Science.gov

Sample records for selected carbonate aquifers

  1. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  2. In Brief: Assessing carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    An assessment of water quality in 12 carbonate aquifers, mostly in the eastern and central United States, found that while water quality in the aquifers was highly variable, most of the samples met drinking water standards. The study, “Factors affecting water quality in selected carbonate aquifers in the United States, 1993-2005,” was released by the U.S. Geological Survey (USGS) on 26 June. According to the study, carbonate aquifers provide about 20% of the groundwater used as drinking water in the United States. The study, which included sample results for 151 chemical constituents or physical properties in 1042 wells and springs across 20 states, found that contaminants “were most often detected at concentrations less than human-health benchmarks except for nitrate.” The study also indicated that “the occurrence of anthropogenic contaminants was related to contaminant sources but also was affected by degree of aquifer confinement, ground-water age, and redox status. Areas with higher amounts of agricultural or urban land in unconfined aquifers were the most likely to have elevated concentrations of anthropogenic contaminants.”

  3. Selected data on characteristics of glacial-deposit and carbonate-rock aquifers, midwestern basins and arches region

    USGS Publications Warehouse

    Joseph, R.L.; Eberts, S.M.

    1994-01-01

    In 1988, the Geological Survey (USGS) began study to examine the hydrogeologic framework, ground-water-flow systems, water chemistry, and withdrawal response of aquifers in glacial deposits and carbonate rock in the Midwestern Basins and Arches Region in western Ohio and eastern Indiana. As part of this study, data from pumped-well tests and instantaneous-rechange tests (slug tests) of wells completed in the glacial-deposit and carbonate-rock aquifers were compiled from reports and information on file with State agencies, environmental consulting firms, drilling firms, municipalities, universities, and the USGS. The data, from 73 counties in Ohio and Indiana, were entered into a computerized data base in a spreadsheet format and subsequently into a geographic information system (GIS). Aquifer-characteristics data from this compilation include the results of 105 pumped-well tests and 39 slug tests in wells completed in glacial deposits, 174 pumped-well tests in wells completed in the carbonate-rock aquifer, and 4 slug tests in wells completed in limestones and shales of Ordovician age. Transmissivities from the pumped-well tests in wells completed in glacial till and glacial-deposit aquifers (sands and gravels) range from 1.54 to 69,700 feet squared per day. Storage coefficients or specific yields range from 0.00002 to 0.38 at these wells. Horizontal-hydraulic conductivities from the slug tests in wells completed in glacial-deposit aquifers range from 0.33 to 1,000 feet per day. Transmissivities from the pumped-well tests in wells completed in the carbonate-rock aquifer range from 70 to 52,000 feet squared per day. Storage coefficient or specific yields at these wells range from 0.00001 to 0.05. Horizontal hydraulic conductivities from the slug tests in wells completed in limestones and shales of Ordovician age range from 0.0016 to 12 feet per day. These data are summarized in tables and figures within this report. The collection and compilation of selected aquifer

  4. Factors affecting water quality in selected carbonate aquifers in the United States,1993-2005

    USGS Publications Warehouse

    Lindsey, Bruce D.; Berndt, Marian P.; Katz, Brian G.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    Carbonate aquifers are an important source of water in the United States; however, these aquifers can be particularly susceptible to contamination from the land surface. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program collected samples from wells and springs in 12 carbonate aquifers across the country during 1993–2005; water-quality results for 1,042 samples were available to assess the factors affecting ground-water quality. These aquifers represent a wide range of climate, land-use types, degrees of confinement, and other characteristics that were compared and evaluated to assess the effect of those factors on water quality. Differences and similarities among the aquifers were also identified. Samples were analyzed for major ions, radon, nutrients, 47 pesticides, and 54 volatile organic compounds (VOCs).Geochemical analysis helped to identify dominant processes that may contribute to the differences in aquifer susceptibility to anthropogenic contamination. Differences in concentrations of dissolved oxygen and dissolved organic carbon and in ground-water age were directly related to the occurrence of anthropogenic contaminants. Other geochemical indicators, such as mineral saturation indexes and calcium-magnesium molar ratio, were used to infer residence time, an indirect indicator of potential for anthropogenic contamination. Radon exceeded the U.S. Environmental Protection Agency proposed Maximum Contaminant Level (MCL) of 300 picocuries per liter in 423 of 735 wells sampled, of which 309 were drinking-water wells.In general, land use, oxidation-reduction (redox) status, and degree of aquifer confinement were the most important factors affecting the occurrence of anthropogenic contaminants. Although none of these factors individually accounts for all the variation in water quality among the aquifers, a combination of these characteristics accounts for the majority of the variation. Unconfined carbonate aquifers that had high

  5. Relations between sinkhole density and anthropogenic contaminants in selected carbonate aquifers in the eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce D.; Katz, Brian G.; Berndt, Marian P.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    The relation between sinkhole density and water quality was investigated in seven selected carbonate aquifers in the eastern United States. Sinkhole density for these aquifers was grouped into high (>25 sinkholes/100 km2), medium (1–25 sinkholes/100 km2), or low (2) categories using a geographical information system that included four independent databases covering parts of Alabama, Florida, Missouri, Pennsylvania, and Tennessee. Field measurements and concentrations of major ions, nitrate, and selected pesticides in samples from 451 wells and 70 springs were included in the water-quality database. Data were collected as a part of the US Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Areas with high and medium sinkhole density had the greatest well depths and depths to water, the lowest concentrations of total dissolved solids and bicarbonate, the highest concentrations of dissolved oxygen, and the lowest partial pressure of CO2 compared to areas with low sinkhole density. These chemical indicators are consistent conceptually with a conduit-flow-dominated system in areas with a high density of sinkholes and a diffuse-flow-dominated system in areas with a low density of sinkholes. Higher cave density and spring discharge in Pennsylvania also support the concept that the high sinkhole density areas are dominated by conduit-flow systems. Concentrations of nitrate-N were significantly higher (p < 0.05) in areas with high and medium sinkhole density than in low sinkhole-density areas; when accounting for the variations in land use near the sampling sites, the high sinkhole-density area still had higher concentrations of nitrate-N than the low sinkhole-density area. Detection frequencies of atrazine, simazine, metolachlor, prometon, and the atrazine degradate deethylatrazine indicated a pattern similar to nitrate; highest pesticide detections were associated with high sinkhole-density areas. These patterns generally persisted when analyzing

  6. Use of principal-component, correlation, and stepwise multiple-regression analyses to investigate selected physical and hydraulic properties of carbonate-rock aquifers

    USGS Publications Warehouse

    Brown, C. Erwin

    1993-01-01

    Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.

  7. Identifying turbulent flow in carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Worthington, Stephen R. H.; Soley, Robert W. N.

    2017-09-01

    Turbulent flow has a different hydraulic response compared to laminar flow and so it is important to be able to identify its occurrence in an aquifer, and to predict where it is likely to be found. Turbulent flow is associated with large apertures and rapid velocities, and these occur most frequently in carbonate aquifers. Methods for identifying turbulent flow include correlating spring discharge with head variation, calculating Reynolds numbers from spring discharge and tracer velocity, and plotting the spatial variation of head differences between high flow and low flow. The probability of turbulent flow increases as a function of permeability and of spring discharge, and the probability increases in a downgradient direction in an aquifer. Spring discharge is a key parameter for evaluating the presence of turbulent flow, which is likely to occur where a spring with a discharge > 1 L/s is fed by a single channel. Turbulent flow appears to be a major contributing factor to the occurrence of groundwater flooding in carbonate aquifers.

  8. Porosity development in coastal carbonate aquifers

    USGS Publications Warehouse

    Sanford, W.E.; Konikow, L.F.

    1989-01-01

    Combines geochemical mixing theory with the hydrodynamics of fresh-water-salt-water mixing zones in a coupled reaction-transport model. Results from the reaction-path model PHREEQE are used with a variable-density groundwater flow and solute-transport model to simulate an idealized cross section of a coastal carbonate aquifer. The dissolution process is sensitive to fresh-water chemistry, groundwater velocities, and sea-level movement. -from Authors

  9. Selecting Aquifer Wells for Planned Gyroscopic Logging

    SciTech Connect

    Rohe, Michael James; Studley, Gregory Wayne

    2002-04-01

    Understanding the configuration of the eastern Snake River Plain aquifer's water table is made difficult, in part, due to borehole deviation in aquifer wells. A borehole has deviation if it is not vertical or straight. Deviation impairs the analysis of water table elevation measurements because it results in measurements that are greater than the true distance from the top of the well to the water table. Conceptual models of the water table configuration are important to environmental management decision-making at the INEEL; these models are based on measurements of depth to the water table taken from aquifer wells at or near the INEEL. When accurate data on the amount of deviation in any given borehole is acquired, then measurements of depth-to-water can be adjusted to reflect the true depth so more accurate conceptual models can be developed. Collection of additional borehole deviation data with gyroscopic logging is planned for selected wells to further our confidence in the quality of water level measurements. Selection of wells for the planned logging is based on qualitative and quantitative screening criteria. An existing data set from magnetic deviation logs was useful in establishing these criteria however, are considered less accurate than gyroscopic deviation logs under certain conditions. Population distributions for 128 aquifer wells with magnetic deviation data were used to establish three quantitative screening thresholds. Qualitative criteria consisted of administrative controls, accessibility issues, and drilling methods. Qualitative criteria eliminated all but 116 of the 337 aquifer wells, in the vicinity of the INEEL, that were initially examined in this screening effort. Of these, 72 have associated magnetic deviation data; 44 do not. Twenty-five (25) of the 72 wells with magnetic deviation data have deviation greater than one of the three quantitative screening thresholds. These 25 are recommended for the planned gyroscopic borehole deviation

  10. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  11. Reduction of nitrate in aquifer microcosms by carbon additions

    USGS Publications Warehouse

    Obenhuber, Donald C.; Lowrance , Richard

    1991-01-01

    Aquifer microcosms were used to examine the effects of NO−3 and C amendments on groundwater from the Claiborne aquifer. Nitrate concentrations of 12.17 mg L−1 in aquifer microcosms were reduced 0.92%/d to 5.84 mg L−1 by the addition of 10 mg C L−1 for 35 d. Nitrate disappearance correlated with increases in number of denitrifiers and dissolved N2O concentration and decreases in dissolved oxygen, suggesting biological denitrification. Nitrate/chloride ratios decreased in microcosms with 10 mg C L−1 added and then increased when the C addition was removed. Carbon additions of 0.4 mg C L−1 had no effect on the microbial or chemical properties of the microcosms. Nitrous oxide levels in wells sampling the Claiborne aquifer showed an increase with depth, indicating N2O production within the aquifer. Microcosms are useful tools to examine biological transformations of chemical contaminants in unconsolidated aquifer material. The remediation of NO−3 contaminated aquifers by organic infusion is possible and appears to be a function of microbial denitrification.

  12. Carbonate diagenesis in a high transmissivity coastal aquifer, Biscayne Aquifer, southeastern Florida, USA

    NASA Astrophysics Data System (ADS)

    Maliva, R. G.; Missimer, T. M.; Walker, C. W.; Owosina, E. S.; Dickson, J. A. D.; Fallick, A. E.

    2001-09-01

    Cores collected through the Biscayne Aquifer (Plio-Pleistocene) in Hollywood, southeastern Florida, as part of the Hollywood Coastal Salinity Barrier Project provided an opportunity to examine the diagenesis of limestones and sandstones at the meteoric to marine water transition of one of the most transmissive aquifers in the world. The saline water front, and thus coastal mixing zone, has migrated landward approximately 1 km in the Hollywood area as the result of wellfield withdrawals. No changes in mineralogy (such as dolomitization), cement types and abundances, paragenetic sequence, or porosity are evident that can be correlated with the current or likely pre-development (wellfield withdrawals) location of the mixing zone. An approximately 2‰ downhole increase in calcite δ18O values is present in a core (HMW-6D) that penetrates the pre-development mixing zone, which may be related to either a down hole increase in salinity or to the interaction of meteoric waters with marine carbonate sediments during calcite cementation. The Biscayne Aquifer in Hollywood is currently a relatively quiescent diagenetic environment. The limited current diagenesis appears to consist of the dissolution of trace skeletal aragonite remaining in the aquifer, as suggested by a meteoric water Sr/Ca ratio similar to that of molluscan aragonite. It is proposed that a 'punctuated equilibria' model may be applicable to diagenesis in the Biscayne and other aquifers, in which limestones and sandstones entered a long period of diagenetic stasis after a period of relatively rapid textural and mineralogical stabilization.

  13. Review: Thermal water resources in carbonate rock aquifers

    NASA Astrophysics Data System (ADS)

    Goldscheider, Nico; Mádl-Szőnyi, Judit; Erőss, Anita; Schill, Eva

    2010-09-01

    The current knowledge on thermal water resources in carbonate rock aquifers is presented in this review, which also discusses geochemical processes that create reservoir porosity and different types of utilisations of these resources such as thermal baths, geothermal energy and carbon dioxide (CO2) sequestration. Carbonate aquifers probably constitute the most important thermal water resources outside of volcanic areas. Several processes contribute to the creation of porosity, summarised under the term hypogenic (or hypogene) speleogenesis, including retrograde calcite solubility, mixing corrosion induced by cross-formational flow, and dissolution by geogenic acids from deep sources. Thermal and mineral waters from karst aquifers supply spas all over the world such as the famous bath in Budapest, Hungary. Geothermal installations use these resources for electricity production, district heating or other purposes, with low CO2 emissions and land consumption, e.g. Germany’s largest geothermal power plant at Unterhaching near Munich. Regional fault and fracture zones are often the most productive zones, but are sometimes difficult to locate, resulting in a relatively high exploration uncertainty. Geothermal installations in deep carbonate rocks could also be used for CO2 sequestration (carbonate dissolution would partly neutralise this gas and increase reservoir porosity). The use of geothermal installations to this end should be further investigated.

  14. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  15. Major geochemical processes in the evolution of carbonate-Aquifer systems

    USGS Publications Warehouse

    Hanshaw, B.B.; Back, W.

    1979-01-01

    As a result of recent advances by carbonate petrologists and geochemists, hydrologists are provided with new insights into the origin and explanation of many aquifer characteristics and hydrologic phenomena. Some major advances include the recognition that: (1) most carbonate sediments are of biological origin; (2) they have a strong bimodal size-distribution; and (3) they originate in warm shallow seas. Although near-surface ocean water is oversaturated with respect to calcite, aragonite, dolomite and magnesite, the magnesium-hydration barrier effectively prevents either the organic or inorganic formation of dolomite and magnesite. Therefore, calcareous plants and animals produce only calcite and aragonite in hard parts of their bodies. Most carbonate aquifers that are composed of sand-size material have a high initial porosity; the sand grains that formed these aquifers originated primarily as small shells, broken shell fragments of larger invertebrates, or as chemically precipitated oolites. Carbonate rocks that originated as fine-grained muds were initially composed primarily of aragonite needles precipitated by algae and have extremely low permeability that requires fracturing and dissolution to develop into aquifers. Upon first emergence, most sand beds and reefs are good aquifers; on the other hand, the clay-sized carbonate material initially has high porosity but low permeability, a poor aquifer property. Without early fracture development in response to influences of tectonic activity these calcilutites would not begin to develop into aquifers. As a result of selective dissolution, inversion of the metastable aragonite to calcite, and recrystallization, the porosity is collected into larger void spaces, which may not change the overall porosity, but greatly increases permeability. Another major process which redistributes porosity and permeability in carbonates is dolomitization, which occurs in a variety of environments. These environments include back

  16. Hydrochemical Impacts of Carbon Dioxide Leakage in Carbonate Aquifer Materials (Invited)

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Wunsch, A.; Moore, J.; Sitchler, A.

    2013-12-01

    CO2 leakage into overlying aquifers during geological carbon sequestration is a potential environmetnal concern. Even though these aquifers supply 20% of drinking water globally, they are mostly neglected in the literature related to leakage during carbon geoseqestration, because carbonate minerals are presumed to buffer pH increases. Previous studies typically point to sulfide minerals as likely sources of toxic metals. We present laboratory and hydrochemical modeling results to better understand potential for metal release in carbonate aquifers. Experiments containing limestones and dolomites at realistic carbon dioxide pressures resulted in elevated aqueous concentrations of As, Ba, Co, Cr, Mo, Mn, Ni, Sr, and Tl. Geochemical modeling suggests that dissolutoin of carbonate minerals that contain impurities may be the dominant contributors to metal release rather than pyrite. However, geochemical modeling also demonstrates that pyrite may be an important source of metals under oxidizing conditions.

  17. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  18. Distribution of potentially bioavailable natural organic carbon in aquifer sediments at a chloroethene-contaminated site

    USGS Publications Warehouse

    Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.

    2012-01-01

    The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187  mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000  μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.

  19. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  20. Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia

    USGS Publications Warehouse

    McCoy, Kurt J.; Podwysocki, Melvin H.; Crider, E. Allen; Weary, David J.

    2005-01-01

    These data contain information on the results of single-well aquifer tests, lineament analysis, and a bedrock geologic map compilation for the low-lying carbonate and shale areas of eastern Berkeley County, West Virginia. Efforts have been initiated by management agencies of Berkeley County in cooperation with the U.S. Geological Survey to further the understanding of the spatial distribution of fractures in the carbonate regions and their correlation with aquifer properties. This report presents transmissivity values from about 200 single-well aquifer tests and a map of fracture-traces determined from aerial photos and field investigations. Transmissivity values were compared to geologic factors possibly affecting its magnitude.

  1. Sedimentologic and diagenetic controls on aquifer properties, Lower Cretaceous Edwards Carbonate Aquifer, Texas: Implications for aquifer management

    SciTech Connect

    Hovorka, S.D.; Dutton, A.R.; Ruppel, S.C.

    1994-09-01

    The three-dimensional distribution of water in the Edwards aquifer was assessed using a core and log-based study. Porosity distribution reflects both depositional fabric and subsequent diagenesis. Vertical facies stacking patterns influence the depositional porosity as well as dolomitization and diagentic porosity modification. Subtidal facies deposited during sea level highstands are generally undolomitized and exhibit low porosity (5-10%); platform grainstones typically have high depositional porosity and significant solution enhancement (20-42% porosity). Dolomitized subtidal facies in tidal-flat-capped cycles have very high porosity (20-40%) because of selective dolomite dissolution in the freshwater aquifer. Porosity in gypsum beds is high in some areas because of dissolution and collapse, but low where gypsum was replaced by calcite cement. Low-energy subtidal and evaporitic units in the Maverick basin have porosity generally less than 15%. The overlying basinal packstones and grainstones have solution-enhanced porosities of 25 to 35%. Diagenesis associated with fluctuations in water chemistry near the saline-freshwater interface may explain one high-porosity trend. Other complex patterns of high and low porosity are attributed to structurally and hydrologically controlled porosity enhancement and cementation. Three-dimensional mapping of porosity trends provides data for improved aquifer management. Only about 3% of the maximum stored water lies above the water table at which natural spring flow is diminished. An average specific yield of 42% in the unconfined aquifer is determined from total porosity, changes in the water-table elevation, and changes in estimated recharge and discharge. Average storativity of 2.6 x 10{sup -4} in the confined Edwards is estimated using average porosity and barometric efficiency calculated from comparing water-level hydrographs and atmospheric pressure changes.

  2. Productivity of an unconfined aquifer as related to carbonate facies: the Coral Reef Aquifer of Collier County, Florida

    SciTech Connect

    Missimer, T.M.

    1985-01-01

    A 3-year investigation of the shallow, unconfined Coral Reef Aquifer of northern Collier County, Florida, has revealed the relationship of carbonate lithofacies to the transmissivity and specific yield of the aquifer. The geology of the aquifer was studied using cores, test wells, and both surface and borehole geophysics. Numerous aquifer performance tests were conducted to measure the hydraulic coefficients of the aquifer. The Coral Reef Aquifer consists of a surficial quartz sand mantel from 4 to 20 feet thick underlain by 24 to 70 feet of limestone. Four predominant lithofacies were found in the limestone: moldic arenaceous, molluscan packstone; corraline, moldic boundstone,; molluscan wackestone; and unconsolidated, agrillaceous wackestone. The base of the aquifer is formed by a low permeability, green dolosilt. Transmissivity values measured over a 12-square mile area ranged from 59,000 to 1,550,000 gpd/ft. The highest transmissivity values were associated with the occurrence of molluscan packstones. Estimated porosities in the molluscan packstone ranged up to 65% compared to 40% or less in the other lithofacies. The transmissivity of the aquifer was dependent primarily on the occurrence of the molluscan packstones and not greatly dependent on the overall aquifer thickness.

  3. Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments

    USGS Publications Warehouse

    Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl

    2012-01-01

    This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p < 0.05). Higher levels of HAA were consistently observed at sites with greater levels of PBOC and first-order decay rates. Because amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.

  4. Geochemical detection of carbon dioxide in dilute aquifers

    PubMed Central

    2009-01-01

    Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable

  5. The AEM and regional carbonate aquifer modeling.

    PubMed

    Johnson, Cady; Mifflin, Martin

    2006-01-01

    The analytic element method (AEM) has been applied to a 15,000-km2 area of the Paleozoic carbonate rock terrain of Nevada. The focus is the Muddy River springs area, which receives 1.44 m3/s (51 ft3/s) of regionally derived ground water, and forms the Muddy River. The study was undertaken early in 2000 to support the development of a cooling water supply for a gas-fired generation facility 20 km south of the Muddy River springs. The primary objectives of the AEM modeling were to establish a better understanding of regional fluxes and boundary conditions and to provide a framework for examination of more local transient effects using MODFLOW. Geochemical evidence available in 2000 suggested two separate flow fields, one in the north discharging at the springs, and a southern area of small hydraulic gradients. To be conservative, however, hydraulic continuity between the two areas was maintained in the 2000 AEM model. Using new monitoring well data collected in the south, and analyses confirming that seasonal pumping effects in the north are not propagated to the south, a later AEM model that included a barrier calibrated with relative ease. The analytic element model was well suited for simulating an area larger than the immediate area of interest, was easy to modify as more information became available, and facilitated the stepwise development of multiple conceptual models of the site.

  6. A method for quantifying bioavailable organic carbon in aquifer sediments

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.

    2005-01-01

    The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  7. Chemical signatures of groundwater basins in a carbonate aquifer

    SciTech Connect

    Gouzie, D.R.; Thrailkill, J.

    1985-01-01

    Determining the area impacted by contaminants introduced into a conduit-flow carbonate aquifer is, in general, much more difficult than in other types of aquifers. Previous dye-tracing studies in the Inner Bluegrass Karst Region (Ordovician) of central Kentucky suggest that the aquifer consists of groundwater basins and interbasin areas. Flow in the groundwater basins is through an integrated system of solution conduits, at depths up to 30 m., to a major spring. In the interbasin areas, solution development and flow is generally within 5 m. of the surface. The present study is based on periodic sampling of major springs and inputs in several groundwater basins. Samples were analyzed for Ca, Mg, Na, Cl, HCO/sub 3/, and SO/sub 4/. After correction for seasonal and discharge effects, variation among groundwater basins was found to be greater than within a basin and was sufficient to determine a chemical signature for each basin. The results confirm the hydrologic isolation of the basins shown by the earlier dye-tracing, indicate that each basin possesses its own chemical microenvironment, and suggest that major element chemistry may be used as a natural tracer to determine flow directions.

  8. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect

    Garcia, Julio Enrique

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  9. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    NASA Astrophysics Data System (ADS)

    Nowak, Martin E.; Schwab, Valérie F.; Lazar, Cassandre S.; Behrendt, Thomas; Kohlhepp, Bernd; Totsche, Kai Uwe; Küsel, Kirsten; Trumbore, Susan E.

    2017-08-01

    Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria) and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water-rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings demonstrate the large

  10. Interpretation of well logs in a carbonate aquifer

    USGS Publications Warehouse

    MacCary, L.M.

    1978-01-01

    This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting

  11. Selected aquifer-test information for the coastal plain aquifers of South Carolina

    USGS Publications Warehouse

    Aucott, W.R.; Newcome, Roy

    1986-01-01

    Aquifer and well hydraulic characteristics were determined from more than 100 multiple-well and single-well aquifer tests in the Coastal Plain of South Carolina and tabulated by county. Multiple-well aquifer tests were analyzed by the This method for nonleaky aquifers and the Hantush-Jacob method for leaky aquifers. Single-well tests were analyzed by straight line solution techniques for drawdown and recovery tests. Specific-capacity data are presented for many areas where aquifer-test information is sparse. The characteristics determined are based largely on well performance tests conducted by well drillers and consulting engineers. Although use of this information has many limitations, it has value in establishing transmissivity and storage coefficient values for the Coastal Plain aquifers. (Peters-PTT)

  12. Hydrogeology and potential for ground-water development, carbonate-rock aquifers in southern Nevada and southeastern California

    USGS Publications Warehouse

    Burbey, T.J.

    1997-01-01

    Seventeen hydrographic areas in southern Nevada were assessed for the ground-water development potential of the underlying carbonate-rock aquifers on the basis of geologic and hydrologic information developed as part of the Nevada Carbonate Aquifers Study and information compiled from previous investigations. All selected areas lie within a miogeoclinal belt where thick accumulations of carbonate rock followed by major episodes of compression and extension have greatly modified the region. Most of the selected hydrographic areas lie within the less extended terranes; however, several areas, or parts of areas, lie within severely extended terranes where carbonate rocks have been greatly thinned, or where deformed blocks of carbonate rock are discontinuous and isolated from surrounding carbonate rock aquifers. Three principal criteria were used to assess the development potential of each selected hydrographic area. These quantitative criteria are: (1) depth to water, (2) depth to and thickness of carbonate rocks, and (3) water quality. Other site-specific factors, such as accessibility and potential effects of ground-water development, are also discussed. Results suggest that sites with high potential for development may be scarce in southern Nevada. Many areas described as favorable on the basis of the three quantitative criteria were deemed unfavorable on the basis of possible short- and long-term effects associated with development and on the amount of available data used to make the assessment. The most favorable sites may be in more severely extended terranes, where development of isolated blocks (of carbonate-rock aquifer material) would be less likely to affect neighboring areas.

  13. Hydrogeologic assessment of shallow clastic and carbonate rock aquifers in Hendry and Collier counties, southwestern Florida

    USGS Publications Warehouse

    Brown, C. Erwin; Krulikas, R.K.; Brendle, D.L.

    1996-01-01

    Direct-current electrical resistivity data were collected from 109 vertical electrical sounding sites in Hendry and Collier Counties, southwestern Florida. Selected direct-current electrical resistivity surveys, together with available borehole geologic and geophysical data, were used to determine the approximate areal extent of the shallow clastic aquifers composed of thick sands and carbonate lithologies. Results indicated that a complex pattern of shallow sands, clays, and carbonate lithologies occur throughout the area. Buried channel sands were found as deep as 50 meters below land surface in some places. The channels contain unconsolidated fine- to medium-grained quartz sand interbedded with sandy limestone, shell fragments, and gray-green sandy clay. Both surface and borehole geophysical techniques with lithologic data were necessary to approximately locate and define layers that might behave as confining layers and to locate and define the extent of any buried sand aquifers. The borehole geophysical data were used to analyze the zones of higher resistivity. Direct-current electrical resistivity data indicated the approximate location of certain layer boundaries. The conjunctive use of natural gamma and short- and long-normal resistivity logs was helpful in determining lithologic effects. Geohydrologic sections were prepared to identify potential locations of buried channels and carbonates containing freshwater. Buried channel sands and carbonate rock sections were identified in the subsurface that potentially may contain freshwater supplies.

  14. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    USGS Publications Warehouse

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  15. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  16. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  17. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    PubMed

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  18. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    SciTech Connect

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption) in the aquifer sediments and will support site selection, risk assessment, policy-making, and public education efforts associated with geologic carbon sequestration.

  19. Application of a probabilistic modelling approach for evaluation of nitrogen, phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate aquifer.

    PubMed

    Vanderzalm, Joanne L; Page, Declan W; Barry, Karen E; Dillon, Peter J

    2013-05-01

    Aquifer storage is increasingly being recognised in its role as a treatment process barrier within a multiple barrier approach to water reuse. Aquifers are postulated to have the ability to provide sustainable treatment for removal of nitrogen, phosphorus and organic carbon, the dominant nutrient hazards in water recycling, but, to date this treatment performance has remained difficult to validate in field studies. This study applied a statistical method, proposed for validation of the performance of advanced water treatment processes, to evaluate nutrient removal during aquifer storage and recovery (ASR) with recycled water. Analysis of observed water quality changes during four successive ASR cycles with highly variable source water quality was used to describe the removal efficiencies for selected nutrients by an anoxic carbonate aquifer. The use of this method was found to be suitable to calculate removal efficiencies for total organic carbon (TOC) and total nitrogen (TN) over four ASR cycles with temporally variable concentrations of nutrients in the tertiary treated wastewater injectant. TOC and TN removal was dominated by redox processes, aerobic respiration and denitrification. Median removal of TOC ranged from 25 to 40% and TN from 46 to 87% over the four cycles. There was no observable reduction in this removal with time, suggesting that removal of TOC and TN by redox processes can be sustained in an ASR system. Contrastingly, total phosphorous (TP) was subject to reversible removal via adsorption and desorption processes and as a result, removal efficiency could not be calculated with this method. Thus in general, results indicated that this statistical method could be used to characterise the capacity of the anoxic carbonate aquifer treatment barrier for removal of carbon and nitrogen, but not for removal of phosphorus.

  20. Microbial Response to Carbon Dioxide Injection in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Rook, A.; Faehndrich, D.; O'Mullan, G.; Mailloux, B.; Matter, J.; Stute, M.; Goldberg, D.

    2007-12-01

    Extensive research is underway to investigate the geophysical and geochemical dynamics of subsurface carbon sequestration, but there has been only theoretical consideration of the microbial response. Microbial dynamics are capable of altering the range and rates of geochemical reactions in the subsurface. The goal of this field experiment is to link geochemical changes due to CO2 injection to alterations in the microbial community and to provide an initial characterization of the microbial response. A seven week push-pull experiment was conducted at the Lamont-Doherty Earth Observatory Test Well. 200L of groundwater was extracted, bubbled with carbon dioxide, augmented with a bromide tracer, and injected to 230m depth below ground surface. The hydraulically isolated injection zone marked the contact area between dolerite sill and sedimentary rock. Samples were taken on a weekly basis. Geochemically, a drop in pH from 9.4 to 4.5 at injection was coupled with a release of Fe2+ from the formation. As neutralization and mixing caused pH to return toward background levels, Fe2+ concentrations decreased. The aquifer remained anoxic throughout the experiment. DNA was successfully extracted and the gene encoding 16S ribosomal RNA was amplified from all samples with the exception of the injection fluid. Sequencing from clone libraries and tRFLP analyses were used to characterize microbial dynamics during the seven week study. Whereas the number of microbial groups detected remained relatively constant over the course of the experiment, changes were observed in both the dominant microbes phylogenetic identity and relative abundance. Methane concentrations increased from background levels (below 50 nM) to 4.2 nM after injection, but initial attempts to amplify archaeal and methanogen-specific genes were unsuccessful, bringing into question the presence of a significant methanogenic population. These results confirm that there is a microbial response to carbon dioxide

  1. Codeposition of organic carbon and arsenic in Bengal Delta aquifers.

    PubMed

    Meharg, Andrew A; Scrimgeour, Charlie; Hossain, Shahid A; Fuller, Kenneth; Cruickshank, Kenneth; Williams, Paul N; Kinniburgh, David G

    2006-08-15

    We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As-OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments.

  2. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    PubMed Central

    2013-01-01

    Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1) Ljubljansko polje aquifer, with higher Ca2+values, as limestone predominates in its recharge area, (2) northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3) central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4) Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years. PMID:24453928

  3. Carbonate chemistry and isotope characteristics of groundwater of Ljubljansko polje and Ljubljansko Barje aquifers in Slovenia.

    PubMed

    Cerar, Sonja; Urbanc, Janko

    2013-01-01

    Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1) Ljubljansko polje aquifer, with higher Ca(2+)values, as limestone predominates in its recharge area, (2) northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3) central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4) Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg(2+) in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years.

  4. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    SciTech Connect

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPA’s MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  5. Potential contaminant transport in the regional Carbonate Aquifer beneath Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John; King, Michael

    2010-05-01

    Yucca Mountain, Nevada is the site of the proposed US geologic repository for spent nuclear fuel and high-level radioactive waste. The repository is to be a mine, sited approximately 300 m below the crest of the mountain, in a sequence of variably welded and fractured mid-Miocene rhylolite tuffs, in the unsaturated zone, approximately 300 m above the water table. Beneath the proposed repository, at a depth of 2 km, is a thick sequence of Paleozoic carbonate rocks that contain the highly transmissive Lower Carbonate Aquifer. In the area of Yucca Mountain the Carbonate Aquifer integrates groundwater flow from north of the mountain, through the Amargosa Valley, through the Funeral Mountains to Furnace Creek in Death Valley, California where the groundwater discharges in a set of large springs. Data that describe the Carbonate Aquifer suggest a concept for flow through the aquifer, and based upon the conceptual model, a one-layer numerical model was constructed to simulate groundwater flow in the Carbonate Aquifer. Advective transport analyses suggest that the predicted travel time of a particle from Yucca Mountain to Death Valley through the Carbonate Aquifer might be as short as 100 years to as long 2,000 years, depending upon the porosity.

  6. Redox Conditions in Selected Principal Aquifers of the United States

    USGS Publications Warehouse

    McMahon, P.B.; Cowdery, T.K.; Chapelle, F.H.; Jurgens, B.C.

    2009-01-01

    Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contami-nants, and generate undesirable byproducts, such as dissolved manganese (Mn2+), ferrous iron (Fe2+), hydrogen sulfide (H2S), and methane (CH4). Determining the kinds of redox processes that occur in an aquifer system, documenting their spatial distribution, and understanding how they affect concentrations of natural or anthropogenic contaminants are central to assessing and predicting the chemical quality of groundwater. This Fact Sheet extends the analysis of U.S. Geological Survey authors to additional principal aquifer systems by applying a framework developed by the USGS to a larger set of water-quality data from the USGS national water databases. For a detailed explanation, see the 'Introduction' in the Fact Sheet.

  7. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    SciTech Connect

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  8. Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe.

    PubMed

    Vías, J; Andreo, B; Ravbar, N; Hötzl, H

    2010-07-01

    The vulnerability of four European aquifers with different hydrogeological and climatic characteristics was evaluated using the COP method. The results obtained were statistically analyzed by determination coefficients to measure which factor has greater importance in the vulnerability index. Furthermore, a new parameter has been designed to measure the vulnerability for the whole of the aquifer. The results demonstrate that COP is a useful method to assess the vulnerability of the test sites under consideration. The results obtained are coherent with the conceptual model of each pilot aquifer and the available hydrogeological information (hydrographs, isotopic data, tracer tests). Fissured carbonate aquifers (diffuse flow systems) are less vulnerable than karst aquifers (conduit flow systems) and the vulnerability index is more positively correlated with the O factor (unsaturated zone protection capacity) in the first case. The karst aquifers are more vulnerable than fissured aquifers and they show a higher correlation between the C factor (karst features) and the vulnerability index. Climatic variation (precipitation for example) influences the final vulnerability index of the aquifers according to the weight in the index and the spatial distribution. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Hydrogeologic and water-quality characteristics of the Upper Carbonate aquifer, Southeast Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.; Wolf, R.J.

    1983-01-01

    The quality of water in the Upper Carbonate aquifer is suitable for most uses. However, the water is susceptible to contamination in karst areas because sinkholes and disappearing streams provide direct passageways for entry of contaminants into the aquifer. Calcium magnesium bicarbonate type waters are most common. Concentrations of dissolved solids and some major ions, specifically magnesium, sodium, bicarbonate, and sulfate, are generally highest in the southwestern part of the study area.

  10. Redox processes and water quality of selected principal aquifer systems

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    2008-01-01

    Reduction/oxidation (redox) conditions in 15 principal aquifer (PA) systems of the United States, and their impact on several water quality issues, were assessed from a large data base collected by the National Water-Quality Assessment Program of the USGS. The logic of these assessments was based on the observed ecological succession of electron acceptors such as dissolved oxygen, nitrate, and sulfate and threshold concentrations of these substrates needed to support active microbial metabolism. Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated by the production of dissolved manganese and iron. An internally consistent set of threshold concentration criteria was developed and applied to a large data set of 1692 water samples from the PAs to assess ambient redox conditions. The indicated redox conditions then were related to the occurrence of selected natural (arsenic) and anthropogenic (nitrate and volatile organic compounds) contaminants in ground water. For the natural and anthropogenic contaminants assessed in this study, considering redox conditions as defined by this framework of redox indicator species and threshold concentrations explained many water quality trends observed at a regional scale. An important finding of this study was that samples indicating mixed redox processes provide information on redox heterogeneity that is useful for assessing common water quality issues. Given the interpretive power of the redox framework and given that it is relatively inexpensive and easy to measure the chemical parameters included in the framework, those parameters should be included in routine water quality monitoring programs whenever possible.

  11. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    DTIC Science & Technology

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  12. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  13. Identification and quantification of redox and pH buffering processes in a heterogeneous, low carbonate aquifer during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Seibert, Simone; Atteia, Olivier; Ursula Salmon, S.; Siade, Adam; Douglas, Grant; Prommer, Henning

    2016-05-01

    Managed aquifer recharge of aerobic water into deep aquifers often induces the oxidation of pyrite, which can lead to groundwater acidification and metal mobilization. As circumneutral pH is often maintained by the dissolution of sedimentary calcite or high injectant alkalinity little attention is generally paid to potential alternative pH buffering processes. In contrast, this study analyzed water quality evolution from a 2 year long groundwater replenishment trial in an anaerobic, mostly carbonate free aquifer. While injection of aerobic, very low salinity water triggered pyrite oxidation, the comprehensive field data showed that in many aquifer zones pH was buffered without substantial release of inorganic carbon. A numerical analysis was performed to test and evaluate different conceptual models and suggested that either proton buffering or the dissolution of aluminosilicates, or a combination thereof, can explain the observed, rapid buffering at locations where carbonates were absent. In contrast to many previous managed aquifer recharge [MAR) studies, the oxidation of sedimentary pyrite by nitrate was found to be of minor importance or negligible. The study also highlights that the depositional history of the aquifer, and the associated differences in mineralogy and geochemistry, need to be considered when estimating groundwater quality evolution during the injection of various water types for aquifer replenishment or other management purposes.

  14. Integrated Hydrogeochemical and Geophysical Interpretation of Groundwater Salinization in an Uplifted Pleistocene Carbonate Aquifer of Barbados

    NASA Astrophysics Data System (ADS)

    Mayers, B.; Farrell, D.; Coffey, R.; Thompson, G.

    2007-05-01

    Understanding the processes that influence spatial and temporal distributions of aquifer salinity are essential to the development of a groundwater salinity management plan. In this paper, we integrate geophysical, hydrogeochemical and submarine seepage measurements to develop a conceptual hydrogeological model of groundwater salinization of a Pleistocene carbonate aquifer that has experienced Quaternary glacio-eustatic sea- level changes and tectonic uplift. The Pleistocene carbonate rock mantles moderately folded and faulted Tertiary marine sedimentary rocks of early Eocene to middle Miocene age. The main issues to be addressed are (1) an understanding of the hydrogeological regime of the karst aquifer, (2) the origin and extent of aquifer salinization, and (3) groundwater provenance. Non-invasive Time Domain and Resistivity soundings were used to map the subsurface electrical resistivity structure to infer the distribution of aquifer salinity and geologic structure. An analysis of the major and minor ions was used to evaluate groundwater chemistry patterns and the main mineralization processes. Submarine seepage measurements were taken from random locations in the near- shore region including a region of spring discharge. The results suggest (1) a heterogeneous distribution of fresh and saline groundwater that deviates from the idealized freshwater/saltwater transition zone on the decimeter scale, (2) a transition from Ca- HCO3 to Na-Cl type waters towards the coast indicating mixing with saline groundwater, (3) an Mg/Ca ratio that suggest aquitard-influenced saline groundwater (4) seepage of recirculated saline groundwater at locations where seepage springs are absent, and (5) an aquifer that has not been adequately flushed. In order to support these concepts, further work will utilize stable and environmental isotopes to age-date both fresh and saline groundwater and to evaluate the effects of water-rock and aquifer- aquitard interactions on the spatial and

  15. Digital Surfaces and Thicknesses of Selected Hydrogeologic Units within the Mississippi Embayment Regional Aquifer Study (MERAS)

    USGS Publications Warehouse

    Hart, Rheannon M.; Clark, Brian R.; Bolyard, Susan E.

    2008-01-01

    Digital surfaces of selected Tertiary and younger age hydrogeologic units within the Mississippi embayment aquifer system were created using more than 2,600 geophysical logs for an area that covers approximately 70,000 square miles and encompasses parts of eight states. The digital surfaces were developed to define and display the hydrogeologic framework for the Mississippi Embayment Regional Aquifer Study (MERAS). The digital surfaces also provide a foundation of the selected hydrogeologic units for development of a steady-state and transient regional ground-water flow model of the Mississippi embayment aquifer system from the top of the Midway confining unit upwards to land surface. The ground-water flow model is under development as part of the U.S. Geological Survey Ground-Water Resources Program. Using a Geographic Information System, nine digital surfaces of the tops of selected hydrogeologic units were created using the Australian National University Digital Elevation Model method as an interpolation scheme. Thickness maps also were constructed using the Geographic Information System by calculating the difference between the altitude of the interpreted base of an overlying unit and the altitude of the interpreted top of an underlying unit. In general, the highest hydrogeologic unit altitudes are located along the eastern edge of the study area in the outcrop, and the lowest altitudes, in general, are located along the southern edge of the study area along the axis of the embayment. The Mississippi River Valley alluvial aquifer and the lower Claiborne aquifer are the thinnest aquifers of importance in the study area; the thickest aquifer of importance is the middle Claiborne aquifer.

  16. Estimated Withdrawals from Stream-Valley Aquifers and Refined Estimated Withdrawals from Selected Aquifers in the United States, 2000

    USGS Publications Warehouse

    Sargent, B. Pierre; Maupin, Molly A.; Hinkle, Stephen R.

    2008-01-01

    The U.S. Geological Survey National Water Use Information Program compiles estimates of fresh ground-water withdrawals in the United States on a 5-year interval. In the year-2000 compilation, withdrawals were reported from principal aquifers and aquifer systems including two general aquifers - Alluvial and Other aquifers. Withdrawals from a widespread aquifer group - stream-valley aquifers - were not specifically identified in the year-2000 compilation, but they are important sources of ground water. Stream-valley aquifers are alluvial aquifers located in the valley of major streams and rivers. Stream-valley aquifers are long but narrow aquifers that are in direct hydraulic connection with associated streams and limited in extent compared to most principal aquifers. Based in large part on information published in U.S. Geological Survey reports, preliminary analysis of withdrawal data and hydrogeologic and surface-water information indicated areas in the United States where possible stream-valley aquifers were located. Further assessment focused on 24 states and the Commonwealth of Puerto Rico. Withdrawals reported from Alluvial aquifers in 16 states and withdrawals reported from Other aquifers in 6 states and the Commonwealth of Puerto Rico were investigated. Two additional States - Arkansas and New Jersey - were investigated because withdrawals reported from other principal aquifers in these two States may be from stream-valley aquifers. Withdrawals from stream-valley aquifers were identified in 20 States and were about 1,560 Mgal/d (million gallons per day), a rate comparable to withdrawals from the 10 most productive principal aquifers in the United States. Of the 1,560 Mgal/d of withdrawals attributed to stream-valley aquifers, 1,240 Mgal/d were disaggregated from Alluvial aquifers, 150 Mgal/d from glacial sand and gravel aquifers, 116 Mgal/d from Other aquifers, 28.1 Mgal/d from Pennsylvanian aquifers, and 24.9 Mgal/d from the Mississippi River Valley alluvial

  17. INTERLABORATORY METHODS COMPARISON FOR THE TOTAL ORGANIC CARBON ANALYSIS OF AQUIFER MATERIALS

    EPA Science Inventory

    The total organic carbon (TOC) content of aquifer materials has been found to have significant effects on the movement of pollutants in the subsurface environment. Accurate quantification of TOC is therefore of great im- portance to research in groundwater contamination. However,...

  18. INTERLABORATORY METHODS COMPARISON FOR THE TOTAL ORGANIC CARBON ANALYSIS OF AQUIFER MATERIALS

    EPA Science Inventory

    The total organic carbon (TOC) content of aquifer materials has been found to have significant effects on the movement of pollutants in the subsurface environment. Accurate quantification of TOC is therefore of great im- portance to research in groundwater contamination. However,...

  19. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy

    NASA Astrophysics Data System (ADS)

    Bucci, Antonio; Petrella, Emma; Celico, Fulvio; Naclerio, Gino

    2017-06-01

    Waterborne pathogens represent a significant health risk in both developed and developing countries with sensitive sub-populations including children, the elderly, neonates, and immune-compromised people, who are particularly susceptible to enteric infections. Annually, approximately 1.8 billion people utilize a faecally contaminated water source, and waterborne diseases are resulting in up to 2.1 million human mortalities globally. Although groundwater has traditionally been considered less susceptible to contamination by enteric pathogens than surface water due to natural attenuation by overlying strata, the degree of microbial removal attributable to soils and aquifers can vary significantly depending on several factors. Thus, accurate assessment of the variable presence and concentration of microbial contaminants, and the relative importance of potentially causative factors affecting contaminant ingress, is critical in order to develop effective source (well) and resource (aquifer) protection strategies. "Traditional" and molecular microbiological study designs, when coupled with hydrogeological, hydrochemical, isotopic, and geophysical methods, have proven useful for analysis of numerous aspects of subsurface microbial dynamics. Accordingly, this overview paper presents the principal microbial techniques currently being employed (1) to predict and identify sources of faecal contamination in groundwater, (2) to elucidate the dynamics of contaminant migration, and (3) to refine knowledge about the hydrogeological characteristics and behaviours of aquifer systems affected by microbial contamination with an emphasis on carbonate aquifers, which represent an important global water supply. Previous investigations carried out in carbonate aquifers in southern Italy are discussed.

  20. Flow of ground water through fractured carbonate rocks in the Prairie du Chien-Jordan Aquifer, southeastern Minnesota

    SciTech Connect

    Ruhl, J.F.

    1989-01-01

    Contamination of groundwater from point and nonpoint sources is a recognized problem in the karst area of southeastern Minnesota. The US Geological Survey, in cooperation with the Minnesota Department of Natural Resources and the Legislative Commission on Minnesota Resources, began a study in October 1987 to improve the understanding of local groundwater flow through karst terrain in southeastern Minnesota. The objectives of the study are to: (1) describe the orientations of systematic rock fractures and solution channels of the Prairie du Chien Group of Ordovician-age carbonate rocks in southeastern Minnesota, and, if possible, to define the principal and minor axes of these orientations; and (2) evaluate the effect of fractures and solution channels in the Prairie due Chien Group on the local flow of groundwater. Groundwater in the Upper Carbonate aquifer regionally flows toward the periphery of the aquifer and locally flows into streams and bedrock valleys. The hydraulic gradient in this aquifer generally is greatest near areas of groundwater seepage to streams. Regional groundwater flow in the Prairie du Chien-Jordan aquifer generally is to the south and east in much of Fillmore and Houston Counties and in the southern parts of Olmsted and Winona Counties. Groundwater seepage to selected streams was evaluated by current-meter measurements of downstream gains or losses of stream-flow and by an experimental approach based on radon activity in streams. The activity of radon in groundwater ranges from two to four orders of magnitude greater than the activity in surface water; therefore, groundwater seepage to streams generally increases the in-stream radon activity. 6 refs., 2 figs.

  1. Flow of ground water through fractured carbonate rocks in the Prairie du Chien-Jordan Aquifer, southeastern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1989-01-01

    Contamination of groundwater from point and nonpoint sources (such as landfills, feedlots, agricultural chemicals applied to fields, and septic systems) is a recognized problem in the karst area of southeastern Minnesota. The US Geological Survey, in cooperation with the Minnesota Department of Natural Resources and the Legislative Commission on Minnesota Resources, Began a study in October 1987 to improve the understanding of local groundwater flow through karst terrain in southeastern Minnesota. The objectives of the study are to: (1) describe the orientations of systematic rock fractures and solution channels of the Prairie du Chien Group of Ordovician-age carbonate rocks in southeastern Minnesota, and, if possible, to define the principal and minor axes of these orientations; and (2) evaluate the effect of fractures and solution channels in the Prairie du Chien Group on the local flow of groundwater. Groundwater in the Upper Carbonate aquifer regionally flows toward the periphery of the aquifer and locally flows into streams and bedrock valleys. The hydraulic gradient in this aquifer generally is greatest near areas of groundwater seepage to streams. Regional groundwater flow in the Prairie du Chien-Jordan aquifer generally is to the south and east in much of Fillmore and Houston Counties and in the southern parts of Olmsted and Winona Counties. Groundwater seepage to selected streams was evaluated by current-meter measurements of downstream gains or losses of streamflow and by an experimental approach based on radon activity in streams. The activity of radon in groundwater ranges from two to four orders of magnitude greater than the activity in surface water; therefore, groundwater seepage to streams generally increases the in-stream radon activity.

  2. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  3. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  4. An atlas of eleven selected aquifers in New York

    USGS Publications Warehouse

    Waller, Roger Milton; Finch, Anne J.

    1982-01-01

    Water from 11 aquifer systems in New York, excluding Long Island , is used by 2.8 million people. Ten are in areas hydraulically connected with the master stream and have a shallow water table, the 11th is a buried valley system on the Lake Ontario Plain. In all systems, till, lake silt and clay, and bedrock knobs are interspersed within sand and gravel. Confining conditions occur locally in all systems and are extensive in some. Each area is partly urbanized, contains industry, and has an extensive transportation network, all of which may be sources of contamination. Well yields for public and industrial supply are commonly several hundred gallons per minute. More than 90 maps depict surficial geology, soil-zone permeability, aquifer dimensions and potential, water levels, and land use; tables of ground-water use, population served, and a summary of contamination potential are also given. Major concern in all areas is the potential for contamination and, in a few areas, adequacy of supply. The areas described are Schenectady, Endicott-Johnson City, Ramapo and Mahwah Rivers, Irondequoit Creek, Jamestown, Elmira-Horseheads-Big Flats, Cortland, Homer-Preble, Sprout and Fishkill Creeks, Fulton, and south Fallsburg-Woodbourne. (USGS)

  5. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported

  6. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  7. Desorption behavior of carbon tetrachloride and chloroform in contaminated low organic carbon aquifer sediments.

    PubMed

    Riley, Robert G; Szecsody, James E; Sklarew, Debbie S; Mitroshkov, Alex V; Gent, Philip M; Brown, Christopher F; Thompson, Christopher J

    2010-05-01

    Slow release behavior of carbon tetrachloride (CCl(4)) and chloroform (CHCl(3)) in low organic carbon (<0.1%) deep aquifer sediments was quantified by 1-D column desorption studies with intact cores. The compounds had been in contact with the sediments for 30years. Comparison of the CCl(4) distribution coefficient (K(d)) from this study with those from short contact time experiments suggested that CCl(4)K(d)'s calculated from site contaminated sediments of long contact time are likely a factor of 10 or more higher than those calculated from short contact-time lab experiments. A significant portion of the CHCl(3) mass (55% to more than 90%) was resistant to aqueous desorption in sediments with clay contents ranging from 2.0% to 36.7% and organic carbon content ranging from 0.017% to 0.088%. In contrast, CCl(4) showed greatest mass retention (31% or more) only in the highest clay and organic carbon content sediment. Relatively easy solvent extraction of the residual masses of CCl(4) and CHCl(3) from the sediments indicated the compounds were not permanently sequestered. Tracer breakthrough in columns was well behaved, indicating interparticle diffusion was not causing the slow release behavior. Diffusion out of intraparticle pores is suggested to be the main process governing the observed behavior although, diffusion out of natural organic matter cannot be ruled out as a potential contributing factor. The half-life for release of the slow fraction of CHCl(3) mass from sediments was estimated to be in the range of weeks (100h) to months (1100h). Neither CCl(4) or CHCl(3) were detected at measurable levels in the column effluent of one of the sediments even though a significant mass fraction of CHCl(3) was found present on the sediment following desorption suggesting that our estimate of hundreds to thousands of hours for complete release of CHCl(3) masses from such sediment is conservative.

  8. Asymmetric dipole-flow test in a fractured carbonate aquifer.

    PubMed

    Halihan, Todd; Zlotnik, Vitaly A

    2002-01-01

    In this study, a new method-the asymmetric dipole-flow test-is proposed and tested for characterization of conductive properties and structure of fractured aquifers. Analytical solutions were developed and then used for interpretation of a modification of the dipole-flow test with a single packer at the Bissen Quarry test site (Wisconsin, USA). The asymmetric dipole-flow tests were conducted by packing a well at various elevations, and fluids were pumped from the upper section (chamber) of the well to the lower section (chamber). The head was then monitored at 11 observation points and in both sections of the well, and the conductivities of the well segments were determined. The tests at seven packer elevations in the well were rapid (less than one hour to reach steady state). The asymmetric dipole-flow test demonstrates the potential to quantify heterogeneities of a fractured aquifer and delineate the applicability of the continuum and discrete approaches for conceptualization of ground water flow.

  9. Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Worthington, Stephen R. H.; Smart, C. Christopher; Ruland, Wilf

    2012-09-01

    SummaryPreferential flow through solutionally enlarged fractures can be a significant influence on travel times and source area definition in carbonate aquifers. However, it has proven challenging to step beyond a conceptual model to implementing, parameterizing and testing an appropriate numerical model of preferential flow. Here both porous medium and preferential flow models are developed with respect to a deadly contamination of the municipal groundwater supply at Walkerton, Ontario, Canada. The preferential flow model is based on simple orthogonal fracture aperture and spacing. The models are parameterized from borehole, gamma, flow and video logs resulting in a two order of magnitude lower effective porosity for the preferential flow model. The observed hydraulic conductivity and effective porosity are used to predict groundwater travel times using a porous medium model. These model predictions are compared to a number of independent estimates of effective porosity, including three forced gradient tracer tests. The results show that the effective porosity and hydraulic conductivity values closely match the preferential flow predictions for an equivalent fracture network of ∼10 m spacing of 1 mm fractures. Three tracer tests resulted in groundwater velocities of hundreds of meters per day, as predicted when an effective porosity of 0.05% was used in the groundwater model. These velocities are consistent with a compilation of 185 tracer test velocities from regional Paleozoic carbonate aquifers. The implication is that carbonate aquifers in southern Ontario are characterized by relatively low-volume dissolutionally-enlarged fracture networks that dominate flow and transport. The porous matrix has large storage capacity, but contributes little to transport. Numerical models based on much higher porosities risk significantly underestimating capture zones in such aquifers. The hydraulic conductivity - effective porosity prediction framework provides a general

  10. The relationship of uranium isotopes to oxidation/reduction in the Edwards carbonate aquifer of Texas

    NASA Astrophysics Data System (ADS)

    Cowart, James B.

    1980-07-01

    The concentration of dissolved uranium and 234U/ 238U alpha activity ratio ("A.R.") were determined in water samples from 23 locations in the Edwards carbonate aquifer of south central Texas by isotope dilution methods and alpha spectrometry. This aquifer consists of two parts, an updip oxidized portion and a downdip reduced portion. At some places the boundary is associated with faulting and at others it is not. The boundary between the two portions of the aquifer can be located by an abrupt change in chemical properties of the water such as a large increase in concentration of Cl -, SO 42- and total dissolved solids, the presence of H 2S and a decrease in Eh in moving from updip to downdip. Compared with the oxidized samples, the uranium concentration is much lower and the A.R. higher in the reduced samples so that the uranium from each portion falls in a distinct field. The oxidized aquifer samples show very little variation in the measured uranium parameters even though, in some cases, there is evidence that the water has flowed through some tens of kilometers of aquifer. Samples collected near the boundary at those places not associated with faulting yield dissolved uranium values which fall in neither field and which, for the most part, cannot result from mixing of the oxidized and reduced waters. These samples probably result from changes in location of the oxidation-reduction boundary.

  11. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    PubMed

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.

  12. Factors affecting occurrence and distribution of selected contaminants in ground water from selected areas in the Piedmont Aquifer System, Eastern United States, 1993-2003

    USGS Publications Warehouse

    Lindsey, Bruce D.; Falls, W. Fred; Ferrari, Matthew J.; Zimmerman, Tammy M.; Harned, Douglas A.; Sadorf, Eric M.; Chapman, Melinda J.

    2006-01-01

    Results of ground-water sampling from 255 wells and 19 springs in 11 studies done by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program within the Piedmont Aquifer System (PAS) were analyzed to determine the factors affecting occurrence and distribution of selected contaminants. The contaminants, which were selected on the basis of potential human-health effects, included nitrate, pesticides, volatile organic compounds (VOCs), and radon.The PAS was subdivided on the basis of the general rock type of the aquifers into three areas for the study—crystalline, carbonate, and siliciclastic. The 11 studies were designed to areally represent an individual aquifer rock type and overall are representative of the PAS in their distribution; 7 studies are in the crystalline-rock aquifers, 3 studies are in the siliciclasticrock aquifers, and 1 study is in the carbonate-rock aquifers. Four of the studies were focused on land use, 1 in an agricultural area and 3 in urban areas. The remaining studies had wells representing a range of land-use types.Analysis of results of nitrate sampling indicated that in 8 of the 10 areas where nitrate concentrations were measured, median concentrations of nitrate were below 3 mg/L (milligrams per liter); 2 of the 10 areas had statistically significant higher median concentrations when compared to the other 8 areas. The agricultural land-use study in the carbonate-rock aquifer in the Lower Susquehanna River Basin had the highest median nitrate concentration (11 mg/L), and 60 percent of the wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L. The major aquifer study in the crystalline-rock aquifer of the Lower Susquehanna River Basin Study Unit had the second-highest median nitrate concentration. Nitrate concentrations were positively correlated to the percentage of agricultural land use around the well, the total input of nitrogen from all sources, dissolved

  13. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    SciTech Connect

    Hershey, Ronald L.; Fereday, Wyatt

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  14. The character of organic carbon in recharge water and arsenic mobilization in Bangladesh aquifers

    NASA Astrophysics Data System (ADS)

    Pracht, L. E.; Fussell, A. H.; Polizzotto, M.; Badruzzaman, A. M.; Ali, M. A.; Neumann, R. B.

    2012-12-01

    In Bangladesh, arsenic-contaminated groundwater, used for both drinking and irrigation supplies, negatively affects the health of millions of people. Past work at our site in Munshiganj suggests that current patterns of arsenic concentration in the aquifer are related to groundwater flow and recharge chemistry. Constructed ponds and groundwater-irrigated rice fields serve as the primary aquifer recharge sources, with pond recharge evolving into high-arsenic groundwater and rice field recharge evolving into low-arsenic groundwater. The composition of these water types vary in concentrations and character of dissolved organic carbon, a presumed key component in the mechanism of arsenic release from sediments. Here we present results from an experiment-based laboratory study that directly tests the role of organic carbon character and bioavailability on arsenic mobilization. Incubation experiments using sediment samples collected from Bangladesh and waters with different carbon sources (e.g., pond and rice field recharge water and artificial water with model carbon compounds) were conducted to show the phase transformations carbon undergoes during arsenic mobilization processes, to isolate the carbon components and characteristics most responsible for mobilization reactions, and to investigate the importance of secondary chemical constituents for completion of these physiochemical reactions. Water, gas, and sediment samples collected from the incubations were analyzed for nutrient, metal, anion, and carbon concentrations, as well as carbon character. The results clarify the chemical components most critical in arsenic mobilization and provide insight into the in situ chemical reactions occurring in the aquifer. Moreover, this better chemical understanding helps elucidate the potential impact of altered recharge patterns and recharge chemistry on arsenic concentrations of Bangladeshi groundwater supplies.

  15. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and

  16. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers.

    PubMed

    Cardoso, S S S; Andres, J T H

    2014-12-11

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams will transport it efficiently to depth, but this may not be so. Here, we assess theoretically and experimentally the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. These results challenge our view of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon free.

  17. Water Quality in the Nation's Streams and Aquifers Overview of Selected Findings, 1991-2001

    USGS Publications Warehouse

    Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2004-01-01

    This report accompanies the publication of the last 15 of 51 river basin and aquifer assessments by the USGS National Water-Quality Assessment (NAWQA) Program during 1991?2001. It highlights selected water-quality findings of regional and national interest through examples from river basins and aquifer systems across the Nation. Forthcoming reports in the USGS series ?The Quality of Our Nation?s Waters? will present comprehensive national syntheses of information collected in the 51 study units on pesticides in water, sediment, and fish; volatile organic compounds in major aquifers used for domestic and public supply; nutrients and trace elements in streams and ground water; and aquatic ecology. This report, summaries of the 51 water-quality assessments, and a 1999 national synthesis of information on nutrients and pesticides, are available free of charge as USGS Circulars and on the World Wide Web at http://water.usgs.gov/nawqa/nawqa_sumr.html.

  18. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    USGS Publications Warehouse

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural

  19. Methodology of hydrogeological characterization of deep carbonate aquifers as potential reservoirs of groundwater. Case of study: the Jurassic aquifer of El Maestrazgo (Castellón, Spain)

    NASA Astrophysics Data System (ADS)

    Mejías, M.; Garcia-Orellana, J.; Plata, J. L.; Marina, M.; Garcia-Solsona, E.; Ballesteros, B.; Masqué, P.; López, J.; Fernández-Arrojo, C.

    2008-04-01

    A methodology for the characterization of deep carbonate aquifers has been developed and applied to El Maestrazgo Jurassic aquifer in Castellón, Spain. Characterization of these aquifer formations, located at more than 300 m deep, consisted of a previous phase of compilation, analysis and synthesis of the existing information about the area, followed by a coordinated combination of different speciality studies: geology, stratigraphy, structural analysis, hydrogeology, hydrochemistry, geophysics and remote sensing. Geological studies included geological mapping, definition of stratigraphical units and facies and structural analysis. The aim of the hydrogeology study was to define aquifer formations, recharge area, aquifer points inventory and groundwater flow directions for the establishment of piezometric and water quality observation nets. Special techniques were applied, like thermal infrared aerial images and the evaluation of submarine groundwater discharge by means of natural radium isotopes. Hydrochemical techniques, including majority elements characterization and stable isotopes (18O, 2H and 3H) determination, allowed classifying hydrochemical facies and establishing a renewal pattern for water within the system. Geophysics was useful in determining the aquifer geometry, the features of the basement and the petrophysical characteristics of the geological formations. Preliminary results show an important tectonic complexity and the possibilities for groundwater uses in the area of study.

  20. Saline aquifer storage of carbon dioxide in the Sleipner project

    SciTech Connect

    Kongsjorden, H.; Kaarstad, O.; Torp, T.A.

    1998-07-01

    The offshore gas field named Sleipner--after the mythological horse with eight legs--is situated right in the middle of the North Sea, near the border line between United Kingdom and Norway. The distance from the nearest town on the Norwegian coast, Stavanger, is 240 km. Together with the even larger Troll gas field further north, Sleipner will produce a larger part of Norway`s gas supply to the European Union. It will function as a hub for a number of pipelines transferring this gas from north to south. The field is licensed to the companies Statoil, Esso Norge, Norsk Hydro, Elf Petroleum Norge and TOTAL Norge; with Statoil as field operator. The field was first discovered in 1974 with the gas containing reservoirs laying around 3,500 m under the sea bed. The natural gas coming from the reservoir contains 9% CO{sub 2}, while customer defined maximum is 2.5%. The extracted CO{sub 2} will be injected into the Utsira aquifer some 1000 meters under the sea through a separate injection well, instead of venting the nearly 1 million tonnes of CO{sub 2} yearly to the atmosphere.

  1. Conceptual model of the Great Basin carbonate and alluvial aquifer system

    USGS Publications Warehouse

    Heilweil, Victor M.; Brooks, Lynette E.

    2011-01-01

    A conceptual model of the Great Basin carbonate and alluvial aquifer system (GBCAAS) was developed by the U.S. Geological Survey (USGS) for a regional assessment of groundwater availability as part of a national water census. The study area is an expansion of a previous USGS Regional Aquifer Systems Analysis (RASA) study conducted during the 1980s and 1990s of the carbonate-rock province of the Great Basin. The geographic extent of the study area is 110,000 mi2, predominantly in eastern Nevada and western Utah, and includes 165 hydrographic areas (HAs) and 17 regional groundwater flow systems.A three-dimensional hydrogeologic framework was constructed that defines the physical geometry and rock types through which groundwater moves. The diverse sedimentary units of the GBCAAS study area are grouped into hydrogeologic units (HGUs) that are inferred to have reasonably distinct hydrologic properties due to their physical characteristics. These HGUs are commonly disrupted by large-magnitude offset thrust, strike-slip, and normal faults, and locally affected by caldera formation. The most permeable aquifer materials within the study area include Cenozoic unconsolidated sediments and volcanic rocks, along with Mesozoic and Paleozoic carbonate rocks. The framework was built by extracting and combining information from digital elevation models, geologic maps, cross sections, drill hole logs, existing hydrogeologic frameworks, and geophysical data.

  2. Carbonate microstructure determination by inversion of acoustic and electrical data: Application to a south Florida aquifer

    NASA Astrophysics Data System (ADS)

    Kazatchenko, E.; Markov, M.; Mousatov, A.; Parra, J.

    2006-05-01

    We demonstrate the feasibility of a petrophysical inversion technique to reconstruct the secondary pore-space microstructure in carbonate double-porosity aquifers. This technique consists of the joint inversion of acoustic (P- and S-wave velocities) and electrical resistivity well logs using a unified pore-space model and a self-consistent effective media approximation for theoretically calculating the elastic moduli and electrical conductivity. We invert experimental well log data from a South Florida aquifer in the western Hillsboro Basin of Palm Beach County, Florida. The inversion results allow us to find the detailed vertical distribution of primary and secondary porosities in the carbonate aquifer formation associated with high total porosity. The secondary-porosity system of this formation has a complex microstructure and corresponds to a model with two types of pore shapes: cracks approximated by flattered ellipsoids, and spheroid-shaped vugs. The quantitative pore-structure characteristics agreed with the qualitative description of computed tomography core images and optical microscope thin sections. The relationship between primary and secondary porosities is an important and informative characteristic of carbonate formations that demonstrates a good correlation with nuclear magnetic resonance-derived permeability. This suggests that knowledge of a formation's different porosities can be used to infer relative formation permeability, based on a joint inversion of acoustic and resistivity well logs.

  3. Assessing groundwater availability in a folded carbonate aquifer through the development of a numerical model

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2015-04-01

    The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the

  4. Selected hydrogeologic data for the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers in the Black Hills area, South Dakota

    USGS Publications Warehouse

    Galloway, J.M.

    1999-01-01

    This report presents selected hydrogeologic data on wells and springs in the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers in the Black Hills area of western South Dakota. The data were used to create potentiometric maps for these five aquifers.

  5. Megaporosity and permeability of Thalassinoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity aquifer system, Texas

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael C.

    2012-01-01

    Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.

  6. A groundwater conceptual model and karst-related carbon sink for a glacierized alpine karst aquifer, Southwestern China

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Liu, Zaihua; Yang, Jianwen; Yang, Rui

    2015-10-01

    In the Jade Dragon Snow Mountain (JDSM) region, Yunnan Province, SW China, an extensive hydrochemical and stable isotopic study of a glacierized alpine karst aquifer was conducted during the period, 2011-2014. The objectives of the study were: first, to establish a conceptual hydrogeological model of the karst groundwater system; second, to estimate the proportion of extra glacier melt water infiltrating the karst aquifer that is being induced by the regional climate warming; third, to calculate the karst-related flux of carbon into the karst aquifer. Knowledge of the local hydrogeological background from previous work was the starting point of the hydrochemical and stable isotopic study. Some representative spring waters and recharge waters (i.e. glacier melt water and rainwater) were investigated both spatially and temporally by hydrochemical and isotopic techniques, including analysis of major and some minor ions and O and H stable isotopes. A conceptual hydrogeological model of a fracture-diffuse flow karst groundwater aquifer was proposed. The proportion of glacier melt water infiltrating into the karst aquifer was estimated by using the karst spring as a natural pluviometer, and with stable isotope analysis. Results show that (1) the JDSM karst aquifer is a diffuse flow system; (2) it has a number of discharge areas, and the Jinsha River is the karst drainage base level; (3) the proportion of the glacier melt water penetrating the karst aquifer is 29%; and (4) the karst-related carbon sink is 26.67 ± 3.44 t km-2 a-1 (as CO2), which is lower than that in non-glacierized karst aquifers but over ten times larger than the carbon sink flux from silicate weathering in non-karst areas, showing the control of both climate and lithology on the rock weathering-related carbon sink and the significance of carbonate weathering in the global carbon cycle.

  7. Hydrogeology and ground-water availability in the carbonate aquifer system of Frederick County, Virginia

    USGS Publications Warehouse

    Harlow, George E.; Orndorff, Randall C.; Nelms, David L.; Weary, David J.; Moberg, Roger M.

    2005-01-01

    The carbonate aquifer system of the northern Shenandoah Valley provides an important water supply to local communities, including Frederick County, Va., which depends on ground water as a source of water supply. The county and surrounding area are undergoing increased urbanization, and increased demands on the carbonate aquifer system are expected. A study was conducted between October 2000 and March 2004 by the U.S. Geological Survey (USGS), in cooperation with the County of Frederick, Va., to describe the hydrogeology and ground-water availability in the carbonate aquifer system underlying the county. The study area encompasses about 25 percent (105 square miles) of the county that is underlain by carbonate bedrock. The carbonate aquifer system of Frederick County is in the Shenandoah Valley region of the Valley and Ridge Physiographic Province. Approximately 10,000 feet of folded and fractured Middle Cambrian to Upper Ordovician sedimentary rocks are exposed and are overlain by Pleistocene (?) and Holocene surficial deposits. All geologic units in the study area are considered to be aquifers. The geologic units are generally unconfined, fractured-rock aquifers that are recharged by precipitation and discharge locally to streams and springs, and by evapotranspiration. Stream density in the carbonate study area is less than in the remainder of the county, which is underlain by siliciclastic rock units. Most streams flow normal to strike (from the northwest towards the southeast) across the study area. These streams are characterized by shallow incisement and are usually limited to a single stream channel. In the southern third of the study area, streams flow parallel to strike (from the northeast towards the southwest) towards the deeply intrenched Cedar Creek. Springs are commonly located at the start of flows for all streams in the carbonate study area, and spring discharges are often a large portion of the streamflow (especially during drought conditions). The

  8. Groundwater pollution risk assessment. Application to different carbonate aquifers in south Spain

    NASA Astrophysics Data System (ADS)

    Jimenez Madrid, A.; Martinez Navarrete, C.; Carrasco Cantos, F.

    2009-04-01

    Water protection has been considered one of the most important environmental goals in the European politics since the 2000/60/CE Water Framework Directive came into force in 2000, and more specifically in 2006 with the 2006/118/CE Directive on groundwater protection. As one of the necessary requirements to tackle groundwater protection, a pollution risk assessment has been made through the analysis of both the existing hazard human activities map and the intrinsic aquifer vulnerability map, by applying the methodologies proposed by COST Action 620 in an experimental study site in south Spain containing different carbonated aquifers, which supply 8 towns ranging from 2000 to 2500 inhabitants. In order to generate both maps it was necessary to make a field inventory over a 1:10000 topographic base map, followed by Geographic Information System (GIS) processing. The outcome maps show a clear spatial distribution of both pollution risk and intrinsic vulnerability of the carbonated aquifers studied. As a final result, a map of the intensity of groundwater pollution risk is presented, representing and important base for the development of a proper methodology for the protection of groundwater resources for human consumption protection. Keywords. Hazard, Vulnerability, Risk, SIG, Protection

  9. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    USGS Publications Warehouse

    Michael Sukop,; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  10. Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.

    PubMed

    Sukop, Michael C; Cunningham, Kevin J

    2016-03-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. © 2015, National Ground Water Association.

  11. Uncertainty assessment of carbon dioxide storage capacity evaluation in deep saline aquifer:a case study in Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, X.

    2012-12-01

    Carbon dioxide Capture and Storage techniques (CCS) are one of the effective measures for reduction Carbon dioxide emissions to the atmosphere to mitigate the global warming. Among the Carbon dioxide geological storage options, deep saline aquifers offer the largest storage potential and are widely distributed throughout the Earth. Implementation of carbon dioxide capture and geological storage to reduce greenhouse gas emissions requires carbon dioxide storage capacity in deep saline aquifers. The storage capacity estimation depends on the storage trapping mechanisms and the availability, resolution and certainty of data. There are five different types of trapping mechanisms in deep saline aquifers namely structural and stratigraphic trapping, residual gas trapping, solubility trapping, mineral trapping and hydrodynamic trapping in which storage capacity by solubility trapping is the largest. The carbon dioxide storage capacities in deep saline aquifer can be evaluated by the method recommended by Carbon Sequestration Leadership Forum (CSLF), which mainly depends on the area of study area, thickness and porosity of sandstone, density and carbon dioxide content (mass fraction) in formation water at initial and saturated state. Hydrogeological parameters in aquifer are uncertainty because of uncertainty of measurement and the spatial variety, which leads evaluation uncertainty of carbon dioxide storage capacity. In this paper, acceptance of evaluated carbon dioxide storage capacity in deep saline aquifer caused by hydrological parameters was discussed based on geostatistical methods and stochastic simulation. The stratum named Yaojialing group in the center depressed area of Songliao Basin was chosen as study area because of the rich data. The porosity of sandstone, thickness ration of sandstone to stratum and the total dissolved solid in formation water were regarded as the main source of the uncertainty of carbon dioxide storage capacity evaluation in deep saline

  12. Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer

    USGS Publications Warehouse

    Kinner, N.E.; Harvey, R.W.; Blakeslee, K.; Novarino, G.; Meeker, L.D.

    1998-01-01

    Time series incubations were conducted to provide estimates for the size selectivities and rates of protistan grazing that may be occurring in a sandy, contaminated aquifer. The experiments involved four size classes of fluorescently labeled groundwater bacteria (FLB) and 2- to 3-??m-long nanoflagellates, primarily Spumella guttula (Ehrenberg) Kent, that were isolated from contaminated aquifer sediments (Cape Cod, Mass.). The greatest uptake and clearance rates (0.77 bacteria flagellate-1 ?? h-1 and 1.4 nl. flagellate-1 ?? h-1, respectively) were observed for 0.8- to 1.5-??m- long FLB (0.21-??m3 average cell volume), which represent the fastest growing bacteria within the pore fluids of the contaminated aquifer sediments. The 19:1 to 67:1 volume ratios of nanoflagellate predators to preferred bacterial prey were in the lower end of the range commonly reported for other aquatic habitats. The grazing data suggest that the aquifer nanoflagellates can consume as much as 12 to 74% of the unattached bacterial community in 1 day and are likely to have a substantive effect upon bacterial degradation of organic groundwater contaminants.

  13. Hydrogeochemical study of shallow carbonate aquifers, Rameswaram Island, India.

    PubMed

    Kumar, S Krishna; Chandrasekar, N; Seralathan, P; Godson, Prince S; Magesh, N S

    2012-07-01

    Groundwater quality assessment has been carried out based on physicochemical parameters (pH, EC, TDS, CO(3), HCO(3), Cl, SO(4), PO(4), NO(2), Ca(+2), Mg(+2), Na(+) and K(+)) and metal concentration in the Rameswaram Island from 25 bore wells. The Langelier Saturation Index of the groundwater shows positive values (63% samples) with a tendency to deposit the CaCO(3) in the majority of water samples. Scatter plot (Ca + Mg/HCO(3)) suggests carbonate weathering process, which is the main contributor of Ca(2+), Mg(2+) and HCO(3) ions to the water. Gibbs diagram suggests rock-water interaction dominance and evaporation dominance which are responsible for the change in the quality of water in the study area. NaCl and mixed CaNaHCO(3) facies are two main hydrogeochemical facies of groundwater. Mathematical calculations and graphical plots of geochemical data reveal that the groundwater of Rameswaram Island is influenced by natural weathering of rocks, anthropogenic activities and seawater intrusion due to over exploitation. Weathering and dissolution of carbonate and gypsum minerals also control the concentration of major ions (Ca(+2), Mg(+2), Na(+) and K(+)) in the groundwater. The nutrient concentration of groundwater is controlled to a large extent by the fertilizers used in agricultural lands and aquaforms. Comparison of geochemical data shows that majority of the groundwater samples are suitable for drinking water and irrigation purposes.

  14. Microbiological quality of water from noncommunity supply wells in carbonate and crystalline aquifers of Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rasberry, Jennifer S.; Zimmerman, Tanny M.

    2002-01-01

    Samples were collected from 59 noncommunity water supplies in the Commonwealth of Pennsylvania from September 2000 to January 2001 and analyzed for pathogens and microbiological indicator organisms. The pathogens sampled were culturable viruses and Helicobacter pylori (H. pylori). The indicator organisms sampled were total coliform, Escherichia coli (E. coli), Clostridium perfringens (C. perfringens), somatic coliphage, male- specific coliphage, and enterococcus. The two primary areas sampled for the project completed by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), were carbonate aquifers and crystalline aquifers. The results of all sampling showed culturable viruses were detected in 8 percent of the wells, H. pyloriin 7 percent of the wells, E. coli in 12 percent of the wells, total coliform in 46 percent of the wells, C. perfringens in 15 percent of the wells, somatic coliphage in 8 percent of the wells, male-specific coliphage in 5 percent of the wells, and enterococcus in 14 percent of the wells. Carbonate aquifers tended to have higher detection rates for the pathogens and indicators sampled than the crystalline aquifers. Detections of the pathogens and indicator organisms were not related statistically to the amounts of urban, agricultural, or forested area in a 1,500-foot radius around the sampled well. Somatic and male-specific coliphage showed the best relation to occurrence of culturable viruses. Culturable viruses and H. pylori were detected in wells in which no indicator organisms were present; therefore, none of the indicator organisms sampled provide complete assurance of pathogenfree water. The best predictive tool for virus screening was a combination of indicator organisms.

  15. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Post, Vincent E. A.; Song, Xianfang

    2015-12-01

    Seawater intrusion (SWI) has led to salinization of fresh groundwater reserves in coastal areas worldwide and has forced the closure of water supply wells. There is a paucity of well-documented studies that report on the reversal of SWI after the closure of a well field. This study presents data from the coastal carbonate aquifer in northeast China, where large-scale extraction has ceased since 2001 after salinization of the main well field. The physical flow and concomitant hydrogeochemical processes were investigated by analyzing water level and geochemical data, including major ion chemistry and stable water isotope data. Seasonal water table and salinity fluctuations, as well as changes of δ2H-δ18O values of groundwater between the wet and dry season, suggest local meteoric recharge with a pronounced seasonal regime. Historical monitoring testifies of the reversibility of SWI in the carbonate aquifer, as evidenced by a decrease of the Cl- concentrations in groundwater following restrictions on groundwater abstraction. This is attributed to the rapid flushing in this system where flow occurs preferentially along karst conduits, fractures and fault zones. The partially positive correlation between δ18O values and TDS concentrations of groundwater, as well as high NO3- concentrations (>39 mg/L), suggest that irrigation return flow is a significant recharge component. Therefore, the present-day elevated salinities are more likely due to agricultural activities rather than SWI. Nevertheless, seawater mixing with fresh groundwater cannot be ruled out in particular where formerly intruded seawater may still reside in immobile zones of the carbonate aquifer. The massive expansion of fish farming in seawater ponds in the coastal zone poses a new risk of salinization. Cation exchange, carbonate dissolution, and fertilizer application are the dominant processes further modifying the groundwater composition, which is investigated quantitatively using hydrogeochemical

  16. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    PubMed Central

    Li, Dong; Sharp, Jonathan O.; Saikaly, Pascal E.; Ali, Shahjahan; Alidina, Mazahirali; Alarawi, Mohammed S.; Keller, Stephanie; Hoppe-Jones, Christiane

    2012-01-01

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones. PMID:22798375

  17. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    USGS Publications Warehouse

    Plummer, L.N.; Sprinkle, C.L.

    2001-01-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in ??18O of approximately 2.0%o.

  18. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Sauter, Martin; Licha, Tobias

    2015-02-15

    The increasing pressure on drinking water resources necessitates an efficient management of potential and actual drinking water resources. Karst aquifers play a key role in the supply of the world's population with drinking water. Around one quarter of all drinking water is produced from these types of aquifers. Unfortunately due to the aquifer characteristics with extremely high hydraulic conductivities and short residence times, these systems are vulnerable to contamination. For successful management, a fundamental understanding of mass transport and attenuation processes with respect to potential contaminants is vital. In this study, a multitracer experiment was performed in a karst aquifer in SW-Germany for determining the attenuation capacity of a karst environment by assessing the environmental fate of selected relevant micropollutants. Uranine, acesulfame and carbamazepine were injected into a sinkhole as reference tracers together with the reactive compounds atenolol, caffeine, cyclamate, ibuprofen and paracetamol (also known as acetaminophen). The breakthrough of the tracers was monitored at a karst spring at a distance of ca. 3 km. The breakthrough curves of the reactive compounds were interpreted relative to the reference substances. No significant retardation was found for any of the investigated micropollutants. The determined half-lives of the reactive compounds range from 38 to 1,400 h (i.e. persistent within the investigation period) in the following order (from high to no observed attenuation): paracetamol>atenolol≈ibuprofen>caffeine≫cyclamate. The attenuation rates are generally in agreement with studies from other environmental compartments. The occurrence of the biotransformation product atenolol acid served as evidence for in-situ biodegradation within the aquifer system. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  20. STABLE CARBON ISOTOPES OF HCO//3 IN THE AQUIA AQUIFER, MARYLAND: EVIDENCE FOR AN ISOTOPICALLY HEAVY SOURCE OF CO//2.

    USGS Publications Warehouse

    Chapelle, Francis H.; Knobel, LeRoy L.

    1985-01-01

    Identifying sources and sinks of dissolved inorganic carbon species is an important step in understanding the geochemistry of ground-water systems. This is particularly important for Atlantic Coastal Plain aquifers because bicarbonate (HCO//3** minus ) is frequently the major dissolved anion. The purpose of this paper is to document the stable carbon isotope composition of dissolved inorganic carbon in the Aquia aquifer, Maryland, and to use this data to help identify sources and sinks of dissolved HCO//3** minus . Subjects covered include hydrogeology, ground-water chemistry, sources and sinks, and others. Refs.

  1. Selected hydrologic data for Salt Lake Valley, Utah, 1990-92, with emphasis on data from the shallow unconfined aquifer and confining layers

    USGS Publications Warehouse

    Thiros, Susan A.

    1992-01-01

    Hydrologic data were collected from wells in the Salt Lake Valley, Utah, from 1990 to 1992, to better understand the hydrologic system in the valley. Most of the data collected are from 36 monitoring wells drilled in June and July 1990 and March and May 1991 using a hollow-stem auger. These wells range from 15.0 to 129.5 feet deep and are completed in the shallow unconfined aquifer, an underlying confining layer, or both. Data from public supply wells and other existing wells completed in aquifers below the confining layers near these monitoring wells are presented in order to compare data from those wells with data from the shallow unconfined aquifer and the underlying confining layers.Field data collected from selected wells and drill holes include well-completion information, lithologic logs, and water-level and field water-quality measurements. Water samples collected from monitoring wells drilled in 1990 and 1991 and from selected existing wells were analyzed for inorganic constituents, trace metals in unfiltered water, volatile organic compounds, organochlorine pesticides, polychlorinated biphenyls, and radionuclides. Core samples were collected from selected monitoring wells drilled in 1990 and 1991 and analyzed for geochemical and geotechnical properties. Cation exchange capacity, carbon concentration, and the concentration of selected elements in core material are presented. Particle size, dry density, moisture content, porosity, hydraulic conductivity, initial void ratio, specific storage, and other properties determined for material in cores from selected monitoring wells also are listed.

  2. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  3. Potential Risks of Freshwater Aquifer Contamination from Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Little, M. G.; Jackson, R. B.

    2009-12-01

    Carbon Capture and Storage (CCS) represents a suite of technologies to separate, compress, transport and securely store CO2 produced from power plants and other industrial facilities. Currently, power plant flue gasses containing CO2 are released directly to the atmosphere where they contribute to the steady rise in atmospheric CO2 and thus climate change. The ultimate goal of CCS is to prevent this CO2 from reaching the atmosphere by securing it underground; however, a full understanding of the associated environmental risks is needed before large-scale implementation is feasible and generally accepted by the public. Deep saline aquifers hold the most promise for CCS, having long-term stability, the largest capacity in the U.S. and low leakage risk. Even so, levels of leakage acceptable for the prevention catastrophic climate change (<0.1 % annual leakage) may translate into tons of CO2 released from a given deep storage aquifer into intermediate and shallow strata. As freshwater aquifers used for drinking, industry and agriculture lie directly above many of the proposed CCS locations across the US and world, leaks may have the potential to negatively impact groundwater services. In this study, we access the potential risk of increasing heavy metal concentrations in shallower, drinking-water aquifers due to CO2 contamination. We have identified drinking-water aquifers with evidence of naturally occurring metals of health concern that overlie the most likely sites for CCS. Sediment samples from 4 aquifers that meet this criteria, Mahomet (Illinois), Ogallala (Texas), Columbia (Virginia) and Aquia (Maryland) have been subjected to an on-going, long-term CO2 contamination simulation. The simulated groundwater have been tested for a suite of elements (Cr, Mn, Ni, As, Se, Cd, Tl and Pb). Preliminary results show that CO2 can drive simulated groundwater concentrations of As and Cd to dangerous levels; however, these impacts are highly dependent on lithology. Preliminary

  4. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during

  5. Transport of zero-valent iron nanoparticles in carbonate-rich porous aquifers

    NASA Astrophysics Data System (ADS)

    Laumann, S.; Micic, V.; Hofmann, T.

    2012-04-01

    Use of nanoscale zero-valent iron (nZVI) for in situ dechlorination of chlorinated solvents in groundwater is a promising remediation technology, due to a high dechlorination efficiency of nZVI and possible applications in e.g., great depth or under above-ground infrastructure. The success of the in situ nZVI dechlorination strongly depends on the particle delivery to the contaminants. Previous studies reported a limited transport of nZVI through porous media (cm- to dm-range) and this has been recognized as one of the major obstacles in a widespread utilization of this technology (TRATNYEK & JOHNSON, 2006). Factors that limit the transport are particle aggregation and deposition onto the aquifer solids. Both depend on particle properties (e.g., size, shape, iron content, surface coating, surface charge), on concentrations of suspensions, and on site-specific parameters, such as the groundwater chemistry and the properties and inhomogeneity of the aquifer material. Adsorbed anionic polyelectrolyte coatings provide electrostatic double layer repulsions between negatively charged nZVI particles (SALEH ET AL., 2007), hindering their aggregation and also deposition on the negatively charged quartz surfaces (usually prevailing in aquifers). However, it is shown that the presence of surface charge heterogeneities in the aquifer effects the particle transport (JOHNSON ET AL., 1996). Carbonates, iron oxides, and the edges of clay minerals, for instance, carry a positive surface charge at neutral pH (often encountered in groundwater). This leads to a favorable deposition of negatively charged nZVI particles onto carbonates, metal oxide impurities or clay edges, and finally to a decreased particle transport. Considering the high proportion of carbonates commonly encountered in Alpine porous aquifers, in this study we aimed to evaluate the transport of commercially available polyelectrolyte coated nZVI (polyacrylic acid coated-nZVI, NANOIRON s.r.o., CZ) in both quartz and

  6. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    PubMed

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer.

  7. Hydrogeologic characterization of fractured carbonate aquifers employing ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Tsoflias, Georgios Padelis

    Ground-penetrating radar (GPR) surveying is proposed as a remote sensing method for high-resolution characterization of fractured carbonate aquifer hydrogeologic properties in three dimensions. Understanding a geologic formation's fluid flow properties is important to hydrogeologic and environmental studies and the petroleum industry. Fractured anisotropic carbonate aquifers are major sources of water supply. To predict flow in these aquifers, fracture network and rock matrix hydraulic properties must be characterized accurately in three dimensions. GPR is employed to investigate rock matrix and fracture hydraulic properties by direct imaging (reflection surveying), signal attribute analysis (velocity, amplitude and phase) and waveform analysis. Overlapping GPR surveys were collected over the fractured Byron Dolomite aquiferin Door County, Wisconsin. A high-resolution, single-offset 3-D volume and 2-D lines successfully imaged varying carbonate lithofacies, lithologic discontinuities, dissolution zones, bedforms and horizontal fractures (also referred to as bedding plane discontinuities). Prominent flow conduits were clearly identifiable in the GPR data volumes and delineated in three dimensions by distinct continuous reflections. Velocity analysis of common mid-point surveys identified cyclic velocity variations that correlate to cyclic alternating middle and inner shelf carbonate facies. Within each facies, velocity trends controlled by the volumetric water content of the rock matrix were resolved to 0.5 m vertically. Radar reflector amplitude variation up to one order of magnitude along known flow conduits suggested centimeter-scale conduit aperture variation, with considerable effects on flow properties. New data acquisition techniques exploiting the polarization properties of electromagnetic waves demonstrated that the location and orientation of areas of anisotropy (i.e. vertical fractures) can be determined by acquiring multi-azimuth data of varying

  8. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  9. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  10. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    SciTech Connect

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  11. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline

  12. Microbially-mediated Destabilization Of Sedimentary Organic Carbon: Isotopic Tracking of Carbon Movement in Laboratory Incubations of Glucose-amended Aquifer Sediment to Determine Priming Effects

    NASA Astrophysics Data System (ADS)

    Pracht, L. E.; Polizzotto, M.; Neumann, R. B.

    2016-12-01

    Arsenic-contaminated groundwater is a worldwide concern; the result of both geogenic and anthropogenic sources. In naturally-contaminated systems, organic carbon fueling reductive dissolution is considered to be the primary mechanism of mobilization of arsenic off sediment into groundwater. Previous laboratory incubations of aquifer sediment and groundwater collected from a contaminated subsurface system in Bangladesh revealed a pool of biologically available organic carbon mobilized from the sandy sediment. Results indicated that sediments can contain chemically labile organic carbon that is physically protected or otherwise inaccessible to microbial communities. Disturbance of the aquifer matrix could destabilize this pool of sedimentary organic carbon and fuel microbial reactions that mobilize contaminants such as arsenic. Here we present results from laboratory incubations conducted to test the "priming" hypothesis, that an influx of bioavailable surface-derived organic carbon can fuel microbial reactions that target the solid phase and destabilize sedimentary organic carbon, fueling further reactions. Waters containing a range of glucose concentrations were mixed with sediment collected from a Cambodian aquifer, and concentrations and isotopic signatures of carbon were tracked over time in each material phase. The aquifer sediment contained arsenic-bearing oxide minerals, and thus, dissolved concentrations of arsenic, iron, and manganese concentrations were also measured. Results conceptually demonstrate how both surface and sedimentary derived organic carbon can interact to fuel microbial reactions that mobilize arsenic and impact groundwater quality.

  13. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  14. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    USGS Publications Warehouse

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  15. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers.

    PubMed

    Satyawali, Yamini; Seuntjens, Piet; Van Roy, Sandra; Joris, Ingeborg; Vangeel, Silvia; Dejonghe, Winnie; Vanbroekhoven, Karolien

    2011-04-25

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.

  16. The economics of carbon dioxide transport by pipeline and storage in saline aquifers and oil reservoirs

    NASA Astrophysics Data System (ADS)

    McCoy, Sean T.

    Large reductions in carbon dioxide (CO2) emissions are needed to mitigate the impacts of climate change. One method of achieving such reductions is CO2 capture and storage (CCS). CCS requires the capture of carbon dioxide (CO2) at a large industrial facility, such as a power plant, and its transport to a geological storage site where CO2 is sequestered, if implemented, CCS could allow fossil fuels to be used with little or no CO2 emissions until alternative energy sources are more widely deployed. Large volumes of CO2 are most efficiently transported by pipeline and stored either in deep saline aquifers or in oil reservoirs, where CO2 is used for enhanced oil recovery (EOR). This thesis describes a suite of models developed to estimate the project-specific cost of CO2 transport and storage. Engineering-economic models of pipeline CO2 transport, CO2flood EOR, and aquifer storage were developed for this purpose. The models incorporate a probabilistic analysis capability that is used to quantify the sensitivity of transport and storage cost to variability and uncertainty in the model input parameters. The cost of CO2 pipeline transport is shown to be sensitive to the region of construction, in addition to factors such as the length and design capacity of the pipeline. The cost of CO2 storage in saline aquifers is shown to be most sensitive to factors affecting site characterization cost. For EOR projects, CO2 storage has traditionally been a secondary effect of oil recovery; thus, a levelized cost of CO2 storage cannot be defined. Instead EOR projects were evaluated based on the breakeven price of CO2 (i.e., the price of CO2 at which the project net present value is zero). The breakeven CO2 price is shown to be most sensitive to oil prices, losses of CO2 outside the productive zone of the reservoir, and reservoir pressure. Future research should include collection and aggregation of more specific data characterizing possible sites for aquifer storage and applications

  17. Update on the aquifer/wetlands restoration project at Utica, Nebraska, with recommendations for remapping of the carbon tetrachloride contamination in groundwater.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2010-04-20

    develop this treatment approach, additional groundwater sampling was conducted to update the distribution of carbon tetrachloride in groundwater identified in the preliminary studies in 1992-1993. In March 1998, detailed mapping of the carbon tetrachloride plume was performed by using the Argonne cone penetrometer (CPT) vehicle to collect groundwater samples for analyses for volatile organic compounds (VOCs) at 13 locations (PS01-PS09, PS12, PS16, PS17, PS19; Figure 1.2). The samples were collected in vertical profiles through the aquifer, at 10-ft intervals. The results of this 1998 study (Table 1.2) demonstrated that the three-dimensional distribution of carbon tetrachloride in the aquifer is complex, with multiple 'hot spots' occurring in the plume at various depths and distances along its length (Argonne 2000). In October 2002, the CCC/USDA requested that Argonne perform targeted groundwater sampling at Utica to document the migration of the carbon tetrachloride plume since the 1998 sampling event. In February 2003, vertical-profile groundwater sampling for VOCs analyses was conducted at 8 selected locations (PS01, PS04-PS07, PS12, PS19, PS20; Figure 1.2 and Table 1.3). The lateral and vertical configuration of the carbon tetrachloride plume, as identified in the 2003 study (Argonne 2003), is illustrated in Figures 1.3-1.7. On the basis of the 2003 groundwater sampling results, a remedial system employing four extraction wells (GWEX 1-GWEX 4), with groundwater treatment by spray irrigation and conventional air stripping, was implemented at Utica, with the concurrence of the CCC/USDA and the agencies identified in Table 1.1. The principal components of the Utica system (shown in Figure 1.8) are described briefly in Section 1.2. Operation of well GWEX4 and the associated air stripper began on October 29, 2004, and routine operation of wells GWEX1-GWEX3 and the spray irrigation treatment units began on November 22, 2004.

  18. Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach.

    PubMed

    Laabidi, Ezzeddine; Bouhlila, Rachida

    2015-07-01

    In the last few decades, hydrogeochemical problems have benefited from the strong interest in numerical modeling. One of the most recognized hydrogeochemical problems is the dissolution of the calcite in the mixing zone below limestone coastal aquifer. In many works, this problem has been modeled using a coupling algorithm between a density-dependent flow model and a geochemical model. A related difficulty is that, because of the high nonlinearity of the coupled set of equations, high computational effort is needed. During calcite dissolution, an increase in permeability can be identified, which can induce an increase in the penetration of the seawater into the aquifer. The majority of the previous studies used a fully coupled reactive transport model in order to model such problem. Romanov and Dreybrodt (J Hydrol 329:661-673, 2006) have used an alternative approach to quantify the porosity evolution in mixing zone below coastal carbonate aquifer at steady state. This approach is based on the analytic solution presented by Phillips (1991) in his book Flow and Reactions in Permeable Rock, which shows that it is possible to decouple the complex set of equation. This equation is proportional to the square of the salinity gradient, which can be calculated using a density driven flow code and to the reaction rate that can be calculated using a geochemical code. In this work, this equation is used in nonstationary step-by-step regime. At each time step, the quantity of the dissolved calcite is quantified, the change of porosity is calculated, and the permeability is updated. The reaction rate, which is the second derivate of the calcium equilibrium concentration in the equation, is calculated using the PHREEQC code (Parkhurst and Apello 1999). This result is used in GEODENS (Bouhlila 1999; Bouhlila and Laabidi 2008) to calculate change of the porosity after calculating the salinity gradient. For the next time step, the same protocol is used but using the updated porosity

  19. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    NASA Astrophysics Data System (ADS)

    Brown, C. J.; Schoonen, M. A. A.; Candela, J. L.

    2000-11-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O 2 and SO 42- in the aerobic zone, and to the reduction of SO 42- in the anaerobic zone; estimated rates of CO 2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO 2 production calculated from dissolved inorganic carbon mass transfer (2.55×10 -4 to 48.6×10 -4 mmol l -1 yr-1) generally were comparable to the calculated rates of CO 2 production by the combined reduction of O 2, Fe(III) and SO 42- (1.31×10 -4 to 15×10 -4 mmol l -1 yr-1). The overall increase in SO 42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in δ34S values along the flow path indicate that SO 42- loss through microbial reduction is exceeded by SO 42- gain through diffusion from sediments and through the oxidation of FeS 2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO 42--rich zones have been depleted by microbial reduction and resulted in localized SO 42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO 42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.

  20. Analysis of groundwater mining in two carbonate aquifers in Sierra de Estepa (SE Spain) based on hydrodynamic and hydrochemical data

    NASA Astrophysics Data System (ADS)

    Martos-Rosillo, Sergio; Rodríguez-Rodríguez, Miguel; Moral, Francisco; Cruz-Sanjulián, José Javier; Rubio, Juan Carlos

    2009-11-01

    The carbonate aquifers of Lora and Mingo form part of the hydrogeological unit of Sierra de Estepa (SE Spain). By means of time series analysis and a 1D numerical groundwater model, groundwater exploitation was quantified and the mean annual recharge in both systems was estimated (2001-2004). During this period, the Lora and Mingo aquifers received an average groundwater recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year, respectively, whereas an average of 0.34 × 106 m3/year and 0.21 × 106 m3/year, respectively, was extracted. These conditions led to a conspicuous lowering of the water table in both systems. In addition, the analysis of the evolution of the main hydrogeochemical parameters of the groundwater showed that the increased pumping rates produced an increase in total dissolved solids, and chloride and sodium ions in both aquifers. In the case of the Lora aquifer, the only ion that presented decreased levels was nitrate. The results show that groundwater pumping in both aquifers should not exceed the mean annual recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year in the Lora and Mingo aquifers, respectively. Nevertheless, it would be advisable to reduce pumping rates to below these values in order to restore piezometric levels and improve groundwater quality for different uses in the future.

  1. Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain)

    NASA Astrophysics Data System (ADS)

    Martos-Rosillo, S.; Moral, F.

    2015-09-01

    The carbonate aquifers of Sierra de Estepa, situated in southern Spain, are undergoing intensive groundwater exploitation. Consequently, the volume of pumping surpasses the average recharge for periods of several consecutive years. Under such conditions, nearby springs have either dried up or only function during short time periods, after very rainy episodes followed by long droughts. During the brief periods when the springs are active, their water and the water extracted by pumping are calcium bicarbonates, with a spatial-temporal variability of their physico-chemical characteristics that is mainly conditioned by the degree of functional karstification of each system. When the springs are inactive, the pumping water gradually increases in salinity and becomes HCO3ClCaNa, ClHCO3NaCa and ClNa. Under the new conditions caused by so much pumping, the main factors determining the hydrochemical changes are the mixing of waters and the subsequent reactions of dissolution-precipitation between (1) the recharge coming from rainwater, (2) the hypersaline inputs from the clay-evaporite aquitards situated on the edges and at the base of the aquifer, and (3) the water stored in each aquifer. The hydrochemical information acquired allowed us to characterize and model the groundwater of these aquifers, to study the causes of its great spatial and temporal variability, and explain the influence of exploitation. This research shows that making sustainable use of water resources associated with carbonate aquifers calls for sound knowledge of the relationship between the aquifer and other bodies of groundwater or surface water, the hydrochemical quality of these possible inputs, and the vulnerability of the aquifer to exploitation, which in turn is conditioned by the ratio between water reserves and recharge.

  2. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments

    USGS Publications Warehouse

    Piatt, Joseph J.; Backhus, Debera A.; Capel, Paul D.; Eisenreich, Steven J.

    1996-01-01

    Sorption experiments were conducted with naphthalene, phenanthrene, and pyrene on low organic carbon sediments at 4 and 26 °C using batch and column techniques. Experimental controls ensured the absence of biologic and photolytic activity and colloid-free solution supernatants. Equilibrium distribution coefficients (Kd) increased 1.1−1.6 times with a decrease in temperature of 22 °C. Fraction instantaneous sorption (F) values did not change significantly with a decrease in temperature of 22 °C. Desorption rate constants (k2) decreased 1.2−2.6 times with a decrease in temperature of 22 °C. Times to equilibrium were at least 40 h. The magnitude of observed Kd and k2 values and the effect of temperature on Kd (e.g., low enthalpy of sorption) are consistent with sorbate partitioning between the aqueous phase and small amounts of organic matter (foc = 0.02%) on the sediments. The temperature dependence of Kd and k2 may be small as compared to the effects of heterogeneities in field-scale aquifer systems. Thus, thermal gradients may not be of major importance in most saturated subsurface regimes when predicting solute transport. However, aquifer remediation pump-and-treat times could be decreased because increased temperature decreases both retardation and tailing.

  3. Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Naclerio, Gino; Petrella, Emma; Nerone, Valentina; Allocca, Vincenzo; de Vita, Pantaleone; Celico, Fulvio

    2008-09-01

    The aim of the research was to analyse the influence of a topsoil of pyroclastic origin on microbial contamination of groundwater in a carbonate aquifer and verify the reliability of thermotolerant coliforms and fecal enterococci as bacterial indicators. The research was carried out through hydrogeological and microbiological monitoring at an experimental field site in Italy during two hydrologic years and through column tests in a laboratory. The taxonomic classification of fecal indicators detected in spring water samples was performed using API20 galleries. Fecal enterococci were also identified by means of 16S rRNA gene sequencing. The topsoil of pyroclastic origin significantly retains both thermotolerant coliforms and fecal enterococci. Results of column tests carried out in soil blocks collected randomly within the test site suggest that Escherichia coli was more retained than Enterococcus faecalis, even though this difference is statistically significant in only two out of six soil samples. Thus, a non-uniform difference in retention is expected at field scale. This suggestion is in agreement with the results of the microbiological monitoring. In fact, fecal enterococci were a more reliable indicator than thermotolerant coliforms for detecting contamination at both seasonal springs of the aquifer system, while no significant differences were observed at the perennial spring.

  4. Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy A.; Scheytt, Traugott

    2012-02-01

    Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

  5. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect

    Griffith, C.A.; Lowry, G.; Dzombak, D.; Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  6. In situ aquifer bioremediation of organics including cyanide and carbon disulfide

    SciTech Connect

    Abou-Rizk, J.A.M.; Leavitt, M.E.; Graves, D.A.

    1995-12-31

    Low levels (< 1 mg/L) of acetone, cyanide, phenol, naphthalene, 2-methylnaphthalene, and carbon disulfide from an inactive industrial landfill were found above background levels in a shallow aquifer at an eastern coastal site. In situ biodegradation was evaluated for treatment of these contaminants. Two soil samples and three groundwater samples were taken from the site for a laboratory bioassessment and a biotreatability test. The positive results of the bioassessment suggested moving forward with biotreatability testing. Biotreatability test results indicated suitable site conditions for bioremediation and that all the contaminants of concern at the site could be biodegraded to nondetect or very low levels (< 50 {micro}g/L) with oxygen only; i.e., addition of nutrients was not required. Pilot-scale testing was undertaken on site to provide information for full-scale design, including oxygen requirements and air injection well spacing. This report describes the approach, the results, and their impact on the full-scale remediation system.

  7. Process and rate of dedolomitization: mass transfer and C14 dating in a regional carbonate aquifer.

    USGS Publications Warehouse

    Back, W.; Hanshaw, B.B.; Plummer, L.N.; Rahn, P.H.; Rightmire, C.T.; Rubin, M.

    1983-01-01

    Regional dedolomitization is the major process that controls the chemical character of water in the Mississippian Pahasapa Limestone (Madison equivalent) surrounding the Black Hills, South Dakota and Wyoming. The process of dedolomitization consists of dolomite dissolution and concurrent precipitation of calcite; it is driven by dissolution of gypsum. Deuterium and oxygen isotopic data from the ground water, coupled with regional potentiometric maps, show that recharge occurs on the western slope of the Black Hills and that the water flows N and W toward the Powder River Basin. Mass-balance and mass-transfer calculations were used to adjust 14C values to determine a range of groundwater flow velocities between 2 and 20 m/yr. The close agreement among the model results demonstrates that dedolomitization is controlling water-rock interactions in this regional carbonate aquifer system.-from Authors

  8. Water quality of the Mississippian carbonate aquifer in parts of middle Tennessee and northern Alabama, 1999

    USGS Publications Warehouse

    Kingsbury, James A.; Shelton, John M.

    2002-01-01

    Water-quality data for nitrate, fecal-indicator bacteria, pesticides, and volatile organic compounds collected in parts of Middle Tennessee and northern Alabama indicate that the Mississippian carbonate aquifer in these areas is susceptible to contamination from point and nonpoint sources. Thirty randomly located wells (predominantly domestic), two springs, and two additional public-supply wells were sampled in the summer of 1999 as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. These wells and springs were sampled to characterize the occurrence and distribution of the above constituents in this karst aquifer of Mississippian age and to determine the principal environmental factors related to their occurrence.Nitrate and fecal indicator bacteria were frequently detected at the sampled sites. Nitrate exceeded the drinking-water maximum contaminant level of 10 milligrams per liter in two samples; the median concentration for all samples was about 1.5 milligrams per liter. Correlation of nitrate concentrations to the amount of cropland near a site and to pesticide detections indicates that fertilizer application is the predominant source of nitrogen to the aquifer. Fecal-indicator bacteria were present in samples from about 40 percent of the sites. The presence of fecal-indicator bacteria is weakly correlated to the depth to ground water but is not correlated to a specific land use near the sites.Pesticides and pesticide breakdown products (metabolites) were detected at 74 percent of the sites sampled. Concentrations generally were less than 1 microgram per liter and no pesticide detections exceeded drinking-water maximum contaminant levels. The maximum total pesticide concentration measured was about 4 micrograms per liter. Intensity of pesticide use, proximity of sites to areas of pesticide application, and soil hydrologic group were the primary factors affecting the occurrence of pesticides.Volatile organic compounds were

  9. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  10. Aquifer environment selects for microbial species cohorts in sediment and groundwater.

    PubMed

    Hug, Laura A; Thomas, Brian C; Brown, Christopher T; Frischkorn, Kyle R; Williams, Kenneth H; Tringe, Susannah G; Banfield, Jillian F

    2015-08-01

    Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation.

  11. Aquifer environment selects for microbial species cohorts in sediment and groundwater

    PubMed Central

    Hug, Laura A; Thomas, Brian C; Brown, Christopher T; Frischkorn, Kyle R; Williams, Kenneth H; Tringe, Susannah G; Banfield, Jillian F

    2015-01-01

    Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation. PMID:25647349

  12. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    USGS Publications Warehouse

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  13. Characterization of Organic Carbon and Its Bioavailability in Recharge Waters and Aquifer Sediments: Implications for Groundwater Arsenic Contamination in Bangladesh

    NASA Astrophysics Data System (ADS)

    Pracht, L. E.; Ardissono, R. J.; Polizzotto, M.; Badruzzaman, A. B. M.; Ali, M. A.; Paša-Tolić, L.; Neumann, R. B.

    2014-12-01

    Arsenic contamination of groundwater in Bangladesh affects millions of people, as groundwater is the primary source of both drinking and irrigation water in the country. The arsenic is of geologic origin, naturally-occurring in the aquifer sediment. However, the source of organic carbon that fuels the microbial reactions responsible for mobilizing arsenic off the sediment and into the groundwater has been debated for over a decade. The outstanding question is whether this organic carbon is sedimentary carbon that was co-deposited when the aquifers were formed, or surface-derived organic carbon transported into the subsurface along with recharge water. The answer to this question has implications for managing the contamination problem. Here we present results of recent laboratory incubations of aquifer sediment with recharge waters collected from our field site in Bangladesh. The incubations revealed a hitherto undocumented pool of biodegradable sedimentary organic carbon. Despite the carbon being old (thousands of years), it was rapidly utilized by the native microbial population. The results imply that within the aquifer this pool of sedimentary organic carbon is largely unavailable to the microbial community, but that chemical and/or physical perturbations to the subsurface, induced, for example, by large-scale groundwater pumping or microbial activity, could mobilize this bioavailable organic carbon off the sediment. Currently, we are using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and spectroscopic techniques to understand the initial character of the mobilized organic carbon in our incubation experiments, and to track how its composition changes over time as it is degraded by microbes. These efforts will help clarify the in situ processes that could destabilize the sedimentary organic carbon and identify the components that make the carbon biologically available. Collectively, our data suggest a possible role for both surface-derived and

  14. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Richnow, Hans H.; Annweiler, Eva; Michaelis, Walter; Meckenstock, Rainer U.

    2003-08-01

    We present an approach for characterizing in situ microbial degradation using the 13C/ 12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/ 12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l -1 and 44 mg o-xylene l -1 to less than 0.05 mg l -1, generating a stable concentration gradient in the column. The 13C/ 12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (αC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios ( Rt) and an isotope fractionation factor (αC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations ( Ct) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio ( δ13C) was observed for the residual non-degraded toluene (7.2‰), o-xylene (8.1‰) and naphthalene fractions (1.2‰). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the

  15. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE PAGES

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  16. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    SciTech Connect

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2 leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.

  17. Sorption and transport of polynuclear aromatic hydrocarbons in low-carbon aquifer materials. Final report, Jan 88-Jan 89

    SciTech Connect

    Lion, L.W.

    1990-12-01

    Sorption studies of polycyclic aromatic hydrocarbons (PAH) on low-carbon aquifer materials are reported. Both column and batch partition coefficients (Kd) were affected by synthetic polymeric components, such as Teflon, in commonly used experimental apparatus. These influences include incorrect estimates for Kd and tailing of peaks in column studies. Both batch and column experimental methods are developed, using polymer-free systems, that allow accurate measurement of Kds for hydrophobic PAHs in low carbon systems. Application of these methods shows that organic carbon contents below the commonly cited threshold level of 0.1 percent may dominate the partitioning and subsequent transport of phenanthrene in aquifer systems. Calculated Kd values from batch and column (temporal first moment) techniques did not agree. Reasons for the disparity in the results from these methods are discussed. Column results may be described using the batch Kd and two adjustable fitting parameters representing variables in a two-side kinetic model.

  18. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  19. Influence of depositional setting and sedimentary fabric on mechanical layer evolution in carbonate aquifers

    USGS Publications Warehouse

    Graham, Wall B.R.

    2006-01-01

    Carbonate aquifers in fold-thrust belt settings often have low-matrix porosity and permeability, and thus groundwater flow pathways depend on high porosity and permeability fracture and fault zones. Methods from sedimentology and structural geology are combined to understand the evolution of fracture controlled flow pathways and determine their spatial distribution. Through this process bed-parallel pressure-solution surfaces (PS1) are identified as a fracture type which influences fragmentation in peritidal and basinal carbonate, and upon shearing provides a major flow pathway in fold - thrust belt carbonate aquifers. Through stratigraphic analysis and fracture mapping, depositional setting is determined to play a critical role in PS1 localization and spacing where peritidal strata have closer spaced and less laterally continuous PS1 than basinal strata. In the peritidal platform facies, units with planar lamination have bed-parallel pressure-solution seams along mudstone laminae. In contrast, burrowed units of peritidal strata have solution seams with irregular and anastamosing geometries. Laminated units with closely spaced bed-parallel solution seams are more fragmented than bioturbated units with anastamosing solution seams. In the deeper-water depositional environment, pelagic settling and turbidity currents are the dominant sedimentation processes, resulting in laterally continuous deposits relative to the peritidal platform environment. To quantify the fracture patterns in the basinal environment, mechanical layer thickness values were measured from regions of low to high bed dip. The results define a trend in which mechanical layer thickness decreases as layer dip increases. A conceptual model is presented that emphasizes the link between sedimentary and structural fabric for the peritidal and basinal environments, where solution seams localize in mud-rich intervals, and the resulting pressure-solution surface geometry is influenced by sedimentary geometry

  20. Hydrogeologic appraisal of five selected aquifers in Erie County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Staubitz, W.W.

    1985-01-01

    Hydrogeologic conditions and water quality at four stratified-drift aquifers and a bedrock (Onondaga Limestone) aquifer were investigated by the U.S. Geological Survey in cooperation with the Erie County Department of Environment and Planning. The Clarence-Lancaster-Newstead area includes two aquifers--one is a complex of morainal, beach, and outwash sand and gravel; the second is the underlying production aquifer in Onondage Limestone. Most wells tap the limestone aquifer. Water quality is suitable for most uses in both aquifers except for road-salt contamination at shallow wells near the New York State Thruway. A landfill on the aquifer has affected the water quality in some areas along its perimeter. The Sardinia and Springville areas each include an aquifer consisting of surficial outwash sand and gravel ranging in thickness from less than 10 feet to 95 feet. Several deeper water-bearing zones occur within till and lacustrine deposits 400 to 600 feet thick in the valleys. Ground water moves from the north and from the aquifer 's edges to the center of the valley and discharges into the main streams in the middle of the valley and to springs along the southern edge of the aquifers. Water quality is generally suitable for most uses. A landfill adjacent to the Sardinia aquifer has not significantly affected the aquifer. The Alden area includes an aquifer that consists of two sand and gravel zones separated by 10 to 20 feet of clay or till. The more productive lower zone has mineralized water derived from underlying shale. (USGS)

  1. Reactive-convective dissolution in a porous medium: the storage of carbon dioxide in saline aquifers.

    PubMed

    Ghoshal, Parama; Kim, Min Chan; Cardoso, Silvana S S

    2016-12-21

    We quantify the destabilising effect of a first-order chemical reaction on the fingering instability of a diffusive boundary layer in a porous medium. Using scaling, we show that the dynamics of such a reactive boundary layer is fully determined by two dimensionless groups: Da/Ra(2), which measures the timescale for convection compared to those for reaction and diffusion; and βC/βA, which reflects the density change induced by the product relative to that of the diffusing solute. Linear stability and numerical results for βC/βA in the range 0-10 and Da/Ra(2) in the range 0-0.01 are presented. It is shown that the chemical reaction increases the growth rate of a transverse perturbation and favours large wavenumbers compared to the inert system. Higher βC/βA and Da/Ra(2) not only accelerate the onset of convection, but crucially also double the transport of the solute compared to the inert system. Application of our findings to the storage of carbon dioxide in carbonate saline aquifers reveals that chemical equilibrium curtails this increase of CO2 flux to 50%.

  2. Hydrogeophysical approach for the study of groundwater resources and hydrogeological features of an carbonate aquifer (Muro Lucano Mounts, Basilicata, Italy).

    NASA Astrophysics Data System (ADS)

    Grimaldi, Salvatore; Summa, Gianpietro; Leone, Domenico; Rizzo, Enzo

    2010-05-01

    The proposed work is about the geophysical survey applied on a carbonate aquifer to improve the hydrogeological knowledge. The optimal characterization of a groundwater resource is the conditions necessary to achieve the best location of a exploitable pumping hole. In order to characterize an exploitable aquifer, it is necessary to define the best hydrogeological model which necessarily must be supported by a lot of geological and hydrogeological data. Therefore, the integration between detailed geological data and indirect information is one of the best way to improve the groundwater model of an aquifer. This work summarizes the hydrogeological knowledge of the area of Muro Lucano village (Basilicata region). This area is characterized by the presence of an interesting karst aquifer which is made up by a carbonate ridge (Castelgrande - Muro Lucano) that tectonically dips southward and is widely covered by Pliocene deposits (sands and conglomerates), by the Argille Varicolori formation and by debris slope and landslide deposits. Besides the assessment of the complex hydrogeological framework of the area, also a balance of the groundwater resources has been carried out and, by the use of an innovative geophysical technique, a zone which is potentially suitable for the exploitation of the groundwater has been localized.

  3. Water-Level Conditions in Selected Confined Aquifers of the New Jersey and Delaware Coastal Plain, 2003

    USGS Publications Warehouse

    dePaul, Vincent T.; Rosman, Robert; Lacombe, Pierre J.

    2009-01-01

    The Coastal Plain aquifers of New Jersey provide an important source of water for more than 2 million people. Steadily increasing withdrawals from the late 1800s to the early 1990s resulted in declining water levels and the formation of regional cones of depression. In addition to decreasing water supplies, declining water levels in the confined aquifers have led to reversals in natural hydraulic gradients that have, in some areas, induced the flow of saline water from surface-water bodies and adjacent aquifers to freshwater aquifers. In 1978, the U.S. Geological Survey began mapping the potentiometric surfaces of the major confined aquifers of New Jersey every 5 years in order to provide a regional assessment of ground-water conditions in multiple Coastal Plain aquifers concurrently. In 1988, mapping of selected potentiometric surfaces was extended into Delaware. During the fall of 2003, water levels measured in 967 wells in New Jersey, Pennsylvania, northeastern Delaware, and northwestern Maryland were used estimate the potentiometric surface of the principal confined aquifers in the Coastal Plain of New Jersey and five equivalent aquifers in Delaware. Potentiometric-surface maps and hydrogeologic sections were prepared for the confined Cohansey aquifer of Cape May County, the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, the Vincentown aquifer, and the Englishtown aquifer system in New Jersey, as well as for the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, and the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers in New Jersey and their equivalents in Delaware. From 1998 to 2003, water levels in many Coastal Plain aquifers in New Jersey remained stable or had recovered, but in some areas, water levels continued to decline as a result of pumping. In the Cohansey aquifer in Cape May County, water levels near the center of the cone of depression

  4. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  5. Records of wells in sandstone and alluvial aquifers and chemical data for water from selected wells in the Navajo aquifer in the vicinity ofthe Greater Aneth Oil Field, San Juan County, Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    1992-01-01

    This report contains hydrologic data for wells finished in sandstone and alluvial aquifers in southeastern San Juan County, Utah, and chemical data for water from selected wells in the Navajo aquifer. Temperature, specific conductance, pH, and discharge data from 1989-91 for water from selected wells in all aquifers are also presented.Data presented in this report were compiled from previously published reports (Goode, 1958; Sumsion, 1975; Avery, 1986; Kimball, 1987; Howells, 1990); data bases of the U.S. Geological Survey, the Navajo Tribe, the U.S. Bureau of Land Management, the Utah Division of Water Rights, and the Utah Division of Oil, Gas, and Mining; and from information obtained from oil companies in the Greater Aneth Oil Field. Results of investigations by Avery (1986) during 1982-83 indicated that water from many wells in the Navajo aquifer in the vicinity of the Greater Aneth Oil Field was moderately saline and that in some wells, salinity appeared to increase over time. The purpose of this study is to assess the physical extent and concentration of saline water in the Navajo and other aquifers in this area. The purpose of this report is to present available water-quality data for water from wells in the Navajo aquifer and present records for selected wells in the Navajo and other aquifers.

  6. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.

    2000-01-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron

  7. Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Santoni, S.; Huneau, F.; Garel, E.; Vergnaud-Ayraud, V.; Labasque, T.; Aquilina, L.; Jaunat, J.; Celle-Jeanton, H.

    2016-09-01

    This study aims at establishing groundwater residence times, identifying mineralization processes and determining groundwater origins within a carbonate coastal aquifer with thick unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, SiO2, Br-, Ba+, Sr2+, 18O, 2H, 13C, 3H, Ne, Ar) combined with a groundwater residence time determination using CFCs and SF6 allows defining the global setting of the study site. A typical mineralization conditioned by the sea sprays and the carbonate matrix helped to validate the groundwater weighted residence times from using a binary mixing model. Terrigenic SF6 excesses have been detected and quantified, which permits to identify a groundwater flow from the surrounding fractured granites towards the lower aquifer principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible and very relevant despite the thick unsaturated zone and the hydraulic connexion with a granitic environment.

  8. Innovative environmental tracer techniques for evaluating sources of spring discharge from a carbonate aquifer bisected by a river.

    PubMed

    Heilweil, Victor M; Sweetkind, Donald S; Gerner, Steven J

    2014-01-01

    Littlefield Springs discharge about 1.6 m³ /s along a 10-km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post-1950s) seepage from the Virgin River. While corrected ¹⁴C apparent ages range from 1 to 9 ka, large amounts of nucleogenic ⁴He and low ³He/⁴He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high-altitude recharge is supported by relatively cool noble-gas recharge temperatures and isotopically depleted δ²H and δ¹⁸O. Excess (crustal) SF₆ and ⁴He precluded dating of the modern component of water from Littlefield Springs using SF₆ and ³H/³He methods. Assuming a lumped-parameter model with a binary mixture of two piston-flow components, Cl⁻ /Br⁻, Cl⁻ /F⁻, δ²H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30-year groundwater travel time for Virgin River seepage to re-emerge at Littlefield Springs. This suggests that removal of high-salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.

  9. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  10. Carbonate geology and hydrology of the Edwards Aquifer in the San Antonio area, Texas

    USGS Publications Warehouse

    Maclay, R.W.; Small, T.A.

    1984-01-01

    Recognition of the hydrostratigraphic subdivisions provides a basis for defining the nonhomogeneity of the aquifer and determining its storage characteristics. The aquifer is considered to be a faulted and multilayered aquifer in which lateral circulation is mainly through very permeable, hydrostratigraphic subdivisions that are hydraulically connected at places by openings associated with steep-angle, normal faults. The Edwards aquifer is vertically displaced for its entire thickness at places along major northeastward trending faults. At these places, ground-water circulation is diverted either southwest or northeast.

  11. Disposal of carbon dioxide in aquifers in the U.S.

    SciTech Connect

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  12. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.

    PubMed

    Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F

    2016-07-19

    The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.

  13. Heat Treated Carbon Fiber Material Selection Database

    NASA Technical Reports Server (NTRS)

    Effinger, M.; Patel, B.; Koenig, J.

    2008-01-01

    Carbon fibers are used in a variety high temperature applications and materials. However, one limiting factor in their transition into additional applications is an understanding of their functional properties during component processing and function. The requirements on the fibers are governed by the nature of the materials and the environments in which they will be used. The current carbon fiber vendor literature is geared toward the polymeric composite industry and not the ceramic composite industry. Thus, selection of carbon fibers is difficult, since their properties change as a function of heat treatment, processing or component operational temperature, which ever is greatest. To enable proper decisions to be made, a program was established wherein multiple fibers were selected and heat treated at different temperatures. The fibers were then examined for their physical and mechanical properties which are reported herein.

  14. Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: The Sierra de las Nieves karst aquifer, southern Spain

    NASA Astrophysics Data System (ADS)

    Liñán Baena, C.; Andreo, B.; Mudry, J.; Carrasco Cantos, F.

    2009-06-01

    In carbonate massifs, flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The Sierra de las Nieves karst massif (southern Spain) is subjected to a given climatic and geological context, and thus it is possible to analyse the spatial and temporal variability of the water temperature and electrical conductivity at its main karst outlets, which display different responses to rainfall episodes. In this experimental field area, conduit flow and diffuse flow drainage patterns have been distinguished by combining groundwater temperature and electrical conductivity data. Both parameters show large variations in water coming from conduit flow systems and low variations in water drained by springs draining diffuse flow systems. However, groundwater temperature displays the smallest variations, which seems to indicate that this parameter is less sensitive as regards characterising the degree of karstification, which is a key question in characterising the aquifer functioning.

  15. The Influence of Microbial Activity and Sedimentary Organic Carbon on the Isotope Geochemistry of the Middendorf Aquifer

    NASA Astrophysics Data System (ADS)

    Murphy, Ellyn M.; Schramke, Janet A.; Fredrickson, James K.; Bledsoe, Horace W.; Francis, A. J.; Sklarew, Deborah S.; Linehan, John C.

    1992-03-01

    Microorganisms present in deep Atlantic coastal plain sediments affect the geochemical evolution of groundwater and its chemical and isotopic composition, yet the factors controlling their origin, distribution, and diversity are poorly understood. The evolution of the groundwater chemistry, the fractionation of stable carbon isotopes, and the groundwater age are all indicators of the inorganic and microbial reactions occurring along a given flow path from groundwater recharge to groundwater discharge. In this study, tritium, 14C, and groundwater chemistry along three flow paths of the Middendorf aquifer in South Carolina were analyzed. The 14C ranged from 89 percent modern carbon (pmC) in the recharge zone to 9.9 pmC in the distal borehole; the δ13C remained relatively constant at ˜-22‰, suggesting microbial oxidation of organic carbon. Carbon isotope analyses of particulate organic carbon from core sediments and groundwater chemistry were used to model the carbon chemistry; the groundwater ages obtained from 14C ranged from modern to 11,500 years B.P. The highest frequencies of occurrence, numbers, and diversity of aerobic and anaerobic bacteria were found in boreholes near the recharge zone where the calculated ages were <1000 years B.P. The transport of microorganisms from the recharge zone may be responsible for this distribution as well as the electron acceptors necessary to support this diverse community of bacteria. The presence of both aerobic heterotrophs and anaerobic sulfate- and iron-reducing bacteria in the core sediments suggested the occurrence of anaerobic microsites throughout this otherwise aerobic aquifer. The highest in situ microbial respiration rate, as determined by modeling, was found along a flow path near the recharge area. It is likely that the electron acceptors necessary for supporting a diverse microbial community are depleted by the time the groundwater residence time in the Middendorf aquifer exceeds several hundred years.

  16. Use of geophysical logs to estimate water-quality trends in carbonate aquifers

    USGS Publications Warehouse

    MacCary, Lawrence Mead

    1980-01-01

    The water quality in carbonate aquifers can be determined by analysis of resistivity and porosity logs. When supporting data from water analyses are available, the value of the cementation exponent m can be determined more precisely. Data for this study were taken from logs of oil-test wells, Amstrat sample studies, drill-stem tests and water test wells in parts of Montana, North and South Dakota, and Wyoming. The preferred resistivity curves for apparent water resistivity (Rwa) analyses are the deeply focused laterolog and the induction log. The standard electric log can be used if the drilling mud is not saturated with salt. The preferred porosity logs are the sonic, sidewall neutron, compensated neutron, and the density logs. Older, uncalibrated neutron curves can be empirically calibrated in some instances, however, resulting porosities are frequently anomalous when compared to those determined from core or modern logs. When apparent water resistivity is determined for many wells, the data can be plotted and contoured to outline areas of recharge, direction of probable ground-water movement, and location and salinity of brine areas. (USGS)

  17. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  18. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  19. Rare Earth Element Speciation Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    NASA Astrophysics Data System (ADS)

    Tang, J.; Johannesson, K. H.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo sand aquifer, Texas and Upper Floridan carbonate aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. The solution complexation of REEs in these two aquifers was modeled using Humic Ion-Binding Model V. The results of the REE speciation modeling indicate that the solution complexation of REEs is controlled by pH, alkalinity, and DOC concentration. Because DOC is low (less than 0.65 mg/L) in Carrizo aquifer, organic complexation of REEs is not significant in these groundwaters. For LREEs, LnCO3+ and/or Ln(CO3)2- are the dominant species when pH is above 7.0, but when pH is below 7.0, besides LnCO3+, Ln3+ and LnSO4+ are also significant and their importance increases with decreasing pH. For HREEs, LnCO3+ and/or Ln(CO3)2- are always the dominant species, however, LnPO4o is important in some groundwaters. The similar general patterns of inorganic solution complexation of the REEs are also observed in groundwaters from the Upper Floridan aquifer. However, because of the relatively high DOC concentrations measured in the Floridan groundwaters, organic complexation of REEs, especially LREEs, is also predicted to be significant in some groundwaters. Linear correlation coefficients for total REE, Nd, Gd, and Yb concentrations, and (Yb/Nd)SN vs. pH, CO3, DOC, SO4, Fe, and Mn indicate that for the Carrizo groundwaters, REE concentrations are not correlatd to any of these factors. However, (Yb/Nd)SN is inversely related to pH and the [CO32-] concentration of these groundwaters. Because REE speciation is strongly related to pH and the [CO32-] concentration, it is reasonable to expect that REE solution complexation plays a greater role in fractionating REE than controlling absolute concentrations in the Carrizo Sand aquifer. In Upper Floridan aquifer, LREE concentrations are positively

  20. Characterization of Carbonate Hydrostratigraphy Using Ambient Seismic Noise: A Pilot Study in the Floridan Aquifer System, Ocala, FL, USA

    NASA Astrophysics Data System (ADS)

    James, S.; Screaton, E.; Russo, R. M.; Panning, M. P.; Bremner, P. M.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; Farrell, M. E.

    2014-12-01

    Defining zones of high and low hydraulic conductivity within aquifers is vital to hydrogeologic research and groundwater management. Carbonate aquifers are particularly difficult to characterize due to dissolution and dolomitization. We investigated a new imaging technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure. Differences in densities between confining units and high permeability flow zones can produce distinct seismic velocities in the correlated signals. We deployed an array of 9 short period geophones from 11/2013 to 3/2014 in Indian Lake State Forest, Florida, to determine if the high frequency diffusive seismic wavefield can be used for imaging hydrostratigraphy. Here, a thin surficial layer of siliciclastic deposits overlie a ~ 0.6 km sequence of Cenozoic limestone and dolomite units that comprise the Floridan Aquifer System (FAS). A low permeability dolomite unit vertically divides the FAS throughout most of Florida. Deep boreholes surrounding the site constrain hydrostratigraphy, however the horizontal continuity of the middle dolomite unit as well as its effectiveness as a confining unit in the study area are not well known. The stations were spaced at distances ranging from 0.18 to 2.6 km, and yielded 72 cross-correlation Green's functions for Rayleigh wave propagation at frequencies between 0.2 and 40 Hz, with dominant peaks around 0.8 Hz, 3 Hz and 13 Hz. Local vehicle traffic did interfere to a degree with the correlation of the diffuse waves, but was minimized by using only nighttime data. At the lowest frequencies (greatest depths) investigated, velocities increase with depth; however, correlations become less coherent at higher frequencies, perhaps due to shallow complex scattering. Comparison of cross-correlations for all station pairs also indicates spatial variations in velocity. Thus, the method shows promise for characterization of the heterogeneity of the

  1. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  2. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic

  3. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  4. Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system

    USGS Publications Warehouse

    Maslia, M.L.; Prowell, D.C.

    1990-01-01

    A unified, multidiscipline hypothesis is proposed to explain the anomalous pattern by which chloride has been found in water of the Upper Floridan aquifer in Brunswick, Glynn County, Georgia. Analyses of geophysical, hydraulic, water chemistry, and aquifer test data using the equivalent porous medium (EPM) approach are used to support the hypothesis and to improve further the understanding of the fracture-flow system in this area. Using the data presented herein we show that: (1) four major northeast-southwest trending faults, capable of affecting the flow system of the Upper Floridan aquifer, can be inferred from structural analysis of geophysical data and from regional fault patterns; (2) the proposed faults account for the anomalous northeastward elongation of the potentiometric surface of the Upper Floridan aquifer; (3) the faults breach the nearly impermeable units that confine the Upper Floridan aquifer from below, allowing substantial quantities of water to leak vertically upward; as a result, aquifer transmissivity need not be excessively large (as previously reported) to sustain the heavy, long-term pumpage at Brunswick without developing a steep cone of depression in the potentiometric surface; (4) increased fracturing at the intersection of the faults enhances the development of conduits that allow the upward migration of high-chloride water in response to pumping from the Upper Floridan aquifer; and (5) the anomalous movement of the chloride plume is almost entirely controlled by the faults. ?? 1990.

  5. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  6. Groundwater quality in the Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers, eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers constitute two of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 2 percent of the study area.

  7. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean

    NASA Astrophysics Data System (ADS)

    Cai, Wei-Jun; Wang, Yongchen; Krest, James; Moore, W. S.

    We report measurements of pH, total dissolved inorganic carbon (DIC), total or titration alkalinity (TAlk), Ca 2+, Mg 2+, sulfate, and sulfide data at the seawater-freshwater interface in a shallow groundwater aquifer in North Inlet, South Carolina. These measurements and a diagenetic modeling analysis indicate that the groundwaters at North Inlet are mixtures of seawater and freshwater end-members and are seriously modified by carbon dioxide inputs from organic carbon degradation via SO 42- reduction across the entire salinity range and fermentation and CaCO 3 dissolution in the low-salinity region. DIC and TAlk are several times higher than the theoretical dilution line, whereas Ca 2+ is slightly higher and SO 42- is somewhat lower than the dilution line. Partial pressure of CO 2 in the groundwater is extremely high (0.05 to 0.12 atm). These deviations are consistent with theoretical predictions from known diagenetic reactions. Estimated groundwater DIC fluxes to the South Atlantic Bight from either the surficial aquifer (via salt marshes) or the Upper Floridan Aquifer (direct input) are significant when compared to riverine flux in this area.

  8. Type curves for selected problems of flow to wells in confined aquifers

    USGS Publications Warehouse

    Reed, J.E.

    1980-01-01

    This report presents type curves and related material for 11 conditions of flow to wells m confined aquifers. These solutions, compiled from hydrologic literature, span an interval of time from Theis (1935) to Papadopulos, Bredehoeft, and Cooper (1973). Solutions are presented for constant discharge, constant drawdown, and variable discharge for pumping wells that fully penetrate leaky and nonleaky aquifers. Solutions for wells that partially penetrate leaky and nonleaky aquifers are included. Also, solutions are included for the effect of finite well radius and the sudden injection of a volume of water for nonleaky aquifers. Each problem includes the partial differential equation, boundary and initial conditions, and solutions. Programs in FORTRAN for calculating additional function values are included for most of the solutions.

  9. MX Siting Investigation. Water Resources Program. Results of Regional Carbonate Aquifer Testing, Coyote Spring Valley, Nevada.

    DTIC Science & Technology

    1981-12-18

    In the study area, these aquifer units include the Bird Springs Formation of Pennsylvannian age, the Monte Cristo Limestone of Mississipian age, and...Anchor Member of the Monte Cristo Limestone of Lower Mississippian age. The prominent Arrow Canyon Range lies to the south of the site. This range is an...of the range are of the Anchor Member of the Mississippian Monte Cristo Limestone. This formation has been included in hydrostratigraphic aquifer unit

  10. Scoping Alternatives for Negative Emission Technologies. FRACCC - Possible Routes to Biomass-Derived Carbon Injection in Shallow Aquifers?

    NASA Astrophysics Data System (ADS)

    Correa Silva, R.; Larter, S.

    2016-12-01

    Atmospheric CO2 capture into biomass is one of the capture options for negative emission technologies, although proposed sequestration systems such as the permanent burial of total fresh biomass, algal lipids or soil amendment with biochar are yet to be successfully demonstrated as effective at scale. In the context of carbon sequestration, shallow geological reservoirs have not been exhaustively explored, even though they pose, away from groundwater protection zones, potentially low implementation cost, and geographically abundant potential carbon storage reservoirs. Typical carbon storage vectors considered, such as CO2 and biochar, are not suitable for shallow aquifer disposal, due either to cap rock containment requirements, or shallow aquifer CO2 densities, or issues related to formation damage from solid particles. Thus, a cost-effective technology, aimed at converting biomass into a large-scale carbon vector fit-for-disposal in shallow formations could be significant, linking promising carbon capture and containment strategies. In this work, we discuss the development of unconventional carbon vectors for subsurface storage in the form of Functionalized, Refractory and Aqueous Compatible Carbon Compounds (FRACCC), as a potential alternative negative emission technology (Larter et al., 2010). The concept is based on CO2 capture into microbial and algal biomass, followed by the modification of biomass constituents through facile chemical reactions aimed at rendering the biomass efficiently into a stable, biologically refractory but water soluble form, similar in some regards, to dissolved organic matter in the oceans, then sequestering the material in geological settings. As the injected material is not buoyant, containment specifications are more modest than for CO2 injection and potentially, more reservoirs could be accessible! This work analyses the technological, economic and societal implications of such potential FRACCC technologies, and make an

  11. Structural and hydrogeological features of a Lias carbonate aquifer in the Triffa Plain, NE Morocco

    NASA Astrophysics Data System (ADS)

    Sardinha, J.; Carneiro, J. F.; Zarhloule, Y.; Barkaoui, A.; Correia, A.; Boughriba, M.; Rimi, A.; El Houadi, B.

    2012-09-01

    The rising demand for water and the contamination of shallow water table aquifers has led authorities in NE Morocco to look for deeper groundwater resources in the Triffa Plain, namely in Lower Jurassic (Lias) dolomitic limestones. The liassic aquifer is of strategic importance for the development of the region, however, its hydrodynamic behaviour is poorly understood due to lack of hydrogeological data and block structure. This article presents a first effort towards understanding the structure and hydraulic behaviour of the aquifer. Exploration borehole data and results from geophysical campaigns were integrated into a GIS environment to build a preliminary model of the aquifer structure. The aquifer behaves as an unconfined aquifer in the northern part of the Béni Snassen Mountains (the recharge area), but as it dips to the north, it becomes confined by marls and shales of the Middle/Upper Jurassic. Even though piezometric level data are scarce, a tentative piezometric map was produced. Three blocks separated by NW-SE trending faults in a horst and graben structure, with distinct flow behaviours were identified: Berkane, Fezouane and Sidi Rahmoun blocks. Those blocks also show differences in hydraulic conductivity distribution. As a result of the reaction with the dolomitic limestones, the groundwater is of calcium-magnesium bicarbonate type. Groundwater temperature as measured in springs ranges from 29 °C to 37 °C in springs and constitutes a potential low enthalpy geothermal resource.

  12. Elevated pCO2 effects on the geochemistry of carbonate aquifers: calcite dissolution as a driver of elevated metal concentrations

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; Moore, J.; McCray, J. E.

    2012-12-01

    Geological carbon capture, utilization and storage has gained momentum in the last decade as a viable option of reducing anthropogenic emissions of CO2, with several demonstration projects completed, in progress or planned for upcoming years. However, large-scale CO2-injection operations are accompanied by concerns of CO2 leakage from deep geological repositories and subsequent contact with shallower aquifers, such as underground sources of drinking water. Direct toxicity of CO2 is of lesser concern; rather, it is the acidification of aquifers from increased CO2 partial-pressures (pCO2), which may lead to release of metals into groundwater through mineral dissolution and metal desorption. Previous geochemical studies have suggested that the presence of calcite in aquifer material would reduce the hazard of metal release by effectively buffering acidity via calcite dissolution at elevated pCO2, thus placing carbonate aquifers at lesser risk in case of CO2 leakage. Yet calcite is rarely found in pure form, and often contains a wide range of impurities, including metals such as As, Cr, and Pb, in solid-solution. Dissolution of calcite during acidity buffering is accompanied by release of these impurities from the calcite lattice. We show through experimental work that dissolution of calcite is the primary mechanism responsible for elevated concentrations of metals in carbonate aquifers at high pCO2. It is also evident that the mechanism responsible for metal release, i.e. dissolution or desorption, is metal-specific and pCO2-specific. Modeling work based on our experimental results suggests that in reducing aquifers calcite can contribute more to release of metals than sulfides, which are generally viewed as likely sources of metals in aquifers, during a hypothetical 30-year CO2 leak. In addition, modeling work suggests that when sulfide minerals are present in a carbonate aquifer, metals release would be more sensitive to pO2 than to pCO2.

  13. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France).

    PubMed

    Santoni, S; Huneau, F; Garel, E; Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Celle-Jeanton, H

    2016-12-15

    This study aims at identifying the water-rock interactions and mixing rates within a complex granite-carbonate coastal aquifer under high touristic pressure. Investigations have been carried out within the coastal aquifer of Bonifacio (southern Corsica, France) mainly composed of continental granitic weathering products and marine calcarenite sediments filling a granitic depression. A multi-tracer approach combining physico-chemical parameters, major ions, selected trace elements, stable isotopes of the water molecule and (87)Sr/(86)Sr ratios measurements is undertaken for 20 groundwater samples during the low water period in November 2014. 5 rock samples of the sedimentary deposits and surrounding granites are also analysed. First, the water-rock interactions processes governing the groundwater mineralization are described in order to fix the hydrogeochemical background. Secondly, the flow conditions are refined through the quantification of inter aquifer levels mixing, and thirdly, the kinetics of water-rock interaction based on groundwater residence time from a previous study using CFCs and SF6 are quantified for the two main flow lines. A regional contrast in the groundwater recharge altitude allowed the oxygene-18 to be useful combined with the (87)Sr/(86)Sr ratios to differentiate the groundwater origins and to compute the mixing rates, revealing the real extension of the watershed and the availability of the resource. The results also highlight a very good correlation between the groundwater residence time and the spatial evolution of (87)Sr/(86)Sr ratios, allowing water-rock interaction kinetics to be defined empirically for the two main flow lines through the calcarenites. These results demonstrate the efficiency of strontium isotopes as tracers of water-rock interaction kinetics and by extension their relevance as a proxy of groundwater residence time, fundamental parameter documenting the long term sustainability of the hydrosystem. Copyright © 2016

  14. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    NASA Astrophysics Data System (ADS)

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-11-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity.

  15. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    PubMed Central

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-01-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity. PMID:26530701

  16. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; Mazo D'Affonseca, Fernando

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (> 1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  17. Effects of carbon dioxide on the mobilization of metals from aquifers.

    PubMed

    Terzi, Katerina; Aggelopoulos, Christos A; Bountas, Ioannis; Tsakiroglou, Christos D

    2014-04-15

    Potential leakages of CO2 from storage sites to shallow aquifers could have adverse impacts on the quality of potable groundwater. The mineralogy of well-sorted silica sand is modified by the pH-controlled precipitation of eight metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd). Continuous flow tests are performed in two fixed-bed columns packed with the modified sand by coinjecting gas CO2/distilled water (2-phase column) and distilled water (1-phase column/control test) at constant influx rates for a period of two months. The concentration of dissolved metals is measured in the effluents of columns with atomic absorption spectroscopy (AAS). Mineralogical analysis of the surface of sand grains is done before and after the flow tests with scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), whereas the precise quantitative measurement of the metal content in the sand is done with AAS. A dynamic numerical model that couples the flow and mass-transfer processes in porous media with the equilibrium and kinetically driven metal desorption processes is developed. Inverse modeling of the continuous flow test enables us to quantify and rank the selectivity of metal mobility in terms of equilibrium and kinetic desorption parameters. The continuous CO2 dissolution and water acidification causes significant mobilization and dissolution of several metals (Mn, Ni, Cu, Zn, Co), moderate mobilization of Cr, acceleration of Cd dissolution, whereas Fe remains strongly bonded on the sand grains as goethite. The parameters estimated from lab-scale column tests might be helpful for interpreting field-scale CO2 leakage scenarios and installing relevant early warning monitoring systems.

  18. The effect of heterogeneity identifying the leakage of carbon dioxide in a shallow aquifer: an experimental study

    NASA Astrophysics Data System (ADS)

    Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.

    2014-12-01

    Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.

  19. Hydrologic characteristics of soils in the High Plains, northern Great Plains, and Central Texas Carbonates Regional Aquifer Systems

    USGS Publications Warehouse

    Dugan, Jack T.; Hobbs, Ryne D.; Ihm, Laurie A.

    1990-01-01

    Certain physical characteristics of soils, including permeability, available water capacity, thickness, and topographic position, have a measurable effect on the hydrology of an area. These characteristics control the rate at which precipitation infiltrates or is transmitted through the soil, and thus they have an important role in determining the rates of actual evapotranspiration (consumptive water use), groundwater recharge, and surface runoff. In studies of groundwater hydrology, it is useful to differentiate soils spatially according to their physical characteristics and to assign values that indicate their hydrologic responses.The principal purpose of this report is to describe the relation between the hydrologic characteristics of the soils in the study area and those environmental factors that affect the development and distribution of the soils. This objective will be achieved by (1) defining both qualitatively and quantitatively those soil characteristics that affect hydrology, and (2) classifying and delineating the boundaries of the soils in the study area according to these hydrologic characteristics.The study area includes the High Plains, Northern Great Plains, the Central Texas Carbonates, and parts of the Central Midwest Regional Aquifer Systems as described by the U.S. Geological Survey Regional Aquifer-System Analysis (RASA) Program (Sun, 1986, p.5and Sun, personal commun., June 1985) and shown in figures 1 through 5. The spatial patterns of the soils classified according to their quantifiable hydrologic characteristics will subsequently serve as an integral component in the analysis of actual evapotranspiration (consumptive water use), consumptive irrigation requirements, and potential ground-water recharge of the study area.The classification system used to describe the soils in this report is compatible with that of Dugan (1986). Dugan described the same characteristics of soils that are immediately underlain by principal aquifers of

  20. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    NASA Astrophysics Data System (ADS)

    Plummer, Niel; Sprinkle, Craig

    2001-03-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in δ18O of approximately 2.0‰. Résumé. Les modèles de réactions géochimiques ont été évalués afin de tester la datation par le radiocarbone du carbone minéral dissous (CMD) des eaux souterraines dans les parties captives de la nappe supérieure de Floride, en Floride centrale et nord-orientale (États-Unis). Les réactions géochimiques prédominantes affectant l'activité en 14C du CMD comprennent (1) la dissolution de la dolomite et de l'anhydrite accompagnée de la précipitation de la calcite (d

  2. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  3. Investigating Vertical Mixing Between Two Carbonate Aquifers Using a Multiport Well, Central Texas

    NASA Astrophysics Data System (ADS)

    Kromann, J.; Wong, C. I.; Hunt, B.; Smith, B.; Banner, J. L.

    2011-12-01

    Determining the occurrence and extent of mixing between vertically-adjacent aquifers is critical to dual-aquifer management. This can be challenging due to variable well depths and uncertainty as to hydrostratigraphic sources of groundwater. This study uses a multiport monitor well to investigate the degree of aquifer mixing between the overlying Edwards aquifer and underlying Trinity aquifer in central Texas. The results will inform dual-aquifer management as the Trinity aquifer is being developed as an alternative water source to the Edwards aquifer due to pumping limits and projections of increasing water demand. Water levels from isolated hydrostratigraphic units (n = 19) were measured monthly in the well as climate conditions transitioned from wet to dry (Sept 2010 to May 2011). Groundwater was sampled over a two-week interval in May to June 2011. At the start of the monitoring interval, water levels were high in the Edwards and the uppermost units of the Trinity relative to the rest of the Trinity units. Water levels decreased to lower elevations, from about 635 to 585 ft-msl, under dry conditions. Water levels in the lowermost Trinity declined less, from about 630 to 620 ft-msl, under dry conditions. Two zones separating the Edwards and lowermost Trinity showed almost no head change during this period. The water-level variations between the two aquifers suggest that: i) vertical flow potential from the Edwards to the Trinity occurs during dry conditions, ii) the uppermost stratigraphic units of the Trinity and Edwards are mixing, and iii) portions of the Trinity behave as an aquitard, providing hydrologic separation between the Edwards and lowermost Trinity units. Groundwater samples indicate the presence of three distinct hydrochemical facies: Ca-HCO3 (Edwards), Ca-HCO3-SO4 (lowermost Trinity), and Ca-SO4 (Trinity-Glen Rose Fm), suggesting little vertical flow and mixing. Covariation between groundwater 87Sr/86Sr values and SO4 concentrations from units of

  4. Identifying microbial carbon sources during ethanol and toluene biodegradation in a pilot-scale experimental aquifer system using isotopic analysis

    NASA Astrophysics Data System (ADS)

    Clay, S.; McLeod, H.; Smith, J. E.; Roy, J. W.; Slater, G. F.

    2013-12-01

    Combining ethanol with gasoline has become increasingly common in order to create more environmentally conscience transportation fuels. These blended fuels are favourable alternatives since ethanol is a non-toxic and highly labile renewable biomass-based resource which is an effective fuel oxygenate that reduces air pollution. Recent research however, has indicated that upon accidental release into groundwater systems, the preferential microbial metabolism of ethanol can cause progressively reducing conditions leading to slower biodegradation of petroleum hydrocarbons. Therefore, the presence of ethanol can result in greater persistence of BTEX compounds and longer hydrocarbon plumes in groundwater systems. Microbial biodegradation and community carbon sources coupled to aqueous geochemistry were monitored in a pilot-scale laboratory tank (80cm x 525cm x 175cm) simulating an unconfined sand aquifer. Dissolved ethanol and toluene were continuously injected into the aquifer at a controlled rate over 330 days. Carbon isotope analyses were performed on phospholipid fatty acid (PLFA) samples collected from 4 different locations along the aquifer. Initial stable carbon isotope values measured over days 160-185 in the bacterial PLFA ranged from δ13C = -10 to -21‰, which is indicative of dominant ethanol incorporation by the micro-organisms based on the isotopic signature of ethanol derived from corn, a C4 plant. A negative shift to δ13C = -10 to -30‰ observed over days 185-200, suggests a change in microbial metabolisms associated with less ethanol incorporation. This generally corresponds to a decrease in ethanol concentrations from day 40 to full attenuation at approximately day 160, and the onset of toluene depletion observed on day 120 and continuing thereafter. In addition, aqueous methane concentrations first detected on day 115 continued to rise to 0.38-0.70 mmol/L at all monitoring locations, demonstrating a significant redox shift to low energy methanogenic

  5. STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS

    EPA Science Inventory

    Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

  6. STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS

    EPA Science Inventory

    Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...

  7. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers.

    PubMed

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; D'Affonseca, Fernando Mazo

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (>1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  8. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect

    Casey, G.D. )

    1992-01-01

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  9. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite

  10. Water table in the surficial aquifer and potentiometric surface of the Floridan Aquifer in selected well fields, west-central Florida, May 1976

    USGS Publications Warehouse

    Hutchinson, C.B.; Mills, L.R.

    1977-01-01

    The water table in the surficial aquifer (sand) and the potentiometric surface of the Floridan aquifer (limestone) in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are prepared each May and September to coincide with seasonal low and high ground-water levels. The mapped area contains nine producing well fields which supplied 92.8 million gallons on May 12, 1976 to municipalities along the Gulf Coast. This pumpage came from the Floridan aquifer, the major aquifer in the State of Florida. The effect of well-field withdrawals is shown on the maps as cones of depression in both the potentiometric and water-table surfaces. The May 1976 maps indicate that water levels have declined below sea level in some areas. The decline results from reduced recharge during the dry spring combined with an increase in pumpage for lawn irrigation.

  11. Water table in the surficial aquifer and potentiometric surface of the Floridan Aquifer in selected well fields, west-central Florida, September 1976

    USGS Publications Warehouse

    Ryder, Paul D.; Mills, L.R.

    1977-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Florida aquifer in a 1200 square-mile area in west-central Florida are mapped semiannually by the U. S. Geological Survey. Maps are prepared on the basis of water levels measured in wells each May to coincide with seasonal low levels, and in September, when levels are high. The mapped area contains nine producing well fields which supplied 67.2 million gallons on September 8, 1976, to municipalities along the Gulf Coast. The water is from the Floridan aquifer, the major aquifer in Florida. The effect of localized withdrawal of ground water is shown on the maps as cones of depression in both the potentiometric and water-table surfaces. The September 1976 maps show the seasonal rise in water levels from the low levels of the previous May.

  12. Water table in the surficial aquifer and potentiometric surface of the Floridan Aquifer in selected well fields, west-central Florida, May 1979

    USGS Publications Warehouse

    Wolansky, R.M.; Yobbi, D.K.; Mills, L.R.; Woodham, W.M.

    1979-01-01

    The water table is the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200-square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are prepared showing water levels measured in wells each May to coincide with seasonal low levels, and each September to coincide with seasonal high levels. The mapped area shows 16 well fields which supplied 128 million gallons to municipalities on May 15, 1979. The water is withdrawn from the Floridan aquifer, the major aquifer in Florida. Water levels were significantly higher in May 1979 than in May 1978. Heavy rains on May 7 and 8th deluged the well-field areas with 2 to 18 inches of rain. The maximum increase in water levels from May 1978 to May 1979 was more than 8 feet at the Eldridge-Wilde well field. (USGS)

  13. Molecular Selectivity of Brown Carbon Chromophores

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  14. Selected Hydrogeologic Data for the High Plains Aquifer in Southwestern Laramie County, Wyoming, 1931-2006

    USGS Publications Warehouse

    Hallberg, Laura L.; Mason, Jon P.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming State Engineer's Office, created a hydrogeologic database for southwestern Laramie County, Wyoming. The database contains records from 166 wells and test holes drilled during 1931-2006. Several types of information, including well construction; well or test hole locations; lithologic logs; gamma, neutron, spontaneous-potential, and single-point resistivity logs; water levels; and transmissivities and storativities estimated from aquifer tests, are available in the database. Most wells and test holes in the database have records containing information about construction, location, and lithology; 77 wells and test holes have geophysical logs; 70 wells have tabulated water-level data; and 60 wells have records of aquifer-test results.

  15. A zonal evaluation of intrinsic susceptibility in selected principal aquifers of the United States

    USGS Publications Warehouse

    Wellman, Tristan P.; Kauffman, Leon; Clark, Brian

    2012-01-01

    A method was developed to evaluate intrinsic groundwater susceptibility in 11 study areas across the United States. Calibrated groundwater-flow models and a variable-advection particle-tracking scheme that accounts for uncertainty were used to derive ranges of conservative solute concentration and groundwater age within spatially defined zones from solute loading to the water table. Aquifers were partitioned into six zones; four relative depth zones and two zones to represent pumping wells and surface water. Five years after solute was introduced in simulated recharge and stream leakage, normalized zone concentrations were detected at values above 10-4 in the shallowest aquifer zone, well zone, and surface-water zone for 10 of the 11 study areas. At the 125-year time scale, 9 out of the 11 study areas exhibited detectable concentrations in all zones and the majority of zones possess concentrations that are substantial relative to the source concentration (ClCo > 10-1). Thresholds defined by the time representing the earliest 1% of groundwater-transit times were used to identify fast transport pathways within the groundwater. The 1% thresholds occurred in a period of days to years for the shallow zone, days to decades for the well and surface-water zones, and years to millennia for the deeper zones. Thresholds defined by the 99th percentile of groundwater travel times were used to reflect late-time response and ranged considerably between study area (~102 to ~106 years), which highlights the potential for chemical constituents to persist in groundwater for long periods under a conservative state. The results of this investigation provide an instructive example of the intricate relations between climate and aquifer characteristics and their role on solute transport in groundwater. The proposed method accounts for dynamical processes in the aquifer and complements more traditional assessments of susceptibility using (apparent) mean water age.

  16. The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms

    USGS Publications Warehouse

    Mormile, Melanie R.; Suflita, Joseph M.

    1996-01-01

    Six model hydrocarbons, representing various classes of chemicals found in gasoline, and methyl ethyl ketone, were assayed for their inhibitory effect on glucose methanogenesis in slurries prepared from aquifer sediments and ground water. Biogas (CH4and CO2) production was monitored with an automated pressure transducer system. Benzene, 1-methyl naphthalene, and methyltert-butyl ether (MTBE) were found to have no inhibitory influence on biogas production rates at concentrations up to 71·7 mg/L. Similarly, octane, cyclohexane, indan, and methyl ethyl ketone (MEK) were found to have only marginal negative effects on the rate of biogas production in aquifer slurries, at concentrations ranging from 51·7 to 72·1 mg/L. Thus, gasoline components had low apparent toxicities to microorganisms responsible for glucose methanogenesis in aquifier slurries. As the concentrations of the assayed hydrocarbons are about 100 times those typically reported after an aquifer has been contaminated with gasoline, it is unlikely that individual hydrocarbons will substantially impact anaerobic metabolic processes.

  17. Microbial and geochemical investigations of dissolved organic carbon and microbial ecology of native waters from the Biscayne and Upper Floridan Aquifers

    USGS Publications Warehouse

    Lisle, John T.; Harvey, Ron W.; Aiken, George R.; Metge, David W.

    2010-01-01

    Groundwater resources in the United States are under ever-increasing demands for potable, irrigation, and recreational uses. Additionally, aquifer systems are being used or targeted for use as storage areas for treated surface waters and (or) groundwaters via injection (for example, aquifer storage and recovery). To date, the influence that the nutrients, including carbon, in the injected water have on native microbial communities and the biogeochemistry in the subsurface zones used for storage of the injectate has not been determined. In this report, we describe a series of experiments that establishes a baseline dataset for the quantity and quality of organic and inorganic carbon and nutrients in the Biscayne Aquifer (BA) and Upper Floridan Aquifer (UFA) in south Florida. The most significant differences between the BA (26 meters below surface) and UFA (366 meters below surface) are the average specific conductance (0.552 and 6.12 microsiemens per centimeter, respectively), dissolved oxygen (1.6 and 0 milligrams per liter, respectively), and oxidation-reduction potential (40.3 and -358 millivolts, respectively). The dissolved organic carbon from the BA is characterized by carbon originating from terrestrial sources and microbial activities, while the UFA has a distinctive microbial signature. Acetate and lactate are the dominant carbon constituents in both aquifers. Additionally, components of the dissolved organic carbon from the UFA have a total trihalomethane-formation potential that is approximately threefold greater than the maximum contaminat level of 80 micrograms per liter established by the U.S. Environmental Protection Agency. The average native bacterial abundances in the aquifers are similar with 4.69x10^4 cells per milliliter in the BA and 1.33x10^4 cells per milliliter in the UFA. The average bacteriophage abundances are also similar with 1.15x10^5 virus-like particles in the BA and 1.92x10^5 virus-like particles in the UFA. Interestingly, ciliated

  18. Natural Attenuation of Anthropogenic Chromium in Selected Puye Formation in Regional Aquifer System of LOS Alamos, New Mexico

    NASA Astrophysics Data System (ADS)

    Brown, D. B.; Ding, M.; WoldeGabriel, G. W.; Cheshire, M.; Rearick, M.; Conradson, S.; Kluk, E.; Katzman, D.

    2014-12-01

    Routine groundwater monitoring conducted in 2005 revealed significant chromium (Cr) contamination in regional groundwater in Los Alamos, New Mexico. Previous use of potassium dichromate (K2Cr2O7) in cooling towers at Los Alamos National Laboratory's main power plant is believed to be the source of the elevated chromium levels. From 1956 to 1972 between 31,000 and 72,000 Kg of toxic Cr(IV) was released into Sandia Canyon. Initial investigations of the vadose zone using chromium isotopes indicated that reduction of anthropogenic Cr(IV) had occurred. However, to justify the use of Monitoring Natural Attenuation (MNA) as a valid remediation strategy, the Cr attenuation mechanism and the reduction capacity of the regional aquifer needs to be determined. Conventional batch sorption and synchrotron-based X-ray absorption spectroscopy studies were performed. Two samples were selected from the Puye formation, a silicoclastic sedimentary rock sequence located within the contaminated aquifer. Additionally, two Los Alamos Puye outcrop samples with no chromium exposure were selected for comparison. Each sample was subsequently sorted based on grain size, magnetic, and clay fractions. Groundwater with a known concentration of Cr(IV) was used in the batch experiments. Spectroscopy measurements of Puye samples before and after exposure to the same contaminated groundwater were conducted at the Stanford Synchrotron Radiation Lightsource (SSRL). Batch sorption results indicated little to no attenuation, as indicated by the small measured sorption coefficient (Kd < 5 Kg/L). Spectroscopic measurements suggest that attenuation of hexavalent chromium in groundwater is due to reduction of Cr(VI) to Cr(III) in the Puye and may be attributed almost exclusively to the clay fraction. These results indicate that the tested Puye sediments occurring in the regional aquifer have minor ability to naturally attenuate anthropogenic Cr(IV), with the clay fraction dominating the reduction process

  19. Carbon, Metals, and Grain Size Correlate with Bacterial Community Structure in Sediments of a High Arsenic Aquifer

    PubMed Central

    Legg, Teresa M.; Zheng, Yan; Simone, Bailey; Radloff, Kathleen A.; Mladenov, Natalie; González, Antonio; Knights, Dan; Siu, Ho Chit; Rahman, M. Moshiur; Ahmed, K. Matin; McKnight, Diane M.; Nemergut, Diana R.

    2011-01-01

    Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As). This has globally important implications since As in drinking water affects the health of over 100 million people worldwide, including in the Ganges–Brahmaputra Delta region of Bangladesh where geogenic arsenic in groundwater can reach concentrations of more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across gradients in sediment texture and chemistry in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flow path at a range of depths between 1.5 and 15 m. We identified significant differences in bacterial community composition between locations in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C), manganese (Mn), and iron (Fe) concentrations. Deltaproteobacteria and Chloroflexi were found in higher proportions in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were in higher proportions in sandy sediments with lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance-reducers in the high C and metal sediments. It is well-documented that C, Mn, and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community. PMID:22470368

  20. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers. II. Model application to a field site.

    PubMed

    MacQuarrie, K T; Sudicky, E A; Robertson, W D

    2001-01-01

    A multicomponent reactive transport model as presented by MacQuarrie and Sudicky [MacQuarrie, K.T.B., Sudicky, E.A., this volume. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: I. Model formulation and performance, J. Contam. Hydrol.] is applied to a well-studied wastewater plume in a sandy aquifer near Cambridge, Ontario. Domestic wastewater is released into the unsaturated zone via a drain field at a depth of about 0.8 m. The physical transport parameters for the model are obtained by simulating a non-reactive solute, while kinetic input data for the nitrogen and carbon reaction network are obtained from the literature. The model shows that the wastewater-loading rate has little influence on the moisture content in the unsaturated zone, thus oxygen diffusion in the air phase is an important transport mechanism. The model results are in general agreement with the field-determined moisture and oxygen profiles near the drain field. The simulation results show that oxidation of ammonium and dissolved organic carbon (DOC) goes to completion in the 1.5-m distance between the drain field and the water table, and that calcite dissolution limits the pH reduction to about 0.2 units. The model-predicted nitrate concentrations in the core of the plume are in the range of 20-25 mg N/l and are in good agreement with the field data. Overall, the results for the major reactive species from the model simulation agree well with the geochemical data obtained below the drain field and it is concluded that the major physical and biochemical processes have been correctly captured in the current model formulation.

  1. Identifying aquifer type in fractured rock aquifers using harmonic analysis.

    PubMed

    Rahi, Khayyun A; Halihan, Todd

    2013-01-01

    Determining aquifer type, unconfined, semi-confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost-effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low-porosity aquifers. Water-level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water-level fluctuations of a thick (~1000 m) carbonate aquifer located in south-central Oklahoma (Arbuckle-Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric-pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low-cost method to determine aquifer type.

  2. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    NASA Astrophysics Data System (ADS)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  3. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution

    NASA Astrophysics Data System (ADS)

    Kreitler, Charles W.; Browning, Lawrence A.

    1983-02-01

    Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.

  4. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study.

    PubMed

    Maeng, Sung Kyu; Sharma, Saroj K; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  5. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    NASA Astrophysics Data System (ADS)

    Maeng, Sung Kyu; Sharma, Saroj K.; Abel, Chol D. T.; Magic-Knezev, Aleksandra; Song, Kyung-Guen; Amy, Gary L.

    2012-10-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR) treatment processes. The fate of bulk OM and PhACs during an MAR is important to assess post-treatment requirements. Biodegradable OM from EfOM, originating from biological wastewater treatment, was effectively removed during soil passage. Based on a fluorescence excitation-emission matrix (F-EEM) analysis of wastewater effluent-dominated (WWE-dom) surface water (SW), protein-like substances, i.e., biopolymers, were removed more favorably than fluorescent humic-like substances under oxic compared to anoxic conditions. However, there was no preferential removal of biopolymers or humic substances, determined as dissolved organic carbon (DOC) observed via liquid chromatography with online organic carbon detection (LC-OCD) analysis. Most of the selected PhACs exhibited removal efficiencies of greater than 90% in both SW and WWE-dom SW. However, the removal efficiencies of bezafibrate, diclofenac and gemfibrozil were relatively low in WWE-dom SW, which contained more biodegradable OM than did SW (copiotrophic metabolism). Based on this study, low biodegradable fractions such as humic substances in MR may have enhanced the degradation of diclofenac, gemfibrozil and bezafibrate by inducing an oligotrophic microbial community via long term starvation. Both carbamazepine and clofibric acid showed persistent behaviors and were not influenced by EfOM.

  6. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.

    PubMed

    Doerr, Nora A; Ptacek, Carol J; Blowes, David W

    2005-06-01

    The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.

  7. Effect of Sulfate and Organic Carbon Supplements on Reductive Dehalogenation of Chloroanilines in Anaerobic Aquifer Slurries

    PubMed Central

    Kuhn, Elmar P.; Townsend, G. Todd; Suflita, Joseph M.

    1990-01-01

    When di-, tri-, and tetrachloroaniline were incubated in methanogenic groundwater slurries, they were reductively dehalogenated by the aquifer microbiota. 2,3,4-Trichloroaniline was metabolized by two pathways. Primary dehalogenation occurred at either the meta or ortho position of this substrate to form 2,4- and 3,4-dichloroaniline, respectively. The latter chemical could be stoichiometrically converted to 3-chloroaniline. 2,3,4,5-Tetrachloroaniline was degraded by the sequential removal of halogens from the para and then the ortho position to form 3,5-dichloroaniline. An additional pathway was observed with this substrate when the aquifer slurries were amended with butyrate. That is, halogens could be removed from both the meta and ortho positions of tetrachloroaniline. The amendment of sulfate to methanogenic aquifer slurries slowed the rate of 2,3,4,5-tetrachloroaniline degradation and increased the amount of substrate channeled through the additional pathway. The reported intermediates or end products are identified by their chromatographic mobility and mass-spectral profiles. PMID:16348273

  8. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    PubMed

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values.

  9. Molecular selectivity of brown carbon chromophores.

    PubMed

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A; Roach, Patrick; Eckert, Peter; Gilles, Mary K; Wang, Bingbing; Lee, Hyun Ji Julie; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  10. Artificial recharge of aquifers. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of artificial recharge methods to improve the availability and quality of aquifers. Topics include site studies and evaluation, the use of impounded fresh water and treated wastewater in recharge applications, the role of artificial recharge techniques in groundwater resource management, individual state programs, contaminant behavior, and the engineering aspects of the use of spreading ponds and injection wells. Legal and environmental considerations, as well as the use of computer simulations, are also treated. (Contains 250 citations and includes a subject term index and title list.)

  11. Artificial recharge of aquifers. (Latest citations from the selected Water Resources Abstracts data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning the use of artificial recharge methods to improve the availability and quality of aquifers. Topics include site studies and evaluation, the use of impounded fresh water and treated wastewater in recharge applications, the role of artificial recharge techniques in groundwater resource management, individual state programs, contaminant behavior, and the engineering aspects of the use of spreading ponds and injection wells. Legal and environmental considerations, as well as the use of computer simulations, are also treated. (Contains 250 citations and includes a subject term index and title list.)

  12. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  13. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer

    NASA Astrophysics Data System (ADS)

    Pavelic, Paul; Dillon, Peter J.; Barry, Karen E.; Vanderzalm, Joanne L.; Correll, Raymond L.; Rinck-Pfeiffer, Stephanie M.

    2007-02-01

    SummaryWell-clogging remains a major operational issue, particularly in light of the increased attention being given to the reuse of reclaimed water through the method of aquifer storage and recovery (ASR) in seasonally arid regions. At a reclaimed water ASR trial site in a limestone aquifer at Bolivar in South Australia, rates of clogging were related to the quality of the injectant over a 4 year study period, during which time water quality generally improved due to advancements in pretreatment. Rates of clogging within a 4 m radius of the ASR well, defined by changes in the relative intrinsic permeability of the aquifer, were enhanced at higher levels of turbidity, total nitrogen (N TOT) and pH due to their resultant effects on particle filtration, microbial growth, and calcite dissolution, respectively. Water quality changes due to the movement of the injectant to an observation well at a radius of 4 m verified these processes. At this site acceptably low rates of short- and long-term clogging were achieved for turbidity < 3 NTU, N TOT < 10 mg/L and pH < 7.2. A mass balance model that incorporated these three processes consistently reproduced the observed permeability changes for related column experiments and provided estimates of model parameters. When applied to the field trial, the model reproduced some but not all of the major long-term clogging trends and demonstrated that the extent of clogging is largely driven by the interaction and relative dominance of the three key processes as affected by variations in the source water quality.

  14. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: Case of Chougafiya basin (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Farid, Intissar; Zouari, Kamel; Rigane, Adel; Beji, Ridha

    2015-11-01

    Comprehensive investigations of groundwaters were performed in the detrital and carbonate aquifers of the Chougafiya basin, central Tunisia. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization, recharge conditions, flow pattern of groundwater and C chemistry in the investigated hydrological system. Analysis of the dissolved constituents revealed that several processes controlled the observed chemical composition: (i) the dissolution of evaporitic minerals, (ii) cation exchange reactions, (iii) sulfate reduction under anaerobic conditions, (iv) incongruent dissolution of carbonate minerals (calcite, dolomite) coupled with gypsum dissolution and calcite precipitation, and (v) silicates weathering. Data inferred from 18O and deuterium isotopes in groundwater samples indicated recharge with modern rainfall. Water characterized by lower δ18O and δ2H values is interpreted as recharged by non-evaporated rainfall originating from Mediterranean and Atlantic air masses. However, water with relatively enriched δ18O and δ2H contents is thought to reflect the occurrence of an evaporation process related to the long term practice of flood irrigation. The radiogenic (3H) isotope data provided insight into the presence of two recharge periods in the investigated groundwaters. Waters with 3H contents of <1 TU indicated a pre-nuclear recharge. Waters with 3H contents of >1 TU clearly suggested the occurrence of a contemporaneous recharge probably during the last two decades. Carbon isotopes provided some insights into the timescales of groundwater flow, but mainly revealed that main sources of C are active in the system. These are likely: dissolved biogenic CO2, carbonate dissolution and incongruent reaction of the carbonate matrix. Mean residence times were determined after correction of the initial activities for dead C from the rock matrix and suggest ages ranging from the present day to the

  15. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  16. Numerical simulation of the basin scale hydrogeological impacts of carbon sequestration in deep saline aquifers of the St. Lawrence Lowlands

    NASA Astrophysics Data System (ADS)

    Girou, O.; Lemieux, J. M.; Malo, M.

    2015-12-01

    Full-scale carbon capture and storage in deep saline aquifers implies injecting important quantities of carbon in order to significantly reduce greenhouse gases emissions. At the basin scale, impacts related to CO2 injection are pressure perturbation as well as brine migration into freshwater aquifers. In this study, potential impacts of an industrial-scale carbon capture and storage project in Bécancour (Quebec, Canada), in the St. Lawrence Lowlands basin, are discussed, as well as the role played by regional normal faults that divide the basin into multiple compartments. The basin is 300 km long and 90 km wide, formed by sub-horizontal Paleozoic formations on top of which the Utica and Lorraine shale formations represent the caprock of the potential CO2reservoir. These formations cover most of the basin, except in its eroded northwestern part, located between 10 to 40 km away from the potential injection sites. Three injection scenarios were considered, corresponding to greenhouse gases emissions from large emitters located; in Bécancour industrial park, in a larger area that allow affordable transport and in the entire basin without considering transport costs (1, 5, 10 Mt/yr). The numerical model FEFLOW was used to simulate CO2 injection into different compartments to evaluate pressure build up propagation and brine migration in order to define which compartments are best suited for long-term storage. The simulations considered an injection period of 100 years and post-injections period of 1000 years. Numerical simulations indicate that normal faults, which exhibit a low hydraulic conductivity, play a major role orienting pressure build-up and brine migration. Due to the presence of normal faults, no pressure build up occurred close to the surface. Similarly, preliminary mass transport simulations show very limited brine migration. These first results indicate that basin-scale impacts of carbon injection are low for the 3 injection scenarios, however, the

  17. Lithologic properties of carbonate-rock aquifers at five test wells in the Coyote Spring Valley Area, southern Nevada, as determined from geophysical logs. Water resources investigation report

    SciTech Connect

    Berger, D.L.

    1992-01-01

    Regional ground-water flow systems in the carbonate-rock aquifers in southern Nevada were evaluated as potential sources for water supply as part of the Nevada Carbonate Aquifers Program. Geophysical log analyses indicated that the test wells penetrate carbonate rocks, which vary in composition from limestone to dolomite and include mixtures of both. Calcite was found to be the predominant matrix mineral and shales made up of only a small percentage of the overall rock. Bulk-density measurements averaged 2.65 grams per cubic centimeter and the matrix density estimates averaged 2.76 grams per cubic centimeter. Increased amounts of silica in the matrix mineralogy were associated with greater total porosity values. The log analyses indicated an average of 4.7 percent porosity for 43 zones in the test wells.

  18. Water table in the surficial aquifer and potentiometric surface of the Floridan Aquifer in selected well fields, west-central Florida, September 1977

    USGS Publications Warehouse

    Ryder, Paul D.; Mills, L.R.

    1978-01-01

    The water table in the surficial aquifer and the potentiometric surface of the Floridan aquifer in a 1,200 square-mile area in west-central Florida are mapped semiannually by the U.S. Geological Survey. Maps are prepared on the basis of water levels measured in wells each May to coincide with seasonal low levels; and in September, when levels are high. The mapped area for this report contains nine producing wells fields which supplied 76.2 million gallons on September 21, 1977, to municipalities in the Tampa Bay area. The effect of localized withdrawal of groundwater from the Floridan aquifer is shown on the maps as cones of depression in both the potentiometric surface and water table. In September, water levels in observation wells in the Floridan aquifer were above those measured in May. These increases ranged from about 1 foot at the Eldridge-Wilde well field to about 25 feet at the Sun City well field. (Woodard-USGS)

  19. Digital surfaces and thicknesses of selected hydrogeologic units within the Ozark Plateaus aquifer system, northwestern Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.; Bolyard, Susan E.; Hart, Rheannon M.; Clark, Jimmy M.

    2014-01-01

    Digital surfaces and thicknesses of nine hydrogeologic units of the Ozark Plateaus aquifer system from land surface to the top of the Gunter Sandstone in northwestern Arkansas were created using geophysical logs, drillers’ logs, geologist-interpreted formation tops, and previously published maps. The 6,040 square mile study area in the Ozark Plateaus Province includes Benton, Washington, Carroll, Madison, Boone, Newton, Marion, and Searcy Counties. The top of each hydrogeologic unit delineated on geophysical logs was based partly on previously published reports and maps and also from drillers’ logs. These logs were then used as a basis to contour digital surfaces showing the top and thickness of the Fayetteville Shale, the Boone Formation, the Chattanooga Shale, the Everton Formation, the Powell Dolomite, the Cotter Dolomite, the Roubidoux Formation, the Gasconade Dolomite, and the Gunter Sandstone.

  20. Carbon-14 age and chemical evolution of Ca(HCO3)2-type groundwater of age less than 8,000 years in a confined sandy and muddy Pleistocene aquifer, Japan

    NASA Astrophysics Data System (ADS)

    Machida, Isao; Suzuki, Yohey; Takeuchi, Mio

    2013-09-01

    The Pleistocene Kimitsu aquifer was selected for examination of the relationship between groundwater age and chemical evolution of Ca(HCO3)2-type groundwater. For the most part, the aquifer is confined and composed mainly of quartz and feldspar with a small amount of calcite. The groundwater ages calculated by 14C were adjusted by using a carbon mass-balance method and corrected for effects of 14C diffusion. Groundwater ages in the Kimitsu aquifer vary from modern (upgradient) to approximately 2,400 years at 4.4 km from the edge of the recharge area. The 14C age was verified by groundwater velocity calculated from the hydraulic gradient and hydraulic conductivity. The confined groundwater evolved to Ca(HCO3)2-type around 50 years after recharge and this has been maintained for more than 8,300 years due to low chemical reactivity, derived from equilibrium with calcite, kaolinite and Ca-montmorillonite. In addition, high pH prevents the dissolution of Fe and Mn. Consequently, the rate of increase in electrical conductivity ranges from 10 to 30 μS/cm per 1,000 years. On the other hand, leakage from the deep region, which is recognized from high Cl- levels, causes remarkable increases in CH4 and HCO3 - concentrations, resulting in an apparent sulfidic zone at 500-m depth in most downgradient regions.

  1. Contrasting definitions for the term `karst aquifer'

    NASA Astrophysics Data System (ADS)

    Worthington, Stephen R. H.; Jeannin, Pierre-Yves; Alexander, E. Calvin; Davies, Gareth J.; Schindel, Geary M.

    2017-08-01

    It is generally considered that karst aquifers have distinctly different properties from other bedrock aquifers. A search of the literature found five definitions that have been proposed to differentiate karst aquifers from non-karstic aquifers. The five definitions are based upon the presence of solution channel networks, hydraulic conductivities >10-6 m/s, karst landscapes, channels with turbulent flow, and caves. The percentage of unconfined carbonate aquifers that would classify as `karst' ranges from <1 to >50%.

  2. Selectivity in the carbon-oxygen reaction

    NASA Astrophysics Data System (ADS)

    Skokova, Kristina A.

    The dependence of the carbon-oxygen reaction rate and the CO/COsb2 ratio on temperature, oxygen pressure, carbon crystallite size, concentration of surface C(O) complexes, and content of heteroatoms was studied. It was shown that the temperature dependence of the CO/COsb2 ratio obeys an Arrhenius-type relationship, but the pre-exponential factor and the activation energy depend on oxygen pressure and carbon nature. The Arrhenius parameters were found to be directly proportional to each other. This confirmed the importance of the compensation effect in carbon oxidation. It was explained by active site heterogeneity in carbon materials. For all experimental conditions, the CO/COsb2 ratio was lower for carbons with more ordered graphitic structure. It was shown that the CO/COsb2 ratio is inversely proportional to the surface coverage with reactive C(O) complexes. More ordered carbons were revealed to possess lower concentrations of stable complexes, higher surface coverages with reactive complexes and thus lower CO/COsb2 ratios. The influence of B and N heteroatoms on carbon reactivity and the CO/COsb2 ratio was studied. It was confirmed that B acts as an inhibitor of carbon oxidation due to the formation of a protective Bsb2Osb3 coating. The N presence in the carbon structure increases its rate of oxidation, maybe due to decreasing carbon crystallite dimensions. The CO/COsb2 ratio did not correlate with the N content in the carbon, but depended on the concentration of surface carbon-oxygen complexes. A new reaction mechanism is proposed. A key feature of the mechanism is that it takes into account the presence and mobility of oxygen atoms on the basal plane. It was shown with the aid of theoretical molecular orbital calculations that chemisorption on a pair of adjacent edge and basal sites is thermodynamically favorable as a parallel process to the generally accepted path of chemisorption on two edge carbon atoms. The former process can lead to the formation of a

  3. Well-based stable carbon isotope leakage monitoring of an aquifer overlying the CO2 storage reservoir at the Ketzin pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.

    2014-05-01

    At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon

  4. HADES : A Mission Concept for the Identification of New Saline Aquifer Sites Suitable for Carbon Capture & Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Pechorro, Ed; Lecuyot, Arnaud; Bacon, Andrew; Chalkley, Simon; Milnes, Martin; Williams, Ivan; Williams, Stuart; Muthu, Kavitha

    2014-05-01

    The Hidden Aquifer & Deep Earth Sounder (HADES) is a ground penetrating radar mission concept for identifying new saline aquifer sites suitable for Carbon Capture & Storage (CCS). HADES uses a newly proposed type of Earth Observation technique, previously deployed in Mars orbit to search for water. It has been proposed to globally map the sub-surface layers of Earth's land area down to a maximum depth of 3km to detect underground aquifers of suitable depth and geophysical conditions for CCS. We present the mission concept together with the approach and findings of the project from which the concept has arisen, a European Space Agency (ESA) study on "Future Earth Observation Missions & Techniques for the Energy Sector" performed by a consortium of partners comprising CGI and SEA. The study aims to improve and increase the current and future application of Earth Observation in provision of data and services to directly address long term energy sector needs for a de-carbonised economy. This is part of ESA's cross-agency "Space and Energy" initiative. The HADES mission concept is defined by our specification of (i) mission requirements, reflecting the challenges and opportunities with identifying CCS sites from space, (ii) the observation technique, derived from ground penetrating radar, and (iii) the preliminary system concept, including specification of the resulting satellite, ground and launch segments. Activities have also included a cost-benefit analysis of the mission, a defined route to technology maturation, and a preliminary strategic plan towards proposed implementation. Moreover, the mission concept maps to a stakeholder analysis forming the initial part of the study. Its method has been to first identify the user needs specific to the energy sector in the global transition towards a de-carbonised economy. This activity revealed the energy sector requirements geared to the identification of suitable CCS sites. Subsequently, a qualitative and quantitative

  5. Analysis of Responses From Hydraulic Testing of the Lower Carbonate Aquifer at Yucca Flat, Nevada Test Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Bhark, E. W.; Ruskauff, G.

    2005-12-01

    The Yucca Flat corrective action unit extends over an approximately 120 square-mile basin at the Nevada Test Site (NTS), southern Nevada, and was the site for over 650 historical underground nuclear tests. The lower carbonate aquifer (LCA), roughly 1,800 feet below ground surface at Yucca Flat and with a confined thickness of several thousand feet, is the primary aquifer for much of southern Nevada and underlies the full extent of Yucca Flat. Within the last decade, long-term (multiple-day) single- and multiple-well hydraulic tests have been performed to better define aquifer properties over larger scales. The LCA is highly heterogeneous, both laterally and vertically across Yucca Flat, reflecting differences in fracturing and fault density. As such, analysis of the recent testing data requires the consideration of heterogeneous hydraulic properties at multiple spatial scales. Three individual hydraulic tests are presented that portray the marked spatial variability of hydraulic properties related to both local fracturing and basin-scale faulting across Yucca Flat. Two ten-day single-well tests (wells ER-7-1, ER-6-2) and one ninety-day multiple-well test (well cluster ER-6-1) are considered. Interpretive and numerical analyses are based upon the log-log diagnostic plots of drawdown and recovery from pumping, utilizing both the head change and derivative. Heterogeneity is considered using the flow dimension, which represents a variable formation area of flow away from the well, and proves to be a fundamental analytical tool. All hydraulic parameter estimates, including flow dimension, are complete with a measure of uncertainty. The composite interpretation of all data results in a conceptual flow model representative of two spatially continuous scales. At the larger basin (km) scale, the data indicate a fracture- or high permeability strip-dominated flow regime created by fault-related features. Ubiquitous north-south trending faults throughout Yucca Flat appear to

  6. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    NASA Astrophysics Data System (ADS)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  7. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration

    PubMed Central

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-01-01

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration. PMID:27094448

  8. Reactive transport modeling of the enhancement of density-driven CO2 convective mixing in carbonate aquifers and its potential implication on geological carbon sequestration

    DOE PAGES

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-04-20

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the densitymore » increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO2 sequestration.« less

  9. Reactive transport modeling of the enhancement of density-driven CO2 convective mixing in carbonate aquifers and its potential implication on geological carbon sequestration

    SciTech Connect

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-04-20

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO2 sequestration.

  10. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Islam, Akand; Sun, Alexander Y.; Yang, Changbing

    2016-04-01

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.

  11. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration.

    PubMed

    Islam, Akand; Sun, Alexander Y; Yang, Changbing

    2016-04-20

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.

  12. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production

    USGS Publications Warehouse

    Chapelle, F.H.; McMahon, P.B.

    1991-01-01

    A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.

  13. Testing the 14C ages and conservative behavior of dissolved 14C in a carbonate aquifer in Yucca Flat, Nevada (USA), using 36Cl from groundwater and packrat middens

    NASA Astrophysics Data System (ADS)

    Kwicklis, Edward; Farnham, Irene

    2014-09-01

    Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system.

  14. Method and apparatus for selective removal of carbon monoxide

    DOEpatents

    Borup, Rodney L.; Skala, Glenn W.; Brundage, Mark A.; LaBarge, William J.

    2000-01-01

    There is provided a method and apparatus for treatment of a hydrogen-rich gas to reduce the carbon monoxide content thereof by reacting the carbon monoxide in the gas with an amount of oxygen sufficient to oxidize at least a portion of the carbon monoxide in the presence of a catalyst in a desired temperature range without substantial reaction of hydrogen. The catalyst is an iridium-based catalyst dispersed on, and supported on, a carrier. In the presence of the catalyst, carbon monoxide in a hydrogen-rich feed gas is selectively oxidized such that a product stream is produced with a very low carbon monoxide content.

  15. Percolation pond as a method of managed aquifer recharge in a coastal saline aquifer: A case study on the criteria for site selection and its impacts

    NASA Astrophysics Data System (ADS)

    Christy, Raicy Mani; Lakshmanan, Elango

    2017-07-01

    Percolation ponds have become very popular methods of managed aquifer recharge due to their low cost, ease of construction and the participation and assistance of community. The objective of this study is to assess the feasibility of a percolation pond in a saline aquifer, north of Chennai, Tamil Nadu, India, to improve the storage and quality of groundwater. Electrical resistivity and ground penetrating radar methods were used to understand the subsurface conditions of the area. From these investigations, a suitable location was chosen and a percolation pond was constructed. The quality and quantity of groundwater of the nearby area has improved due to the recharge from the pond. This study indicated that a simple excavation without providing support for the slope and paving of the bunds helped to improve the groundwater quality. This method can be easily adoptable by farmers who can have a small pond within their farm to collect and store the rainwater. The cost of water recharged from this pond works out to be about 0.225 Re/l. Cleaning the pond by scrapping the accumulated sediments needs to be done once a year. Due to the small dimension and high saline groundwater, considerable improvement in quality at greater depths could not be achieved. However, ponds of larger size with recharge shafts can directly recharge the aquifer and help to improve the quality of water at greater depths.

  16. Survey of selected organic compounds in aquifers of New York State excluding Long Island

    USGS Publications Warehouse

    Schroeder, Roy A.; Snavely, Deborah S.

    1981-01-01

    Samples from 56 wells at 49 sites in New York State, excluding Long Island, were analyzed by gas chromatography/mass spectrometry for the presence of organic compounds designated ' priority pollutants ' by the U.S. Environmental Protection Agency. Most samples were taken from public-supply wells tapping shallow, permeable aquifers, the most susceptible to contamination. Analytical sensitivity reported by the laboratory for most compounds was less than 1 microgram per liter, but contamination during collection, shipping, or laboratory processing required that concentrations be about 10 micrograms per liter before the presence of a compound could be confirmed. Only a small percentage of wells sampled in this study was found to be contaminated. Where contamination is present, it probably results from point sources such as landfills or dumps rather than from general sources such as atmospheric deposition or proximity to urban centers. Two sites, Brewster in Putnam County and Olean in Cattaraugus County, showed clear evidence of contamination. Two other sites, Corning in Steuben County and Fulton in Oswego County, showed evidence of possible contamination. (USGS)

  17. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer.

    PubMed

    Hosseini, Seiyed Mossa; Tosco, Tiziana

    2015-08-01

    The work explores the efficacy of a biochemical remediation of a nitrate-contaminated aquifer by a combination of nanoscale zero-valent iron (NZVI) and bacteria supported by carbon substrates. Nitrate removal was first assessed in batch tests, and then in a laboratory bench-scale aquifer model (60cm length×40cm width×50cm height), in which a background flow was maintained. Water and natural sandy material of a stratified aquifer were used in the tests to enhance the reliability of the results. An array of non-pumping-reactive wells (NPRWs) filled with NZVI (d50=50nm, and SSA=22.5m(2)/g) mixed with carbon substrates (beech sawdust and maize cobs) was installed in the bench-scale aquifer model to intercept the flow and remove nitrate (NO3(-) conc.=105mg/l). The NPRW array was preferred to a continuous permeable reactive barrier (PRB) since wells can be drilled at greater depths compared to PRBs. The optimal well diameter, spacing among the NPRWs and number of wells in the bench-scale model were designed based on flow simulations using the semi-analytical particle tracking (advection) model, PMPATH. An optimal configuration of four wells, 35mm diameter, and capture width of 1.8 times the well diameter was obtained for a hydraulic conductivity contrast between reactive materials in the wells and aquifer media (KPM/Kaq=16.5). To avoid excessive proximity between wells, the system was designed so that the capture of the contaminated water was not complete, and several sequential arrays of wells were preferred. To simulate the performance of the array, the water that passed through the bench-scale NPRW system was re-circulated to the aquifer inlet, and a nitrate degradation below the limit target concentration (10mg/l) was obtained after 13days (corresponding to 13 arrays of wells in the field). The results of this study demonstrated that using the NZVI-mixed-carbon substrates in the NPRW system has a great potential for in-situ nitrate reduction in contaminated

  18. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  19. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers. I. Model formulation and performance.

    PubMed

    MacQuarrie, K T; Sudicky, E A

    2001-01-01

    One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. The objectives of this study are to develop and assess the performance of a mechanistic flow and reactive transport model which couples the most relevant physical, geochemical and biochemical processes involved in wastewater plume evolution in sandy aquifers. The numerical model solves for variably saturated groundwater flow and reactive transport of multiple carbon- and nitrogen-containing species in a three-dimensional porous medium. The reactive transport equations are solved using the Strang splitting method which is shown to be accurate for Monod and first- and second-order kinetic reactions, and two to four times more efficient than sequential iterative splitting. The reaction system is formulated as a fully kinetic chemistry problem, which allows for the use of several special-purpose ordinary differential equation (ODE) solvers. For reaction systems containing both fast and slow kinetic reactions, such as the combined nitrogen-carbon system, it is found that a specialized stiff explicit solver fails to obtain a solution. An implicit solver is more robust and its computational performance is improved by scaling of the fastest reaction rates. The model is used to simulate wastewater migration in a 1-m-long unsaturated column and the results show significant oxidation of dissolved organic carbon (DOC), the generation of nitrate by nitrification, and a slight decrease in pH.

  20. Selective Functionalization of Carbon Nanotubes: Part II

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Khare, Bishun

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species. In one series of experiments to demonstrate this method, N2 was used as the precursor gas. After the functionalization process, the carbon nanotubes from three different positions in the target chamber were examined by Fourier-transform infrared spectroscopy to identify the molecular groups that had become attached. On carbon nanotubes from d1 = 1 cm, the attached molecular groups were found to be predominantly C-N and C=N. On carbon nanotubes from d2 = 2.5 cm, the attached molecular groups were found to be predominantly C-(NH)2 and/or C=NH2. (The H2 was believed to originate as residual hydrogen present in the nanotubes.) On carbon nanotubes from d3 = 7 cm no functionalization could be detected - perhaps, it was conjectured, because this distance is downstream of the plasma source, all of the free ions and free radicals of

  1. A multi-method approach for groundwater resource assessment in coastal carbonate (karst) aquifers: the case study of Sierra Almijara (southern Spain)

    NASA Astrophysics Data System (ADS)

    Andreo, B.; Barberá, J. A.; Mudarra, M.; Marín, A. I.; García-Orellana, J.; Rodellas, V.; Pérez, I.

    2017-08-01

    Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17-60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9-45.9 hm3 year-1) is in agreement with the average recharged groundwater (44.7 hm3 year-1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.

  2. Hydrogeologic and geospatial data for the assesment of focused recharge to the Carbonate-Rock Aquifer in Genesee County, New York

    USGS Publications Warehouse

    Reddy, James E.; Kappel, William M.

    2010-01-01

    Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.

  3. Methods for selective functionalization and separation of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  4. Influence of a compost layer on the attenuation of 28 selected organic micropollutants under realistic soil aquifer treatment conditions: insights from a large scale column experiment.

    PubMed

    Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias

    2015-05-01

    Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain)

    NASA Astrophysics Data System (ADS)

    Moral, F.; Cruz-Sanjulián, J. J.; Olías, M.

    2008-10-01

    SummarySierra de Segura (Betic Cordillera), with a total area of over 3000 km 2, is the source of the two principal rivers in southern Spain, the Guadalquivir and the Segura. Due to the orographic effect of these mountains, precipitations are considerably more abundant than in nearby lowland areas, where the climate is semi-arid. Sierra de Segura is constituted of Mesozoic and Cenozoic sedimentary rocks, among which there are thick limestone-dolomitic formations which have given rise to extensive outcrops of permeable materials. In geomorphological terms, there is a large plateau intensively karstified that constitutes the main recharge area. Discharge takes place via a large number of springs, of which the 50 most important add up to a mean spring flow of about 13,500 l/s. The active geochemical processes in aquifers of Sierra de Segura, with their corresponding time sequence, are: dissolution of CO 2, dissolution of calcite, incongruent dissolution of dolomite, dedolomitization, exsolution of CO 2, and precipitation of calcite. More evolved water has higher temperature, magnesium content and Mg/Ca ratio; therefore, these parameters can be utilised as indicators of the degree of hydrochemical evolution. In addition, a good correlation between water temperature and magnesium concentration (or Mg/Ca ratio) indicates that an increase in temperature accelerates the kinetics of the dissolution of dolomite. Finally, the distribution of the temperatures in the vadose zone, determined by atmospheric thermal gradient, implies an apparent stratification of the predominant hydrochemical processes and of the groundwater physical and chemical characteristics.

  6. Historical saturated thickness of the Edwards-Trinity aquifer system and selected contiguous hydraulically connected units, west-central Texas

    USGS Publications Warehouse

    Ardis, Ann F.; Barker, Rene A.

    1993-01-01

    The purposes of this report are to illustrate the historical distribution of saturated thickness (hereafter referred to as the saturated thickness) in the Edwards-Trinity aquifer system, summarize the reasons for the variation in the saturated thickness, and relate the regional effects of this variation to the distribution of transmissivity. The saturated thickness map (sheet 2) was determined for most of the area by subtracting the altitude of the base of the aquifer system (Barker and Ardis, 1992) from the altitude of the historical potentiometric surface (Bush and others, 1993). Where the Edwards and Trinity aquifers are confined in the Balcones fault zone, the saturated thickness is defined by the thickness of the aquifer system, which was determined by subtracting the altitude of the base of the aquifer system from the altitude of the base of the Navarro-Del Rio confining unit (G.E. Groschen and W.G. Stein, U.S. Geological Survey, written commun, 1990).

  7. Ground-water quality in the eastern part of the Silurian-Devonian and upper Carbonate aquifers in the eastern Iowa basins, Iowa and Minnesota, 1996

    USGS Publications Warehouse

    Savoca, Mark E.; Sadorf, Eric M.; Akers, Kymm K.B.

    1999-01-01

    The presence of regional confining units and thick overlying Quaternary-age deposits have an effect on water quality in the Silurian-Devonian and Upper Carbonate aquifers in the study area. Tritium-based ground-water ages were significantly older, and dissolved-solids concentrations were significantly higher in relatively well protected areas (where the aquifers are overlain by a bedrock confining unit or more than 100 feet of Quaternary-age deposits). Ammonia concentrations were significantly higher in relatively well protected areas and in samples from wells that produced older water. Higher ammonia concentrations also were observed in ground water with dissolved-oxygen concentrations of 0.5 milligram per liter or less, allowing for the anaerobic reduction of nitrate to ammonia. Nitrate concentrations were significantly higher in relatively poorly protected areas (where the aquifers are not overlain by a bedrock confining unit or are overlain by less than 100 feet of Quaternaryage deposits) and in samples from wells that produced recently recharged water. Pesticide and metabolite concentrations were significantly higher in samples from wells that produced recently recharged water. Atrazine, metolachlor, and deethylatrazine were not detected in any samples from relatively well protected areas of the aquifers.

  8. Carbon cycles and climate: a selected bibliography

    SciTech Connect

    Olson, J.S.; Allison, L.J.; Collier, B.N.

    1980-05-01

    This partially annotated bibliography contains the first 1000 references from a computerized file of literature on the global ecological implications of carbon cycles and climatic changes. Many early citations originated from the Biogeochemical Ecological Information Center established at Oak Ridge National Laboratory in 1968 and from profiles of computerized files such as Government Research Abstracts (GRA) and Biological Abstracts (BA). Later citations have been extracted from the open literature through 1978 and early 1979, from government reports and impact statements, and from profiles of GRA, BA, and the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The subject categories covered by this bibliography may be divided into two main topics: carbon cycling and climate system analysis. Volume 3 provides indexes for author, organization (corporate authority), keywords (or free index terms), taxonomic category, subject category, Chemical Abstracts codes, Biological Abstracts codes (crosscode), and COSATI/Weekly Government Abstracts codes concentrated with permuted title words.

  9. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  10. Surface selective membranes for carbon dioxide separation

    SciTech Connect

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  11. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer.

    PubMed

    Mouser, P J; N'Guessan, L A; Qafoku, N P; Sinha, M; Williams, K H; Dangelmayr, M; Resch, C T; Peacock, A; Wang, Z; Figueroa, L; Long, P E

    2015-01-01

    The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long-term stewardship of re-mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic-rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital-rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)-reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink-source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U-contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long-term sourcing of the contaminants. © 2014, National Ground Water Association.

  12. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  13. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    PubMed

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution

  14. Demonstration optimization analyses of pumping from selected Arapahoe aquifer municipal wells in the west-central Denver Basin, Colorado, 2010–2109

    USGS Publications Warehouse

    Banta, Edward R.; Paschke, Suzanne S.

    2012-01-01

    Declining water levels caused by withdrawals of water from wells in the west-central part of the Denver Basin bedrock-aquifer system have raised concerns with respect to the ability of the aquifer system to sustain production. The Arapahoe aquifer in particular is heavily used in this area. Two optimization analyses were conducted to demonstrate approaches that could be used to evaluate possible future pumping scenarios intended to prolong the productivity of the aquifer and to delay excessive loss of saturated thickness. These analyses were designed as demonstrations only, and were not intended as a comprehensive optimization study. Optimization analyses were based on a groundwater-flow model of the Denver Basin developed as part of a recently published U.S. Geological Survey groundwater-availability study. For each analysis an optimization problem was set up to maximize total withdrawal rate, subject to withdrawal-rate and hydraulic-head constraints, for 119 selected municipal water-supply wells located in 96 model cells. The optimization analyses were based on 50- and 100-year simulations of groundwater withdrawals. The optimized total withdrawal rate for all selected wells for a 50-year simulation time was about 58.8 cubic feet per second. For an analysis in which the simulation time and head-constraint time were extended to 100 years, the optimized total withdrawal rate for all selected wells was about 53.0 cubic feet per second, demonstrating that a reduction in withdrawal rate of about 10 percent may extend the time before the hydraulic-head constraints are violated by 50 years, provided that pumping rates are optimally distributed. Analysis of simulation results showed that initially, the pumping produces water primarily by release of water from storage in the Arapahoe aquifer. However, because confining layers between the Denver and Arapahoe aquifers are thin, in less than 5 years, most of the water removed by managed-flows pumping likely would be supplied

  15. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  16. Hydrogeology and simulation of source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer near Shippensburg, Cumberland and Franklin Counties, Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.

    2005-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the Shippensburg Borough Authority to evaluate the source areas of water to production wells in a colluvium-mantled carbonate-bedrock aquifer in Cumberland and Franklin Counties, Pa. The areal extent of the zone of contribution was simulated for three production wells near Shippensburg, Pa. by use of a ground-water-flow model. A 111-square-mile area was selected as the model area and includes areas of the South Mountain Section and the Great Valley Section of the Valley and Ridge Physiographic Province. Within the model area, the geologic units in the South Mountain area are predominantly metamorphic rocks and the geologic units in the Great Valley are predominantly carbonate rocks. Hydrologic and geologic information were compiled to establish a conceptual model of ground-water flow. Characteristics of aquifer materials were determined, and streamflow and water levels were measured. Streamflow measurements in November 2003 showed all streams lost water as they flowed from South Mountain over the colluvium-mantled carbonate aquifer into the Great Valley. Some streams lost more than 1 cubic foot per second to the aquifer in this area. The Shippensburg Borough Authority owns three production wells in the model area. Two wells, Cu 969 and Fr 823, are currently (2004) used as production wells and produce 500,000 and 800,000 gallons per day, respectively. Well Cu 970 is intended to be brought on line as a production well in the future. Water levels were measured in 43 wells to use for model calibration. Water-level fluctuations and geophysical logs indicated confined conditions in well Cu 970. Ground-water flow was simulated with a model that consisted of two vertical layers, with five zones in each layer. The units were hydrostratigraphic units that initially were based on geologic formations, but boundaries were adjusted during model calibration. Model calibration resulted in

  17. Water Levels and Selected Water-Quality Conditions in the Sparta-Memphis Aquifer (Middle Claiborne Aquifer) in Arkansas, Spring-Summer 2007

    USGS Publications Warehouse

    Schrader, T.P.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered

  18. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is

  19. Computation of bedrock-aquifer recharge in northern Westchester County, New York, and chemical quality of water from selected bedrock wells

    USGS Publications Warehouse

    Wolcott, Stephen W.; Snow, Robert F.

    1995-01-01

    An empirical technique was used to calculate the recharge to bedrock aquifers in northern Westchester County. This method requires delineation of ground-water divides within the aquifer area and values for (1) the extent of till and exposed bedrock within the aquifer area, and (2) mean annual runoff. This report contains maps and data needed for calculation of recharge in any given area within the 165square-mile study area. Recharge was computed by this technique for a 93-square-mile part of the study area and used a ground-water-flow model to evaluate the reliability of the method. A two-layer, steady-state model of the selected area was calibrated. The area consists predominantly of bedrock overlain by small localized deposits of till and stratified drill Ground-water-level and streamflow data collected in mid-November 1987 were used for model calibration. The data set approximates average annual conditions. The model was calibrated from (1) estimates of recharge as computed through the empirical technique, and (2) a range of values for hydrologic properties derived from aquifer tests and published literature. Recharge values used for model simulation appear to be reasonable for average steady-state conditions. Water-quality data were collected from 53 selected bedrock wells throughout northern Westchester County to define the background ground-water quality. The constituents and properties for which samples were analyzed included major cations and anions, temperature, pH, specific conductance, and hardness. Results indicate little difference in water quality among the bedrock aquifers within the study area. Ground water is mainly the calcium-bicarbonate type and is moderately hard. Average concentrations of sodium, sulfate, chloride, nitrate, iron, and manganese were within acceptable limits established by the U.S. Environmental Protection Agency for domestic water supply.

  20. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  1. Petrophysical and Mechanical Properties of Fractured Aquifers in the Northern Newark Basin: Implications for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.; Collins, D.; Olsen, P. E.

    2012-12-01

    One of the key factors in predicting the performance of low-permeability fractured reservoirs is a detailed understanding of the in-situ state of stress and the distribution and orientation of natural fractures and faults. In this study we analyze borehole geophysical data from a deep characterization well in the northern Newark Basin, a candidate CO2-storage site, and provide petrophysical and geomechanical characterization of fractured sedimentary and igneous formations. Previous studies in the northern Newark basin demonstrated no unique relationship between hydraulic conductivity and degree of fracturing, fracture apertures or orientation. Therefore, in the absence of hydraulic testing data predicting fracture behavior under CO2 injection condition presents a significant challenge for baseline formation characterization. Moreover, fluid injection in deep wells can cause reactivation of existing faults or new fracture initiation due to significant increase in the pore pressure. We analyze electrical resistivity images and full-wave sonic data to constrain the state of the current in-situ stress in the northern Newark basin, and to evaluate how the interaction between in-situ stress and the distribution and orientation of natural fractures influences their hydraulic properties. We then combine it with the full suite of wireline logs to describe petrophysical, hydraulic, and geomechanical properties of the fractured aquifers at the locality. The Sandia Technologies, LLC Tandem Lot #1 geologic characterization well (Rockland County, NY) is about 6,800 ft deep and transects Triassic terrestrial sediments and the Palisades diabase sill that are both characterized by abundant natural fractures. A suite of standard wireline logs, high-resolution electrical resistivity images and full-wave sonic data were collected in the borehole but no hydraulic data or in-situ stress estimates are available. Borehole breakouts are clearly observed in the resistivity images in

  2. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  3. Installation and sampling of observation wells and analyses of water from the shallow aquifer at selected waste-disposal sites in the Memphis area, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Graham, D.D.; Lowery, J.F.

    1982-01-01

    Observation wells were installed and sampled at six abandoned waste-disposal sites in the Memphis area that have been identified as having received unknown quantities and types of industrial waste. Ten wells were installed adjacent to and downgradient from these sites in the shallow water-table aquifer. Water samples were collected from these 10 wells and from two other wells in the shallow water-table aquifer. Most wells were sampled twice -- initially in the early summer when water levels were high and again in the fall when water levels were low. Other wells were sampled only once in either the summer or fall. The water was analyzed for common constituents, selected trace constituents, and selected organic compounds. (USGS)

  4. Geochemical and Mineralogical Investigation for Carbon Capture and Storage, Within the Arbuckle Aquifer, Kansas

    NASA Astrophysics Data System (ADS)

    Datta, S.; Campbell, B.; Vega, M.; Barker, R. L.; Holubnyak, E.; Watney, W. L.

    2013-12-01

    A class VI permit site under U.S. Department of Energy has been proposed for carbon sequestration in south-central Kansas. In an effort to maintain environmental stability three wells have been drilled to basement rock, two being near the injection site, KGS 1-32 and KGS 1-28, and one being to the western annex, Cutter KGS #1. The western annex site, Cutter, is being utilized as a cross-comparison for mineralogical, geochemical, and structural component to the eastern sites in Wellington. A link will be determined of the continuity of three zones of interest: the Mississippian pay zone (3670'-3700'), a potential baffle zone in the upper Arbuckle (4400'-4550'), and the proposed CO2 injection zone (4900'-5050'). 11 depths within Cutter have been swabbed, and samples taken to investigate the chemistry of the subsurface formation water. The different depths will allow for a quantitative determination of how the brine composition varies with depth, and also provides a baseline for future monitoring. Initial chemical analysis by ICP-OES and HR-ICP-MS show a hyper saline brine (50,000-190,000TDS), dominated by Cl, Na, and Ca ions. pH ranges from 6.4 to 7.5, and total alkalinity from 124 and 378 mg/L of HCO¬3-. One complex, yet intriguing, species is Iron. It could potentially allow for further precipitation of the CO2¬ from the formation of Fe carbonates, such as siderite. Cores and thin sections were taken from a variety of depths ranging from 3681.9' to 5176.9' (Wellington) and 5564.3' to 7540.2' (Cutter). Dominant mineralogy consists of dolomite with varying forms of silicic intrusions, usually in the form of chert nodules with sulfide minerals and argillaceous materials in between. Extensive vugs and microfractures allow for varying porosity within each interval. Pay zone rocks typically display fine-grained cherty dolomite with subhedral to euhedral dolomite rhombs as well as oil stains oriented in parallel blotches. Characteristics such as high porosity and small

  5. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization

    PubMed Central

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485

  6. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  7. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  8. Grafting of activated carbon cloths for selective adsorption

    NASA Astrophysics Data System (ADS)

    Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.

    2016-05-01

    Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.

  9. Orientation-selective unzipping of carbon nanotubes.

    PubMed

    Zhang, Hongyu; Zhao, Mingwen; He, Tao; Zhang, Xuejuan; Wang, Zhenhai; Xi, Zexiao; Yan, Shishen; Liu, Xiangdong; Xia, Yueyuan; Mei, Liangmo

    2010-11-07

    We carried out first-principles calculations to explore the oxidative longitudinal unzipping of single-walled carbon nanotubes (SWCNTs) of different diameters and chiralities. We found that the initial attack leading to nanotube unzipping prefers to occur in the middle region for armchair tubes, and at the tube ends for zigzag tubes. Once the initial attack has taken place, by overcoming an energy barrier whose value decreases with increasing tube diameter, the subsequent breakage of C-C bonds parallel to the ones broken in the former process is barrierless. The energetically preferred unzipping path is parallel to the tube axis for armchair tubes, resulting in straight zigzag-edged graphene nanoribbons. For zigzag tubes, there are two energetically equivalent unzipping directions corresponding to the opening of two types of C-C bonds tilted towards the tube axis, giving rise to helical unzipping paths. This is disadvantageous for the production of straight graphene ribbons. A local curvature modulation procedure is proposed to efficiently control the location of the initial attack and thus the shape of the produced graphene nanoribbons.

  10. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    DOE PAGES

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...

    2016-12-27

    The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m ×more » 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less

  11. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-06-01

    In southern Latium region, Central Italy, groundwater and spring water resources in the carbonate aquifers are the major contributors of drinking and irrigation water supply. The aim of this study was to review hydrochemical processes that control the groundwater chemistry and to determine the suitability of springs and groundwater for irrigation and drinking purposes on the basis of the water quality indices. Physical (pH, electrical conductivity, total dissolved solids) and hydrochemical characteristics (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, and SO4 -) of springs and groundwater were determined. To assess the water quality, chemical parameters like sodium adsorption ratio (SAR), total hardness, Mg-hazard (MH), sodium percentage (Na %), salinity hazard, permeability index, and Kelly's ratio were calculated based on the analytical results. A Durov diagram plot revealed that the groundwater has been evolved from Ca to HCO3 recharge water, followed by mixing and reverse ion exchange processes, due to the respective dominance of Na-Cl and Ca-Cl water types. According to Gibbs's diagram plots, chemical weathering of rock forming minerals is the major driving force controlling water chemistry in this area. Groundwater and spring samples were grouped into six categories according to irrigation water quality assessment diagram of US Salinity Laboratory classification and most of the water samples distributed in category C2-S1 and C3-S1 highlighting medium to high salinity hazard and low sodium content class. The results of hydrochemical analyses and the calculated water quality parameters suggest that most of the water samples are suitable for irrigation and drinking purposes, except for the samples influenced by seawater and enhanced water-rock interaction. High values of salinity, Na %, SAR, and MH at certain sites, restrict the suitability for agricultural uses.

  12. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer

    SciTech Connect

    Mouser, Paula J.; N'Guessan, A. Lucie; Qafoku, Nikolla; Sinha, M.; Williams, K. H.; Dangelmayr, M.; Resch, Charles T.; Peacock, Aaron D.; Wang, Zheming; Figueroa, Linda A.; Long, P. E.

    2015-07-01

    The capacity for subsurface sediments to sequester metal contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to site stewardship. Sediments enriched in natural organic matter are capable of sequestering significant quantities of U, but may also serve as sources to the aquifer, contributing to plume persistence. Two types of sediments were compared to better understand the mechanisms contributing to the sequestration and release of U in the presence of organic matter. Artificially bioreduced sediments were retrieved from a field experimental plot previously stimulated with acetate while naturally bioreduced sediments were collected from a location enriched in organic matter but never subject to acetate amendment. Batch incubations demonstrated that the artificially bioreduced sediments were primed to rapidly remove uranium from the groundwater whereas naturally bioreduced sediments initially released a sizeable portion of sediment U before U(VI)-removal commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally bioreduced sediments, demonstrating the sink-source behavior of this sediment. Acetate addition to artificially bioreduced sediments shifted the microbial community from one dominated by sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing family Geobacteraceae and Firmicutes during U(VI) reduction. In contrast, initial Geobacteraceae communities innaturally reduced sediments were replaced by clone sequences with similarity to opportunistic Pseudomonas spp. during U release, while U(VI) removal occurred concurrent with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U contaminated sites prior to the determination of a remedial strategy.

  13. Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    SciTech Connect

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.

    2016-12-27

    The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).

  14. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon.

  15. Hydrogeologic factors that affect the flowpath of water in selected zones of the Edwards Aquifer, San Antonio region, Texas

    USGS Publications Warehouse

    Groschen, G.E.

    1996-01-01

    The Edwards aquifer in the San Antonio region supplies drinking water for more than 1 million people. Proper development and protection of the aquifer is a high priority for local and State authorities. To better understand the flow of water in two major flowpaths in the Edwards aquifer, stratigraphic, structural, hydrologic, and geochemical data were analyzed. The western Medina flowpath is in parts of Uvalde, Medina, and Bexar Counties, and the eastern flowpath is in northern Bexar and central Comal Counties. A major hydrogeologic factor that affects the pattern of flow in the Edwards aquifer is the spatial and temporal distribution of recharge. Other hydrogeologic factors that affect flowpaths include internal boundaries and the location and rate of spring discharge. The relative displacement of faults and the high permeability layers have substantial control on the discharge at springs and on the flowpaths in the Edwards aquifer. Analysis of the estimated recharge to the Edwards aquifer during 1982 89 indicated that during years of substantial precipitation, a large part of the net recharge probably is diffuse infiltration of precipitation over large parts of the recharge area. During years with below-normal precipitation, most recharge is leakage from rivers and streams that drain the catchment subbasins. In the western Medina flowpath, concentrations of major ions indicate saturation of calcite and undersaturation of dolomite the two minerals that constitute most of the Edwards aquifer matrix. Concentrations of dissolved calcium, alkalinity, and dissolved chloride in the eastern flowpath are greater than those in the western Medina flowpath. These upward trends in concentrations might result in part from: (1) increased development in the recharge area, (2) mineralized effluent from developed areas, or (3) increased dissolution of aquifer material. Tritium data from wells sampled in and near the western Medina flowpath indicate no vertical stratification of

  16. The mechanism of selective molecular capture in carbon nanotube networks.

    PubMed

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  17. Select metal adsorption by activated carbon made from peanut shells.

    PubMed

    Wilson, Kermit; Yang, Hong; Seo, Chung W; Marshall, Wayne E

    2006-12-01

    Agricultural by-products, such as peanut shells, contribute large quantities of lignocellulosic waste to the environment each growing season; but few, if any, value-added uses exist for their disposal. The objective of this study was to convert peanut shells to activated carbons for use in adsorption of select metal ions, namely, cadmium (Cd2+), copper (Cu2+), lead (Pb2+), nickel (Ni2+) and zinc (Zn2+). Milled peanut shells were pyrolyzed in an inert atmosphere of nitrogen gas, and then activated with steam at different activation times. Following pyrolysis and activation, the carbons underwent air oxidation. The prepared carbons were evaluated either for adsorption efficiency or adsorption capacity; and these parameters were compared to the same parameters obtained from three commercial carbons, namely, DARCO 12x20, NORIT C GRAN and MINOTAUR. One of the peanut shell-based carbons had metal ion adsorption efficiencies greater than two of the three commercial carbons but somewhat less than but close to Minotaur. This study demonstrates that peanut shells can serve as a source for activated carbons with metal ion-removing potential and may serve as a replacement for coal-based commercial carbons in applications that warrant their use.

  18. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    SciTech Connect

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  19. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  20. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  1. Microbiological monitoring of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK

    NASA Astrophysics Data System (ADS)

    Wandrey, M.; Morozova, D.; Zemke, K.; Lerm, S.; Scherf, A.-K.; Vieth, A.; Würdemann, H.; Co2SINK Group

    2009-04-01

    Within the scope of the EU project CO2SINK (www.co2sink.org) a research facility in Ketzin (Germany, west of Berlin) is operated to store CO2 in a saline subsurface aquifer (Würdemann et al., EGU General Assembly 2009). In order to examine the influence of CO2 storage on the environment a comprehensive monitoring program is applied at this site including molecular and microbiological investigations. With the injection of CO2 into the geological formation chemical and physical reservoir characteristics are changed. This may influence the composition and activities of the deep biosphere at the storage horizon. Mineral precipitation, dissolution and corrosion of reservoir casing may be consequences, influencing permeability and long-term stability of the reservoir. The objective of the microbial monitoring program is the characterisation of the microbial community (biocenosis) in fluid samples, as well as in samples from reservoir and cap rock before and during CO2storage using molecular biological methods. 16S rRNA taxonomic studies, Fluorescence in situ hybridisation (FISH), and RealTime PCR are used to examine the composition of the biocenosis. First results of fluid sampling revealed that the microbial community of the saline aquifer is dominated by haloalkaliphilic fermentative bacteria and extremophilic organisms, coinciding with reduced conditions, high salinity and pressure. RealTime RT-PCR of selected genes and the creation and analysis of cDNA libraries will allow the prediction of microbial metabolic activities. In addition, the analysis of organic and inorganic components of the samples will add to the knowledge of possible metabolic shifts during CO2 storage. In order to simulate the storage conditions in situ, long term laboratory experiments in high pressure incubators have been set up using original rock cores from Ketzin. Since DNA and RNA analysis techniques are very sensitive, contamination entries from the adjacent environment have to be excluded

  2. Revised Geostatistical Analysis of the Inventory of Carbon Tetrachloride in the Unconfined Aquifer in the 200 West Area of the Hanford Site

    SciTech Connect

    Murray, Christopher J.; Bott, Yi-Ju

    2008-12-30

    This report provides an updated estimate of the inventory of carbon tetrachloride (CTET) in the unconfined aquifer in the 200 West Area of the Hanford Site. The contaminant plumes of interest extend within the 200-ZP-1 and 200-UP-1 operable units. CH2M HILL Plateau Remediation Company (CHPRC) currently is preparing a plan identifying locations for groundwater extraction wells, injection wells, transfer stations, and one or more treatment facilities to address contaminants of concern identified in the 200-ZP-1 CERCLA Record of Decision. To accomplish this, a current understanding of the inventory of CTET is needed throughout the unconfined aquifer in the 200 West Area. Pacific Northwest National Laboratory (PNNL) previously developed an estimate of the CTET inventory in the area using a Monte Carlo approach based on geostatistical simulation of the three-dimensional (3D) distribution of CTET and chloroform in the aquifer. Fluor Hanford, Inc. (FH) (the previous site contractor) requested PNNL to update that inventory estimate using as input a set of geostatistical realizations of CTET and chloroform recently created for a related but separate project, referred to as the mapping project. The scope of work for the inventory revision complemented the scope of work for the mapping project, performed for FH by PNNL. This report briefly describes the spatial and univariate distribution of the CTET and chloroform data, along with the results of the geostatistical analysis and simulation performed for the mapping project.

  3. Investigation of Chirality Selection Mechanism of Single Walled Carbon Nanotube

    DTIC Science & Technology

    2016-12-13

    research involved investigation of two fundamental mechanisms of carbon nanotube (CNT) growth : chirality selection of single-walled CNT (SWCNT) and... growth improvement of CNT arrays. For the chirality selection mechanism, attempts to use thin membrane TEM samples to clearly observe CNT/catalyst...particle interfaces under optimized growth conditions was unsuccessful. Instead, in-situ CNT growth array experiments on rational design of catalyst

  4. Estimates for self-supplied domestic withdrawals and population served for selected principal aquifers, calendar year 2005

    USGS Publications Warehouse

    Maupin, Molly A.; Arnold, Terri L.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey has groundwater studies that focus on water-quality conditions in principal aquifers of the United States. The Program specifically focuses on aquifers that are important to public supply, domestic, and other major uses. Estimates for self-supplied domestic withdrawals and the population served for 20 aquifers in the United States for calendar year 2005 are provided in this report. These estimates are based on county-level data for self-supplied domestic groundwater withdrawals and the population served by those withdrawals, as compiled by the National Water Use Information Program, for areas within the extent of the 20 aquifers. In 2005, the total groundwater withdrawals for self-supplied domestic use from the 20 aquifers represented about 63 percent of the total self-supplied domestic groundwater withdrawals in the United States; the population served by the withdrawals represented about 61 percent of the total self-supplied domestic population in the United States.

  5. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    USGS Publications Warehouse

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  6. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop,; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  7. Groundwater flow in an `underfit' carbonate aquifer in a semiarid climate: application of environmental tracers to the Salt Basin, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Sigstedt, Sophia C.; Phillips, Fred M.; Ritchie, Andre B. O.

    2016-06-01

    The Salt Basin is a semiarid hydrologically closed drainage basin in southern New Mexico, USA. The aquifers in the basin consist largely of Permian limestone and dolomite. Groundwater flows from the high elevations (˜2,500 m) of the Sacramento Mountains south into the Salt Lakes, which are saline playas. The aquifer is `underfit' in the sense that depths to groundwater are great (˜300 m), implying that the aquifer could transmit much more water than it does. In this study, it is speculated that this characteristic is a result of a geologically recent reduction in recharge due to warming and drying at the end of the last glacial period. Water use is currently limited, but the basin has been proposed for large-scale groundwater extraction and export projects. Wells in the basin are of limited utility for hydraulic testing; therefore, the study focused on environmental tracers (major-ion geochemistry, stable isotopes of O, H, and C, and 14C dating) for basin analysis. The groundwater evolves from a Ca-HCO3 type water into a Ca-Mg (Na) - HCO3-Mg (Cl) water as it flows toward the center of the basin due to dedolomitization driven by gypsum dissolution. Carbon-14 ages corrected for dedolomitization ranged from less than 1,000 years in the recharge area to 19,000 years near the basin center. Stable isotopes are consistent with the presence of glacial-period recharge that is much less evaporated than modern. This supports the hypothesis that the underfit nature of the aquifer is a result of a geologically recent reduction in recharge.

  8. Evolution of porosity in the saltwater freshwater mixing zone of coastal carbonate aquifers: An alternative modelling approach

    NASA Astrophysics Data System (ADS)

    Romanov, Douchko; Dreybrodt, Wolfgang

    2006-10-01

    SummaryDissolution of calcium carbonate in the saltwater-freshwater mixing zone in carbonate islands and coastal aquifers up to now has been treated by coupling geochemical equilibrium programmes to a reactive-transport model. The result is a complex nonlinearly coupled set of differential transport-advection equations, which need high computational efforts. If dissolution rates of calcite are sufficiently fast, such that one can assume the solution to be in equilibrium with respect to calcite a highly simplified modelling approach can be used. By use of the concept of Phillips in his book: Flow and Reactions in Permeable Rock, Cambridge University Press, New York (1991) and its more general formulation by De Simoni et al. [De Simoni, M., Carrera, J., Sánchez-Vila, X., Guadagnini, A., 2005. A procedure for the solution of multicomponent reactive transport problems, Water Resource Research, 41, W11410.], it is possible to decouple the complex set of equations. To calculate initial changes of porosity in the rock matrix one needs solely to solve the advection-transport equation for salinity s. Current codes on density driven flow such as SEAWAT can be used. To obtain the dissolution capacity of the mixed saltwater-freshwater solution the calcium equilibrium concentration ceq( s) is obtained as a function of salinity by PHREEQC-2. Initial porosity changes can then be calculated by a simple analytical expression of the gradient of the spatial distribution s( x, y) of salinity, the distribution of flow fluxes q( x, y) and the second derivative of the calcium equilibrium concentration ceq( s) with respect to salinity s. This approach does no longer require large dispersivities on the order of meters; but reasonable results are obtained with dispersivity on the scale of the pore size of the porous rock, which correctly describes mixing on the molecular scale. The method is applied to a simple 1-D-domain without convective flow and a constant gradient of salinity as

  9. Selective Growth of Carbon Nanotubes by Catalyst Poisoning

    NASA Astrophysics Data System (ADS)

    You, Liang; Chang, Weng-Teng; Tabib-Azar, Massood

    2004-03-01

    Catalyst patterning is usually used to selectively grow carbon nanotubes (CNT). We demonstrate selective CNT growth by a complementary technique that uses a layer over or underneath the catalyst layer. Iron is a CNT catalyst but when it is deposited over aluminum, its ability to catalyze CNTs diminishes. Using patterned (100) silicon with patches of aluminum, we demonstrate selective CNT growth using catalyst poisoning. Aluminum melts at the CNT growth temperatures and dissolves the iron islands preventing these islands to catalyze CNT. Other mechanisms will also be discussed.

  10. Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing.

    PubMed

    Zhao, Jie; Zhang, Weimin; Sherrell, Peter; Razal, Joselito M; Huang, Xu-Feng; Minett, Andrew I; Chen, Jun

    2012-01-01

    A highly sensitive and selective dopamine sensor was fabricated with the unique 3D carbon nanotube nanoweb (CNT-N) electrode. The as-synthesised CNT-N was modified by oxygen plasma to graft functional groups in order to increase selective electroactive sites at the CNT sidewalls. This electrode was characterized physically and electrochemically using HRSEM, Raman, FT-IR, and cyclic voltammetry (CV). Our investigations indicated that the O(2)-plasma treated CNT-N electrode could serve as a highly sensitive biosensor for the selective sensing of dopamine (DA, 1 μM to 20 μM) in the presence of ascorbic acid (AA, 1000 μM).

  11. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.

    PubMed

    Achal, Varenyam; Pan, Xiangliang; Zhang, Daoyong

    2012-10-01

    Contamination of aquifers or sediments by radioactive strontium ((90)Sr) is a significant environmental problem. In the present study, microbially induced calcite precipitation (MICP) was evaluated for its potential to remediate strontium from aquifer quartz sand. A Sr resistant urease producing Halomonas sp. was characterized for its potential role in bioremediation. The bacterial strain removed 80% of Sr from soluble-exchangeable fraction of aquifer quartz sand. X-ray diffraction detected calcite, vaterite and aragonite along with calcite-strontianite (SrCO(3)) solid solution in bioremediated sample with indications that Sr was incorporated into the calcite. Scanning electron micrography coupled with energy-dispersive X-ray further confirmed MICP process in remediation. The study showed that MICP sequesters soluble strontium as biominerals and could play an important role in strontium bioremediation from both ecological and greener point of view.

  12. Hydrostratigraphic Framework and Selection and Correlation of Geophysical Log Markers in the Surficial Aquifer System, Palm Beach County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Wacker, Michael A.

    2007-01-01

    The surficial aquifer system is the major source of freshwater for public water supply in Palm Beach County, Florida, yet many previous studies of the hydrogeology of this aquifer system have focused only on the eastern one-half to one-third of the county in the more densely populated coastal area (Land and others, 1973; Swayze and others, 1980; Swayze and Miller, 1984; Shine and others, 1989). Population growth in the county has resulted in the westward expansion of urbanized areas into agricultural areas and has created new demands on the water resources of the county. Additionally, interest in surface-water resources of central and western areas of the county has increased. In these areas, plans for additional surface-water storage reservoirs are being made under the Comprehensive Everglades Restoration Plan originally proposed by the U.S. Army Corps of Engineers and the South Florida Water Management District (1999), and stormwater treatment areas have been constructed by the South Florida Water Management District. Surface-water and ground-water interactions in the Everglades are thought to be important to water budgets, water quality, and ecology (Harvey and others, 2002). Most of the previous hydrogeologic and ground-water flow simulation studies of the surficial aquifer system have not utilized a hydrostratigraphic framework, in which stratigraphic or sequence stratigraphic units, such as those proposed in Cunningham and others (2001), are delineated in this stratigraphically complex aquifer system. A thick zone of secondary permeability mapped by Swayze and Miller (1984) was not subdivided and was identified as only being within the Anastasia Formation of Pleistocene age. Miller (1987) published 11 geologic sections of the surficial aquifer system, but did not delineate any named stratigraphic units in these sections. This limited interpretation has resulted, in part, from the complex facies changes within rocks and sediments of the surficial aquifer

  13. An environmental tracers approach to characterize groundwater recharge within a carbonate coastal aquifer (Corse-du-Sud, France)

    NASA Astrophysics Data System (ADS)

    Garel, Emilie; Huneau, Frederic; Khoumeri, Beatrice; Travi, Yves

    2013-04-01

    Bonifacio is a coastal city, highly touristic, located in the southest part of Corsica Island. One million people visit the city in July and August, whereas 3000 inhabitants live throughout the year. Bonifacio lies on a small limestone plateau with a potential aquifer poorly understood. Actually there is a strong need to characterize the hydrogeological behavior for the reason that the economic development of the region is highly dependent of the groundwater supply potential. The Miocene sedimentary basin of Bonifacio has an area of 25 km2 with a depth up to 250 m in the center. It is based and surrounded by a Hercynian granitic substratum. The basin is open to the Mediterranean Sea on its south and east sides. The formation is calcareous-sandstone and is divided in 3 sedimentary units. The upper unit is highly calcareous and sandstone with a pseudo-karstic morphology, the intermediary unit is more silty-sandstone than the last but less than the unit from below. To establish a conceptual model of the groundwater flows of the Bonifacio aquifer, a hydrochemical (major ions, δ18O, δ2H, 3H) and hydrodynamic investigation was carried out on 12 wells, 1 spring and 1 river since May 2011. Vertical recharge is dominant in the centre of the aquifer where unsaturated zone is thicker, while on the aquifer boundaries with the granitic area, lateral flow was significant. Environmental tracers approach had clearly showed the important role of the boundaries conditions for the groundwater flow behavior of the aquifer of Bonifacio and the necessity of an investigation larger than the aquifer itself due to its limited spatial extension.

  14. Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida

    USGS Publications Warehouse

    Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.

    2006-01-01

    platform carbonates. Clearly, a cyclostratigraphic approach that translates carbonate aquifer heterogeneity into a consistent framework of correlative units will improve simulation of karst groundwater flow. ?? 2006 Geological Society of America.

  15. Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating.

    PubMed

    Amaral, Helena I F; Aeppli, Christoph; Kipfer, Rolf; Berg, Michael

    2011-10-01

    The evaluation of biotransformation of chlorinated ethenes (CEs) in contaminated aquifers is challenging when variable redox conditions and groundwater flow regime are limiting factors. By using compound-specific stable carbon isotope analysis (C-CSIA) and ³H-³He based groundwater dating, we assessed three CE-contaminated field sites that differed in groundwater flow velocities, redox conditions, and level of contamination. CE isotopic signatures and carbon isotopic mass balances were applied to quantify CE transformation, whereas groundwater dating allowed determining degradation timescales and assessing hydrodynamic regimes. The combination of these techniques enabled at all field sites to indicate zones within the aquifers where CE dechlorination preferably occurred, sometimes even to metabolites of no toxic concern. However, the natural transformation processes were insufficient to mitigate the entire CE contamination at the studied sites. Such situations of limited transformation are worldwide far more common than sites where optimal natural (mainly redox) conditions are enabling complete CEs degradation. Despite such constraints for natural transformation, this study showed that even under non-favorable biogeochemical CEs degradation, the combination of CSIA and groundwater dating provide valuable information to the understanding of the fate of the CEs, thus, being an important contribution in the definition of efficient remediation measures at any given biogeochemical conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Hydrogeological properties of fault zones in a karstified carbonate aquifer and their impact on groundwater circulation (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Schröckenfuchs, Theresa Christina; Decker, Kurt

    2016-04-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60% of the drinking water of Austria`s capital Vienna. The hydrogeology (groundwater storage and flow) of the massif has been reported to be essentially governed by karstified, large-scale faults. Previous work has shown that faults that formed during the Oligocene to Miocene lateral extrusion of the Eastern Alps act as groundwater pathways draining the karst massif preferably in E-W-direction. We present hydrogeological relevant data from these types of fault zones and a conceptual model, which supports the idea that fault-zone networks also have the potential to contribute significantly to the storage capacity of the aquifer. With respect to fault zone architecture and rock content, four types of faults are presented: (1) faults with single stranded, minor fault cores, (2) faults with single stranded, permeable fault cores, (3) faults with single stranded, impermeable fault cores, and (4) faults with multiple stranded, permeable fault cores. Within these faults cataclastic rocks and strongly cemented cataclastic breccias form low-permeability (< 1 mD) domains. Fractured rocks with fracture densities varying by a factor of 10 show significantly elevated porosities (> 3%) with respect to the country rock (< 1%). Dilation breccias with average porosities > 3% and permeabilities > 1000 mD form high-permeability domains. Our data illustrates significant differences in the architectural build-up of fault zones in dolostone (multiple-stranded cataclastic fault cores of weak lateral continuity, high volumes of intensely fractured rock) and limestone (laterally distinct, single-stranded fault cores, Riedel-shear fractures dominating fracture patterns). Karstic carbonate dissolution occurs preferentially along faults cores in

  17. Comparison of natural aquifer geochemical variability with uncertainty from model-predicted CO2 induced geochemical changes: How detectable is leakage from carbon sequestration sites?

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A. K.; Moore, J.

    2012-12-01

    Leakage of CO2 from underground formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere, which is needed to mitigate potential global climate change. Additionally, leaked CO2 that invades overlying shallow aquifers may cause deleterious changes to groundwater quality and pose risks to environmental and human health. For these reasons, technologies for monitoring, measurement and accounting of injected CO2 are necessary for regulation and permitting of CO2 sequestration operations. Changes in groundwater geochemistry induced by CO2 leakage offer a potential diagnostic tool for identifying leakage into shallow aquifers. In order to confidently use geochemical parameters as indicators of leakage, however, natural variability in geochemical concentrations and uncertainty in predicted geochemical changes induced by CO2 leakage must be quantitatively evaluated. For leakage monitoring, spatial variability of geochemical parameters such as alkalinity, pH, and specific conductivity is less relevant than temporal variability of these parameters within a given well. We used geochemical data from the Ohio Environmental Protection Agency, Ambient Ground Water Monitoring Network to characterize geochemical variability within individual wells. We selected wells from limestone, sandstone, and unconsolidated aquifers with ≥15 samples (typically annual) and statistically analyzed variability in alkalinity, pH, and specific conductance using median and interquartile range (IQR) to avoid influence by outliers and non-gaussian distributions. Neither the medians nor the IQRs showed correlation with well depth, sampling month, or number of samples. Our results indicate that variability in alkalinity and pH (4 - 12%) within individual wells is lower than specific conductance (28 - 32%), and thus, alkalinity and pH potentially provide more robust indicators. Uncertainty in predicted alkalinity and pH changes due to uncertainty

  18. Field emission from a selected multiwall carbon nanotube.

    PubMed

    Passacantando, M; Bussolotti, F; Santucci, S; Di Bartolomeo, A; Giubileo, F; Iemmo, L; Cucolo, A M

    2008-10-01

    The electron field emission characteristics of individual multiwalled carbon nanotubes were investigated by a piezoelectric nanomanipulation system operating inside a scanning electron microscopy chamber. The experimental set-up ensures a precise evaluation of the geometric parameters (multiwalled carbon nanotube length and diameter and anode-cathode separation) of the field emission system. For several multiwalled carbon nanotubes, reproducible and quite stable emission current behaviour was obtained, with a dependence on the applied voltage well described by a series resistance modified Fowler-Nordheim model. A turn-on field of ∼30 V µm(-1) and a field enhancement factor of around 100 at a cathode-anode distance of the order of 1 µm were evaluated. Finally, the effect of selective electron beam irradiation on the nanotube field emission capabilities was extensively investigated.

  19. The origin and isotopic composition of dissolved sulfide in groundwater from carbonate aquifers in Florida and Texas

    USGS Publications Warehouse

    Rye, R.O.; Back, W.; Hanshaw, B.B.; Rightmire, C.T.; Pearson, F.J.

    1981-01-01

    The ??34S values of dissolved sulfide and the sulfur isotope fractionations between dissolved sulfide and sulfate species in Floridan ground water generally correlate with dissolved sulfate concentrations which are related to flow patterns and residence time within the aquifer. The dissolved sulfide derives from the slow in situ biogenic reduction of sulfate dissolved from sedimentary gypsum in the aquifer. In areas where the water is oldest, the dissolved sulfide has apparently attained isotopic equilibrium with the dissolved sulfate (??34S = 65 per mil) at the temperature (28??C) of the system. This approach to equilibrium reflects an extremely slow reduction rate of the dissolved sulfate by bacteria; this slow rate probably results from very low concentrations of organic matter in the aquifer. In the reducing part of the Edwards aquifer, Texas, there is a general down-gradient increase in both dissolved sulfide and sulfate concentrations, but neither the ??34S values of sulfide nor the sulfide-sulfate isotope fractionation correlates with the ground-water flow pattern. The dissolved sulfide species appear to be derived primarily from biogenic reduction of sulfate ions whose source is gypsum dissolution although upgradient diffusion of H2S gas from deeper oil field brines may be important in places. The sulfur isotope fractionation for sulfide-sulfate (about 38 per mil) is similar to that observed for modern oceanic sediments and probably reflects moderate sulfate reduction in the reducing part of the aquifer owing to the higher temperature and significant amount of organic matter present; contributions of isotopically heavy H2S from oil field brines are also possible. ?? 1981.

  20. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie

    2017-02-01

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.

  1. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    PubMed Central

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie

    2017-01-01

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C. PMID:28230100

  2. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation.

    PubMed

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O; Liu, Jie

    2017-02-23

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.

  3. Determining sources of water and contaminants to wells in a carbonate aquifer near Martinsburg, Blair County, Pennsylvania, by use of geochemical indicators, analysis of anthropogenic contaminants, and simulation of ground-water flow

    USGS Publications Warehouse

    Lindsey, Bruce D.; Koch, Michele L.

    2004-01-01

    Water supply for the Borough of Martinsburg, Pa., is from two well fields (Wineland and Hershberger) completed in carbonate-bedrock aquifers in the Morrison Cove Valley. Water supply is plentiful; however, waters with high concentrations of nitrate are a concern. This report describes the sources of water and contaminants to the supply wells. A review of previous investigations was used to establish the aquifer framework and estimate aquifer hydraulic properties. Aquifer framework and simulation of ground-water flow in a 25-square-mile area using the MODFLOW model helped to further constrain aquifer hydraulic properties and identify water-source areas in the zone of contribution of ground water to the well fields. Flow simulation identified potential contaminant-source areas. Data on contaminants and geochemical characteristics of ground water at the well fields were compared to the results of flow simulation. The Woodbury Anticline controls the aquifer framework near the well fields and four carbonate-bedrock formations contain the primary aquifers. Three carbonate-bedrock aquifers of Ordovician age overlie the Gatesburg aquifer of Cambrian age on the flanks of the anticline. Fracture, not conduit, permeability was determined to be the dominant water-bearing characteristic of the bedrock. The horizontal hydraulic conductivity of the Gatesburg aquifer is about 36 feet per day. The other carbonate aquifers (Nittany/Stonehenge, Bellefonte/Axemann, and Coburn through Loysburg aquifers) overlying and flanking the Gatesburg aquifer have horizontal hydraulic conductivities of about 1 foot per day. Regional directions of ground-water flow are toward the major streams with Clover Creek as the major discharge point for ground water in the east. Ground-water flow to the well fields is anisotropic with a 5:1 preferential horizontal direction along strike of the axial fold of the anticline. Thus, the zone of contribution of ground water to the well fields is elongate in a

  4. Water-quality assessment of the Trinity River basin, Texas : ground-water quality of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers, February-August 1994

    USGS Publications Warehouse

    Reutter, David C.; Dunn, David D.

    2000-01-01

    Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations

  5. Selective placement of carbon nanotubes on metal-oxide surfaces.

    PubMed

    Hannon, J B; Afzali, A; Klinke, Ch; Avouris, Ph

    2005-09-13

    We describe a method to selectively position carbon nanotubes on Al2O3 and HfO2 surfaces. The method exploits the selective binding of alkylphosphonic acids to oxide surfaces with large isoelectric points (i.e. basic rather than acidic surfaces). We have patterned oxide surfaces with acids using both microcontact printing and conventional lithography. With proper choice of the functional end group (e.g., -CH3 or -NH2), nanotube adhesion to the surface can be either prevented or enhanced.

  6. New solar selective coating based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  7. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride.

    PubMed

    Oh, Youngtak; Le, Viet-Duc; Maiti, Uday Narayan; Hwang, Jin Ok; Park, Woo Jin; Lim, Joonwon; Lee, Kyung Eun; Bae, Youn-Sang; Kim, Yong-Hyun; Kim, Sang Ouk

    2015-09-22

    Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

  8. Hydrogeologic atlas of aquifers in Indiana

    USGS Publications Warehouse

    Fenelon, Joseph M.; Bobay, K.E.; Greeman, T.K.; Hoover, M.E.; Cohen, D.A.; Fowler, K.K.; Woodfield, M.C.; and Durbin, J. M.

    1994-01-01

    Aquifers in 12 water-management basins of Indiana are identified in a series of 104 hydrogeologic sections and 12 maps that show the thickness and configuration of aquifers. The vertical distribution of water-bearing units and a generalized potentiometric profile are shown along 3,500 miles of section lines that were constructed from drillers' logs of more than 4,200 wells. The horizontal scale of the sections is 1:125,000. Maps of aquifers showing the areal distribution of each aquifer type were drawn at a scale of 1:500,000. Unconsolidated aquifers are the most widely used aquifers in Indiana and include surficial, buried, and discontinuous layers of sand and gravel. Most of the surficial sand and gravel is in large outwash plains in northern Indiana and along the major rivers. Buried sand and gravel aquifers are interbedded with till deposits in much of the northern two-thirds of Indiana. Discontinuous sand and gravel deposits are present as isolated lenses, primarily in glaciated areas. The bedrock aquifers generally have lower yields than most of the sand and gravel aquifers; however, bedrock aquifers are areally widespread and are an important source of water. Bedrock aquifer types consist of carbonates; sandstones; complexly interbedded sandstones, siltstones, shales, limestones, and coals; and an upper weathered zone in low permeability rock. Carbonate aquifers underlie about one-half of Indiana and are the most productive of the bedrock aquifers. The other principal bedrock aquifer type, sandstone, underlies large areas in the southwestern one-fifth of Indiana. No aquifer is known to be present in the southeastern corner of Indiana.

  9. Occurrence and distribution of selected contaminants in public drinking-water supplies in the surficial aquifer in Delaware

    USGS Publications Warehouse

    Ferrari, Matthew J.

    2001-01-01

    Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with

  10. Geophysical Log Analysis of Selected Test Holes and Wells in the High Plains Aquifer, Central Platte River Basin, Nebraska

    USGS Publications Warehouse

    Anderson, J. Alton; Morin, Roger H.; Cannia, James C.; Williams, John H.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Central Platte Natural Resources District is investigating the hydrostratigraphic framework of the High Plains aquifer in the Central Platte River basin. As part of this investigation, a comprehensive set of geophysical logs was collected from six test holes at three sites and analyzed to delineate the penetrated stratigraphic units and characterize their lithology and physical properties. Flow and fluid-property logs were collected from two wells at one of the sites and analyzed along with the other geophysical logs to determine the relative transmissivity of the High Plains aquifer units. The integrated log analysis indicated that the coarse-grained deposits of the alluvium and the upper part of the Ogallala Formation contributed more than 70 percent of the total transmissivity at this site. The lower part of the Ogallala with its moderately permeable sands and silts contributed some measureable transmissivity, as did the fine-grained sandstone of the underlying Arikaree Group, likely as a result of fractures and bedding-plane partings. Neither the lower nor the upper part of the siltstone- and claystone-dominated White River Group exhibited measurable transmissivity. The integrated analysis of the geophysical logs illustrated the utility of these methods in the detailed characterization of the hydrostratigraphy of the High Plains aquifer.

  11. Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434

    SciTech Connect

    Andrews, Robert W.; Birdie, Tiraz; Wilborn, Bill; Mukhopadhyay, Bimal

    2012-07-01

    Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

  12. The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Auler, Augusto S.; Bakalowicz, Michel; Drew, David; Griger, Franziska; Hartmann, Jens; Jiang, Guanghui; Moosdorf, Nils; Richts, Andrea; Stevanovic, Zoran; Veni, George; Goldscheider, Nico

    2017-05-01

    Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.

  13. The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Auler, Augusto S.; Bakalowicz, Michel; Drew, David; Griger, Franziska; Hartmann, Jens; Jiang, Guanghui; Moosdorf, Nils; Richts, Andrea; Stevanovic, Zoran; Veni, George; Goldscheider, Nico

    2017-01-01

    Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.

  14. Modeling Raw Sewage Leakage and Transport in the Unsaturated Zone of Carbonate Aquifer Using Carbamazepine as an Indicator

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Kuznetsov, M.; Livshitz, Y.; Gasser, G.; Pankratov, I.; Lev, O.; Adar, E.; Dvory, N. Z.

    2016-12-01

    Fast contamination of groundwater in karstic aquifers can be caused due to leaky sewers, for example, or overflow from sewer networks. When flowing through a karst system, wastewater has the potential to reach the aquifer in a relatively short time. The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused raw sewage to leak into the creek located in the study area. The subsequent infiltration of sewage through the thick ( 100 m) fractured/karst unsaturated zone led to a sharp increase in contaminant concentrations in the groundwater, which was monitored in a well located 29 meters from the center of the creek. Carbamazepine (CBZ) was used as an indicator for the presence of untreated raw sewage and its quantification in groundwater. The ultimate research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the fractured-porous unsaturated zone and karstified groundwater system. A quasi-3D dual permeability numerical model, representing the 'vadose zone - aquifer' system, was developed by a series of 1D equations solved in variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The 1D and 3D equations were coupled at the moving phreatic surface. The model was calibrated and applied to a simulated water flow scenario and CBZ transport during and after the observed sewage leakage event. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to elevated CBZ concentrations in the groundwater in the vicinity of the creek and tens of meters downstream. The resumption of autumn rains enhanced flushing of CBZ from the unsaturated zone and led to an increase in

  15. Carbonate aquifers: Distinctions between conduit flow or diffuse flow should be abandoned in their classification and design of monitoring systems

    SciTech Connect

    Davies, G.J. ); Quinlan, J.F. ); Worthington, S.R.H. )

    1992-01-01

    For more than 20 years most karst hydrogeologists have thought that karst aquifers could be classified within a continuum characterized by two end-members, conduit-flow and diffuse-flow, and that these aquifer types could be reliably identified by interpretation of long-term measurement of variations in water hardness (or specific conductance) and temperature. From the work of Newson (1971), Worthington (1991) and the senior author's 16-month study of 11 springs in the Knox Dolomite in Tennessee, it is clear that variations in specific conductance are an indicator of percentage of spring discharge that is point-recharge via swallets and other open sinkholes (rather than dispersed recharge as infiltration through soil). Variations in water temperatures indicate changes in the relative proportions of quick-flow and slow-flow components. Neither of these parameters is an indicator of proportions of conduit flow or diffuse flow. Also, the meaning of these latter terms has evolved and become too ambiguous. Observation of many cave streams leads to the conclusion that conduit flow and diffuse flow exist at the local scale (100 m); at any larger scales, mixed flow always occurs. In the light of recent knowledge any ground-water monitoring strategy based upon the presumed presence of diffuse flow versus conduit flow in any karst aquifer and that attempts distinction between them is unreliable.

  16. Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18).

    PubMed

    Horst, Axel; Mahlknecht, Jürgen; Merkel, Broder J

    2007-12-01

    Stable Isotopes (strontium-87, deuterium and oxygen-18, carbon-13) have been used to reveal different sources of groundwater and mixing processes in the aquifer of the Silao-Romita Valley in the state of Guanajuato, Mexico. Calcite dissolution appeared to be the main process of strontium release leading to relatively equal (87)Sr/(86)Sr ratios of 0.7042-0.7062 throughout the study area which could be confirmed by samples of carbonate rocks having similar Sr ratios (0.7041-0.7073). delta(13)C values (-11.91- -6.87 per thousand VPDB) of groundwaters confirmed the solution of carbonates but indicated furthermore influences of soil-CO(2). Deuterium and (18)O contents showed a relatively narrow range of-80.1- -70.0 per thousand VSMOW and -10.2- -8.8 per thousand, VSMOW, respectively but are affected by evaporation and mixing processes. The use of delta(13)C together with (87)Sr/(86)Sr revealed three possible sources: (i) carbonate-controlled waters showing generally higher Sr-concentrations, (ii) fissure waters with low-strontium contents and (iii) infiltrating water which is characterized by low delta(13)C and (87)Sr/(86)Sr ratios. The third component is affected by evaporation processes taking place before and during infiltration which might be increased by extraction and reinfiltration (irrigation return flow).

  17. Furnace for the selective incineration or carbonization of waste materials

    SciTech Connect

    Angelo, J.F. II

    1988-03-29

    A combustion device for selectively incinerating, or carbonizing a carbonaceous feed material by a process of controlled devolatilization is described comprising: a. an elongated cylindrical siln inclined slightly from the horizontal and having an upper end and a lower end; b. means operable to introduce a solid carbonaceous feed material into the upper end of the kiln; c. means operable to elevate the temperature of the feed material in the kiln to either incineration or carbonizing temperature, only until the desired temperature is obtained; d. means located in an upper portion of the kiln to introduce air into the full length of the kiln into the upper portion thereof only; e. draft inducing means operable to create a draft in the kiln toward an outlet end thereof, and f. afterburner means interconnected to the draft outlet of the kiln, and operable to produce combustion of combustible gaseous or solid components entrained in the draft.

  18. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2015

    USGS Publications Warehouse

    Curtin, Stephen E.; Staley, Andrew W.; Andreasen, David C.

    2016-01-01

    Key Results This report presents potentiometric-surface maps of the Aquia and Magothy aquifers and the Upper Patapsco, Lower Patapsco, and Patuxent aquifer systems using water levels measured during September 2015. Water-level difference maps are also presented for these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2015, while the water-level differences are shown for the Magothy aquifer using data from 1975 and 2015. Water-level difference maps for both the Upper Patapsco and Lower Patapsco aquifer systems are shown using data from 1990 and 2015. The water-level differences in the Patuxent aquifer system are shown using groundwater-level data from 2007 and 2015. The potentiometric surface maps show water levels ranging from 53 feet above sea level to 164 feet below sea level in the Aquia aquifer, from 86 feet above sea level to 106 feet below sea level in the Magothy aquifer, from 115 feet above sea level to 115 feet below sea level in the Upper Patapsco aquifer system, from 106 feet above sea level to 194 feet below sea level in the Lower Patapsco aquifer system, and from 165 feet above sea level to 171 feet below sea level in the Patuxent aquifer system. Water levels have declined by as much as 116 feet in the Aquia aquifer since 1982, 99 feet in the Magothy aquifer since 1975, 66 and 83 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990, and 80 feet in the Patuxent aquifer system since 2007.

  19. Hydrogeologic and geochemical characteristics of the Ogallala and White River aquifers, Cheyenne, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.; Hallberg, L.L.

    2000-01-01

    The Ogallala aquifer and the underlying White River aquifer are important ground-water resources of public and private drinking water in the Cheyenne, Wyoming area. In 1997, as part of a cooperative project between the Cheyenne Board of Public Utilities and the U.S. Geological Survey, a well was installed to develop information for those two aquifers. Information provided for the Ogallala aquifer included core descriptions, geophysical logs, water levels, aquifer transmissivity, water quality, isotopic analysis, and geochemical modeling. Information for the White River aquifer was limited to core descriptions and geophysical logs.Evaluation of the core obtained from the drill hole showed the sediments to be primarily sands, silts, and clays. The thickness of the Ogallala Formation at the well site was estimated to be 246 feet. Water levels and precipitation from October 1, 1998 to September 30, 1999 indicated that water levels responded to precipitation. During that time, water levels ranged from 6,002.41 feet to 6,004.27 feet above mean sea level. The transmissivity was estimated to be 1.1 feet squared/day. The temperature differences between the municipal water and the Ogallala aquifer water were examined in relation to selected hydraulic conductivities and it was found that the warmer municipal water would slightly increase the hydraulic conductivity if the water were injected into the Ogallala aquifer.The water quality of a sample from the Ogallala 1 well indicated the predominant major ions were calcium, magnesium, and bicarbonate. Isotopic analyses of hydrogen-2, tritium, chlorine-36, carbon-14, and carbon-13 indicated the water was a mixture of pre- and post-1953 recharge. A simple geochemical mixing model indicated there was the potential for dissolution of anhydrite, calcite, gypsum, and dolomite and precipitation of goethite, hematite, pyrolusite, and amorphous ferric hydroxide if municipal and Ogallala aquifer waters were mixed.

  20. Regional-scale analysis of karst underground flow deduced from tracing experiments: examples from carbonate aquifers in Malaga province, southern Spain

    NASA Astrophysics Data System (ADS)

    Barberá, J. A.; Mudarra, M.; Andreo, B.; De la Torre, B.

    2017-08-01

    Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated ones.

  1. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2013

    USGS Publications Warehouse

    Staley, Andrew W.; Andreasen, David C.; Curtin, Stephen E.

    2014-01-01

    The potentiometric surface maps show water levels ranging from 165 feet above sea level to 199 feet below sea level. Water levels have declined by as much as 113 feet in the Aquia aquifer since 1982, 81 feet in the Magothy aquifer since 1975, and 61 and 95 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990.

  2. Evaluation of recharge in selected aquifer systems of the United States using tracers of groundwater age (Invited)

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.; Plummer, L. N.; Bohlke, J. K.; Shapiro, S. D.; Hinkle, S. R.

    2009-12-01

    Well constrained water budgets are needed to assess groundwater availability and manage aquifers sustainably throughout the world. Recharge is perhaps the most difficult water-budget component to quantify because of its spatial and temporal variability and because it is difficult to measure directly. Understanding of recharge could be improved through an analysis of groundwater age data because groundwater age distributions integrate recharge processes at relatively large spatial and temporal scales and can be direct measures of recharge. In this presentation, we synthesize existing datasets of groundwater age into a consistent analysis of the timescales and rates of recharge at a national scale. Timescales of recharge, as defined by 2,746 distributed tritium measurements and 224 radiocarbon measurements from 18 flow path studies, varied widely across the United States and were dependent on factors such as aquifer confinement, climate, geologic features like karst conduits and fractures, and changes in sea level. On average, 78 % of sampled flow path lengths in confined aquifers contained pre-Holocene recharge compared to 23 % in unconfined aquifers. Age distributions in aquifers determined from 650 sulfur hexafluoride, chlorofluorocarbon, and tritium/helium-3 measurements from 25 flow path studies and 27 water-table well networks were used to calculate recharge rates for young (0-50 year) groundwater. Recharge rates of young groundwater ranged from 34 to 1,200 mm/year and were dependent on factors such as climate, geology, land use, and topography. Recharge was inversely related to air temperature for a group of 10 flow path studies receiving similar precipitation from South Carolina to Massachusetts, presumably because of the diminishing effects of evapotranspiration on recharge with decreasing temperature. Recharge was directly related to precipitation for a group of 13 flow path studies having similar air temperatures from Massachusetts to Oregon. Regional

  3. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    DOE PAGES

    Zhang, Xiao; Li, Xueqian; Zhang, Du; ...

    2017-02-23

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildlymore » illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. As a result, the reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350°C.« less

  4. Identification and Selection of Major Carbon Dioxide Stream Compositions

    SciTech Connect

    Last, George V.; Schmick, Mary T.

    2011-06-30

    A critical component in the assessment of long-term risk from geologic sequestration of CO2 is the ability to predict mineralogical and geochemical changes within storage reservoirs due to rock-brine-CO2 reactions. Impurities and/or other constituents selected for co-sequestration can affect both the chemical and physical (e.g. density, viscosity, interfacial tension) behavior of CO2 in the deep subsurface. These impurities and concentrations are a function of both the industrial source(s) of the CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for geologic sequestration. This report summarizes the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy related industrial sources of CO2. Assuming that carbon-capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, we selected four test fluid compositions for use in geochemical experiments. These included: 1) a pure CO2 stream representative of food grade CO2 used in most enhanced oil recovery projects: 2) a test fluid composition containing low concentrations (0.5 mole %) SO2 and NOx (representative of that generated from cement production), 3) a test fluid composition with higher concentrations (2.5 mole %) of SO2, and 4) and test fluid composition containing 3 mole % H2S.

  5. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    NASA Astrophysics Data System (ADS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Luo, Zhiyuan; Wang, You

    2017-02-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3α,12α-bis(4-trifluoroacetylbenzoyloxy)-5β-cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  -27.5 mV/decade with a detection limit of 3.6 * 10-5 mol l-1. Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance.

  6. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.

    PubMed

    Magal, Einat; Arbel, Yuval; Caspi, Sarit; Glazman, Hilel; Greenbaum, Noam; Yechieli, Yoseph

    2013-02-01

    This work combines the monitoring of two incidents of spring water pollution in the Western Galilee region of Israel, together with artificial tracer tests that provided valuable information regarding karst system connections and direct estimation of groundwater velocities. Almost simultaneous contamination of seven springs endangered the water supply for the region. The variations over time in contaminant concentration in the different springs were not similar, indicating more than one contamination source. Tracer tests revealed two different pollution sources that contributed to two different conduit pathways in the karst system. Breakthrough data for the tracers were modeled by a two-region non-equilibrium transport model, which provided the transport parameters of the karst conduit. Groundwater velocities in the conduits were found to be in a range of 2-3 km/day. The rapid response of the system was also demonstrated by the short recovery time of the springs, where, after the elimination of the pollution source, most water quality parameters reverted to their background concentrations in less than 3 months. The coexistence of highly polluted springs and uncontaminated groundwater in boreholes penetrating into the same aquifer demonstrates the complexity of groundwater flow in karst systems. In such systems, the fast groundwater flow in localized karst conduits seems to coexist with a slower flow within other portions of the aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na(+) ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na(+) ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  8. Polymorph-selective crystallization of calcium carbonate inspired by biomineralization

    NASA Astrophysics Data System (ADS)

    Kim, Il Won

    This dissertation primarily examines bioinspired mineralization, focusing on the polymorph-selective crystallization of calcium carbonate. (1) The effect of epitaxy on the polymorphic control of calcium carbonate was studied with aragonite-type inorganic substrates. The critical epitaxial mismatch for aragonite growth, when conditions disfavor aragonite, seems to be less than 7.1%. Larger epitaxial strain appeared to prohibit aragonite formation even though the substrates had the same crystal structure. The epitaxy required for aragonite nucleation seems to be more precise than that often suggested for biological systems. (2) Polymers of different aqueous-solution properties were tested to observe the effect on the crystallization of calcium carbonate. Near exclusive formation of aragonite was attained through the inhibition of more stable calcite with poly(vinyl alcohol). The contributing characteristics of poly(vinyl alcohol) seemed to be its ability to hydrogen bond and its tendency to adsorb non-specifically onto solid surfaces. Similar inhibition activity is suggested for various biomacromolecules involved in biogenic aragonite formation of mollusks, with the biomacromolecules acting in the same way as poly(vinyl alcohol). (3) Polymer surfaces imprinted by aragonite-type crystals (strontium carbonate) were studied as substrates for the crystallization of calcium carbonate. Only calcite formed under vaterite-, aragonite-, and calcite-favorable conditions. This result seemed to arise from the nature of functional groups, rather than from the molecular structure of the imprint. Interaction between the functional groups and calcium carbonate is suggested to have enhanced the crystallization rate, resulting in the rapid formation of the thermodynamically stable calcite irrespective of the bulk crystallization conditions. (4) A catechol-based monomer was synthesized in the course of developing a dental adhesive, which mimics the functionalities of mussel adhesive

  9. A multi-isotope (radium, boron,strontium, sulfur, carbon, oxygen, hydrogen) investigation of fossil groundwater from the Disi Aquifer in southern Jordan: tracing water sources, water-rock interactions, and residence time (Invited)

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Rimawi, O.; Al-Zoubi, A.; Marie, A.; Ganor, J.

    2010-12-01

    The rise in population, consecutive droughts induced from climate change, and associated increased water demands in the Middle East have placed an increasing pressure on available water resources, which in turn has accelerated the rates of their depletion and contamination. In addition to desalination and recycling waste water, exploitation of non-renewable (“fossil”) groundwater has become an alternative water source. Most of the fossil groundwater in the Middle East and Northern Africa occupies confined sandstone aquifers and is typically characterized by high water quality. Recent findings have shown, however, that fossil groundwater from the Nubian Sandstone aquifers in southern Jordan and Israel has high levels of naturally occurring and carcinogenic radium isotopes that largely exceed the international drinking water standards, and poses a health risk upon long-term utilization. Here we present the results of a multi-isotope study of low-saline (TDS=250-450 mg/L) groundwater from the Cambro-Ordovician Disi-Mudawarra sandstone aquifer systems in southern Jordan. The δ18O, δ2H, and 14C variations show at least three recharge phases into the confined and unconfined zones of the aquifer. High δ11B values (34-47‰) and B/Cl ratios (>>seawater ratio) suggests that the recharge water originated from rainwater of an early stage of air mass evolution, with negligible water-rock interaction in the aquifer. This meteoric composition is consistent with 87Sr/86Sr (70804 to 0.70860) and δ34S (9-16‰) values, and infers minimum dissolution of diagenetic carbonates that could have contributed depleted 11B, high 87Sr/86Sr, and dead carbon. The uncorrected 14C ages point to three major recharge episodes to the northwestern Arabian Peninsula: (1) >30 ka (Khrein aquifer); (2) 15-29 ka (confined Disi aquifer); and (3) 8-12 ka (unconfined Disi aquifer), in which the latter coincide with the “pluvial maximum” of Early Holocene. The stable isotope composition of the

  10. Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide.

    PubMed

    Koo, Jahyun; Bae, Hyeonhu; Kang, Lei; Huang, Bing; Lee, Hoonkyung

    2016-10-26

    The development of advanced materials for CO2 capture is of great importance for mitigating climate change. In this paper, we outline our discovery that calcium-decorated carbon nanostructures, i.e., zigzag graphene nanoribbons (ZGNRs), carbyne, and graphyne, have great potential for selective CO2 capture, as demonstrated via first-principles calculations. Our findings show that Ca-decorated ZGNRs can bind up to three CO2 molecules at each Ca atom site with an adsorption energy of ∼-0.8 eV per CO2, making them suitable for reversible CO2 capture. They adsorb CO2 molecules preferentially, compared with other gas molecules such as H2, N2, and CH4. Moreover, based on equilibrium thermodynamical simulations, we confirm that Ca-decorated ZGNRs can capture CO2 selectively from a gas mixture with a capacity of ∼4.5 mmol g(-1) under ambient conditions. Similar results have been found in other carbon nanomaterials, indicating the generality of carbon based nanostructures for selective CO2 capture under ambient conditions.

  11. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  12. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  13. Geohydrology and quality of water in aquifers in Lucas, Sandusky, and Wood counties, northwestern Ohio

    USGS Publications Warehouse

    Breen, K.J.; Dumouchelle, D.H.

    1991-01-01

    The hydrology and quality of ground water were evaluated for the surficial sand and carbonate aquifers in northwestern Ohio. A locally important surficial sand aquifer in western Lucas County was evaluated on the basis of data from 10 wells completed in undeveloped and developed areas. The carbonate aquifer in Silurian and Devonian bedrock at its northernmost extent on the Ohio mainland was evaluated on the basis of data from previous studies and data from 466 wells and 11 springs. Most data are for the period 1985-88. The unconfined surficial sand aquifer is less than 50 ft. (feet) thick. Clay-rich drift, which restricts vertical movement of water, underlines the aquifer. Recharge is from precipitation, and discharge is by evapotranspiration and by flow to local streams and drainage ditches. Water levels are generally 2 to 8 ft. below land surface and fluctuate a total of about 3.5 ft. seasonally in a forested area. Concentrations of iron and manganese in ground water are excessive in some areas. Waters from shallow drive-point wells in residential areas contained larger concentrations of dissolved solids, hardness, sodium, and chloride than did waters from identical wells in undeveloped areas. The presence of nitrate nitrogen an other selected constituents in ground water in residential areas, and the absence of these constituents in ground water in undeveloped areas, indicate that the surficial sand aquifer has been affected by development. In carbonate aquifer, fractures, bedding-plane joints, and other secondary openings are the principal water-bearing zones. These zones can be areally and stratigraphically separated by low-permeability rock. Leaky artesian or semiconfined conditions predominate beneath most of the 1,400-mi? study area. The aquifer is confined by relatively impermeable underlying shale of Silurian age and overlying clay-rich drift of Quaternary age. Unproductive strata, including evaporites, within the sequence of carbonate rocks also confine

  14. Role of dissolved organic carbon upon re-entrainment and surface properties of aquifer bacteria and bacteria-sized microspheres during subsurface transport (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Metge, D. W.; Mohanram, A.; Gao, X.; Chorover, J.

    2010-12-01

    Susceptibilities for in-situ re-entrainment of attached 0.2 and 1.0 μm (diameter) microspheres and groundwater bacteria (Pseudomonas stuzeri and uncultured, native bacteria) were assessed during transport studies involving an organically contaminated, sandy aquifer in Cape Cod, MA. Aquifer sediments between pairs of injection and sampling wells were initially loaded with fluorescently labeled, carboxylated microspheres and bacteria that had been stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole. In response to subsequent hydrodynamic perturbations and injections of deionized water (ionic strength reduction), anionic surfactants (77 μM linear alkylbenzene sulfonates, LAS) and non-ionic surfactant (76 μM polyoxyethylene sorbitan monooleate, Tween 80), differing patterns of re-entrainment were evident for the two colloids. Injections of anionic surfactant and deionized water were the most efficient in causing detachment of the highly hydrophilic and negatively charged microspheres, but largely ineffective in causing re-entrainment of bacteria. In contrast, the nonionic surfactant was highly effective in re-entraining bacteria, but not microspheres. The hydrophobicities and zeta potentials of the indigenous bacteria were highly sensitive to modest concentration changes (0.6 to 1.3 mg L-1) in groundwater dissolved organic carbon (DOC), whereas the microspheres were largely unaffected. The most hydrophilic and negatively charged bacterial community was isolated from groundwater having the lowest DOC. FTIR spectra indicated that the community from the lowest DOC groundwater also had the highest average density of surface carboxyl groups. This indicates that DOC may have a biological effect on native bacteria resulting in changes to surface structures or changes in the makeup of the bacterial community.

  15. Selective removal of carbon-14 from ion exchange resins using supercritical carbon dioxide

    SciTech Connect

    Dias, S.A.; Krasznai, J.P.

    1996-12-31

    Ion exchange resins (IX) are used extensively in CANDU-PHWR (Canada Deuterium Uranium - Pressurized Heavy Water Reactor) and other reactor systems worldwide to remove ionic contaminants from various coolant circuits. Spent IX resins represent a significant volume of low and intermediate level radioactive waste. The presence of long-lived C-14 which is found in significant quantities in IX resins from CANDU reactors, complicates the disposal of these resins. Several experiments were conducted with carbon dioxide under subcritical and supercritical conditions to determine the feasibility of removing C-14 present as carbonate and/or bicarbonate on IX resins. It has been established that resins containing inorganic C-14 undergo rapid isotopic exchange when exposed to inactive carbon dioxide under supercritical conditions. This treatment reduces the C-14 to the limits of detection and leaves other radioisotopes on the resins largely unaffected. This selective and highly efficient means to remove long-lived C-14 activity from CANDU spent IX resins allows the resin waste to be reclassified as low level waste. This lower classification simplifies the handling, transportation and eventual disposal of IX resins which translates to a very significant cost saving. Since the process is selective the C-14 can be enriched and recovered for commercial purposes.

  16. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The

  17. Site selection for managed aquifer recharge using fuzzy rules: integrating geographical information system (GIS) tools and multi-criteria decision making

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza

    2012-11-01

    One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.

  18. Passivation oxide controlled selective carbon nanotube growth on metal substrates.

    PubMed

    Bult, J B; Sawyer, W G; Ajayan, P M; Schadler, L S

    2009-02-25

    Vertically aligned arrays of multi-wall carbon nanotubes (MWNT) are grown on Inconel 600, a nickel-based super-alloy. Using x-ray photoelectron spectroscopy (XPS) and chemical vapor deposition (CVD) growth of the MWNTs it is shown that a stable oxidation barrier is required for the stabilization of iron on the substrate and subsequent nanotube growth. This evidence for passivation oxide supported growth of MWNTs was then used to grow MWNTs on patterned oxidized substrates in a selective growth furnace. The unique advantage of this patterned growth on Inconel 600 is found to be the chromia passivation layer's electrical conductivity (measured value of 1.08 micro Omega m), creating the opportunity for low resistivity electrodes made from nanotubes. Inconel substrates with 100 microm long aligned MWNTs are demonstrated to exhibit an average resistance value of 2 Omega.

  19. Selective etching of thin single-walled carbon nanotubes.

    PubMed

    Kalbác, Martin; Kavan, Ladislav; Dunsch, Lothar

    2009-04-01

    Raman spectroscopy and in situ Raman spectroelectrochemistry were applied to study the selective etching of thin tubes by lithium vapor in doped single-walled carbon nanotubes (SWCNTs). A strong doping of SWCNTs after the reaction with Li vapor was confirmed by the vanishing of the radial breathing mode (RBM) and by a strong attenuation of the tangential displacement (TG) band in the Raman spectra. The Raman spectra of the Li-vapor-treated SWCNTs after subsequent reaction with water showed changes in the diameter distribution compared with that of a pristine sample (nanotubes with diameters of <1 nm disappeared from the Raman spectra). The samples were tested by the Raman pattern with five different laser lines, and a removal of narrower tubes was confirmed. The remaining wider tubes were not significantly damaged by the treatment with Li, as indicated by the D line in the Raman spectra. Furthermore, the small-diameter tubes are converted not into amorphous carbon but into lithium carbide, which could easily be removed by hydrolysis. The treated samples were further charged electrochemically. It was shown by spectroelectrochemistry that anodic charging may lead to removal of the residual chemical doping from the thicker nanotubes in the sample, but the thin nanotubes did not appear in the spectra. This is a further confirmation of the removal of the small-diameter tubes.

  20. SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

    SciTech Connect

    Friedmann, S J

    2007-08-31

    Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other

  1. Enhanced selectivity of zeolites by controlled carbon deposition

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  2. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.

    PubMed

    Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S

    2013-05-21

    Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.

  3. Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002-50

    USGS Publications Warehouse

    Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.

    2013-01-01

    Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations

  4. Selective Cell Growth on Fibronectin-Carbon Nanotube Hybrid Nanostructures

    NASA Astrophysics Data System (ADS)

    Namgung, Seon; Park, Sung Young; Lee, Byung Yang; Lee, Minbaek; Nam, Jwa-Min; Hong, Seunghun

    2008-03-01

    Carbon nanotubes (CNT) have been considered a promising material for biological applications including biosensors, therapeutic application, and nano-structured scaffolds. However, there are still controversies associated with toxicity and biocompatibility of CNTs on live cells. Here, we report general strategy to functionalize CNTs with cell adhesion molecules (fibronectins) for selective and stable adhesion of cells on CNTs. Interestingly, more fibronectins were adsorbed and activated on CNTs rather than on hydrophobic self assembled monolayers (SAMs) or bare substrates (SiO2). We demonstrate the functionality of fibronectins on CNTs with immunofluorescence and molecule-level force measurement study using atomic force microscopy (AFM). These fibronectin-CNT hybrid nanostructures were successfully applied to attract cells selectively onto predefined regions on the substrate. Our strategy was generally available on various cell types including mesenchymal stem cells, KB cells, and NIH3T3 fibroblast cells (Advanced Materials 19, 2530-2534 (2007)). We will also discuss about its impacts on cell biology combined with CNTs.

  5. Selective functionalization of carbon nanotubes based upon distance traveled

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or NH.sub.3 or NF.sub.3 or F.sub.2 or CF.sub.4 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. The predominant species that are deposited on the CNT array vary with the distance d measured along a path from the precursor gas to the CNT array; two or three different predominant species can be deposited on a CNT array for distances d=d1 and d=d2>d1 and d=d3>d2.

  6. Dye tracing techniques used to determine ground-water flow in a carbonate aquifer system near Elizabethtown, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Smoot, J.L.; Liebermann, T.D.

    1988-01-01

    Because of the vulnerability of karst aquifers to contamination and the need for water managers to know recharge areas and groundwater flow characteristics for springs and wells used for public water supply, qualitative and quantitative dye tracing techniques were used during a groundwater investigation in the Elizabethtown area, Hardin County, in north-central Kentucky. The principal aquifer in the Elizabethtown area is thick, nearly horizontal beds of limestone, and thin beds of shale of Mississippi age. As much as 65% of all water pumped for the city water supply is obtained from two springs and two wells that obtain water from these rocks. Sinkholes were classified according to their ability to funnel runoff directly into the groundwater flow system, based primarily on the nature of the swallet draining the sinkhole. The presence of bedrock in the sinkhole nearly always ensured a well defined swallet leading to the subsurface. Qualitative and quantitative dye tracing techniques and equipment are discussed in detail. Qualitative dye tracing with fluorescein dye and passive dye detectors, consisting of activated coconut charcoal identified point to point connection between representative sinkholes, sinking streams, and karst windows and the city springs and wells. Qualitative tracing confirmed the presence of infiltrated surface water from a perennial stream, Valley Creek, in water from city wells and generally confirmed the direction of groundwater flow as shown by a water level contour map. Quantitative dye tracing with rhodamin WT, automatic samplers, discharge measurements, and fluorometric analyses were used to determine flow characteristics such as traveltime for arrival of the leading edge, peak concentration, trailing edge, and persistence of the dye cloud at the spring resurgence. Analyses of the dye recovery curves for quantitative dye traces completed between the same sinkholes and a city spring, and during different flow conditions showed that the

  7. Two-dimensional NMR relaxometry study of pore space characteristics of carbonate rocks from a Permian aquifer

    NASA Astrophysics Data System (ADS)

    Schoenfelder, Wiete; Gläser, Hans-Reinhard; Mitreiter, Ivonne; Stallmach, Frank

    2008-06-01

    Limestones and karstified limestones (dolostones) from a Permian aquifer in Central Germany were studied by 1H 2D NMR relaxometry and PFG NMR diffusometry, aiming at a non-destructive characterization of the pore space. Information concerning pore size distribution and water diffusion were in accord for different samples of each type of rock, but differed fundamentally between limestones and dolostones. The results of the 2D relaxometry measurements revealed a ratio of surface relaxation times Ts1/ Ts2 of about 2 for the limestones and about 4.5 for the dolostones, mirroring the different content of iron and manganese in the solid pore walls. In consideration of thin section interpretation, the corresponding fraction in the T1- T2 relaxation time distributions was attributed to interparticle porosity. Porosity of large vugs is clearly displayed by relaxation times longer than 1 s in the dolostones only. A third fraction of the total water-saturated pore space in the dolostones, which is clearly displayed in the 2D relaxation time distributions at the smallest relaxation times and a Ts1/ Ts2 ratio of about 12, is attributed to intrafossil porosity. The porosity classification, basing on non-destructive NMR experiments, is verified by mercury intrusion porosimetry and thin section interpretation.

  8. Impact of CO2 concentration on autotrophic metabolisms and carbon fate in saline aquifers - A case study

    NASA Astrophysics Data System (ADS)

    Dupraz, Sebastien; Fabbri, Antonin; Joulian, Catherine; Dictor, Marie-Christine; Battaglia-Brunet, Fabienne; Ménez, Bénédicte; Crouzet, Catherine; Henry, Benoît; Garrido, Francis

    2013-10-01

    The purpose of this study was to identify and quantify the fate and speciation of carbon that can occur in mixtures of geological media (crushed rock) and autotrophic microbial communities. A sulfate reducing bacterium (Desulfotomaculum geothermicum) and a methanogenic archaeon (Methanothermococcus thermolithotrophicus) were both tested separately and together, with and without crushed sedimentary rock (carbonaceous sandstone) for different CO2 partial pressures (0.22, 0.88, 3.52, and 8 bar) at 54 °C in saline artificial groundwater. In order to quantify the respective metabolic activities, the inorganic gases of interest (H2, CH4, H2S and CO2) were measured and the speciation of carbon was assessed by measuring volatile, non-purgeable, total and dissolved organic carbon as well as total and dissolved inorganic carbon. Despite a protective effect of the mineral matrix, the results showed a high sensitivity of autotrophic microorganisms to the stress induced by pressures of CO2 superior to one bar and revealed that a part of this stress was due to direct toxic effects. M. thermolithotrophicus demonstrated a better tolerance to CO2 and was dominating the consortia. This ascendancy was interpreted as resulting from equilibrium displacement due to transport effects of methane between the liquid and gas phases. Abiotic dissolution was observed but some biomineralization processes of carbonates were also identified for D. geothermicum. Both strains displayed very different patterns in their conversion of inorganic carbon: while M. thermolithotrophicus was mainly producing methane, D. geothermicum induced the formation of biomass. The availability of crushed rock increased the proportion of sessile biofilms. All these results were analyzed in correlation with a successful PHREEQC simulation and demonstrate the strong influence of the microbial activities and diversity on the carbon fate in the immediate surroundings of geological CCS storage zones.

  9. Methane and Dissolved Organic Carbon Sustain an Ecosystem within a Density Stratified Coastal Aquifer of the Yucatan Peninsula, Mexico. Evidence for a Subterranean Microbial Loop?

    NASA Astrophysics Data System (ADS)

    Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.

    2016-04-01

    In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C

  10. Release characteristics of selected carbon nanotube polymer composites

    EPA Science Inventory

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  11. Release characteristics of selected carbon nanotube polymer composites

    EPA Science Inventory

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  12. Potentiometric surface and water-level difference maps of selected confined aquifers of Southern Maryland and Maryland's Eastern Shore, 1975-2011

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2012-01-01

    Groundwater is the principal source of freshwater supply in most of Southern Maryland and Maryland's Eastern Shore. It is also the source of freshwater supply used in the operation of the Calvert Cliffs, Chalk Point, and Morgantown power plants. Increased groundwater withdrawals over the last several decades have caused groundwater levels to decline. This report presents potentiometric surface maps of the Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent aquifers using water levels measured during September 2011. Water-level difference maps also are presented for the first four of these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2011, whereas the water-level differences in the Magothy aquifer are presented using data from 1975 and 2011. Water-level difference maps in both the upper Patapsco and lower Patapsco aquifers are presented using data from 1990 and 2011. These maps show cones of depression ranging from 25 to 198 feet (ft) below sea level centered on areas of major withdrawals. Water levels have declined by as much as 112 ft in the Aquia aquifer since 1982, 85 ft in the Magothy aquifer since 1975, and 47 and 71 ft in the upper Patapsco and lower Patapsco aquifers, respectively, since 1990.

  13. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  14. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  15. Mapping Evapotranspiration Units in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Smith, J. LaRue; Laczniak, Randell J.; Moreo, Michael T.; Welborn, Toby L.

    2007-01-01

    Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range carbonate-rock aquifer system study area. One common method used throughout the southwestern United States is to estimate ground-water discharge from evapotranspiration (ET). ET is a process by which water from the Earth's surface is transferred to the atmosphere. The volume of water lost to the atmosphere by ET can be computed as the product of the ET rate and the acreage of vegetation, open water, and moist soil through which ET occurs. The procedure used in the study groups areas of similar vegetation, water, and soil conditions into different ET units, assigns an average annual ET rate to each unit, and computes annual ET from each ET unit within the outer extent of potential areas of ground-water discharge. Data sets and the procedures used to delineate the ET-unit map used to estimate ground-water discharge from the study area and a qualitative assessment of the accuracy of the map are described in this report.

  16. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  17. Solute changes during aquifer storage recovery testing in a limestone/clastic aquifer

    USGS Publications Warehouse

    Mirecki, J.E.; Campbell, B.G.; Conlon, K.J.; Petkewich, M.D.

    1998-01-01

    Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly carbonate aquifer. Recovery efficiency for both ASR tests reported here was 54%. Successive ASR tests increased aquifer permeability of the Santee Limestone/Black Mingo Aquifer. It is likely that aquifer permeability increased during short storage periods due to dissolution of carbonate minerals and amorphous silica in aquifer material by treated drinking water. Dissolution resulted in an estimated 0.3% increase in pore volume of the permeable zones. Ground water composition generally evolved from a sodium-calcium bicarbonate water to a sodium chloride water during storage and recovery. After short duration, stored water can exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) for chloride (250 mg/L). However, sulfate, fluoride, and trihalomethane concentrations remained below MCLs during storage and recovery.Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly

  18. Sulfamide derivatives with selective carbonic anhydrase VII inhibitory action.

    PubMed

    Villalba, Maria Luisa; Palestro, Pablo; Ceruso, Mariangela; Gonzalez Funes, Jose L; Talevi, Alan; Bruno Blanch, Luis; Supuran, Claudiu T; Gavernet, Luciana

    2016-02-15

    A set of N,N'-disubstituted sulfamides and sodium cyclamate have been tested for their inhibitory action against six isoforms of carbonic anhydrase (CA, EC 4.2.1.1) found in the brain, that is, CA I, CA II, CA VII, CA IX, CA XII and CA XIV, some of which are involved in epileptogenesis. The biological data showed interesting results for CA VII inhibition, the isozyme thought to be a novel antiepileptic target. Strong CA VII inhibitors, with Ki values in the low nanomolar-subnanomolar range were identified. Some of these derivatives showed selectivity for inhibition of CA VII versus the ubiquitous isoform CA II, for which the Ki values were in the micromolar range. Molecular modeling approaches were employed to understand the binding interactions between these compounds and the two CA isoforms, since the mechanism of action of such disubstituted sulfamides was not yet investigated by means of X-ray crystallography. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Selective detection and quantification of carbon nanotubes in soil.

    PubMed

    Jeong, Junhoe; Lee, Yong-ju; Hwang, Yu sik; Hong, In Seok

    2015-09-01

    Carbon nanotubes (CNTs) have been widely applied in many industrial fields. As world production of CNTs increases, the risk of environmental exposure to CNTs also increases. Therefore, to evaluate the impact on the environment, many cell and animal studies have reported on the toxicity of CNTs. It is important to determine the degree of contamination of CNTs in soil and to find the pollution pathways for assessment of the environmental toxicity of CNTs. However, selective detection methods for CNTs in soil or water have rarely been reported. In the present study, a novel technique was developed to quantify the amount of CNTs in soil mixtures using fluorescent SYBR Green I dye after isolation of the CNTs with specific DNA oligomers. As a result, a limit of detection of CNTs in soil was obtained in the range of 250 ppb. This limit can easily be extended to the level of 10 ppb using magnetic well plates with a greater capacity. This method also worked well in the presence of graphene oxide and could be applied to the detection of CNTs in a variety of surroundings (e.g., fish and other tissues). © 2015 SETAC.

  20. A class of carbonic anhydrase I - selective activators.

    PubMed

    Licsandru, Erol; Tanc, Muhammet; Kocsis, Istvan; Barboiu, Mihail; Supuran, Claudiu T

    2017-12-01

    A series of ureido and bis-ureido derivatives were prepared by reacting histamine with alkyl/aryl-isocyanates or di-isocyanates. The obtained derivatives were assayed as activators of the enzyme carbonic anhydrase (CA, EC 4.2.1.1), due to the fact that histamine itself has this biological activity. Although inhibition of CAs has pharmacological applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents, activation of these enzymes is not yet properly exploited pharmacologically for cognitive enhancement or Alzheimer's disease treatment, conditions in which a diminished CA activity was reported. The ureido/bis-ureido histamine derivatives investigated here showed activating effects only against the cytosolic human (h) isoform hCA I, having no effect on the widespread, physiologically dominant isoform hCA II. This is the first report in which CA I-selective activators were identified. Such compounds may constitute interesting tools for better understanding the physiological/pharmacological effects connected to activation of this widespread CA isoform, whose physiological function is not fully understood.

  1. Potentiometric Surfaces and Changes in Groundwater Levels in Selected Bedrock Aquifers in the Twin Cities Metropolitan Area, March-August 2008 and 1988-2008

    USGS Publications Warehouse

    Sanocki, Christopher A.; Langer, Susan K.; Menard, Jason C.

    2008-01-01

    This report depicts potentiometric surfaces and groundwater- level changes in three aquifers that underlie the seven-county Twin Cities Metropolitan Area. Approximately 350 groundwater levels were measured in wells from the three aquifers-the Prairie du Chien-Jordan, the Franconia-Ironton-Galesville, and the Mount Simon-Hinckley aquifers-in March and August of 2008. The report presents maps, associated data tables, and 22 geographic information system datasets. The maps presented in this report show the potentiometric surfaces in March and August of 2008 for all three aquifers, groundwater-level changes from March to August 2008 for each aquifer, and revised potentiometric-surface contours for the winter of 1988-89 for the Prairie du Chien-Jordan and the Mount Simon-Hinckley aquifers, and the estimated long-term (winter of 1988-89 to March 2008) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers. This report documents the methods used to construct the maps and provides a context for the period of the measurements. Although withdrawal demand is increasing in the Twin Cities Metropolitan area, particularly in the Prairie du Chien-Jordan aquifer, year-to-year changes in withdrawals can be substantial, and the relation between potentiometric surfaces in the major aquifers and year-to-year withdrawals is not well established. The estimated long-term (19-year) groundwater-level changes for the Prairie du Chien-Jordan and Mount Simon-Hinckley aquifers have not been large based on data and maps produced during this study, despite the large seasonal fluctuations shown by the March and August 2008 synoptic measurements.

  2. Pathogen inactivation during passage of stormwater through a constructed reedbed and aquifer transfer, storage and recovery.

    PubMed

    Sidhu, J P S; Toze, S; Hodgers, L; Shackelton, M; Barry, K; Page, D; Dillon, P

    2010-01-01

    A study was undertaken to determine the potential inactivation rates of selected enteric microorganisms in captured urban stormwater within a constructed reedbed and in tertiary carbonated aquifer during an Aquifer Storage, Transfer and Recovery (ASTR) scheme. The study was undertaken in-situ in the constructed reedbed and aquifer using diffusion chambers. The results showed that all tested bacteria had one log(10) reduction time of less than 6 and 2.5 days respectively in constructed reedbeds and aquifer, which suggests that presence of enteric bacteria in the recovered water is unlikely. However, adenovirus and Cryptosporidium oocysts showed lower inactivation rates with one log(10) reduction times of more than 33 days in the constructed reedbeds. This means that the constructed reedbed with a mean residence time 10 days cannot be relied upon as an efficient treatment barrier for virus and protozoa. Storage of stormwater in aquifer with brackish water resulted in slow inactivation of enteric viruses over the 35 day incubation period with adenovirus and rotavirus showing slowest inactivation times (extrapolated T(90) of >100 days). Cryptosporidium oocysts showed similar inactivation rate in the constructed reedbed and aquifer.

  3. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used

  4. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  5. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    SciTech Connect

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95.

  6. Selective actuation of arrays of carbon nanotubes using magnetic resonance.

    PubMed

    Volodin, Alexander; Santini, Claudia A; De Gendt, Stefan; Vereecken, Philippe M; Van Haesendonck, Chris

    2013-07-23

    We introduce the use of ferromagnetic resonance (FMR) to actuate mechanical resonances in as grown arrays of carbon nanotubes (CNTs) loaded with Ni particles (Ni-CNTs). This contactless method is closely related to the magnetic resonance force microscopy technique and provides spatial selectivity of actuation along the array. The Ni-CNT arrays are grown by chemical vapor deposition and are composed of homogeneous CNTs with uniform length (~600 nm) and almost equal diameter (~20 nm), which are loaded with Ni catalyst particles at their tips due to the tip growth mode. The vibrations of the Ni-CNTs are actuated by relying on the driving force that appears due to the FMR excited at about 2 GHz in the Ni particles (diameter ~100 nm). The Ni-CNT oscillations (frequency ~40 MHz) are detected mechanically by atomic force microscopy. The acquired oscillation images of the Ni-CNT uniform array reveal clear maxima in the spatial distribution of the oscillation amplitudes. We attribute these maxima to the "sensitive slices", i.e., the spatial regions of the Ni-CNT array where the FMR condition is met. Similar to magnetic resonance imaging, the sensitive slice is determined by the magnetic field gradient and moves along the Ni-CNT array as the applied magnetic field is ramped. Our excitation method does not require the presence of any additional microfabricated electrodes or coils near the CNTs and is particularly advantageous in cases where the traditional electrical actuation methods are not effective or cannot be implemented. The remote actuation can be effectively implemented also for arrays of other magnetic nanomechanical resonators.

  7. Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors.

    PubMed

    Mann, Florian A; Herrmann, Niklas; Meyer, Daniel; Kruss, Sebastian

    2017-06-28

    Detection of neurotransmitters is an analytical challenge and essential to understand neuronal networks in the brain and associated diseases. However, most methods do not provide sufficient spatial, temporal, or chemical resolution. Near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have been used as building blocks for sensors/probes that detect catecholamine neurotransmitters, including dopamine. This approach provides a high spatial and temporal resolution, but it is not understood if these sensors are able to distinguish dopamine from similar catecholamine neurotransmitters, such as epinephrine or norepinephrine. In this work, the organic phase (DNA sequence) around SWCNTs was varied to create sensors with different selectivity and sensitivity for catecholamine neurotransmitters. Most DNA-functionalized SWCNTs responded to catecholamine neurotransmitters, but both dissociation constants (Kd) and limits of detection were highly dependent on functionalization (sequence). Kd values span a range of 2.3 nM (SWCNT-(GC)15 + norepinephrine) to 9.4 μM (SWCNT-(AT)15 + dopamine) and limits of detection are mostly in the single-digit nM regime. Additionally, sensors of different SWCNT chirality show different fluorescence increases. Moreover, certain sensors (e.g., SWCNT-(GT)10) distinguish between different catecholamines, such as dopamine and norepinephrine at low concentrations (50 nM). These results show that SWCNTs functionalized with certain DNA sequences are able to discriminate between catecholamine neurotransmitters or to detect them in the presence of interfering substances of similar structure. Such sensors will be useful to measure and study neurotransmitter signaling in complex biological settings.

  8. Carbone organique total (COT) et magnésium (Mg2+) : deux traceurs complémentaires du temps de séjour dans l'aquifère karstiqueTotal Organic Carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems

    NASA Astrophysics Data System (ADS)

    Batiot, Christelle; Emblanch, Christophe; Blavoux, Bernard

    2003-01-01

    The Total Organic Carbon (TOC) is an interesting tracer of fast infiltration within karstic systems [3,7]. Regular sampling on several aquifers, from the experimental site of Vaucluse, made it possible to demonstrate the high sensitivity of this tracer compared with other commonly used chemical and isotopic tracers in karstic hydrogeology. The complementarity of magnesium, indicator of the residence time of water within the system, and TOC appears as a relevant tool in order to characterize the behaviour of the aquifer, to differentiate the water types which participate to the karstic flow (fast infiltration, unsaturated zone, saturated zone) and then, to evaluate their vulnerability.

  9. Using carbon and water isotopes and noble gases to assess the origin of methane in fresh water aquifers in the south of the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, Hans Peter; de Weert, Jasperien; Vonhof, Hubert; Janssen, Renee; Sueltenfuss, Juergen; Aeschbach-Hertig, Werner; Castelijns, Jeroen

    2015-04-01

    Groundwater in the Dutch subsurface is known to contain substantial concentrations of methane of which the origin is not always clear. The Dutch subsurface contains relatively high organic matter contents which makes a biogenic origin plausible, however few studies have used water and carbon isotopes to deduce the origin of methane. In relation to possible future exploitation of deep shale gas resources, it is now considered important to assess base line quality of fresh groundwater in overlying aquifers from which drinking water is produced. Therefore, we sampled the raw water of 41 large public supply well fields in the south of the Netherlands which represents a mixture of groundwater of different ages and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13C-DIC and 13C-CH4 and the full range of noble gases. 13C-CH4 measurements were carried out using a Picarro G2201-i CRDS analyser. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources and included carbonate dissolution and methanogenesis as the defining processes. The 13C-CH4 measurements showed a range of δ-values between -70 and -100‰, which give a clear indication for biogenic methane. No clear relations between 13C-CH4 and 13C-DIC or the 4He/CH4 ratio were observed. However, clear spatial patterns indicated that more depleted values are grouped in specific areas. The 13δCH4 values did not show a clear relation with the age distribution of the pumped water, even though a large range of age distributions was observed including old water with an age of > 25 k yrs. We believe that spatial differences in organic matter contents, origin of the geological deposits and/or the

  10. Effects of carbon dioxide variations in the unsaturated zone on water chemistry in a glacial-outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.

    1997-01-01

    The research site at Otis Air Base, Cape Cod, Massachusetts, has been developed for hydrogeological and geochemical studies of sewage-effluent contaminated groundwater since 1982. Research of hydrologic properties, transport, and chemical and biological processes is ongoing, but the origin of background water chemistry has not been determined. The principal geochemical process giving rise to the observed background water chemistry is CO2-controlled hydrolysis of Na feldspar. Geochemical modeling demonstrated that CO2 sources could vary over the project area. Analyses of unsaturated zone gases showed variations in CO2 which were dependent on land use and vegetative cover in the area of groundwater recharge. Measurements of CO2 in unsaturated-zone gases showed that concentrations of total inorganic C in recharge water should range from about 0.035 to 1.0 mmoles/L in the vicinity of Otis Air Base. Flux of CO2 from the unsaturated zone varied for a principal land uses, ranging from 86 gC/m2/yr for low vegetated areas to 1630 gC/m2/yr for a golf course. Carbon dioxide flux from woodlands was 220 gC/m2/yr, lower than reported fluxes of 500 to 600 gC/m2/yr for woodlands in a similar climate. Carbon dioxide flux from grassy areas was 540 gC/m2/yr, higher than reported fluxes of 230 to 490 gC/m2/yr for grasslands in a similar climate.

  11. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  12. Monitoring of Selected Water-Quality Constituents Near the Freshwater/Saline-Water Interface of the Edwards Aquifer, July 1996-December 1997

    USGS Publications Warehouse

    Cederberg, J.R.; Ging, Patricia B.; Ourso, Robert T.

    1998-01-01

    The Edwards aquifer is the sole source of water for about 1.3 million people in and near San Antonio, Texas, as well as for ranchers and farmers throughout south-central Texas. Because of the demand for this resource, various studies have been conducted to better understand the Edwards aquifer and how the aquifer reacts to environmental changes and human influences. In July 1996, the U.S. Geological Survey (USGS), in cooperation with the Edwards Aquifer Research and Data Center (EARDC) at Southwest Texas State University (SWTSU) and the Texas Water Development Board (TWDB), began a study to investigate possible changes in water quality of the Edwards aquifer near the freshwater/saline-water interface that might result if drought occurs. The continuing study is part of the USGS National WaterQuality Assessment (NAWQA) Program in south-central Texas. The freshwater/saline-water interface, known locally as the “bad-water line,” marks the beginning of the transition in the aquifer from freshwater (updip) to saline water (downdip). The interface is defined as the 1,000-milligram-per-liter (mg/L) line of equal dissolved solids concentration as delineated by Maclay and others (1980, fig. 7). Water in the freshwater zone of the Edwards aquifer tends to have dissolved solids concentrations of 250 to 300 mg/L (Pavlicek and others, 1987, p. 3). In contrast, water in the saline-water zone of the Edwards aquifer commonly has dissolved solids concentrations greater than 10,000 mg/L, and sample concentrations as large as 232,000 mg/L have been measured (Groschen and Buszka, 1997, p. 21).

  13. Concentrations of selected trace inorganic constituents and synthetic organic compounds in the water-table aquifers in the Memphis area, Tennessee

    USGS Publications Warehouse

    McMaster, B.W.; Parks, William Scott

    1988-01-01

    Water quality samples for analysis of selected trace inorganic constituents and synthetic organic compounds were collected from 29 private or observation wells in alluvium and fluvial deposits of Quaternary and Tertiary Age. The alluvium and fluvial deposits are the water table aquifers in the Memphis area. In addition, nine wells were installed in Memphis Light, Gas and Water Division well fields so that samples could be collected and analyzed to characterize the quality of water in the fluvial deposits at these well fields. Samples from seven of these wells (two were dry) were analyzed for major constituents and properties of water as well as for selected trace inorganic constituents and synthetic organic compounds. Analyses of the water from most of the 36 wells sampled indicated ranges in concentration values for the trace inorganic constituents that agreed with those previously known, although some new maximum values were established. The analysis of water from four wells indicated that the water is or may be contaminated. Concentrations of barium (1,400 micrograms/L -- ug/L), strontium (1,100 ug/L), and arsenic (15 ug/L), along with specific conductance (1,420 microsiemens/centimeter--us/cm) were in water from one well in the alluvium. Low concentrations (0.02 to 0.04 ug/L) of the pesticides aldrin, DDT, endosulfan, and perthane were present in water from two wells in the fluvial deposits. Water from one of these wells also contained 1,1,1 trichloroethane (4.4 ug/L). Analysis of water from another well in the fluvial deposits indicated values for specific conductance (1,100 uS/cm), alkalinity (508 milligrams per liter -- mg/L -- as CaCO3), hardness (550 mg/L as CaCO3), chloride (65 mg/L), and barium (240 ug/L) that are high for water from the fluvial deposits. (USGS)

  14. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco

    NASA Astrophysics Data System (ADS)

    Ettayfi, N.; Bouchaou, L.; Michelot, J. L.; Tagma, T.; Warner, N.; Boutaleb, S.; Massault, M.; Lgourna, Z.; Vengosh, A.

    2012-05-01

    SummaryGroundwater in many arid basins, particularly in developing countries, is the only available water resource that sustains local communities. Yet, information on the basic hydrological parameters and the sustainability of the groundwater exploitation are often lacking. This study investigates the origin of groundwater from the Lower Cambrian carbonate aquifer of the Lakhssas Plateau in the Anti-Atlas Mountains of southwestern Morocco. The study aims to reveal the origin of the groundwater, salinity sources, and the residence time of the water. The study is based on a comprehensive geochemical and isotopic (oxygen, hydrogen, carbon, and strontium) investigation of groundwater from different parts of the basin. The hydrochemical and isotopes results indicated three types of groundwater in the Lakhssas Plateau: (1) thermal water in the southern part of the basin with solute composition that reflects dissolution of calcium-sulfate and calcium carbonate minerals; (2) low-temperature groundwater at the southern margin of the basin with low salinity (chloride content up to 100 mg/L) and chemical composition that is expected from equilibrium with limestone-dolomite rocks; and (3) low-temperature groundwater in the northern, western, and eastern margins of the basin with a wide range of salinity (chloride up to 800 mg/L). The different water types had also different stable isotope composition; the thermal water was depleted in 18O and 2H (δ18O as low as -7.6‰) relative to the southern (-5.9 to -5.3‰) and northern waters (-5.7 to -3.8‰). The differences in δ18O and δ2H between the southern and northern waters are related to elevation that induced fractionation of oxygen and hydrogen isotopes in recharge water originated from coastal moisture. The data suggest that the high salinity in groundwater from the northern, western and eastern margins of the Lakhssas Plateau is related to the presence of schist rocks in these areas. The distinctive low Na/Cl and Br

  15. Groundwater quality and occurrence and distribution of selected constituents in the Aquia and Upper Patapsco aquifers, Naval Air Station Patuxent River, St. Mary's County, Maryland, July 2008

    USGS Publications Warehouse

    Dieter, Cheryl A.; Campo, Kimberly W.; Baker, Anna C.

    2012-01-01

    The Naval Air Station Patuxent River in southern Maryland has continued to expand in the first decade of the 21st century, contributing to rapid population growth in the surrounding area. The increase in population has caused State and County water managers and others to be concerned about the impact of population growth on the quantity and quality of groundwater supplies. The U.S. Geological Survey has been investigating the groundwater resources of the air station since 1998. As part of that ongoing investigation, groundwater was sampled in 2008 in six wells in the Aquia aquifer and two wells in the Upper Patapsco aquifer in the vicinity of Naval Air Station Patuxent River and Webster Outlying Field. Groundwater samples were analyzed for basic chemistry (field parameters, major ions, and nutrients) as well as several water-quality issues of concern including the occurrence of arsenic and tungsten, and saltwater intrusion. The results of the 2008 groundwater-quality sampling indicate that the overall quality of groundwater in the Aquia aquifer has not changed since 1943; data are too limited to determine if groundwater quality has changed in the Upper Patapsco aquifer. At one well in the Aquia aquifer, the arsenic concentration exceeded the U.S. Environmental Protection Agency standard for drinking water. Arsenic was not detected in samples from the Upper Patapsco aquifer. Tungsten concentrations were detected at low concentrations near the laboratory reporting level in all eight samples. There was no evidence of saltwater intrusion in any of the wells.

  16. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 μm diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 μM linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 μM Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere’s attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ζ, of −44 to −49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L−1. The most hydrophilic (0.52 HI) and negatively charged (ζ −38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ζ. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  17. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welborn, Toby L.; Moreo, Michael T.

    2007-01-01

    Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range carbonate-rock aquifer system (BARCAS) study. Irrigated acreage is estimated routinely for only a few basins in the study area. Satellite imagery from the Landsat Thematic Mapper and Enhanced Thematic Mapper platforms were used to delineate irrigated acreage on a field-by-field basis for the entire study area. Six hundred and forty-three fields were delineated. The water source, irrigation system, crop type, and field activity for 2005 were identified and verified through field reconnaissance. These data were integrated in a geodatabase and analyzed to develop estimates of irrigated acreage for the 2000, 2002, and 2005 growing seasons by hydrographic area and subbasin. Estimated average annual potential evapotranspiration and average annual precipitation also were estimated for each field.The geodatabase was analyzed to determine the spatial distribution of field locations, the total amount of irrigated acreage by potential irrigation water source, by irrigation system, and by crop type. Irrigated acreage in 2005 totaled nearly 32,000 acres ranging from less than 200 acres in Butte, Cave, Jakes, Long, and Tippett Valleys to 9,300 acres in Snake Valley. Irrigated acreage increased about 20 percent between 2000 and 2005 and increased the most in Snake and White River Valleys. Ground-water supplies as much as 80 percent of irrigation water during dry years. Almost 90 percent of the irrigated acreage was planted with alfalfa.

  18. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  19. Copper crystallite in carbon molecular sieves for selective oxygen removal

    SciTech Connect

    Sharma, P.K.; Seshan, P.K.

    1993-06-15

    A copper modified carbon molecular sieve-sorbent having both sorptive and molecular sieving capabilities is described, comprising a carbon molecular sieve and finely divided particles of elemental copper uniformly dispersed in the matrix of the carbon molecular sieve, wherein the particles of elemental copper have an average crystallite size of from about 100 [angstrom] to about 400 [angstrom], wherein the finely divided elemental copper content of the molecular sieve-sorbent is from about 1 to about 40% by weight, and the carbon content thereof is from about 60 to about 99% by weight, and wherein the molecular sieve-sorbent has an effective pore size no greater than about 4.3 [angstrom].

  20. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  1. Issues of engineering and geochemistry in the sequestration of carbon dioxide in geological formations-saline aquifers

    NASA Astrophysics Data System (ADS)

    Garcia Orrego, Gloria Stella

    Dynamic tests were conducted to evaluate the feasibility to sequester carbon dioxide (CO2) in carbonate dolomite reservoir. Two injection rates, 0.1613 cc/min (20 pore volumes) and 0.982 cc/min (120 pore volumes) were tested to observe changes in petrophysical parameters mainly permeability and porosity under these two conditions of flow rates. The low flow rate was allowed to evaluate the effect of the bulk of the reservoir and the high flow rate evaluated the effect of dissolution on the face of the formation. The testes were carried out at reservoir-simulated conditions (2000 psia and 150°F). San Andres dolomite formation cores from wells 744 and 745 drilled during pilot area evaluation in Levelland Field. The core samples used have a high content of anhydrite and they are cemented mainly by calcite. The formation water used is representative of the Permian basin brine which has sodium 18,000 mg/L, chlorine 46,200 mg/L, calcium 6000 mg/L, sulfate 4880 mg/L, magnesium 1820 mg/L and potassium 1510 mg/L. The injection of low pore volumes was found to reduce the permeability in about 50%, the pore volume and porosity in about 25%, and the total equilibrium magnetization (Mo) from NMR T2 distribution decreased in about 17% indicating substantial reduction in porosity and permeability. The small pore sizes (bulk volume irreducible-BVI) increased in average in about 70% and the large pore sized (free fluid index-FFI) decreased in about 24%. The injection of high pore volume showed slight increase of the petrophysical properties. The total equilibrium magnetization and BVI and FFI did not present remarkable change. At the onset of this research, it was still uncertain how the interaction between CO2 and formation brine affects the geochemistry of the reservoir. Therefore, several static tests at supercritical conditions (1070 psia and 88°F) and at reservoir conditions with and without rock samples were carried out. After running the static tests for seven days, a

  2. Experimental selectivity curves of gaseous binary mixtures of hydrocarbons and carbon dioxide on activated carbon and silica gel

    SciTech Connect

    Olivier, M.G.; Jadot, R.

    1998-07-01

    The selectivity curves of gaseous binary mixtures of ethane + ethylene, methane + carbon dioxide at 303 K and 700 kPa and butane + 2 methylpropane at 318 K and 200 kPa have been determined on activated carbon and silica gel using an original apparatus. In this paper, a brief description of this apparatus is given. The difference in behavior of these two adsorbents is discussed.

  3. Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst.

    PubMed

    Lu, Xunyu; Tan, Tze Hao; Ng, Yun Hau; Amal, Rose

    2016-08-16

    A stable and selective electrocatalyst for CO2 reduction was fabricated by covalently attaching graphitic carbon nitride onto multiwall carbon nanotubes (g-C3 N4 /MWCNTs). The as-prepared composite is able to reduce CO2 exclusively to CO with a maximum Faraday efficiency of 60 %, and no decay in the catalytic activity was observed even after 50 h of reaction. The enhanced catalytic activity towards CO2 reduction is attributed to the formation of active carbon-nitrogen bonds, high specific surface area, and improved material conductivity of the g-C3 N4 /MWCNT composite.

  4. Use of air-pressurized slug tests to estimate hydraulic conductivity at selected piezometers completed in the Santa Fe Group aquifer system, Albuquerque area, New Mexico

    USGS Publications Warehouse

    Thomas, Carole L.; Thorn, Conde R.

    2000-01-01

    The City of Albuquerque Public Works Department, Water Resources Management (City), is interested in quantifying aquifer hydraulic properties in the Albuquerque, New Mexico, area to better understand and manage water resources in the Middle Rio Grande Basin. In 1998, the City and the U.S. Geological Survey entered into a cooperative program to determine hydraulic properties of aquifer material adjacent to screened intervals of piezometers in the Albuquerque area. Investigators conducted slug tests from March 8 through April 8, 1999, to estimate hydraulic conductivity of aquifer material adjacent to the screened intervals of 25 piezometers from 11 nested- piezometer sites in the Albuquerque area. At 20 of the piezometers, slug-test responses were typical; at 2 piezometers, tests were prematurely terminated because the tests were taking too long to complete; and at 3 piezometers, test responses were oscillatory. Methods used to estimate hydraulic conductivity were the Bouwer and Rice method or the Cooper, Bredehoeft, and Papadopulos method for most tests; the Shapiro and Greene method for prematurely terminated tests; and the van der Kamp method for oscillatory tests. Hydraulic-conductivity estimates ranged from about 0.15 to 92 feet per day. In general, the smaller estimated values are associated with fine-grained aquifer materials and the larger estimated hydraulic-conductivity values are associated with coarse- grained aquifer materials adjacent to the screened intervals of the piezometers. Hydraulic-conductivity estimates ranged from 0.15 to 8.2 feet per day for aquifer materials adjacent to the screened intervals at 12 piezometers and from 12 to 41 feet per day for aquifer materials adjacent to the screened intervals at 10 piezometers. Hydraulic-conductivity estimates at four piezometers were greater than 41 feet per day.

  5. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    SciTech Connect

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.

  6. Evaluation of groundwater quality and selected hydrologic conditions in the South Coast aquifer, Santa Isabel area, Puerto Rico, 2008–09

    USGS Publications Warehouse

    Rodríguez, José M.

    2013-01-01

    The source of drinking water in the Santa Isabel and Coamo areas of Puerto Rico (Molina and Gómez-Gómez, 2008) is the South Coast aquifer (hereafter referred to as the aquifer), which supplies about 30,700 cubic meters per day (m³/d) to Puerto Rico Aqueduct and Sewer Authority (PRASA) public-supply wells. In addition, approximately 45 wells provide an estimated 33,700 m³/d of groundwater to irrigate crops in the area. In 1967, baseline nitrate concentrations in groundwater throughout most of the aquifer were generally less than 6 milligrams per liter (mg/L) as nitrogen in collected water samples (U.S. Geological Survey, 2012). In 2007, elevated nitrate concentrations were detected in the aquifer, near Santa Isabel and the foothills north of the coastal plain at Santa Isabel as part of a regional groundwater-quality assessment conducted by the U.S. Geological Survey (USGS) during 2007 (Rodríguez and Gómez-Gómez, 2008). The increase in nitrate concentrations has been of concern to local government agencies because of its potential effect on public supply. To address public-supply concerns, the USGS, in cooperation with the Puerto Rico Department of Natural and Environmental Resources (PRDNER), evaluated groundwater quality in the aquifer near the Santa Isabel area between January 2008 and May 2009. The objectives of the study were to (1) define the groundwater-quality conditions of the aquifer, with emphasis on the distribution of nitrate concentrations; (2) identify potential sources leading to elevated nitrate concentrations; (3) estimate the nitrate loads from major sources identified; and (4) estimate the groundwater withdrawals by principal-use categories in the area. Results of this study will be used by Commonwealth of Puerto Rico and Federal agencies in developing strategies that can result in containment of high nitrate groundwater to minimize degradation of fresh groundwater in the aquifer.

  7. Enhanced CO2/N2 Selectivity in Amidoxime-Modified Porous Carbon

    SciTech Connect

    Mahurin, Shannon Mark; Gorka, Joanna; Nelson, Kimberly M; Mayes, Richard T; Dai, Sheng

    2014-01-01

    In this work, we examine the use of the amidoxime functional group grafted onto a hierarchical porous carbon framework for the selective capture and removal of carbon dioxide from combustion streams. Measured CO2/N2 ideal selectivity values for the amidoxime-grafted carbon were significantly higher than the pristine porous carbon with improvements of 65%. Though the overall CO2 capacity decreased slightly for the activated carbon from 4.97 mmol g-1 to 4.24 mmol g-1 after surface modification due to a reduction in the total surface area, the isosteric heats of adsorption increased after amidoxime incorporation indicating an increased interaction of CO2 with the sorbent. Total capacity was reproducible and stable after multiple adsorption/desorption cycles with no loss of capacity suggesting that modification with the amidoxime group is a potential method to enhance carbon capture.

  8. Occurrence of selected pesticides and their metabolites in near-surface aquifers of the midwestern United States

    USGS Publications Warehouse

    Kolpin, D.W.; Michael, Thurman E.; Goolsby, D.A.

    1996-01-01

    The occurrence and distribution of selected pesticides and their metabolites were investigated through the collection of 837 water-quality samples from 303 wells across the Midwest. Results of this study showed that five of the six most frequently detected compounds were pesticide metabolites. Thus, it was common for a metabolite to be found more frequently in groundwater than its parent compound. The metabolite alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid) was detected almost 10 times as frequently and at much higher concentrations than its parent compound alachlor (2-chloro-2‘,6‘-diethyl-N-(methoxymethyl)acetamide). The median detectable atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) concentration was almost half that of atrazine residue (atrazine plus the two atrazine metabolites analyzed). Cyanazine amide [2-chloro-4-(1-carbamoyl-1-methylethylamino)-6-ethylamino-s-triazine] was detected almost twice as frequently as cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). Results show that information on pesticide metabolites is necessary to understand the environmental fate of pesticides. Consequently, if pesticide metabolites are not quantified, the effects of chemical use on groundwater quality would be substantially underestimated. Thus, continued research is needed to identify major degradation pathways for all pesticides and to develop analytical methods to determine their concentrations in water and other environmental media.

  9. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    DTIC Science & Technology

    2015-05-12

    enhanced chemical vapor deposition was used to manipulate carbon radical generation in carbon precursors during synthesis. Water’s influence on...SWCNT diameter and yield was revealed for water-assisted ethanol pyrolysis,. Introducing sulfur-containing compounds into carbon precursors efficiently...structure of sulfur near metal catalyst particles. Selective extraction of chiral SWCNT mixtures using fluorine-based polymers or aqueous two-phase

  10. Evaluation of Selected Model Constraints and Variables on Simulated Sustainable Yield from the Mississippi River Valley Alluvial Aquifer System in Arkansas

    USGS Publications Warehouse

    Czarnecki, John B.

    2008-01-01

    An existing conjunctive use optimization model of the Mississippi River Valley alluvial aquifer was used to evaluate the effect of selected constraints and model variables on ground-water sustainable yield. Modifications to the optimization model were made to evaluate the effects of varying (1) the upper limit of ground-water withdrawal rates, (2) the streamflow constraint associated with the White River, and (3) the specified stage of the White River. Upper limits of ground-water withdrawal rates were reduced to 75, 50, and 25 percent of the 1997 ground-water withdrawal rates. As the upper limit is reduced, the spatial distribution of sustainable pumping increases, although the total sustainable pumping from the entire model area decreases. In addition, the number of binding constraint points decreases. In a separate analysis, the streamflow constraint associated with the White River was optimized, resulting in an estimate of the maximum sustainable streamflow at DeValls Bluff, Arkansas, the site of potential surface-water withdrawals from the White River for the Grand Prairie Area Demonstration Project. The maximum sustainable streamflow, however, is less than the amount of streamflow allocated in the spring during the paddlefish spawning period. Finally, decreasing the specified stage of the White River was done to evaluate a hypothetical river stage that might result if the White River were to breach the Melinda Head Cut Structure, one of several manmade diversions that prevents the White River from permanently joining the Arkansas River. A reduction in the stage of the White River causes reductions in the sustainable yield of ground water.

  11. Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer, Idaho National Engineering and Environmental Laboratory, Idaho, 1996 through 1998

    SciTech Connect

    R. C. Bartholomay; B. J. Tucker; L. C. Davis; M. R. Greene

    2000-09-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering and Environmental Laboratory (INEEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEEL to determine hydrologic trends and to delineate the movement to radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1996-98. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEEL decreased or remained constant during 1996-98. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption process, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEEL were variable during 1996-98.

  12. Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection

    Treesearch

    Susanna L. Melson; Mark E. Harmon; Jeremy S. Fried; James B. Domingo

    2011-01-01

    Estimates of live-tree carbon stores are influenced by numerous uncertainties. One of them is model-selection uncertainty: one has to choose among multiple empirical equations and conversion factors that can be plausibly justified as locally applicable to calculate the carbon store from inventory measurements such as tree height and diameter at breast height (DBH)....

  13. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  14. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  15. Revised hydrogeologic framework of the Floridan aquifer system in the northern coastal area of Georgia and adjacent parts of South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Gill, Harold E.

    2010-01-01

    The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer

  16. Estimates of live-tree carbon stores in the Pacific Northwest are sensitive to model selection

    PubMed Central

    2011-01-01

    Background Estimates of live-tree carbon stores are influenced by numerous uncertainties. One of them is model-selection uncertainty: one has to choose among multiple empirical equations and conversion factors that can be plausibly justified as locally applicable to calculate the carbon store from inventory measurements such as tree height and diameter at breast height (DBH). Here we quantify the model-selection uncertainty for the five most numerous tree species in six counties of northwest Oregon, USA. Results The results of our study demonstrate that model-selection error may introduce 20 to 40% uncertainty into a live-tree carbon estimate, possibly making this form of error the largest source of uncertainty in estimation of live-tree carbon stores. The effect of model selection could be even greater if models are applied beyond the height and DBH ranges for which they were developed. Conclusions Model-selection uncertainty is potentially large enough that it could limit the ability to track forest carbon with the precision and accuracy required by carbon accounting protocols. Without local validation based on detailed measurements of usually destructively sampled trees, it is very difficult to choose the best model when there are several available. Our analysis suggests that considering tree form in equation selection may better match trees to existing equations and that substantial gaps exist, in terms of both species and diameter ranges, that are ripe for new model-building effort. PMID:21477353

  17. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  18. Preliminary delineation and description of the regional aquifers of Tennessee : the Highland Rim aquifer system

    USGS Publications Warehouse

    Brahana, J.V.; Bradley, M.W.

    1986-01-01

    The Highland Rim aquifer system in Tennessee is primarily composed of Mississippian carbonates and occurs west of the Valley and Ridge Province. It crops out in the Highland Rim and the Sequatchie Valley. It has been removed by erosion from the Central Basin. Groundwater in the Highland Rim aquifer system occurs primarily in secondary openings including solution openings, joints, and faults. The Chattanooga Shale is the lower confining layer for the Highland Rim aquifer system. Under the Cumberland plateau, this aquifer system is separated from the overlying Pennsylvanian formations by the Pennington Shale. The Highland Rim aquifer system is an important source of drinking water. It supplies most of the rural, domestic, and many public supplies of drinking water in the Highland Rim. Where there is a dynamic flow system, dissolved solids concentrations are less than 500 mg/L. However, isolated cells may exist where the groundwater has dissolved solids concentrations of more than 1 ,000 mg/L. (USGS)

  19. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  20. Status of water levels and selected water-quality conditions in the Mississippi River valley alluvial aquifer in eastern Arkansas, 1998

    USGS Publications Warehouse

    Joseph, Robert L.

    1999-01-01

    During the spring of 1998, water levels were measured in 656 wells completed in the Mississippi River Valley alluvial aquifer in eastern Arkansas. Water samples were collected during the summer of 1998 from about 140 wells completed in the alluvial aquifer and measured for specific conductance, and samples from 119 wells were analyzed for dissolved chloride concentrations. The regional direction of ground-water flow in the alluvial aquifer is generally to the south and east except where water levels are affected by ground-water withdrawals. A large depression in the potentiometric surface is located in Arkansas, Lonoke, and Prairie Counties. Shallower depressions are located in Poinsett, Lee, St. Francis, and Woodruff Counties. Potentiometric depressions in the alluvial aquifer generally are a result of long-term pumping and probably are affected by variations in aquifer characteristics. Water-level data from 22 wells with 26 or more years of record indicate long-term water levels in the alluvial aquifer declined an average of about 0.38 foot per year. Specific conductance measurements made on water samples collected during the study ranged from 199 microsiemens per centimeter at 25 degrees Celsius at a well in Drew County to 3,800 microsiemens per centimeter at 25 degrees Celsius at a well in Chicot County. Dissolved chloride concentrations ranged from 2.1 milligrams per liter at a well in Mississippi and St. Francis Counties to 820 milligrams per liter at a well in Chicot County. The high chloride concentrations occurred in the same area of Chicot County as the high specific conductance.

  1. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA

    USGS Publications Warehouse

    Plummer, L. Niel; Sibrell, Philip L.; Casile, Gerolamo C.; Busenberg, Eurybiades; Hunt, Andrew G.; Schlosser, Peter

    2013-01-01

    Measurements of low-level concentrations of halogenated volatile organic compounds (VOCs) and estimates of groundwater age interpreted from 3H/3He and SF6 data have led to an improved understanding of groundwater flow, water sources, and transit times in a karstic, fractured, carbonate-rock aquifer at the Leetown Science Center (LSC), West Virginia. The sum of the concentrations of a set of 16 predominant halogenated VOCs (TDVOC) determined by gas chromatography with electron-capture detector (GC–ECD) exceeded that possible for air–water equilibrium in 34 of the 47 samples (median TDVOC of 24,800 pg kg−1), indicating that nearly all the water sampled in the vicinity of the LSC has been affected by addition of halogenated VOCs from non-atmospheric source(s). Leakage from a landfill that was closed and sealed nearly 20 a prior to sampling was recognized and traced to areas east of the LSC using low-level detection of tetrachloroethene (PCE), methyl chloride (MeCl), methyl chloroform (MC), dichlorodifluoromethane (CFC-12), and cis-1,2-dichloroethene (cis-1,2-DCE). Chloroform (CHLF) was the predominant VOC in water from domestic wells surrounding the LSC, and was elevated in groundwater in and near the Fish Health Laboratory at the LSC, where a leak of chlorinated water occurred prior to 2006. The low-level concentrations of halogenated VOCs did not exceed human or aquatic-life health criteria, and were useful in providing an awareness of the intrinsic susceptibility of the fractured karstic groundwater system at the LSC to non-atmospheric anthropogenic inputs. The 3H/3He groundwater ages of spring discharge from the carbonate rocks showed transient behavior, with ages averaging about 2 a in 2004 following a wet climatic period (2003–2004), and ages in the range of 4–7 a in periods of more average precipitation (2008–2009). The SF6 and CFC-12 data indicate older water (model ages of 10s of years or more) in the low-permeability shale of the Martinsburg

  2. Potentiometric surfaces of the upper glacial and Magothy aquifers and selected streamflow statistics, 1943-72, on Long Island, New York

    USGS Publications Warehouse

    Vaupel, Donald E.; Prince, K.R.; Koehler, A.J.; Runco, Mario

    1977-01-01

    A brief text describes the two major aquifers and the discharge pattern of major streams on Long Island. Four water-table maps for the years 1943, 1959, 1966, and 1972, an average water-table map for the period 1943-72 supplemented by five well hydrographs representing Kings, Queens, western Nassau, eastern Nassau, and Suffolk Counties, and three potentiometric- surface maps of the Magothy aquifer for the years 1959, 1966, and 1972 are included. A statistical summary of stream discharge presents average annual discharges, annual average discharges, and average 7-day, 10-year low-flow discharges for major streams.

  3. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation.

    PubMed

    Meng, Qing Bo; Weber, Jens

    2014-12-01

    Suitable solid adsorbents are demanded for carbon capture and storage (CCS) processes. In this work, a novel microporous polymer is developed by hypercrosslinking of organosolv lignin, which is a renewable resource. Reaction with formaldehyde dimethyl acetal (FDA) via Friedel-Crafts reaction gives microporous networks, with moderate capacity of carbon dioxide but excellent selectivity towards CO2 /N2 mixture as predicted on the basis of ideal adsorption-solution theory (IAST). Pyrolysis of pure organosolv lignin results in microporous carbon powders, while pyrolysis of hypercrosslinked organosolv lignin yields shape-persistent materials with increased CO2 capacity while maintaining very good selectivity.

  4. Enhanced preconcentration of selected chlorofluorocarbons on multiwalled carbon nanotubes with polar functionalities.

    PubMed

    Saridara, Chutarat; Hussain, Chaudhery Mustansar; Ragunath, Smruti; Mitra, Somenath

    2015-02-01

    Chromatographic monitoring of chlorofluorocarbons in air requires the preconcentration of these highly volatile species. In this paper, we present functionalized multiwalled carbon nanotubes as effective sorbents for a microtrap designed for chlorofluorocarbons preconcentration. Among the commercial carbons and carbon nanotubes studied, functionalization via carboxylation and propyl amine was most effective for dichlorofluoromethane and trichlorofluoromethane (Freon 11), which were selected as representative chlorofluorocarbons. The results show that carbon nanotubes functionalized with a polar groups led to as much as a 300% increase in breakthrough volume and the desorption bandwidth was reduced by 2.5 times.

  5. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    PubMed

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    USGS Publications Warehouse

    Davis, J. Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains

  7. Quality of selected coal seams from Indiana: Implications for carbonization

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Padgett, P.

    2001-01-01

    The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. Selective Removal of Nitrosamines from a Model Amine Carbon-Capture Waterwash Using Low-Cost Activated-Carbon Sorbents.

    PubMed

    Widger, Leland R; Combs, Megan; Lohe, Amit R; Lippert, Cameron A; Thompson, Jesse G; Liu, Kunlei

    2017-09-19

    Nitrosamines generated in the amine solvent loop of postcombustion carbon capture systems are potent carcinogens, and their emission could pose a serious threat to the environment or human health. Nitrosamine emission control strategies are critical for the success of amine-based carbon capture as the technology approaches industrial-scale deployment. Waterwash systems have been used to control volatile and aerosol emissions, including nitrosamines, from carbon-capture plants, but it is still necessary to remove or destroy nitrosamines in the circulating waterwash to prevent their subsequent emission into the environment. In this study, a cost-effective method for selectively removing nitrosamines from the absorber waterwash effluent with activated-carbon sorbents was developed to reduce the environmental impact associated with amine-based carbon capture. The results show that the commercial activated-carbon sorbents tested have a high capacity and selectivity for nitrosamines over the parent solvent amines, with capacities up to 190 mg/g carbon, under simulated amine waterwash conditions. To further reduce costs, an aerobic thermal sorbent regeneration step was also examined due to the low thermal stability of nitrosamines. To model the effect of oxidation on the sorbent performance, thermal- and acid-oxidized sorbents were also prepared from the commercial sorbents and analyzed. The chemical and physical properties of nitrosamines, the parent amine, and the influence of the physical properties of the carbon sorbents on nitrosamine adsorption was examined. Key sorbent properties included the sorbent hydrophilicity and hydrophobicity, surface pKa of the sorbent, and chemical structure of the parent amine and nitrosamine.

  9. Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: a baseline study for early detection of CO2 leakage.

    PubMed

    Choi, Hanna; Piao, Jize; Woo, Nam C; Cho, Heuynam

    2017-02-01

    A baseline hydrochemistry of the above zone aquifer was examined for the potential of CO2 early detection monitoring. Among the major ionic components and stable isotope ratios of oxygen, hydrogen, and carbon, components with a relative standard deviation (RSD) of <10 % for the seasonal variation were selected as relatively stable. These components were tested for sensitivity to the introduction of 0.1 mol/L CO2 (g) using the PHREEQC simulation results. If the relatively stable components were sensitive to the introduction of CO2, then they could be used as indicators of CO2 leakage into the above zone. As an analog to the zone above CO2 storage formation, we sampled deep groundwater, including geothermal groundwater from well depths of 400-700 m below the ground surface (bgs) and carbonated springs with a high CO2 content in Korea. Under the natural conditions of inland geothermal groundwater, pH, electrical conductivity (EC), bicarbonate (HCO3), δ(18)O, δ(2)H, and δ(13)C were relatively stable as well as sensitive to the introduction of CO2 (g), thus showing good potential as monitoring parameters for early detection of CO2 leakage. In carbonated springs, the parameters identified were pH, δ(18)O, and δ(2)H. Baseline hydrochemistry monitoring could provide information on parameters useful for detecting anomalies caused by CO2 leakage as measures for early warning.

  10. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    NASA Astrophysics Data System (ADS)

    Huang, M.; Asner, G. P.

    2009-12-01

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate C losses due to selective logging in a ~2,664,960 sq. km region of the Brazilian Amazon were 0.04 - 0.05 Pg C/yr . In sum, selective logging was responsible for 15-19% higher carbon losses than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon losses via selective logging last two to three decades following harvest, and that the original living biomass takes up to a century to recover, if the forests are not subsequently cleared. High-intensity harvests, which are widespread over the basin, are the major contributors to carbon losses following logging, in addition to obvious impacts on the ecological function of the forests. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon losses in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD).

  11. Aquifers: Ground-water treatment. January 1977-May 1989 (Citations from the Selected Water Resources Abstracts data base). Report for January 1977-May 1989

    SciTech Connect

    Not Available

    1989-06-01

    This bibliography contains citations concerning in-situ methods used in the restoration of contaminated aquifers. The utilization of microorganisms, denitrification studies, and the treatment of a number of aromatic hydrocarbons are among the topics discussed. Site-specific studies in a variety of hydrogeological environments are also included. (Contains 55 citations fully indexed and including a title list.)

  12. ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS

    EPA Science Inventory

    The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...

  13. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  14. Comparison of ground-water quality in samples from selected shallow and deep wells in the central Oklahoma aquifer, 2003-2005

    USGS Publications Warehouse

    Becker, Carol J.

    2006-01-01

    The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in

  15. Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Morrow, William S.; Warner, Kelly L.

    2009-01-01

    Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies in the glacial aquifer system of the United States. The glacial aquifer system underlies most of New England, extends through the Midwest, and underlies portions of the Pacific Northwest and Alaska. Concentrations of dissolved trace elements in ground water can vary over several orders of magnitude across local well networks as well as across regions of the United States. Characterization of this variability is a step toward a regional screening-level assessment of potential human-health implications. Ground-water sampling, from 1991 through 2003, of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey determined trace element concentrations in water from 847 wells in the glacial aquifer system. Dissolved iron and manganese concentrations were analyzed in those well samples and in water from an additional 743 NAWQA land-use and major-aquifer survey wells. The samples are from monitoring and water-supply wells. Concentrations of antimony, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, strontium, thallium, uranium, and zinc vary as much within NAWQA study units (local scale; ranging in size from a few thousand to tens of thousands of square miles) as over the entire glacial aquifer system. Patterns of trace element concentrations in glacial aquifer system ground water were examined by using techniques suitable for a dataset with zero to 80 percent of analytical results reported as below detection. During the period of sampling, the analytical techniques changed, which generally improved the analytical sensitivity. Multiple reporting limits complicated the comparison of detections and concentrations. Regression on Order Statistics was used to model probability distributions and estimate the medians and other quantiles of the trace element

  16. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama, area 1

    USGS Publications Warehouse

    Bossong, C.R.; Harris, W.F.

    1987-01-01

    This report delineates and describes the geohydrology and susceptibility of the major aquifers to contamination in Area 1 - Colbert, Franklin, Lauderdale, Lawrence, Limeston, Madison, and Morgan Counties. Most of the area is underlain by a Mississippian carbonate sequence that includes two major aquifers, the Tuscumbia-Fort Payne aquifer and the Bangor aquifer. A third major aquifer, the Tuscaloosa aquifer of Cretaceous age, occurs in the southwest part of the area. The Mississippi carbonate aquifers are the Tuscumbia-Fort Payne aquifer which includes most Tuscumbia Limestone and the Fort Payne Chert, and a small area of the Monteagle Limestone, and the Bangor aquifer which includes the Bangor Limestone and Hartselle Sandstone. Both of these aquifers possess highly-variable secondary porosity and permeability related to fractures that have been enlarged, sometimes to cavernous proportions, due to solution processes. The Tuscaloosa aquifer consists of the Tuscaloosa Group, an unconsolidated clastic deposit that has relatively uniform primary porosity and permeability. Significant quantities of groundwater are available from each of the aquifers. Water levels at nearly 2 ,000 wells indicate that, for each aquifer, general groundwater movement is from topographically high to low areas. Each of the aquifers is recharged throughout its outcrop in the study area and is susceptible to contamination within the outcrop. Generalized topographic settings such as closed-contour depressions are identified as areas that are highly susceptible to contamination. Specific features such as sinkholes also are identified as extremely susceptible to contamination. (USGS)

  17. A cross-site comparison of methods used for hydrogeologic characterization of the Galena-Platteville aquifer in Illinois and Wisconsin, with examples from selected Superfund sites

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Dunning, Charles P.; Yeskis, Douglas J.; Ursic, James R.; Vendl, Mark

    2004-01-01

    The effectiveness of 28 methods used to characterize the fractured Galena-Platteville aquifer at eight sites in northern Illinois and Wisconsin is evaluated. Analysis of government databases, previous investigations, topographic maps, aerial photographs, and outcrops was essential to understanding the hydrogeology in the area to be investigated. The effectiveness of surface-geophysical methods depended on site geology. Lithologic logging provided essential information for site characterization. Cores were used for stratigraphy and geotechnical analysis. Natural-gamma logging helped identify the effect of lithology on the location of secondary- permeability features. Caliper logging identified large secondary-permeability features. Neutron logs identified trends in matrix porosity. Acoustic-televiewer logs identified numerous secondary-permeability features and their orientation. Borehole-camera logs also identified a number of secondary-permeability features. Borehole ground-penetrating radar identified lithologic and secondary-permeability features. However, the accuracy and completeness of this method is uncertain. Single-point-resistance, density, and normal resistivity logs were of limited use. Water-level and water-quality data identified flow directions and indicated the horizontal and vertical distribution of aquifer permeability and the depth of the permeable features. Temperature, spontaneous potential, and fluid-resistivity logging identified few secondary-permeability features at some sites and several features at others. Flowmeter logging was the most effective geophysical method for characterizing secondary-permeability features. Aquifer tests provided insight into the permeability distribution, identified hydraulically interconnected features, the presence of heterogeneity and anisotropy, and determined effective porosity. Aquifer heterogeneity prevented calculation of accurate hydraulic properties from some tests. Different methods, such as flowmeter

  18. Intrinsic potential for immediate biodegradation of toluene in a pristine, energy-limited aquifer.

    PubMed

    Herzyk, Agnieszka; Maloszewski, Piotr; Qiu, Shiran; Elsner, Martin; Griebler, Christian

    2014-06-01

    Pristine and energy-limited aquifers are considered to have a low resistance and resilience towards organic pollution. An experiment in an indoor aquifer system revealed an unexpected high intrinsic potential for the attenuation of a short-term toluene contamination. A 30 h pulse of 486 mg of toluene, used as a model contaminant, and deuterated water (D2O) through an initially pristine, oxic, and organic carbon poor sandy aquifer revealed an immediate aerobic toluene degradation potential. Based on contaminant and tracer break-through curves, as well as mass balance analyses and reactive transport modelling, a contaminant removal of 40 % over a transport distance of only 4.2 m in less than one week of travel time was obtained. The mean first-order degradation rate constant was λ = 0.178 day(-1), corresponding to a half-life time constant T1/2 of 3.87 days. Toluene-specific stable carbon isotope analysis independently proved that the contaminant mass removal can be attributed to microbial biodegradation. Since average doubling times of indigenous bacterial communities were in the range of months to years, the aerobic biodegradation potential observed is assumed to be present and active in the pristine, energy-limited groundwater ecosystems at any time. Follow-up experiments and field studies will help to quantify the immediate natural attenuation potential of aquifers for selected priority contaminants and will try to identify the key-degraders within the autochthonous microbial communities.

  19. Influence of high carbon monoxide concentration on the carbon dioxide gasification of a selected coal char

    NASA Astrophysics Data System (ADS)

    Tsai, Nancy Ko-Chieh

    2000-11-01

    This study focuses on the effect of high CO concentration on CO2 gasification rates of chars of Illinois #6 coal, a bituminous coal that is industrially important because of its relatively high reactivity and low pollutant emissions. A pressurized thermogravimetric analyzer (PTGA) is used to obtain char gasification mass loss and surface area measurements. The mass loss profiles of Illinois #6 chars were measured at temperatures of 1200 and 1273K and pressures of 1.4, 10, and 25 atm in CO2-CO and CO2-N2 mixtures. CO concentrations between 10%--90% at 1.4 atm and 10%--85% at 25 atm were used. The surface areas of the chars are determined from room-temperature (298K) CO2 adsorption on chars after successive stages of partial gasification. A variable partial pressure gas adsorption technique was developed to effectively utilize the PTGA for CO2 surface area measurements. Using experimental mass loss and surface area data combined with structural and kinetics modeling, an overall gasification curve description of kinetically-limited char-CO2 gasification reactivity is formulated for the life span of the char. The model consists of an intrinsic char reactivity expression with a conversion-dependent surface area modifier. First the surface area modifier is developed based on a random pore model and particle mode of burning relations. It is used with the unified gasification curve concept to interpret the isothermal gasification profiles and extrapolate the data to obtain the reactivity at the onset of char conversion. These isothermal initial char reactivities determined at selected gasification conditions are then used to calculate rate coefficients in the kinetics component of the model. The proposed reaction mechanism contains paths for both gas phase and adsorbed CO to interfere with the gasification of Illinois #6 chars by CO 2. The main effect of adsorbed CO in the range of experimental conditions used in this study is to occupy carbon sites that could otherwise be

  20. Characterizing ground water flow in the municipal well fields of Cedar Rapids, Iowa, with selected environmental tracers

    USGS Publications Warehouse

    Boyd, R.A.

    1998-01-01

    Cedar Rapids obtains its municipal water supply from a shallow alluvial aquifer along the Cedar River in east-central Iowa. Water samples were collected and analyzed for selected isotopes and chlorofluorocarbons to characterize the ground-water flow system near the municipal well fields. Analyses of deuterium and oxygen-18 indicate that water in the alluvial aquifer and in the underlying carbonate bedrock aquifer was recharged from precipitation during modern climatic conditions. Analyses of tritium indicate modern, post-1952, water in the alluvial aquifer and older, pre-1952, water in the bedrock aquifer. Mixing of the modern and older waters occurs in areas where (1) the confining layer between the two aquifers is discontinuous, (2) the bedrock aquifer is fractured, or (3) pumping of supply wells induces the flow of water between aquifers. Analyses of chlorofluorocarbons were used to determine the date of recharge of water samples. Water in the bedrock aquifer likely was recharged prior to the 1950s. Water in the alluvial aquifer likely was recharged from the 1960s to 1990s. Biodegradation or sorption probably affected some of the ground water analyzed for chlorofluorocarbons. These processes reduce the concentrations of CFCs, which results in older than actual calculated dates of recharge.

  1. Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    USGS Publications Warehouse

    Sprinkle, Craig L.

    1989-01-01

    The chemical quality of the ground water in the Floridan aquifer system is determined primarily by mineral-water interaction. However, some changes in water quality have been imposed by development, particularly near coastal pumping centers. A total of 601 chemical analyses, all from different wells, most completed in the upper part of the aquifer system, were used to describe the variations in water chemistry and to study the processes responsible for observed changes. The Floridan aquifer system is a vertically continuous sequence of Tertiary carbonate rocks that are of generally high permeability and are hydraulically connected in varying degrees. The rocks are principally limestone and dolomite, but they grade into limy sands and clays near the aquifer system's updip limits. Major minerals in the aquifer system are calcite, dolomite, and, locally, gypsum or quartz; minor minerals include apatite, glauconite, and clay minerals such as kaolinite and montmorillonite. Trace amounts of metallic oxides or sulfides are present in some areas. The aquifer system consists of the Upper and Lower Floridan aquifers, separated in most places by a less permeable confining unit that has highly variable hydraulic properties. Only the Upper Floridan aquifer is present throughout the study area. Freshwater enters the aquifer system in outcrop areas located primarily in central Georgia and north-central Florida. Discharge occurs chiefly to streams and springs and, to a lesser extent, directly into the sea. Most of the flow into and out of the system takes place where it is unconfined or where the upper confining unit is thin. Secondary permeability developed by dissolution of aquifer material is most prominent in these areas of dynamic flow. Dissolved-solids concentrations in water from the Upper Floridan aquifer generally range from less than 25 milligrams per liter near outcrops to more than 25,000 milligrams per liter along the coasts. The dominant cations in the ground water

  2. Selective extraction of strontium with supercritical fluid carbon dioxide

    PubMed Central

    Kulyako, Yurii; Yak, Hwa-Kwang; Chen, Xiaoyuan; Lee, Suh-Jane

    2010-01-01

    Strontium (Sr2+) can be selectively extracted from aqueous solutions into supercritical fluid CO2 at 60 °C and 100 atm with dicyclohexano-18-crown-6 (DC18C6) using CF3(CF2)6CO2− (PFOA−) or CF3(CF2)6CF2SO3− (PFOSA−) as a counter anion; at a mole ratio of Sr2+ : DC18C6 : PFOA− = 1:10:50, the extraction of Sr (5.6 × 10−5 M) from water at pH 3 is near quantitative whereas Ca2+ and Mg2+ at equal concentration are only extracted to a level of 7 and 1%, respectively; PFOSA− is an effective counter anion for selective extraction of Sr2+ from 1.3 M HNO3 with DC18C6 in supercritical CO2. PMID:21394239

  3. Potential Risks of Freshwater Aquifer Contamination with Geosequestration

    SciTech Connect

    Jackson, Robert

    2013-09-30

    Substantial leakage of CO{sub 2} from deep geological strata to shallow potable aquifers is likely to be rare, but chemical detection of potential leakage nonetheless remains an integral component of any safe carbon capture and storage system. CO{sub 2} that infiltrates an unconfined freshwater aquifer will have an immediate impact on water chemistry by lowering pH in most cases and by altering the concentration of total dissolved solids. Chemical signatures in affected waters provide an important opportunity for early detection of leaks. In the presence of CO{sub 2}, trace elements such as Mn, Fe, and Ca can increase by an order of magnitude or more above control concentrations within 100 days. Therefore, these and other elements should be monitored along with pH as geochemical markers of potential CO{sub 2} leaks. Dissolved inorganic carbon and alkalinity can also be rapidly responsive to CO{sub 2} and are stable indicators of a leak. Importantly, such changes may be detectable long before direct changes in CO{sub 2} are observed. The experimental results also suggest that the relative severity of the impact of leaks on overlying drinking-water aquifers should be considered in the selection of CO{sub 2} sequestration sites. One primary selection criteria should be metal and metalloid availability, such as uranium and arsenic abundance, to carefully monitor chemical species that could trigger changes above maximum contaminant levels (MCLs). Overall, the risks of leakage from underground CO{sub 2} storage are real but appear to be manageable if systems are closely monitored.

  4. Determination of nanogram per liter concentrations of volatile organic compounds in water by capillary gas chromatography and selected ion monitoring mass spectrometry and its use to define groundwater flow directions in Edwards Aquifer, Texas

    USGS Publications Warehouse

    Buszka, P.M.; Rose, D.L.; Ozuna, G.B.; Groschen, G.E.

    1995-01-01

    A method has been developed to measure nanogram per liter amounts of selected volatile organic compounds (VOCs) including dichlorodifluoromethane, trichlorofluoromethane, cis-1,2-dichloroethene, trichloroethene, tetrachloroethene, and the isomers of dichlorobenzene in water. The method uses purge-and-trap techniques on a 100 mL sample, gas chromatography with a megabore capillary column, and electron impact, selected ion monitoring mass spectrometry. Minimum detection levels for these compounds ranged from 1 to 4 ng/L in water. Recoveries from organic-free distilled water and natural groundwater ranged from 70.5% for dichlorodifluoromethane to 107.8% for 1,4-dichlorobenzene. Precision was generally best for cis-1,2-dichloroethene, tetrachloroethene, and the dichlorobenzene isomers and worst for dichlorodifluoromethane and trichlorofluoromethane. Blank data indicated persistent, trace-level introduction of dichlorodifluoromethane, 1,4-dichlorobenzene, and tetrachloroemene to samples during storage and shipment at concentrations less than the method reporting limits. The largest concentrations of the selected VOCs in 27 water samples from the Edwards aquifer near San Antonio, TX, were from confined-zone wells near an abandoned landfill. The results defined a zone of water with no detectable VOCs in nearly all of the aquifer west of San Antonio and from part of the confined zone beneath San Antonio.

  5. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    SciTech Connect

    Jagadamma, Sindhu; Mayes, Melanie; Phillips, Jana Randolph

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  6. Yield and quality of ground water from stratified-drift aquifers, Taunton River basin, Massachusetts : executive summary

    USGS Publications Warehouse

    Lapham, Wayne W.; Olimpio, Julio C.

    1989-01-01

    Water shortages are a chronic problem in parts of the Taunton River basin and are caused by a combination of factors. Water use in this part of the Boston metropolitan area is likely to increase during the next decade. The Massachusetts Division of Water Resources projects that about 50% of the cities and towns within and on the perimeter of the basin may have water supply deficits by 1990 if water management projects are not pursued throughout the 1980s. Estimates of the long-term yield of the 26 regional aquifers indicate that the yields of the two most productive aquifers equal or exceed 11.9 and 11.3 cu ft/sec, 90% of the time, respectively, if minimum stream discharge is maintained at 99.5% flow duration. Eighteen of the 26 aquifers were pumped for public water supply during 1983. Further analysis of the yield characteristics of these 18 aquifers indicates that the 1983 pumping rate of each of these 18 aquifers can be sustained at least 70% of the time. Selected physical properties and concentrations of major chemical constituents in groundwater from the stratified-drift aquifers at 80 sampling sites were used to characterize general water quality in aquifers throughout the basin. The pH of the groundwater ranged from 5.4 to 7.0. Natural elevated concentrations of Fe and Mn in water in the stratified-drift aquifers are present locally in the basin. Natural concentrations of these two metals commonly exceed the limits of 0.3 mg/L for Fe and 0.05 mg/L for Mn recommended for drinking water. Fifty-one analyses of selected trace metals in groundwater samples from stratified-drift aquifers throughout the basin were used to characterize trace metal concentrations in the groundwater. Of the 10 constituents sampled that have US EPA limits recommended for drinking water, only the Pb concentration in water at one site (60 micrograms/L) exceeded the recommended limit of 50 micrograms/L. Analyses of selected organic compounds in water in the stratified-drift aquifers at 74

  7. Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes

    PubMed Central

    2012-01-01

    Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors. PMID:22731888

  8. Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts.

    PubMed

    Ma, Ming; Trześniewski, Bartek J; Xie, Jie; Smith, Wilson A

    2016-08-08

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO2 to CO with approximately 80 % catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4 %) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH(.) intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO2 with suppressed H2 evolution.

  9. Microporous polystyrene particles for selective carbon dioxide capture.

    PubMed

    Kaliva, Maria; Armatas, Gerasimos S; Vamvakaki, Maria

    2012-02-07

    This study presents the synthesis of microporous polystyrene particles and the potential use of these materials in CO(2) capture for biogas purification. Highly cross-linked polystyrene particles are synthesized by the emulsion copolymerization of styrene (St) and divinylbenzene (DVB) in water. The cross-link density of the polymer is varied by altering the St/DVB molar ratio. The size and the morphology of the particles are characterized by scanning and transmission electron microscopy. Following supercritical point drying with carbon dioxide or lyophilization from benzene, the polystyrene nanoparticles exhibit a significant surface area and permanent microporosity. The dried particles comprising 35 mol % St and 65 mol % DVB possess the largest surface area, ∼205 m(2)/g measured by Brunauer-Emmett-Teller and ∼185 m(2)/g measured by the Dubinin-Radushkevich method, and a total pore volume of 1.10 cm(3)/g. Low pressure measurements suggest that the microporous polystyrene particles exhibit a good separation performance of CO(2) over CH(4), with separation factors in the range of ∼7-13 (268 K, CO(2)/CH(4) = 5/95 gas mixture), which renders them attractive candidates for use in gas separation processes.

  10. Tuning Thermoelectric Properties of Chirality Selected Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yanagi, Kazuhiro; Oshima, Yuki; Kitamura, Yoshimasa; Maniwa, Yutaka

    Thermoelectrics are a very impo