulent fungal pathogen Batrachochytrium dendrobatidis of the global panzootic lineage (B. dendrobatidis GPL), responsible for mass extinctions and population declines of amphibians. B. dendrobatidis GPL exhibits wide genotypic and virulence variation, and the ability of candidate probiotics to restrict growth across B. dendrobatidis isolates has not previously been considered. Here we show that only a small proportion of candidate probiotics exhibited broad-spectrum inhibition across B. dendrobatidis GPL isolates. Moreover, some bacterial genera showed significantly greater inhibition than others, but overall, genus and species were not particularly reliable predictors of inhibitory capabilities. These findings indicate that bacterial consortia are likely to offer a more stable and effective approach to probiotics, particularly if related bacteria are selected from genera with greater antimicrobial capabilities. Together these results highlight a complex interaction between pathogens and host-associated symbiotic bacteria that will require consideration in the development of bacterial probiotics for wildlife conservation. Future efforts to construct protective microbiomes should incorporate bacteria that exhibit broad-spectrum inhibition of B. dendrobatidis GPL isolates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Antiseptic resistance: what do we know and what does it mean?
Sheldon, Albert T
2005-01-01
Biocides (antiseptics, disinfectants, preservatives, sterilants) are used in clinical medicine as intervention strategies that prevent the dissemination of nosocomial pathogens. Biocides are also used for personal hygiene and to prevent cross-contamination of food-borne pathogens in homes, restaurants, day care centers, and nursing homes. However, laboratory evidence has emerged suggesting that the mechanism of nonsusceptibility to biocides may counter-select for resistance to antibiotics. Nature conserves successful survival strategies. Using existing mechanisms of resistance to antibiotics and their means of dissemination, microorganisms have adopted this same survival strategy for biocide nonsusceptibility. These mechanisms are intrinsic in nature or are acquired. The consequences to biocide efficacy in the clinical setting are probably not significant from the biocide perspective. But, the selective pressure biocides exert on bacterial populations that have mechanisms of resistance similar to those to antibiotics or that are also substrates for antibiotic resistance is of concern.
Influence of Vladivostok coastal waters pollution on a microflora of mussel Crenomytilus grayanus
NASA Astrophysics Data System (ADS)
Bogatyrenko, E. A.; Dunkai, T. I.; Buzoleva, L. S.; Kim, A. V.
2018-01-01
Taxonomic structure of bacterial community for mussel Crenomytilus grayanus digestive system from coastal waters of Vladivostok city, which is characterized by considerable anthropogenic impact was studied. Specimens of Micrococcaceae family predominated in the mollusc microscopic flora by the quantity of selected strains (62%). The order of Actinomycetales (namely genera of Actinomyces and Pimelobacter) were large (11%). In addition, there were numerous representatives of Enterobacteriaceae family (9%), Vibrio genus (9%), and Paracoccus genus (9%) selected. There were found such pathogenic and opportunistic microorganisms, as Escherichia coli, Listeria monocytogenes, and Klebsiella spp in microbial communities of mussels. Even though pathogenic microflora does not predominate in the biotic community, it nevertheless shifts the balance to increase extrinsic microflora within the hydrobiont. Detection of such potentially harmful bacteria indicates the insufficient sanitary and epidemiological state of the water area researched, the bay persistently polluted with municipal domestic drain waters.
Bacterial Colonization and Tissue Compatibility of Denture Base Resins.
Olms, Constanze; Yahiaoui-Doktor, Maryam; Remmerbach, Torsten W; Stingu, Catalina Suzana
2018-06-15
Currently, there is minimal clinical data regarding biofilm composition on the surface of denture bases and the clinical tissue compatibility. Therefore, the aim of this experimental study was to compare the bacterial colonization and the tissue compatibility of a hypoallergenic polyamide with a frequently used PMMA resin tested intraorally in a randomized split-mouth design. Test specimens made of polyamide ( n = 10) and PMMA ( n = 10) were attached over a molar band appliance in oral cavity of 10 subjects. A cytological smear test was done from palatal mucosa at baseline and after four weeks. The monolayers were inspected for micronuclei. After four weeks in situ, the appliance was removed. The test specimens were immediately cultivated on non-selective and selective nutrient media. All growing colonies were identified using VITEK-MS. The anonymized results were analyzed descriptively. A total of 110 different bacterial species could be isolated, including putative pathogens. An average of 17.8 different bacterial species grew on the PMMA specimens, and 17.3 on the polyamide specimens. The highest number of different bacterial species was n = 24, found on a PMMA specimen. On the two specimens, a similar bacterial distribution was observed. Micronuclei, as a marker for genotoxic potential of dental materials, were not detected. This study indicates that the composition of bacterial biofilm developed on these resins after four weeks is not influenced by the type of resin itself. The two materials showed no cytological differences. This investigation suggests that polyamide and PMMA are suitable for clinical use as denture base material.
Aksamit, Timothy R.; Chotirmall, Sanjay H.; Dasenbrook, Elliott C.; Elborn, J. Stuart; LiPuma, John J.; Ranganathan, Sarath C.; Waters, Valerie J.; Ratjen, Felix A.
2014-01-01
Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy. PMID:25167882
Richard, D; Ravigné, V; Rieux, A; Facon, B; Boyer, C; Boyer, K; Grygiel, P; Javegny, S; Terville, M; Canteros, B I; Robène, I; Vernière, C; Chabirand, A; Pruvost, O; Lefeuvre, P
2017-04-01
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family. © 2017 John Wiley & Sons Ltd.
Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A
2014-10-01
Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.
Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less
Airborne Multidrug-Resistant Bacteria Isolated from a Concentrated Swine Feeding Operation
Chapin, Amy; Rule, Ana; Gibson, Kristen; Buckley, Timothy; Schwab, Kellogg
2005-01-01
The use of nontherapeutic levels of antibiotics in swine production can select for antibiotic resistance in commensal and pathogenic bacteria in swine. As a result, retail pork products, as well as surface and groundwaters contaminated with swine waste, have been shown to be sources of human exposure to antibiotic-resistant bacteria. However, it is unclear whether the air within swine operations also serves as a source of exposure to antibiotic-resistant bacterial pathogens. To investigate this issue, we sampled the air within a concentrated swine feeding operation with an all-glass impinger. Samples were analyzed using a method for the isolation of Enterococcus. A total of 137 presumptive Enterococcus isolates were identified to species level using standard biochemical tests and analyzed for resistance to erythromycin, clindamycin, virginiamycin, tetracycline, and vancomycin using the agar dilution method. Thirty-four percent of the isolates were confirmed as Enterococcus, 32% were identified as coagulase-negative staphylococci, and 33% were identified as viridans group streptococci. Regardless of bacterial species, 98% of the isolates expressed high-level resistance to at least two antibiotics commonly used in swine production. None of the isolates were resistant to vancomycin, an antibiotic that has never been approved for use in livestock in the United States. In conclusion, high-level multidrug-resistant Enterococcus, coagulase-negative staphylococci, and viridans group streptococci were detected in the air of a concentrated swine feeding operation. These findings suggest that the inhalation of air from these facilities may serve as an exposure pathway for the transfer of multidrug-resistant bacterial pathogens from swine to humans. PMID:15687049
O'Hanlon, Karen A; Margison, Geoffrey P; Hatch, Amy; Fitzpatrick, David A; Owens, Rebecca A; Doyle, Sean; Jones, Gary W
2012-09-01
An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.
O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.
2012-01-01
An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901
Marín, Macarena; Uversky, Vladimir N; Ott, Thomas
2013-09-01
Effector proteins represent a refined mechanism of bacterial pathogens to overcome plants' innate immune systems. These modular proteins often manipulate host physiology by directly interfering with immune signaling of plant cells. Even if host cells have developed efficient strategies to perceive the presence of pathogenic microbes and to recognize intracellular effector activity, it remains an open question why only few effectors are recognized directly by plant resistance proteins. Based on in-silico genome-wide surveys and a reevaluation of published structural data, we estimated that bacterial effectors of phytopathogens are highly enriched in long-disordered regions (>50 residues). These structurally flexible segments have no secondary structure under physiological conditions but can fold in a stimulus-dependent manner (e.g., during protein-protein interactions). The high abundance of intrinsic disorder in effectors strongly suggests positive evolutionary selection of this structural feature and highlights the dynamic nature of these proteins. We postulate that such structural flexibility may be essential for (1) effector translocation, (2) evasion of the innate immune system, and (3) host function mimicry. The study of these dynamical regions will greatly complement current structural approaches to understand the molecular mechanisms of these proteins and may help in the prediction of new effectors.
USDA-ARS?s Scientific Manuscript database
The focus of this article is to discuss some of the approaches we have tested for managing the bacterial pathogen Xanthomonas fragariae in infected strawberry nursery stock. X. fragariae causes angular leaf spot (ALS) in strawberry. The pathogen is transmitted to production fields almost exclusively...
Microbial minimalism: genome reduction in bacterial pathogens.
Moran, Nancy A
2002-03-08
When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...
Roberts, Joseph A; Ma, Bangya; Tredway, Lane P; Ritchie, David F; Kerns, James P
2018-01-01
Bacterial etiolation and decline has developed into a widespread issue with creeping bentgrass (CBG) (Agrostis stolonifera) putting green turf. The condition is characterized by an abnormal elongation of turfgrass stems and leaves that in rare cases progresses into a rapid and widespread necrosis and decline. Recent reports have cited bacteria, Acidovorax avenae and Xanthomonas translucens, as causal agents; however, few cases exist where either bacterium were isolated in conjunction with turf exhibiting bacterial disease symptoms. From 2010 to 2014, turfgrass from 62 locations submitted to the NC State Turf Diagnostic Clinic exhibiting bacterial etiolation and/or decline symptoms were sampled for the presence of bacterial pathogens. Isolated bacteria were identified using rRNA sequencing of the 16S subunit and internal transcribed spacer region (16S-23S or ITS). Results showed diverse bacteria isolated from symptomatic turf and A. avenae and X. translucens were only isolated in 26% of samples. Frequently isolated bacterial species were examined for pathogenicity to 4-week-old 'G2' CBG seedlings and 8-week-old 'A-1' CBG turfgrass stands in the greenhouse. While results confirmed pathogenicity of A. avenae and X. translucens, Pantoea ananatis was also shown to infect CBG turf; although pathogenicity varied among isolated strains. These results illustrate that multiple bacteria are associated with bacterial disease and shed new light on culturable bacteria living in CBG turfgrass putting greens. Future research to evaluate additional microorganisms (i.e., bacteria and fungi) could provide new information on host-microbe interactions and possibly develop ideas for management tactics to reduce turfgrass pests.
Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome.
Becker, C G; Longo, A V; Haddad, C F B; Zamudio, K R
2017-08-30
Deforestation has detrimental consequences on biodiversity, affecting species interactions at multiple scales. The associations among vertebrates, pathogens and their commensal/symbiotic microbial communities (i.e. microbiomes) have important downstream effects for biodiversity conservation, yet we know little about how deforestation contributes to changes in host microbial diversity and pathogen abundance. Here, we tested the effects of landcover, forest connectivity and infection by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ) on amphibian skin bacterial diversity along deforestation gradients in Brazilian landscapes. If disturbance to natural habitat alters skin microbiomes as it does in vertebrate host communities, then we would expect higher host bacterial diversity in natural forest habitats. Bd infection loads are also often higher in these closed-canopy forests, which may in turn impact skin-associated bacterial communities. We found that forest corridors shaped composition of host skin microbiomes; high forest connectivity predicted greater similarity of skin bacterial communities among host populations. In addition, we found that host skin bacterial diversity and Bd loads increased towards natural vegetation. Because symbiotic bacteria can potentially buffer hosts from Bd infection, we also evaluated the bi-directional microbiome- Bd link but failed to find a significant effect of skin bacterial diversity reducing Bd infections. Although weak, we found support for Bd increasing bacterial diversity and/or for core bacteria dominance reducing Bd loads. Our research incorporates a critical element in the study of host microbiomes by linking environmental heterogeneity of landscapes to the host-pathogen-microbiome triangle. © 2017 The Author(s).
Prediction of molecular mimicry candidates in human pathogenic bacteria.
Doxey, Andrew C; McConkey, Brendan J
2013-08-15
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.
Prediction of molecular mimicry candidates in human pathogenic bacteria
Doxey, Andrew C; McConkey, Brendan J
2013-01-01
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053
Kunova, Andrea; Bonaldi, Maria; Saracchi, Marco; Pizzatti, Cristina; Chen, Xiaoyulong; Cortesi, Paolo
2016-11-09
In the search for new natural resources for crop protection, streptomycetes are gaining interest in agriculture as plant growth promoting bacteria and/or biological control agents. Because of their peculiar life cycle, in which the production of secondary metabolites is synchronized with the development of aerial hyphae and sporulation, the commonly used methods to screen for bacterial antagonists need to be adapted. The dual culture assay was standardized in terms of inoculation timing of Streptomyces antagonist and pathogen, and growth rate of different fungal pathogens. In case of fast-growing fungi, inoculation of the antagonist 2 or 3 days prior to the pathogen resulted in significantly stronger inhibition of mycelium growth. One hundred and thirty Streptomyces strains were evaluated against six destructive soil borne pathogens. The activity of strains varied from broad-spectrum to highly specific inhibition of individual pathogens. All strains inhibited at least one tested pathogen. Three strains, which combined the largest broad-spectrum with the highest inhibition activity, were selected for further characterization with four vegetable species. All of them were able to colonize seed surface of all tested vegetable crops. They mostly improved radicle and hypocotyl growth in vitro, although no statistically significant enhancement of biomass weight was observed in vivo. Occasionally, transient negative effects on germination and plant growth were observed. The adapted dual culture assay allowed us to compare the inhibition of individual Streptomyces strains against six fungal soil borne pathogens. The best selected strains were able to colonize the four vegetable crops and have a potential to be developed into biocontrol products. Although they occasionally negatively influenced plant growth, these effects did not persist during the further development. Additional in vivo studies are needed to confirm their potential as biological control or plant growth promoting agents.
In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application
Kumar, P; Selvi, S Senthamil; Govindaraju, M
2012-01-01
Objective To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2% to CM. Conclusions To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds. PMID:23593571
Bacterial Imaging and Photodynamic Inactivation Using Zinc(II)-Dipicolylamine BODIPY Conjugates†
Rice, Douglas R.; Gan, Haiying; Smith, Bradley D.
2015-01-01
Targeted imaging and antimicrobial photodynamic inactivation (PDI) are emerging methods for detecting and eradicating pathogenic microorganisms. This study describes two structurally related optical probes that are conjugates of a zinc(II)-dipicolylamine targeting unit and a BODIPY chromophore. One probe is a microbial targeted fluorescent imaging agent, mSeek, and the other is an oxygen photosensitizing analogue, mDestroy. The conjugates exhibited high fluorescence quantum yield and singlet oxygen production, respectively. Fluorescence imaging and detection studies examined four bacterial strains: E. coli, S. aureus, K. pneumonia, and B. thuringiensis vegetative cells and purified spores. The fluorescent probe, mSeek, is not phototoxic and enabled detection of all tested bacteria at concentrations of ~100 CFU/mL for B. thuringiensis spores, ~1000 CFU/mL for S. aureus and ~10,000 CFU/mL for E. coli. The photosensitizer analogue, mDestroy, inactivated 99–99.99% of bacterial samples and selectively killed bacterial cells in the presence of mammalian cells. However, mDestroy was ineffective against B. thuringiensis spores. Together, the results demonstrate a new two-probe strategy to optimize PDI of bacterial infection/contamination. PMID:26063101
Within-host evolution of bacterial pathogens
Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.
2016-01-01
Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595
Within-host evolution of bacterial pathogens.
Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J
2016-03-01
Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.
Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques
2015-12-29
Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the ability to influence interactions among host proteins are important components for F. tularensis to avoid host-cell defense mechanisms and successfully establish an infection. Although direct host-pathogen protein-protein binding is only one aspect of Francisella virulence, it is a critical component in directly manipulating and interfering with cellular processes in the host cell.
Klu, Y A K; Chen, J
2016-04-01
This study observed the behaviour of probiotics and selected bacterial pathogens co-inoculated into peanut butter during gastrointestinal simulation. Peanut butter homogenates co-inoculated with Salmonella/Listeria strains (5 log CFU ml(-1) ) and lyophilized or cultured probiotics (9 log CFU ml(-1) ) were exposed to simulated gastrointestinal conditions for 24 h at 37°C. Sample pH, titratable acidity and pathogen populations were determined. Agar diffusion assay was performed to assess the inhibitory effect of probiotic culture supernatants with either natural (3·80 (Lactobacillus), 3·78 (Bifidobacteirum) and 5·17 (Streptococcus/Lactococcus)) or neutralized (6·0) pH. Antibacterial effect of crude bacteriocin extracts were also evaluated against the pathogens. After 24 h, samples with probiotics had lower pH and higher titratable acidity than those without probiotics. The presence of probiotics caused a significant reduction (P < 0·05) in pathogen populations. Supernatants of Bifidobacterium and Lactobacillus cultures inhibited pathogen growth; however, the elevation of pH diminished their antibacterial activities. Crude bacteriocin extracts had a strain-specific inhibitory effect only towards Listeria monocytogenes. Probiotics in 'peanut butter' survived simulated gastrointestinal conditions and inhibited the growth of Salmonella/Listeria. Peanut butter is a plausible carrier to deliver probiotics to improve the gastrointestinal health of children in developing countries. © 2016 The Society for Applied Microbiology.
Mechanisms of Antibiotic Resistance
Munita, Jose M.; Arias, Cesar A.
2015-01-01
Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291
Hao, W; Hong, C X
2014-05-01
A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.
A highly infective plant-associated bacterium influences reproductive rates in pea aphids
Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.
2016-01-01
Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321
A highly infective plant-associated bacterium influences reproductive rates in pea aphids.
Hendry, Tory A; Clark, Kelley J; Baltrus, David A
2016-02-01
Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.
Novel Prevention Strategies for Bacterial Infections in Cirrhosis
Yan, Kathleen; Garcia-Tsao, Guadalupe
2016-01-01
Introduction Bacterial infections are a serious complication of cirrhosis, as they can lead to decompensation, multiple organ failure, and/or death. Preventing infections is therefore very relevant. Because gut bacterial translocation is their main pathogenic mechanism, prevention of infections is mostly based on the use of orally administered poorly absorbed antibiotics such as norfloxacin (selective intestinal decontamination). However, antibiotic prophylaxis leads to antibiotic resistance, limiting therapy and increasing morbidity and mortality. Prevention of bacterial infections in cirrhosis should therefore move away from antibiotics. Areas Covered This review focuses on various potentially novel methods to prevent infections in cirrhosis focusing on non-antibiotic strategies. The use of probiotics, nonselective intestinal decontamination with rifaximin, prokinetics and beta-blockers or fecal microbiota transplant as means of targeting altered gut microbiota, bile acids and FXR agonists are all potential alternatives to selective intestinal decontamination. Prokinetics and beta-blockers can improve intestinal motility, while bile acids and FXR agonists help by improving the intestinal barrier. Finally, granulocyte colony stimulating factor (G-CSF) and statins are emerging therapeutic strategies that may improve immune dysfunction in cirrhosis. Expert Opinion Evidence for these strategies has been restricted to animal studies and proof-of concept studies but we expect this to change in coming years. PMID:26799197
Kadam, Kiran; Prabhakar, Prashant; Jayaraman, V K
2012-11-01
Bacterial lipoproteins play critical roles in various physiological processes including the maintenance of pathogenicity and numbers of them are being considered as potential candidates for generating novel vaccines. In this work, we put forth an algorithm to identify and predict ligand-binding sites in bacterial lipoproteins. The method uses three types of pocket descriptors, namely fpocket descriptors, 3D Zernike descriptors and shell descriptors, and combines them with Support Vector Machine (SVM) method for the classification. The three types of descriptors represent shape-based properties of the pocket as well as its local physio-chemical features. All three types of descriptors, along with their hybrid combinations are evaluated with SVM and to improve classification performance, WEKA-InfoGain feature selection is applied. Results obtained in the study show that the classifier successfully differentiates between ligand-binding and non-binding pockets. For the combination of three types of descriptors, 10 fold cross-validation accuracy of 86.83% is obtained for training while the selected model achieved test Matthews Correlation Coefficient (MCC) of 0.534. Individually or in combination with new and existing methods, our model can be a very useful tool for the prediction of potential ligand-binding sites in bacterial lipoproteins.
Eid, Neveen H; Al Doghaither, Huda A; Kumosani, Taha A; Gull, Munazza
2017-01-01
To evaluate the indigenous bacterial strains of drinking water from the most commercial water types including bottled and filtered water that are currently used in Saudi Arabia. Thirty randomly selected commercial brands of bottled water were purchased from Saudi local markets. Moreover, samples from tap water and filtered water were collected in sterilized glass bottles and stored at 4°C. Biochemical analyses including pH, temperature, lactose fermentation test (LAC), indole test (IND), methyl red test (MR), Voges-Proskauer test (VP), urease test (URE), catalase test (CAT), aerobic and anaerobic test (Ae/An) were measured. Molecular identification and comparative sequence analyses were done by full length 16S rRNA gene sequences using gene bank databases and phylogenetic trees were constructed to see the closely related similarity index between bacterial strains. Among 30 water samples tested, 18 were found positive for bacterial growth. Molecular identification of four selected bacterial strains indicated the alarming presence of pathogenic bacteria Bacillus spp . in most common commercial types of drinking water used in Saudi Arabia. The lack of awareness about good sanitation, poor personal hygienic practices and failure of safe water management and supply are the important factors for poor drinking water quality in these sources, need to be addressed.
NASA Astrophysics Data System (ADS)
Rehse, Steven J.; Miziolek, Andrzej W.
2012-06-01
Laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. The significant advantages of LIBS include speed (< 1 sec analysis), portability, robustness, lack of consumables, little to no need for sample preparation, lack of genetic amplification, and the ability to identify all bacterial pathogens without bias (including spore-forms and viable but nonculturable specimens). In this manuscript, we present the latest advances achieved in LIBS-based bacterial sensing including the ability to uniquely identify species from more than five bacterial genera with high-sensitivity and specificity. Bacterial identifications are completely unaffected by environment, nutrition media, or state of growth and accurate diagnoses can be made on autoclaved or UV-irradiated specimens. Efficient discrimination of bacteria at the strain level has been demonstrated. A rapid urinary tract infection diagnosis has been simulated with no sample preparation and a one second diagnosis of a pathogen surrogate has been demonstrated using advanced chemometric analysis with a simple "stop-light" user interface. Stand-off bacterial identification at a 20-m distance has been demonstrated on a field-portable instrument. This technology could be implemented in doctors' offices, clinics, or hospital laboratories for point-of-care medical specimen analysis; mounted on military medical robotic platforms for in-the- field diagnostics; or used in stand-off configuration for remote sensing and detection.
Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne
2012-01-01
Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.
Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne
2012-01-01
Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3–5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota. PMID:22363778
Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.
Arbibe, Laurence
2008-08-01
Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.
Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang
2014-11-01
In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, Kelly D
2007-01-01
The host innate immune defense protein lipocalin 2 binds bacterial enterobactin siderophores to limit bacterial iron acquisition. To counteract this host defense mechanism bacteria have acquired the iroA gene cluster, which encodes enzymatic machinery and transporters that revitalize enterobactin in the form of salmochelin. The iroB enzyme introduces glucosyl residues at the C5 site on 2,3-dihydroxybenzoylserine moieties of enterobactin and thereby prevents lipocalin 2 binding. Additional strategies to evade lipocalin 2 have evolved in other bacteria, such as Mycobacteria tuberculosis and Bacillus anthracis. Targeting these specialized bacterial evasion strategy may provide a mechanism to reinvigorate lipocalin 2 in defense against specific pathogens.
Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices
Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.; ...
2016-09-23
Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less
Rapid, portable, multiplexed detection of bacterial pathogens directly from clinical sample matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phaneuf, Christopher R.; Mangadu, Betty Lou Bosano; Piccini, Matthew E.
Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. Furthermore, this platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 µL of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated inmore » diarrheal and enteric diseases in less than 20 min.« less
O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David
2015-01-01
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096
Neumann, Wilma; Gulati, Anmol; Nolan, Elizabeth M
2017-04-01
A tug-of-war between the mammalian host and bacterial pathogen for nutrients, including first-row transition metals (e.g. Mn, Fe, Zn), occurs during infection. Here we present recent advances about three metal-chelating metabolites that bacterial pathogens deploy when invading the host: staphylopine, staphyloferrin B, and enterobactin. These highlights provide new insights into the mechanisms of bacterial metal acquisition and regulation, as well as the contributions of host-defense proteins during the human innate immune response. The studies also underscore that the chemical composition of the microenvironment at an infection site can influence bacterial pathogenesis and the innate immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yáñez-Sedeño, Paloma
2017-01-01
Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out. PMID:29099764
Agunos, Agnes; Carson, Carolee; Léger, Dave
2013-01-01
This paper identifies common poultry diseases requiring antimicrobial therapy, antimicrobials deemed efficacious to treat these diseases, and antimicrobial resistance (AMR) in these commodity-pathogen combinations, and describes current residue issues and minor use minor species (MUMS) guidelines. Veterinarians with turkey/layer expertise and diagnosticians were surveyed to determine the bacterial and protozoal diseases diagnosed in the last 5 years. Avian pathogenic Escherichia coli, Staphylococcus aureus, and Ornithobacterium rhinotracheale were the 3 most frequently diagnosed pathogens of turkeys. In layers, E. coli-peritonitis, and Clostridium perfringens/Eimeria spp. infections were the most common diagnoses. A literature review identified 32 antimicrobials as efficacious and/or recommended for treating these diseases. Surveillance and monitoring indicate the presence of enteric resistant organisms from some of these avian species (including resistance to antimicrobials of very high importance to human medicine). This paper highlights the need for surveillance of pathogen frequency, antimicrobial use (AMU), and AMR particularly in turkeys. PMID:24179239
Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel
2017-11-03
Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.
Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José
2015-01-01
Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. PMID:25815810
2013-01-01
Introduction Hospital acquired infections are recognized as critical public health problems. Infections are frequently caused by organisms residing in healthcare environment, including contaminated medical equipment like Stethoscopes. Objective To determine bacterial contamination, bacterial profile and anti-microbial susceptibility pattern of the isolates from stethoscopes at Jimma University Specialized Hospital. Methodology Cross-sectional study conducted from May to September 2011 at Jimma University Specialized Hospital. One hundred seventy-six stethoscopes owned by Health Care Workers (HCWs) and Medical students were randomly selected and studied. Self-administered structured questionnaire was used to collect socio-demographic data. Specimen was collected using moisten sterile cotton swab and 1 ml normal saline was used to transport the specimen, all laboratory investigations were done following standard microbiological techniques, at Microbiology Laboratory, Jimma University. SPSS windows version 16 used for data analysis and P <0.05 was considered statistically significant. Result: A total, of 151 (85.8%) stethoscopes were contaminated. A total of 256 bacterial strains and a mean of 1.44×104 CFUs/diaphragm of stethoscopes was isolated. Of the 256 isolates, 133 (52%) were potential pathogens like S. aureus, Klebsiella spp., Citrobacter spp., Salmonella spp., Proteus spp., Enterobacter spp., P. aeruginosa and E. coli. All strains were resistant to multiple classes of antibiotics (two to eight classes of antibiotics). Disinfection practice was poor. Disinfection practice was found to be associated with bacterial contamination of stethoscopes (P < 0.05). High contamination rate 100 (90.9%) was observed among stethoscopes that had never been disinfected; while the least contamination 29 (72.2%) was found on those disinfected a week or less before the survey. Conclusion Bacterial contamination of the stethoscope was significant. The isolates were potential pathogens and resistant to multiple classes of antibiotics. Stethoscope is potential vehicle in the transmission of infections between patients and Healthcare Workers. Stethoscope diaphragm should be disinfected before and after each patient contact. PMID:24330702
Shiferaw, Teklu; Beyene, Getenet; Kassa, Tesfaye; Sewunet, Tsegaye
2013-12-13
Hospital acquired infections are recognized as critical public health problems. Infections are frequently caused by organisms residing in healthcare environment, including contaminated medical equipment like Stethoscopes. To determine bacterial contamination, bacterial profile and anti-microbial susceptibility pattern of the isolates from stethoscopes at Jimma University Specialized Hospital. Cross-sectional study conducted from May to September 2011 at Jimma University Specialized Hospital. One hundred seventy-six stethoscopes owned by Health Care Workers (HCWs) and Medical students were randomly selected and studied. Self-administered structured questionnaire was used to collect socio-demographic data. Specimen was collected using moisten sterile cotton swab and 1 ml normal saline was used to transport the specimen, all laboratory investigations were done following standard microbiological techniques, at Microbiology Laboratory, Jimma University. SPSS windows version 16 used for data analysis and P <0.05 was considered statistically significant. A total, of 151 (85.8%) stethoscopes were contaminated. A total of 256 bacterial strains and a mean of 1.44×104 CFUs/diaphragm of stethoscopes was isolated. Of the 256 isolates, 133 (52%) were potential pathogens like S. aureus, Klebsiella spp., Citrobacter spp., Salmonella spp., Proteus spp., Enterobacter spp., P. aeruginosa and E. coli. All strains were resistant to multiple classes of antibiotics (two to eight classes of antibiotics). Disinfection practice was poor. Disinfection practice was found to be associated with bacterial contamination of stethoscopes (P < 0.05). High contamination rate 100 (90.9%) was observed among stethoscopes that had never been disinfected; while the least contamination 29 (72.2%) was found on those disinfected a week or less before the survey. Bacterial contamination of the stethoscope was significant. The isolates were potential pathogens and resistant to multiple classes of antibiotics. Stethoscope is potential vehicle in the transmission of infections between patients and Healthcare Workers. Stethoscope diaphragm should be disinfected before and after each patient contact.
Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying
2015-01-01
This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416
Ma, Xiuqing; Cui, Junchang; Wang, Jing; Chang, Yan; Fang, Qiuhong; Bai, Changqing; Zhou, Xiumei; Zhou, Hong; Feng, Huasong; Wang, Ying; Zhao, Weiguo; Wen, Zhongguang; Wang, Ping; Liu, Yi; Yu, Ling; Li, Chunsun; Chen, Liangan
2015-10-01
A prospective observational study to investigate the distribution and antimicrobial resistance of pathogenic bacteria in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in Beijing, China. Patients with AECOPD were recruited from 11 general hospitals. Sputum specimens were cultured and bacteria identified. Antibiotic susceptibility was determined for each isolate, and presence of antibiotic resistance genes was evaluated using polymerase chain reaction. Pathogenic bacteria were isolated from 109/318 patients (34.28%); 124 isolates of 22 pathogenic bacterial species were identified, including Klebsiella pneumoniae (16.94%), Pseudomonas aeruginosa (16.94%), Acinetobacter baumannii (11.29%), Streptococcus pneumoniae (8.87%), and Staphylococcus aureus (7.26%). S. aureus was sensitive to tigecycline, teicoplanin, vancomycin and linezolid but resistant to penicillin and levofloxacin. K.pneumoniae, P. aeruginosa, A. baumannii and E. coli were susceptible to amikacin and cefoperazone. K. pneumoniae and P. aeruginosa are the most common pathogenic bacteria in AECOPD cases in Beijing, China. Our antibiotic resistance findings may be helpful in selecting antibiotic therapy. © The Author(s) 2015.
An, Yi; Wang, Jiawei; Li, Chen; Leier, André; Marquez-Lago, Tatiana; Wilksch, Jonathan; Zhang, Yang; Webb, Geoffrey I; Song, Jiangning; Lithgow, Trevor
2018-01-01
Bacterial effector proteins secreted by various protein secretion systems play crucial roles in host-pathogen interactions. In this context, computational tools capable of accurately predicting effector proteins of the various types of bacterial secretion systems are highly desirable. Existing computational approaches use different machine learning (ML) techniques and heterogeneous features derived from protein sequences and/or structural information. These predictors differ not only in terms of the used ML methods but also with respect to the used curated data sets, the features selection and their prediction performance. Here, we provide a comprehensive survey and benchmarking of currently available tools for the prediction of effector proteins of bacterial types III, IV and VI secretion systems (T3SS, T4SS and T6SS, respectively). We review core algorithms, feature selection techniques, tool availability and applicability and evaluate the prediction performance based on carefully curated independent test data sets. In an effort to improve predictive performance, we constructed three ensemble models based on ML algorithms by integrating the output of all individual predictors reviewed. Our benchmarks demonstrate that these ensemble models outperform all the reviewed tools for the prediction of effector proteins of T3SS and T4SS. The webserver of the proposed ensemble methods for T3SS and T4SS effector protein prediction is freely available at http://tbooster.erc.monash.edu/index.jsp. We anticipate that this survey will serve as a useful guide for interested users and that the new ensemble predictors will stimulate research into host-pathogen relationships and inspiration for the development of new bioinformatics tools for predicting effector proteins of T3SS, T4SS and T6SS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens
Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric
2015-01-01
Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336
Li, X C; Li, J S; Meng, L; Bai, Y N; Yu, D S; Liu, X N; Liu, X F; Jiang, X J; Ren, X W; Yang, X T; Shen, X P; Zhang, J W
2017-08-10
Objective: To understand the dominant pathogens of febrile respiratory syndrome (FRS) patients in Gansu province and to establish the Bayes discriminant function in order to identify the patients infected with the dominant pathogens. Methods: FRS patients were collected in various sentinel hospitals of Gansu province from 2009 to 2015 and the dominant pathogens were determined by describing the composition of pathogenic profile. Significant clinical variables were selected by stepwise discriminant analysis to establish the Bayes discriminant function. Results: In the detection of pathogens for FRS, both influenza virus and rhinovirus showed higher positive rates than those caused by other viruses (13.79%, 8.63%), that accounting for 54.38%, 13.73% of total viral positive patients. Most frequently detected bacteria would include Streptococcus pneumoniae , and haemophilus influenza (44.41%, 18.07%) that accounting for 66.21% and 24.55% among the bacterial positive patients. The original-validated rate of discriminant function, established by 11 clinical variables, was 73.1%, with the cross-validated rate as 70.6%. Conclusion: Influenza virus, Rhinovirus, Streptococcus pneumoniae and Haemophilus influenzae were the dominant pathogens of FRS in Gansu province. Results from the Bayes discriminant analysis showed both higher accuracy in the classification of dominant pathogens, and applicative value for FRS.
USDA-ARS?s Scientific Manuscript database
Biological soil amendments (BSA’s) like manure and compost are frequently used as organic fertilizers to soils to improve its physical and chemical properties. However, BSAs have been known to be a reservoir for enteric bacterial pathogens like enterohemorrhagic E. coli, Salmonella spp, and Listeri...
Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray
USDA-ARS?s Scientific Manuscript database
Fire blight is a devastating disease of apple (Malus x domestica) caused by the bacterial pathogen Erwinia amylovora (Ea). When infiltrated into host leaves, Ea induces reactions similar to a hypersensitive response (HR). Type III (T3SS) associated effectors, especially DspA/E, are suspected to ha...
USDA-ARS?s Scientific Manuscript database
Question: In the absence of antibiotic use within pastured poultry production, what are potential environmental variables that drive the antimicrobial sensitivity patterns of bacterial foodborne pathogens isolated from these flocks? Purpose: The objective of this study is to examine environmental f...
A Bacterial Pathogen uses Distinct Type III Secretion Systems to Alternate between Host Kingdom
USDA-ARS?s Scientific Manuscript database
Gram-negative bacterial pathogens of eukaryotes often secrete proteins directly into host cells via a needle-like protein channel called a ‘type III secretion system’ (T3SS). Bacteria that are adapted to either animal or plant hosts use phylogenetically distinct T3SSs for secreting proteins. Here, ...
Rapid detection of E. coli on goat meat by electronic nose
USDA-ARS?s Scientific Manuscript database
Much attention has been paid on the foodborne illness of food, which is easily contaminated with bacterial or pathogens. Escherichia coli (E. coli) is one of these bacterial that commonly live in the contaminated animal meat. There is a growing need in the food industry for pathogen detection syst...
USDA-ARS?s Scientific Manuscript database
In 2008 fluorescent bacteria were isolated from bacterial leaf spot symptoms on Italian parsley (Petroselinum crispum) in Ceres, California. These isolates were different from the known bacterial pathogens of parsley in California. To determine the etiology of this disease pathogenicity was evaluate...
Sundin, George W; Wang, Nian; Charkowski, Amy O; Castiblanco, Luisa F; Jia, Hongge; Zhao, Youfu
2016-10-01
The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.
Lyte, M
1997-09-15
Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.
NASA Astrophysics Data System (ADS)
de Siqueira e Oliveira, Fernanda S.; Giana, Hector E.; Silveira, Landulfo, Jr.
2012-03-01
It has been proposed a method based on Raman spectroscopy for identification of different microorganisms involved in bacterial urinary tract infections. Spectra were collected from different bacterial colonies (Gram negative: E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa, E. cloacae and Gram positive: S. aureus and Enterococcus sp.), grown in culture medium (Agar), using a Raman spectrometer with a fiber Raman probe (830 nm). Colonies were scraped from Agar surface placed in an aluminum foil for Raman measurements. After pre-processing, spectra were submitted to a Principal Component Analysis and Mahalanobis distance (PCA/MD) discrimination algorithm. It has been found that the mean Raman spectra of different bacterial species show similar bands, being the S. aureus well characterized by strong bands related to carotenoids. PCA/MD could discriminate Gram positive bacteria with sensitivity and specificity of 100% and Gram negative bacteria with good sensitivity and high specificity.
Characterizing relationships among fecal indicator bacteria ...
Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial source tracking (MST) markers, developed to determine potential sources of fecal contamination, can also be resuspended from bed sediments. The primary objective of this study was to predict occurrence of waterborne pathogens in water and streambed sediments using a simple statistical model that includes traditionally measured FIB, environmental parameters and source allocation, using MST markers as predictor variables. Synoptic sampling events were conducted during baseflow conditions downstream from agricultural (AG), forested (FORS), and wastewater pollution control plant (WPCP) land uses. Concentrations of FIB and MST markers were measured in water and sediments, along with occurrences of the enteric pathogens Campylobacter, Listeria and Salmonella, and the virulence gene that carries Shiga toxin, stx2. Pathogens were detected in water more often than in underlying sediments. Shiga toxin was significantly related to land use, with concentrations of the ruminant marker selected as an independent variable that could correctly classify 76% and 64% of observed Shiga toxin occurrences in water and sediment, respectively. FIB concentrations and water quality parameters were also selected a
Characterization of microflora in Latin-style cheeses by next-generation sequencing technology.
Lusk, Tina S; Ottesen, Andrea R; White, James R; Allard, Marc W; Brown, Eric W; Kase, Julie A
2012-11-07
Cheese contamination can occur at numerous stages in the manufacturing process including the use of improperly pasteurized or raw milk. Of concern is the potential contamination by Listeria monocytogenes and other pathogenic bacteria that find the high moisture levels and moderate pH of popular Latin-style cheeses like queso fresco a hospitable environment. In the investigation of a foodborne outbreak, samples typically undergo enrichment in broth for 24 hours followed by selective agar plating to isolate bacterial colonies for confirmatory testing. The broth enrichment step may also enable background microflora to proliferate, which can confound subsequent analysis if not inhibited by effective broth or agar additives. We used 16S rRNA gene sequencing to provide a preliminary survey of bacterial species associated with three brands of Latin-style cheeses after 24-hour broth enrichment. Brand A showed a greater diversity than the other two cheese brands (Brands B and C) at nearly every taxonomic level except phylum. Brand B showed the least diversity and was dominated by a single bacterial taxon, Exiguobacterium, not previously reported in cheese. This genus was also found in Brand C, although Lactococcus was prominent, an expected finding since this bacteria belongs to the group of lactic acid bacteria (LAB) commonly found in fermented foods. The contrasting diversity observed in Latin-style cheese was surprising, demonstrating that despite similarity of cheese type, raw materials and cheese making conditions appear to play a critical role in the microflora composition of the final product. The high bacterial diversity associated with Brand A suggests it may have been prepared with raw materials of high bacterial diversity or influenced by the ecology of the processing environment. Additionally, the presence of Exiguobacterium in high proportions (96%) in Brand B and, to a lesser extent, Brand C (46%), may have been influenced by the enrichment process. This study is the first to define Latin-style cheese microflora using Next-Generation Sequencing. These valuable preliminary data will direct selective tailoring of agar formulations to improve culture-based detection of pathogens in Latin-style cheese.
Characterization of microflora in Latin-style cheeses by next-generation sequencing technology
2012-01-01
Background Cheese contamination can occur at numerous stages in the manufacturing process including the use of improperly pasteurized or raw milk. Of concern is the potential contamination by Listeria monocytogenes and other pathogenic bacteria that find the high moisture levels and moderate pH of popular Latin-style cheeses like queso fresco a hospitable environment. In the investigation of a foodborne outbreak, samples typically undergo enrichment in broth for 24 hours followed by selective agar plating to isolate bacterial colonies for confirmatory testing. The broth enrichment step may also enable background microflora to proliferate, which can confound subsequent analysis if not inhibited by effective broth or agar additives. We used 16S rRNA gene sequencing to provide a preliminary survey of bacterial species associated with three brands of Latin-style cheeses after 24-hour broth enrichment. Results Brand A showed a greater diversity than the other two cheese brands (Brands B and C) at nearly every taxonomic level except phylum. Brand B showed the least diversity and was dominated by a single bacterial taxon, Exiguobacterium, not previously reported in cheese. This genus was also found in Brand C, although Lactococcus was prominent, an expected finding since this bacteria belongs to the group of lactic acid bacteria (LAB) commonly found in fermented foods. Conclusions The contrasting diversity observed in Latin-style cheese was surprising, demonstrating that despite similarity of cheese type, raw materials and cheese making conditions appear to play a critical role in the microflora composition of the final product. The high bacterial diversity associated with Brand A suggests it may have been prepared with raw materials of high bacterial diversity or influenced by the ecology of the processing environment. Additionally, the presence of Exiguobacterium in high proportions (96%) in Brand B and, to a lesser extent, Brand C (46%), may have been influenced by the enrichment process. This study is the first to define Latin-style cheese microflora using Next-Generation Sequencing. These valuable preliminary data will direct selective tailoring of agar formulations to improve culture-based detection of pathogens in Latin-style cheese. PMID:23134566
Manipulation of host membranes by bacterial effectors.
Ham, Hyeilin; Sreelatha, Anju; Orth, Kim
2011-07-18
Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.
Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR
Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand
2012-01-01
Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816
Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent.
Ogunniyi, Abiodun D; Khazandi, Manouchehr; Stevens, Andrew J; Sims, Sarah K; Page, Stephen W; Garg, Sanjay; Venter, Henrietta; Powell, Andrew; White, Karen; Petrovski, Kiro R; Laven-Law, Geraldine; Tótoli, Eliane G; Salgado, Hérida R; Pi, Hongfei; Coombs, Geoffrey W; Shinabarger, Dean L; Turnidge, John D; Paton, James C; McCluskey, Adam; Trott, Darren J
2017-01-01
The spread of multidrug resistance among bacterial pathogens poses a serious threat to public health worldwide. Recent approaches towards combating antimicrobial resistance include repurposing old compounds with known safety and development pathways as new antibacterial classes with novel mechanisms of action. Here we show that an analog of the anticoccidial drug robenidine (4,6-bis(2-((E)-4-methylbenzylidene)hydrazinyl)pyrimidin-2-amine; NCL195) displays potent bactericidal activity against Streptococcus pneumoniae and Staphylococcus aureus by disrupting the cell membrane potential. NCL195 was less cytotoxic to mammalian cell lines than the parent compound, showed low metabolic degradation rates by human and mouse liver microsomes, and exhibited high plasma concentration and low plasma clearance rates in mice. NCL195 was bactericidal against Acinetobacter spp and Neisseria meningitidis and also demonstrated potent activity against A. baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. in the presence of sub-inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA) and polymyxin B. These findings demonstrate that NCL195 represents a new chemical lead for further medicinal chemistry and pharmaceutical development to enhance potency, solubility and selectivity against serious bacterial pathogens.
Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis.
Sherrard, Laura J; Tunney, Michael M; Elborn, J Stuart
2014-08-23
Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lv, Baoyi; Cui, Yuxue; Tian, Wen; Li, Jing; Xie, Bing; Yin, Fang
2018-08-15
Ship ballasting operations may transfer harmful aquatic organisms across global ocean. This study aims to reveal the occurrences and abundances of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in ballast tank sediments. Nine samples were collected and respectively analyzed by real-time quantitative PCR and high-throughput sequencing technologies. Ten ARGs (aadA1, blaCTX-M, blaTEM, ermB, mefA, strB, sul1, sul2, tetM, and tetQ) and the Class-I integron gene (intI1) were highly prevalent (10 5 -10 9 gene copies/g) in ballast tank sediments. The sul1 was the most abundant ARG with the concentration of 10 8 -10 9 copies/g and intI1 was much more abundant than the ARGs in ballast tank sediments. The strong positive correlations between intI1 and ARGs (blaCTX-M, sul1, sul2 and tetM) indicated the potential spread of ARGs via horizontal gene transfer. In ballast tank sediments, 44 bacterial species were identified as HBPs and accounted for 0.13-21.46% of the total bacterial population although the three indicator pathogenic microbes (Vibrio cholerae, Escherichia coli, and Enterococci) proposed by the International Maritime Organization were not detected. Pseudomonas pseudoalcaligenes, Enterococcus hirae, Shigella sonnei and Bacillus anthracis were the dominant pathogens in ballast tank sediments. Zn and P in sediments had positive effects on the ARGs. Network analysis results indicated that sul1 and sul2 genes existed in several bacterial pathogens. Ballast tank sediments could be regarded as a carrier for the migration of ARGs. It is important to manage ballast tank sediments reasonably in order to prevent the dissemination of ARGs and bacterial pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.
A maize resistance gene functions against bacterial streak disease in rice
Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot
2005-01-01
Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639
A maize resistance gene functions against bacterial streak disease in rice.
Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot
2005-10-25
Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.
Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel
2009-01-01
Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.
Sully, Erin K.; Malachowa, Natalia; Elmore, Bradley O.; Alexander, Susan M.; Femling, Jon K.; Gray, Brian M.; DeLeo, Frank R.; Otto, Michael; Cheung, Ambrose L.; Edwards, Bruce S.; Sklar, Larry A.; Horswill, Alexander R.; Hall, Pamela R.; Gresham, Hattie D.
2014-01-01
Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development. PMID:24945495
Behind the lines–actions of bacterial type III effector proteins in plant cells
Büttner, Daniela
2016-01-01
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed. PMID:28201715
The proportional lack of archaeal pathogens: Do viruses/phages hold the key?
Gill, Erin E; Brinkman, Fiona S L
2011-01-01
Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control. PMID:21328413
Copper transport and trafficking at the host-bacterial pathogen interface.
Fu, Yue; Chang, Feng-Ming James; Giedroc, David P
2014-12-16
CONSPECTUS: The human innate immune system has evolved the means to reduce the bioavailability of first-row late d-block transition metal ions to invading microbial pathogens in a process termed "nutritional immunity". Transition metals from Mn(II) to Zn(II) function as metalloenzyme cofactors in all living cells, and the successful pathogen is capable of mounting an adaptive response to mitigate the effects of host control of transition metal bioavailability. Emerging evidence suggests that Mn, Fe, and Zn are withheld from the pathogen in classically defined nutritional immunity, while Cu is used to kill invading microorganisms. This Account summarizes new molecular-level insights into copper trafficking across cell membranes from studies of a number of important bacterial pathogens and model organisms, including Escherichia coli, Salmonella species, Mycobacterium tuberculosis, and Streptococcus pneumoniae, to illustrate general principles of cellular copper resistance. Recent highlights of copper chemistry at the host-microbial pathogen interface include the first high resolution structures and functional characterization of a Cu(I)-effluxing P1B-ATPase, a new class of bacterial copper chaperone, a fungal Cu-only superoxide dismutase SOD5, and the discovery of a small molecule Cu-bound SOD mimetic. Successful harnessing by the pathogen of host-derived bactericidal Cu to reduce the bacterial load of reactive oxygen species (ROS) is an emerging theme; in addition, recent studies continue to emphasize the importance of short lifetime protein-protein interactions that orchestrate the channeling of Cu(I) from donor to target without dissociation into bulk solution; this, in turn, mitigates the off-pathway effects of Cu(I) toxicity in both the periplasm in Gram negative organisms and in the bacterial cytoplasm. It is unclear as yet, outside of the photosynthetic bacteria, whether Cu(I) is trafficked to other cellular destinations, for example, to cuproenzymes or other intracellular storage sites, or the general degree to which copper chaperones vs copper efflux transporters are essential for bacterial pathogenesis in the vertebrate host. Future studies will be directed toward the identification and structural characterization of other cellular targets of Cu(I) trafficking and resistance, the physical and mechanistic characterization of Cu(I)-transfer intermediates, and elucidation of the mutual dependence of Cu(I) trafficking and cellular redox status on thiol chemistry in the cytoplasm. Crippling bacterial control of Cu(I) sensing, trafficking, and efflux may represent a viable strategy for the development of new antibiotics.
Koseki, Shigenobu; Nakamura, Nobutaka; Shiina, Takeo
2015-01-01
Bacterial pathogens such as Listeria monocytogenes, Escherichia coli O157:H7, Salmonella enterica, and Cronobacter sakazakii have demonstrated long-term survival in/on dry or low-water activity (aw) foods. However, there have been few comparative studies on the desiccation tolerance among these bacterial pathogens separately in a same food matrix. In the present study, the survival kinetics of the four bacterial pathogens separately inoculated onto powdered infant formula as a model low-aw food was compared during storage at 5, 22, and 35°C. No significant differences in the survival kinetics between E. coli O157:H7 and L. monocytogenes were observed. Salmonella showed significantly higher desiccation tolerance than these pathogens, and C. sakazakii demonstrated significantly higher desiccation tolerance than all other three bacteria studied. Thus, the desiccation tolerance was represented as C. sakazakii > Salmonella > E. coli O157:H7 = L. monocytogenes. The survival kinetics of each bacterium was mathematically analyzed, and the observed kinetics was successfully described using the Weibull model. To evaluate the variability of the inactivation kinetics of the tested bacterial pathogens, the Monte Carlo simulation was performed using assumed probability distribution of the estimated fitted parameters. The simulation results showed that the storage temperature significantly influenced survival of each bacterium under the dry environment, where the bacterial inactivation became faster with increasing storage temperature. Furthermore, the fitted rate and shape parameters of the Weibull model were successfully modelled as a function of temperature. The numerical simulation of the bacterial inactivation was realized using the functions of the parameters under arbitrary fluctuating temperature conditions.
Arif, Mohammad; Busot, Grethel Y.; Mann, Rachel; Rodoni, Brendan; Liu, Sanzhen; Stack, James P.
2016-01-01
Rathayibacter toxicus is a gram-positive bacterium that infects the floral parts of several Poaceae species in Australia. Bacterial ooze is often produced on the surface of infected plants and bacterial galls are produced in place of seed. R. toxicus is a regulated plant pathogen in the U.S. yet reliable detection and diagnostic tools are lacking. To better understand this geographically-isolated plant pathogen, genetic variation as a function of geographic location, host species, and date of isolation was determined for isolates collected over a forty-year period. Discriminant analyses of recently collected and archived isolates using Multi-Locus Sequence Typing (MLST) and Inter-Simple Sequence Repeats (ISSR) identified three populations of R. toxicus; RT-I and RT-II from South Australia and RT-III from Western Australia. Population RT-I, detected in 2013 and 2014 from the Yorke Peninsula in South Australia, is a newly emerged population of R. toxicus not previously reported. Commonly used housekeeping genes failed to discriminate among the R. toxicus isolates. However, strategically selected and genome-dispersed MLST genes representing an array of cellular functions from chromosome replication, antibiotic resistance and biosynthetic pathways to bacterial acquired immunity were discriminative. Genetic variation among isolates within the RT-I population was less than the within-population variation for the previously reported RT-II and RT-III populations. The lower relative genetic variation within the RT-I population and its absence from sampling over the past 40 years suggest its recent emergence. RT-I was the dominant population on the Yorke Peninsula during the 2013–2014 sampling period perhaps indicating a competitive advantage over the previously detected RT-II population. The potential for introduction of this bacterial plant pathogen into new geographic areas provide a rationale for understanding the ecological and evolutionary trajectories of R. toxicus. PMID:27219107
Arif, Mohammad; Busot, Grethel Y; Mann, Rachel; Rodoni, Brendan; Liu, Sanzhen; Stack, James P
2016-01-01
Rathayibacter toxicus is a gram-positive bacterium that infects the floral parts of several Poaceae species in Australia. Bacterial ooze is often produced on the surface of infected plants and bacterial galls are produced in place of seed. R. toxicus is a regulated plant pathogen in the U.S. yet reliable detection and diagnostic tools are lacking. To better understand this geographically-isolated plant pathogen, genetic variation as a function of geographic location, host species, and date of isolation was determined for isolates collected over a forty-year period. Discriminant analyses of recently collected and archived isolates using Multi-Locus Sequence Typing (MLST) and Inter-Simple Sequence Repeats (ISSR) identified three populations of R. toxicus; RT-I and RT-II from South Australia and RT-III from Western Australia. Population RT-I, detected in 2013 and 2014 from the Yorke Peninsula in South Australia, is a newly emerged population of R. toxicus not previously reported. Commonly used housekeeping genes failed to discriminate among the R. toxicus isolates. However, strategically selected and genome-dispersed MLST genes representing an array of cellular functions from chromosome replication, antibiotic resistance and biosynthetic pathways to bacterial acquired immunity were discriminative. Genetic variation among isolates within the RT-I population was less than the within-population variation for the previously reported RT-II and RT-III populations. The lower relative genetic variation within the RT-I population and its absence from sampling over the past 40 years suggest its recent emergence. RT-I was the dominant population on the Yorke Peninsula during the 2013-2014 sampling period perhaps indicating a competitive advantage over the previously detected RT-II population. The potential for introduction of this bacterial plant pathogen into new geographic areas provide a rationale for understanding the ecological and evolutionary trajectories of R. toxicus.
Brüssow, Harald
2007-08-01
Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.
Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions
Theisen, Stefan; Abdul-Aziz, Muslihudeen A.; Mrotzek, Grit; Palm, Harry W.; Saluz, Hans Peter
2016-01-01
In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages. PMID:27018789
NASA Astrophysics Data System (ADS)
Ali, Talib Hassan; Saleh, Dhuha Saad
2014-03-01
Bacteria-specific uptake rates of three different protozoan taxa on a pure and mixed bacterial community was studied by means of a simplified and functionally reproducible experimental model. The bacterial species Shigella flexneri, Escherichia coli and Salmonella typhi were isolated and classified from stool samples of patients suffering from diarrhea. Paramecium caudatum, Tetrahymena pyriformis and Halteria grandinella, free living ciliate Protozoans, were isolated and identified from Tigris river water. Pure and mixed ( E. coli + S. typhi), ( E. coli + Sh. flexneri) bacterial cultures were used with each ciliate genera to evaluate the following: predator duplication rate, prey reduction rate, clearance rate and net grazing rate. We used selective lactose fermentation phenomena of enteric bacteria on MacConkey medium for the quantification of bacteria cultural characteristics. The final bacteria concentration was reduced by growing protozoa of 98-99.9 % compared to protozoa-free controls. It showed that Tetrahymena pyriformis had the highest duplication rate (4.13 time/day) in both types of cultures (pure and mixed), followed by Paramecium caudatum and Halteria grandinella, respectively. Paramecium caudatum had the highest rate of ingestion in both types of cultures (26 × 103 bacteria/organism/hr) and yielded the longest time required for 90 % bacterial reduction in a pure suspension of S. typhi (166 h). Clearance rates of pathogenic bacteria by ciliates ranged between 106 nanoliter/organism/h by P. caudatum to S. typhi and 1.92 nanoliter/organism/h seen in T. pyriformis in ( E. coli + S. typhi) mixed culture. We used aquatic experimental microcosms under controlled conditions to explore bacteria-dependent ciliate growth and examined whether these ciliates could discriminate between equally sized bacterial preys in a mixture.
Prevalence and pathogens of subclinical mastitis in dairy goats in China.
Zhao, Yanqing; Liu, Hui; Zhao, Xuanduo; Gao, Yang; Zhang, Miaotao; Chen, Dekun
2015-02-01
Subclinical mastitis, a costly disease for the dairy industry, is usually caused by intramammary bacterial infection. The aim of this study was to investigate the prevalence of and pathogens involved in subclinical mastitis in dairy goats in China. A total of 683 dairy goats in the main breeding areas of China were selected, and milk samples were collected. Out of these, 313 (45.82 %) goats were detected distinct or strong positive for subclinical mastitis by using California mastitis test. Among these positive goats, 209 milk samples were used to identify the causing agents by a multiplex PCR assay, and results were listed as follows: coagulase-negative staphylococci (59.52 %), Staphylococcus aureus (15.24 %), Escherichia coli (11.43 %), and Streptococcus spp. (10.95 %). In conclusion, subclinical mastitis is a highly prevalent disease in dairy goats in China, and coagulase-negative staphylococci are the predominant pathogens.
PARASITOLOGY AND SEROLOGY OF FREE-RANGING COYOTES (CANIS LATRANS) IN NORTH CAROLINA, USA.
Chitwood, M Colter; Swingen, Morgan B; Lashley, Marcus A; Flowers, James R; Palamar, Maria B; Apperson, Charles S; Olfenbuttel, Colleen; Moorman, Christopher E; DePerno, Christopher S
2015-07-01
Coyotes (Canis latrans) have expanded recently into the eastern US and can serve as a source of pathogens to domestic dogs (Canis lupus familiaris), livestock, and humans. We examined free-ranging coyotes from central North Carolina, US, for selected parasites and prevalence of antibodies against viral and bacterial agents. We detected ticks on most (81%) coyotes, with Amblyomma americanum detected on 83% of those with ticks. Fifteen (47%) coyotes were positive for heartworms (Dirofilaria immitis), with a greater detection rate in adults (75%) than juveniles (22%). Serology revealed antibodies against canine adenovirus (71%), canine coronavirus (32%), canine distemper virus (17%), canine parvovirus (96%), and Leptospira spp. (7%). We did not detect antibodies against Brucella abortus/suis or Brucella canis. Our results showed that coyotes harbor many common pathogens that present health risks to humans and domestic animals and suggest that continued monitoring of the coyote's role in pathogen transmission is warranted.
Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.
Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329
Bacterial genome engineering and synthetic biology: combating pathogens.
Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G
2016-11-04
The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
[Rapid identification of meningitis due to bacterial pathogens].
Ubukata, Kimiko
2013-01-01
We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.
Lipopolysaccharide and Lipoteichoic Acid Virulence Deactivation by Stannous Fluoride.
Haught, Chris; Xie, Sancai; Circello, Ben; Tansky, Cheryl S; Khambe, Deepa; Klukowska, Malgorzata; Huggins, Tom; White, Donald J
2016-09-01
Oral bacterial pathogens promote gingivitis and periodontal disease. Bacterial endotoxins, also known as lipopolysaccharides (LPSs) and lipoteichoic acids (LTAs), are known to enhance bacterial pathogenicity through binding with Toll-like receptors (TLRs), a group of pattern recognition receptors critical to the activation of innate immunity, that are expressed on host cells. Both LPS and LTA contain lipophilic domains and anionic charges that may be susceptible to reactivity with stannous fluoride, a commonly used ingredient clinically proven for the treatment and prevention of gingivitis. This study examined the effects of stannous fluoride on Toll-like receptor activation in response to bacterially derived LPS and LTA in select cell lines and secretion of inflammatory cytokines from human primary peripheral monocytes likewise exposed to LPS. TLR4 and TLR2 transfected HEK293 cells and THP1-Dual™ cells were exposed to bacterial LPS and LTA in the presence of increasing concentrations of stannous fluoride. Gene expression was assessed by measurement of secreted embryonic alkaline phosphatase (SEAP) reporter gene for HEK293 cells and SEAP and luciferase for THP-1 cells. Cell viability was confirmed using PrestoBlue. Human primary monocytes were treated with LPS with various concentrations of supplemented stannous fluoride, and cytokine expression was directly measured. Stannous fluoride inhibited gene expression response of TLR4 and TLR2 in HEK293 cells and THP1-Dual™ cells in a dose response fashion, producing complete inhibition at micromolar concentrations. The addition of stannous fluoride suppressed production of TNF-a, IFN-g, IL12p70, IL10, IL-1b, IL2, and IL-6, and also increased secretion of Il-8 in dose response fashion. Viability assays confirmed no effects of LPS or stannous fluoride on viability of HEK293, THP-1, and primary human monocytes. These results support the potential for stannous fluoride to provide clinical gingivitis benefits by directly decreasing the pathogenicity of plaque biofilms by blocking reactivity of LPS and LTA ligands with tissue receptors associated with inflammation. These learnings may influence recommendations for patients at risk for plaque-related diseases.
Enteric pathogen sampling of tourist restaurants in Bangkok, Thailand.
Teague, Nathan S; Srijan, Apichai; Wongstitwilairoong, Boonchai; Poramathikul, Kamonporn; Champathai, Thanaporn; Ruksasiri, Supaporn; Pavlin, Julie; Mason, Carl J
2010-01-01
Travelers' diarrhea (TD) is the most prevalent disorder affecting travelers to developing countries. Thailand is considered "moderately risky" for TD acquisition, but the risk by city visited or behavior of the visitor has yet to be definitely defined. Restaurant eating is consistently associated with the acquisition of diarrhea while traveling, and pathogen-free meals serve as a marker of public health success. This study seeks to ascertain a traveler's risk of exposure to certain bacterial gastric pathogens while eating at Bangkok restaurants recommended in popular tourist guide books. A cross-sectional tourist restaurant survey was conducted. Thirty-five restaurants recommended in the two top selling Bangkok guidebooks on Amazon.com were sampled for bacterial pathogens known to cause diarrhea in Thailand, namely Salmonella, Campylobacter, and Arcobacter (a Campylobacter-like organism). A total of 70 samples from two meals at each restaurant were obtained. Suspected bacterial pathogens were isolated by differential culture and tested for antibiotic resistance. Salmonella group E was isolated from one meal (2%), and Arcobacter butzleri from nine meals (13%). Campylobacter spp. were not found. The large majority of A butzleri isolates were resistant to azithromycin but susceptible to ciprofloxacin and an aminoglycoside. A traveler's risk of exposure to established bacterial pathogens, Salmonella and Campylobacter, by eating in recommended restaurants is small. Arcobacter butzleri exposure risk is 13% per meal eaten, and rises to 75% when 10 meals are eaten. All restaurants, regardless of price, appear to be equally "risky." Current evidence points to Arcobacter being pathogenic in humans; however, further research is needed to conclusively define pathogenicity. Routine prophylaxis for diarrhea is not recommended; however, travelers should be aware of the risk and come prepared with adequate and appropriate self-treatment medications.
Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.
2016-01-01
Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.
Wagner, Karoline; Springer, Burkard; Pires, Valeria P.
2017-01-01
ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781
Awan, Uzma Azeem; Ali, Shaukat; Shahnawaz, Amna Mir; Shafique, Irsa; Zafar, Atiya; Khan, Muhammad Abdul Rauf; Ghous, Tahseen; Saleem, Azhar; Andleeb, Saiqa
2017-05-01
The spread of bacterial infectious diseases is a major public threat. Herbs and spices have offered an excellent, important and useful source of antimicrobial agents against many pathological infections. In the current study, the antimicrobial potency of fresh, naturally and commercial dried Allium sativum and Zingiber officinale extracts had been investigated against seven local clinical bacterial isolates such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus pyogenes, Staphylococcus epidermidis, and Serratia marcesnces by the agar disc diffusion method. All tested pathogens except P. aeruginosa and E. coli were most susceptible to ethanolic and methanolic extracts of A. sativum. Similarly, chloroform and diethyl ether extracts of Z. officinale showed a greater zone of inhibition of tested pathogens except for P. aeruginosa and E. coli. We found that all extracts of A. sativum and Z. officinale have a strong antibacterial effect compared to recommended standard antibiotics through activity index. All results were evaluated statistically and a significant difference was recorded at P< 0.05. Antioxidant activity of extracts showed that 10 out of 13 extracts have high scavenging potential. Thin layer chromatography profiling of all extracts of A. sativum and Z. officinale proposed the presence of various phytochemicals such as tannins, phenols, alkaloids, steroids and saponins. Retention factor of diverse phytochemicals provides a valuable clue regarding their polarity and the selection of solvents for separation of phytochemicals. Significant inhibition of S. aureus was also observed through TLC-Bioautography. FT-IR Spectrometry was also performed to characterize both natural and commercial extracts of A. sativum and Z. officinale to evaluate bioactive compounds. These findings provide new insights to use A. sativum and Z. officinale as potential plant sources for controlling pathogenic bacteria and potentially considered as cost-effective in the management of diseases and to the threat of drug resistance phenomenon.
Wang, Jinghua; Xu, Haiyang; Wang, Dunwei; Li, Mingxian
2017-10-01
A large number of population in both developing and developed countries are affected by bronchitis, among all the factors, bacterial infection was considered as a critical cause of acute exacerbations of chronic bronchitis. Although several anti-bacterial agents were proved to have the effect of alleviating bronchitis, their relative efficacies and potential side effects remained not clear. We are keen to compare the pathogen eradication rate and safety of anti-bacterial agents for bronchitis. Relevant studies were searched in multiple sources and data were extracted from eligible studies. Then conventional meta-analysis and network meta-analysis (NMA) were conducted to determine the relative efficacy and safety of bronchitis medications. The efficacy of bronchitis medications was determined by using the outcome of pathogen eradication, including total pathogen eradication, pathogen eradication of Haemophilus influenzae, pathogen eradication of Moraxella catarrhalis, and pathogen eradication of Streptococcus pneumoniae. In addition, safety was assessed by using the outcome of adverse effects and diarrhoea. A 27 RCTs with 9,414 participants were included in the study. Among the medications, gatifloxacin and moxifloxacin exhibited better performance than clarithromycin with respect to pathogen eradication of H. influenzae (OR = 21.37, CI: 1.22-541.28; OR = 7.43, CI: 1.79-30.50). Clarithromycin, gemifloxacin, levofloxacin, moxifloxacin, and telithromycin appeared to be more preferable than amoxicillin + clavulanate and azithromycin with respect to diarrhoea (all OR <1). The surface under the cumulative ranking curve (SUCRA) results suggested that gemifloxacin and levofloxacin had a relatively high ranking in total pathogen eradication, whereas amoxicillin + clavulanate and azithromycin exhibited relatively lower ranking with respect to adverse effects and diarrhoea. Gemifloxacin and levofloxacin are more preferable than others for lowering respiratory tract inflammation and infections considering their balanced performance between pathogen eradication and adverse effects. J. Cell. Biochem. 118: 3171-3183, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Pena-Miller, Rafael; Laehnemann, David; Jansen, Gunther; Fuentes-Hernandez, Ayari; Rosenstiel, Philip; Schulenburg, Hinrich; Beardmore, Robert
2013-01-01
Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.
2010-01-01
Background Discrimination between clinical and environmental strains within many bacterial species is currently underexplored. Genomic analyses have clearly shown the enormous variability in genome composition between different strains of a bacterial species. In this study we have used Legionella pneumophila, the causative agent of Legionnaire's disease, to search for genomic markers related to pathogenicity. During a large surveillance study in The Netherlands well-characterized patient-derived strains and environmental strains were collected. We have used a mixed-genome microarray to perform comparative-genome analysis of 257 strains from this collection. Results Microarray analysis indicated that 480 DNA markers (out of in total 3360 markers) showed clear variation in presence between individual strains and these were therefore selected for further analysis. Unsupervised statistical analysis of these markers showed the enormous genomic variation within the species but did not show any correlation with a pathogenic phenotype. We therefore used supervised statistical analysis to identify discriminating markers. Genetic programming was used both to identify predictive markers and to define their interrelationships. A model consisting of five markers was developed that together correctly predicted 100% of the clinical strains and 69% of the environmental strains. Conclusions A novel approach for identifying predictive markers enabling discrimination between clinical and environmental isolates of L. pneumophila is presented. Out of over 3000 possible markers, five were selected that together enabled correct prediction of all the clinical strains included in this study. This novel approach for identifying predictive markers can be applied to all bacterial species, allowing for better discrimination between strains well equipped to cause human disease and relatively harmless strains. PMID:20630115
Woods, J P; Heinecke, E L; Goldman, W E
1998-04-01
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.
Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display
Gagic, Dragana; Ciric, Milica; Wen, Wesley X.; Ng, Filomena; Rakonjac, Jasna
2016-01-01
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea. PMID:27092113
Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.
Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise
2017-03-01
Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Balázs, Ákos; Winkler, Beáta; Kristóf, Katalin; Harsányi, László; Bokor, Lívia
2017-01-01
In the course of anastomotic insufficiency following resection of esophageal cancers the bacterial compound of the esophageal substance has a remarkable, presumable role in the outcome of complications. The purpose of this study is to compare the consequences of the anastomotic leak with the bacterial flora of patients' oral cavity. In this prospective study a total of 131 patients were investigated directly before the surgical intervention taking a bacterial sample. Bacterial flora of patients' oral cavity was analysed; and the correlation between the consequences of the anastomotic leak and the content of the bacterial flora was examined. Pathogenic bacteria in the oral microflora in 50 cases (38.2%) was found. Statistically significant, moderate correlation was found between the severity of the complication and the incidence of pathogenic bacteria (r s = 0.553; p≤0.05). Pathogenic agent in the microbial flora might induce higher risk and more severe outcome in case of anastomotic leakage and it might be evaluated as a determinative factor. Consideration of the bacterial flora of the oral cavity requires more attention in the preoperative preparation than before and it demands the change of the current practice. Orv. Hetil., 2017, 158(1), 25-30.
Huang, Yvonne J.; Kim, Eugenia; Cox, Michael J.; Brodie, Eoin L.; Brown, Ron; Wiener-Kronish, Jeanine P.
2010-01-01
Abstract Acute exacerbations of chronic obstructive pulmonary disease (COPD) are a major source of morbidity and contribute significantly to healthcare costs. Although bacterial infections are implicated in nearly 50% of exacerbations, only a handful of pathogens have been consistently identified in COPD airways, primarily by culture-based methods, and the bacterial microbiota in acute exacerbations remains largely uncharacterized. The aim of this study was to comprehensively profile airway bacterial communities using a culture-independent microarray, the 16S rRNA PhyloChip, of a cohort of COPD patients requiring ventilatory support and antibiotic therapy for exacerbation-related respiratory failure. PhyloChip analysis revealed the presence of over 1,200 bacterial taxa representing 140 distinct families, many previously undetected in airway diseases; bacterial community composition was strongly influenced by the duration of intubation. A core community of 75 taxa was detected in all patients, many of which are known pathogens. Bacterial community diversity in COPD airways is substantially greater than previously recognized and includes a number of potential pathogens detected in the setting of antibiotic exposure. Comprehensive assessment of the COPD airway microbiota using high-throughput, culture-independent methods may prove key to understanding the relationships between airway bacterial colonization, acute exacerbation, and clinical outcomes in this and other chronic inflammatory airway diseases. PMID:20141328
Vaccine development: From concept to early clinical testing.
Cunningham, Anthony L; Garçon, Nathalie; Leo, Oberdan; Friedland, Leonard R; Strugnell, Richard; Laupèze, Béatrice; Doherty, Mark; Stern, Peter
2016-12-20
In the 21st century, an array of microbiological and molecular allow antigens for new vaccines to be specifically identified, designed, produced and delivered with the aim of optimising the induction of a protective immune response against a well-defined immunogen. New knowledge about the functioning of the immune system and host pathogen interactions has stimulated the rational design of vaccines. The design toolbox includes vaccines made from whole pathogens, protein subunits, polysaccharides, pathogen-like particles, use of viral/bacterial vectors, plus adjuvants and conjugation technology to increase and broaden the immune response. Processes such as recombinant DNA technology can simplify the complexity of manufacturing and facilitate consistent production of large quantities of antigen. Any new vaccine development is greatly enhanced by, and requires integration of information concerning: 1. Pathogen life-cycle & epidemiology. Knowledge of pathogen structure, route of entry, interaction with cellular receptors, subsequent replication sites and disease-causing mechanisms are all important to identify antigens suitable for disease prevention. The demographics of infection, specific risk groups and age-specific infection rates determine which population to immunise, and at what age. 2. Immune control & escape. Interactions between the host and pathogen are explored, with determination of the relative importance of antibodies, T-cells of different types and innate immunity, immune escape strategies during infection, and possible immune correlates of protection. This information guides identification and selection of antigen and the specific immune response required for protection. 3. Antigen selection & vaccine formulation. The selected antigen is formulated to remain suitably immunogenic and stable over time, induce an immune response that is likely to be protective, plus be amenable to eventual scale-up to commercial production. 4. Vaccine preclinical & clinical testing. The candidate vaccine must be tested for immunogenicity, safety and efficacy in preclinical and appropriately designed clinical trials. This review considers these processes using examples of differing pathogenic challenges, including human papillomavirus, malaria, and ebola. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bacterial pathogen manipulation of host membrane trafficking.
Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R
2014-01-01
Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.
Unterweger, C; Kahler, A; Gerlach, G-F; Viehmann, M; von Altrock, A; Hennig-Pauka, I
2017-04-01
A bacterial cocktail of living strains of Clostridium perfringens type A (CPA) without β2-toxin gene and non-pathogenic Escherichia coli was administered orally to newborn piglets before first colostrum intake and on 2 consecutive days on a farm with a high incidence of diarrhoea and antibiotic treatment in suckling piglets associated with E. coli and CPA. This clinical field study was driven by the hypothetic principle of competitive exclusion of pathogenic bacteria due to prior colonization of the gut mucosal surface by non-pathogenic strains of the same bacterial species with the aim of preventing disease. Although CPA strains used in this study did not produce toxins in vitro, their lack of pathogenicity cannot be conclusively confirmed. The health status of the herd was impaired by a high incidence of postpartum dysgalactia syndrome in sows (70%) and a high incidence of neonatal diarrhoea caused by enterotoxigenic E. coli and CPA during the study. No obvious adverse effect of the bacterial treatment occurred. On average, more piglets were weaned in litters treated (P=0.009). Visual pathological alterations in the small intestinal wall were more frequent in dead piglets of the control group (P=0.004) and necrotizing enteritis was only found in that group. A higher average daily weight gain of piglets in the control group (P<0.001) may be due to an increased milk uptake due to less competition in the smaller litters. The bacterial cocktail was tested under field conditions for its potential to stabilize gut health status in suckling piglets before disease development due to colibacillosis and clostridial infections; however, the gut flora stabilizing effect of the bacterial cocktail was not clearly discernible in this study. Further basic research is needed to confirm the positive effects of the bacterial treatment used and to identify additional potential bacterial candidates for competitive exclusion.
USDA-ARS?s Scientific Manuscript database
Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane, and Little Gem express an incompatible host-pathogen in...
USDA-ARS?s Scientific Manuscript database
Bacterial stem blight of alfalfa occurs sporadically in the central and western U.S. Yield losses of up to 50% of the first harvest can occur with some cultivars. Developing resistant cultivars is hampered by lack of information on the pathogen and a standard test for evaluating plant germplasm. Bac...
USDA-ARS?s Scientific Manuscript database
DNA sequencing and other DNA-based methods, such as PCR, are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, it is important to make taxonomic assignments to the species, or even subspecies level. Long-read ...
Bacterial spread from cell to cell: beyond actin-based motility.
Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé
2015-09-01
Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antiadhesion agents against Gram-positive pathogens.
Cascioferro, Stella; Cusimano, Maria Grazia; Schillaci, Domenico
2014-01-01
A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.
Pyrosequencing analysis of the bacterial community in drinking water wells.
Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc
2013-07-01
Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.
Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei
2018-02-26
Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.