Trotta, Vincenzo; Calboli, Federico C F; Ziosi, Marcello; Cavicchi, Sandro
2007-08-16
Genetically based body size differences are naturally occurring in populations of Drosophila melanogaster, with bigger flies in the cold. Despite the cosmopolitan nature of body size clines in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of body size variation are not fully understood. In particular, it is not clear what the selective value of cell size and cell area variation exactly is. In the present work we determined variation in viability, developmental time and larval competitive ability in response to crowding at two temperatures after artificial selection for reduced cell area, cell number and wing area in four different natural populations of D. melanogaster. No correlated effect of selection on viability or developmental time was observed among all selected populations. An increase in competitive ability in one thermal environment (18 degrees C) under high larval crowding was observed as a correlated response to artificial selection for cell size. Viability and developmental time are not affected by selection for the cellular component of body size, suggesting that these traits only depend on the contingent genetic makeup of a population. The higher larval competitive ability shown by populations selected for reduced cell area seems to confirm the hypothesis that cell area mediated changes have a relationship with fitness, and might be the preferential way to change body size under specific circumstances.
Fluorescent Photo-conversion: A second chance to label unique cells.
Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S
2015-03-01
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.
Fluorescent Photo-conversion: A second chance to label unique cells
Mellott, Adam J.; Shinogle, Heather E.; Moore, David S.; Detamore, Michael S.
2014-01-01
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the “unique” cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population. PMID:25914756
Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis
Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.
2013-01-01
Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116
Making sense of snapshot data: ergodic principle for clonal cell populations
2017-01-01
Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. PMID:29187636
Making sense of snapshot data: ergodic principle for clonal cell populations.
Thomas, Philipp
2017-11-01
Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. © 2017 The Author(s).
Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
Kussell, Edo
2017-01-01
Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748
Complex dynamics of selection and cellular memory in adaptation to a changing environment
NASA Astrophysics Data System (ADS)
Kussell, Edo; Lin, Wei-Hsiang
We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.
Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R.; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L.; Eckert, Richard L.
2013-01-01
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation. PMID:24376802
Bouklas, Tejas; Alonso-Crisóstomo, Luz; Székely, Tamás; Diago-Navarro, Elizabeth; Orner, Erika P; Smith, Kalie; Munshi, Mansa A; Del Poeta, Maurizio; Balázsi, Gábor; Fries, Bettina C
2017-05-01
Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.
Wang, Xiaorong; Kang, Yu; Luo, Chunxiong; Zhao, Tong; Liu, Lin; Jiang, Xiangdan; Fu, Rongrong; An, Shuchang; Chen, Jichao; Jiang, Ning; Ren, Lufeng; Wang, Qi; Baillie, J Kenneth; Gao, Zhancheng; Yu, Jun
2014-02-11
Heteroresistance refers to phenotypic heterogeneity of microbial clonal populations under antibiotic stress, and it has been thought to be an allocation of a subset of "resistant" cells for surviving in higher concentrations of antibiotic. The assumption fits the so-called bet-hedging strategy, where a bacterial population "hedges" its "bet" on different phenotypes to be selected by unpredicted environment stresses. To test this hypothesis, we constructed a heteroresistance model by introducing a blaCTX-M-14 gene (coding for a cephalosporin hydrolase) into a sensitive Escherichia coli strain. We confirmed heteroresistance in this clone and that a subset of the cells expressed more hydrolase and formed more colonies in the presence of ceftriaxone (exhibited stronger "resistance"). However, subsequent single-cell-level investigation by using a microfluidic device showed that a subset of cells with a distinguishable phenotype of slowed growth and intensified hydrolase expression emerged, and they were not positively selected but increased their proportion in the population with ascending antibiotic concentrations. Therefore, heteroresistance--the gradually decreased colony-forming capability in the presence of antibiotic--was a result of a decreased growth rate rather than of selection for resistant cells. Using a mock strain without the resistance gene, we further demonstrated the existence of two nested growth-centric feedback loops that control the expression of the hydrolase and maximize population growth in various antibiotic concentrations. In conclusion, phenotypic heterogeneity is a population-based strategy beneficial for bacterial survival and propagation through task allocation and interphenotypic collaboration, and the growth rate provides a critical control for the expression of stress-related genes and an essential mechanism in responding to environmental stresses. Heteroresistance is essentially phenotypic heterogeneity, where a population-based strategy is thought to be at work, being assumed to be variable cell-to-cell resistance to be selected under antibiotic stress. Exact mechanisms of heteroresistance and its roles in adaptation to antibiotic stress have yet to be fully understood at the molecular and single-cell levels. In our study, we have not been able to detect any apparent subset of "resistant" cells selected by antibiotics; on the contrary, cell populations differentiate into phenotypic subsets with variable growth statuses and hydrolase expression. The growth rate appears to be sensitive to stress intensity and plays a key role in controlling hydrolase expression at both the bulk population and single-cell levels. We have shown here, for the first time, that phenotypic heterogeneity can be beneficial to a growing bacterial population through task allocation and interphenotypic collaboration other than partitioning cells into different categories of selective advantage.
Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.
Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A
2017-07-07
The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.
Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter
2010-01-01
Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925
Cinnamides as selective small-molecule inhibitors of a cellular model of breast cancer stem cells.
Germain, Andrew R; Carmody, Leigh C; Nag, Partha P; Morgan, Barbara; Verplank, Lynn; Fernandez, Cristina; Donckele, Etienne; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito
2013-03-15
A high-throughput screen (HTS) was conducted against stably propagated cancer stem cell (CSC)-enriched populations using a library of 300,718 compounds from the National Institutes of Health (NIH) Molecular Libraries Small Molecule Repository (MLSMR). A cinnamide analog displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control cell line (HMLE_sh_eGFP). Herein, we report structure-activity relationships of this class of cinnamides for selective lethality towards CSC-enriched populations. Copyright © 2013. Published by Elsevier Ltd.
Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis
NASA Astrophysics Data System (ADS)
Lambert, Guillaume; Kussell, Edo
2015-01-01
Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.
Salwe, Sukeshani; Kothari, Sweta; Chowdhary, Abhay; Deshmukh, Ranjana A.
2018-01-01
12–14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population. PMID:29682352
Gosavi, Rahul Ashok; Salwe, Sukeshani; Mukherjee, Sandeepan; Dahake, Ritwik; Kothari, Sweta; Patel, Vainav; Chowdhary, Abhay; Deshmukh, Ranjana A
2018-01-01
12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference ( P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.
Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S
2006-05-01
The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.
Novel method for in vitro depletion of T cells by monoclonal antibody-targeted photosensitization.
Berki, T; Németh, P
1998-02-01
An immunotargeting method (called photo-immunotargeting) has been developed for selective in vitro cell destruction. The procedure combines the photosensitizing (toxic) effect of light-induced dye-molecules, e.g., hematoporphyrin (HP) and the selective binding ability of monoclonal antibodies (mAb) to cell surface molecules. The photosensitizer HP molecules were covalently attached to monoclonal antibodies (a-Thy-1) recognizing an antigen on the surface of T lymphocytes, and used for T cell destruction. To increase the selectivity of the conventional targeting methods, a physical activation step (local light irradiation) as a second degree of specificity was employed. The HP in conjugated form was sufficient to induce T cell (thymocytes, EL-4 cell line) death after irradiation at 400 nm, at tenfold lower concentration compared to the photosensitizing effect of unbound HP. The selective killing of T lymphocytes (bearing the Thy-1 antigen) in a mixed cell population was demonstrated after a treatment with the phototoxic conjugate and light irradiation. This method can be useful for selective destruction of one population (target cell) in an in vitro heterogeneous cell mixture, e.g., in bone marrow transplants for T cell depletion to avoid graft vs. host reaction.
Kashtan, Nadav; Roggensack, Sara E; Berta-Thompson, Jessie W; Grinberg, Maor; Stepanauskas, Ramunas; Chisholm, Sallie W
2017-09-01
The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.
Hess, David A.; Wirthlin, Louisa; Craft, Timothy P.; Herrbrich, Phillip E.; Hohm, Sarah A.; Lahey, Ryan; Eades, William C.; Creer, Michael H.; Nolta, Jan A.
2006-01-01
The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDHhiLin- cells). Here, we further dissected the ALDHhi-Lin- population by selection for CD133, a surface molecule expressed on progenitors from hematopoietic, endothelial, and neural lineages. ALDHhiCD133+Lin- cells were primarily CD34+, but also included CD34-CD38-CD133+ cells, a phenotype previously associated with repopulating function. Both ALDHhiCD133-Lin- and ALDHhiCD133+Lin- cells demonstrated distinct clonogenic progenitor function in vitro, whereas only the ALDHhiCD133+Lin- population seeded the murine bone marrow 48 hours after transplantation. Significant human cell repopulation was observed only in NOD/SCID and NOD/SCID β2M-null mice that received transplants of ALDHhiCD133+Lin- cells. Limiting dilution analysis demonstrated a 10-fold increase in the frequency of NOD/SCID repopulating cells compared with CD133+Lin- cells, suggesting that high ALDH activity further purified cells with repopulating function. Transplanted ALDHhiCD133+Lin- cells also maintained primitive hematopoietic phenotypes (CD34+CD38-) and demonstrated enhanced repopulating function in recipients of serial, secondary transplants. Cell selection based on ALDH activity and CD133 expression provides a novel purification of HSCs with long-term repopulating function and may be considered an alternative to CD34 cell selection for stem cell therapies. PMID:16269619
Quantifying selective pressures driving bacterial evolution using lineage analysis
Lambert, Guillaume; Kussell, Edo
2015-01-01
Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population’s rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages –i.e. the life-histories of individuals and their ancestors– to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to E. coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life-history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection, and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems. PMID:26213639
CELL SEPARATION ON ANTIGEN-COATED COLUMNS
Wigzell, Hans; Andersson, Birger
1969-01-01
Glass and plastic bead columns coated with antigenic protein molecules were used as an immunological filter for cell populations containing immune cells of relevant specificity. A selective elimination of these immune cells from the passing cell suspension was regularly noted and it approached, in some experiments, complete abolition of the specific immune reactivity of the filtered cell population. This specific retention of immune cells by antigenic columns could be selectively blocked by the presence of free antigen molecules in the medium during filtration. The results obtained support the concept of a cell-associated antigen-specific receptor being present on the outer surface of immune cells, displaying the same antigen-binding specificity as the potential product of the cell, the humoral antibody. Using the present bead column system, results were obtained indicating that this receptor was an active product of the immune cells and not any passively adsorbed, cytophilic antibody. Antigenic bead columns may very well constitute a tool for the production in vitro of cell populations being specifically deprived of immune reactivity and allow detailed analysis of the characteristics of the cell-associated antibody of immune cells. PMID:5782770
Viganò, M; Perucca Orfei, C; Colombini, A; Stanco, D; Randelli, P; Sansone, V; de Girolamo, L
2017-12-01
Tendon resident cells (TCs) are a mixed population made of terminally differentiated tenocytes and tendon stem/progenitor cells (TSPCs). Since the enrichment of progenitors proportion could enhance the effectiveness of treatments based on these cell populations, the interest on the effect of culture conditions on the TSPCs is growing. In this study the clonal selection and the culture in presence or absence of basic fibroblast growth factor (bFGF) were used to assess their influences on the stemness properties and phenotype specific features of tendon cells. Cells cultured with the different methods were analyzed in terms of clonogenic and differentiation abilities, stem and tendon specific genes expression and immunophenotype at passage 2 and passage 4. The clonal selection allowed to isolate cells with a higher multi-differentiation potential, but at the same time a lower proliferation rate in comparison to the whole population. Moreover, the clones express a higher amounts of stemness marker OCT4 and tendon specific transcription factor Scleraxis (SCX) mRNA, but a lower level of decorin (DCN). On the other hand, the number of cells obtained by clonal selection was extremely low and most of the clones were unable to reach a high number of passages in cultures. The presence of bFGF influences TCs morphology, enhance their proliferation rate and reduce their clonogenic ability. Interestingly, the expression of CD54, a known mesenchymal stem cell marker, is reduced in presence of bFGF at early passages. Nevertheless, bFGF does not affect the chondrogenic and osteogenic potential of TCs and the expression of tendon specific markers, while it was able to downregulate the OCT4 expression. This study showed that clonal selection enhance progenitors content in TCs populations, but the extremely low number of cells produced with this method could represent an insurmountable obstacle to its application in clinical approaches. We observed that the addition of bFGF to the culture medium promotes the maintenance of a higher number of differentiated cells, reducing the proportion of progenitors within the whole population. Overall our findings demonstrated the importance of the use of specific culture protocols to obtain tendon cells for possible clinical applications.
Cytotoxic Tumor-Targeting Peptides From In Vivo Phage Display.
Northup, Jessica R Newton; Deutscher, Susan L
2016-01-01
We previously utilized an in vivo peptide phage display selection technique, which included the use of detergent elution of phage from excised tumor, to obtain tumor-targeting phage with the ability to extravasate the vasculature and bind directly to prostate tumor tissue. It is hypothesized that this same in vivo phage selection technique can be used to functionally select for molecules that not only bind to cancer cells but also kill them. Here we analyzed two different in vivo phage display selected phage clones, G1 and H5, retrieved from PC-3 human prostate carcinoma xenografted tumors. First, cell de-attachment as an endpoint criterion for apoptosis and cell cycle was examined. After 2.5 hours incubation with G1 phage, PC-3 cell attachment was reduced by 23.8% and the percent of cell population in M phase reduced by 32.1%. In comparison, PC-3 cells incubated with H5 phage had a reduction of 25.0% cell attachment and 33.6% of cell population in M phase. These changes in combination with elevated caspase activation within cells in M phase, and no significant changes to G1/G0 or S phase cell populations suggest that the cytotoxic phages are targeting actively dividing PC-3 cells. Microscopic studies were also performed to further analyze the nature of cytotoxicity of these two phage clones. It was found that G1 phage induced and co- localized with tubulin based projections within apoptotic cells, while H5 phage did not. These phage may form the foundation for a new class of targeted prostate cancer therapeutic agents.
Thurman, Jill; Parry, Jacqueline D; Hill, Philip J; Laybourn-Parry, Johanna
2010-10-01
This study examined whether two ciliates could discriminate between equally-sized bacterial prey in mixture and if so, how selectivity might benefit the ciliate population. Live Klebsiella aerogenes, K. ozaenae and Escherichia coli, expressing different coloured fluorescent proteins, were cultured in such a way as to provide populations containing equally-sized cells (to prevent size-selective grazing taking place) and these prey were fed to each ciliate in 50:50 mixtures. Colpidium striatum selected K. aerogenes over K. ozaenae which itself was selected over E. coli. Tetrahymena pyriformis showed no selectivity between K. aerogenes and E. coli but K. aerogenes was selected over K. ozaenae while E. coli was not. This apparent selection of K. aerogenes over K. ozaenae was sustained in ciliate populations with different feeding histories and when K. aerogenes comprised only 20% of the prey mixture, suggesting possible optimal foraging behaviour. The metabolic benefits for selecting K. aerogenes were identified as possibly being an increase in cell biovolume and yield for C. striatum and T. pyriformis, respectively. The mechanism by which these ciliates selected specific bacterial cells in mixture is currently unknown but the use of live fluorescent bacteria, in prey mixtures, offers an exciting avenue for further investigation of selective feeding by protozoa. Copyright 2010 Elsevier Ltd. All rights reserved.
Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use
Vanderlaan, M.; Watkins, B.E.; Stanker, L.H.
1991-10-01
Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described. 14 figures.
Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use
Vanderlaan, Martin; Watkins, Bruce E.; Stanker, Larry H.
1991-01-01
Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described.
Armstrong, Caren; Wang, Jessica; Lee, Soo Yeun; Broderick, John; Bezaire, Marianne J; Lee, Sang-Hun; Soltesz, Ivan
2015-01-01
The medial entorhinal cortex layer II (MEClayerII) is a brain region critical for spatial navigation and memory, and it also demonstrates a number of changes in patients with, and animal models of, temporal lobe epilepsy (TLE). Prior studies of GABAergic microcircuitry in MEClayerII revealed that cholecystokinin-containing basket cells (CCKBCs) select their targets on the basis of the long-range projection pattern of the postsynaptic principal cell. Specifically, CCKBCs largely avoid reelin-containing principal cells that form the perforant path to the ipsilateral dentate gyrus and preferentially innervate non-perforant path forming calbindin-containing principal cells. We investigated whether parvalbumin containing basket cells (PVBCs), the other major perisomatic targeting GABAergic cell population, demonstrate similar postsynaptic target selectivity as well. In addition, we tested the hypothesis that the functional or anatomic arrangement of circuit selectivity is disrupted in MEClayerII in chronic TLE, using the repeated low-dose kainate model in rats. In control animals, we found that PVBCs innervated both principal cell populations, but also had significant selectivity for calbindin-containing principal cells in MEClayerII. However, the magnitude of this preference was smaller than for CCKBCs. In addition, axonal tracing and paired recordings showed that individual PVBCs were capable of contacting both calbindin and reelin-containing principal cells. In chronically epileptic animals, we found that the intrinsic properties of the two principal cell populations, the GABAergic perisomatic bouton numbers, and selectivity of the CCKBCs and PVBCs remained remarkably constant in MEClayerII. However, miniature IPSC frequency was decreased in epilepsy, and paired recordings revealed the presence of direct excitatory connections between principal cells in the MEClayerII in epilepsy, which is unusual in normal adult MEClayerII. Taken together, these findings advance our knowledge about the organization of perisomatic inhibition both in control and in epileptic animals. PMID:26663222
Armstrong, Caren; Wang, Jessica; Yeun Lee, Soo; Broderick, John; Bezaire, Marianne J; Lee, Sang-Hun; Soltesz, Ivan
2016-06-01
The medial entorhinal cortex layer II (MEClayerII ) is a brain region critical for spatial navigation and memory, and it also demonstrates a number of changes in patients with, and animal models of, temporal lobe epilepsy (TLE). Prior studies of GABAergic microcircuitry in MEClayerII revealed that cholecystokinin-containing basket cells (CCKBCs) select their targets on the basis of the long-range projection pattern of the postsynaptic principal cell. Specifically, CCKBCs largely avoid reelin-containing principal cells that form the perforant path to the ipsilateral dentate gyrus and preferentially innervate non-perforant path forming calbindin-containing principal cells. We investigated whether parvalbumin containing basket cells (PVBCs), the other major perisomatic targeting GABAergic cell population, demonstrate similar postsynaptic target selectivity as well. In addition, we tested the hypothesis that the functional or anatomic arrangement of circuit selectivity is disrupted in MEClayerII in chronic TLE, using the repeated low-dose kainate model in rats. In control animals, we found that PVBCs innervated both principal cell populations, but also had significant selectivity for calbindin-containing principal cells in MEClayerII . However, the magnitude of this preference was smaller than for CCKBCs. In addition, axonal tracing and paired recordings showed that individual PVBCs were capable of contacting both calbindin and reelin-containing principal cells. In chronically epileptic animals, we found that the intrinsic properties of the two principal cell populations, the GABAergic perisomatic bouton numbers, and selectivity of the CCKBCs and PVBCs remained remarkably constant in MEClayerII . However, miniature IPSC frequency was decreased in epilepsy, and paired recordings revealed the presence of direct excitatory connections between principal cells in the MEClayerII in epilepsy, which is unusual in normal adult MEClayerII . Taken together, these findings advance our knowledge about the organization of perisomatic inhibition both in control and in epileptic animals. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Population Dynamics of a Lac(-) Strain of Escherichia Coli during Selection for Lactose Utilization
Foster, P. L.
1994-01-01
During selection for lactose utilization, Lac(+) revertants of FC40, a Lac(-) strain of Escherichia coli, appear at a high rate. Yet, no Lac(+) revertants appear in the absence of lactose, or in its presence if the cells have another, unfulfilled requirement for growth. This study investigates more fully the population dynamics of FC40 when incubated in the absence of a carbon source or when undergoing selection for lactose utilization. In the absence of a carbon source, the viable cell numbers do not change over 6 days. When incubated in liquid lactose medium, Lac(-) cells do not undergo any measurable increase in numbers or in turbidity for at least 2 days. When FC40 is plated on lactose minimum medium in the presence of scavenger cells, the upper limit to the amount of growth of Lac(-) cells during 5 days is one doubling, and there is no evidence for turnover (i.e., a balance between growth and death). The presence of a minority population that could form microcolonies was not detected. The implications of these results, plus the fact that the appearance of Lac(+) revertants during lactose selection is nearly constant with time, are discussed in reference to several models that have been postulated to account for adaptive mutations. PMID:7828809
Cell-mediated immunity in an ageing population.
Girard, J P; Paychère, M; Cuevas, M; Fernandes, B
1977-01-01
Eight hundred and eighty patients hospitalized in a geriatric hospital were routinely tested with 2, 10, 30 and 100 i.u. tuberculin. Among these, fifty-four patients were selected on the basis of negative skin tests and absence of evident diseases interfering with the function of the immune apparatus. A battery of tests analysing cell-mediated immunity was applied to those fifty-four patients. It appears that elderly patients having a negative test to 100 i.u. tuberculin show very infrequent sensitization to three other thymus-dependent antigens. The capacity of this selected population to become sensitized to DNCB is poor (20%). Furthermore they exhibit a low per cent of peripheral blood T cells (36%) and a poor capacity to respond in vitro to mitogens such as PHA. Testing the in vitro response to a battery of antigens demonstrates a good correlation with the results of the skin tests. Finally the leucocytes of 25% of this selected population failed to produce LIF in vitro in the presence of PHA. These results suggest not only an absolute decrease in the population of circulating T lymphocytes in those elderly humans; but very likely, at least in some cases, a functional impairment of T cells. PMID:321161
Clonal nature of spontaneously immortalized 3T3 cells.
Rittling, S R
1996-11-25
Mouse embryo fibroblasts (MEFs), when plated at appropriate densities, proliferate vigorously for several passages, and then the growth rate of the culture slows considerably. If the cells are plated at a high enough density and continuously passed, the cultures will eventually overcome this "crisis" period and resume rapid growth. Here, we have addressed the question of what the changes are that cells undergo in overcoming the growth restraints of crisis. Primary MEF cells were infected with a retrovirus which confers G418 resistance and selected in G418. The resultant pre-crisis population comprised cells which each contained a retrovirus integrated at a unique genomic location. These cells were then passed according to the 3T3 protocol until immortal, rapidly growing cells emerged. The integration pattern of the retrovirus in the immortal population was examined. In two independent experiments, the immortal population of cells grown in the presence of G418 comprised two independent clones of cells, with additional clones undetectable at the level of detection of the assays used. The integration pattern was also examined in parallel infected cultures grown in the absence of selection. In one experiment the unselected immortal population contained the same labeled clone that appeared in the sister infected culture, indicating that an immortal precursor was present in the precrisis population. These results are consistent with the idea that a mutation is responsible for the immortal phenotype.
Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites
LaRocca, Greg
2017-01-01
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. SIGNIFICANCE STATEMENT The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. PMID:28003347
Hernandez, Maria Eugenia; Martinez-Fong, Daniel; Perez-Tapia, Mayra; Estrada-Garcia, Iris; Estrada-Parra, Sergio; Pavón, Lenin
2010-02-01
To date, only the effect of a short-term antidepressant treatment (<12 weeks) on neuroendocrinoimmune alterations in patients with a major depressive disorder has been evaluated. Our objective was to determine the effect of a 52-week long treatment with selective serotonin-reuptake inhibitors on lymphocyte subsets. The participants were thirty-one patients and twenty-two healthy volunteers. The final number of patients (10) resulted from selection and course, as detailed in the enrollment scheme. Methods used to psychiatrically analyze the participants included the Mini-International Neuropsychiatric Interview, Hamilton Depression Scale and Beck Depression Inventory. The peripheral lymphocyte subsets were measured in peripheral blood using flow cytometry. Before treatment, increased counts of natural killer (NK) cells in patients were statistically significant when compared with those of healthy volunteers (312+/-29 versus 158+/-30; cells/mL), but no differences in the populations of T and B cells were found. The patients showed remission of depressive episodes after 20 weeks of treatment along with an increase in NK cell and B cell populations, which remained increased until the end of the study. At the 52nd week of treatment, patients showed an increase in the counts of NK cells (396+/-101 cells/mL) and B cells (268+/-64 cells/mL) compared to healthy volunteers (NK, 159+/-30 cells/mL; B cells, 179+/-37 cells/mL). We conclude that long-term treatment with selective serotonin-reuptake inhibitors not only causes remission of depressive symptoms, but also affects lymphocyte subset populations. The physiopathological consequence of these changes remains to be determined.
Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G
2017-10-01
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.
Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D
2015-01-01
As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2High) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2Low) that could benefit from BCL-XL (navitoclax)-driven combination therapy. PMID:26565405
Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D
2015-11-13
As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2(High)) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2(High) cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2(High) NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2(Low) NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2(Low)) that could benefit from BCL-XL (navitoclax)-driven combination therapy.
Single-cell gene expression analysis reveals diversity among human spermatogonia.
Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R
2017-02-10
Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human spermatogonia at the RNA and protein levels is a snapshot. To further assess the functional meaning of this heterogeneity and the dynamics of stem cell populations, approaches need to be developed to facilitate the repeated analysis of individual cells. Our data suggest that heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the model of a heterogeneous stem cell population. Future studies will assess the dynamics of spermatogonial populations in fertile and infertile patients. RNA-seq data is published in the GEO database: GSE91063. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft DFG-Research Unit FOR 1041 Germ Cell Potential (grant numbers SCHO 340/7-1, SCHL394/11-2). The authors declare that there is no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Somatic clonal evolution: A selection-centric perspective.
Scott, Jacob; Marusyk, Andriy
2017-04-01
It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 Elsevier B.V. All rights reserved.
Population genetics inside a cell: Mutations and mitochondrial genome maintenance
NASA Astrophysics Data System (ADS)
Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan
2012-02-01
In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.
Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.
Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus
2011-06-06
Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Potential complications when developing gene deletion clones in Xylella fastidiosa.
Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia
2015-04-16
The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells
Xiong, Jimin; Menicanin, Danijela; Marino, Victor
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.
Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.
Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V
2018-01-01
To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.
Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.
2013-01-01
Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175
Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.
Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N
2017-02-01
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively. Copyright © 2017 the authors 0270-6474/17/371117-22$15.00/0.
Malucelli, Emil; Procopio, Alessandra; Fratini, Michela; Gianoncelli, Alessandra; Notargiacomo, Andrea; Merolle, Lucia; Sargenti, Azzurra; Castiglioni, Sara; Cappadone, Concettina; Farruggia, Giovanna; Lombardo, Marco; Lagomarsino, Stefano; Maier, Jeanette A; Iotti, Stefano
2018-01-01
The quantification of elemental concentration in cells is usually performed by analytical assays on large populations missing peculiar but important rare cells. The present article aims at comparing the elemental quantification in single cells and cell population in three different cell types using a new approach for single cells elemental analysis performed at sub-micrometer scale combining X-ray fluorescence microscopy and atomic force microscopy. The attention is focused on the light element Mg, exploiting the opportunity to compare the single cell quantification to the cell population analysis carried out by a highly Mg-selective fluorescent chemosensor. The results show that the single cell analysis reveals the same Mg differences found in large population of the different cell strains studied. However, in one of the cell strains, single cell analysis reveals two cells with an exceptionally high intracellular Mg content compared with the other cells of the same strain. The single cell analysis allows mapping Mg and other light elements in whole cells at sub-micrometer scale. A detailed intensity correlation analysis on the two cells with the highest Mg content reveals that Mg subcellular localization correlates with oxygen in a different fashion with respect the other sister cells of the same strain. Graphical abstract Single cells or large population analysis this is the question!
Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît
2015-01-01
Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.
Quách, Tâm D.; Rodríguez-Zhurbenko, Nely; Hopkins, Thomas J.; Guo, Xiaoti; Vázquez, Ana María Hernández; Li, Wentian; Rothstein, Thomas L.
2015-01-01
Human antibody secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20+CD27+CD38lo/intCD43+) cell and the conventional plasmablast (CD20-CD27hiCD38hi) cell populations, here we identified a novel B cell population termed 20+38hi B cells (CD20+CD27hiCD38hi) that spontaneously secretes antibody. At steady state, 20+38hi B cells are distinct from plasmablasts on the basis of CD20 expression, amount of antibody production, frequency of mutation, and diversity of B cell receptor repertoire. However, cytokine treatment of 20+38hi B cells induces loss of CD20 and acquisition of CD138, suggesting that 20+38hi B cells are precursors to plasmablasts, or pre-plasmablasts. We then evaluated similarities and differences between CD20+CD27+CD38lo/intCD43+ B-1 cells, CD20+CD27hiCD38hi 20+38hi B cells, CD20-CD27hiCD38hi plasmablasts, and CD20+CD27+CD38lo/intCD43- memory B cells. We found that B-1 cells differ from 20+38hi B cells and plasmablasts in numbers of ways, including antigen expression, morphological appearance, transcriptional profiling, antibody skewing, antibody repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20+38hi B cells or plasmablasts, but differ in that memory B cells do not express antibody secretion related genes. We found that, B-1 cell antibodies utilize Vh4-34, which is often associated with autoreactivity, 3 to 6-fold more often than other B cell populations. Along with selective production of IgM anti-PC, this data suggests that human B-1 cells might be preferentially selected for autoreactivity/natural-specificity. In sum, our results indicate that human healthy adult peripheral blood at steady state consists of 3 distinct ASC populations. PMID:26740107
NASA Astrophysics Data System (ADS)
Husimi, Yuzuru; Nishigaki, Koichi; Kinoshita, Yasunori; Tanaka, Toyosuke
1982-04-01
A bacteriophage is continuously cultured in the flow of the host bacterial cell under the control of a minicomputer. In the culture, the population of the noninfected cell is kept constant by the endogeneous regulation mechanism, so it is called the ''cellstat'' culture. Due to the high dilution rate of the host cell, the mutant cell cannot be selected in the cellstat. Therefore, the cellstat is suitable for the study of the mutation rate and the selection process of a bacteriophage under well-defined environmental conditions (including physiological condition of the host cell) without being interfered by host-cell mutations. Applications to coliphage fd, a secretion type phage, are shown as a measurement example. A chimera between fd and a plasmid pBR322 is cultured more than 100 h. The process of population changeovers by deletion mutants indicates that the deletion hot spots exist in this cloning vector and that this apparatus can be used also for testing instability of a recombinant DNA.
Modeling population dynamics of mitochondria in mammalian cells
NASA Astrophysics Data System (ADS)
Kornick, Kellianne; Das, Moumita
Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.
Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice
Wright, Margaret C.; Reed-Geaghan, Erin G.; Bolock, Alexa M.; Fujiyama, Tomoyuki; Hoshino, Mikio
2015-01-01
Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1+ skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood. PMID:25624394
Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays
Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal
2018-01-01
While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459
Kaveh, Kamran; Veller, Carl; Nowak, Martin A
2016-08-21
Evolutionary game dynamics are often studied in the context of different population structures. Here we propose a new population structure that is inspired by simple multicellular life forms. In our model, cells reproduce but can stay together after reproduction. They reach complexes of a certain size, n, before producing single cells again. The cells within a complex derive payoff from an evolutionary game by interacting with each other. The reproductive rate of cells is proportional to their payoff. We consider all two-strategy games. We study deterministic evolutionary dynamics with mutations, and derive exact conditions for selection to favor one strategy over another. Our main result has the same symmetry as the well-known sigma condition, which has been proven for stochastic game dynamics and weak selection. For a maximum complex size of n=2 our result holds for any intensity of selection. For n≥3 it holds for weak selection. As specific examples we study the prisoner's dilemma and hawk-dove games. Our model advances theoretical work on multicellularity by allowing for frequency-dependent interactions within groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of biochemical lesions for selection of human cells with hybrid cytoplasms.
Wright, W E; Hayflick, L
1975-01-01
Techniques for preparing large populations of anucleate cytoplasms from cultured eukaryotic cells have only recently been described. The principal value of anucleate cytoplasms derives from studies that can be done after they are fused to whole cells. Since present methods for the isolation of heterokaryons are unsuitable for the selection of hybrids between whole cells and anucleate cytoplasms (heteroplasmons), a selective system has been developed which is based on the capacity of anucleate cytoplasms containing active enzymes to rescue whole cells poisoned with iodoacetate. Ethidium bromide, a partially effective agent, was used in conjunction with iodoacetate to demonstrate the feasibility of selecting heterokaryons by producing complementary biochemical lesions in the parental cell strains. The potential for artifact in these systems is not, however, entirely precluded. Images PMID:1057172
NASA Technical Reports Server (NTRS)
Loftus, David J. (Inventor)
2006-01-01
System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.
Computational design of nanoparticle drug delivery systems for selective targeting
NASA Astrophysics Data System (ADS)
Duncan, Gregg A.; Bevan, Michael A.
2015-09-01
Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g
Beyond laser microdissection technology: follow the yellow brick road for cancer research
Legres, Luc G; Janin, Anne; Masselon, Christophe; Bertheau, Philippe
2014-01-01
Normal biological tissues harbour different populations of cells with intricate spacial distribution patterns resulting in heterogeneity of their overall cellular composition. Laser microdissection involving direct viewing and expertise by a pathologist, enables access to defined cell populations or specific region on any type of tissue sample, thus selecting near-pure populations of targeted cells. It opens the way for molecular methods directed towards well-defined populations, and provides also a powerful tool in studies focused on a limited number of cells. Laser microdissection has wide applications in oncology (diagnosis and research), cellular and molecular biology, biochemistry and forensics for tissue selection, but other areas have been gradually opened up to these new methodological approaches, such as cell cultures and cytogenetics. In clinical oncology trials, molecular profiling of microdissected samples can yield global “omics” information which, together, with the morphological analysis of cells, can provide the basis for diagnosis, prognosis and patient-tailored treatments. This remarkable technology has brought new insights in the understanding of DNA, RNA, and the biological functions and regulation of proteins to identify molecular disease signatures. We review herein the different applications of laser microdissection in a variety of fields, and we particularly focus attention on the pre-analytical steps that are crucial to successfully perform molecular-level investigations. PMID:24482735
Development of a novel cell sorting method that samples population diversity in flow cytometry.
Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L
2015-11-01
Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance. © 2015 International Society for Advancement of Cytometry.
Method for distinguishing normal and transformed cells using G1 kinase inhibitors
Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton
1993-01-01
A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.
Method for distinguishing normal and transformed cells using G1 kinase inhibitors
Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.
1993-02-09
A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.
Isolation and gene expression analysis of single potential human spermatogonial stem cells.
von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N
2016-04-01
It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Origin and Function of Tuning Diversity in Macaque Visual Cortex.
Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony
2015-11-18
Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.
Amantonico, Andrea; Urban, Pawel L; Fagerer, Stephan R; Balabin, Roman M; Zenobi, Renato
2010-09-01
Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.
Multidimensional data analysis in immunophenotyping.
Loken, M R
2001-05-01
The complexity of cell populations requires careful selection of reagents to detect cells of interest and distinguish them from other types. Additional reagents are frequently used to provide independent criteria for cell identification. Two or three monoclonal antibodies in combination with forward and right-angle light scatter generate a data set that is difficult to visualize because the data must be represented in four- or five-dimensional space. The separation between cell populations provided by the multiple characteristics is best visualized by multidimensional analysis using all parameters simultaneously to identify populations within the resulting hyperspace. Groups of cells are distinguished based on a combination of characteristics not apparent in any usual two-dimensional representation of the data.
Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.
Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman
2017-04-01
Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.
Identification of a selective small molecule inhibitor of breast cancer stem cells.
Germain, Andrew R; Carmody, Leigh C; Morgan, Barbara; Fernandez, Cristina; Forbeck, Erin; Lewis, Timothy A; Nag, Partha P; Ting, Amal; VerPlank, Lynn; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito
2012-05-15
A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP). Copyright © 2012 Elsevier Ltd. All rights reserved.
Population Genetics of Three Dimensional Range Expansions
NASA Astrophysics Data System (ADS)
Lavrentovich, Maxim; Nelson, David
2014-03-01
We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.
Purification of Immature Neuronal Cells from Neural Stem Cell Progeny
Azari, Hassan; Osborne, Geoffrey W.; Yasuda, Takahiro; Golmohammadi, Mohammad G.; Rahman, Maryam; Deleyrolle, Loic P.; Esfandiari, Ebrahim; Adams, David J.; Scheffler, Bjorn; Steindler, Dennis A.; Reynolds, Brent A.
2011-01-01
Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system. PMID:21687800
Hudspeth, Kelly; Donadon, Matteo; Cimino, Matteo; Pontarini, Elena; Tentorio, Paolo; Preti, Max; Hong, Michelle; Bertoletti, Antonio; Bicciato, Silvio; Invernizzi, Pietro; Lugli, Enrico; Torzilli, Guido; Gershwin, M Eric; Mavilio, Domenico
2016-01-01
The liver-specific natural killer (NK) cell population is critical for local innate immune responses, but the mechanisms that lead to their selective homing and the definition of their functionally relevance remain enigmatic. We took advantage of the availability of healthy human liver to rigorously define the mechanisms regulating the homing of NK cells to liver and the repertoire of receptors that distinguish liver-resident NK (lr-NK) cells from circulating counterparts. Nearly 50% of the entire liver NK cell population is composed of functionally relevant CD56(bright) lr-NK cells that localize within hepatic sinusoids. CD56(bright) lr-NK cells express CD69, CCR5 and CXCR6 and this unique repertoire of chemokine receptors is functionally critical as it determines selective migration in response to the chemotactic stimuli exerted by CCL3, CCL5 and CXCL16. Here, we also show that hepatic sinusoids express CCL3(pos) Kupffer cells, CXCL16(pos) endothelial cells and CCL5(pos) T and NK lymphocytes. The selective presence of these chemokines in sinusoidal spaces creates a unique tissue niche for lr-CD56(bright) NK cells that constitutively express CCR5 and CXCR6. CD56(bright) lr-NK cells co-exist with CD56(dim) conventional NK (c-NK) cells that are, interestingly, transcriptionally and phenotypically similar to their peripheral circulating counterparts. Indeed, CD56(dim) c-NK cells lack expression of CD69, CCR5, and CXCR6 but express selectins, integrins and CX3CR1. Our findings disclosing the phenotypic and functional differences between lr-Nk cells and c-NK cells are critical to distinguish liver-specific innate immune responses. Hence, any therapeutic attempts at modifying the large population of CD56(bright) lr-NK cells will require modification of hepatic CCR5 and CXCR6. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hudspeth, Kelly; Donadon, Matteo; Cimino, Matteo; Pontarini, Elena; Tentorio, Paolo; Preti, Max; Hong, Michelle; Bertoletti, Antonio; Bicciato, Silvio; Invernizzi, Pietro; Lugli, Enrico; Torzilli, Guido; Gershwin, M. Eric; Mavilio, Domenico
2015-01-01
Rationale The liver-specific natural killer (NK) cell population is critical for local innate immune responses, but the mechanisms that lead to their selective homing and the definition of their functionally relevance remain enigmatic. Objectives We took advantage of the availability of healthy human liver to rigorously define the mechanisms regulating the homing of NK cells to liver and the repertoire of receptors that distinguish liver-resident NK (lr-NK) cells from circulating counterparts. Findings Nearly 50% of the entire liver NK cell population is composed of functionally relevant CD56bright lr-NK cells that localize within hepatic sinusoids. Further, CD56bright lr-NK cells express CD69, CCR5 and CXCR6 and this unique repertoire of chemokine receptors is functionally critical as it determines selective migration in response to the chemotactic stimuli exerted by CCL3, CCL5 and CXCL16. In addition, hepatic sinusoids express CCL3pos Kupffer cells, CXCL16pos endothelial cells and CCL5pos T and NK lymphocytes. The selective presence of these chemokines in sinusoidal spaces creates a tissue niche for lr-CD56bright NK cells that constitutively express CCR5 and CXCR6. CD56bright lr-NK cells co-exist with CD56dim conventional NK (c-NK) cells that are, interestingly, transcriptionally and phenotypically similar to their peripheral circulating counterparts. Indeed, CD56dim c-NK cells lack expression of CD69, CCR5, and CXCR6 but express selectins, integrins and CX3CR1. Conclusion Our findings disclosing the phenotypic and functional differences between lr-Nk cells and c-NK cells are critical to distinguish liver-specific innate immune responses. Hence, any therapeutic attempts at modifying the large population of CD56bright lr-NK cells will require modification of hepatic CCR5 and CXCR6. PMID:26330348
Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui
2011-01-01
The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555
Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells.
Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk
2017-06-05
Previously, we reported that radotinib, a BCR-ABL1 tyrosine kinase inhibitor, induced cytotoxicity in acute myeloid leukemia (AML) cells. However, the effects of radotinib in the subpopulation of c-KIT-positive AML cells were unclear. We observed that low-concentration radotinib had more potent cytotoxicity in c-KIT-positive cells than c-KIT-negative cells from AML patients. To address this issue, cell lines with high c-KIT expression, HEL92.1.7, and moderate c-KIT expression, H209, were selected. HEL92.1.7 cells were grouped into intermediate and high c-KIT expression populations. The cytotoxicity of radotinib against the HEL92.1.7 cell population with intermediate c-KIT expression was not different from that of the population with high c-KIT expression. When H209 cells were grouped into c-KIT expression-negative and c-KIT expression-positive populations, radotinib induced cytotoxicity in the c-KIT-positive population, but not the c-KIT-negative population. Thus, radotinib induces cytotoxicity in c-KIT-positive cells, regardless of the c-KIT expression intensity. Therefore, radotinib induces significant cytotoxicity in c-KIT-positive AML cells, suggesting that radotinib is a potential target agent for the treatment of c-KIT-positive malignancies including AML. Copyright © 2017 Elsevier B.V. All rights reserved.
Scott, J.C.
1990-01-01
Computer software was written to randomly select sites for a ground-water-quality sampling network. The software uses digital cartographic techniques and subroutines from a proprietary geographic information system. The report presents the approaches, computer software, and sample applications. It is often desirable to collect ground-water-quality samples from various areas in a study region that have different values of a spatial characteristic, such as land-use or hydrogeologic setting. A stratified network can be used for testing hypotheses about relations between spatial characteristics and water quality, or for calculating statistical descriptions of water-quality data that account for variations that correspond to the spatial characteristic. In the software described, a study region is subdivided into areal subsets that have a common spatial characteristic to stratify the population into several categories from which sampling sites are selected. Different numbers of sites may be selected from each category of areal subsets. A population of potential sampling sites may be defined by either specifying a fixed population of existing sites, or by preparing an equally spaced population of potential sites. In either case, each site is identified with a single category, depending on the value of the spatial characteristic of the areal subset in which the site is located. Sites are selected from one category at a time. One of two approaches may be used to select sites. Sites may be selected randomly, or the areal subsets in the category can be grouped into cells and sites selected randomly from each cell.
Watanabe, T; Fathman, C G; Coutinho, A
1977-09-01
Selection in long-term culture of alloreactive T cells, by successive in vitro restimulation with semi-allogeneic cells, results in primed responder cell populations which maintain full proliferative reactivity to allogeneic cells as well as to the T cell mitogens concanavalin A (Con A) and phytohemagglutinin (PHA) but are depleted of cells which can effect target cell destruction in either a specific or nonspecific manner. Con A-induced T cell blasts (selected by velocity sedimentation) can revert to small resting lymphocytes in the presence of inert "filler" cells. Con A blasts which have reverted, readily proliferate in response to Con A or allogeneic stimulator cells but are largely depleted of effector killer cells and PHA-responsive cells.
Beyond the bulk: disclosing the life of single microbial cells
Rosenthal, Katrin; Oehling, Verena
2017-01-01
Abstract Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples. PMID:29029257
Cavicchi, Sandro; Guerra, Daniela; Giorgi, Gianfranco; Pezzoli, Cristina
1985-01-01
The effects of environmental temperature on wing size and shape of Drosophila melanogaster were analyzed in populations derived from an Oregon laboratory strain kept at three temperatures (18°, 25°, 28°) for 4 yr. Temperature-directed selection was identified for both wing size and shape. The length of the four longitudinal veins, used as a test for wing size variations in the different populations, appears to be affected by both genetic and maternal influences. Vein expression appears to be dependent upon developmental pattern of the wing: veins belonging to the same compartment are coordinated in their expression and relative position, whereas veins belonging to different compartments are not. Both wing and cell areas show genetic divergence, particularly in the posterior compartment. Cell number seems to compensate for cell size variations. Such compensation is carried out both at the level of single organisms and at the level of population as a whole. The two compartments behave as individual units of selection. PMID:17246257
Controlled viable release of selectively captured label-free cells in microchannels.
Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan
2011-12-07
Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.
The population dynamics of cancer: a Darwinian perspective.
Vineis, Paolo; Berwick, Marianne
2006-10-01
Carcinogenesis, at least for some types of cancer, can be interpreted as the consequence of selection of mutated cells similar to what, in the theory of evolution, occurs at the population level. Instead of considering a population of organisms, we can refer to a population of cells belonging to multicellular organisms. Many carcinogens are mutagens, and the observed geographic distribution of cancer is, at least in part, attributable to environmental mutagens. However, the rapid change in risk for some cancers after migration suggests that carcinogenesis involves--in addition to mutations--some late event that most probably consists of the selection of cells already carrying mutations. We review a few examples of such selective pressures: finasteride in prostate cancer, vitamin supplementation in smokers, acquired resistance to chemotherapy, peripheral resistance to insulin, and sunlight and mutations in melanoma. A disease model for such a hypothesis is represented by Paroxysmal Nocturnal Hemoglobinuria (PNH). Mutations can be present at birth, as in the case of PNH, and can have a frequency much higher than the occurrence of the corresponding disease (PNH or lymphocytic leukaemia in children). However, PNH does not require a mutator phenotype, only a mutant phenotype followed by selection. A characteristic feature of cancer, instead, is likely to be the development of the mutator phenotype. We propose a 'Darwinian' model of carcinogenesis. If the model is correct, it suggests that prevention is more complex than avoiding exposure to mutagens. Mutations and genetic instability can be already present at birth. Mutations can be selected in the course of life if they increase survival advantage of the cell under certain environmental circumstances. In addition, gene-environment interactions cannot be interpreted according to a simplified linear model (based on the 'analysis of variance' concept); experimental work suggests that a more comprehensive non-linear interpretation based on the idea of 'norm of reaction' is needed.
Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping
2015-01-01
Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. © 2014 American Institute of Chemical Engineers.
Nonequilibrium Population Dynamics of Phenotype Conversion of Cancer Cells
Zhou, Joseph Xu; Pisco, Angela Oliveira; Qian, Hong; Huang, Sui
2014-01-01
Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection) or by environment-instructed transitions (Lamarckism induction). This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance. PMID:25438251
Anti-Cancer Phytometabolites Targeting Cancer Stem Cells
Torquato, Heron F.V.; Goettert, Márcia I.; Justo, Giselle Z.; Paredes-Gamero, Edgar J.
2017-01-01
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers. PMID:28367074
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-01-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732
NASA Astrophysics Data System (ADS)
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-07-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.
HTLV-III: Intra-BBB IgG Synthesis and Hybridization in CSF Cells
1989-01-31
neuropsychologic testing in otherwise asymptomatic individuals [ 9], to a bedridden state marked by global dementia, severe hypokinesis, mutism , incontinence...could result from infection by more than one strain, mutation in vivo, viral adaptation, or host cell selection from a heterogeneous virus population...lower than ours -personal communication, Marshall, Nov. 1988), and their selection by military recruitment personnel for overall good physical health. The
Probes for anionic cell surface detection
Smith, Bradley D.
2013-03-05
Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...
2016-11-28
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.
Stuart, David T
2017-01-01
Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.
Masujin, Kentaro; Okada, Hiroyuki; Ushiki-Kaku, Yuko; Matsuura, Yuichi; Yokoyama, Takashi
2017-01-01
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population. PMID:28636656
Miyazawa, Kohtaro; Masujin, Kentaro; Okada, Hiroyuki; Ushiki-Kaku, Yuko; Matsuura, Yuichi; Yokoyama, Takashi
2017-01-01
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.
Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar
Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E.; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J.; Langley, Robert R.
2011-01-01
An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44+ and CD133+ and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice. PMID:21514446
Gothard, David; Tare, Rahul S; Mitchell, Peter D; Dawson, Jonathan I; Oreffo, Richard O C
2011-04-07
Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.
Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J
2017-06-01
Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.
Patterson, Melissa N; Maxwell, Patrick H
2014-10-16
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
The biology of recent thymic emigrants.
Fink, Pamela J
2013-01-01
The generation of the TCRαβ lineage of T cells occurs in the thymus through a series of orchestrated developmental events that result in a carefully selected population of CD4 or CD8 lineage-committed TCR(+) thymocytes capable of recognizing foreign antigen in the context of self MHC. T cells first exit the thymus in a phenotypically and functionally immature state and require an approximately 3-week period of post-thymic maturation before transitioning into the mature T cell compartment. A greater understanding of recent thymic emigrant biology has come with the development of methods to exclusively identify and isolate this population for further characterization. I now review current knowledge about the phenotype and function of this key but understudied population of peripheral T cells.
Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane
2006-01-01
The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737
Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram
2017-09-23
Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.
Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C
2016-02-01
Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44(high)EpCAM(low/-) CD24(+) cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs.
Moon, James J; Dash, Pradyot; Oguin, Thomas H; McClaren, Jennifer L; Chu, H Hamlet; Thomas, Paul G; Jenkins, Marc K
2011-08-30
It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.
Development of a Universal RNA Beacon for Exogenous Gene Detection
Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen
2015-01-01
Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. PMID:25769653
Development of a universal RNA beacon for exogenous gene detection.
Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen; Scarlata, Suzanne
2015-05-01
Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. ©AlphaMed Press.
Kortenhoeven, Cornell; Joubert, Fourie; Bastos, Armanda D S; Abolnik, Celia
2015-02-22
Extensive focus is placed on the comparative analyses of consensus genotypes in the study of West Nile virus (WNV) emergence. Few studies account for genetic change in the underlying WNV quasispecies population variants. These variants are not discernable in the consensus genome at the time of emergence, and the maintenance of mutation-selection equilibria of population variants is greatly underestimated. The emergence of lineage 1 WNV strains has been studied extensively, but recent epidemics caused by lineage 2 WNV strains in Hungary, Austria, Greece and Italy emphasizes the increasing importance of this lineage to public health. In this study we explored the quasispecies dynamics of minority variants that contribute to cell-tropism and host determination, i.e. the ability to infect different cell types or cells from different species from Next Generation Sequencing (NGS) data of a historic lineage 2 WNV strain. Minority variants contributing to host cell membrane association persist in the viral population without contributing to the genetic change in the consensus genome. Minority variants are shown to maintain a stable mutation-selection equilibrium under positive selection, particularly in the capsid gene region. This study is the first to infer positive selection and the persistence of WNV haplotype variants that contribute to viral fitness without accompanying genetic change in the consensus genotype, documented solely from NGS sequence data. The approach used in this study streamlines the experimental design seeking viral minority variants accurately from NGS data whilst minimizing the influence of associated sequence error.
Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang
2016-03-01
The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.
Sereno, Anne B.; Lehky, Sidney R.
2011-01-01
Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”). PMID:21344010
Genomic analysis and selected molecular pathways in rare cancers
NASA Astrophysics Data System (ADS)
Liu, Stephen V.; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Demeure, Michael J.; Eng, Cathy; Ramanathan, Ramesh K.; Von Hoff, Daniel D.; Barrett, Michael T.
2012-12-01
It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer.
Genomic analysis and selected molecular pathways in rare cancers.
Liu, Stephen V; Lenkiewicz, Elizabeth; Evers, Lisa; Holley, Tara; Kiefer, Jeffrey; Ruiz, Christian; Glatz, Katharina; Bubendorf, Lukas; Demeure, Michael J; Eng, Cathy; Ramanathan, Ramesh K; Von Hoff, Daniel D; Barrett, Michael T
2012-12-01
It is widely accepted that many cancers arise as a result of an acquired genomic instability and the subsequent evolution of tumor cells with variable patterns of selected and background aberrations. The presence and behaviors of distinct neoplastic cell populations within a patient's tumor may underlie multiple clinical phenotypes in cancers. A goal of many current cancer genome studies is the identification of recurring selected driver events that can be advanced for the development of personalized therapies. Unfortunately, in the majority of rare tumors, this type of analysis can be particularly challenging. Large series of specimens for analysis are simply not available, allowing recurring patterns to remain hidden. In this paper, we highlight the use of DNA content-based flow sorting to identify and isolate DNA-diploid and DNA-aneuploid populations from tumor biopsies as a strategy to comprehensively study the genomic composition and behaviors of individual cancers in a series of rare solid tumors: intrahepatic cholangiocarcinoma, anal carcinoma, adrenal leiomyosarcoma, and pancreatic neuroendocrine tumors. We propose that the identification of highly selected genomic events in distinct tumor populations within each tumor can identify candidate driver events that can facilitate the development of novel, personalized treatment strategies for patients with cancer.
Circuit analysis method for thin-film solar cell modules
NASA Technical Reports Server (NTRS)
Burger, D. R.
1985-01-01
The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.
Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers
Jilkine, Alexandra; Gutenkunst, Ryan N.
2014-01-01
Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301
The locations of cell death and resulting malformations in embryos following teratogen exposure vary depending on the teratogen used, the genotype of the conceptus, and the developmental stage of the embryo at time of exposure. To date, ethanol-induced cell death has been charac...
Popova, L Iu; Lutskaia, N I; Bogucharov, A A; Bril'kov, A V; Pechurkin, N S
1992-01-01
The populational structure of the Escherichia coli strain Z905 containing the recombinant plasmid with the phenotype AprLux+ was studied in chemostat. It was shown that the stability of the ratio of plasmid containing cells and cells without plasmids depends in the first place on the presence of the selective factor (ampicillin) in the medium and on the sources of carbon and energy limiting growth.
Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark
2013-01-01
Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.
Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.
1974-01-01
Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352
Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D
2016-12-01
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
What makes a cell face-selective: the importance of contrast
Ohayon, Shay; Freiwald, Winrich A; Tsao, Doris Y
2012-01-01
Summary Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, e.g., nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition. PMID:22578507
Cavaillé, Laëtitia; Albuquerque, Maria; Grousseau, Estelle; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne
2016-02-01
In a waste into resource strategy, a selection of polyhydroxybutyrate (PHB)-accumulating organisms from activated sludge was achieved in an open continuous culture under acetic acid and phosphorus limitation. Once the microbial population was selected at a dilution rate (D), an increase in phosphorus limitation degree was applied in order to study the intracellular phosphorus plasticity of selected bacteria and the resulting capacity to produce PHB. Whatever D, all selected populations were able to produce PHB. At a D, the phosphorus availability determined the phosphorus-cell content which in turn fixed the amount of cell. All the remaining carbon was thus directed toward PHB. By decreasing D, microorganisms adapted more easily to higher phosphorus limitation leading to higher PHB content. A one-stage continuous reactor operated at D=0.023h(-)(1) gave reliable high PHB productivity with PHB content up to 80%. A two-stage reactor could ensure better productivity while allowing tuning product quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity.
Cabanelas, Iago Teles Dominguez; van der Zwart, Mathijs; Kleinegris, Dorinde M M; Wijffels, René H; Barbosa, Maria J
2016-01-01
Despite extensive research in the last decades, microalgae are still only economically feasible for high valued markets. Strain improvement is a strategy to increase productivities, hence reducing costs. In this work, we focus on microalgae selection: taking advantage of the natural biological variability of species to select variations based on desired characteristics. We focused on triacylglycerol (TAG), which have applications ranging from biodiesel to high-value omega-3 fatty-acids. Hence, we demonstrated a strategy to sort microalgae cells with increased TAG productivity. 1. We successfully identified sub-populations of cells with increased TAG productivity using Fluorescence assisted cell sorting (FACS). 2. We sequentially sorted cells after repeated cycles of N-starvation, resulting in five sorted populations (S1-S5). 3. The comparison between sorted and original populations showed that S5 had the highest TAG productivity [0.34 against 0.18 g l(-1) day(-1) (original), continuous light]. 4. Original and S5 were compared in lab-scale reactors under simulated summer conditions confirming the increased TAG productivity of S5 (0.4 against 0.2 g l(-1) day(-1)). Biomass composition analyses showed that S5 produced more biomass under N-starvation because of an increase only in TAG content and, flow cytometry showed that our selection removed cells with lower efficiency in producing TAGs. All combined, our results present a successful strategy to improve the TAG productivity of Chlorococcum littorale, without resourcing to genetic manipulation or random mutagenesis. Additionally, the improved TAG productivity of S5 was confirmed under simulated summer conditions, highlighting the industrial potential of S5 for microalgal TAG production.
Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting
Tschulik, Claudia; Piossek, Christine; Bet, Jeannette; Yamamoto, Tori N.; Schiemann, Matthias; Neuenhahn, Michael; Martin, Klaus; Schlapschy, Martin; Skerra, Arne; Schmidt, Thomas; Edinger, Matthias; Riddell, Stanley R.; Germeroth, Lothar; Busch, Dirk H.
2012-01-01
A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research. PMID:22545138
Selective Targeting of Cancer Stem Cells by 2-Aminodihydroquinoline Analogs.
Park, Heejoo; Yu, Yeongji; Kim, Hyejin; Lee, Eun; Lee, Hani; Jeon, Raok; Kim, Woo-Young
2017-04-01
Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.
Primitive erythrocytes are generated from hemogenic endothelial cells.
Stefanska, Monika; Batta, Kiran; Patel, Rahima; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges
2017-07-25
Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP + cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.
Sakkas, Denny; Ramalingam, Mythili; Garrido, Nicolas; Barratt, Christopher L.R.
2015-01-01
BACKGROUND In natural conception only a few sperm cells reach the ampulla or the site of fertilization. This population is a selected group of cells since only motile cells can pass through cervical mucus and gain initial entry into the female reproductive tract. In animals, some studies indicate that the sperm selected by the reproductive tract and recovered from the uterus and the oviducts have higher fertilization rates but this is not a universal finding. Some species show less discrimination in sperm selection and abnormal sperm do arrive at the oviduct. In contrast, assisted reproductive technologies (ART) utilize a more random sperm population. In this review we contrast the journey of the spermatozoon in vivo and in vitro and discuss this in the context of developing new sperm preparation and selection techniques for ART. METHODS A review of the literature examining characteristics of the spermatozoa selected in vivo is compared with recent developments in in vitro selection and preparation methods. Contrasts and similarities are presented. RESULTS AND CONCLUSIONS New technologies are being developed to aid in the diagnosis, preparation and selection of spermatozoa in ART. To date progress has been frustrating and these methods have provided variable benefits in improving outcomes after ART. It is more likely that examining the mechanisms enforced by nature will provide valuable information in regard to sperm selection and preparation techniques in vitro. Identifying the properties of those spermatozoa which do reach the oviduct will also be important for the development of more effective tests of semen quality. In this review we examine the value of sperm selection to see how much guidance for ART can be gleaned from the natural selection processes in vivo. PMID:26386468
Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells
Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon
2016-01-01
Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325
Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin.
Sada, Aiko; Jacob, Fadi; Leung, Eva; Wang, Sherry; White, Brian S; Shalloway, David; Tumbar, Tudorita
2016-06-01
The interfollicular epidermis regenerates from heterogeneous basal skin cell populations that divide at different rates. It has previously been presumed that infrequently dividing basal cells known as label-retaining cells (LRCs) are stem cells, whereas non-LRCs are short-lived progenitors. Here we employ the H2B-GFP pulse-chase system in adult mouse skin and find that epidermal LRCs and non-LRCs are molecularly distinct and can be differentiated by Dlx1(CreER) and Slc1a3(CreER) genetic marking, respectively. Long-term lineage tracing and mathematical modelling of H2B-GFP dilution data show that LRCs and non-LRCs constitute two distinct stem cell populations with different patterns of proliferation, differentiation and upward cellular transport. During homeostasis, these populations are enriched in spatially distinct skin territories and can preferentially produce unique differentiated lineages. On wounding or selective killing, they can temporarily replenish each other's territory. These two discrete interfollicular stem cell populations are functionally interchangeable and intrinsically well adapted to thrive in distinct skin environments.
Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C.
2016-01-01
Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44highEpCAMlow/− CD24+ cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs. PMID:26981578
Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas
2016-02-17
In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.
Wicherek, Lukasz; Jozwicki, Wojciech; Windorbska, Wieslawa; Roszkowski, Krzysztof; Lukaszewska, Ewelina; Wisniewski, Michal; Brozyna, Anna Aneta; Basta, Pawel; Skret-Magierlo, Joanna; Koper, Krzysztof; Rokita, Wojciech; Dutsch-Wicherek, Magdalena
2011-11-01
Treg cells constitute the main cell population that enables cancer cells to evade immune surveillance. An alteration in the Treg cell population might correspond to the diminishment of the tumour mass in patients with cancer and could therefore be a useful marker of the intensity of the selective suppression of the host immune system and also of the degree of radicalism of a procedure. Certainly, it is well known that in order for anti-cancer therapy to succeed the proper immune response against cancer cells must be restored. Furthermore, monitoring the level of selective immune system suppression during cancer therapy might yield information that would support a decision to supplement standard therapy by immunotherapy or to increase the degree of radicalism of the applied therapy. We examined the Treg cell populations in the peripheral blood of a group of patients treated surgically for ovarian cancer. In each patient, the peripheral blood samples were collected both prior to and 1 day after the surgical procedure, and then again 5 days after the procedure. The presence of regulatory T cells in the samples was analyzed by means of flow cytometry. In our study, the percentages of FOXP3(+) cells in the subpopulation of CD4(+) T lymphocytes found in the peripheral blood of the patients before the surgical intervention were statistically significantly higher than those observed in the peripheral blood of these same patients after the surgical procedure. It would seem that the alteration in the Treg cell subpopulation could be a key factor in determining the status of the tumour microenvironment. Most likely, it could provide information about whether the proper level of anti-cancer immune response could be restored. The possibility of restoring the immune response may directly correspond to the degree of radicalism of the surgical intervention. © 2011 John Wiley & Sons A/S.
Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C
2007-01-01
T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death.
Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C
2007-01-01
Background T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Results Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. Conclusion The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death. PMID:17239257
Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles
NASA Astrophysics Data System (ADS)
Bergeron, Eric; Boutopoulos, Christos; Martel, Rosalie; Torres, Alexandre; Rodriguez, Camille; Niskanen, Jukka; Lebrun, Jean-Jacques; Winnik, Françoise M.; Sapieha, Przemyslaw; Meunier, Michel
2015-10-01
Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions. Electronic supplementary information (ESI) available: Characterization of functionalized gold nanoparticles by UV-visible-NIR spectroscopy and zeta potential measurements; selectivity of cell targeting with functionalized gold nanoparticles by immunofluorescence, flow cytometry and scanning electron microscopy; selective treatment of targeted cells with functionalized gold nanoparticles and ultrafast laser. See DOI: 10.1039/c5nr05650k
Detecting and Characterizing Genomic Signatures of Positive Selection in Global Populations
Liu, Xuanyao; Ong, Rick Twee-Hee; Pillai, Esakimuthu Nisha; Elzein, Abier M.; Small, Kerrin S.; Clark, Taane G.; Kwiatkowski, Dominic P.; Teo, Yik-Ying
2013-01-01
Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event. PMID:23731540
Directional and balancing selection in human beta-defensins.
Hollox, Edward J; Armour, John A L
2008-04-16
In primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations. We show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of DEFB127 in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For DEFB132, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations. Some, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.
Asymmetric cell division during T cell development controls downstream fate
Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min
2015-01-01
During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500
Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.
2016-01-01
The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210
Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness.
Cerulus, Bram; New, Aaron M; Pougach, Ksenia; Verstrepen, Kevin J
2016-05-09
The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oliveira, Simone S C; Gonçalves, Inês C; Ennes-Vidal, Vitor; Lopes, Angela H C S; Menna-Barreto, Rubem F S; D'Ávila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H
2018-03-01
The species Phytomonas serpens is known to express some molecules displaying similarity to those described in trypanosomatids pathogenic to humans, such as peptidases from Trypanosoma cruzi (cruzipain) and Leishmania spp. (gp63). In this work, a population of P. serpens resistant to the calpain inhibitor MDL28170 at 70 µ m (MDLR population) was selected by culturing promastigotes in increasing concentrations of the drug. The only relevant ultrastructural difference between wild-type (WT) and MDLR promastigotes was the presence of microvesicles within the flagellar pocket of the latter. MDLR population also showed an increased reactivity to anti-cruzipain antibody as well as a higher papain-like proteolytic activity, while the expression of calpain-like molecules cross-reactive to anti-Dm-calpain (from Drosophila melanogaster) antibody and calcium-dependent cysteine peptidase activity were decreased. Gp63-like molecules also presented a diminished expression in MDLR population, which is probably correlated to the reduction in the parasite adhesion to the salivary glands of the insect vector Oncopeltus fasciatus. A lower accumulation of Rhodamine 123 was detected in MDLR cells when compared with the WT population, a phenotype that was reversed when MDLR cells were treated with cyclosporin A and verapamil. Collectively, our results may help in the understanding of the roles of calpain inhibitors in trypanosomatids.
Thompson, E L; O'Connor, W; Parker, L; Ross, P; Raftos, D A
2015-03-01
Previous work suggests that larvae from Sydney rock oysters that have been selectively bred for fast growth and disease resistance are more resilient to the impacts of ocean acidification than nonselected, wild-type oysters. In this study, we used proteomics to investigate the molecular differences between oyster populations in adult Sydney rock oysters and to identify whether these form the basis for observations seen in larvae. Adult oysters from a selective breeding line (B2) and nonselected wild types (WT) were exposed for 4 weeks to elevated pCO2 (856 μatm) before their proteomes were compared to those of oysters held under ambient conditions (375 μatm pCO2 ). Exposure to elevated pCO2 resulted in substantial changes in the proteomes of oysters from both the selectively bred and wild-type populations. When biological functions were assigned, these differential proteins fell into five broad, potentially interrelated categories of subcellular functions, in both oyster populations. These functional categories were energy production, cellular stress responses, the cytoskeleton, protein synthesis and cell signalling. In the wild-type population, proteins were predominantly upregulated. However, unexpectedly, these cellular systems were downregulated in the selectively bred oyster population, indicating cellular dysfunction. We argue that this reflects a trade-off, whereby an adaptive capacity for enhanced mitochondrial energy production in the selectively bred population may help to protect larvae from the effects of elevated CO2 , whilst being deleterious to adult oysters. © 2015 John Wiley & Sons Ltd.
Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Várady, György; Szabó, Gyula; Uher, Ferenc; Sarkadi, Balázs
2015-01-01
Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth. PMID:25101689
γδ T Cells Shape Pre-Immune Peripheral B Cell Populations
Huang, Yafei; Getahun, Andrew; Heiser, Ryan A.; Detanico, Thiago O.; Aviszus, Katja; Kirchenbaum, Greg A.; Casper, Tamara L.; Huang, Chunjian; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J.; Cambier, John C.; O’Brien, Rebecca L.; Born, Willi K.
2015-01-01
We previously reported that selective ablation of certain γδ T cell subsets rather than removal of all γδ T cells, strongly affects serum antibody levels in non-immunized mice. This type of manipulation also changed T cells including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4+ and Vγ6+ γδ T cells (B6.TCR-Vγ4−/−/6−/−), we observed expanded Vγ1+ cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4−/−/6−/− mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of antibody-producing cells, and serum levels of antibodies, IL-4 and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain, and their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Together, these data demonstrate the capability of γδ T cells of modulating size and productivity of pre-immune peripheral B cell populations. PMID:26582947
γδ T Cells Shape Preimmune Peripheral B Cell Populations.
Huang, Yafei; Getahun, Andrew; Heiser, Ryan A; Detanico, Thiago O; Aviszus, Katja; Kirchenbaum, Greg A; Casper, Tamara L; Huang, Chunjian; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J; Cambier, John C; O'Brien, Rebecca L; Born, Willi K
2016-01-01
We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations. Copyright © 2015 by The American Association of Immunologists, Inc.
Urokinase production by electrophoretically separated cultured human embryonic kidney cells
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.
1985-01-01
Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.
Streptozotocin and Alloxan-based Selection Improves Toxin Resistance of Insulin-Producing RINm Cells
Zemel, Romy; Bloch, Olga V.; Grief, Hagar; Vardi, Pnina
2000-01-01
The aim of our study was to develop a method for selection of subpopulations of insulin producing RINm cells with higher resistance to beta cell toxins. Cells, resistant to streptozotocin (RINmS) and alloxan (RINmA), were obtained by repeated exposure of parental RINm cells to these two toxins, while the defense capacity, was estimated by the MTT colorimetric method, and [3H]-thymidine incorporation assay. We found that RINmS and RINmA displayed higher resistance to both streptozotocin (STZ) and alloxan (AL) when compared to the parental RINm cells. In contrast, no differences in sensitivity to hydrogen peroxide were found between toxin selected and parental cells. Partial protection from the toxic effect of STZ and AL was obtained only in the parental RINm cells after preincubation of cells with the unmetabolizable 3- O-methyl-glucose. The possibility that GLUT-2 is involved in cell sensitivity to toxins was confirmed by Western blot analysis, which showed higher expression of GLUT-2 in parental RINm compared to RINmS and RINmA cells. In addition to the higher cell defense property evidenced in the selected cells, we also found higher insulin content and insulin secretion in both RINmS and RINmA cells when compared to the parental RINm cells. In conclusion, STZ and AL treatment can be used for selection of cell sub-populations with higher cell defense properties and hormone production. The different GLUT-2 expression in parental and re sistant cells suggest involvement of GLUT-2 in mechanisms of cell response to different toxins. PMID:11467412
2010-01-01
Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII), which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii) PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion. PMID:21092207
De Novo Chromosome Copy Number Variation in Fanconi Anemia-Associated Hematopoietic Defects
2012-04-01
Appendix 1. Expansion of monoclonal populations of FA-A hTERT and FA-A + FANCA hTERT cells Appendix 2. Expansion of monoclonal populations of FA...marrow failure (BMF) and pronounced cancer susceptibility. The FA proteins and the major breast cancer susceptibility gene products BRCA1 and BRCA2...Correction of FA-A, FA-C, and FA-D2 hTERT cells with pLenti6.2/V5- FANCA , -FANCC, and FANCD2, respectively. Sub-task 1. Selection and expansion of clonal
Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter
2013-01-01
Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen. PMID:24204327
Generation of genome-modified Drosophila cell lines using SwAP.
Franz, Alexandra; Brunner, Erich; Basler, Konrad
2017-10-02
The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.
Arnhold, S.; Glüer, S.; Hartmann, K.; Raabe, O.; Addicks, K.; Wenisch, S.; Hoopmann, M.
2011-01-01
Amniotic fluid (AF) has become an interesting source of fetal stem cells. However, AF contains heterogeneous and multiple, partially differentiated cell types. After isolation from the amniotic fluid, cells were characterized regarding their morphology and growth dynamics. They were sorted by magnetic associated cell sorting using the surface marker CD 117. In order to show stem cell characteristics such as pluripotency and to evaluate a possible therapeutic application of these cells, AF fluid-derived stem cells were differentiated along the adipogenic, osteogenic, and chondrogenic as well as the neuronal lineage under hypoxic conditions. Our findings reveal that magnetic associated cell sorting (MACS) does not markedly influence growth characteristics as demonstrated by the generation doubling time. There was, however, an effect regarding an altered adipogenic, osteogenic, and chondrogenic differentiation capacity in the selected cell fraction. In contrast, in the unselected cell population neuronal differentiation is enhanced. PMID:21437196
Munoz, Luis E; Maueröder, Christian; Chaurio, Ricardo; Berens, Christian; Herrmann, Martin; Janko, Christina
2013-08-01
The response of the immune system against dying and dead cells strongly depends on the cell death phenotype. Beside other forms of cell death, two clearly distinct populations, early apoptotic and secondary necrotic cells, have been shown to induce anti-inflammation/tolerance and inflammation/immune priming, respectively. Cytofluorometry is a powerful technique to detect morphological and phenotypical changes occurring during cell death. Here, we describe a new technique using AnnexinA5, propidiumiodide, DiIC1(5) and Hoechst 33342 to sub-classify populations of apoptotic and/or necrotic cells. The method allows the fast and reliable identification of several different phases and pathways of cell death by analysing the following cell death associated changes in a single tube: cellular granularity and shrinkage, phosphatidylserine exposure, ion selectivity of the plasma membrane, mitochondrial membrane potential, and DNA content. The clear characterisation of cell death is of major importance for instance in immunization studies, in experimental therapeutic settings, and in the exploration of cell-death associated diseases. It also enables the analysis of immunological properties of distinct populations of dying cells and the pathways involved in this process.
At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.
Gerweck, Leo E; Wakimoto, Hiroaki
2016-03-01
Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.
Obesity-driven disruption of haematopoiesis and the bone marrow niche.
Adler, Benjamin J; Kaushansky, Kenneth; Rubin, Clinton T
2014-12-01
Obesity markedly increases susceptibility to a range of diseases and simultaneously undermines the viability and fate selection of haematopoietic stem cells (HSCs), and thus the kinetics of leukocyte production that is critical to innate and adaptive immunity. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from the bone marrow microenvironment, it is not surprising that conditions that disturb bone marrow structure inevitably disrupt both the numbers and lineage-fates of these key blood cell progenitors. In addition to the increased adipose burden in visceral and subcutaneous compartments, obesity causes a marked increase in the size and number of adipocytes encroaching into the bone marrow space, almost certainly disturbing HSC interactions with neighbouring cells, which include osteoblasts, osteoclasts, mesenchymal cells and endothelial cells. As the global obesity pandemic grows, the short-term and long-term consequences of increased bone marrow adiposity on HSC lineage selection and immune function remain uncertain. This Review discusses the differentiation and function of haematopoietic cell populations, the principal physicochemical components of the bone marrow niche, and how this environment influences HSCs and haematopoiesis in general. The effect of adipocytes and adiposity on HSC and progenitor cell populations is also discussed, with the goal of understanding how obesity might compromise the core haematopoietic system.
Regional gene mapping using mixed radiation hybrids and reverse chromosome painting.
Lin, J Y; Bedford, J S
1997-11-01
We describe a new approach for low-resolution physical mapping using pooled DNA probe from mixed (non-clonal) populations of human-CHO cell hybrids and reverse chromosome painting. This mapping method is based on a process in which the human chromosome fragments bearing a complementing gene were selectively retained in a large non-clonal population of CHO-human hybrid cells during a series of 12- to 15-Gy gamma irradiations each followed by continuous growth selection. The location of the gene could then be identified by reverse chromosome painting on normal human metaphase spreads using biotinylated DNA from this population of "enriched" hybrid cells. We tested the validity of this method by correctly mapping the complementing human HPRT gene, whose location is well established. We then demonstrated the method's usefulness by mapping the chromosome location of a human gene which complemented the defect responsible for the hypersensitivity to ionizing radiation in CHO irs-20 cells. This method represents an efficient alternative to conventional concordance analysis in somatic cell hybrids where detailed chromosome analysis of numerous hybrid clones is necessary. Using this approach, it is possible to localize a gene for which there is no prior sequence or linkage information to a subchromosomal region, thus facilitating association with known mapping landmarks (e.g. RFLP, YAC or STS contigs) for higher-resolution mapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K.S.
Norepinephrine has previously been demonstrated by this laboratory to potentiate the in vitro T-dependent antibody response through the stimulation of {beta}-adrenergic receptors. The role of {beta}-adrenergic receptor subtypes in norepinephrine-induced potentiation of the antibody responses was examined with selective {beta}-adrenergic antagonists. The antagonists were metoprolol ({beta}{sub 1}-selective), ICI 118-551 ({beta}{sub 2}-selective), and propranolol ({beta}-non-selective). Both propranolol and ICI 118-551 blocked norepinephrine-induced potentiation of the antibody response, but metoprolol was ineffective. Receptor binding competition of antagonists with the radioligant, ({sup 3}H)CGP-12177 was examined and results were analyzed with the computer program, LIGAND. Competition by ICI 118-551 identified 75% {beta}{sub 2}- andmore » 25% {beta}{sub 1}-adrenergic receptors on splenic mononuclear cells. Enriched T lymphocytes exhibited 75% {beta}{sub 2}-adrenergic receptors, while enriched B lymphocytes contained 90% {beta}{sub 2}-adrenergic receptors as identified by ICI 118-551. Greater than twice as many total receptors were identified on B lymphocytes than T lymphocytes. A T cell lymphoma contained about 60% {beta}{sub 2}-receptors, while 100% were {beta}{sub 2} receptors on a B cell lymphoma, as assessed by ICI 118-551. Results support a heterogeneous {beta}-adrenergic receptor population on T lymphocytes and a more homogeneous {beta}{sub 2}-population on B lymphocytes.« less
Miyashita, Shuhei; Kishino, Hirohisa
2010-02-01
Genetic bottlenecks facilitate the fixation and extinction of variants in populations, and viral populations are no exception to this theory. To examine the existence of genetic bottlenecks in cell-to-cell movement of plant RNA viruses, we prepared constructs for Soil-borne wheat mosaic virus RNA2 vectors carrying two different fluorescent proteins, yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP). Coinoculation of host plant leaves with the two RNA2 vectors and the wild-type RNA1 showed separation of the two vector RNA2s, mostly within seven to nine cell-to-cell movements from individual initially coinfected cells. Our statistical analysis showed that the number of viral RNA genomes establishing infection in adjacent cells after the first cell-to-cell movement from an initially infected cell was 5.97 +/- 0.22 on average and 5.02 +/- 0.29 after the second cell-to-cell movement. These results indicate that plant RNA viruses may generally face narrow genetic bottlenecks in every cell-to-cell movement. Furthermore, our model suggests that, rather than suffering from fitness losses caused by the bottlenecks, the plant RNA viruses are utilizing the repeated genetic bottlenecks as an essential element of rapid selection of their adaptive variants in trans-acting genes or elements to respond to host shifting and changes in the growth conditions of the hosts.
Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo.
Macpherson, Heather; Keir, Pamela; Webb, Sheila; Samuel, Kay; Boyle, Shelagh; Bickmore, Wendy; Forrester, Lesley; Dorin, Julia
2005-06-01
Recent work has indicated that adult bone marrow-derived cells have the ability to contribute to both the haematopoietic system and other organs. Haematopoietic reconstitution by whole bone marrow and selected but not fully characterised cell populations have resulted in reports indicating high-level repopulation of lung epithelia. The well-characterised cells from the side population have a robust ability for haematopoietic reconstitution. We have used freshly isolated side population cells derived from ROSA26 adult bone marrow and demonstrate that despite being unable to contribute to embryos following blastocyst injection, or air liquid interface cultures or denuded tracheal xenografts, they could contribute to the tracheal epithelium in vivo. Epithelial damage is reported to be important in encouraging the recruitment of marrow-derived stem cells into non-haematopoietic organs. Here we demonstrate that mice engrafted with side population cells have donor-derived cells present in the epithelial lining of the trachea following damage and repair. Donor-derived cells were found at a frequency of 0.83%. Widefield and confocal microscopy revealed donor cells that expressed cytokeratins, indicative of cells of an epithelial nature. These results imply that SP haematopoietic stem cells from the bone marrow do not have the ability to contribute to airway epithelia themselves but require factors present in vivo to allow them to acquire characteristics of this tissue.
Origin and Function of Tuning Diversity in Macaque Visual Cortex
Goris, Robbe L.T.; Simoncelli, Eero P.; Movshon, J. Anthony
2016-01-01
SUMMARY Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells’ diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. PMID:26549331
Robello, M; Amico, C; Cupello, A
1999-12-20
GABA(A) receptors of rat cerebellar granule cells in culture have been studied by the whole cell patch clamp technique. The biphasic desensitization kinetic observed could be due either to different desensitization mechanisms of a single receptor population or to different receptor populations. The overall data indicate that the latter hypothesis is most probably the correct one. In fact, the fast desensitizing component was selectively potentiated by a benzodiazepine agonist and preferentially down-regulated by activation of the protein serine/threonine kinases A and G, as a consequence of the latter characteristic that receptor population was preferentially down-regulated by previous activation of N-methyl-d-aspartate glutamate receptors, via production of nitric oxide and PKG activation, most probably in dendrites. The other population is benzodiazepine insensitive and not influenced by activation of PKA or PKG. This slowly desensitizing population may correspond to the extrasynaptic delta subunit containing GABA(A) receptors described by other authors. Instead, the rapidly desensitizing population appears to represent dendritic synaptic GABA(A) receptors. Copyright 1999 Academic Press.
Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection
Cerny, Daniela; Haniffa, Muzlifah; Shin, Amanda; Bigliardi, Paul; Tan, Bien Keem; Lee, Bernett; Poidinger, Michael; Tan, Ern Yu; Ginhoux, Florent; Fink, Katja
2014-01-01
Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV) is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs), three populations of dermal dendritic cells (DCs), and macrophages. Using samples of normal human skin we detected productive infection of CD14+ and CD1c+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response. PMID:25474532
SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.
Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A
2017-11-15
Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell populations that had been selected for TRAIL-resistance from initially TRAIL-sensitive populations. SAHA may increase TRAIL sensitivity in insensitive cells, but not in cells that have specifically been selected for acquired TRAIL-resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system, or to volatile fatty acids in a livestock production system, is strongly and negatively influenced by lignification of cell walls. This study dete...
Marks, Benjamin R.; Nowyhed, Heba N.; Choi, Jin-Young; Poholek, Amanda C.; Odegard, Jared M.; Flavell, Richard A.; Craft, Joe
2009-01-01
Interleukin 17 (IL-17)-producing CD4+ T (TH-17) cells share a developmental relationship with FoxP3+ regulatory T (Treg) cells. Here we show that a TH-17 population differentiates within the thymus in a manner influenced by self-antigen recognition, and by the cytokines IL-6 and transforming growth factor (TGF)-β. Like previously described TH-17 cells, TH-17 cells that develop in the thymus expressed the orphan nuclear receptor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6, and were recruited to the lung, gut, and liver. In the liver these cells secreted IL-22 in response to self-antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self-antigens in the thymus. PMID:19734905
Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs.
Huang, Xiaoli; Borgström, Björn; Kempengren, Sebastian; Persson, Lo; Hegardt, Cecilia; Strand, Daniel; Oredsson, Stina
2016-02-23
Cancer stem cells (CSCs) have been invoked in resistance, recurrence and metastasis of cancer. Consequently, curative cancer treatments may be contingent on CSC selective approaches. Of particular interest in this respect is the ionophore salinomycin, a natural product shown to be 100-fold more active against CSCs than clinically used paclitaxel. We have previously reported that synthetic salinomycin derivatives display increased activity against breast cancer cell lines. Herein we specifically investigate the CSC selectivity of the most active member in each class of C20-O-acylated analogs as well as a C1-methyl ester analog incapable of charge-neutral metal ion transport. JIMT-1 breast cancer cells were treated with three C20-O-acylated analogs, the C1-methyl ester of salinomycin, and salinomycin. The effects of treatment on the CSC-related CD44(+)/CD24(-) and the aldehyde dehydrogenase positive (ALDH(+)) populations were determined using flow cytometry. The survival ability of CSCs after treatment was investigated with a colony formation assay under serum free conditions. The effect of the compounds on cell migration was evaluated using wound-healing and Boyden chamber assays. The expression of vimentin, related to mesenchymal traits and expression of E-cadherin and β-catenin, related to the epithelial traits, were investigated using immunofluorescence microscopy. Treatment with each of the three C20-acylated analogs efficiently decreased the putative CSC population as reflected by reduction of the CD44(+)/CD24(-) and ALDH(+) populations already at a 50 nM concentration. In addition, colony forming efficiency and cell migration were reduced, and the expression of the epithelial markers E-cadherin and β-catenin at the cell surface were increased. In contrast, salinomycin used at the same concentration did not significantly influence the CSC population and the C1-methyl ester was inactive even at a 20 μM concentration. Synthetic structural analogs of salinomycin, previously shown to exhibit increased activity against cancer cells, also exhibited improved activity against CSCs across several assays even at nanomolar concentrations where salinomycin was found inactive. The methyl ester analog of salinomycin, incapable of charge-neutral metal ion transport, did not show activity in CSC assays, lending experimental support to ionophoric stress as the molecular initiating event for the CSC effects of salinomycin and related structures.
Detecting and characterizing genomic signatures of positive selection in global populations.
Liu, Xuanyao; Ong, Rick Twee-Hee; Pillai, Esakimuthu Nisha; Elzein, Abier M; Small, Kerrin S; Clark, Taane G; Kwiatkowski, Dominic P; Teo, Yik-Ying
2013-06-06
Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.
2015-03-01
We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.
Labarrière, Nathalie; Gervois, Nadine; Bonnin, Annabelle; Bouquié, Régis; Jotereau, Francine; Lang, François
2008-02-01
Choosing a reliable source of tumor-specific T lymphocytes and an efficient method to isolate these cells still remains a critical issue in adoptive cellular therapy (ACT). In this study, we assessed the capacity of MHC/peptide based immunomagnetic sorting followed by polyclonal T cell expansion to derive pure polyclonal and tumor-reactive Melan-A specific T cell populations from melanoma patient's PBMC and TIL. We first demonstrated that this approach was extremely efficient and reproducible. We then used this procedure to compare PBMC and TIL-derived cells from three melanoma patients in terms of avidity for Melan-A A27L analog, Melan-A(26-35)and Melan-A(27-35), tumor reactivity (lysis and cytokine production) and repertoire. Regardless of their origin, i.e., fresh PBMC, peptide stimulated PBMC or TIL, all sorted populations (from the three patients) were cytotoxic against HLA-A2+ melanoma cell lines expressing Melan-A. Although some variability in peptide avidity, lytic activity and cytokine production was observed between populations of different origins in a given patient, it differed from one patient to another and thus no correlation could be drawn between T cell source and reactivity. Analysis of Vbeta usage within the sorted populations showed the recurrence of Vbeta3 and Vbeta14 subfamilies in the three patients but differences in the rest of the Melan-A repertoire. In addition, in two patients, we observed major repertoire differences between populations sorted from the three sources. We especially documented that in vitro peptide stimulation of PBMC, used to facilitate the sort by enriching in specific T lymphocytes, could significantly alter their repertoire and reactivity towards tumor cells. We conclude that PBMC which are easily obtained from all melanoma patients, can be as good a source as TIL to derive high amounts of tumor-reactive Melan-A specific T cells, with this selection/amplification procedure. However, the conditions of peptide stimulation should be improved to prevent a possible loss of reactive clonotypes.
Regulatory T cells: present facts and future hopes.
Becker, Christian; Stoll, Sabine; Bopp, Tobias; Schmitt, Edgar; Jonuleit, Helmut
2006-09-01
Naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells and several subsets of induced suppressor T cells are key players of the immune tolerance network and control the induction and effector phase of our immunological defense system. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity and transplant rejection but also influence the immune response to allergens as well as against tumor cells and pathogens. Even though we are far from completely understanding the molecular and cellular mechanisms that manage the different regulatory T cell populations, increasing evidence exists about their functional importance. The knowledge on their induction and activation opens the possibility for their selective manipulation in vivo as an attractive approach for an immunotherapy of unwanted immune responses. This review summarizes this knowledge and discusses the potential of regulatory T cells for novel immunointervention strategies in the future.
Adipose tissue as a stem cell source for musculo-skeletal regeneration
Gimble, Jeffrey M.; Grayson, Warren; Guilak, Farshid; Lopez, Mandi J.; Vunjak-Novakovic, Gordana
2013-01-01
Adipose tissue is an abundant, easily accessible, and reproducible cell source for musculo-skeletal regenerative medicine applications. Initial derivation steps yield a heterogeneous population of cells collectively termed the stromal vascular fraction (SVF), which consist of endothelial cells, immune cells, pericytes, and pre-adipocytes. Subsequent selection of an adherent cell subset from the SVF results in a relatively homogeneous population of adipose-derived stromal/stem cells (ASCs). Mammalian ASCs exhibit the ability to selectively differentiate into chondrogenic, myogenic, and osteogenic lineages in response to inductive stimuli in vitro (when cultured on scaffolds in bioreactors) and in vivo (when implanted in pre-clinical animal models). Unlike hematopoietic cells, ASCs do not elicit a robust lymphocyte reaction and instead generate and release immunosuppressive factors, such as prostaglandin E2. These unique immunomodulatory features suggest that both allogeneic and autologous ASCs will engraft successfully following application for tissue regeneration purposes. The differentiation and expansion potential of ASCs can be modified by growth factors like bone morphogenetic protein 6, bio-inductive scaffolds, and bioreactors providing environmental control and biophysical stimulation. Gene therapy approaches using lentiviral transduction can also be used to direct differentiation of ASCs along particular lineage pathways. We discuss here the utility of ASCs for musculo-skeletal tissue repair and some of the technologies that can be implemented to unlock the full regenerative potential of these highly valuable cells. PMID:21196358
Phylogenetic divergence of cell biological features
2018-01-01
Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits. PMID:29927740
Gori, Jennifer L.; Tian, Xinghui; Swanson, Debra; Gunther, Roland; Shultz, Leonard D.; McIvor, R. Scott; Kaufman, Dan S.
2009-01-01
SUMMARY Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase engraftment of gene-modified hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR – GFP expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγcnull (NSG) mice after injection of Tyr22-DHFR-derived cells significantly increases human CD34+ and CD45+ cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR-cells in vivo, and provides a novel approach for combined human cell and gene therapy. PMID:19829316
Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seula; Woo, Jong Kyu; Jung, Yuchae
In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less
Yang, Shoufeng; Hay, Iain D.; Cameron, David R.; Speir, Mary; Cui, Bintao; Su, Feifei; Peleg, Anton Y.; Lithgow, Trevor; Deighton, Margaret A.; Qu, Yue
2015-01-01
Biofilm formation is a major pathogenicity strategy of Staphylococcus epidermidis causing various medical-device infections. Persister cells have been implicated in treatment failure of such infections. We sought to profile bacterial subpopulations residing in S. epidermidis biofilms, and to establish persister-targeting treatment strategies to eradicate biofilms. Population analysis was performed by challenging single biofilm cells with antibiotics at increasing concentrations ranging from planktonic minimum bactericidal concentrations (MBCs) to biofilm MBCs (MBCbiofilm). Two populations of “persister cells” were observed: bacteria that survived antibiotics at MBCbiofilm for 24/48 hours were referred to as dormant cells; those selected with antibiotics at 8 X MICs for 3 hours (excluding dormant cells) were defined as tolerant-but-killable (TBK) cells. Antibiotic regimens targeting dormant cells were tested in vitro for their efficacies in eradicating persister cells and intact biofilms. This study confirmed that there are at least three subpopulations within a S. epidermidis biofilm: normal cells, dormant cells, and TBK cells. Biofilms comprise more TBK cells and dormant cells than their log-planktonic counterparts. Using antibiotic regimens targeting dormant cells, i.e. effective antibiotics at MBCbiofilm for an extended period, might eradicate S. epidermidis biofilms. Potential uses for this strategy are in antibiotic lock techniques and inhaled aerosolized antibiotics. PMID:26687035
Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors
NASA Astrophysics Data System (ADS)
Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan
The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.
Acquisition of Drug Resistance and Dependence by Prions
Oelschlegel, Anja M.; Weissmann, Charles
2013-01-01
We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrPSc) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of the abnormal prion protein. PMID:23408888
Innate lymphoid cells in the initiation, regulation and resolution of inflammation
Sonnenberg, Gregory F.; Artis, David
2016-01-01
A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198
Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard
2015-02-10
The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.
Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun
2017-08-29
Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.
Range expansion of heterogeneous populations.
Reiter, Matthias; Rulands, Steffen; Frey, Erwin
2014-04-11
Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.
NASA Astrophysics Data System (ADS)
Huang, Sui
Transitions between high-dimensional attractor states in the quasi-potential landscape of the gene regulatory network, induced by environmental perturbations and/or facilitated by mutational rewiring of the network, underlie cell phenotype switching in development as well as in cancer progression, including acquisition of drug-resistant phenotypes. Considering heterogeneous cell populations as statistical ensembles of cells, and single-cell resolution gene expression profiling of cell populations undergoing a cell phenotype shift allow us now to map the topography of the landscape and its distortion. From snapshots of single-cell expression patterns of a cell population measured during major transitions we compute a quantity that identifies symmetry-breaking destabilization of attractors (bifurcation) and concomitant dimension-reduction of the state space manifold (landscape distortion) which precede critical transitions to new attractor states. The model predicts, and we show experimentally, the almost inevitable generation of aberrant cells associated with such critical transitions in multi-attractor landscapes: therapeutic perturbations which seek to push cancer cells to the apoptotic state, almost always produce ``rebellious'' cells which move in the ``opposite direction'': instead of dying they become more stem-cell-like and malignant. We show experimentally that the inadvertent generation of more malignant cancer cells by therapy indeed results from transition of surviving (but stressed) cells into unforeseen attractor states and not simply from selection of inherently more resistant cells. Thus, cancer cells follow not so much Darwin, as generally thought (survival of the fittest), but rather Nietzsche (What does not kill me makes me stronger). Supported by NIH (NCI, NIGMS), Alberta Innovates.
Feng, Dingqing; Peng, Cheng; Li, Cairong; Zhou, Ying; Li, Min; Ling, Bin; Wei, Haiming; Tian, Zhigang
2009-11-01
Like many other solid tumors, cervical cancer contains a heterogeneous population of cancer cells. Several investigators have identified putative stem cells from solid tumors and cancer cell lines via the capacity to self renew and drive tumor formation. The aim of this study was to identify and characterize a cancer stem-like cell population from primary carcinoma of the cervix uteri. Cervical carcinoma from 19 patients staged I-II following International Federation of Gynecology and Obstetrics (FIGO) criteria were disaggregated and subjected to growth conditions selective for stem cells. Eight of nineteen tumor-derived cultures encompassed stem-like cells capable of self-renewal, extensive proliferation as clonal non-adherent spherical clusters. Cell markers of spheroid were identified as CD44+CK17+. Cell survival assays showed the sphere-forming cells were only 48% inhibited by doxorubicin whereas 78% inhibited by paclitaxel. Chemo-resistance may partly attribute to the exclusive expression of ABC transporter. To investigate the tumorigenicity of these stem-like cells, xenoengraftment of 10(5) dissociated spheroid cells allowed full recapitulation of the original tumor, whereas the same amount of tumor cells without non-adherent spheroid selection remained non-tumorigenic. Stemness properties of these spheroid cells were further established by reverse transcription-PCR and Western blotting, demonstrating the expression of embryonic and adult stemness-related genes (Oct-4, Piwil2, C-myc, Stat3 and Sox2). Based on these findings, we assert that cervical cancer contain a subpopulation of tumor initiating cells with stem-like properties, thus facilitating the approach to therapeutic strategies aimed at eradicating the tumorigenic subpopulation within cervical cancer.
Roth, Justin C.; Ismail, Mourad; Reese, Jane S.; Lingas, Karen T.; Ferrari, Giuliana; Gerson, Stanton L.
2012-01-01
The P140K point mutant of MGMT allows robust hematopoietic stem cell (HSC) enrichment in vivo. Thus, dual-gene vectors that couple MGMT and therapeutic gene expression have allowed enrichment of gene-corrected HSCs in animal models. However, expression levels from dual-gene vectors are often reduced for one or both genes. Further, it may be desirable to express selection and therapeutic genes at distinct stages of cell differentiation. In this regard, we evaluated whether hematopoietic cells could be efficiently cotransduced using low MOIs of two separate single-gene lentiviruses, including MGMT for dual-positive cell enrichment. Cotransduction efficiencies were evaluated using a range of MGMT : GFP virus ratios, MOIs, and selection stringencies in vitro. Cotransduction was optimal when equal proportions of each virus were used, but low MGMT : GFP virus ratios resulted in the highest proportion of dual-positive cells after selection. This strategy was then evaluated in murine models for in vivo selection of HSCs cotransduced with a ubiquitous MGMT expression vector and an erythroid-specific GFP vector. Although the MGMT and GFP expression percentages were variable among engrafted recipients, drug selection enriched MGMT-positive leukocyte and GFP-positive erythroid cell populations. These data demonstrate cotransduction as a mean to rapidly enrich and evaluate therapeutic lentivectors in vivo. PMID:22888445
Direct Correlation between Motile Behavior and Protein Abundance in Single Cells
Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.
2016-01-01
Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206
CD4 expression on EL4 cells as an epiphenomenon of retroviral transduction and selection.
Logan, Grant J; Spinoulas, Afroditi; Alexander, Stephen I; Smythe, Jason A; Alexander, Ian E
2004-04-01
The EL4 murine tumour cell line, isolated from a chemically induced lymphoma over 50 years ago, has been extensively exploited in immunological research. The conclusions drawn from many of these studies have been based on the presumption that EL4 cells maintain a stable phenotype during experimental manipulation. To the contrary, we have observed 100-fold greater expression of cell surface CD4 (CD4(high)) on a subpopulation of EL4 cells following retroviral transduction and G418 selection when compared with unmodified populations. Although the mechanism responsible for this effect remains to be elucidated, the unexpected expression of CD4, a molecule that functions as both a coreceptor with the T-cell receptor and ligand for the pro-inflammatory cytokine IL-16, has the potential to influence experimental outcomes. Upregulation of CD4 should be excluded when EL4 cells are utilized in experiments requiring a consistent immuno-phenotype.
Constellation Pharmacology: A new paradigm for drug discovery
Schmidt, Eric W.; Olivera, Baldomero M.
2015-01-01
Constellation Pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (“constellations”) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation Pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically-active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the on-going development of Constellation Pharmacology, there is a positive-feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As Constellation Pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform. PMID:25562646
Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; Vertino, P.; Cooper, L.; Salaita, K.; Kowalski, J.; Marcus, A. I.
2017-01-01
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. PMID:28497793
Cai, Yun-Feng; Zhen, Zuo-Jun; Min, Jun; Fang, Tian-Ling; Chu, Zhong-Hua; Chen, Ji-Sheng
2004-11-15
To explore the feasibility of direct separation, selective proliferation and differentiation of the bone marrow-derived liver stem cells (BDLSC) from bone marrow cells with a culture system containing cholestatic serum in vitro. Whole bone marrow cells of rats cultured in routine medium were replaced with conditioning selection media containing 20 mL/L, 50 mL/L, 70 mL/L, and 100 mL/L cholestatic sera, respectively, after they attached to the plates. The optimal concentration of cholestatic serum was determined according to the outcome of the selected cultures. Then the selected BDLSC were induced to proliferate and differentiate with the addition of hepatocyte growth factor (HGF). The morphology and phenotypic markers of BDLSC were characterized using immunohistochemistry, RT-PCR and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. Bone marrow cells formed fibroblast-like but not hepatocyte-like colonies in the presence of 20 mL/L cholestatic serum. In 70 mL/L cholestatic serum, BDLSC colonies could be selected but could not maintain good growth status. In 100 mL/L cholestatic serum, all of the bone marrow cells were unable to survive. A 50 mL/L cholestatic serum was the optimal concentration for the selection of BDLSC at which BDLSC could survive while the other populations of the bone marrow cells could not. The selected BDLSC proliferated and differentiated after HGF was added. Hepatocyte-like colony-forming units (H-CFU) then were formed. H-CFU expressed markers of embryonic hepatocytes (AFP, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors (HNF-1alpha and HNF-3beta). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. The selected medium containing cholestatic serum can select BDLSC from whole bone marrow cells. It will be a new way to provide a readily available alternate source of cells for clinical hepatocyte therapy.
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.
Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José
2013-11-01
Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.
NASA Astrophysics Data System (ADS)
Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.
2007-11-01
This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The implications of these findings are the fact that mesozooplankton may not play an important role in phytoplankton blooms development. Phytoplankton endotoxin production does not seem to be an evolutionary stable strategy as a defence against some herbivores.
Robinson, E; Keystone, E C; Schall, T J; Gillett, N; Fish, E N
1995-01-01
Earlier studies from this laboratory provided evidence for restricted cytokine expression in the T cell population in RA tissues. Specifically, IL-2, IL-4, IL-6 and interferon-gamma (IFN-gamma) gene expression levels were low. The selective chemoattractant and activation effects of chemokines on leucocytes identify them as potentially ideal candidates in mediating selective inflammatory processes in RA. Accordingly, we undertook studies to examine constitutive chemokine gene expression in RA tissues. RANTES, monocyte chemotactic protein-1 (MCP-1) and MIP-1 beta gene expression was examined in both the T and non-T cell populations in RA peripheral blood (PB), synovial fluid (SF) and synovial tissues (ST). Our results identified elevated levels of both RANTES and MIP-1 beta gene expression in circulating RA PB and SF T cells. By contrast, MCP-1 expression was virtually absent in RA PB, yet elevated MCP-1 mRNA levels were detected primarily in the non-T cell populations of the SF and ST samples. Histological examination of affected rheumatoid joints revealed extensive RANTES and MIP-1 beta expression in sites of lymphocyte infiltration and cell proliferation, namely the synovial lining and sublining layers. Fractionation or RA ST patient samples revealed that RANTES expression was restricted to the T cells, whereas MIP-1 beta expression was detected in both T and non-T fractions. These data suggest that MCP-1, MIP-1 beta and RANTES may have a central role in the trafficking of reactive molecules involved in immunoregulation and in the inflammatory processes in RA. Images Fig. 4 PMID:7545093
Archetti, M
2015-04-01
The Warburg effect, a switch from aerobic energy production to anaerobic glycolysis, promotes tumour proliferation and motility by inducing acidification of the tumour microenvironment. Therapies that reduce acidity could impair tumour growth and invasiveness. I analysed the dynamics of cell proliferation and of resistance to therapies that target acidity, in a population of cells, under the Warburg effect. The dynamics of mutant cells with increased glycolysis and motility has been assessed in a multi-player game with collective interactions in the framework of evolutionary game theory. Perturbations of the level of acidity in the microenvironment have been used to simulate the effect of therapies that target glycolysis. The non-linear effects of glycolysis induce frequency-dependent clonal selection leading to coexistence of glycolytic and non-glycolytic cells within a tumour. Mutants with increased motility can invade such a polymorphic population and spread within the tumour. While reducing acidity may produce a sudden reduction in tumour cell proliferation, frequency-dependent selection enables it to adapt to the new conditions and can enable the tumour to restore its original levels of growth and invasiveness. The acidity produced by glycolysis acts as a non-linear public good that leads to coexistence of cells with high and low glycolysis within the tumour. Such a heterogeneous population can easily adapt to changes in acidity. Therapies that target acidity can only be effective in the long term if the cost of glycolysis is high, that is, under non-limiting oxygen concentrations. Their efficacy, therefore, is reduced when combined with therapies that impair angiogenesis. © 2015 The Authors Cell Proliferation Published by John Wiley & Sons Ltd.
Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity
Andersen, Erik C.; Gerke, Justin P.; Shapiro, Joshua A.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Félix, Marie-Anne; Kruglyak, Leonid
2011-01-01
The nematode Caenorhabditis elegans is central to research in molecular, cell, and developmental biology, but nearly all of this research has been conducted on a single strain. Comparatively little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation by high-throughput selective sequencing of a worldwide collection of 200 wild strains, identifying 41,188 single nucleotide polymorphisms. Unexpectedly, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of the six chromosomes, each spanning many megabases. Population-genetic modeling shows that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps likely occurred in the past few hundred years. These sweeps, which we hypothesize to be a result of human activity, have dramatically reshaped the global C. elegans population in the recent past. PMID:22286215
Expression microdissection adapted to commercial laser dissection instruments
Hanson, Jeffrey C; Tangrea, Michael A; Kim, Skye; Armani, Michael D; Pohida, Thomas J; Bonner, Robert F; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R
2016-01-01
Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis. PMID:21412274
Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.
Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang
2014-10-01
Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.
Furusawa, Chikara; Yamaguchi, Tomoyuki
The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.
Furusawa, Chikara; Yamaguchi, Tomoyuki
2016-01-01
The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification. PMID:27668873
Wan, Hong; Yuan, Ming; Simpson, Cathy; Allen, Kirsty; Gavins, Felicity N E; Ikram, Mohammed S; Basu, Subham; Baksh, Nuzhat; O'Toole, Edel A; Hart, Ian R
2007-05-01
We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.
Turning One Cell Type into Another.
Slack, Jonathan M W
2016-01-01
The nature of cells in early embryos may be respecified simply by exposure to inducing factors. In later stage embryos, determined cell populations do not respond to inducing factors but may be respecified by other stimuli, especially the introduction of specific transcription factors. Fully differentiated cell types are hard to respecify by any method, but some degree of success can be achieved using selected combinations of transcription factors, and this may have clinical significance in the future. © 2016 Elsevier Inc. All rights reserved.
β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
McLaren, James E.; Dolton, Garry; Matthews, Katherine K.; Gostick, Emma; Kronenberg-Versteeg, Deborah; Eichmann, Martin; Knight, Robin R.; Heck, Susanne; Powrie, Jake; Bingley, Polly J.; Dayan, Colin M.; Miles, John J.; Sewell, Andrew K.
2015-01-01
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I (pHLAI) tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent onset type 1 diabetes and healthy controls. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy controls, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor (TCR) repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes. PMID:25249579
Mannino, Mariella; Gomez-Roman, Natividad; Hochegger, Helfrid; Chalmers, Anthony J
2014-07-01
Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Bcl-2-interacting mediator of cell death influences autoantigen-driven deletion and TCR revision
Hale, J. Scott; Nelson, Lisa T.; Simmons, Kalynn B.; Fink, Pamela J.
2010-01-01
Peripheral CD4+Vβ5+ T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of post-revision CD4+Vβ5− T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the post-revision population. Here, we investigate the role of Bim-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4+ T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR expressing cells are TCR revision intermediates, and that the population of RAG-expressing, revising CD4+ T cells is increased in Bim deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the post-revision repertoire. PMID:21148799
Bellantuono, Ilaria
2004-04-01
Considerable effort has been made in recent years in understanding the mechanisms that govern stem cell generation, proliferation, self-renewal, commitment and lately plasticity. In the development of the haemopoietic system during embryonic and fetal life the notion of different pools of stem cells arising from the endothelium is gaining consensus. Gene expression profiling of populations of stem cells is bringing to light categories of genes important for self-renewal or commitment. Besides the role of transcription factors in lineage decision, the role of soluble factors and transmembrane proteins, very active at the time of embryo development, are taking central stage in the maintenance and in vitro expansion of haemopoietic stem cells (HSCs). The hierarchical model of haemopoietic development is being questioned with reports of lineage switching and plasticity of haemopoietic stem cells to non-haemopoietic cells. Yet the understanding of the overall process is still very fragmented and hypothetical. This is mainly due to the absence of appropriate markers to enable selection of homogeneous stem cell populations and the need to rely on retrospective functional assays, able only to determine the overall behaviour of a population of cells. This review is intended to be an overview of the haemopoietic system and a critical re-visitation of issues such as plasticity and self-renewal important for therapeutic applications of haemopoietic stem cells.
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Immune Response to a Variable Pathogen: A Stochastic Model with Two Interlocked Darwinian Entities
Kuhn, Christoph
2012-01-01
This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction. PMID:23424603
Immune response to a variable pathogen: a stochastic model with two interlocked Darwinian entities.
Kuhn, Christoph
2012-01-01
This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction.
2013-01-01
Background Accumulating evidence supports cancer to initiate and develop from a small population of stem-like cells termed as cancer stem cells (CSC). The exact phenotype of CSC and their counterparts in normal mammary gland is not well characterized. In this study our aim was to evaluate the phenotype and function of stem/progenitor cells in normal mammary epithelial cell populations and their malignant counterparts. Methods Freshly isolated cells from both normal and malignant human breasts were sorted using 13 widely used stem/progenitor cell markers individually or in combination by multi-parametric (up to 9 colors) cell sorting. The sorted populations were functionally evaluated by their ability to form colonies and mammospheres, in vitro. Results We have compared, for the first time, the stem/progenitor markers of normal and malignant breasts side-by-side. Amongst all markers tested, we found CD44high/CD24low cell surface marker combination to be the most efficient at selecting normal epithelial progenitors. Further fractionation of CD44high/CD24low positive cells showed that this phenotype selects for luminal progenitors within Ep-CAMhigh/CD49f + cells, and enriches for basal progenitors within Ep-CAM-/low/CD49f + cells. On the other hand, primary breast cancer samples, which were mainly luminal Ep-CAMhigh, had CD44high/CD24low cells among both CD49fneg and CD49f + cancer cell fractions. However, functionally, CSC were predominantly CD49f + proposing the use of CD44high/CD24low in combination with Ep-CAM/CD49f cell surface markers to further enrich for CSC. Conclusion Our study clearly demonstrates that both normal and malignant breast cells with the CD44high/CD24low phenotype have the highest stem/progenitor cell ability when used in combination with Ep-CAM/CD49f reference markers. We believe that this extensive characterization study will help in understanding breast cancer carcinogenesis, heterogeneity and drug resistance. PMID:23768049
Kurokawa, Hiroshi; Sakaue-Sawano, Asako; Imamura, Takeshi; Miyawaki, Atsushi; Iimura, Tadahiro
2014-01-01
In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode. PMID:25474567
Cell cloning-on-the-spot by using an attachable silicone cylinder.
Park, Hong Bum; Son, Wonseok; Chae, Dong Han; Lee, Jisu; Kim, Il-Woung; Yang, Woomi; Sung, Jae Kyu; Lim, Kyu; Lee, Jun Hee; Kim, Kyung-Hee; Park, Jong-Il
2016-06-10
Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Identification and characterization of mouse otic sensory lineage genes
Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan
2015-01-01
Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475
Macrophage-selective toxicity as a mechanism of hydroquinone-induced myelotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.J.
1989-01-01
This research has focused upon the role of the bone marrow stroma in the etiology of benzene hematotoxicity. Treatment with the metabolite hydroquinone results in a reduced capacity of the stroma to support myelopoiesis. The goal of this research was to examine stromal cell selective toxicity following hydroquinone treatment. Populations of macrophages and a fibroblastoid cell line (LTF) or primary fibroblasts were developed from mouse bone marrow. Following treatment of with hydroquinone, treated or control fibroblastoid cells were reconstituted with control or treated macrophages, respectively, and the cultures were assayed for their ability to support myelopoiesis. To examine mechanisms ofmore » selective toxicity, macrophage and LTF cultures were incubated with 14C-hydroquinone and bioactivation was examined. After 24 hours, macrophages had 16-fold higher levels of bound {sup 14}C than LTF cells. Peroxide-dependent bioactivation in cell homogenates revealed that peroxide could support formation of covalent-binding species in macrophage homogenates but not in LTF homogenates. It was determined that macrophages, but not LTF cells, contained detectable levels of peroxidase activity which was consistent with the postulate that increased binding was due to peroxidase-mediated bioactivation of hydroquinone. Accordingly, purified myeloperoxidase incubated with {sup 14}C-hydroquinone, resulted in bioactivation to a covalent-binding species. This study provided evidence supporting selective bioactivation as a mechanism of selective toxicity of hydroquinone to bone marrow stromal macrophages.« less
2012-01-01
Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the positively selected genes reveals the past selection pressures experienced by the populations used in this study. PMID:22853646
The prisoner's dilemma as a cancer model.
West, Jeffrey; Hasnain, Zaki; Mason, Jeremy; Newton, Paul K
2016-09-01
Tumor development is an evolutionary process in which a heterogeneous population of cells with different growth capabilities compete for resources in order to gain a proliferative advantage. What are the minimal ingredients needed to recreate some of the emergent features of such a developing complex ecosystem? What is a tumor doing before we can detect it? We outline a mathematical model, driven by a stochastic Moran process, in which cancer cells and healthy cells compete for dominance in the population. Each are assigned payoffs according to a Prisoner's Dilemma evolutionary game where the healthy cells are the cooperators and the cancer cells are the defectors. With point mutational dynamics, heredity, and a fitness landscape controlling birth and death rates, natural selection acts on the cell population and simulated 'cancer-like' features emerge, such as Gompertzian tumor growth driven by heterogeneity, the log-kill law which (linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and the Norton-Simon hypothesis which (linearly) relates tumor regression rates to tumor growth rates. We highlight the utility, clarity, and power that such models provide, despite (and because of) their simplicity and built-in assumptions.
A Theoretical Lower Bound for Selection on the Expression Levels of Proteins
Price, Morgan N.; Arkin, Adam P.
2016-06-11
We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient.more » Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.« less
A Theoretical Lower Bound for Selection on the Expression Levels of Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Morgan N.; Arkin, Adam P.
We use simple models of the costs and benefits of microbial gene expression to show that changing a protein's expression away from its optimum by 2-fold should reduce fitness by at least [Formula: see text], where P is the fraction the cell's protein that the gene accounts for. As microbial genes are usually expressed at above 5 parts per million, and effective population sizes are likely to be above 10(6), this implies that 2-fold changes to gene expression levels are under strong selection, as [Formula: see text], where Ne is the effective population size and s is the selection coefficient.more » Thus, most gene duplications should be selected against. On the other hand, we predict that for most genes, small changes in the expression will be effectively neutral.« less
Medeiros, J D; Leite, L R; Pylro, V S; Oliveira, F S; Almeida, V M; Fernandes, G R; Salim, A C M; Araújo, F M G; Volpini, A C; Oliveira, G; Cuadros-Orellana, S
2017-10-01
Acid mine drainage (AMD) is characterized by an acid and metal-rich run-off that originates from mining systems. Despite having been studied for many decades, much remains unknown about the microbial community dynamics in AMD sites, especially during their early development, when the acidity is moderate. Here, we describe draft genome assemblies from single cells retrieved from an early-stage AMD sample. These cells belong to the genus Hydrotalea and are closely related to Hydrotalea flava. The phylogeny and average nucleotide identity analysis suggest that all single amplified genomes (SAGs) form two clades that may represent different strains. These cells have the genomic potential for denitrification, copper and other metal resistance. Two coexisting CRISPR-Cas loci were recovered across SAGs, and we observed heterogeneity in the population with regard to the spacer sequences, together with the loss of trailer-end spacers. Our results suggest that the genomes of Hydrotalea sp. strains studied here are adjusting to a quickly changing selective pressure at the microhabitat scale, and an important form of this selective pressure is infection by foreign DNA. © 2017 John Wiley & Sons Ltd.
Shin, Dong-Jun; Park, Ji-Yun; Jang, Youn-Young; Lee, Je-Jung; Lee, Youn-Kyung; Shin, Myung-Geun; Jung, Ji-Youn; Carson, William E; Cho, Duck; Kim, Sang-Ki
2013-06-15
Canine NK cells still are not well-characterized due to the lack of information concerning specific NK cell markers and the fact that NK cells are not an abundant cell population. In this study, we selectively expanded the canine cytotoxic large granular lymphocytes (CLGLs) that exhibit morphologic, genetic, and functional characteristics of NK cells from normal donor PBMCs. The cultured CLGLs were characterized by a high proportion of CD5(dim) expressing cells, of which the majority of cells co-expressed CD3 and CD8, but did not express TCRαβ and TCRγδ. The phenotype of the majority of the CLGLs was CD5(dim)CD3(+)CD8(+) TCRαβ(-)TCRγδ(-)CD4(-)CD21(-)CD11c(+/-)CD11d(+/-)CD44(+). The expression of mRNAs for NK cell-associated receptors (NKG2D, NKp30, NKp44, Ly49, perforin, and granzyme B) were highly upregulated in cultured CLGLs. Specifically, NKp46 was remarkably upregulated in the cultured CLGLs compared to PBMCs. The mRNAs for the NKT-associated iTCRα gene in CLGLs was present at a basal level. The cytotoxic activity of the CLGLs against canine NK cell-sensitive CTAC cells was remarkably elevated in a dose-dependent manner, and the CLGLs produced large amounts of IFN-γ. The antitumor activity of CLGLs extended to different types of canine tumor cells (CF41.Mg and K9TCC-pu-AXC) without specific antigen recognition. These results are consistent with prior reports, and strongly suggest that the selectively expanded CLGLs represent a population of canine NK cells. The results of this study will contribute to future research on canine NK cells as well as NK cell-based immunotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Wloch-Salamon, Dominika M; Tomala, Katarzyna; Aggeli, Dimitra; Dunn, Barbara
2017-06-07
Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth-starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population's fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients ( ECM21 , RSP5 , MSN1 , SIR4 , and IRA2 ) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1 Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures. Copyright © 2017 Wloch-Salamon et al.
Marchetti, Sandrine; Gimond, Clotilde; Iljin, Kristiina; Bourcier, Christine; Alitalo, Kari; Pouysségur, Jacques; Pagès, Gilles
2002-05-15
Large scale purification of endothelial cells is of great interest as it could improve tissue transplantation, reperfusion of ischemic tissues and treatment of pathologies in which an endothelial cell dysfunction exists. In this study, we describe a novel genetic approach that selects for endothelial cells from differentiating embryonic stem (ES) cells. Our strategy is based on the establishment of ES-cell clones that carry an integrated puromycin resistance gene under the control of a vascular endothelium-specific promoter, tie-1. Using EGFP as a reporter gene, we first confirmed the endothelial specificity of the tie-1 promoter in the embryoid body model and in cells differentiated in 2D cultures. Subsequently, tie-1-EGFP ES cells were used as recipients for the tie-1-driven puror transgene. The resulting stable clones were expanded and differentiated for seven days in the presence of VEGF before puromycin selection. As expected, puromycin-resistant cells were positive for EGFP and also expressed several endothelial markers, including CD31, CD34, VEGFR-1, VEGFR-2, Tie-1, VE-cadherin and ICAM-2. Release from the puromycin selection resulted in the appearance of alpha-smooth muscle actin-positive cells. Such cells became more numerous when the population was cultured on laminin-1 or in the presence of TGF-beta1, two known inducers of smooth muscle cell differentiation. The hypothesis that endothelial cells or their progenitors may differentiate towards a smooth muscle cell phenotype was further supported by the presence of cells expressing both CD31 and alpha-smooth muscle actin markers. Finally, we show that purified endothelial cells can incorporate into the neovasculature of transplanted tumors in nude mice. Taken together, these results suggest that application of endothelial lineage selection to differentiating ES cells may become a useful approach for future pro-angiogenic and endothelial cell replacement therapies.
Population Dynamics of Genetic Regulatory Networks
NASA Astrophysics Data System (ADS)
Braun, Erez
2005-03-01
Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.
Single cell gene expression profiling in Alzheimer's disease.
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
2006-07-01
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Yamada, Takeshi; Abei, Masato; Danjoh, Inaho; Shirota, Ryoko; Yamashita, Taro; Hyodo, Ichinosuke; Nakamura, Yukio
2015-04-11
Cancer stem cell (CSC) research has highlighted the necessity of developing drugs targeting CSCs. We investigated a hepatocellular carcinoma (HCC) cell line that not only has CSC hierarchy but also shows phenotypic changes (population changes) upon differentiation of CSC during culture and can be used for screening drugs targeting CSC. Based on a hypothesis that the CSC proportion should decrease upon its differentiation into progenitors (population change), we tested HCC cell lines (HuH-7, Li-7, PLC/PRF/5, HLF, HLE) before and after 2 months culture for several markers (CD13, EpCAM, CD133, CD44, CD90, CD24, CD166). Tumorigenicity was tested using nude mice. To evaluate the CSC hierarchy, we investigated reconstructivity, proliferation, ALDH activity, spheroid formation, chemosensitivity and microarray analysis of the cell populations sorted by FACS. Only Li-7 cells showed a population change during culture: the proportion of CD13 positive cells decreased, while that of CD166 positive cells increased. The high tumorigenicity of the Li-7 was lost after the population change. CD13(+)/CD166(-) cells showed slow growth and reconstructed the bulk Li-7 populations composed of CD13(+)/CD166(-), CD13(-)/CD166(-) and CD13(-)/CD166(+) fractions, whereas CD13(-)/CD166(+) cells showed rapid growth but could not reproduce any other population. CD13(+)/CD166(-) cells showed high ALDH activity, spheroid forming ability and resistance to 5-fluorouracil. Microarray analysis demonstrated higher expression of stemness-related genes in CD166(-) than CD166(+) fraction. These results indicated a hierarchy in Li-7 cells, in which CD13(+)/CD166(-) and CD13(-)/CD166(+) cells serve as slow growing CSCs and rapid growing progenitors, respectively. Sorafenib selectively targeted the CD166(-) fraction, including CD13(+) CSCs, which exhibited higher mRNA expression for FGF3 and FGF4, candidate biomarkers for sorafenib. 5-fluorouracil followed by sorafenib inhibited the growth of bulk Li-7 cells more effectively than the reverse sequence or either alone. We identified a unique HCC line, Li-7, which not only shows heterogeneity for a CD13(+) CSC hierarchy, but also undergoes a "population change" upon CSC differentiation. Sorafenib targeted the CSC in vitro, supporting the use of this model for screening drugs targeting the CSC. This type of "heterogeneous, unstable" cell line may prove more useful in the CSC era than conventional "homogeneous, stable" cell lines.
Functional significance of CD105-positive cells in papillary renal cell carcinoma.
Matak, Damian; Brodaczewska, Klaudia K; Szczylik, Cezary; Koch, Irena; Myszczyszyn, Adam; Lipiec, Monika; Lewicki, Slawomir; Szymanski, Lukasz; Zdanowski, Robert; Czarnecka, Anna M
2017-01-05
CD105 was postulated as a renal cell carcinoma (RCC) stem cell marker, and CD133 as a putative RCC progenitor. Hypoxia, a natural microenvironment that prevails in tumors, was also incorporated into the study, especially in terms of the promotion of hypothetical stem-like cell properties. Within this study, we verify the existence of CD105+ and CD133+ populations in selected papillary subtype RCC (pRCC) cell lines. Both populations were analyzed for correlation with stem-like cell properties, such as stemness gene expression, and sphere and colony formation. For the preliminary analysis, several RCC cell lines were chosen (786-O, SMKT-R2, Caki-2, 796-P, ACHN, RCC6) and the control was human kidney cancer stem cells (HKCSC) and renal cells of embryonic origin (ASE-5063). Four cell lines were chosen for further investigation: Caki-2 (one of the highest numbers of CD105+ cells; primary origin), ACHN (a low number of CD105+ cells; metastatic origin), HKCSC (putative positive control), and ASE-5063 (additional control). In 769-P and RCC6, we could not detect a CD105+ population. Hypoxia variously affects pRCC cell growth, and mainly diminishes the stem-like properties of cells. Furthermore, we could not observe the correlation of CD105 and/or CD133 expression with the enhancement of stem-like properties. Based on this analysis, CD105/CD133 cannot be validated as cancer stem cell markers of pRCC cell lines.
Impact of irradiation and immunosuppressive agents on immune system homeostasis in rhesus macaques
Meyer, C; Walker, J; Dewane, J; Engelmann, F; Laub, W; Pillai, S; Thomas, Charles R; Messaoudi, I
2015-01-01
In this study we examined the effects of non-myeloablative total body irradiation (TBI) in combination with immunosuppressive chemotherapy on immune homeostasis in rhesus macaques. Our results show that the administration of cyclosporin A or tacrolimus without radiotherapy did not result in lymphopenia. The addition of TBI to the regimen resulted in lymphopenia as well as alterations in the memory/naive ratio following reconstitution of lymphocyte populations. Dendritic cell (DC) numbers in whole blood were largely unaffected, while the monocyte population was altered by immunosuppressive treatment. Irradiation also resulted in increased levels of circulating cytokines and chemokines that correlated with T cell proliferative bursts and with the shift towards memory T cells. We also report that anti-thymocyte globulin (ATG) treatment and CD3 immunotoxin administration resulted in a selective and rapid depletion of naive CD4 and CD8 T cells and increased frequency of memory T cells. We also examined the impact of these treatments on reactivation of latent simian varicella virus (SVV) infection as a model of varicella zoster virus (VZV) infection of humans. None of the treatments resulted in overt SVV reactivation; however, select animals had transient increases in SVV-specific T cell responses following immunosuppression, suggestive of subclinical reactivation. Overall, we provide detailed observations into immune modulation by TBI and chemotherapeutic agents in rhesus macaques, an important research model of human disease. PMID:25902927
Balgir, R S
2012-03-01
Malaria is globally endemic in tropical and subtropical regions and so is the hemoglobinopathies, thalassemias and glucose-6-phosphate dehydrogenase (G6PD) deficiency. This biological dogma of hyper-endemic all over the tribal land in India leads to high morbidity and mortality. The directed genetic abnormalities of human erythrocytes have found to decrease the susceptibility towards malaria parasites and the heterozygotes of abnormalities probably confer protection against the Plasmodium falciparum infection. A fascinating trend for an inverse relationship between sickle cell disorders and G6PD deficiency in scheduled caste and tribal communities of Central-Eastern India has been observed. When the frequency of sickle cell allele decreases in malaria endemic cross-section of the tribal population, the frequency of G6PD deficiency allele increases and vice versa. This medical aspect is important from an evolutionary biological background and could be an excellent point for molecular analyses to determine the signature of selection in the genomic regions of β- globin and G6PD genes. Since the selection favors the mutation with least cost to the population [as the clinical manifestations of G6PD deficiency are mild and do not result in a complete loss of enzyme activity against the sickle cell disease with high morbidity and mortality in the region] and the predominant frequency of G6PD deficiency over the sickle cell disorders in some tribal communities, it seems that the replacement of sickle cell allele for G6PD deficiency is occurring in the scheduled castes/tribes of Chhattisgarh, Madhya Pradesh, Maharashtra and Odisha states in Central India. These findings are consistent with our previous studies carried out in Central-Eastern India.
Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald GFP BAC Reporter
Hsiao, Edward C.; Yoshinaga, Yuko; Nguyen, Trieu D.; Musone, Stacy L.; Kim, Judy E.; Swinton, Paul; Espineda, Isidro; Manalac, Carlota; deJong, Pieter J.; Conklin, Bruce R.
2008-01-01
Background Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available. Methodology Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice. Conclusions Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library. PMID:18596956
Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James
2015-12-01
The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.
How cancer shapes evolution, and how evolution shapes cancer
Casás-Selves, Matias; DeGregori, James
2013-01-01
Evolutionary theories are critical for understanding cancer development at the level of species as well as at the level of cells and tissues, and for developing effective therapies. Animals have evolved potent tumor suppressive mechanisms to prevent cancer development. These mechanisms were initially necessary for the evolution of multi-cellular organisms, and became even more important as animals evolved large bodies and long lives. Indeed, the development and architecture of our tissues were evolutionarily constrained by the need to limit cancer. Cancer development within an individual is also an evolutionary process, which in many respects mirrors species evolution. Species evolve by mutation and selection acting on individuals in a population; tumors evolve by mutation and selection acting on cells in a tissue. The processes of mutation and selection are integral to the evolution of cancer at every step of multistage carcinogenesis, from tumor genesis to metastasis. Factors associated with cancer development, such as aging and carcinogens, have been shown to promote cancer evolution by impacting both mutation and selection processes. While there are therapies that can decimate a cancer cell population, unfortunately, cancers can also evolve resistance to these therapies, leading to the resurgence of treatment-refractory disease. Understanding cancer from an evolutionary perspective can allow us to appreciate better why cancers predominantly occur in the elderly, and why other conditions, from radiation exposure to smoking, are associated with increased cancers. Importantly, the application of evolutionary theory to cancer should engender new treatment strategies that could better control this dreaded disease. PMID:23705033
Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter
2017-12-20
Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Whitacre, James M.; Lin, Joseph; Harding, Angus
2011-01-01
Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338
Bcl-2-interacting mediator of cell death influences autoantigen-driven deletion and TCR revision.
Hale, J Scott; Nelson, Lisa T; Simmons, Kalynn B; Fink, Pamela J
2011-01-15
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.
Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi
2017-09-12
Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.
Würth, Roberto; Barbieri, Federica; Florio, Tullio
2014-01-01
Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM), the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs), since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.
Targeted drug delivery using genetically engineered diatom biosilica.
Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H
2015-11-10
The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.
Isolation and Characterization of Human Lung Lymphatic Endothelial Cells
Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M.; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico
2015-01-01
Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493
Long, Meixiao; Higgins, Amy D.; Mihalyo, Marianne A.; Adler, Adam J.
2010-01-01
It has recently been shown that effector/memory T cells can undergo peripheral tolerization in response to self-antigen. In the present study, we found that within 24 h self-antigen profoundly impairs the ability of CD4 effectors to express TNF-α (and to a lesser extent IFN-γ); however, several days of self-antigen exposure is required to impair non-effector functions such as IL-2 expression and proliferation. Since only half of the initial effector CD4 cell population expresses effector cytokines following brief antigenic stimulation, tolerization might have been mediated either through functional inactivation of effector-competent cells, or alternatively by the selective deletion of competent and expansion of non-competent cells. When briefly stimulated effectors were fractionated based on their expression of IFN-γ, the IFN-γ− sub-population was able to express IFN-γ following secondary stimulation, indicating that all effector CD4 cells are functionally competent. Furthermore, both IFN-γ+ and IFN-γ− sub-populations underwent tolerization in response to self-HA (although the former was slightly more prone to deletion at later time points). Thus, effector CD4 cell tolerization is mediated primarily through the functional inactivation of effector-competent cells. PMID:14609577
Li, J; Kolling, G L; Matthews, K R; Chikindas, M L
2003-01-01
To study whether the exposure to cold (4 degrees C) and carbon dioxide which results in the elongation of Listeria cells, induces a viable but nonculturable (VBNC) state. When cold and CO2 stressed L. monocytogenes were observed under a fluorescence microscope, using the LIVE/DEAD BacLight bacteria viability kit (Molecular Probes, Eugene, OR, USA), the healthy, mildly injured, and the putative VBNC cells accounted for 31.0% of the stressed cell population. By using the selective plate count, 31.4% of the same stressed cell population was found to be healthy and mildly injured (putative VBNC cells not included). If there were VBNC state cells present, we should have observed a significant difference between the above two numbers. In fact, there was no significant difference between the results obtained from those two methods. There were no VBNC state cells observed in the stressed cell population. We conclude that cold and CO2 do not induce L. monocytogenes to enter a VBNC state. Cold and modified atmospheres are widely used in fresh muscle food and fruit preservation. Whether they would induce L. monocytogenes into a VBNC state is of a great concern for microbial food safety.
Phenotype heterogeneity in cancer cell populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean
2016-06-08
Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a fewmore » results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to represent evolution towards heterogeneity, possibly polyclonal, in cancer cell populations and propose innovative directions for therapeutic strategies based on such frameworks.« less
Phenotype heterogeneity in cancer cell populations
NASA Astrophysics Data System (ADS)
Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel
2016-06-01
Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to represent evolution towards heterogeneity, possibly polyclonal, in cancer cell populations and propose innovative directions for therapeutic strategies based on such frameworks.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042
DeKosky, Brandon J; Lungu, Oana I; Park, Daechan; Johnson, Erik L; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D; Ippolito, Gregory C; Gray, Jeffrey J; Georgiou, George
2016-05-10
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.
Direction-selective circuits shape noise to ensure a precise population code
Zylberberg, Joel; Cafaro, Jon; Turner, Maxwell H
2016-01-01
Summary Neural responses are noisy, and circuit structure can correlate this noise across neurons. Theoretical studies show that noise correlations can have diverse effects on population coding, but these studies rarely explore stimulus dependence of noise correlations. Here, we show that noise correlations in responses of ON-OFF direction-selective retinal ganglion cells are strongly stimulus dependent and we uncover the circuit mechanisms producing this stimulus dependence. A population model based on these mechanistic studies shows that stimulus-dependent noise correlations improve the encoding of motion direction two-fold compared to independent noise. This work demonstrates a mechanism by which a neural circuit effectively shapes its signal and noise in concert, minimizing corruption of signal by noise. Finally, we generalize our findings beyond direction coding in the retina and show that stimulus-dependent correlations will generally enhance information coding in populations of diversely tuned neurons. PMID:26796691
Dynamics of morphological evolution in experimental Escherichia coli populations.
Cui, F; Yuan, B
2016-08-30
Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.
Designing and building oncolytic viruses
Maroun, Justin; Muñoz-Alía, Miguel; Ammayappan, Arun; Schulze, Autumn; Peng, Kah-Whye; Russell, Stephen
2017-01-01
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care. PMID:29387140
High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.
Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu
2016-01-12
CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Limoli, C. L.; Corcoran, J. J.; Jordan, R.; Morgan, W. F.; Schwartz, J. L.
2001-01-01
Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human-hamster hybrid cells. There was a broader distribution of radiosensitivity and a higher mean SF(2)in chromosomally unstable clones. Cytogenetic and DNA double-strand break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant variants. Copyright 2001 Cancer Research Campaign.
Kunicki, Matthew A; Amaya Hernandez, Laura C; Davis, Kara L; Bacchetta, Rosa; Roncarolo, Maria-Grazia
2018-01-01
Human CD3 + CD4 + Th cells, FOXP3 + T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3 + CD4 + T cell compartment remains questionable. In this study, we examined CD3 + CD4 + T cell populations by single-cell mass cytometry. We characterize the CD3 + CD4 + Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3 + CD4 + Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4) + FOXP3 + Treg and CD183 (CXCR3) + T-bet + Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3 + CD4 + T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3 + CD4 + T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies. Copyright © 2017 by The American Association of Immunologists, Inc.
Monitoring Cell Proliferation by Dye Dilution: Considerations for Probe Selection
Tario, Joseph D.; Conway, Alexis N.; Muirhead, Katharine A.; Wallace, Paul K.
2018-01-01
In the third edition of this series, we described protocols for labeling cell populations with tracking dyes, and addressed issues to be considered when combining two different tracking dyes with other phenotypic and viability probes for the assessment of cytotoxic effector activity and regulatory T cell functions. We summarized key characteristics of and differences between general protein and membrane labeling dyes, discussed determination of optimal staining concentrations, and provided detailed labeling protocols for both dye types. Examples of the advantages of two color cell tracking were provided in the form of protocols for: (a) independent enumeration of viable effector and target cells in a direct cytotoxicity assay; and (b) an in vitro suppression assay for simultaneous proliferation monitoring of effector and regulatory T cells. The number of commercially available fluorescent cell tracking dyes has expanded significantly since the last edition, with new suppliers and/or new spectral properties being added at least annually. In this fourth edition, we describe evaluations to be performed by the supplier and/or user when characterizing a new cell tracking dye and by the user when selecting one for use in multicolor proliferation monitoring. These include methods for: Assessment of the dye’s spectral profile on the laboratory’s flow cytometer(s) to optimize compatibility with other employed fluorochromes and minimize compensation problems;Evaluating the effect of labeling on cell growth rate;Testing the fidelity with which dye dilution reports cell division;Determining the maximum number of generations to be included when using dye dilution profiles to estimate fold population expansion or frequency of responder cells; andVerifying that relevant cell functions (e.g., effector activity) remain unaltered by tracking dye labeling. PMID:29071683
Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter
2015-02-01
Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter
2014-01-01
Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously has been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. PMID:25464947
Cipolleschi, Maria Grazia; Rovida, Elisabetta; Sbarba, Persio Dello
2013-01-01
The Culture-Repopulating Ability (CRA) assays is a method to measure in vitro the bone marrow-repopulating potential of haematopoietic cells. The method was developed in our laboratory in the course of studies based on the use of growth factor-supplemented liquid cultures to study haematopoietic stem/progenitor cell resistance to, and selection at, low oxygen tensions in the incubation atmosphere. These studies led us to put forward the first hypothesis of the existence in vivo of haematopoietic stem cell niches where oxygen tension is physiologically lower than in other bone marrow areas. The CRA assays and incubation in low oxygen were later adapted to the study of leukaemias. Stabilized leukaemia cell lines, ensuring genetically homogeneous cells and enhancing repeatability of results, were found nevertheless phenotypically heterogeneous, comprising cell subsets exhibiting functional phenotypes of stem or progenitor cells. These subsets can be assayed separately, provided an experimental system capable to select one from another (such as different criteria for incubation in low oxygen) is established. On this basis, a two-step procedure was designed, including a primary culture of leukaemia cells in low oxygen for different times, where drug treatment is applied, followed by the transfer of residual cell population (CRA assay) to a drug-free secondary culture incubated at standard oxygen tension, where the expansion of population is allowed. The CRA assays, applied to cell lines first and then to primary cells, represent a simple and relatively rapid, yet accurate and reliable, method for the pre-screening of drugs potentially active on leukaemias which in our opinion could be adopted systematically before they are tested in vivo. PMID:23394087
Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium
Hong, Kyung U.; Reynolds, Susan D.; Watkins, Simon; Fuchs, Elaine; Stripp, Barry R.
2004-01-01
Commitment of the pulmonary epithelium to bronchial and bronchiolar airway lineages occurs during the transition from pseudoglandular to cannalicular phases of lung development, suggesting that regional differences exist with respect to the identity of stem and progenitor cells that contribute to epithelial maintenance in adulthood. We previously defined a critical role for Clara cell secretory protein-expressing (CE) cells in renewal of bronchiolar airway epithelium following injury. Even though CE cells are also the principal progenitor for maintenance of the bronchial airway epithelium, CE cell injury is resolved through a mechanism involving recruitment of a second progenitor cell population that we now identify as a GSI-B4 reactive, cytokeratin-14-expressing basal cell. These cells exhibit multipotent differentiation capacity as assessed by analysis of cellular phenotype within clones of LacZ-tagged cells. Clones were derived from K14-expressing cells tagged in a cell-type-specific fashion by ligand-regulable Cre recombinase-mediated genomic rearrangement of the ROSA26 recombination substrate allele. We conclude that basal cells represent an alternative multipotent progenitor cell population of bronchial airways and that progenitor cell selection is dictated by the type of airway injury. PMID:14742263
Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C
2012-04-01
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25 µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. Copyright © 2011 Wiley Periodicals, Inc.
The sweet taste of death: glucose triggers apoptosis during yeast chronological aging.
Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Madeo, Frank
2010-10-01
As time goes by, a postmitotic cell ages following a degeneration process ultimately ending in cell death. This phenomenon is evolutionary conserved and present in unicellular eukaryotes as well, making the yeast chronological aging system an appreciated model. Here, single cells die in a programmed fashion (both by apoptosis and necrosis) for the benefit of the whole population. Besides its meaning for aging and cell death research, age-induced programmed cell death represents the first experimental proof for the so-called group selection theory: Apoptotic genes became selected during evolution because of the benefits they might render to the whole cell culture and not to the individual cell. Many anti‐aging stimuli have been discovered in the yeast chronological aging system and have afterwards been confirmed in higher cells or organisms. New work from the Burhans group (this issue) now demonstrates that glucose signaling has a progeriatric effect on chronologically aged yeast cells: Glucose administration results in a diminished efficacy of cells to enter quiescence, finally causing superoxide‐mediated replication stress and apoptosis.
Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.
Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D
2011-01-01
Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.
Loss of DNA Mismatch Repair Imparts a Selective Advantage in Planarian Adult Stem Cells
Hollenbach, Jessica P.; Resch, Alissa M.; Palakodeti, Dasaradhi; Graveley, Brenton R.; Heinen, Christopher D.
2011-01-01
Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis. PMID:21747960
[B lymphocyte clonal evolution of human reactive lymph nodes revealed by lineage tree analysis].
Tabibian-Keissar, Hilla; Schiby, Ginette; Azogui-Rosenthal, Noemie; Hazanov, Helena; Rakovsky, Aviya Shapira; Michaeli, Miri; Rosenblatt, Kinneret; Mehr, Ramit; Barshack, Iris
2013-06-01
Hypermutation and selection processes, characterizing T-dependent B cell responses taking place in germinal centers of lymph nodes, lead to B cell receptor affinity maturation. Those immune responses lead to the development of memory B cells and plasma cells that secrete high amounts of antibody molecules. The dynamics of B cell clonal evolution during affinity maturation has significant importance in infectious and autoimmune diseases, malignancies and aging. Immunoglobulin (Ig) gene mutational Lineage tree construction by comparing variable regions of Ig-gene sequences to the Ig germline gene is an interesting approach for studying B cell cLonal evolution. Lineage tree shapes and Ig gene mutations can be evaluated not only qualitatively and intuitively, but also quantitatively, and thus reveal important information related to hypermutation and selection. In this paper we describe the experimental protocols that we used for PCR amplification of Igvariable region genes from human formalin fixed paraffin embedded reactive lymph node tissues and the subsequent bioinformatical analyses of sequencing data using Ig mutational lineage trees. B cell populations of three out of four reactive Lymph node tissues were composed of several clones. Most of the Ig gene mutational lineage trees were small and narrow. Significant differences were not detected by quantification of Lineage trees. B lymphocyte clones that were detected in human reactive lymph node tissues represent major responding clones in normal polyclonal immune response. This result is in line with the polyclonal profile of B Lymphocyte populations that reside in reactive lymph node tissues.
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges
2016-01-01
Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges
2016-03-01
The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.
Vieira, Marcos C; Zinder, Daniel; Cobey, Sarah
2018-01-01
Abstract High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable “hotspot” motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza. PMID:29688540
Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells
Si, Bailu; Romani, Sandro; Tsodyks, Misha
2014-01-01
The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. PMID:24743341
Ekerfelt, C; Dahle, C; Weissert, R; Kvarnström, M; Olsson, T; Ernerudh, J
2001-01-01
A causal role of IL-4 (Th2) production for recovery in experimental allergic neuritis (EAN) was indicated by experiments where Th1-like autoreactive cell populations, taken from the induction phase of the disease, were deviated to extensive secretion of IL-4 in a selective fashion, by ex vivo stimulation with autoantigen in the presence of IL-4. The deviated cells were adoptively transferred to EAN rats at a time just prior to the onset of clinical signs. This treatment ameliorated EAN compared with sham treatment. This therapeutic approach, with generation of autoreactive IL-4-secreting cells ex vivo followed by subsequent adoptive transfer, may become a new selective treatment of organ-specific autoimmune diseases since, in contrast to previous attempts, it is done in a physiological and technically easy way. PMID:11168007
Review: The transcripts associated with organ allograft rejection.
Halloran, Philip F; Venner, Jeffery M; Madill-Thomsen, Katelynn S; Einecke, Gunilla; Parkes, Michael D; Hidalgo, Luis G; Famulski, Konrad S
2018-04-01
The molecular mechanisms operating in human organ transplant rejection are best inferred from the mRNAs expressed in biopsies because the corresponding proteins often have low expression and short half-lives, while small non-coding RNAs lack specificity. Associations should be characterized in a population that rigorously identifies T cell-mediated (TCMR) and antibody-mediated rejection (ABMR). This is best achieved in kidney transplant biopsies, but the results are generalizable to heart, lung, or liver transplants. Associations can be universal (all rejection), TCMR-selective, or ABMR-selective, with universal being strongest and ABMR-selective weakest. Top universal transcripts are IFNG-inducible (eg, CXCL11 IDO1, WARS) or shared by effector T cells (ETCs) and NK cells (eg, KLRD1, CCL4). TCMR-selective transcripts are expressed in activated ETCs (eg, CTLA4, IFNG), activated (eg, ADAMDEC1), or IFNG-induced macrophages (eg, ANKRD22). ABMR-selective transcripts are expressed in NK cells (eg, FGFBP2, GNLY) and endothelial cells (eg, ROBO4, DARC). Transcript associations are highly reproducible between biopsy sets when the same rejection definitions, case mix, algorithm, and technology are applied, but exact ranks will vary. Previously published rejection-associated transcripts resemble universal and TCMR-selective transcripts due to incomplete representation of ABMR. Rejection-associated transcripts are never completely rejection-specific because they are shared with the stereotyped response-to-injury and innate immunity. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.K. Roe
2001-12-11
This report is a summary of socioeconomic data analyses conducted in support of the Radiological Monitoring Program during fiscal year 2001. Socioeconomic data contained in this report include estimates for the years 2000 and 2001 of the resident population in the vicinity of Yucca Mountain. The estimates presented in this report are based on selected Census 2000 statistics, and housing and population data that were acquired and developed in accordance with LP-RS-00 1 Q-M&0, Scientific Investigation of Economic, Demographic, and Agricultural Characteristics in the Vicinity of Yucca Mountain. The study area from which data were collected is delineated by amore » radial grid, consisting of 160 grid cells, that is suitable for evaluating the pathways and potential impacts of a release of radioactive materials to the environment within a distance of 84 kilometers from Yucca Mountain. Data are presented in a tabular format by the county, state, area, and grid cell in which housing units, households, and resident population are located. Also included is a visual representation of the distribution of the 2000 residential populations within the study area, showing Census 2000 geography, county boundaries, and taxing district boundaries for selected communities.« less
A Tradeoff Drives the Evolution of Reduced Metal Resistance in Natural Populations of Yeast
Chang, Shang-Lin; Leu, Jun-Yi
2011-01-01
Various types of genetic modification and selective forces have been implicated in the process of adaptation to novel or adverse environments. However, the underlying molecular mechanisms are not well understood in most natural populations. Here we report that a set of yeast strains collected from Evolution Canyon (EC), Israel, exhibit an extremely high tolerance to the heavy metal cadmium. We found that cadmium resistance is primarily caused by an enhanced function of a metal efflux pump, PCA1. Molecular analyses demonstrate that this enhancement can be largely attributed to mutations in the promoter sequence, while mutations in the coding region have a minor effect. Reconstruction experiments show that three single nucleotide substitutions in the PCA1 promoter quantitatively increase its activity and thus enhance the cells' cadmium resistance. Comparison among different yeast species shows that the critical nucleotides found in EC strains are conserved and functionally important for cadmium resistance in other species, suggesting that they represent an ancestral type. However, these nucleotides had diverged in most Saccharomyces cerevisiae populations, which gave cells growth advantages under conditions where cadmium is low or absent. Our results provide a rare example of a selective sweep in yeast populations driven by a tradeoff in metal resistance. PMID:21483812
Otsu, M; Sugamura, K; Candotti, F
2000-09-20
Corrective gene transfer into hematopoietic stem cells (HSCs) is being investigated as therapy for X-linked severe combined immunodeficiency (XSCID) and it is hoped that selective advantage of gene-corrected HSCs will help in achieving full immune reconstitution after treatment. Lines of evidence from the results of allogeneic bone marrow transplantation in patients with XSCID support this hypothesis that, however, has not been rigorously tested in an experimental system. We studied the competition kinetics between normal and XSCID bone marrow (BM) cells using a murine bone marrow transplantation (BMT) model. For easy chimerism determination, we used genetic marking with retrovirus-mediated expression of the enhanced green fluorescent protein (EGFP). We found that XSCID BM cells were able to compete with normal BM cells for engraftment of myeloid lineages in a dose-dependent manner, whereas we observed selective repopulation of T, B, and NK cells deriving from normal BM cells. This was true despite the evidence of competitive engraftment of XSCID lineage marker-negative/c-Kit-positive (Lin-/c-Kit+) cells in the bone marrow of treated animals. From these results we extrapolate that genetic correction of XSCID HSCs will result in selective advantage of gene-corrected lymphoid lineages with consequent restoration of lymphocyte populations and high probability of clinical benefit.
[Embryonic stem cells. Future perspectives].
Groebner, M; David, R; Franz, W M
2006-05-01
Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.
Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.
2015-01-01
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179
Selection, adaptation, and predictive information in changing environments
NASA Astrophysics Data System (ADS)
Feltgen, Quentin; Nemenman, Ilya
2014-03-01
Adaptation by means of natural selection is a key concept in evolutionary biology. Individuals better matched to the surrounding environment outcompete the others. This increases the fraction of the better adapted individuals in the population, and hence increases its collective fitness. Adaptation is also prominent on the physiological scale in neuroscience and cell biology. There each individual infers properties of the environment and changes to become individually better, improving the overall population as well. Traditionally, these two notions of adaption have been considered distinct. Here we argue that both types of adaptation result in the same population growth in a broad class of analytically tractable population dynamics models in temporally changing environments. In particular, both types of adaptation lead to subextensive corrections to the population growth rates. These corrections are nearly universal and are equal to the predictive information in the environment time series, which is also the characterization of the time series complexity. This work has been supported by the James S. McDonnell Foundation.
Antecedents of cell aging research.
Hayflick, L
1989-01-01
Our observation that normal human and animal cells have a limited capacity to divide and function in vitro overturned a dogma held since the turn of the century. The dogma held that cultured normal cells are immortal and gerontologists interpreted this to mean that aging, therefore, could not be the result of intracellular events. We concluded that longevity and aging do result from intracellular events, and, in the subsequent 30 years, the validity of our finding has been widely confirmed. Other major findings have been made: (a) The number of population doublings and functional events that a cultured normal cell can undergo is inversely proportional to donor age and, probably, directly proportional to species longevity; (b) the limit on cell division and function also occurs in vivo when normal cells are transplanted seriatim; (c) as cell doublings or functional events reach their limit, changes occur in hundreds of variables from the molecular to the whole cell. Most importantly, many of these changes are identical to those seen in intact humans and animals as they age; (d) WI-38, the first widely distributed normal human cell strain has retained its memory of population doubling level during 27 years of cryogenic storage. This is the longest time that any normal human cell has ever been preserved. Evidence that longevity is determined by genetic events is overwhelming but evidence that age changes are the result of gene expression is not. Normal age changes must be distinguished from disease. Because few feral animals ever become old, natural selection could not have favored the development of a genetically programmed aging process. In the 2 or 3 million years of human existence, too few old humans existed to have provided a selective advantage favoring the development of a genetic program that would determine age changes. The selective advantage of maintaining physiological vigor for as long as possible in order to insure maximum reproductive success may be the essential indirect determinant of longevity. Natural selection has provided sexually mature animals with extraordinary reserve capacities in virtually all organs. After sexual maturation, animals continue to function by utilizing the reserve capacity that evolved to insure that they would attain reproductive success. The magnitude of reserve capacity is the essential element in determining postdevelopmental longevity. Thus "Why do we age?" may be the wrong question. The right question may be "Why do we live as long as we do?"
Nemat-Gorgani, Neda; Hilton, Hugo G; Henn, Brenna M; Lin, Meng; Gignoux, Christopher R; Myrick, Justin W; Werely, Cedric J; Granka, Julie M; Möller, Marlo; Hoal, Eileen G; Yawata, Makoto; Yawata, Nobuyo; Boelen, Lies; Asquith, Becca; Parham, Peter; Norman, Paul J
2018-04-15
The functions of human NK cells in defense against pathogens and placental development during reproduction are modulated by interactions of killer cell Ig-like receptors (KIRs) with HLA-A, -B and -C class I ligands. Both receptors and ligands are highly polymorphic and exhibit extensive differences between human populations. Indigenous to southern Africa are the KhoeSan, the most ancient group of modern human populations, who have highest genomic diversity worldwide. We studied two KhoeSan populations, the Nama pastoralists and the ≠Khomani San hunter-gatherers. Comprehensive next-generation sequence analysis of HLA-A , -B , and -C and all KIR genes identified 248 different KIR and 137 HLA class I , which assort into ∼200 haplotypes for each gene family. All 74 Nama and 78 ≠Khomani San studied have different genotypes. Numerous novel KIR alleles were identified, including three arising by intergenic recombination. On average, KhoeSan individuals have seven to eight pairs of interacting KIR and HLA class I ligands, the highest diversity and divergence of polymorphic NK cell receptors and ligands observed to date. In this context of high genetic diversity, both the Nama and the ≠Khomani San have an unusually conserved, centromeric KIR haplotype that has arisen to high frequency and is different in the two KhoeSan populations. Distinguishing these haplotypes are independent mutations in KIR2DL1 , which both prevent KIR2DL1 from functioning as an inhibitory receptor for C2 + HLA-C. The relatively high frequency of C2 + HLA-C in the Nama and the ≠Khomani San appears to have led to natural selection against strong inhibitory C2-specific KIR. Copyright © 2018 by The American Association of Immunologists, Inc.
Identification of diverse astrocyte populations and their malignant analogs.
John Lin, Chia-Ching; Yu, Kwanha; Hatcher, Asante; Huang, Teng-Wei; Lee, Hyun Kyoung; Carlson, Jeffrey; Weston, Matthew C; Chen, Fengju; Zhang, Yiqun; Zhu, Wenyi; Mohila, Carrie A; Ahmed, Nabil; Patel, Akash J; Arenkiel, Benjamin R; Noebels, Jeffrey L; Creighton, Chad J; Deneen, Benjamin
2017-03-01
Astrocytes are the most abundant cell type in the brain, where they perform a wide array of functions, yet the nature of their cellular heterogeneity and how it oversees these diverse roles remains shrouded in mystery. Using an intersectional fluorescence-activated cell sorting-based strategy, we identified five distinct astrocyte subpopulations present across three brain regions that show extensive molecular diversity. Application of this molecular insight toward function revealed that these populations differentially support synaptogenesis between neurons. We identified correlative populations in mouse and human glioma and found that the emergence of specific subpopulations during tumor progression corresponded with the onset of seizures and tumor invasion. In sum, we have identified subpopulations of astrocytes in the adult brain and their correlates in glioma that are endowed with diverse cellular, molecular and functional properties. These populations selectively contribute to synaptogenesis and tumor pathophysiology, providing a blueprint for understanding diverse astrocyte contributions to neurological disease.
McKenzie, Sam; Keene, Chris; Farovik, Anja; Blandon, John; Place, Ryan; Komorowski, Robert; Eichenbaum, Howard
2016-01-01
Here we consider the value of neural population analysis as an approach to understanding how information is represented in the hippocampus and cortical areas and how these areas might interact as a brain system to support memory. We argue that models based on sparse coding of different individual features by single neurons in these areas (e.g., place cells, grid cells) are inadequate to capture the complexity of experience represented within this system. By contrast, population analyses of neurons with denser coding and mixed selectivity reveal new and important insights into the organization of memories. Furthermore, comparisons of the organization of information in interconnected areas suggest a model of hippocampal-cortical interactions that mediates the fundamental features of memory. PMID:26748022
Selective flow-induced vesicle rupture to sort by membrane mechanical properties
NASA Astrophysics Data System (ADS)
Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria
2015-08-01
Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.
Selective flow-induced vesicle rupture to sort by membrane mechanical properties
Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria
2015-01-01
Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells. PMID:26302783
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Virions at the gates: receptors and the host-virus arms race.
Coffin, John M
2013-01-01
All viruses need to bind to specific receptor molecules on the surface of target cells to initiate infection. Virus-receptor binding is highly specific, and this specificity determines both the species and the cell type that can be infected by a given virus. In some well-studied cases, the virus-binding region on the receptor has been found to be unrelated to the receptor's normal cellular function. Resistance to virus infection can thus evolve by selection of mutations that alter amino acids in the binding region with minimal effect on normal function. This sort of positive selection can be used to infer the history of the host-virus "arms race" during their coevolution. In a new study, Demogines et al. use a combination of phylogenetic, structural, and virological analysis to infer the history and significance of positive selection on the transferrin receptor TfR1, a housekeeping protein required for iron uptake and the cell surface receptor for at least three different types of virus. The authors show that only two parts of the rodent TfR1 molecule have been subject to positive selection and that these correspond to the binding sites for two of these viruses-the mouse mammary tumor virus (a retrovirus) and Machupo virus (an arenavirus). They confirmed this result by introducing the inferred binding site mutations into the wild-type protein and testing for receptor function. Related arenaviruses are beginning to spread in human populations in South America as the cause of often fatal hemorrhagic fevers, and, although Demogines et al. could find no evidence of TfR1 mutations in this region that might have been selected as a consequence of human infection, the authors identified one such mutation in Asian populations that affects infection with these viruses.
Lay, John C.; Peden, David B.; Alexis, Neil E.
2012-01-01
Background The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. Objective To develop a gating strategy based on specific antibody panels in combination with light scatter properties for flow cytometric evaluation of sputum cells. Methods Healthy and mild asthmatic volunteers underwent sputum induction. Manually selected mucus “plug” material was treated with dithiothrietol, filtered and total leukocytes acquired. Multicolor flow cytometry was performed using specific gating strategies based on light scatter properties, differential expression of CD45 and cell lineage markers to discriminate leukocytes from squamous epithelial cells and debris. Results The combination of forward scatter and CD45 expression reliably segregated sputum leukocytes from contaminating squamous epithelial cells and debris. Overlap of major leukocyte populations (neutrophils, macrophages/monocytes) required the use of specific antibodies (e.g. CD16, CD64, CD14, HLA-DR) that differentiated granulocytes from monocytes and macrophages. These gating strategies allowed identification of small populations of eosinophils, CD11c+ myeloid dendritic cells, B cells and NK cells. Conclusions Multicolor flow cytometry can be successfully applied to sputum samples to identify and characterize leukocyte populations residing on the surfaces of the central airways. PMID:21639708
IGFBP2 promotes glioma tumor stem cell expansion and survival
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, David, E-mail: dhs.zfs@gmail.com; Hsieh, Antony; Stea, Baldassarre
2010-06-25
IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance.more » These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.« less
Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors
Mori, Munemasa; Mahoney, John E.; Stupnikov, Maria R.; Paez-Cortez, Jesus R.; Szymaniak, Aleksander D.; Varelas, Xaralabos; Herrick, Dan B.; Schwob, James; Zhang, Hong; Cardoso, Wellington V.
2015-01-01
Basal cells are multipotent airway progenitors that generate distinct epithelial cell phenotypes crucial for homeostasis and repair of the conducting airways. Little is known about how these progenitor cells expand and transition to differentiation to form the pseudostratified airway epithelium in the developing and adult lung. Here, we show by genetic and pharmacological approaches that endogenous activation of Notch3 signaling selectively controls the pool of undifferentiated progenitors of upper airways available for differentiation. This mechanism depends on the availability of Jag1 and Jag2, and is key to generating a population of parabasal cells that later activates Notch1 and Notch2 for secretory-multiciliated cell fate selection. Disruption of this mechanism resulted in aberrant expansion of basal cells and altered pseudostratification. Analysis of human lungs showing similar abnormalities and decreased NOTCH3 expression in subjects with chronic obstructive pulmonary disease suggests an involvement of NOTCH3-dependent events in the pathogenesis of this condition. PMID:25564622
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes
Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José
2014-01-01
Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945
Zhu, T; Wang, N; Carr, A; Nam, D S; Moor-Jankowski, R; Cooper, D A; Ho, D D
1996-05-01
To explore the mechanism of sexual transmission of human immunodeficiency virus type 1 (HIV-1), we compared HIV-1 gp120 sequences in longitudinal samples from five acute seroconvertors with those from their corresponding sexual partners (transmitters). We used a quantitative homoduplex tracking assay to compare the overall genetic composition of HIV-1 quasispecies in each transmission pair and to track the transmitted viruses during the acute and asymptomatic stages of HIV-1 infection. In the chronically infected transmitters, HIV-1 variants in genital secretions differed from those in blood and variants in cells differed from those in cell-free plasma, indicating remarkable sequence heterogeneity in these subjects as well as compartmentalization of the virus in different bodily sites. Conversely, two of five seroconvertors had only a few related variants and three of five harbored only one viral population, indicating that in these subjects the transmitted viruses were typically homogeneous. Transmitted viruses were evident in the donor's seminal plasma (one of five cases) and even more so in their seminal cells (three of five cases), suggesting that both cell-associated and cell-free viruses can be transmitted. In every pair studied, the transmitted variant(s) represents only a minor population in the semen of the corresponding transmitter, thereby providing evidence that HIV-1 selection indeed occurs during sexual transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan
2010-11-26
Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular sensitivity to anticancer treatments. These findings may provide pivotal insights in the context of fractionated radiation-based therapeutic interventions in brain cancer.« less
Virus Resistance Is Not Costly in a Marine Alga Evolving under Multiple Environmental Stressors
Heath, Sarah E.; Knox, Kirsten; Vale, Pedro F.; Collins, Sinead
2017-01-01
Viruses are important evolutionary drivers of host ecology and evolution. The marine picoplankton Ostreococcus tauri has three known resistance types that arise in response to infection with the Phycodnavirus OtV5: susceptible cells (S) that lyse following viral entry and replication; resistant cells (R) that are refractory to viral entry; and resistant producers (RP) that do not all lyse but maintain some viruses within the population. To test for evolutionary costs of maintaining antiviral resistance, we examined whether O. tauri populations composed of each resistance type differed in their evolutionary responses to several environmental drivers (lower light, lower salt, lower phosphate and a changing environment) in the absence of viruses for approximately 200 generations. We did not detect a cost of resistance as measured by life-history traits (population growth rate, cell size and cell chlorophyll content) and competitive ability. Specifically, all R and RP populations remained resistant to OtV5 lysis for the entire 200-generation experiment, whereas lysis occurred in all S populations, suggesting that resistance is not costly to maintain even when direct selection for resistance was removed, or that there could be a genetic constraint preventing return to a susceptible resistance type. Following evolution, all S population densities dropped when inoculated with OtV5, but not to zero, indicating that lysis was incomplete, and that some cells may have gained a resistance mutation over the evolution experiment. These findings suggest that maintaining resistance in the absence of viruses was not costly. PMID:28282867
Markovsky, Ela; Vax, Einav; Ben-Shushan, Dikla; Eldar-Boock, Anat; Shukrun, Rachel; Yeini, Eilam; Barshack, Iris; Caspi, Revital; Harari-Steinberg, Orit; Pode-Shakked, Naomi; Dekel, Benjamin; Satchi-Fainaro, Ronit
2017-11-01
Cancer stem cells (CSC) form a specific population within the tumor that has been shown to have self-renewal and differentiation properties, increased ability to migrate and form metastases, and increased resistance to chemotherapy. Consequently, even a small number of cells remaining after therapy can repopulate the tumor and cause recurrence of the disease. CSCs in Wilms tumor, a pediatric renal cancer, were previously shown to be characterized by neural cell adhesion molecule (NCAM) expression. Therefore, NCAM provides a specific biomarker through which the CSC population in this tumor can be targeted. We have recently developed an NCAM-targeted nanosized conjugate of paclitaxel bound to a biodegradable polyglutamic acid polymer. In this work, we examined the ability of the conjugate to inhibit Wilms tumor by targeting the NCAM-expressing CSCs. Results show that the conjugate selectively depleted the CSC population of the tumors and effectively inhibited tumor growth without causing toxicity. We propose that the NCAM-targeted conjugate could be an effective therapeutic for Wilms tumor. Mol Cancer Ther; 16(11); 2462-72. ©2017 AACR . ©2017 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Vagos, Márcia R.; Arevalo, Hermenegild; de Oliveira, Bernardo Lino; Sundnes, Joakim; Maleckar, Mary M.
2017-09-01
Models of cardiac cell electrophysiology are complex non-linear systems which can be used to gain insight into mechanisms of cardiac dynamics in both healthy and pathological conditions. However, the complexity of cardiac models can make mechanistic insight difficult. Moreover, these are typically fitted to averaged experimental data which do not incorporate the variability in observations. Recently, building populations of models to incorporate inter- and intra-subject variability in simulations has been combined with sensitivity analysis (SA) to uncover novel ionic mechanisms and potentially clarify arrhythmogenic behaviors. We used the Koivumäki human atrial cell model to create two populations, representing normal Sinus Rhythm (nSR) and chronic Atrial Fibrillation (cAF), by varying 22 key model parameters. In each population, 14 biomarkers related to the action potential and dynamic restitution were extracted. Populations were calibrated based on distributions of biomarkers to obtain reasonable physiological behavior, and subjected to SA to quantify correlations between model parameters and pro-arrhythmia markers. The two populations showed distinct behaviors under steady state and dynamic pacing. The nSR population revealed greater variability, and more unstable dynamic restitution, as compared to the cAF population, suggesting that simulated cAF remodeling rendered cells more stable to parameter variation and rate adaptation. SA revealed that the biomarkers depended mainly on five ionic currents, with noted differences in sensitivities to these between nSR and cAF. Also, parameters could be selected to produce a model variant with no alternans and unaltered action potential morphology, highlighting that unstable dynamical behavior may be driven by specific cell parameter settings. These results ultimately suggest that arrhythmia maintenance in cAF may not be due to instability in cell membrane excitability, but rather due to tissue-level effects which promote initiation and maintenance of reentrant arrhythmia.
Impact of HLA diversity on donor selection in organ and stem cell transplantation.
Tiercy, Jean-Marie; Claas, Frans
2013-01-01
The human major histocompatibility complex is a multigene system encoding polymorphic human leucocyte antigens (HLA) that present peptides derived from pathogens to the immune system. The high diversity of HLA alleles and haplotypes in the worldwide populations represents a major barrier to organ and allogeneic hematopoietic stem cell transplantation, because HLA incompatibilities are efficiently recognized by T and B lymphocytes. In organ transplantation, pre-transplant anti-HLA antibodies need to be taken into account for organ allocation. Although HLA-incompatible transplants can be performed thanks to immunosuppressive drugs, the de novo production of anti-HLA antibodies still represents a major cause of graft failure. The HLAMatchmaker computer algorithm determines the immunogenicity of HLA mismatches and allows to define HLA antigens that will not induce an antibody response. Because of the much higher stringency of HLA compatibility criteria in stem cell transplantation, the best donor is a HLA genotypically identical sibling. However, more than 50% of the transplants are now performed with hematopoietic stem cells from volunteer donors selected from the international registry. The development of European national registries covering populations with different HLA haplotype frequencies is essential for optimizing donor search algorithms and providing the best chance for European patients to find a fully compatible donor.
Smith, Paul J; Furon, Emeline; Wiltshire, Marie; Chappell, Sally; Patterson, Laurence H; Shnyder, Steven D; Falconer, Robert A; Errington, Rachel J
2013-07-01
Polysialylation of neural cell adhesion molecule (NCAM) in small-cell lung cancer (SCLC) is thought to regulate NCAM-mediated cell-surface interactions, imparting antiadhesive properties to cells. However, SCLC cells in culture demonstrate anchorage-independent growth and spontaneously generate adherent forms. Here, the ability of polySia-NCAM to influence cell proliferation and adherence is unclear. We analyzed live SCLC cell polySia-NCAM expression by flow cytometry, using the novel combination of a polySia antibody-mimetic eGFP-tagged endosialidase and the viability dye DRAQ7. Enrichment for adherence (<30 population doublings) in SCLC cell lines resolved populations with increased (SHP-77 and COR-L279) or negligible (NCI-H69) polysialylation compared with nonadherent parent populations. Adherent forms retained NCAM expression as confirmed by immunofluorescence and immunoblotting. Initial transition to adherence and loss of polysialylation in NCI-H69 was linked to a reduced proliferation rate with no increase in cell death. This reduced proliferation rate was reiterated in vivo as determined by the growth of noninvasive subcutaneous xenografts in mice. Continued selection for enhanced substrate adherence in NCI-H69 (>150 population doublings) resolved cells with stable re-expression of polySia and increased growth rates both in vitro and in vivo. Endoneuraminidase removal of polySia from re-expressing cells showed that rapid adherence to extracellular matrix components was functionally independent of polySia. PolySia expression was not altered when isolated adherent forms underwent enforced cell-cell contact in three-dimensional culture. Coculture of polySia expression variants modulated overall polySia expression profiles indicating an influence of SCLC microcommunity composition independent of substrate adherence potential. We conclude that an obligatory linkage between substrate adherence potential and polySia expression is rejected for SCLC cells. We suggest that a degree of homeostasis operates to regulate polysialylation within heterogeneous cell populations. The findings suggest a new model for SCLC progression while the application of live cell profiling of polysialylation could be used to assess polySia-NCAM-targeted therapies. Copyright © 2013 International Society for Advancement of Cytometry.
Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.
Everman, Jamie L; Rios, Cydney; Seibold, Max A
2018-01-01
The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection, and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.
Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State
Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony
2012-01-01
A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary tumor growth was impaired in mice injected with parental cell line, but not in mice injected with Gln-ind cells. PMID:22570721
Beachfront screening for skin cancer in Texas Gulf coast surfers.
Dozier, S; Wagner, R F; Black, S A; Terracina, J
1997-01-01
Skin cancer screening programs may attract the "worried well," while those at greatest risk for skin cancer are less likely to attend. Our purpose was to compare the results of skin cancer screening examinations between persons participating in the 1992 American Academy of Dermatology-sponsored free skin cancer screening and surfers participating in a free beachfront skin cancer screening held in conjunction with a regional surfing competition. The hypothesis was that screening an at-risk population (ie, surfers) would be more productive in terms of incidence of clinically diagnosed malignant skin lesions. Surfers were significantly younger and predominantly male. The incidence of basal cell carcinoma was significantly greater in the surfing population than in the self-selected population with similar ages. This study indicates that directed skin cancer screening of an at-risk population was more productive in finding skin cancer than screening of a self-selected population. Future efforts to identify individuals with skin cancer should be broadened to include high-risk populations such as daytime outdoor athletes and high-risk occupational groups, since they may not be reached by current screening efforts.
Schilling, B.; Sondermann, W.; Zhao, F.; Griewank, K. G.; Livingstone, E.; Sucker, A.; Zelba, H.; Weide, B.; Trefzer, U.; Wilhelm, T.; Loquai, C.; Berking, C.; Hassel, J.; Kähler, K. C.; Utikal, J.; Al Ghazal, P.; Gutzmer, R.; Goldinger, S. M.; Zimmer, L.; Paschen, A.; Hillen, U.; Schadendorf, D.
2014-01-01
Background Since the majority of melanomas eventually become resistant and progress, combining selective BRAF inhibitors (BRAFi) with immunotherapies has been proposed to achieve more durable treatment responses. Here, we explored the impact of selective BRAFi on the hosts' immune system. Patients and methods Clinical data, whole blood counts (WBC) and serum lactate dehydrogenase (LDH) of 277 vemurafenib- and 65 dabrafenib-treated melanoma patients were evaluated. The frequency and phenotype of lymphocyte subpopulations were determined by flow cytometry while T cell cytokine secretion was measured by multiplex assays. Results Progression-free survival (PFS) as well as overall survival (OS) were similar in patients treated with either BRAFi. High pretreatment LDH was associated with shorter PFS and OS in both groups. During therapy, peripheral lymphocytes decreased by 24.3% (median, P < 0.0001) in vemurafenib-treated patients but remained unchanged in dabrafenib-treated patients (+1.2%, P = 0.717). Differentiation of peripheral lymphocytes of vemurafenib-treated patients showed a significant decrease in CD4+ T cells (P < 0.05). Within CD4+ T cells obtained during treatment, an increase in CCR7+CD45RA+ (naïve) and a decrease in CCR7+CD45RA− (central memory) populations were found (P < 0.01 for both). Furthermore, secretion of interferon-γ and interleukin-9 by CD4+ T cells was significantly lower in samples obtained during vemurafenib treatment compared with baseline samples. Conclusion While both compounds have comparable clinical efficacy, vemurafenib but not dabrafenib decreases patients peripheral lymphocyte counts and alters CD4+ T cell phenotype and function. Thus, selective BRAFi can significantly affect patients' peripheral lymphocyte populations. Fully understanding these effects could be critical for successfully implementing combinatorial therapies of BRAFi with immunomodulatory agents. PMID:24504444
Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.P.
1982-01-01
The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytesmore » exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.« less
Subpopulation-proteomics in prokaryotic populations.
Jahn, Michael; Seifert, Jana; von Bergen, Martin; Schmid, Andreas; Bühler, Bruno; Müller, Susann
2013-02-01
Clonal microbial cells do not behave in an identical manner and form subpopulations during cultivation. Besides varying micro-environmental conditions, cell inherent features like cell cycle dependent localization and concentration of regulatory proteins as well as epigenetic properties are well accepted mechanisms creating cell heterogeneity. Another suspected reason is molecular noise on the transcriptional and translational level. A promising tool to unravel reasons for cell heterogeneity is the combination of cell sorting and subpopulation proteomics. This review summarizes recent developments in prokaryotic single-cell analytics and provides a workflow for selection of single cells, low cell number mass spectrometry, and proteomics evaluation. This approach is useful for understanding the dependency of individual cell decisions on inherent protein profiles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rivlin-Etzion, Michal; Zhou, Kaili; Wei, Wei; Elstrott, Justin; Nguyen, Phong L.; Barres, Ben; Huberman, Andrew D.; Feller, Marla B.
2011-01-01
On-Off direction selective retinal ganglion cells (DSGCs) encode the axis of visual motion. They respond strongly to an object moving in a preferred direction and weakly to an object moving in the opposite, ‘null’, direction. Historically, On-Off DSGCs were classified into 4 subtypes according to their directional preference (anterior, posterior, superior or inferior). Here, we compare two genetically identified populations of On-Off DSGCs: DRD4-DSGCs and TRHR-DSGCs. We find that although both populations are tuned for posterior motion, they can be distinguished by a variety of physiological and anatomical criteria. First, the directional tuning of TRHR-DSGCs is broader than that of DRD4-DSGCs. Second, whereas both populations project similarly to the dorsal lateral geniculate nucleus, they project differently to the ventral lateral geniculate nucleus and the superior colliculus. Moreover, TRHR-DSGCs, but not DRD4-DSGCs, also project to the zona incerta, a thalamic area not previously known to receive direction-tuned visual information. Our findings reveal unexpected diversity among mouse On-Off DSGC subtypes that uniquely process and convey image motion to the brain. PMID:21677160
A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction
Costanzo, Salvatore; Zambrano, Gerardo; Mauro, Marco; Battaglia, Raffaele; Ferrini, Gianluca; Nastri, Flavia; Pavone, Vincenzo
2017-01-01
A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin–avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations. PMID:29182568
Rodent CNS neuron development: Timing of cell birth and death
NASA Technical Reports Server (NTRS)
Keefe, J. R.
1984-01-01
Data obtained from a staged series of single paired injections of tritiated thymidine to pregnant Wistar rats or C57B16/j mice on selected embryonic days and several postnatal times are reported. All injected specimens were allowed to come to term, each litter culled to six pups and specimens were sacrificed on PN28, with fixation and embedding for paraffin and plastic embedding. The results are derived from serial paraffin sections of PN28 animals exposed to autoradiographic processing and plotted with respect to heavily labelled cell nuclei present in the selected brain stem nuclei and sensory ganglia. Counts from each time sample/structure are totalled and the percentage of cells in the total labelled population/structure represented by each injection time interval plotted.
Panda, Deepanjan; Debnath, Manish; Mandal, Samir; Bessi, Irene; Schwalbe, Harald; Dash, Jyotirmayee
2015-01-01
The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for “turn-on” detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection. PMID:26286633
Ho, K L; Pometto, A L; Hinz, P N; Dickson, J S; Demirci, A
1997-01-01
Plastic composite supports containing 50% agricultural products (oat hulls, soybean hulls, yeast extract, soybean flour, dried bovine erythrocytes, bovine albumin, and/or mineral salts) and 50% (wt/wt) polypropylene were produced by high-temperature twin-screw extrusion. The research employed two half sets of a five-factorial fractional design (2(5 - 1)) to evaluate the effects of different agricultural components on the properties of the plastic composite supports and to select the best plastic composite support formulation for lactic acid fermentation. The biofilm population was affected by the contact angle and relative hydrophobicity of the supports (r = 0.79 to 0.82). Lactic acid was produced by the suspended cells (r = 0.96) and the biofilm on the plastic composite support discs (r = 0.85). Incorporation of yeast extract into plastic composite supports enhanced growth of free and attached cells in minimal medium (P < 0.0001). The presence of soybean hulls, yeast extract, or mineral salts in plastic composite supports produced less hydrophobic supports (P < 0.0001) and enhanced cell attachment (P < 0.03). Under all conditions, suspended-cell and polypropylene disc controls gave negligible lactic acid production and cell density. Plastic composite supports containing soybean hulls, yeast extract, soybean flour, bovine albumin, and mineral salts gave the highest biofilm population (2.3 x 10(9) CFU/g of support), cell density (absorbance of 1.8 at 620 nm), and lactic acid concentration (7.6 g/liter) in minimal medium. PMID:9212402
Single cell gene expression profiling of cortical osteoblast lineage cells.
Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon
2013-03-01
In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.
Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges
Lü, Junxuan; Zhang, Jinhui; Jiang, Cheng; Deng, Yibin; Özten, Nur; Bosland, Maarten C.
2016-01-01
The negative efficacy outcomes of double-blinded, randomized, placebo-controlled Phase III human clinical trials with selenomethionine (SeMet) and SeMet-rich selenized-yeast (Se-yeast) for prostate cancer prevention and Se-yeast for prevention of non-small cell lung cancer (NSCLC) in North America lead to rejection of SeMet/Se-yeast for cancer prevention in Se-adequate populations. We identify two major lessons from the outcomes of these trials: 1) The antioxidant hypothesis was tested in wrong subjects or patient populations. 2) The selection of Se agents was not supported by cell culture and preclinical animal efficacy data as is common in drug development. We propose that next-generation forms of Se (next-gen Se), such as methylselenol precursors, offer biologically appropriate approaches for cancer chemoprevention but these are faced with formidable challenges. Solid mechanism-based preclinical efficacy assessments and comprehensive safety studies with next-gen Se will be essential to re-vitalize the idea of cancer chemoprevention with Se in the post-SELECT era. We advocate smaller mechanism-driven Phase I/II trials with these next-gen Se to guide and justify future decisions for definitive Phase III chemoprevention efficacy trials. PMID:26595411
Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges.
Lü, Junxuan; Zhang, Jinhui; Jiang, Cheng; Deng, Yibin; Özten, Nur; Bosland, Maarten C
2016-01-01
The negative efficacy outcomes of double-blinded, randomized, placebo-controlled Phase III human clinical trials with selenomethionine (SeMet) and SeMet-rich selenized-yeast (Se-yeast) for prostate cancer prevention and Se-yeast for prevention of nonsmall cell lung cancer (NSCLC) in North America lead to rejection of SeMet/Se-yeast for cancer prevention in Se-adequate populations. We identify 2 major lessons from the outcomes of these trials: 1) the antioxidant hypothesis was tested in wrong subjects or patient populations, and 2) the selection of Se agents was not supported by cell culture and preclinical animal efficacy data as is common in drug development. We propose that next-generation forms of Se (next-gen Se), such as methylselenol precursors, offer biologically appropriate approaches for cancer chemoprevention but these are faced with formidable challenges. Solid mechanism-based preclinical efficacy assessments and comprehensive safety studies with next-gen Se will be essential to revitalize the idea of cancer chemoprevention with Se in the post-SELECT era. We advocate smaller mechanism-driven Phase I/II trials with these next-gen Se to guide and justify future decisions for definitive Phase III chemoprevention efficacy trials.
Cell type-specific manipulation with GFP-dependent Cre recombinase.
Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain W; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L
2015-09-01
There are many transgenic GFP reporter lines that allow the visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. We developed a method that exploits GFP for gene manipulation, Cre recombinase dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, which led to effective recombination selectively in GFP-labeled cells. Furthermore, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP(+) cells, we found that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins.
Sympatric speciation of spiny mice, Acomys, unfolded transcriptomically at Evolution Canyon, Israel
Li, Kexin; Wang, Huihua; Cai, Zhenyuan; Wang, Liuyang; Xu, Qinqin; Lövy, Matěj; Wang, Zhenlong; Nevo, Eviatar
2016-01-01
Spiny mice, Acomys cahirinus, colonized Israel 30,000 y ago from dry tropical Africa and inhabited rocky habitats across Israel. Earlier, we had shown by mtDNA that A. cahirinus incipiently sympatrically speciates at Evolution Canyon I (EC I) in Mount Carmel, Israel because of microclimatic interslope divergence. The EC I microsite consists of a dry and hot savannoid “African” slope (AS) and an abutting humid and cool-forested “European” slope (ES). Here, we substantiate incipient SS in A. cahirinus at EC I based on the entire transcriptome, showing that multiple slope-specific adaptive complexes across the transcriptome result in two divergent clusters. Tajima’s D distribution of the abutting Acomys interslope populations shows that the ES population is under stronger positive selection, whereas the AS population is under balancing selection, harboring higher genetic polymorphisms. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25–0.75. Remarkably, 24 and 37 putatively adaptively selected genes were detected in the AS and ES populations, respectively. The AS genes involved DNA repair, growth arrest, neural cell differentiation, and heat-shock proteins adapting to the local AS stresses of high solar radiation, drought, and high temperature. In contrast, the ES genes involved high ATP associated with energetics stress. The sharp ecological interslope divergence led to strong slope-specific selection overruling the interslope gene flow. Earlier tests suggested slope-specific mate choice. Habitat interslope-adaptive selection across the transcriptome and mate choice substantiate sympatric speciation (SS), suggesting its prevalence at EC I and commonality in nature. PMID:27370801
Adaptability of non-genetic diversity in bacterial chemotaxis
Frankel, Nicholas W; Pontius, William; Dufour, Yann S; Long, Junjiajia; Hernandez-Nunez, Luis; Emonet, Thierry
2014-01-01
Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability. DOI: http://dx.doi.org/10.7554/eLife.03526.001 PMID:25279698
DeKosky, Brandon J.; Lungu, Oana I.; Park, Daechan; Johnson, Erik L.; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D.; Ippolito, Gregory C.; Gray, Jeffrey J.; Georgiou, George
2016-01-01
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19+CD20+CD27− IgM-naive B cells, >120,000 antibody clusters from CD19+CD20+CD27+ antigen–experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ–Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511
Sickle haemoglobin, haemoglobin C and malaria mortality feedbacks.
Gonçalves, Bronner P; Gupta, Sunetra; Penman, Bridget S
2016-01-12
Sickle haemoglobin (HbS) and haemoglobin C (HbC) are both caused by point mutations in the beta globin gene, and both offer substantial malaria protection. Despite the fact that the blood disorder caused by homozygosity for HbC is much less severe than that caused by homozygosity for HbS (sickle cell anaemia), it is the sickle mutation which has come to dominate many old-world malarious regions, whilst HbC is highly restricted in its geographical distribution. It has been suggested that this discrepancy may be due to sickle cell heterozygotes enjoying a higher level of malaria protection than heterozygotes for HbC. A higher fitness of sickle cell heterozygotes relative to HbC heterozygotes could certainly have allowed the sickle cell allele to spread more rapidly. However, observations that carrying either HbC or HbS enhances an individual's capacity to transmit malaria parasites to mosquitoes could also shed light on this conundrum. A population genetic model was used to investigate the evolutionary consequences of the strength of malaria selection being correlated with either HbS frequency or HbC frequency. If the selection pressure from malaria is positively correlated with the frequency of either HbS or HbC, it is easier for HbS to succeed in the competitive interaction between the two alleles. A feedback process whereby the presence of variant haemoglobins increases the level of malaria selection in a population could have contributed to the global success of HbS relative to HbC, despite the former's higher blood disorder cost.
Shape-Dependent Optoelectronic Cell Lysis**
Kremer, Clemens; Witte, Christian; Neale, Steven L; Reboud, Julien; Barrett, Michael P; Cooper, Jonathan M
2014-01-01
We show an electrical method to break open living cells amongst a population of different cell types, where cell selection is based upon their shape. We implement the technique on an optoelectronic platform, where light, focused onto a semiconductor surface from a video projector creates a reconfigurable pattern of electrodes. One can choose the area of cells to be lysed in real-time, from single cells to large areas, simply by redrawing the projected pattern. We show that the method, based on the “electrical shadow” that the cell casts, allows the detection of rare cell types in blood (including sleeping sickness parasites), and has the potential to enable single cell studies for advanced molecular diagnostics, as well as wider applications in analytical chemistry. PMID:24402800
Taste Receptor Cells That Discriminate Between Bitter Stimuli
Caicedo, Alejandro; Roper, Stephen D.
2013-01-01
Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells. PMID:11222863
Estimating Fast Neural Input Using Anatomical and Functional Connectivity
Eriksson, David
2016-01-01
In the last 20 years there has been an increased interest in estimating signals that are sent between neurons and brain areas. During this time many new methods have appeared for measuring those signals. Here we review a wide range of methods for which connected neurons can be identified anatomically, by tracing axons that run between the cells, or functionally, by detecting if the activity of two neurons are correlated with a short lag. The signals that are sent between the neurons are represented by the activity in the neurons that are connected to the target population or by the activity at the corresponding synapses. The different methods not only differ in the accuracy of the signal measurement but they also differ in the type of signal being measured. For example, unselective recording of all neurons in the source population encompasses more indirect pathways to the target population than if one selectively record from the neurons that project to the target population. Infact, this degree of selectivity is similar to that of optogenetic perturbations; one can perturb selectively or unselectively. Thus it becomes possible to match a given signal measurement method with a signal perturbation method, something that allows for an exact input control to any neuronal population. PMID:28066189
NASA Astrophysics Data System (ADS)
Horvath, D.; Brutovsky, B.
2018-06-01
Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.
NASA Astrophysics Data System (ADS)
Li, Zheng-Yan; Xie, Zheng-Wei; Chen, Tong; Ouyang, Qi
2009-12-01
Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.
Deng, Youcai; Chu, Jianhong; Ren, Yulin; Fan, Zhijin; Ji, Xiaotian; Mundy, Bethany; Yuan, Shunzong; Hughes, Tiffany; Zhang, Jianying; Cheema, Baljash; Camardo, Andrew T.; Xia, Yong; Wu, Lai-Chu; Wang, Li-Shu; He, Xiaoming; Kinghorn, A. Douglas; Li, Xiaohui; Caligiuri, Michael A; Yu, Jianhua
2014-01-01
Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer initiating cells, and clear viral infections. However, few reports describe a natural product that selectively stimulates NK cell IFN-γ production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-γ production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 mg/ml, and stimulated IFN-γ production in both human CD56bright and CD56dim NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C’s activation of the NF-κB p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-γ production in NK cells. However, IL-12/IL-15 receptors and their related STAT signaling pathways were not significantly modulated by PL-C. PL-C induced little or no T cell IFN-γ production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively activate human NK cell IFN-γ. Given the role of IFN-γ in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted. PMID:25122922
Gardner, Shea Nicole
2007-10-23
A method and system for tailoring treatment regimens to individual patients with diseased cells exhibiting evolution of resistance to such treatments. A mathematical model is provided which models rates of population change of proliferating and quiescent diseased cells using cell kinetics and evolution of resistance of the diseased cells, and pharmacokinetic and pharmacodynamic models. Cell kinetic parameters are obtained from an individual patient and applied to the mathematical model to solve for a plurality of treatment regimens, each having a quantitative efficacy value associated therewith. A treatment regimen may then be selected from the plurlaity of treatment options based on the efficacy value.
de Montalembert, Mariane; Ferster, Alina; Colombatti, Raffaella; Rees, David C; Gulbis, Beatrice
2011-01-01
Universal neonatal screening is performed in the United States, England, the Netherlands, and several cities in Belgium, with selective screening targeted on "high-risk" population in France (globally, one quarter of all the babies born in France are screened). Newborns diagnosed with a major sickle cell syndrome (SCD) should be referred to a designated pediatric sickle cell centre, and the parents are informed that their child has SCD; this may be in the sickle cell centre by an expert physician or in the community by an experienced nurse counsellor. The pediatric sickle cell centre should organize the care of the baby.
Long Term Maintenance of Polysaccharide-specific Antibodies by IgM Secreting Cells1
Foote, Jeremy B.; Mahmoud, Tamer I.; Vale, Andre M.; Kearney, John F.
2011-01-01
Many bacteria-associated polysaccharides induce long-lived antibody responses that protect against pathogenic microorganisms. The maintenance of polysaccharide-specific antibody titers may be due to long-lived plasma cells or ongoing antigen-driven B cell activation due to polysaccharide persistence. BALB/c and VHJ558.3 transgenic (TG) mice respond to α 1→3-dextran (DEX) by generating a peak anti-DEX response at 7 days, followed by maintenance of serum antibody levels for up to 150 days. Analysis of the cellular response to DEX identified a population of short-lived, cyclophosphamide sensitive DEX-specific plasmablasts in the spleen, and a quiescent, cyclophosphamide resistant DEX-specific antibody-secreting population in the bone marrow. BrdU pulse-chase experiments demonstrated the longevity of the DEX-specific antibody-secreting population in the bone marrow. Splenic DEX-specific plasmablasts were located in the red pulp with persisting DEX-associated CD11c+ dendritic cells 90 days after immunization, whereas DEX was not detected in the bone marrow after 28 days. Selective depletion of short-lived DEX-specific plasmablasts and memory B1b B cells using cyclophosphamide and anti-CD20 treatment had a minimal impact on the maintenance of serum anti-DEX antibodies. Collectively, these findings demonstrate that the maintenance of serum polysaccharide-specific antibodies is the result of continuous antigen-driven formation of short-lived plasmablasts in the spleen and a quiescent population of antibody-secreting cells maintained in the bone marrow for a long duration. PMID:22116821
Yusop, Norhayati; Battersby, Paul; Alraies, Amr; Moseley, Ryan
2018-01-01
Within bone, mesenchymal stromal cells (MSCs) exist within the bone marrow stroma (BM-MSC) and the endosteal niche, as cells lining compact bone (CB-MSCs). This study isolated and characterised heterogeneous MSC populations from each niche and subsequently investigated the effects of extensive cell expansion, analysing population doublings (PDs)/cellular senescence, colony-forming efficiencies (CFEs), MSC cell marker expression, and osteogenic/adipogenic differentiation. CB-MSCs and BM-MSCs demonstrated similar morphologies and PDs, reaching 100 PDs. Both populations exhibited consistent telomere lengths (12–17 kb), minimal senescence, and positive telomerase expression. CB-MSCs (PD15) had significantly lower CFEs than PD50. CB-MSCs and BM-MSCs both expressed MSC (CD73/CD90/CD105); embryonic (Nanog) and osteogenic markers (Runx2, osteocalcin) but no hematopoietic markers (CD45). CB-MSCs (PD15) strongly expressed Oct4 and p16INK4A. At early PDs, CB-MSCs possessed a strong osteogenic potency and low potency for adipogenesis, whilst BM-MSCs possessed greater overall bipotentiality for osteogenesis and adipogenesis. At PD50, CB-MSCs demonstrated reduced potency for both osteogenesis and adipogenesis, compared to BM-MSCs at equivalent PDs. This study demonstrates similarities in proliferative and mesenchymal cell characteristics between CB-MSCs and BM-MSCs, but contrasting multipotentiality. Such findings support further comparisons of human CB-MSCs and BM-MSCs, facilitating selection of optimal MSC populations for regenerative medicine purposes. PMID:29765418
Casati, Anna; Varghaei-Nahvi, Azam; Feldman, Steven Alexander; Assenmacher, Mario; Rosenberg, Steven Aaron; Dudley, Mark Edward; Scheffold, Alexander
2013-10-01
The adoptive transfer of lymphocytes genetically engineered to express tumor-specific antigen receptors is a potent strategy to treat cancer patients. T lymphocyte subsets, such as naïve or central memory T cells, selected in vitro prior to genetic engineering have been extensively investigated in preclinical mouse models, where they demonstrated improved therapeutic efficacy. However, so far, this is challenging to realize in the clinical setting, since good manufacturing practices (GMP) procedures for complex cell sorting and genetic manipulation are limited. To be able to directly compare the immunological attributes and therapeutic efficacy of naïve (T(N)) and central memory (T(CM)) CD8(+) T cells, we investigated clinical-scale procedures for their parallel selection and in vitro manipulation. We also evaluated currently available GMP-grade reagents for stimulation of T cell subsets, including a new type of anti-CD3/anti-CD28 nanomatrix. An optimized protocol was established for the isolation of both CD8(+) T(N) cells (CD4(-)CD62L(+)CD45RA(+)) and CD8(+) T(CM) (CD4(-)CD62L(+)CD45RA(-)) from a single patient. The highly enriched T cell subsets can be efficiently transduced and expanded to large cell numbers, sufficient for clinical applications and equivalent to or better than current cell and gene therapy approaches with unselected lymphocyte populations. The GMP protocols for selection of T(N) and T(CM) we reported here will be the basis for clinical trials analyzing safety, in vivo persistence and clinical efficacy in cancer patients and will help to generate a more reliable and efficacious cellular product.
Akabane, Shiori; Matsuzaki, Kohei; Yamashita, Shun-ichi; Arai, Kana; Okatsu, Kei; Kanki, Tomotake; Matsuda, Noriyuki; Oka, Toshihiko
2016-01-01
Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy. PMID:27302064
Chiu, Chien-Chih; Haung, Jo-Wen; Chang, Fang-Rong; Huang, Kuang-Jing; Huang, Hsuan-Min; Huang, Hurng-Wern; Chou, Chon-Kit; Wu, Yang-Chang; Chang, Hsueh-Wei
2013-01-01
Background Most chemotherapeutic drugs for killing cancer cells are highly cytotoxic in normal cells, which limits their clinical applications. Therefore, a continuing challenge is identifying a drug that is hypersensitive to cancer cells but has minimal deleterious effects on healthy cells. The aims of this study were to evaluate the potential of 4β-hydroxywithanolide (4βHWE) for selectively killing cancer cells and to elucidate its related mechanisms. Methodology and Principal Findings Changes in survival, oxidative stress, DNA damage, and apoptosis signaling were compared between 4βHWE-treated oral cancer (Ca9-22) and normal fibroblast (HGF-1) cells. At 24 h and 48 h, the numbers of Ca9-22 cells were substantially decreased, but the numbers of HGF-1 cells were only slightly decreased. Additionally, the IC50 values for 4βHWE in the Ca9-22 cells were 3.6 and 1.9 µg/ml at 24 and 48 h, respectively. Time-dependent abnormal increases in ROS and dose-responsive mitochondrial depolarization can be exploited by using 4βHWE in chemotherapies for selectively killing cancer cells. Dose-dependent DNA damage measured by comet-nuclear extract assay and flow cytometry-based γ-H2AX/propidium iodide (PI) analysis showed relatively severer damage in the Ca9-22 cells. At both low and high concentrations, 4βHWE preferably perturbed the cell cycle in Ca9-22 cells by increasing the subG1 population and arrest of G1 or G2/M. Selective induction of apoptosis in Ca9-22 cells was further confirmed by Annexin V/PI assay, by preferential expression of phosphorylated ataxia-telangiectasia- and Rad3-related protein (p-ATR), and by cleavage of caspase 9, caspase 3, and poly ADP-ribose polymerase (PARP). Conclusions/Significance Together, the findings of this study, particularly the improved understanding of the selective killing mechanisms of 4βHWE, can be used to improve efficiency in killing oral cancer cells during chemoprevention and therapy. PMID:23705007
The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation)
Maisnier-Patin, Sophie; Roth, John R.
2015-01-01
Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac+) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F′lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F′lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac+ triggers exponential cell growth leading to a stable Lac+ revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac+ colony. Cells with multiple copies of the F′lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac+ revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns–Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions. PMID:26134316
Sebastian, Jees; Swaminath, Sharmada; Nair, Rashmi Ravindran; Jakkala, Kishor; Pradhan, Atul
2016-01-01
ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli. PMID:27895008
A pretargeted nanoparticle system for tumor cell labeling
Gunn, Jonathan; Park, Steven I.; Veiseh, Omid; Press, Oliver W.; Zhang, Miqin
2011-01-01
Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope. PMID:21107453
A pretargeted nanoparticle system for tumor cell labeling.
Gunn, Jonathan; Park, Steven I; Veiseh, Omid; Press, Oliver W; Zhang, Miqin
2011-03-01
Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope.
CRISPR-UMI: single-cell lineage tracing of pooled CRISPR-Cas9 screens.
Michlits, Georg; Hubmann, Maria; Wu, Szu-Hsien; Vainorius, Gintautas; Budusan, Elena; Zhuk, Sergei; Burkard, Thomas R; Novatchkova, Maria; Aichinger, Martin; Lu, Yiqing; Reece-Hoyes, John; Nitsch, Roberto; Schramek, Daniel; Hoepfner, Dominic; Elling, Ulrich
2017-12-01
Pooled CRISPR screens are a powerful tool for assessments of gene function. However, conventional analysis is based exclusively on the relative abundance of integrated single guide RNAs (sgRNAs) between populations, which does not discern distinct phenotypes and editing outcomes generated by identical sgRNAs. Here we present CRISPR-UMI, a single-cell lineage-tracing methodology for pooled screening to account for cell heterogeneity. We generated complex sgRNA libraries with unique molecular identifiers (UMIs) that allowed for screening of clonally expanded, individually tagged cells. A proof-of-principle CRISPR-UMI negative-selection screen provided increased sensitivity and robustness compared with conventional analysis by accounting for underlying cellular and editing-outcome heterogeneity and detection of outlier clones. Furthermore, a CRISPR-UMI positive-selection screen uncovered new roadblocks in reprogramming mouse embryonic fibroblasts as pluripotent stem cells, distinguishing reprogramming frequency and speed (i.e., effect size and probability). CRISPR-UMI boosts the predictive power, sensitivity, and information content of pooled CRISPR screens.
Brain State Effects on Layer 4 of the Awake Visual Cortex
Zhuang, Jun; Bereshpolova, Yulia; Stoelzel, Carl R.; Huff, Joseph M.; Hei, Xiaojuan; Alonso, Jose-Manuel
2014-01-01
Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory “simple” cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells—enhanced reliability, higher gain, and increased suppression in orthogonal orientation—could play a major role at increasing the speed of cortical feature detection. PMID:24623767
Unraveling the non-senescence phenomenon in Hydra.
Dańko, Maciej J; Kozłowski, Jan; Schaible, Ralf
2015-10-07
Unlike other metazoans, Hydra does not experience the distinctive rise in mortality with age known as senescence, which results from an increasing imbalance between cell damage and cell repair. We propose that the Hydra controls damage accumulation mainly through damage-dependent cell selection and cell sloughing. We examine our hypothesis with a model that combines cellular damage with stem cell renewal, differentiation, and elimination. The Hydra individual can be seen as a large single pool of three types of stem cells with some features of differentiated cells. This large stem cell community prevents "cellular damage drift," which is inevitable in complex conglomerate (differentiated) metazoans with numerous and generally isolated pools of stem cells. The process of cellular damage drift is based on changes in the distribution of damage among cells due to random events, and is thus similar to Muller's ratchet in asexual populations. Events in the model that are sources of randomness include budding, cellular death, and cellular damage and repair. Our results suggest that non-senescence is possible only in simple Hydra-like organisms which have a high proportion and number of stem cells, continuous cell divisions, an effective cell selection mechanism, and stem cells with the ability to undertake some roles of differentiated cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Persistent enhancement of bacterial motility increases tumor penetration.
Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S
2015-11-01
Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.
Lordelo, G S; Miranda-Vilela, A L; Akimoto, A K; Alves, P C Z; Hiragi, C O; Nonino, A; Daldegan, M B; Klautau-Guimarães, M N; Grisolia, C K
2012-04-19
Chronic myeloid leukemia is a hematopoietic stem cell disorder that causes uncontrolled proliferation of white blood cells. Although the clinical and biological aspects are well documented, little is known about individual susceptibility to this disease. We conducted a case-control study analyzing the prevalence of the polymorphisms MTHFR C677T, MTHFR A1298C, del{GSTM1}, del{GSTT1}, and haptoglobin in 105 patients with chronic myeloid leukemia (CML) and 273 healthy controls, using PCR-based methods. A significant association with risk of developing CML was found for MTHFR 1298AA (odds ratio (OR) = 1.794; 95% confidence interval (CI) = 1.14-2.83) and GSTM1 non-null (OR = 1.649; 95%CI = 1.05-2.6) genotypes, while MTHFR 1298AC (OR = 0.630; 95%CI = 0.40-0.99) and GSTM1 null (OR = 0.606; 95%CI = 0.21-0.77) genotypes significantly decreased this risk. There appeared to be selection for heterozygosity at the MTHFR 1298 locus. The considerable range of variation in this and other human populations may be a consequence of distinctive processes of natural selection and adaptation to variable environmental conditions. The Brazilian population is very mixed and heterogeneous; we found these two loci to be associated with CML in this population.
Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine
2014-12-01
Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.
Division of Labor, Bet Hedging, and the Evolution of Mixed Biofilm Investment Strategies.
Lowery, Nick Vallespir; McNally, Luke; Ratcliff, William C; Brown, Sam P
2017-08-08
Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. IMPORTANCE Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations. Copyright © 2017 Lowery et al.
Distribution of protein kinase C isoforms in the cat retina.
Fyk-Kolodziej, Bozena; Cai, Wenhui; Pourcho, Roberta G
2002-01-01
Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCalpha was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCbetaI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCbetaI was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCepsilon and PKCzeta was found in rod bipolar cells; PKCepsilon was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCzeta was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCbetaII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCbetaII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.
Heterogeneity of clonogenic cells in acute myeloblastic leukemia.
Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D
1985-01-01
The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic leukemic cells were found within a distinct subpopulation that was less "differentiated" than the total cell population. Clonogenic leukemic cells from different patients could be divided into three phenotype groups. In the first group (7 of 20 cases), the clonogenic cells expressed surface antigens characteristic of the normal multipotent colony-forming cell (Ia, MY9). These cases tended to have "undifferentiated" (FAB M1) morphology, and the total cell population generally lacked expression of "late" monocyte antigens such as MY3 and Mo2. A second group (seven cases) of clonogenic cells expressed surface antigens characteristic of an "early" (day 14) colony-forming unit granulocyte-monocyte (CFU-GM), and a third group (six cases) was characteristic of a "late" (day 7) CFU-GM. The cases in these latter two groups tended to have myelomonocytic (FAB M4) morphology and to express monocyte surface antigens. These results suggest that the clonogenic cells are a distinct subpopulation in all cases of AML, and may be derived from normal hematopoietic progenitor cells at multiple points in the differentiation pathway. The results further support the possibility that selected monoclonal antibodies have the potential to purge leukemic clonogenic cells from bone marrow in some AML patients without eliminating critical normal progenitor cells. PMID:3855866
Heterogeneity of clonogenic cells in acute myeloblastic leukemia.
Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D
1985-02-01
The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic leukemic cells were found within a distinct subpopulation that was less "differentiated" than the total cell population. Clonogenic leukemic cells from different patients could be divided into three phenotype groups. In the first group (7 of 20 cases), the clonogenic cells expressed surface antigens characteristic of the normal multipotent colony-forming cell (Ia, MY9). These cases tended to have "undifferentiated" (FAB M1) morphology, and the total cell population generally lacked expression of "late" monocyte antigens such as MY3 and Mo2. A second group (seven cases) of clonogenic cells expressed surface antigens characteristic of an "early" (day 14) colony-forming unit granulocyte-monocyte (CFU-GM), and a third group (six cases) was characteristic of a "late" (day 7) CFU-GM. The cases in these latter two groups tended to have myelomonocytic (FAB M4) morphology and to express monocyte surface antigens. These results suggest that the clonogenic cells are a distinct subpopulation in all cases of AML, and may be derived from normal hematopoietic progenitor cells at multiple points in the differentiation pathway. The results further support the possibility that selected monoclonal antibodies have the potential to purge leukemic clonogenic cells from bone marrow in some AML patients without eliminating critical normal progenitor cells.
Dussault, Nathalie; Ducas, Eric; Racine, Claudia; Jacques, Annie; Paré, Isabelle; Côté, Serge; Néron, Sonia
2008-11-01
In the treatment of autoimmune diseases, intravenous Igs (IVIg) are assumed to modulate immune cells through the binding of surface receptors. IVIg act upon definite human B cell populations to modulate Ig repertoire, and such modulation might proceed through intracellular signaling. However, the heterogeneity of human B cell populations complicates investigations of the intracellular pathways involved in IVIg-induced B cell modulation. The aim of this study was to establish a model allowing the screening of IVIg signal transduction in human B cell lines and to attempt transposing observations made in cell lines to normal human B lymphocytes. Nine human B cell lines were treated with IVIg with the goal of selecting the most suitable model for human B lymphocytes. The IgG(+) DB cell line, whose response was similar to that of human B lymphocytes, showed reduced IVIg modulation following addition of PD98059, an inhibitor of extracellular signal-regulated protein kinase 1/2 (ERK1/2). The IVIg-induced ERK1/2 phosphorylation was indeed proportional to the dosage of monomeric IVIg used when tested on DB cells as well as Pfeiffer cells, another IgG(+) cell line. In addition, two other intermediates, Grb2-associated binder 1 (Gab1) and Akt, showed increased phosphorylation in IVIg-treated DB cells. IVIg induction of ERK1/2 phosphorylation was finally observed in peripheral human B lymphocytes, specifically within the IgG(+) B cell population. In conclusion, IVIg immunomodulation of human B cells can thus be linked to intracellular transduction pathways involving the phosphorylation of ERK1/2, which in combination with Gab1 and Akt, may be related to B cell antigen receptor signaling.
flowVS: channel-specific variance stabilization in flow cytometry.
Azad, Ariful; Rajwa, Bartek; Pothen, Alex
2016-07-28
Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average expression of a biomarker, standard statistical methods require that variance be approximately stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances. We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance correlations from cell populations identified in each fluorescence channel. flowVS transforms each channel from all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the transformation are optimally selected by Bartlett's likelihood-ratio test so that the populations attain homogeneous variances. The optimum parameters are then used to transform the corresponding channels in every sample. flowVS is therefore an explicit variance-stabilization method that stabilizes within-population variances in each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test. With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw FC data and makes the within-population variance relatively homogeneous. We demonstrate that alternative transformation techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance. Besides flow cytometry, flowVS can also be applied to stabilize variance in microarray data. With a publicly available data set we demonstrate that flowVS performs as well as the VSN software, a state-of-the-art approach developed for microarrays. The homogeneity of variance in cell populations across FC samples is desirable when extracting features uniformly and comparing cell populations with different levels of marker expressions. The newly developed flowVS algorithm solves the variance-stabilization problem in FC and microarrays by optimally transforming data with the help of Bartlett's likelihood-ratio test. On two publicly available FC datasets, flowVS stabilizes within-population variances more evenly than the available transformation and normalization techniques. flowVS-based variance stabilization can help in performing comparison and alignment of phenotypically identical cell populations across different samples. flowVS and the datasets used in this paper are publicly available in Bioconductor.
Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I.; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H.; MacLaughlin, David T.; Donahoe, Patricia K.; Wei, Xiaolong
2012-01-01
Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3−Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad− subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad− cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics. PMID:22308459
Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H; MacLaughlin, David T; Donahoe, Patricia K; Wei, Xiaolong
2012-02-14
Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad-) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad- cells. Similarly, proliferation of the 3+Ecad- cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3-Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad- subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad- cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.
Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T
2017-12-01
The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.
An integrated microfluidic platform for negative selection and enrichment of cancer cells
NASA Astrophysics Data System (ADS)
Luo, Wen-Yi; Tsai, Sung-Chi; Hsieh, Kuangwen; Lee, Gwo-Bin
2015-08-01
Circulating tumor cells (CTCs), tumor cells that disseminate from primary tumors to the bloodstream, have recently emerged as promising indicators for cancer diagnosis and prognosis. However, the technical difficulties in isolating and detecting rare CTCs have limited the widespread applicability of this method to date. In this work, a new integrated microfluidic system integrating micromixers and micropumps capable of performing ‘negative selection and enrichment’ of CTCs was developed. By using anti-human CD45 antibodies-coated magnetic beads, leukocytes were effectively removed by applying an external magnetic force, leaving behind an enriched target cell population. The on-chip CTC recovery rate was experimentally found to be 70 ± 5% after a single round of negative selection and enrichment. Meanwhile, CD45 depletion efficiency was 83.99 ± 1.00% and could be improved to 99.84 ± 0.04% after three consecutive rounds of depletion. Notably, on-chip negative selection and enrichment was 58% faster and the repeated depletion could be processed automatically. These promising results suggested the developed microfluidic chip is potentiated for a standardized CTC isolation platform. Preliminary results of the current paper were presented at Micro TAS 2014, San Antonio, Texas, USA, October 26-30, 2014.
Evolved aniline catabolism in Acinetobacter calcoaceticus during continuous culture of river water.
Wyndham, R C
1986-01-01
Adaptation of Acinetobacter calcoaceticus from river water to aniline depends on the dynamics of parent and mutant populations. The parent, Acinetobacter strain DON26 phenotype Ani0, was common in river water and assimilated aniline effectively at micromolar concentrations, but was inhibited at higher concentrations of aniline. The Ani0 phenotype was also characterized by a broad specificity for oxidation of chloroanilines by aniline-induced cells. The mutant Ani+ phenotype was represented by DON2, isolated from a population of less than 100 cells ml-1 in a mixed river water culture, and by DON261, isolated during continuous culture of DON26. Ani+ strains assimilated aniline at a greater maximum specific rate than the parent and were able to grow at concentrations of aniline greater than 16 mM. These strains cooxidized phenol after growth at high aniline concentrations, but showed reduced activity toward chloroanilines. These changes plus kinetic data, oxygen uptake data, and the results of auxanography indicate that the mutant has an increased activity and altered specificity of the initial enzyme in the aniline catabolic pathway. The parent strain, DON26, was at a selective advantage relative to the mutant at low concentrations of aniline, but was replaced by the mutant when aniline concentrations increased. Adaptation of the mixed river water community to aniline involved selection of both phenotypes. Reversion of the Ani+ to Ani0 phenotype occurred at a frequency of 10(-2) in the absence of aniline selection. Plasmid content was not altered during either acquisition or loss of the Ani+ phenotype. Adaptive changes in Acinetobacter spp. populations illustrate important differences in the catabolic activities of natural and pollutant selected strains.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3707123
Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M
1993-01-01
We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584
Jackson, Joseph A; Friberg, Ida M; Little, Susan; Bradley, Janette E
2009-01-01
Although the molecules and cells involved in triggering immune responses against parasitic worms (helminths) remain enigmatic, research has continued to implicate expansions of T-helper type 2 (Th2) cells and regulatory T-helper (Treg) cells as a characteristic response to these organisms. An intimate association has also emerged between Th2 responses and wound-healing functions. As helminth infections in humans are associated with a strong Th2/Treg immunoregulatory footprint (often termed a ‘modified Th2’ response), plausible links have been made to increased susceptibility to microbial pathogens in helminth-infected populations in the tropics and to the breakdowns in immunological control (allergy and autoimmunity) that are increasing in frequency in helminth-free developed countries. Removal of helminths and their anti-inflammatory influence may also have hazards for populations exposed to infectious agents, such as malaria and influenza, whose worst effects are mediated by excessive inflammatory reactions. The patterns seen in the control of helminth immunity are discussed from an evolutionary perspective. Whilst an inability to correctly regulate the immune system in the absence of helminth infection might seem highly counter-adaptive, the very ancient and pervasive relationship between vertebrates and helminths supports a view that immunological control networks have been selected to function within the context of a modified Th2 environment. The absence of immunoregulatory stimuli from helminths may therefore uncover maladaptations that were not previously exposed to selection. PMID:19120495
USDA-ARS?s Scientific Manuscript database
The adaptation of insect populations to insecticidal control is a continual threat human health and sustainable agriculture practices, but many complex genomic mechanisms involved remain poorly understood. A systems approach was applied to investigate the interconnections between structural and func...
Wei, Wei; Zeve, Daniel; Wang, Xueqian; Du, Yang; Tang, Wei; Dechow, Paul C.; Graff, Jonathan M.; Wan, Yihong
2011-01-01
Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ+ cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ+ cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ+ cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ+ cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation. PMID:21947280
High-Throughput Fluorescence-Based Isolation of Live C. elegans Larvae
Fernandez, Anita G.; Bargmann, Bastiaan O. R.; Mis, Emily K.; Edgley, Mark. L.; Birnbaum, Kenneth D.; Piano, Fabio
2017-01-01
For the nematode Caenorhabditis elegans, automated selection of animals of specific genotypes from a mixed pool has become essential for genetic interaction or chemical screens. To date, such selection has been accomplished using specialized instruments. However, access to such dedicated equipment is not common. Here we describe live animal fluorescence-activated cell sorting (laFACS), a protocol for automatic selection of live L1 animals using a standard FACS. We show that a FACS can be used for the precise identification of GFP-expressing and non-GFP-expressing sub-populations and can accomplish high-speed sorting of live animals. We have routinely collected 100,000 or more homozygotes from a mixed starting population within two hours and with greater than ninety-nine percent purity. The sorted animals continue to develop normally, making this protocol ideally suited for the isolation of terminal mutants for use in genetic interaction or chemical genetic screens. PMID:22814389
Extinction rates in tumour public goods games.
Gerlee, Philip; Altrock, Philipp M
2017-09-01
Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly. © 2017 The Authors.
Beaurepaire, Alexis L; Krieger, Klemens J; Moritz, Robin F A
2017-06-01
Varroa destructor is the most devastating parasite of the Western honeybee, Apis mellifera. In the light of the arm race opposing the host and its parasite, the population dynamics and genetic diversity of these organisms are key parameters. However, the life cycle of V. destructor is characterized by extreme inbreeding due to full sibling mating in the host brood cells. We here present an equation reflecting the evolution of inbreeding in such a clonal system, and compare our predictions with empirical data based on the analysis of seven microsatellite markers. This comparison revealed that the mites perform essentially incestuous mating in the beginning of the brood season. However, this pattern changes with the development of mite infestation. Despite the fact that the overall level of genetic diversity of the mites remained low through the season, multiple inbred lineages were identified in the mites we sampled in June. As a response to the decrease of brood availability and the increase of the parasite population in parallel in the colonies, these lineages recombined towards the end of the season as mites co-infest brood cells. Our results suggest that the ratio of the number of mite per brood cell in the colony determines the genetic structure of the populations of V. destructor. This intracolonial population dynamics has great relevance for the selection of acaricide resistance in V. destructor. If chemical treatments occur before the recombination phase, inbreeding will greatly enhance the fixation of resistance alleles at the colony level. Copyright © 2017 Elsevier B.V. All rights reserved.
Antibiotic resistance shaping multi-level population biology of bacteria
Baquero, Fernando; Tedim, Ana P.; Coque, Teresa M.
2013-01-01
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria. PMID:23508522
Antibiotic resistance shaping multi-level population biology of bacteria.
Baquero, Fernando; Tedim, Ana P; Coque, Teresa M
2013-01-01
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Magbanua, Mark Jesus M; Pugia, Michael; Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S; Park, John W
2015-01-01
Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.
Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S.; Park, John W.
2015-01-01
Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance. PMID:26496203
Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M.; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Gómez, Jordi; Gastaminza, Pablo
2017-01-01
ABSTRACT Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. PMID:28275194
Maraschin, M; Sugui, J A; Wood, K V; Bonham, C; Buchi, D F; Cantao, M P; Carobrez, S G; Araujo, P S; Peixoto, M L; Verpoorte, R; Fontana, J D
2002-06-01
Cell cultures of Mandevilla velutina have proved to be an interesting production system for biomass and secondary metabolites able to inhibit the hypotensive activity of bradykinin, a nonapeptide generated in plasma during tissue trauma. The crude ethyl acetate extract of cultured cells contains about 31- to 79-fold more potent anti-bradykinin compounds (e.g., velutinol A) than that obtained with equivalent extracts of tubers. Somaclonal variation may be an explanation for the wide range of inhibitor activity found in the cell cultures. The heterogeneity concerning morphology, differentiation, carbon dissimilation, and velutinol A production in M. velutina cell cultures is reported. Cell cultures showed an asynchronous growth and cells in distinct developmental stages. Meristematic cells were found as the major type, with several morphological variations. Cell aggregates consisting only of meristematic cells, differentiated cells containing specialized cell structures such as functional chloroplasts (cytodifferentiation) and cells with embryogenetic characteristics were observed. The time course for sucrose metabolism indicated cell populations with significant differences in growth and metabolic rates, with the highest biomass-producing cell line showing a cell cycle 60% shorter and a metabolic rate 33.6% higher than the control (F2 cell population). MALDI-TOF mass spectrometric analysis of velutinol A in selected cell lines demonstrated the existence of velutinol A producing and nonproducing somaclones. These results point to a high genetic heterogeneity in general and also in terms of secondary metabolite content.
Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring
Cao, Yuhong; Chen, Haodong; Birey, Fikri; Leal-Ortiz, Sergio A.; Han, Crystal M.; Santiago, Juan G.; Paşca, Sergiu P.; Wu, Joseph C.; Melosh, Nicholas A.
2017-01-01
Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation. PMID:28223521
Goonetilleke, Nilu; Liu, Michael K. P.; Turnbull, Emma L.; Salazar-Gonzalez, Jesus F.; Hawkins, Natalie; Self, Steve; Watson, Sydeaka; Betts, Michael R.; Gay, Cynthia; McGhee, Kara; Pellegrino, Pierre; Williams, Ian; Tomaras, Georgia D.; Haynes, Barton F.; Gray, Clive M.; Borrow, Persephone; Roederer, Mario; McMichael, Andrew J.; Weinhold, Kent J.
2011-01-01
In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants. PMID:21347345
Piotrowski, Jeff S; Nagarajan, Saisubramanian; Kroll, Evgueny; Stanbery, Alison; Chiotti, Kami E; Kruckeberg, Arthur L; Dunn, Barbara; Sherlock, Gavin; Rosenzweig, Frank
2012-04-02
Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution, underscoring the importance of the ecological theatre in determining the outcome of the evolutionary play.
Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J
2012-01-01
Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.
Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C
2016-05-15
Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. Copyright © 2015 Elsevier Inc. All rights reserved.
Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells.
Danalache, Bogdan A; Yu, Calvin; Gutkowska, Jolanta; Jankowski, Marek
2014-03-01
The functional oxytocin (OT) system is expressed in the human and rodent hearts. OT stimulates differentiation of cardiac stem cells into contracting cardiomyocytes (CM). In this study, we investigated OT receptors (OTR) expressed in the cells of cardiac side population (SP) and the abilities of these cells to differentiate into CM in response to the treatment with OT-Gly-Lys-Arg (OT-GKR), a dominant and biologically active form of OT, in the fetal rodent heart. Immunocytochemistry of whole rat embryo at mid gestation (E11) revealed parallel staining in the heart of OTR and the ATP-binding cassette sub-family G member 2 (brcp1) antigen the marker of the SP phenotype. Using flow cytometry, the SP cells were selected from the newborn CM stained with Höechst 33342: 5.32%±0.06% of SP and 15.2%±1.10 of main population expressed OTR on the cell surface. The OTR was detected in CD29 (6.6%) and then in CD31 (4.7%) but less frequently in CD45 (0.7%) positive SP cell subpopulations. Specifically, the phenotype of SP CD31- cell, but not SP CD31+ cells, proliferates in the presence of OT-GKR and develops large cell aggregates. Then, OT-GKR treatment induced the apparition of beating cell colonies after 11 days (10±2.78%), which increased until day 16 (52±1.21%). The cells in contractile colonies expressed the markers of a CM phenotype, such as troponin, cardiac myosin light chain-2, and actinin. Finally, SP cells stimulated by OT-GKR induced endothelial phenotype. These results suggest that the C-terminally extended OT molecule stimulates cardiac differentiation of SP CD31- cells and is involved in heart growth.
González-Rodríguez, Aldemar; Munilla, Sebastián; Mouresan, Elena F; Cañas-Álvarez, Jhon J; Díaz, Clara; Piedrafita, Jesús; Altarriba, Juan; Baro, Jesús Á; Molina, Antonio; Varona, Luis
2016-10-28
Procedures for the detection of signatures of selection can be classified according to the source of information they use to reject the null hypothesis of absence of selection. Three main groups of tests can be identified that are based on: (1) the analysis of the site frequency spectrum, (2) the study of the extension of the linkage disequilibrium across the length of the haplotypes that surround the polymorphism, and (3) the differentiation among populations. The aim of this study was to compare the performance of a subset of these procedures by using a dataset on seven Spanish autochthonous beef cattle populations. Analysis of the correlations between the logarithms of the statistics that were obtained by 11 tests for detecting signatures of selection at each single nucleotide polymorphism confirmed that they can be clustered into the three main groups mentioned above. A factor analysis summarized the results of the 11 tests into three canonical axes that were each associated with one of the three groups. Moreover, the signatures of selection identified with the first and second groups of tests were shared across populations, whereas those with the third group were more breed-specific. Nevertheless, an enrichment analysis identified the metabolic pathways that were associated with each group; they coincided with canonical axes and were related to immune response, muscle development, protein biosynthesis, skin and pigmentation, glucose metabolism, fat metabolism, embryogenesis and morphology, heart and uterine metabolism, regulation of the hypothalamic-pituitary-thyroid axis, hormonal, cellular cycle, cell signaling and extracellular receptors. We show that the results of the procedures used to identify signals of selection differed substantially between the three groups of tests. However, they can be classified using a factor analysis. Moreover, each canonical factor that coincided with a group of tests identified different signals of selection, which could be attributed to processes of selection that occurred at different evolutionary times. Nevertheless, the metabolic pathways that were associated with each group of tests were similar, which suggests that the selection events that occurred during the evolutionary history of the populations probably affected the same group of traits.
Akers, R M
2017-12-01
Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.
Adams, Derek C; Oxburgh, Leif
2009-09-01
Long-term pulse chase experiments previously identified a sizable population of BrdU-retaining cells within the renal papilla. The origin of these cells has been unclear, and in this work we test the hypothesis that they become quiescent early during the course of kidney development and organ growth. Indeed, we find that BrdU-retaining cells of the papilla can be labeled only by pulsing with BrdU from embryonic (E) day 11.25 to postnatal (P) day 7, the approximate period of kidney development in the mouse. BrdU signal in the cortex and outer medulla is rapidly diluted by cellular proliferation during embryonic development and juvenile growth, whereas cells within the papilla differentiate and exit the cell cycle during organogenesis. Indeed, by E17.5, little or no active proliferation can be seen in the distal papilla, indicating maturation of this structure in a distal-to-proximal manner during organogenesis. We conclude that BrdU-retaining cells of the papilla represent a population of cells that quiesce during embryonic development and localize within a region of the kidney that matures early. We therefore propose that selective papillary retention of BrdU arises through a combination of regionalized slowing of, and exit from, the cell cycle within the papilla during the period of ongoing kidney development, and extensive proliferative growth of the juvenile kidney resulting in dilution of BrdU below the detection level in extra-papillary regions.
Gruber, M Y; Xia, J; Yu, M; Steppuhn, H; Wall, K; Messer, D; Sharpe, A G; Acharya, S N; Wishart, D S; Johnson, D; Miller, D R; Taheri, A
2017-02-01
With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while expression remained unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population was observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa.
Hughes, Tiffany; Becknell, Brian; McClory, Susan; Briercheck, Edward; Freud, Aharon G.; Zhang, Xiaoli; Mao, Hsiaoyin; Nuovo, Gerard; Yu, Jianhua
2009-01-01
Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56+NKp44+NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22− when resting, with a minor fraction of this population becoming IL-22+ when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a TH17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34−CD117+CD161+CD94−, largely lack expression of NKp44 and CD56, and do not produce IFN-γ or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F. PMID:19244159
Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J. C.; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut
2017-01-01
Abstract The CRISPR–Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR–Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. PMID:28525578
Development of orientation tuning in simple cells of primary visual cortex
Moore, Bartlett D.
2012-01-01
Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631
An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size
NASA Astrophysics Data System (ADS)
Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng
This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.
Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells.
Tsvilling, Vadim; Donchin, Opher; Shamir, Maoz; Segev, Ronen
2012-02-01
Archer fish are known for their unique hunting method, where one fish in a group shoots down an insect with a jet of water while all the other fish are observing the prey's motion. To reap its reward, the archer fish must reach the prey before its competitors. This requires fast computation of the direction of motion of the prey, which enables the fish to initiate a turn towards the prey with an accuracy of 99%, at about 100 ms after the prey is shot. We explored the hypothesis that direction-selective retinal ganglion cells may underlie this rapid processing. We quantified the degree of directional selectivity of ganglion cells in the archer fish retina. The cells could be categorized into three groups: sharply (5%), broadly (37%) and non-tuned (58%) directionally selective cells. To relate the electrophysiological data to the behavioral results we studied a computational model and estimated the time required to accumulate sufficient directional information to match the decision accuracy of the fish. The computational model is based on two direction-selective populations that race against each other until one reaches the threshold and drives the decision. We found that this competition model can account for the observed response time at the required accuracy. Thus, our results are consistent with the hypothesis that the fast response behavior of the archer fish relies on retinal identification of movement direction. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Demberg, Thorsten; Mohanram, Venkatramanan; Venzon, David; Robert-Guroff, Marjorie
2014-01-01
As vaccine-elicited antibodies have now been associated with HIV protective efficacy, a thorough understanding of mucosal and systemic B-cell development and maturation is needed. We phenotyped mucosal memory B-cells, investigated isotype expression and homing patterns, and defined plasmablasts and plasma cells at three mucosal sites (duodenum, jejunum and rectum) in rhesus macaques, the commonly used animal model for pre-clinical vaccine studies. Unlike humans, macaque mucosal memory B-cells lacked CD27 expression; only two sub-populations were present: naïve (CD21+CD27−) and tissue-like (CD21−CD27−) memory. Similar to humans, IgA was the dominant isotype expressed. The homing markers CXCR4, CCR6, CCR9 and α4β7 were differentially expressed between naïve and tissue-like memory B-cells. Mucosal plasmablasts were identified as CD19+CD20+/−HLA-DR+Ki-67+IRF4+CD138+/− and mucosal plasma cells as CD19+CD20−HLA-DR−Ki-67−IRF4+CD138+. Both populations were CD39+/−CD27−. Plasma cell phenotype was confirmed by spontaneous IgA secretion by ELISpot of positively-selected cells and J-chain expression by real-time PCR. Duodenal, jejunal and rectal samples were similar in B-cell memory phenotype, isotype expression, homing receptors and plasmablast/plasma cell distribution among the three tissues. Thus rectal biopsies adequately monitor B-cell dynamics in the gut mucosa, and provide a critical view of mucosal B-cell events associated with development of vaccine-elicited protective immune responses and SIV/SHIV pathogenesis and disease control. PMID:24814239
Studies on the selective lysis and purification of Trypanosoma cruzi
1975-01-01
The mechanism by which culture forms of Trypanosoma cruzi are lysed by normal mammalian sera was examined. Lysis is restricted to the epimastigote form of the organism and is not dependent on the presence of agglutinins. Lysis is a complement-dependent process, the activity being generated by the alternate pathway. The selective lysis by serum was exploited to purify viable trypomastigotes by means of centrifugation in an albumin column. Essentially pure trypomastigote populations are now being employed in cell culture experiments. PMID:807672
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.
2017-01-01
Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313
Tsuchido, Tetsuaki
2017-01-01
A novel double subculture method, termed DiVSaL (Differential Viabilities between Solid and Liquid media) method, for the enumeration of injured cell population of a microorganism, which occurs after some sublethal to lethal treatment, was proposed. In this method injured cells were enumerated as the differential value between viabilities determined with two different techniques, the conventional plate counting using a solid agar medium and the growth delay analysis using a liquid medium. In the former technique, the viable cell number is obtained as colony forming unit (CFU) formed on an agar medium where sublethally injured cells are as much rescued as possible. In the latter technique, on the other hand," the integrated viability" defined by Takano and Tsuchido (1982) is introduced and is calculated from the growth delay of a stressed population, referred to unstressed one. For the growth delay analysis, in this paper, not only the original theoretical model, where the specific growth rate (and therefore the defined G 10 value) does not change after the exposure to a stress treatment, but also a novel modified theory, where the parameter changes, is proposed. On the theoretical background, this DiVSaL method as a double subculture method can be used to enumerate the injured cells without selection by addition of some inhibitor or by nutritional shortage.
Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations
Fox, Randal E; Zhong, Xue; Krone, Stephen M; Top, Eva M
2008-01-01
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p+) cells as low as 10−7. To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p+ fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids. PMID:18528415
Szollosi, Zoltan; Nemeth, Tamas; Egervari, Kristof; Nemes, Zoltan
2005-01-01
The term malignant fibrous histiocytoma (MFH) is widely used for pleomorphic soft tissue sarcomas without a specific line of differentiation. MFH is included in the category of fibrohistiocytic soft tissue tumors. MFH has a broad range of histological appearances, and it has several subtypes. All of these subtypes are composed of spindled fibroblast-like cells, undifferentiated cells, and histiocytic or histiocyte-like cells. A large number of fibroblast-like and pleomorphic cells express factor XIIIa in MFH. The cytological pleomorphism of factor XIIIa cells suggests that these cells may belong to the neoplastic population. It is equally possible that the factor XIIIa-positive cells are only activated stromal cells. The relation of factor XIIIa-positive cells to the neoplastic cell population in MFH is addressed in the present study. A morphometric approach compares the measure of nuclear pleomorphism of the factor XIIIa-positive cells with that of the factor XIIIa-negative tumor cells in high-grade MFH. The immunohistochemical approach compares the factor XIIIa-positive and -negative cell populations with regard to mutations of p53 tumor suppressor gene in p53-positive MFH cases. We selected 58 cases of soft tissue pleomorphic or storiform-pleomorphic MFH on the basis of histopathological examinations. A combination of incident light immunofluorescence for factor XIIIa and transmitted light examination for nuclear staining was used for morphometrical analysis. We found cytoplasmic factor XIIIa positivity in at least 2% of cells in 39 cases; the number of factor XIIIa-positive cells was under 0.5% in two cases, and the number of factor-positive cells ranged between 0.5% and 2% in 13 cases. Eighteen cases were analyzed with nuclear morphometry. We found that mean nuclear area and mean nuclear Ferret diameter in factor XIIIa-positive cells differed significantly from those of the tumor cells in all cases. The mean nuclear roundness factor differed significantly only in four cases. The latter finding showed that the microscopic polymorphism of factor XIIIa cells is measurable and is not merely a suspicion. The immunohistochemical positivity for p53 positivity can be accepted as the manifestation of a missense mutation of TP53 gene and as a marker of neoplastic cells. The simultaneous immunohistochemical detection of factor XIIIa and p53 in the same section revealed that factor XIIIa-positive cells were invariably p53 negative in MFH. This finding implies that the factor XIIIa cell population is non-neoplastic and belongs to the stromal component of MFH.
Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR.
Jahn, Michael; Vorpahl, Carsten; Hübschmann, Thomas; Harms, Hauke; Müller, Susann
2016-12-19
Plasmids are widely used for molecular cloning or production of proteins in laboratory and industrial settings. Constant modification has brought forth countless plasmid vectors whose characteristics in terms of average plasmid copy number (PCN) and stability are rarely known. The crucial factor determining the PCN is the replication system; most replication systems in use today belong to a small number of different classes and are available through repositories like the Standard European Vector Architecture (SEVA). In this study, the PCN was determined in a set of seven SEVA-based expression plasmids only differing in the replication system. The average PCN for all constructs was determined by Droplet Digital PCR and ranged between 2 and 40 per chromosome in the host organism Escherichia coli. Furthermore, a plasmid-encoded EGFP reporter protein served as a means to assess variability in reporter gene expression on the single cell level. Only cells with one type of plasmid (RSF1010 replication system) showed a high degree of heterogeneity with a clear bimodal distribution of EGFP intensity while the others showed a normal distribution. The heterogeneous RSF1010-carrying cell population and one normally distributed population (ColE1 replication system) were further analyzed by sorting cells of sub-populations selected according to EGFP intensity. For both plasmids, low and highly fluorescent sub-populations showed a remarkable difference in PCN, ranging from 9.2 to 123.4 for ColE1 and from 0.5 to 11.8 for RSF1010, respectively. The average PCN determined here for a set of standardized plasmids was generally at the lower end of previously reported ranges and not related to the degree of heterogeneity. Further characterization of a heterogeneous and a homogeneous population demonstrated considerable differences in the PCN of sub-populations. We therefore present direct molecular evidence that the average PCN does not represent the true number of plasmid molecules in individual cells.
Maric, D; Maric, I; Ma, W; Lahojuji, F; Somogyi, R; Wen, X; Sieghart, W; Fritschy, J M; Barker, J L
1997-03-01
Development of the CNS occurs as a complex cascade of pre-programmed events involving distinct phases of cell proliferation and differentiation. Here we show these phases correlate with cells of specific buoyant densities which can be readily accessed by density gradient fractionation. Sprague-Dawley dams were pulse-labelled with bromodeoxyuridine (BrdU) and selected regions of embryonic (E) CNS tissues at E11-22 dissociated with papain into single-cell suspensions. Proliferative cell populations were assessed by anti-BrdU and propidium iodide staining using flow cytometry. Cell differentiation was evaluated using molecular and immunocytochemical probes against mRNAs and antigens differentiating the neuroepithelial, neuronal and glial cell lineages. The results show the emergence of distinctive spatiotemporal changes in BrdU+ populations throughout the CNS during embryonic development, which were followed by corresponding changes in the cellular distributions of antigens distinguishing specific cell types. Fractionation of neocortical cells using discontinuous Percoll gradients revealed that an increasing number of cells increase their buoyancy during corticogenesis. Immunocytochemical and molecular characterization showed that the proliferative and progenitor cell populations are for the most part associated with lower buoyancy or higher specific buoyant densities (> 1.056 g/ml) whereas the post-mitotic, differentiated neurons generally separated into fractions of higher buoyancy or lower specific buoyant densities (< 1.043 g/ml). Immunostaining with antibodies against several GABAA receptor subunits (alpha 3, beta 3, gamma 2) revealed that the highest percent (70-90%) of immunopositive cells could be identified in the most buoyant, differentiating neurons found in the cortical plate/subplate regions, with the lowest percent of the immunopositive cells found in the least buoyant, proliferative and progenitor cell populations originating from the ventricular/subventricular zones. Taken together, these results indicate that buoyant density is a distinguishing characteristic of embryonic CNS cells transforming from primarily proliferative to mainly differentiating, and that fractionation of these cells according to their buoyant densities provides rapid access to the properties of specific cell lineages during the prenatal period of CNS development.
NASA Technical Reports Server (NTRS)
Dugan, Lawrence C.; Bedford, Joel S.
2003-01-01
Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.
Incorporating placental tissue in cord blood banking for stem cell transplantation.
Teofili, Luciana; Silini, Antonietta R; Bianchi, Maria; Valentini, Caterina Giovanna; Parolini, Ornella
2018-06-01
Human term placenta is comprised of various tissues from which different cell populations can be obtained, including hematopoietic stem cells and mesenchymal stem/stromal cells (MSCs). Areas covered: This review will discuss the possibility to incorporate placental tissue cells in cord blood banking. It will discuss general features of human placenta, with a brief review of the immune cells at the fetal-maternal interface and the different cell populations isolated from placenta, with a particular focus on MSCs. It will address the question as to why placenta-derived MSCs should be banked with their hematopoietic counterparts. It will discuss clinical trials which are studying safety and efficacy of placenta tissue-derived MSCs in selected diseases, and preclinical studies which have proven their therapeutic properties in other diseases. It will discuss banking of umbilical cord blood and raise several issues for improvement, and the applications of cord blood cells in non-malignant disorders. Expert Commentary: Umbilical cord blood banking saves lives worldwide. The concomitant banking of non-hematopoietic cells from placenta, which could be applied therapeutically in the future, alone or in combination to their hematopoietic counterparts, could exploit current banking processes while laying the foundation for clinical trials exploring placenta-derived cell therapies in regenerative medicine.
Generation of avian cells resembling osteoclasts from mononuclear phagocytes
NASA Technical Reports Server (NTRS)
Alvarez, J. I.; Teitelbaum, S. L.; Blair, H. C.; Greenfield, E. M.; Athanasou, N. A.; Ross, F. P.
1991-01-01
Several lines of indirect evidence suggest that a monocyte family precursor gives rise to the osteoclast, although this hypothesis is controversial. Starting with a uniform population of nonspecific esterase positive, tartrate-sensitive, acid phosphatase-producing, mannose receptor-bearing mononuclear cells, prepared from dispersed marrow of calcium-deprived laying hens by cell density separation and selective cellular adherence, we generated multinucleated cells in vitro. When cultured with devitalized bone, these cells show, by electron microscopy, the characteristic osteoclast morphology in that they are mitochondria-rich, multinucleated, and, most importantly, develop characteristic ruffled membranes at the matrix attachment site. Moreover, as documented by scanning electron microscopy, these cells pit bone slices in a manner identical to freshly isolated osteoclasts. In addition, isoenzymes of acid phosphatase from generated osteoclasts, separated by 7.5% polyacrylamide gel electrophoresis at pH 4, are identical to those of mature osteoclasts in migration pattern and tartrate resistance, although the precursor cells from which the osteoclasts are generated produce an entirely different isoenzyme, which is tartrate-sensitive and migrates less rapidly at pH 4. The fused cells also exhibit a cAMP response to prostaglandin E2. Therefore, osteoclast-like cells can be derived by in vitro culture of a marrow-derived monocyte cell population.
Garg, Akhil R; Obermayer, Klaus; Bhaumik, Basabi
2005-01-01
Recent experimental studies of hetero-synaptic interactions in various systems have shown the role of signaling in the plasticity, challenging the conventional understanding of Hebb's rule. It has also been found that activity plays a major role in plasticity, with neurotrophins acting as molecular signals translating activity into structural changes. Furthermore, role of synaptic efficacy in biasing the outcome of competition has also been revealed recently. Motivated by these experimental findings we present a model for the development of simple cell receptive field structure based on the competitive hetero-synaptic interactions for neurotrophins combined with cooperative hetero-synaptic interactions in the spatial domain. We find that with proper balance in competition and cooperation, the inputs from two populations (ON/OFF) of LGN cells segregate starting from the homogeneous state. We obtain segregated ON and OFF regions in simple cell receptive field. Our modeling study supports the experimental findings, suggesting the role of synaptic efficacy and the role of spatial signaling. We find that using this model we obtain simple cell RF, even for positively correlated activity of ON/OFF cells. We also compare different mechanism of finding the response of cortical cell and study their possible role in the sharpening of orientation selectivity. We find that degree of selectivity improvement in individual cells varies from case to case depending upon the structure of RF field and type of sharpening mechanism.
Pathogens and parasites: strategies and challenges
2000-01-01
The threat of emerging infections grows with the swelling tide of the human population and the continued disregard for the health of the environment. One of our most urgent challenges in public health is to understand the evolution and natural history of pathogens and parasites and how a sudden shift in virulence or in targeted host population may occur without warning. Viruses call for especially close watching. They are mostly genes and have mastered the art of manipulating other genes. Some are planktonic in the world's oceans, numbering 10 billion per liter of seawater; some are planktonic in our blood; some lie low inside cells; some take over a cell's replication machinery and explode the cell with new copies of themselves; and some splice their genes seamlessly into our chromosomes. The twin themes of genetic diversity and natural selection are explored in this review, with their relevance to viruses, the vertebrate immune system, virulence, and communicable disease epidemiology. PMID:16389321
Bacterial charity work leads to population-wide resistance.
Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J
2010-09-02
Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.
HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less
Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; ...
2015-12-22
HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less
Woodworth, J S; Cohen, S B; Moguche, A O; Plumlee, C R; Agger, E M; Urdahl, K B; Andersen, P
2017-03-01
The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1 - CXCR3 + cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma.
ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast.
Boczko, Erik M; Gedeon, Tomas; Stowers, Chris C; Young, Todd R
2010-07-01
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.
Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori
1998-01-01
Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164
Fuentealba, Pablo; Klausberger, Thomas; Karayannis, Theofanis; Suen, Wai Yee; Huck, Jojanneke; Tomioka, Ryohei; Rockland, Kathleen; Capogna, Marco; Studer, Michèle; Morales, Marisela; Somogyi, Peter
2015-01-01
The COUP-TFII nuclear receptor, also known as NR2F2, is expressed in the developing ventral telencephalon and modulates the tangential migration of a set of subpallial neuronal progenitors during forebrain development. Little information is available about its expression patterns in the adult brain. We have identified the cell populations expressing COUP-TFII and the contribution of some of them to network activity in vivo. Expression of COUP-TFII by hippocampal pyramidal and dentate granule cells, as well as neurons in the neocortex, formed a gradient increasing from undetectable in the dorsal to very strong in the ventral sectors. In the dorsal hippocampal CA1 area, COUP-TFII was restricted to GABAergic interneurons and expressed in several, largely nonoverlapping neuronal populations. Immunoreactivity was present in calretinin-, neuronal nitric oxide synthase-, and reelin-expressing cells, as well as in subsets of cholecystokinin- or calbindin-expressing or radiatum-retrohippocampally projecting GABAergic cells, but not in parvalbumin-and/or somatostatin-expressing interneurons. In vivo recording and juxtacellular labeling of COUP-TFII-expressing cells revealed neurogliaform cells, basket cells in stratum radiatum and tachykinin-expressing radiatum dentate innervating interneurons, identified by their axodendritic distributions. They showed cell type-selective phase-locked firing to the theta rhythm but no activation during sharp wave/ripple oscillations. These basket cells in stratum radiatum and neurogliaform cells fired at the peak of theta oscillations detected extracellularly in stratum pyramidale, unlike previously reported ivy cells, which fired at the trough. The characterization of COUP-TFII-expressing neurons suggests that this developmentally important transcription factor plays cell type-specific role(s)in the adult hippocampus. PMID:20130170
Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.
Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu
2009-07-01
Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control
Rothenberg, Ellen V.; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of Innate Lymphoid Cells (ILCs) that share transcriptional regulation programs extensively with T cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly-common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. PMID:26791859
FOXP2 Targets Show Evidence of Positive Selection in European Populations
Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C.; Fisher, Simon E.; Tyler-Smith, Chris
2013-01-01
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. PMID:23602712
Li, Hua; Hu, Yonghe; Zhang, Tao; Liu, Yang; Wang, Yantang; Yang, Tai; Li, Minhui; Luo, Qiaoli; Cheng, Yu; Zou, Qiang
2013-01-01
Previous genome-wide association study by WTCCC identified many susceptibility loci of common autoimmune diseases in British, including rheumatoid arthritis (RA). Because of the genetic heterogeneity of RA, it is necessary to replicate these susceptibility loci in other populations. Here, three SNPs with strong RA association signal in the British were analyzed in Han Chinese, and two SNPs (rs6457617 and rs11761231) were genotyped in the test cohort firstly. The rs6457617 was significantly associated with RA in the test cohort. The individuals bearing the homozygous genotype CC had 0.39-fold risk than these bearing the wild-type genotype TT (P = 0.004, OR 0.39, [95% CI 0.21-0.74]). And the protective effect of allele C was confirmed in another validation cohort with 1514 samples (P genotye CC/TT = 5.9 × 10(-10), OR 0.34, [95% CI 0.24-0.48]). The rs6457617 can be used as a tagSNP of HLA-DQA1∗03 which encoded MHC-II α chain. Since MHC restriction is important for primary T-cells in positive selection and negative selection stages, MHC protein polymorphisms may be implicated in shaping the T-cell repertoire, including the emergence of a T-cell clone involved in the inflammatory arthritis.
Martínez-Díaz, Rafael Alberto; Ibáñez-Escribano, Alexandra; Burillo, Jesús; Heras, Lorena de las; del Prado, Gema; Agulló-Ortuño, M Teresa; Julio, Luis F; González-Coloma, Azucena
2015-01-01
Artemisia absinthium is an aromatic and medicinal plant of ethnopharmacological interest and it has been widely studied. The use ofA. absinthium based on the collection of wild populations can result in variable compositions of the extracts and essential oils (EOs). The aim of this paper is the identification of the active components of the vapour pressure (VP) EO from a selected and cultivated A. absinthiumSpanish population (T2-11) against two parasitic protozoa with different metabolic pathways: Trypanosoma cruzi andTrichomonas vaginalis. VP showed activity on both parasites at the highest concentrations. The chromatographic fractionation of the VP T2-11 resulted in nine fractions (VLC1-9). The chemical composition of the fractions and the antiparasitic effects of fractions and their main compounds suggest that the activity of the VP is related with the presence oftrans-caryophyllene and dihydrochamazulene (main components of fractions VLC1 and VLC2 respectively). Additionally, the cytotoxicity of VP and fractions has been tested on several tumour and no tumour human cell lines. Fractions VLC1 and VLC2 were not cytotoxic against the nontumoural cell line HS5, suggesting selective antiparasitic activity for these two fractions. The VP and fractions inhibited the growth of human tumour cell lines in a dose-dependent manner. PMID:26107187
Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase
Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L
2016-01-01
Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. PMID:26258682
Isolated cell behavior drives the evolution of antibiotic resistance
Artemova, Tatiana; Gerardin, Ylaine; Dudley, Carmel; Vega, Nicole M; Gore, Jeff
2015-01-01
Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single-cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance. PMID:26227664
Generation of diverse neuronal subtypes in cloned populations of stem-like cells
Varga, Balázs V; Hádinger, Nóra; Gócza, Elen; Dulberg, Vered; Demeter, Kornél; Madarász, Emília; Herberth, Balázs
2008-01-01
Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. Conclusion The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification. PMID:18808670
Pesavento, Michael J; Pinto, David J
2012-11-01
Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.
Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus
Alonso-Padilla, Julio
2017-01-01
Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt's lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble. PMID:29119120
Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.
2001-01-01
Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by β2 glycoprotein I (β2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-β2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells. PMID:11717440
Nielsen, Kaare M.; van Elsas, Jan D.; Smalla, Kornelia
2000-01-01
Here we show that horizontal transfer of DNA, extracted from transgenic sugar beets, to bacteria, based on homologous recombination, can occur in soil. Restoration of a 317-bp-deleted nptII gene in Acinetobacter sp. strain BD413(pFG4) cells incubated in sterile soil microcosms was detected after addition of nutrients and transgenic plant DNA encoding a functional nptII gene conferring bacterial kanamycin resistance. Selective effects of the addition of kanamycin on the population dynamics of Acinetobacter sp. cells in soil were found, and high concentrations of kanamycin reduced the CFU of Acinetobacter sp. cells from 109 CFU/g of soil to below detection. In contrast to a chromosomal nptII-encoded kanamycin resistance, the pFG4-generated resistance was found to be unstable over a 31-day incubation period in vitro. PMID:10698801
Neural representation of orientation relative to gravity in the macaque cerebellum
Laurens, Jean; Meng, Hui; Angelaki, Dora E.
2013-01-01
Summary A fundamental challenge for maintaining spatial orientation and interacting with the world is knowledge of our orientation relative to gravity, i.e. tilt. Sensing gravity is complicated because of Einstein’s equivalence principle, where gravitational and translational accelerations are physically indistinguishable. Theory has proposed that this ambiguity is solved by tracking head tilt through multisensory integration. Here we identify a group of Purkinje cells in the caudal cerebellar vermis with responses that reflect an estimate of head tilt. These tilt-selective cells are complementary to translation-selective Purkinje cells, such that their population activities sum to the net gravito-inertial acceleration encoded by the otolith organs, as predicted by theory. These findings reflect the remarkable ability of the cerebellum for neural computation and provide novel quantitative evidence for a neural representation of gravity, whose calculation relies on long-postulated theoretical concepts such as internal models and Bayesian priors. PMID:24360549
Ramond, Cyrille; Bandeira, Antonio; Berthault, Claire; Pereira, Pablo; Cumano, Ana; Burlen-Defranoux, Odile
2015-01-01
Characterizing thymic settling progenitors is important to understand the pre-thymic stages of T cell development, essential to devise strategies for T cell replacement in lymphopenic patients. We studied thymic settling progenitors from murine embryonic day 13 and 18 thymi by two complementary in vitro and in vivo techniques, both based on the “hanging drop” method. This method allowed colonizing irradiated fetal thymic lobes with E13 and/or E18 thymic progenitors distinguished by CD45 allotypic markers and thus following their progeny. Colonization with mixed populations allows analyzing cell autonomous differences in biologic properties of the progenitors while colonization with either population removes possible competitive selective pressures. The colonized thymic lobes can also be grafted in immunodeficient male recipient mice allowing the analysis of the mature T cell progeny in vivo, such as population dynamics of the peripheral immune system and colonization of different tissues and organs. Fetal thymic organ cultures revealed that E13 progenitors developed rapidly into all mature CD3+ cells and gave rise to the canonical γδ T cell subset, known as dendritic epithelial T cells. In comparison, E18 progenitors have a delayed differentiation and were unable to generate dendritic epithelial T cells. The monitoring of peripheral blood of thymus-grafted CD3-/- mice further showed that E18 thymic settling progenitors generate, with time, larger numbers of mature T cells than their E13 counterparts, a feature that could not be appreciated in the short term fetal thymic organ cultures. PMID:26131754
A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes
NASA Astrophysics Data System (ADS)
Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon
2012-03-01
We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition.
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706
Avrahami-Moyal, Liat; Engelberg, David; Wenger, Jared. W.; Sherlock, Gavin; Braun, Sergei
2012-01-01
We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in Saccharomyces cerevisiae W303-1A under the selective pressure of ethanol. W303-1A was subjected to three rounds of turbidostat, in medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 h-1 to 0.32 h-1. Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within six days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within two days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of 6 clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 out of 19 tolerant clones the stop-codon in ssd1-d was replaced with an aminoacid-encoding codon. Three other clones contained one of two mutations in UTH1, and one clone did not contain mutations in either SSD1 or UTH1. We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol. PMID:22443114
HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.
Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P
2012-01-01
Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.
Evidence for clonal selection of gamma/delta T cells in response to a human pathogen
1991-01-01
T cells bearing gamma/delta antigen receptors comprise a resident population of intraepithelial lymphocytes in organs such as skin, gut, and lungs, where they are strategically located to contribute to the initial defense against infection. An important unsolved question about antigen-driven gamma/delta T cell responses regards the breadth of their T cell receptor (TCR) repertoire, since many specific epithelial compartments in mice display limited diversity. We have examined the diversity of TCR delta gene expression among human gamma/delta T cells from skin lesions induced by intradermal challenge with Mycobacterium leprae. We show that the vast majority of gamma/delta cells from M. leprae lesions use either V delta 1-J delta 1 or V delta 2-J delta 1 gene rearrangements and, within a given region of the lesion, display limited junctional diversity. This contrasts markedly with the extensive diversity of gamma/delta T cells from peripheral blood of these same individuals, as well as skin from normal donors. These results indicate that the gamma/delta response to M. leprae involves the selection of a limited number of clones from among a diverse repertoire, probably in response to specific mycobacterial and/or host antigens. PMID:1651977
Han, Lin; Wu, Hua-Jun; Zhu, Haiying; Kim, Kun-Yong; Marjani, Sadie L.; Riester, Markus; Euskirchen, Ghia; Zi, Xiaoyuan; Yang, Jennifer; Han, Jasper; Snyder, Michael; Park, In-Hyun; Irizarry, Rafael; Weissman, Sherman M.
2017-01-01
Abstract Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population. PMID:28126923
Biophotonics sensor acclimatization to stem cells environment
NASA Astrophysics Data System (ADS)
Mohamad Shahimin, Mukhzeer
2017-11-01
The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.
Guo, Zhe; Jiang, Jing-Hang; Zhang, Jun; Yang, Hao-Jie; Yang, Fu-Quan; Qi, Ya-Peng; Zhong, Yan-Ping; Su, Jie; Yang, Ri-Rong; Li, Le-Qun; Xiang, Bang-De
2015-01-01
Abstract Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs. PMID:26554780
Bermudez-Hernandez, Keria; Lu, Yi-Ling; Moretto, Jillian; Jain, Swati; LaFrancois, John J; Duffy, Aine M; Scharfman, Helen E
2017-09-01
The dentate gyrus (DG) principal cells are glutamatergic granule cells (GCs), and they are located in a compact cell layer. However, GCs are also present in the adjacent hilar region, but have been described in only a few studies. Therefore, we used the transcription factor prospero homeobox 1 (Prox1) to quantify GCs at postnatal day (PND) 16, 30, and 60 in a common mouse strain, C57BL/6J mice. At PND16, there was a large population of Prox1-immunoreactive (ir) hilar cells, with more in the septal than temporal hippocampus. At PND30 and 60, the size of the hilar Prox1-ir cell population was reduced. Similar numbers of hilar Prox1-expressing cells were observed in PND30 and 60 Swiss Webster mice. Prox1 is usually considered to be a marker of postmitotic GCs. However, many Prox1-ir hilar cells, especially at PND16, were not double-labeled with NeuN, a marker typically found in mature neurons. Most hilar Prox1-positive cells at PND16 co-expressed doublecortin (DCX) and calretinin, markers of immature GCs. Double-labeling with a marker of actively dividing cells, Ki67, was not detected. These results suggest that, surprisingly, a large population of cells in the hilus at PND16 are immature GCs (Type 2b and Type 3 cells). We also asked whether hilar Prox1-ir cell numbers are modifiable. To examine this issue, we conditionally deleted the proapoptotic gene BAX in Nestin-expressing cells at a time when there are numerous immature GCs in the hilus, PND2-8. When these mice were examined at PND60, the numbers of Prox1-ir hilar cells were significantly increased compared to control mice. However, deletion of BAX did not appear to change the proportion that co-expressed NeuN, suggesting that the size of the hilar Prox1-expressing population is modifiable. However, deleting BAX, a major developmental disruption, does not appear to change the proportion that ultimately becomes neurons.
Romero-Lopez, Julia; Lopez-Rodas, Victoria; Costas, Eduardo
2012-11-15
There is increasing scientific interest in how phytoplankton reacts to petroleum contamination, since crude oil and its derivatives are generating extensive contamination of aquatic environments. However, toxic effects of short-term petroleum exposure are more widely known than the adaptation of phytoplankton to long-term petroleum exposure. An analysis of short-term and long-term effects of petroleum exposure was done using experimental populations of freshwater (Scenedesmus intermedius and Microcystis aeruginosa) and marine (Dunaliella tertiolecta) microalgae isolated from pristine sites without crude oil product contamination. These strains were exposed to increased levels of petroleum and diesel oil. Short-term exposure to petroleum or diesel oil revealed a rapid inhibition of photosynthetic performance and cell proliferation in freshwater and marine phytoplankton species. A broad degree of inter-specific variation in lethal contamination level was observed. When different strains were exposed to petroleum or diesel oil over the long-term, the cultures showed massive destruction of the sensitive cells. Nonetheless, after further incubation, some cultures were able to grow again due to cells that were resistant to the toxins. By means of a fluctuation analysis, discrimination between cells that had become resistant due to physiological acclimatization and resistant cells arising from rare spontaneous mutations was accomplished. In addition, an analysis was done as to the maximum capacity of adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on mutations that confer resistance and subsequent selection of these mutants. Finally, it is certain that further mutations and selection will ultimately determine adaptation of microalgae to the environmental forcing. Copyright © 2012 Elsevier B.V. All rights reserved.
Rapid Selection of Mesenchymal Stem and Progenitor Cells in Primary Prostate Stromal Cultures
Brennen, W. Nathaniel; Kisteman, L. Nelleke; Isaacs, John T.
2016-01-01
BACKGROUND Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. METHODS Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (>25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. RESULTS MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 μm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. CONCLUSIONS Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer. PMID:26732992
Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures.
Brennen, W Nathaniel; Kisteman, L Nelleke; Isaacs, John T
2016-05-01
Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (<25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 µm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer. © 2016 Wiley Periodicals, Inc.
Dang, Tuyen T.; Esparza, Matthew A.; Maine, Erin A.; Westcott, Jill M.; Pearson, Gray W.
2015-01-01
Cell identity signals influence the invasive capability of tumor cells, as demonstrated by the selection for programs of epithelial-to-mesenchymal transition (EMT) during malignant progression. Breast cancer cells retain canonical epithelial traits and invade collectively as cohesive groups of cells, but the signaling pathways critical to their invasive capabilities are still incompletely understood. Here we report that the transcription factor ΔNp63α drives the migration of basal-like breast cancer (BLBC) cells by inducing a hybrid mesenchymal/epithelial state. Through a combination of expression analysis and functional testing across multiple BLBC cell populations, we determined that ΔNp63α induces migration by elevating the expression of the EMT program components Slug and Axl. Interestingly, ΔNp63α also increased the expression of miR205, which can silence ZEB1/2 to prevent the loss of epithelial character caused by EMT induction. In clinical specimens, co-expression of various elements of the ΔNp63α pathway confirmed its implication in motility signaling in BLBC. We observed that activation of the ΔNp63α pathway occurred during the transition from noninvasive ductal carcinoma in situ to invasive breast cancer. Notably, in an orthotopic tumor model, Slug expression was sufficient to induce collective invasion of E-cadherin expressing BLBC cells. Together, our results illustrate how ΔNp63α can drive breast cancer cell invasion by selectively engaging pro-migratory components of the EMT program while, in parallel, still promoting the retention of epithelial character. PMID:26292362
A method for deriving homogenous population of oligodendrocytes from mouse embryonic stem cells.
Neman, J; de Vellis, J
2012-06-01
There is a pressing need for new therapeutics for the generation and transplantation of oligodendrocyte to the white matter to help replace and render injured cells that are lost in demyelinating disease. There are a few protocols describing a homogenous derivation of non-manipulated mouse embryonic stem cells to oligodendrocytes (ES-OL). Moreover, protocols that are successful in producing ES-OL do so with low efficiency. Therefore, we describe clear methodology for differentiation of mouse ES cells to oligodendrocyte to a high degree of homogenity and reproducibility in vitro. In addition, taking advantage of three defined media, we can generate a defined ES to oligodendrocyte lineage while selecting against neurons and astrocytes. More specifically, (1) Glial stem cell defining media (GSCDM), supplemented with appropriate combination of SHH and RA support pro-oligodendrocyte developing neural spheres from ES cells, (2) Oligodendrocyte differentiating media, induces lineage selection of oligodendrocytes progenitors from neural stem cells, and (3) Oligodendrocyte maturation media, supports oligodendrocytes progenitor maturation. Moreover, the ES cell derived oligodendrocytes display mature properites in the prescence of rat dorsal root gangila in vitro. Thus confirming thier potential for use to invesitgate developmental pathways and future potential use of cells in transplantation towards myelin repair. Copyright © 2012 Wiley Periodicals, Inc.
Differential resistance of drinking water bacterial populations to monochloramine disinfection.
Chiao, Tzu-Hsin; Clancy, Tara M; Pinto, Ameet; Xi, Chuanwu; Raskin, Lutgarde
2014-04-01
The impact of monochloramine disinfection on the complex bacterial community structure in drinking water systems was investigated using culture-dependent and culture-independent methods. Changes in viable bacterial diversity were monitored using culture-independent methods that distinguish between live and dead cells based on membrane integrity, providing a highly conservative measure of viability. Samples were collected from lab-scale and full-scale drinking water filters exposed to monochloramine for a range of contact times. Culture-independent detection of live cells was based on propidium monoazide (PMA) treatment to selectively remove DNA from membrane-compromised cells. Quantitative PCR (qPCR) and pyrosequencing of 16S rRNA genes was used to quantify the DNA of live bacteria and characterize the bacterial communities, respectively. The inactivation rate determined by the culture-independent PMA-qPCR method (1.5-log removal at 664 mg·min/L) was lower than the inactivation rate measured by the culture-based methods (4-log removal at 66 mg·min/L). Moreover, drastic changes in the live bacterial community structure were detected during monochloramine disinfection using PMA-pyrosequencing, while the community structure appeared to remain stable when pyrosequencing was performed on samples that were not subject to PMA treatment. Genera that increased in relative abundance during monochloramine treatment include Legionella, Escherichia, and Geobacter in the lab-scale system and Mycobacterium, Sphingomonas, and Coxiella in the full-scale system. These results demonstrate that bacterial populations in drinking water exhibit differential resistance to monochloramine, and that the disinfection process selects for resistant bacterial populations.
Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6⁺CD4⁺ T Cells.
Lafferty, Mark K; Sun, Lingling; Christensen-Quick, Aaron; Lu, Wuyuan; Garzino-Demo, Alfredo
2017-05-16
Chemokine receptor type 6 (CCR6)⁺CD4⁺ T cells are preferentially infected and depleted during HIV disease progression, but are preserved in non-progressors. CCR6 is expressed on a heterogeneous population of memory CD4⁺ T cells that are critical to mucosal immunity. Preferential infection of these cells is associated, in part, with high surface expression of CCR5, CXCR4, and α4β7. In addition, CCR6⁺CD4⁺ T cells harbor elevated levels of integrated viral DNA and high levels of proliferation markers. We have previously shown that the CCR6 ligands MIP-3α and human beta defensins inhibit HIV replication. The inhibition required CCR6 and the induction of APOBEC3G. Here, we further characterize the induction of apolipoprotein B mRNA editing enzyme (APOBEC3G) by human beta defensin 2. Human beta defensin 2 rapidly induces transcriptional induction of APOBEC3G that involves extracellular signal-regulated kinases 1/2 (ERK1/2) activation and the transcription factors NFATc2, NFATc1, and IRF4. We demonstrate that human beta defensin 2 selectively protects primary CCR6⁺CD4⁺ T cells infected with HIV-1. The selective protection of CCR6⁺CD4⁺ T cell subsets may be critical in maintaining mucosal immune function and preventing disease progression.
The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis
2014-01-01
Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae. PMID:24602211
The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis.
Koziol, Uriel; Rauschendorfer, Theresa; Zanon Rodríguez, Luis; Krohne, Georg; Brehm, Klaus
2014-03-06
It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.
Visuomotor Transformation in the Fly Gaze Stabilization System
Huston, Stephen J; Krapp, Holger G
2008-01-01
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information. PMID:18651791
Kiku, Yoshio; Ozawa, Tomomi; Takahashi, Hideyuki; Kushibiki, Shiro; Inumaru, Shigeki; Shingu, Hiroyuki; Nagasawa, Yuya; Watanabe, Atsushi; Hata, Eiji; Hayashi, Tomohito
2017-09-01
The effect of intramammary infusion of recombinant bovine granulocyte-macrophage colony-stimulating factor (rbGM-CSF) and interleukin-8 (rbIL-8) on mononuclear cell populations in quarters, somatic cell count (SCC) and the California Mastitis Test (CMT) score were investigated. From the selected cows with naturally occurring Staphylococcus aureus subclinical mastitis, one quarter of each cow were selected for the infusions of rbGM-CSF (400 μg/5 mL/quarter, n = 9), rbIL-8 (1 mg/5 mL/quarter, n = 9), and phosphate-buffered saline (5 mL/quarter, n = 7). The CMT score of both cytokines post infusion temporarily increased between days 0 and 1 and significantly decreased between days 7 and 14 compared to the preinfusion level. The SCC on day 14 after infusions of rbGM-CSF tended to be lower than that of the control group. The percentage of CD14+ cells increased on days 1 and 2 post infusion of rbGM-CSF. The percentage of CD4+ and CD8+ cells also increased on days 2 and 3, suggesting that the infusion of rbGM-CSF enhanced cellular immunity in the mammary gland. In contrast, the percentage of CD14+ cells decreased on days 0.25 and 1 post infusion of rbIL-8. No significant changes in the percentages of CD4+ and CD8+ cells in milk after infusion of rbIL-8 were evident during the experimental period, which suggested that rbIL-8 had little effect on the function of T cells in the mammary gland. These results indicated that rbGM-CSF and rbIL-8 decreased the CMT score by a different mechanism and may have a potential as therapeutic agents for subclinical mastitis.
Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes
Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter
2009-01-01
Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600
Early stages in the development of human T, natural killer and thymic dendritic cells.
Spits, H; Blom, B; Jaleco, A C; Weijer, K; Verschuren, M C; van Dongen, J J; Heemskerk, M H; Res, P C
1998-10-01
T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and dendritic cells (DC). Primitive hematopoietic progenitor cells in the human thymus express CD34 and lack CD1a. When these progenitor cells develop into T cells they traverse a number of checkpoints. One early checkpoint is the induction of T-cell commitment, which correlates with appearance of CD1a and involves the loss of capacity to develop into NK cells and DC and the initiation of T-cell receptor (TCR) gene rearrangements. Basic helix-loop-helix transcription factors play a role in induction of T-cell commitment. CD1a+CD34+ cells develop into CD4+CD8 alpha+ beta+ cells by upregulating first CD4, followed by CD8 alpha and then CD8 beta. Selection for productive TCR beta gene rearrangements (beta selection) likely occurs in the CD4+CD8 alpha+ beta- and CD4+CD8 alpha+ beta+ populations. Although the T and NK-cell lineages are closely related to each other, NK cells can develop independently of the thymus. The fetal thymus is most likely one site of NK-cell development.
Nair, Renjith P; Krishnan, Lissy K
2013-04-11
In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. We demonstrated that KPCs are p63(+) and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63(+) KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a dermal fibroblast monolayer or fibrin supported cell proliferation and showed typical hexagonal morphology of keratinocytes within 15 days. Circulating KPCs were identified with p63, which differentiated into keratinocytes with expression of the cytokeratins, involucrin and filaggrin. Components of the specifically designed matrix favored KPC attachment, directed differentiation, and may turn out to be a potential vehicle for cell transplantation.
2013-01-01
Introduction In the event of chronic diabetes or burn wounds, accomplishing skin regeneration is a major concern. Autologous skin grafting is the most effective remedy, but the tissue harvest may create more nonhealing wounds. Currently available skin substitutes have a limited clinical outcome because of immune reactions arising from the xenobiotic scaffold or allogenous cells. Autologous stem cells that can be collected without an additional injury may be a viable option for skin-tissue engineering. Presence of a low number of keratinocyte progenitor cells (KPCs) within the peripheral blood mononuclear cell (PBMNC) population has been indicated. Identification, isolation, expansion, and differentiation of KPCs is necessary before they are considered for skin regeneration, which is the focus of this study. Methods Culture of isolated human PBMNCs on a cell-specific matrix was carried out to induce differentiation of KPCs. Flow cytometry and reverse transcriptase polymerase chain reaction were done for epithelial stem cell marker p63 and lineage markers cytokeratin 5 and cytokeratin 14, to track differentiation. Proliferation was confirmed by quantifying the proliferating cell nuclear antigen-expressing cells. Immunostaining with epithelial cell markers, involucrin and filaggrin, was carried out to establish terminal differentiation. Microscopic analysis confirmed growth and survival of KPCs on the dermal fibroblast monolayer and on a transplantable fibrin sheet. Results We demonstrated that KPCs are p63+ and CD34-. The specifically designed composition of the extracellular matrix was found to support selective adhesion, proliferation, and differentiation of p63+ KPCs. The PBMNC culture for 12 days under controlled conditions resulted in a homogenous population that expressed cytokeratins, and >90% of the cells were found to proliferate. Subculture for 5 days resulted in expression of filaggrin and involucrin, suggesting terminal differentiation. Transfer of matrix-selected KPCs to a dermal fibroblast monolayer or fibrin supported cell proliferation and showed typical hexagonal morphology of keratinocytes within 15 days. Conclusions Circulating KPCs were identified with p63, which differentiated into keratinocytes with expression of the cytokeratins, involucrin and filaggrin. Components of the specifically designed matrix favored KPC attachment, directed differentiation, and may turn out to be a potential vehicle for cell transplantation. PMID:23578397
Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst
2014-01-01
Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284
Palpant, Nathan J; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M
2007-09-01
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to establish methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody-tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies.
Palpant, Nathan J.; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M.
2007-01-01
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to derive methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot, and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation, and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies. PMID:17706246
Lu, Chang-Hsien; Huang, Cih-En; Chen, Min-Chi
2017-01-01
Previous studies have revealed that patients with oral or esophageal cancer are at higher risk for subsequently developing a second primary malignancy. However, it remains to be determined what association exists between oral cancer and esophageal cancer particularly in Asian countries where squamous cell carcinoma is the predominant type of esophageal cancer. A population-based study was carried out in Taiwan, where the incidence rates of both oral and esophageal squamous cell carcinomas are high, to test the hypothesis that oral cancer or esophageal cancer predisposes an individual to developing the other form of cancer. Our results showed that patients with primary oral cancer (n=45,859) had ten times the risk of second esophageal cancer compared to the general population. Within the same cohort, the reciprocal risk of oral cancer as a second primary in primary esophageal cancer patients (n=16,658) was also increased seven-fold. The bidirectional relationship suggests common risk factors between these two cancers. The present study is not only the first population-based study in Asia to validate the reciprocal relationship between oral and esophageal squamous cell carcinomas, but also will aid in the appropriate selection of high-risk patients for a future follow-up surveillance program. PMID:28562351
Lee, Kuan-Der; Wang, Ting-Yao; Lu, Chang-Hsien; Huang, Cih-En; Chen, Min-Chi
2017-07-04
Previous studies have revealed that patients with oral or esophageal cancer are at higher risk for subsequently developing a second primary malignancy. However, it remains to be determined what association exists between oral cancer and esophageal cancer particularly in Asian countries where squamous cell carcinoma is the predominant type of esophageal cancer. A population-based study was carried out in Taiwan, where the incidence rates of both oral and esophageal squamous cell carcinomas are high, to test the hypothesis that oral cancer or esophageal cancer predisposes an individual to developing the other form of cancer. Our results showed that patients with primary oral cancer (n=45,859) had ten times the risk of second esophageal cancer compared to the general population. Within the same cohort, the reciprocal risk of oral cancer as a second primary in primary esophageal cancer patients (n=16,658) was also increased seven-fold. The bidirectional relationship suggests common risk factors between these two cancers. The present study is not only the first population-based study in Asia to validate the reciprocal relationship between oral and esophageal squamous cell carcinomas, but also will aid in the appropriate selection of high-risk patients for a future follow-up surveillance program.
Biology and Clinical Relevance of Acute Myeloid Leukemia Stem Cells.
Reinisch, Andreas; Chan, Steven M; Thomas, Daniel; Majeti, Ravindra
2015-07-01
Evidence for the cancer stem cell model was first demonstrated in xenotransplanted blood and bone marrow samples from patients with acute myeloid leukemia (AML) almost two decades ago, supporting the concept that a rare clonal and mutated leukemic stem cell (LSC) population is sufficient to drive leukemic growth. The inability to eliminate LSCs with conventional therapies is thought to be the primary cause of disease relapse in AML patients, and as such, novel therapies with the ability to target this population are required to improve patient outcomes. An important step towards this goal is the identification of common immunophenotypic surface markers and biological properties that distinguish LSCs from normal hematopoietic stem and progenitor cells (HSPCs) across AML patients. This work has resulted in the development of a large number of potential LSC-selective therapies that target cell surface molecules, intracellular signaling pathways, and the bone marrow microenvironment. Here, we will review the basic biology, immunophenotypic detection, and clinical relevance of LSCs, as well as emerging biological and small-molecule strategies that either directly target LSCs or indirectly target these cells through modulation of their microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.
Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.
2016-01-01
Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268
Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua
2015-07-20
This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117 + CD34 + cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117 + CD34 + cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117 + CD34 + cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117 + CD34 + cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117 + CD34 + cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Cardiac TCs represent a unique cell population and CD117 + CD34 + cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.
James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben
2012-01-01
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855
Antiproliferative action of Xylopia aethiopica fruit extract on human cervical cancer cells.
Adaramoye, Oluwatosin A; Sarkar, Jayanta; Singh, Neetu; Meena, Sanjeev; Changkija, Bendangla; Yadav, Prem P; Kanojiya, Sanjeev; Sinha, Sudhir
2011-10-01
The anticancer potential of Xylopia aethiopica fruit extract (XAFE), and the mechanism of cell death it elicits, was investigated in various cell lines. Treatment with XAFE led to a dose-dependent growth inhibition in most cell lines, with selective cytotoxicity towards cancer cells and particularly the human cervical cancer cell line C-33A. In this study, apoptosis was confirmed by nuclear fragmentation and sub-G(0)/G(1) phase accumulation. The cell cycle was arrested at the G(2)/M phase with a decreased G(0)/G(1) population. A semi-quantitative gene expression study revealed dose-dependent up-regulation of p53 and p21 genes, and an increase in the Bax/Bcl-2 ratio. These results indicate that XAFE could be a potential therapeutic agent against cancer since it inhibits cell proliferation, and induces apoptosis and cell cycle arrest in C-33A cells. Copyright © 2011 John Wiley & Sons, Ltd.
Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh
2016-01-01
As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.
NASA Technical Reports Server (NTRS)
Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton
1988-01-01
Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.
Hao, Qiang; Chen, Xiao-Lin; Ma, Li; Wang, Tong-Tong; Hu, Yue; Zhao, Yuan-Li
2018-01-01
In this study, we successfully established a stable method for the isolation of endothelial cells (ECs) from human cerebral arteriovenous malformation (cAVM) tissues. Despite human cAVM tissues having a minor population of ECs, they play an important role in the manifestation and development of cAVM as well as in hemorrhagic stroke and thrombogenesis. To characterize and understand the biology of ECs in human cAVM (cAVM-ECs), methods for the isolation and purification of these cells are necessary. We have developed this method to reliably obtain pure populations of ECs from cAVMs. To obtain pure cell populations, cAVM tissues were mechanically and enzymatically digested and the resulting single cAVM-ECs suspensions were then labeled with antibodies of specific cell antigens and selected by flow cytometry. Purified ECs were detected using specific makers of ECs by immunostaining and used to study different cellular mechanisms. Compared to the different methods of isolating ECs from tissues, we could isolate ECs from cAVMs confidently, and the numbers of cAVM-ECs harvested were almost similar to the amounts present in vessel components. In addition to optimizing the protocol for isolation of ECs from human cAVM tissues, the protocol could also be applied to isolate ECs from other human neurovascular-diseased tissues. Depending on the tissues, the whole procedure could be completed in about 20 days.
Gotts, Nicholas M
2009-01-01
Small patterns of state 1 cells on an infinite, otherwise empty array of Conway's game of Life can produce sets of growing structures resembling in significant ways a population of spatially situated individuals in a nonuniform, highly structured environment. Ramifying feedback networks and cross-scale interactions play a central role in the emergence and subsequent dynamics of the quasi population. The implications are discussed: It is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.
Poorman, Elisabeth; Gazmararian, Julie; Elon, Lisa; Parker, Ruth
2014-01-01
Text4baby provides educational text messages to pregnant and postpartum women and targets underserved women. The primary purpose of this study is to examine the health behaviors and cell phone usage patterns of a text4baby target population and the associations with health literacy. Pregnant and postpartum women were recruited from two Women, Infant and Children clinics in Atlanta. Women were asked about their demographics, selected pregnancy or postpartum health behaviors, and cell phone usage patterns. Health literacy skills were measured with the English version of the Newest Vital Sign. Multivariable logistic regression was used to examine health behaviors and cell usage patterns by health literacy classification, controlling for commonly accepted confounders. Four hundred sixty-eight women were recruited, and 445 completed the Newest Vital Sign. Of these, 22% had inadequate health literacy, 50% had intermediate health literacy, and 28% had adequate health literacy skills. Compared to adequate health literacy, limited literacy was independently associated with not taking a daily vitamin during pregnancy (OR 3.6, 95% CI: 1.6, 8.5) and never breastfeeding their infant (OR 1.4, 95% CI: 1.1, 1.8). The majority (69.4%) of respondents received nine or more text messages a day prior to enrollment, one in four participants (24.6%) had changed their number within the last six months, and 7.0% of study participants shared a cell phone. Controlling for potentially confounding factors, those with limited health literacy were more likely to share a cell phone than those with adequate health literacy (OR 2.57, 95% CI: 1.79, 3.69). Text4baby messages should be appropriate for low health literacy levels, especially as this population may have higher prevalence of targeted unhealthy behaviors. Text4baby and other mhealth programs targetting low health literacy populations should also be aware of the different ways that these populations use their cell phones, including: sharing cell phones, which may mean participants will not receive messages or have special privacy concerns; frequently changing cell phone numbers which could lead to higher drop-off rates; and the penetrance of text messages in a population that receives many messages daily.
The waiting time problem in a model hominin population.
Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John
2015-09-17
Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.
NASA Technical Reports Server (NTRS)
Pecaut, Michael J.; Nelson, Gregory A.; Peters, Luanne L.; Kostenuik, Paul J.; Bateman, Ted A.; Morony, Sean; Stodieck, Louis S.; Lacey, David L.; Simske, Steven J.; Gridley, Daila S.
2003-01-01
There are several aspects of the spaceflight environment that may lead to changes in immunity: mission-related psychological stress, radiation, and changes in gravity. On December 5, 2001, the space shuttle Endeavor launched for a 12-day mission to examine these effects on C57BL/6 mice for the first time. On their return, assays were performed on the spleen, blood, and bone marrow. In response to flight, there were no significant differences in the general circulating leukocyte proportions. In contrast, there was an increase in splenic lymphocyte percentages, with a corresponding decrease in granulocytes. There was an overall shift in splenic lymphocytes away from T cells toward B cells, and a decrease in the CD4-to-CD8 ratios due to a decrease in T helpers. In contrast, there were proportional increases in bone marrow T cells, with decreases in B cells. Although the blast percentage and count were decreased in flight mice, the CD34(+) population was increased. The data were more consistent with a shift in bone marrow populations rather than a response to changes in the periphery. Many of the results are similar to those using other models. Clearly, spaceflight can influence immune parameters ranging from hematopoiesis to mature leukocyte mechanisms.
Moore, Paul A; Shah, Kalpana; Yang, Yinhua; Alderson, Ralph; Roberts, Penny; Long, Vatana; Liu, Daorong; Li, Jonathan C; Burke, Steve; Ciccarone, Valentina; Li, Hua; Fieger, Claudia B; Hooley, Jeff; Easton, Ann; Licea, Monica; Gorlatov, Sergey; King, Kathleen L; Young, Peter; Adami, Arash; Loo, Deryk; Chichili, Gurunadh R; Liu, Liqin; Smith, Douglas H; Brown, Jennifer G; Chen, Francine Z; Koenig, Scott; Mather, Jennie; Bonvini, Ezio; Johnson, Syd
2018-06-04
We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART® protein designed to redirect T-cells to target gpA33 expressing colon cancer. The gpA33 target was selected based on an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic CRC specimens, including putative cancer stem cell populations. MGD007 displays the anticipated bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T-cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 µg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33 expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD 1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 µg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Copyright ©2018, American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Donglai; Wang, Chu; Hora, Bhavna
Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less
Liu, Donglai; Wang, Chu; Hora, Bhavna; ...
2017-10-10
Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less
Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia
2015-01-01
Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.
Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe
2013-09-01
To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.
Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.
Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J C; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut; Saito, Hirohide
2017-07-27
The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John
2013-01-01
Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130
Cao, Pengbo; Wall, Daniel
2017-04-04
The ability to recognize close kin confers survival benefits on single-celled microbes that live in complex and changing environments. Microbial kinship detection relies on perceptible cues that reflect relatedness between individuals, although the mechanisms underlying recognition in natural populations remain poorly understood. In myxobacteria, cells identify related individuals through a polymorphic cell surface receptor, TraA. Recognition of compatible receptors leads to outer membrane exchange among clonemates and fitness consequences. Here, we investigated how a single receptor creates a diversity in recognition across myxobacterial populations. We first show that TraA requires its partner protein TraB to function in cell-cell adhesion. Recognition is shown to be traA allele-specific, where polymorphisms within TraA dictate binding selectivity. We reveal the malleability of TraA recognition, and seemingly minor changes to its variable region reprogram recognition outcomes. Strikingly, we identify a single residue (A/P205) as a molecular switch for TraA recognition. Substitutions at this position change the specificity of a diverse panel of environmental TraA receptors. In addition, we engineered a receptor with unique specificity by simply creating an A205P substitution, suggesting that modest changes in TraA can lead to diversification of new recognition groups in nature. We hypothesize that the malleable property of TraA has allowed it to evolve and create social barriers between myxobacterial populations and in turn avoid adverse interactions with relatives.
Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria
Eckdahl, Todd T.; Campbell, A. Malcolm; Heyer, Laurie J.; Poet, Jeffrey L.; Blauch, David N.; Snyder, Nicole L.; Atchley, Dustin T.; Baker, Erich J.; Brown, Micah; Brunner, Elizabeth C.; Callen, Sean A.; Campbell, Jesse S.; Carr, Caleb J.; Carr, David R.; Chadinha, Spencer A.; Chester, Grace I.; Chester, Josh; Clarkson, Ben R.; Cochran, Kelly E.; Doherty, Shannon E.; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M.; Evans, Rebecca A.; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L.; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L.; Keffeler, Erica C.; Lantz, Andrew J.; Lim, Jonathan N.; McGuire, Erin P.; Moore, Alexander K.; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A.; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E.; Polpityaarachchige, Sachith; Quaney, Michael J.; Slattery, Abagael; Smith, Kathryn E.; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J.; Whitesides, E. Tucker
2015-01-01
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields – evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation. PMID:25714374
Programmed evolution for optimization of orthogonal metabolic output in bacteria.
Eckdahl, Todd T; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Blauch, David N; Snyder, Nicole L; Atchley, Dustin T; Baker, Erich J; Brown, Micah; Brunner, Elizabeth C; Callen, Sean A; Campbell, Jesse S; Carr, Caleb J; Carr, David R; Chadinha, Spencer A; Chester, Grace I; Chester, Josh; Clarkson, Ben R; Cochran, Kelly E; Doherty, Shannon E; Doyle, Catherine; Dwyer, Sarah; Edlin, Linnea M; Evans, Rebecca A; Fluharty, Taylor; Frederick, Janna; Galeota-Sprung, Jonah; Gammon, Betsy L; Grieshaber, Brandon; Gronniger, Jessica; Gutteridge, Katelyn; Henningsen, Joel; Isom, Bradley; Itell, Hannah L; Keffeler, Erica C; Lantz, Andrew J; Lim, Jonathan N; McGuire, Erin P; Moore, Alexander K; Morton, Jerrad; Nakano, Meredith; Pearson, Sara A; Perkins, Virginia; Parrish, Phoebe; Pierson, Claire E; Polpityaarachchige, Sachith; Quaney, Michael J; Slattery, Abagael; Smith, Kathryn E; Spell, Jackson; Spencer, Morgan; Taye, Telavive; Trueblood, Kamay; Vrana, Caroline J; Whitesides, E Tucker
2015-01-01
Current use of microbes for metabolic engineering suffers from loss of metabolic output due to natural selection. Rather than combat the evolution of bacterial populations, we chose to embrace what makes biological engineering unique among engineering fields - evolving materials. We harnessed bacteria to compute solutions to the biological problem of metabolic pathway optimization. Our approach is called Programmed Evolution to capture two concepts. First, a population of cells is programmed with DNA code to enable it to compute solutions to a chosen optimization problem. As analog computers, bacteria process known and unknown inputs and direct the output of their biochemical hardware. Second, the system employs the evolution of bacteria toward an optimal metabolic solution by imposing fitness defined by metabolic output. The current study is a proof-of-concept for Programmed Evolution applied to the optimization of a metabolic pathway for the conversion of caffeine to theophylline in E. coli. Introduced genotype variations included strength of the promoter and ribosome binding site, plasmid copy number, and chaperone proteins. We constructed 24 strains using all combinations of the genetic variables. We used a theophylline riboswitch and a tetracycline resistance gene to link theophylline production to fitness. After subjecting the mixed population to selection, we measured a change in the distribution of genotypes in the population and an increased conversion of caffeine to theophylline among the most fit strains, demonstrating Programmed Evolution. Programmed Evolution inverts the standard paradigm in metabolic engineering by harnessing evolution instead of fighting it. Our modular system enables researchers to program bacteria and use evolution to determine the combination of genetic control elements that optimizes catabolic or anabolic output and to maintain it in a population of cells. Programmed Evolution could be used for applications in energy, pharmaceuticals, chemical commodities, biomining, and bioremediation.
De Boer, Rob J.; Perelson, Alan S.
2017-09-06
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Rob J.; Perelson, Alan S.
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control.
Rothenberg, Ellen V; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. © 2016 Elsevier Inc. All rights reserved.
Domingo, Esteban; Perales, Celia
2018-05-01
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine
Arnhold, Stefan; Wenisch, Sabine
2015-01-01
Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source. PMID:25973326
Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine.
Arnhold, Stefan; Wenisch, Sabine
2015-01-01
Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source.
Li, Yunmin; Kido, Tatsuo; Luo, Jinping; Fukuda, Michiko; Dobrinski, Ina; Lau, Yun-Fai Chris
2008-01-01
Testicular germ cell tumours (TGCTs) are prevalent cancers among young men. Currently, there is no reliable animal model for TGCTs. To establish such animal models, we have explored the possibility of intratubular testicular transplantation as means to deliver tumour cells into the seminiferous tubules of host animals. Our results demonstrated that transplanted cells could effectively populate the testis of a recipient mouse and develop into TGCTs. In addition, the donor cells could be transfected with a specific transgene before transplantation, thereby providing an approach to evaluate the specific effects of gene functions in the oncogenic processes. Hence, depending on selection of specific donor cells or mixtures of donor cells, transplantation models of TGCTs could be significant for studies on the pathogenesis, diagnosis and therapies of such a prevalent and important cancer in men. PMID:18808526
Recombinant protein production from stable mammalian cell lines and pools.
Hacker, David L; Balasubramanian, Sowmya
2016-06-01
We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
How to infer relative fitness from a sample of genomic sequences.
Dayarian, Adel; Shraiman, Boris I
2014-07-01
Mounting evidence suggests that natural populations can harbor extensive fitness diversity with numerous genomic loci under selection. It is also known that genealogical trees for populations under selection are quantifiably different from those expected under neutral evolution and described statistically by Kingman's coalescent. While differences in the statistical structure of genealogies have long been used as a test for the presence of selection, the full extent of the information that they contain has not been exploited. Here we demonstrate that the shape of the reconstructed genealogical tree for a moderately large number of random genomic samples taken from a fitness diverse, but otherwise unstructured, asexual population can be used to predict the relative fitness of individuals within the sample. To achieve this we define a heuristic algorithm, which we test in silico, using simulations of a Wright-Fisher model for a realistic range of mutation rates and selection strength. Our inferred fitness ranking is based on a linear discriminator that identifies rapidly coalescing lineages in the reconstructed tree. Inferred fitness ranking correlates strongly with actual fitness, with a genome in the top 10% ranked being in the top 20% fittest with false discovery rate of 0.1-0.3, depending on the mutation/selection parameters. The ranking also enables us to predict the genotypes that future populations inherit from the present one. While the inference accuracy increases monotonically with sample size, samples of 200 nearly saturate the performance. We propose that our approach can be used for inferring relative fitness of genomes obtained in single-cell sequencing of tumors and in monitoring viral outbreaks. Copyright © 2014 by the Genetics Society of America.
A Novel Source of Cultured Podocytes
Da Sacco, Stefano; Lemley, Kevin V.; Sedrakyan, Sargis; Zanusso, Ilenia; Petrosyan, Astgik; Peti-Peterdi, Janos; Burford, James; De Filippo, Roger E.; Perin, Laura
2013-01-01
Amniotic fluid is in continuity with multiple developing organ systems, including the kidney. Committed, but still stem-like cells from these organs may thus appear in amniotic fluid. We report having established for the first time a stem-like cell population derived from human amniotic fluid and possessing characteristics of podocyte precursors. Using a method of triple positive selection we obtained a population of cells (hAKPC-P) that can be propagated in vitro for many passages without immortalization or genetic manipulation. Under specific culture conditions, these cells can be differentiated to mature podocytes. In this work we compared these cells with conditionally immortalized podocytes, the current gold standard for in vitro studies. After in vitro differentiation, both cell lines have similar expression of the major podocyte proteins, such as nephrin and type IV collagen, that are characteristic of mature functional podocytes. In addition, differentiated hAKPC-P respond to angiotensin II and the podocyte toxin, puromycin aminonucleoside, in a way typical of podocytes. In contrast to immortalized cells, hAKPC-P have a more nearly normal cell cycle regulation and a pronounced developmental pattern of specific protein expression, suggesting their suitability for studies of podocyte development for the first time in vitro. These novel progenitor cells appear to have several distinct advantages for studies of podocyte cell biology and potentially for translational therapies. PMID:24349133
Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens
2009-11-01
The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.
NASA Technical Reports Server (NTRS)
Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.
1974-01-01
The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.
Defining Clonal Color in Fluorescent Multi-Clonal Tracking
Wu, Juwell W.; Turcotte, Raphaël; Alt, Clemens; Runnels, Judith M.; Tsao, Hensin; Lin, Charles P.
2016-01-01
Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme. PMID:27073117
FOXP2 targets show evidence of positive selection in European populations.
Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C; Fisher, Simon E; Tyler-Smith, Chris
2013-05-02
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Ribosome display: next-generation display technologies for production of antibodies in vitro.
He, Mingyue; Khan, Farid
2005-06-01
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.
Zhu, Xiaotong; Zhao, Pan; Wang, Si; Liu, Fei; Liu, Jun; Wang, Jian; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang
2016-11-29
With the premise of diminishing parasite genetic diversity following the reduction of malaria incidence, the analysis of polymorphic antigenic markers may provide important information about the impact of malaria control on local parasite populations. Here we evaluated the genetic diversity of Plasmodium vivax apical membrane antigen 1 (Pvama1) gene in a parasite population from the China-Myanmar border and compared it with global P. vivax populations. We performed evolutionary analysis to examine the genetic diversity, natural selection, and population differentiation of 73 Pvama1 sequences acquired from the China-Myanmar border as well as 615 publically available Pvama1 sequences from seven global P. vivax populations. A total of 308 Pvama1 haplotypes were identified among the global P. vivax isolates. The overall nucleotide diversity of Pvama1 gene among the 73 China-Myanmar border parasite isolates was 0.008 with 41 haplotypes being identified (Hd = 0.958). Domain I (DI) harbored the majority (26/33) of the polymorphic sites. The McDonald Kreitman test showed a significant positive selection across the ectodomain and the DI of Pvama1. The fixation index (F ST ) estimation between the China-Myanmar border, Thailand (0.01) and Myanmar (0.10) showed only slight geographical genetic differentiation. Notably, the Sal-I haplotype was not detected in any of the analyzed global isolates, whereas the Belem strain was restricted to the Thai population. The detected mutations are mapped outside the overlapped region of the predicted B-cell epitopes and intrinsically unstructured/disordered regions. This study revealed high levels of genetic diversity of Pvama1 in the P. vivax parasite population from the China-Myanmar border with DI displaying stronger diversifying selection than other domains. There were low levels of population subdivision among parasite populations from the Greater Mekong Subregion.
The functional basis of adaptive evolution in chemostats.
Gresham, David; Hong, Jungeui
2015-01-01
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Multistage carcinogenesis in cell culture.
Rubin, H
2001-01-01
Rodent fibroblasts explanted from embryos to culture undergo a period of declining growth rate in serial passages leading to crisis, followed by the appearance of variants which can multiply indefinitely. If the "immortal" cell line was established by low density passage, i.e., 3T3 cells, it has a low saturation density and is non-tumorigenic. If it was established by high density passage, it has a high saturation density and is tumorigenic. The establishment of cells goes through successive stages, including increased capacity to multiply in low serum concentration, growth to high saturation density, growth in suspension, assisted tumour formation in susceptible hosts and unassisted tumour formation. Chromosome aberrations and aneuploidy occur long before the capacity to produce tumours appears. Contrary to conventional belief, human fibroblast populations also undergo a continuous loss of capacity to multiply from the time of explantation, with only the longest surviving clone reaching the Hayflick limit. Neoplastic transformation of rodent cells is strongly favoured by maintaining them in a quiescent state at confluence for prolonged periods, which results in genetic damage to the cells. It also produces a large variety of chromosomal aberrations in human cells and extends their replicative lifespan. Individual clones are more susceptible to spontaneous transformation than their heterogeneous parental cultures. The implications of these results for tumour development in vivo are that oncogenic genetic changes may be common under stressful conditions which restrict replication, and that such changes are maximized when a rogue clone reaches a critical size that reduces stabilizing interactions with neighbouring clones. An alternative explanation, described in the Addendum, which we retrospectively favor is that the easily transformed clones are a minority in the uncloned parental population. The reason they transform before the parental population is that when they are expanded, they have more transformable cells available under the selective condition of confluence than the uncloned parental population from which they are derived.
Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Gómez, Jordi; Gastaminza, Pablo; Domingo, Esteban; Perales, Celia
2017-05-15
Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. Copyright © 2017 American Society for Microbiology.
From Experiment to Theory: What Can We Learn from Growth Curves?
Kareva, Irina; Karev, Georgy
2018-01-01
Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.
Gene expression distribution deconvolution in single-cell RNA sequencing.
Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R
2018-06-26
Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.
Banlaki, Zsofia; Cimarelli, Giulia; Viranyi, Zsofia; Kubinyi, Eniko; Sasvari-Szekely, Maria; Ronai, Zsolt
2017-06-01
A growing body of evidence highlights the relationship between epigenetics, especially DNA methylation, and population divergence as well as speciation. However, little is known about how general the phenomenon of epigenetics-wise separation of different populations is, or whether population assignment is, possible based on solely epigenetic marks. In the present study, we compared DNA methylation profiles between four different canine populations: three domestic dog breeds and their ancestor the gray wolf. Altogether, 79 CpG sites constituting the 65 so-called CpG units located in the promoter regions of genes affecting behavioral and temperamental traits (COMT, HTR1A, MAOA, OXTR, SLC6A4, TPH1, WFS1)-regions putatively targeted during domestication and breed selection. Methylation status of buccal cells was assessed using EpiTYPER technology. Significant inter-population methylation differences were found in 52.3% of all CpG units investigated. DNA methylation profile-based hierarchical cluster analysis indicated an unambiguous segregation of wolf from domestic dog. In addition, one of the three dog breeds (Golden Retriever) investigated also formed a separate, autonomous group. The findings support that population segregation is interrelated with shifts in DNA methylation patterns, at least in putative selection target regions, and also imply that epigenetic profiles could provide a sufficient basis for population assignment of individuals.
CD25 Preselective Anti-HIV Vectors for Improved HIV Gene Therapy
Kalomoiris, Stefanos; Lawson, Je'Tai; Chen, Rachel X.; Bauer, Gerhard; Nolta, Jan A.
2012-01-01
Abstract As HIV continues to be a global public health problem with no effective vaccine available, new and innovative therapies, including HIV gene therapies, need to be developed. Due to low transduction efficiencies that lead to low in vivo gene marking, therapeutically relevant efficacy of HIV gene therapy has been difficult to achieve in a clinical setting. Methods to improve the transplantation of enriched populations of anti-HIV vector-transduced cells may greatly increase the in vivo efficacy of HIV gene therapies. Here we describe the development of preselective anti-HIV lentiviral vectors that allow for the purification of vector-transduced cells to achieve an enriched population of HIV-resistant cells. A selectable protein, human CD25, not normally found on CD34+ hematopoietic progenitor cells (HPCs), was incorporated into a triple combination anti-HIV lentiviral vector. Upon purification of cells transduced with the preselective anti-HIV vector, safety was demonstrated in CD34+ HPCs and in HPC-derived macrophages in vitro. Upon challenge with HIV-1, improved efficacy was observed in purified preselective anti-HIV vector-transduced macrophages compared to unpurified cells. These proof-of-concept results highlight the potential use of this method to improve HIV stem cell gene therapy for future clinical applications. PMID:23216020
Sun, Lue; Moritake, Takashi; Zheng, Yun-Wen; Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Zenkoh, Junko; Taniguchi, Hideki; Tsuboi, Koji
2013-01-01
One-third of patients with medulloblastoma die due to recurrence after various treatments including radiotherapy. Although it has been postulated that cancer stem-like cells are radio-resistant and play an important role in tumor recurrence, the “stemness” of medulloblastoma cells surviving irradiation has not yet been elucidated. Using a medulloblastoma cell line ONS-76, cells that survived gamma irradiation were investigated on their “stemness” in vitro. From 10 500 cells, 20 radio-resistant clones were selected after gamma ray irradiation (5 Gy × two fractions) using the replica micro-well technique. These 20 resistant clones were screened for CD133 positivity by flow cytometry followed by side population assay, tumor sphere formation assay and clonogenic survival assay. Results revealed CD133 fractions were significantly elevated in three clones, which also exhibited significantly increased levels of tumor sphere formation ability and side population fraction. Clonogenic survival assay demonstrated that their radio-resistance was significantly higher than the parental ONS-76. This may support the hypothesis that a small number of cancer stem-like cells (CSCs) are the main culprits in local recurrence after radiotherapy, and disruption of the resistance mechanism of these CSCs is a critical future issue in improving the outcome of patients with medulloblastoma. PMID:22951319
Liu, Danya; Badell, I. Raul; Ford, Mandy L.
2018-01-01
Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling. PMID:29321374
Visual coding with a population of direction-selective neurons.
Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas
2015-10-01
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.
Visual coding with a population of direction-selective neurons
Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas
2015-01-01
The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471
Han, Lin; Wu, Hua-Jun; Zhu, Haiying; Kim, Kun-Yong; Marjani, Sadie L; Riester, Markus; Euskirchen, Ghia; Zi, Xiaoyuan; Yang, Jennifer; Han, Jasper; Snyder, Michael; Park, In-Hyun; Irizarry, Rafael; Weissman, Sherman M; Michor, Franziska; Fan, Rong; Pan, Xinghua
2017-06-02
Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fyk-Kolodziej, Bozena; Qin, Pu; Pourcho, Roberta G
2003-09-08
It has been generally accepted that rod photoreceptor cells in the mammalian retina make synaptic contact with only a single population of rod bipolar cells, whereas cone photoreceptors contact a variety of cone bipolar cells. This assumption has been challenged in rodents by reports of a type of cone bipolar cell which receives input from both rods and cones. Questions remained as to whether similar pathways are present in other mammals. We have used an antiserum against the glutamate transporter GLT1-B to visualize a population of cone bipolar cells in the cat retina which make flat contacts with axon terminals of both rod and cone photoreceptor cells. These cells are identified as OFF-cone bipolar cells and correspond morphologically to type cb1 (CBa2) cone bipolar cells which are a major source of input to OFF-beta ganglion cells in the cat retina. The GLT1-B transporter was also localized to processes making flat contacts with photoreceptor terminals in rat and rabbit retinas. Examination of tissue processed for the GluR1 glutamate receptor subunit showed that cb1 cone bipolar cells, like their rodent counterparts, express this alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-selective receptor at their contacts with rod spherules. Thus, a direct excitatory pathway from rod photoreceptors to OFF-cone bipolar cells appears to be a common feature of mammalian retinas. Copyright 2003 Wiley-Liss, Inc.
Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S
2018-03-01
Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.
Hong, Jungeui; Gresham, David
2014-01-01
One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that knowledge of the selective environment and the regulatory mechanisms important for growth and survival in that environment greatly increase the predictability of adaptive evolution.
Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks
Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C.; Pepper, John W.
2017-01-01
Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of “cancer” and for why this convergent condition becomes life-threatening. PMID:28148564
Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks.
Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C; Pepper, John W
2017-02-01
Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of "cancer" and for why this convergent condition becomes life-threatening. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
A Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells.
Gao, Xia; Li, Qiang; Wang, Fengchao; Liu, Xuehui; Liu, Dingbin
2018-06-22
We report a dual-responsive self-assembled monolayer (SAM) on a well-defined rough gold substrate for dynamic capture and release of live cells. By incorporating 5'-triphosphate (ATP) aptamer into a SAM, we can accurately isolate specific cell types and subsequently release captured cells at either population or desired-group (or even single-cell) levels. On one hand, the whole SAMs can be disassembled through addition of ATP solution, leading to the entire release of the captured cells from the supported substrate. On the other hand, desired cells can be selectively released by using near-infrared light (NIR) irradiation, with relatively high spatial and temporal precision. The proposed dual-responsive cell capture-and-release system is biologically friendly and is reusable with another round of modification, showing great usefulness in cancer diagnosis and molecular analysis.
Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing
Arenkiel, Benjamin R.; Hasegawa, Hiroshi; Yi, Jason J.; Larsen, Rylan S.; Wallace, Michael L.; Philpot, Benjamin D.; Wang, Fan; Ehlers, Michael D.
2011-01-01
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits. PMID:22216277
Can oncology recapitulate paleontology? Lessons from species extinctions
Walther, Viola; Hiley, Crispin T.; Shibata, Darryl; Swanton, Charles; Turner, Paul E.; Maley, Carlo C.
2015-01-01
Although we can treat cancers with cytotoxic chemotherapies, target them with molecules that bind to oncogenic drivers, and induce substantial cell death with radiation, local and metastatic tumours recur, resulting in extensive morbidity and mortality. It is difficult to drive a tumour to extinction. Geographically dispersed species are perhaps equally resistant to extinction, but >99.9% of species that have ever existed have become extinct. By contrast, we are nowhere near that level of success in cancer therapy. The phenomena are broadly analogous. In both cases, a genetically diverse population mutates and evolves through natural selection. The goal of cancer therapy is to cause cancer cell population extinction or at least to limit any further increase in population size, so the tumour burden does not overwhelm the patient. However, despite available treatments, complete responses are rare, and partial responses are limited in duration. Many patients eventually relapse with tumours that evolve from cells that survive therapy. Similarly, species are remarkably resilient to environmental change. Paleontology can show us the conditions that lead to extinction and the characteristics of species that make them resistant to extinction. These lessons could be translated to improve cancer therapy and prognosis. PMID:25687908
Alves, Joana; Machado, Patrícia; Silva, João; Gonçalves, Nilza; Ribeiro, Letícia; Faustino, Paula; do Rosário, Virgílio Estólio; Manco, Licínio; Gusmão, Leonor; Amorim, António; Arez, Ana Paula
2010-01-15
Malaria has occurred in the Cabo Verde archipelago with epidemic characteristics since its colonization. Nowadays, it occurs in Santiago Island alone and though prophylaxis is not recommended by the World Health Organization, studies have highlight the prospect of malaria becoming a serious public health problem as a result of the presence of antimalarial drug resistance associated with mutations in the parasite populations and underscore the need for tighter surveillance. Despite the presumptive weak immune status of the population, severe symptoms of malaria are not observed and many people present a subclinical course of the disease. No data on the prevalence of sickle-cell trait and red cell glucose-6-phosphate dehydrogenase deficiency (two classical genetic factors associated with resistance to severe malaria) were available for the Cabo Verde archipelago and, therefore, we studied the low morbidity from malaria in relation to the particular genetic characteristics of the human host population. We also included the analysis of the pyruvate kinase deficiency associated gene, reported as putatively associated with resistance to the disease. Allelic frequencies of the polymorphisms examined are closer to European than to African populations and no malaria selection signatures were found. No association was found between the analyzed human factors and infection but one result is of high interest: a linkage disequilibrium test revealed an association of distant loci in the PKLR gene and adjacent regions, only in non-infected individuals. This could mean a more conserved gene region selected in association to protection against the infection and/or the disease. Copyright 2009 Elsevier Inc. All rights reserved.
Pybus, Marc; Andrews, Glen K.; Lalueza-Fox, Carles; Comas, David; Sekler, Israel; de la Rasilla, Marco; Rosas, Antonio; Stoneking, Mark; Valverde, Miguel A.; Vicente, Rubén; Bosch, Elena
2014-01-01
Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk. PMID:24586184
Anderson, Matthew Z; Gerstein, Aleeza C; Wigen, Lauren; Baller, Joshua A; Berman, Judith
2014-07-01
Cell-to-cell gene expression noise is thought to be an important mechanism for generating phenotypic diversity. Furthermore, telomeric regions are major sites for gene amplification, which is thought to drive genetic diversity. Here we found that individual subtelomeric TLO genes exhibit increased variation in transcript and protein levels at both the cell-to-cell level as well as at the population-level. The cell-to-cell variation, termed Telomere-Adjacent Gene Expression Noise (TAGEN) was largely intrinsic noise and was dependent upon genome position: noise was reduced when a TLO gene was expressed at an ectopic internal locus and noise was elevated when a non-telomeric gene was expressed at a telomere-adjacent locus. This position-dependent TAGEN also was dependent on Sir2p, an NAD+-dependent histone deacetylase. Finally, we found that telomere silencing and TAGEN are tightly linked and regulated in cis: selection for either silencing or activation of a TLO-adjacent URA3 gene resulted in reduced noise at the neighboring TLO but not at other TLO genes. This provides experimental support to computational predictions that the ability to shift between silent and active chromatin states has a major effect on cell-to-cell noise. Furthermore, it demonstrates that these shifts affect the degree of expression variation at each telomere individually.
Miled, Rabeb Bennour; Guillier, Laurent; Neves, Sandra; Augustin, Jean-Christophe; Colin, Pierre; Besse, Nathalie Gnanou
2011-06-01
Cells of six strains of Cronobacter were subjected to dry stress and stored for 2.5 months at ambient temperature. The individual cell lag time distributions of recovered cells were characterized at 25 °C and 37 °C in non-selective broth. The individual cell lag times were deduced from the times taken by cultures from individual cells to reach an optical density threshold. In parallel, growth curves for each strain at high contamination levels were determined in the same growth conditions. In general, the extreme value type II distribution with a shape parameter fixed to 5 (EVIIb) was the most effective at describing the 12 observed distributions of individual cell lag times. Recently, a model for characterizing individual cell lag time distribution from population growth parameters was developed for other food-borne pathogenic bacteria such as Listeria monocytogenes. We confirmed this model's applicability to Cronobacter by comparing the mean and the standard deviation of individual cell lag times to populational lag times observed with high initial concentration experiments. We also validated the model in realistic conditions by studying growth in powdered infant formula decimally diluted in Buffered Peptone Water, which represents the first enrichment step of the standard detection method for Cronobacter. Individual lag times and the pooling of samples significantly affect detection performances. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.
1998-01-01
Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176
Han, Jung Woo; Choi, Juhye; Kim, Young Shin; Kim, Jina; Brinkmann, Ralf; Lyu, Jungmook; Park, Tae Kwann
2018-02-01
This study investigated microglia and inflammatory cell responses after selective retina therapy (SRT) with microsecond-pulsed laser in comparison to continuous-wave laser photocoagulation (cwPC). Healthy C57BL/6 J mice were treated with either a train of short pulses (SRT; 527-nm, Q-switched, 1.7-μs pulse) or a conventional thermal continuous-wave (532-nm, 100-ms pulse duration) laser. The mice were sacrificed and their eyes were enucleated 1, 3, 7, and 14 days after both laser treatments. Pattern of cell death on retinal section was evaluated by TUNEL assay, and the distribution of activated inflammatory cells and glial cells were observed under immunohistochemistry. Consecutive changes for the expression of cytokines such as IL-1β, TNF-α, and TGF-β were also examined using immunohistochemistry, and compared among each period after quantification by Western blotting. The numbers of TUNEL-positive cells in the retinal pigment epithelium (RPE) layer did not differ in SRT and cwPC lesions, but TUNEL-positive cells in neural retinas were significantly less on SRT. Vague glial cell activation was observed in SRT-treated lesions. The population of inflammatory cells was also significantly decreased after SRT, and the cells were located in the RPE layer and subretinal space. Proinflammatory cytokines, including IL-1β and TNF-α, showed significantly lower levels after SRT; conversely, the level of TGF-β was similar to the cwPC-treated lesion. SRT resulted in selective RPE damage without collateral thermal injury to the neural retina, and apparently produced negligible glial activation. In addition, SRT showed a markedly less inflammatory response than cwPC, which may have important therapeutic implications for several macular diseases.
Thymic Stromal-Cell Abnormalities and Dysregulated T-Cell Development in IL-2-Deficient Mice
Reya, Tannishtha; Bassiri, Hamid; Biancaniello, Renée
1998-01-01
The role that interleukin-2 (IL-2) plays in T-cell development is not known. To address this issue, we have investigated the nature of the abnormal thymic development and autoimmune disorders that occurs in IL-2-deficient (IL-2–/–) mice. After 4 to 5 weeks of birth, IL-2–/– mice progressively develop a thymic disorder resulting in the disruption of thymocyte maturation. This disorder is characterized by a dramatic reduction in cellularity, the selective loss of immature CD4-8- (double negative; DN) and CD4+8+ (double positive; DP) thymocytes and defects in the thymic stromal-cell compartment. Immunohistochemical staining of sections of thymuses from specific pathogen-free and germ-free IL-2–/– mice of various ages showed a progressive ,loss of cortical epithelial cells, MHC class II-expressing cells, monocytes, and macrophages. Reduced numbers of macrophages were apparent as early as week after birth. Since IL-2–/– thymocyte progenitor populations could mature normally on transfer into a normal thymus, the thymic defect in IL-2–/– mice appears to be due to abnormalities among thymic stromal cells. These results underscore the role of IL-2 in maintaining functional microenvironments that are necessary to support thymocyte growth, development, and selection. PMID:9814585
Mather, Jennie Powell
2012-02-01
The current resurgence of interest in the cancer stem cell (CSC) hypothesis as possibly providing a unifying theory of cancer biology is fueled by the growing body of work on normal adult tissue stem cells and the promise that CSC may hold the key to one of the central problems of clinical oncology: tumor recurrence. Many studies suggest that the microenvironment plays a role, perhaps a seminal one, in cancer development and progression. In addition, the possibility that the stem cell-like component of tumors is capable of rapid and reversible changes of phenotype raises questions concerning studies with these populations and the application of what we learn to the clinical situation. These types of questions are extremely difficult to study using in vivo models or freshly isolated cells. Established cell lines grown in defined conditions provide important model systems for these studies. There are three types of in vitro models for CSCs: (a) selected subpopulations of existing tumor lines (derived from serum-containing medium; (b) creation of lines from tumor or normal cells by genetic manipulation; or (c) direct in vitro selection of CSC from tumors or sorted tumor cells using defined serum-free conditions. We review the problems associated with creating and maintaining in vitro cultures of CSCs and the progress to date on the establishment of these important models. Copyright © 2011 AlphaMed Press.