Science.gov

Sample records for selected energy epitaxial

  1. Selective epitaxy using the gild process

    DOEpatents

    Weiner, Kurt H.

    1992-01-01

    The present invention comprises a method of selective epitaxy on a semiconductor substrate. The present invention provides a method of selectively forming high quality, thin GeSi layers in a silicon circuit, and a method for fabricating smaller semiconductor chips with a greater yield (more error free chips) at a lower cost. The method comprises forming an upper layer over a substrate, and depositing a reflectivity mask which is then removed over selected sections. Using a laser to melt the unmasked sections of the upper layer, the semiconductor material in the upper layer is heated and diffused into the substrate semiconductor material. By varying the amount of laser radiation, the epitaxial layer is formed to a controlled depth which may be very thin. When cooled, a single crystal epitaxial layer is formed over the patterned substrate. The present invention provides the ability to selectively grow layers of mixed semiconductors over patterned substrates such as a layer of Ge.sub.x Si.sub.1-x grown over silicon. Such a process may be used to manufacture small transistors that have a narrow base, heavy doping, and high gain. The narrowness allows a faster transistor, and the heavy doping reduces the resistance of the narrow layer. The process does not require high temperature annealing; therefore materials such as aluminum can be used. Furthermore, the process may be used to fabricate diodes that have a high reverse breakdown voltage and a low reverse leakage current.

  2. Selective area epitaxy of CdTe

    NASA Astrophysics Data System (ADS)

    Luo, Y. Y.; Cavus, A.; Tamargo, M. C.

    1997-06-01

    We have performed selective area epitaxy (SAE) of CdTe layers grown by molecular beam epitaxy using a shadow mask technique. This technique was chosen over other SAE techniques due to its simplicity and its compatibility with multiple SAE patterning steps. Features as small as 50 microns × 50 microns were obtained with sharp, abrupt side walls and flat mesa tops. Separations between mesas as small as 20 microns were also obtained. Shadowing effects due to the finite thickness of the mask were reduced by placing the CdTe source in a near normal incidence position. Intimate contact between the mask and the substrate was essential in order to achieve good pattern definition.

  3. Chiral habit selection on nanostructured epitaxial quartz films.

    PubMed

    Carretero-Genevrier, Adrián; Gich, Martí; Picas, Laura; Sanchez, Clément; Rodriguez-Carvajal, Juan

    2015-01-01

    Understanding the crystallization of enantiomorphically pure systems can be relevant to diverse fields such as the study of the origins of life or the purification of racemates. Here we report on polycrystalline epitaxial thin films of quartz on Si substrates displaying two distinct types of chiral habits that never coexist in the same film. We combine Atomic Force Microscopy (AFM) analysis and computer-assisted crystallographic calculations to make a detailed study of these habits of quartz. By estimating the surface energies of the observed crystallites we argue that the films are enantiomorphically pure and we briefly outline a possible mechanism to explain the habit and chiral selection in this system.

  4. Selective epitaxial growth of graphene on SiC

    SciTech Connect

    Camara, N.; Rius, G.; Godignon, P.; Huntzinger, J.-R.; Tiberj, A.; Camassel, J.

    2008-09-22

    We present a method of selective epitaxial growth of few layers graphene (FLG) on a ''prepatterned'' silicon carbide (SiC) substrate. The methods involves, successively, the sputtering of a thin aluminium nitride (AlN) layer on top of a monocrystalline SiC substrate and, then, patterning it with e-beam lithography and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at {approx}1582 cm{sup -1} in the AlN-free areas is used to validate the concept. It gives absolute evidence of selective FLG growth.

  5. Selective epitaxial growth of graphene on SiC

    NASA Astrophysics Data System (ADS)

    Camara, N.; Rius, G.; Huntzinger, J.-R.; Tiberj, A.; Mestres, N.; Godignon, P.; Camassel, J.

    2008-09-01

    We present a method of selective epitaxial growth of few layers graphene (FLG) on a "prepatterned" silicon carbide (SiC) substrate. The methods involves, successively, the sputtering of a thin aluminium nitride (AlN) layer on top of a monocrystalline SiC substrate and, then, patterning it with e-beam lithography and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at ˜1582cm-1 in the AlN-free areas is used to validate the concept. It gives absolute evidence of selective FLG growth.

  6. Tuning a strain-induced orbital selective Mott transition in epitaxial VO2

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Quackenbush, N. F.; Paik, H.; Schlueter, C.; Lee, T.-L.; Schlom, D. G.; Piper, L. F. J.; Lee, Wei-Cheng

    2016-06-01

    We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO2/TiO2 films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spectroscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is noninteger but close to the half filling. Because the overlaps of wave functions between d orbitals are modified by the strain, orbital-dependent renormalizations of the bandwidths and the onsite energy occur. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a noninteger filling number near the half filling such as for VO2, certain orbitals could reach an occupation number closer to half filling under the strain, resulting in a strong reduction in the quasiparticle weight Zα of that orbital. Our work demonstrates that such an orbital selective Mott transition, defined as the case with Zα=0 in some but not all orbitals, could be accessed by epitaxial-strain engineering of correlated electron systems.

  7. Selective-area epitaxial growth of GaAs in deep dielectric windows using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Loke, W. K.; Yoon, S. F.; Zheng, H. Q.

    2001-01-01

    An improved selective-area epitaxial growth process for GaAs in deep dielectric windows (DDWs) is reported. The growth was carried out on (100)-oriented semi-insulating (SI) GaAs substrate at ˜520°C by solid source molecular beam epitaxy (SSMBE) using a valved arsenic cracker source. Dielectric stacks with 10 periods of alternating silicon nitride (2000 Å) and silicon dioxide (1000 Å) layers were deposited using plasma-enhanced chemical vapor deposition (PECVD) for the formation of deep (3 μm) dielectric windows. The alternating dielectric layer stack has been shown to be of greater stability than a single dielectric layer for the purpose of forming the DDW. A process of fabricating the DDW structures, which eliminates the possible contamination at the growth area during photoresist patterning and removing, and subsequent etching of the DDW, has resulted in improved epitaxial layer quality. Micro-Raman spectroscopy measurements showed a significant increase in the longitudinal-optic (LO) to transverse-optic (TO) signal intensity ratio ( ILO/TO) from ˜4.0 to ˜16.0 of the first-order Raman line of GaAs. Supporting evidence from low-temperature (4 K) photoluminescence (PL) showed a reduction in intensity of the conduction band to neutral carbon acceptor (e-C°) emission by a factor of 4.5. This suggests lower levels of carbon contamination originating from the improved fabrication process of the DDW. Scanning electron microscopy (SEM) images showed smoother surface morphology of the GaAs inside the DDW area. These results have important implications on the process of MBE regrowth for optoelectronics integration.

  8. Selective molecular beam epitaxy of germanium on oxide-covered silicon

    NASA Astrophysics Data System (ADS)

    Li, Qiming

    This study demonstrates that Ge can be selectively grown on Si through openings in SiO2 nanotemplates by molecular beam epitaxy without applying selectivity-control agents. The SiO2 nanotemplates are created either by interferometric lithography or by "touchdown" process. The "touchdown" process takes advantage of the unique interaction between Ge and an ultra-thin layer of chemical SiO2. Due to the high concentration of OH groups in the chemical oxide layer, Ge readily diffuses through the oxide, segregates at the SiO2/Si interface, and creates dense nanoscale windows in the chemical oxide. Ge then selectively grows in the windows and coalesces into a high-quality relaxed Ge epilayer over the remaining SiO2. The high-quality and relaxation are attributed to three mechanisms: (1) the strain at the junction pad decays below the critical limit within 2 nm due to the nanoscale heterojunction; (2) the remaining SiO2 serves as artificially introduced 60° dislocations; and (3) the intermixing between Ge and Si at the heterojunction reduces the effective lattice mismatch. To understand the surface phenomena governing the selectivity, we further experimentally measure the desorption activation energy (Edes = 42 +/- 3 kJ/mol) of Ge on SiO2 surface. The low Edes gives rise to a high Ge desorption flux from the SiO2 surface and a low diffusion barrier ( Edif ˜ 13 kJ/mol), which in turn leads to a long characteristic diffusion length. Based on these findings, we further demonstrate that hexagonally packed, single-crystal Ge rings can be grown at the contact region between self-assembled SiO2 spheres and chemical oxide covered Si substrates. These SiO2 spheres provide a surface diffusion path, which guides the Ge adspecies to the substrate. The Ge adspecies on SiO2 spheres undergo surface diffusion as well as desorption, and a fraction of Ge adspecies aggregate at the sphere/substrate contact region to form epitaxial rings by "touchdown" through the chemical SiO2.

  9. Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.

    PubMed

    Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2015-07-01

    Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si. PMID:26057208

  10. The role of Energy Deposition in the Epitaxial Layer in Triggering SEGR in Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Selva, L.; Swift, G.; Taylor, W.; Edmonds, L.

    1999-01-01

    In these SEGR experiments, three identical-oxide MOSFET types were irradiated with six ions of significantly different ranges. Results show the prime importance of the total energy deposited in the epitaxial layer.

  11. Characterization of selective epitaxial graphene growth on silicon carbide: Limitations and opportunities

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana

    The need for post-CMOS nanoelectronics has led to the investigation of innovative device structures and materials. Graphene, a zero bandgap semiconductor with ballistic transport properties, has great potential to extend diversification and miniaturization beyond the limits of CMOS. The goal of this work is to study the growth of graphene on SiC using the novel method of selective graphitization. The major contributions of this research are as follows — First, epitaxial graphene is successfully grown on selected regions of SiC not capped by AlN deposited by molecular beam epitaxy. This contribution enables the formation of electronic-grade graphene in desired patterns without having to etch the graphene or expose it to any detrimental contact with external chemicals. Etching of AlN opens up windows to the SiC in desirable patterns for subsequent graphitization without leaving etch-residues (determined by XPS). Second, the impact of process parameters on the growth of graphene is investigated. Temperature, time, and argon pressure are the primary growth-conditions altered. A temperature of 1400°C in 1 mbar argon for 20 min produced the most optimal graphene growth without significant damage to the AlN capping-layer. Third, first-ever electronic transport measurements are achieved on the selective epitaxial graphene. Hall mobility of about 1550 cm2/Vs has been obtained to date. Finally, the critical limitations of the selective epitaxial graphene growth are enumerated. The advent of enhanced processing techniques that will overcome these limitations will create a multitude of opportunities for applications for graphene grown in this manner. It is envisaged to be a viable approach to fabrication of radio-frequency field-effect transistors.

  12. Selective Epitaxial Graphene Growth on SiC via AlN Capping

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana; Rubio-Roy, Miguel; Moseley, Michael; Lowder, Jonathan; Doolittle, William; Berger, Claire; Dong, Rui; Meindl, James; de Heer, Walt; Georgia Institute of Technology Team

    2011-03-01

    Electronic-quality graphene is epitaxially grown by graphitization of carbon-face silicon carbide (SiC) by the sublimation of silicon atoms from selected regions uncapped by aluminum nitride (AlN). AlN (deposited by molecular beam epitaxy) withstands high graphitization temperatures of 1420o C, hence acting as an effective capping layer preventing the growth of graphene under it. The AlN is patterned and etched to open up windows onto the SiC surface for subsequent graphitization. Such selective epitaxial growth leads to the formation of high-quality graphene in desired patterns without the need for etching and lithographic patterning of graphene itself. No detrimental contact of the graphene with external chemicals occurs throughout the fabrication-process. The impact of process-conditions on the mobility of graphene is investigated. Graphene hall-bars were fabricated and characterized by scanning Raman spectroscopy, ellipsometry, and transport measurements. This controlled growth of graphene in selected regions represents a viable approach to fabrication of high-mobility graphene as the channel material for fast-switching field-effect transistors.

  13. Selective-area growth of heavily n-doped GaAs nanostubs on Si(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, Yoon Jung; Simmonds, Paul J.; Beekley, Brett; Goorsky, Mark S.; Woo, Jason C. S.

    2016-04-01

    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth (SAG) of nanostubs 120 nm tall and ≤100 nm in diameter. We investigate the influence of growth parameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAs growth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grown GaAs nanostubs by fabricating heterogeneous p+-Si/n+-GaAs p-n diodes.

  14. Slip propagation in epitaxial Mo (011) studied by low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Mundschau, M.; Swięch, W.; Durfee, C. S.; Flynn, C. P.

    1999-10-01

    We report observations of slip processes in epitaxial films of Mo (011) grown on sapphire by molecular beam epitaxy. Low-energy electron microscopy is employed to follow the time evolution of the screw dislocation, the interfacial dislocation, and the surface step edge structure through which the slip takes place. Under certain conditions the dislocation system is observed to trap briefly as it meets successive surface steps.

  15. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    SciTech Connect

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai; Yan, Yanfa

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  16. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Yan, Yanfa; Wei, Su-Huai

    2015-10-01

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  17. Process for selectively patterning epitaxial film growth on a semiconductor substrate

    DOEpatents

    Sheldon, P.; Hayes, R.E.

    1984-12-04

    Disclosed is a process for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve the first layer a sufficient amount to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.

  18. Process for selectively patterning epitaxial film growth on a semiconductor substrate

    DOEpatents

    Sheldon, Peter; Hayes, Russell E.

    1986-01-01

    A process is disclosed for selectively patterning epitaxial film growth on a semiconductor substrate. The process includes forming a masking member on the surface of the substrate, the masking member having at least two layers including a first layer disposed on the substrate and the second layer covering the first layer. A window is then opened in a selected portion of the second layer by removing that portion to expose the first layer thereunder. The first layer is then subjected to an etchant introduced through the window to dissolve a sufficient amount of the first layer to expose the substrate surface directly beneath the window, the first layer being adapted to preferentially dissolve at a substantially greater rate than the second layer so as to create an overhanging ledge portion with the second layer by undercutting the edges thereof adjacent to the window. The epitaxial film is then deposited on the exposed substrate surface directly beneath the window. Finally, an etchant is introduced through the window to dissolve the remainder of the first layer so as to lift-off the second layer and materials deposited thereon to fully expose the balance of the substrate surface.

  19. Evolution of GaAs nanowire geometry in selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Bassett, Kevin P.; Mohseni, Parsian K.; Li, Xiuling

    2015-03-01

    Nanowires (NWs) grown via selective area epitaxy (SAE) show great promise for applications in next generation electronic and photonic devices, yet the design of NW-based devices can be complicated due to the complex kinetics involved in the growth process. The presence of the patterned selective area mask, as well as the changing geometry of the NWs themselves during growth, leads to non-linear growth rates which can vary significantly based on location in the mask and the NW size. Here, we present a systematic study of the evolution of GaAs NW geometry during growth as a function of NW size and pitch. We highlight a breakdown of NW uniformity at extended growth times, which is accelerated for NW arrays with larger separations. This work is intended to outline potential fundamental growth challenges in achieving desired III-V NW array patterns and uniformity via SAE.

  20. Evolution of GaAs nanowire geometry in selective area epitaxy

    SciTech Connect

    Bassett, Kevin P.; Mohseni, Parsian K.; Li, Xiuling

    2015-03-30

    Nanowires (NWs) grown via selective area epitaxy (SAE) show great promise for applications in next generation electronic and photonic devices, yet the design of NW-based devices can be complicated due to the complex kinetics involved in the growth process. The presence of the patterned selective area mask, as well as the changing geometry of the NWs themselves during growth, leads to non-linear growth rates which can vary significantly based on location in the mask and the NW size. Here, we present a systematic study of the evolution of GaAs NW geometry during growth as a function of NW size and pitch. We highlight a breakdown of NW uniformity at extended growth times, which is accelerated for NW arrays with larger separations. This work is intended to outline potential fundamental growth challenges in achieving desired III–V NW array patterns and uniformity via SAE.

  1. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    DOEpatents

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  2. Fermi energy tuning with light to control doping profiles during epitaxy

    SciTech Connect

    Sanders, C. E.; Beaton, D. A.; Reedy, R. C.; Alberi, K.

    2015-05-04

    The influence of light stimulation and photogenerated carriers on the process of dopant surface segregation during growth is studied in molecular beam epitaxially grown Si-doped GaAs structures. The magnitude of surface segregation decreases under illumination by above-bandgap photons, wherein splitting of the quasi Fermi levels reduces the band bending at the growth surface and raises the formation energy of compensating defects that can enhance atomic diffusion. We further show that light-stimulated epitaxy can be used as a practical approach to diminish dopant carry-forward in device structures and improve the performance of inverted modulation-doped quantum wells.

  3. Step-Free GaN Hexagons Grown by Selective-Area Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Kobayashi, Yasuyuki; Kasu, Makoto

    2009-09-01

    Selective-area metalorganic vapor phase epitaxy of GaN has been investigated using the optimized growth conditions for the layer (Frank-van der Merwe) growth and GaN-template substrates with low dislocation density. The surface of a GaN hexagon with 16-µm diameter has a single wide terrace over almost the whole area (step-free surface), when there are no screw-type dislocations in the finite area. Step-free GaN hexagons grew in the two-dimensional nucleus growth mode and had approximately an eight times lower growth rate than that of a GaN film grown in the step-flow mode under the growth conditions used in this study.

  4. Thermodynamic guiding principles in selective synthesis of strontium iridate Ruddlesden-Popper epitaxial films

    NASA Astrophysics Data System (ADS)

    Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2016-03-01

    We demonstrate the selective fabrication of Ruddlesden-Popper (RP) type SrIrO3, Sr3Ir2O7, and Sr2IrO4 epitaxial thin films from a single SrIrO3 target using pulsed laser deposition (PLD). We identified that the growth conditions stabilizing each phase directly map onto the phase diagram expected from thermodynamic equilibria. This approach allows precise cation stoichiometry control as evidenced by the stabilization of single phase Sr3Ir2O7 for the first time, overcoming the close thermodynamic stability between neighboring RP phases. Despite the non-equilibrium nature of PLD, these results highlight the importance of thermodynamic guiding principles to strategically synthesize the targeted phase in complex oxide thin films.

  5. Moiré induced organization of size-selected Pt clusters soft landed on epitaxial graphene

    PubMed Central

    Linas, Sébastien; Jean, Fabien; Zhou, Tao; Albin, Clément; Renaud, Gilles; Bardotti, Laurent; Tournus, Florent

    2015-01-01

    Two-dimensional hexagonal arrays of Pt nanoparticles (1.5 nm diameter) have been obtained by deposition of preformed and size selected Pt nanoparticles on graphene. This original self-organization is induced, at room temperature, by the 2D periodic undulation (the moiré pattern) of graphene epitaxially grown on the Ir(111) surface. By means of complementary techniques (scanning tunneling microscopy, grazing incidence X ray scattering), the Pt clusters shapes and organization are characterized and the structural evolution during annealing is investigated. The soft-landed clusters remain quasi-spherical and a large proportion appears to be pinned on specific moiré sites. The quantitative determination of the proportion of organized clusters reveals that the obtained hexagonal array of the almost spherical nanoparticles is stable up to 650 K, which is an indication of a strong cluster-surface interaction. PMID:26278787

  6. Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches

    SciTech Connect

    Jiang, S. Heyns, M.; Merckling, C.; Guo, W.; Waldron, N.; Caymax, M.; Vandervorst, W.; Seefeldt, M.

    2014-01-14

    The evolution of (001) and (111) facets for the epitaxial growth inside submicron trenches is systematically studied in this report. The analysis with the method of “Lagrange multiplier” indicates the equilibrium crystal shape. In the case of non-equilibrium without external fluxes, we employed the “weighted mean curvature” method to mathematically model the inter-facet migration rate for two extreme kinetic cases: “surface diffusion limited” and “surface attachment/detachment limited.” Coupled with external supply of atoms, the self-limited behavior of facet size is theoretically predicted. Moreover, we find that the self-limited stable facet size in trenches of different widths has a specific relationship determined by the surface energy ratio, kinetic rate ratio, and isolated growth rate difference. The two limited cases could be discriminated according to the mathematical fitting of one exponent in this relationship based on the stable facet size in trenches of different widths.

  7. Usage of antimony segregation for selective doping of Si in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V.; Drozdov, M. N.; Murel, A. V.; Shaleev, M. V.; Novikov, A. V.; Zakharov, N. D.

    2011-06-01

    An original approach to selective doping of Si by antimony (Sb) in molecular beam epitaxy (MBE) is proposed and verified experimentally. This approach is based on controllable utilization of the effect of Sb segregation. In particular, the sharp dependence of Sb segregation on growth temperature in the range of 300-550 deg. C is exploited. The growth temperature variations between the kinetically limited and maximum segregation regimes are suggested to be utilized in order to obtain selectively doped structures with abrupt doping profiles. It is demonstrated that the proposed technique allows formation of selectively doped Si:Sb layers, including delta ({delta}-)doped layers in which Sb concentrations can be varied from 5 x 10{sup 15} to 10{sup 20} cm{sup -3}. The obtained doped structures are shown to have a high crystalline quality and the short-term growth interruptions, which are needed to change the substrate temperature, do not lead to any significant accumulation of background impurities in grown samples. Realization of the proposed approach requires neither too low (<300 deg. C), nor too high (>600 deg. C) growth temperatures or any special equipment for the MBE machines.

  8. Segregation of Sb in Ge epitaxial layers and its usage for the selective doping of Ge-based structures

    SciTech Connect

    Antonov, A. V.; Drozdov, M. N.; Novikov, A. V. Yurasov, D. V.

    2015-11-15

    The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures with a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.

  9. Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires

    DOE PAGES

    Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; Dayeh, Shadi A.

    2015-10-08

    Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been exploredmore » before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.« less

  10. Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires

    SciTech Connect

    Nguyen, Binh -Minh; Swartzentruber, Brian; Ro, Yun Goo; Dayeh, Shadi A.

    2015-10-08

    Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been explored before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. As a result, synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors.

  11. Application of Silicon Selective Epitaxial Growth and Chemo-Mechanical Polishing to Bipolar and Soi Mosfet Devices.

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Tan

    1994-01-01

    Polished Epitaxy, or the combination of silicon Selective Epitaxial Growth and Chemo-Mechanical Polishing, provides new flexibility in process and device design, including optimized isolation, planar active-area definition, low-capacitance contacts, and SOI thin films. In this work, Polished Epitaxy has been developed with particular effort on overcoming junction leakage problems widely reported in devices fabricated in similar processes. It was found that in addition to careful surface preparation and defect control in the selective epitaxy process, issues such as sidewall orientation, junction passivation, crystal annealing, and surface damage removal were equally important and needed to be addressed. Coupled with the proper processing steps, Polished Epitaxy was able to deliver material of comparable quality to bulk silicon, suitable for device applications. By growing epitaxy laterally over an oxide step followed by polishing, a pedestal structure was created in which a thin film of single-crystal silicon was formed over oxide. Serving as the extrinsic base contact to a T-Pedestal bipolar transistor device, this pedestal helped minimize the parasitic extrinsic-base-collector overlap capacitance. The cut-off frequency (f_ {T}) in a device with a 1.0-mu m wide emitter stripe was found to improve from 17GHz to 22GHz when the contact overlap was reduced from a more conventional, larger size of 1.0 mu m to 0.2 mum. It is expected that the high-frequency performance of this structure can still be improved further in an optimized process with reduced emitter and collector resistances. The same pedestal structure was applied to a Pedestal -SOI (Silicon-On-Insulator) MOSFET device concept. At one extreme, a conventional bulk MOSFET structure is obtained when the pedestal is not utilized; quasi-SOI occurs when the drain and part of the channel overlap with the pedestal over buried oxide; at the other extreme, complete-SOI behavior results when source, channel, and drain

  12. In-situ microscopic observation of GaAs surfaces during molecular beam epitaxy and metalorganic molecular beam epitaxy by scanning microprobe reflection high energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Isu, Toshiro; Watanabe, Akiyoshi; Hata, Masayuki; Katayama, Yoshifumi

    1990-03-01

    Microscopic observations of epitaxial growth layers of GaAs were made with a scanning microprobe reflection high energy electron diffraction (RHEED). A scanning microprobe electron gun has been combined with a specially designed molecular beam epitaxy (MBE) system with both solid sources and gas sources. Scanning reflection electron microscope (SREM) images using the specular beam spot revealed granular features over the entire surfaces of MBE-grown GaAs layers, which were thought to come from undulation of the surface. Similar features of the surface were observed on the layers grown by gas-source MBE using trimethylgallium and arsine. A microscopic surface morphology was found to be fairly rough and the features depended on the species of the sources and growth conditions.

  13. Nucleus and Spiral Growth of N-face GaN(0001) Obtained by Selective-Area Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Akasaka, Tetsuya; Yamamoto, Hideki

    2013-03-01

    Nucleus and spiral growth mechanisms of N-face GaN(0001) were studied in selective-area metalorganic vapor phase epitaxy. An almost step-free N-face GaN surface is obtained by nucleus growth within a selective area without screw-type dislocations, while growth spirals are induced by the spiral growth mode when screw-type dislocations exist. The growth mechanism of N-face GaN is consistently explained by a theoretical analysis [W. K. Burton, N. Cabrera, and F. C. Frank: Philos. Trans. R. Soc. London, Ser. A 243 (1951) 299]. The step and activation energies are estimated to be 2.1 J/m2 and 2.15 eV, respectively.

  14. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multilayered Organic Epitaxial Nanofibers

    PubMed Central

    2015-01-01

    Multilayered epitaxial nanofibers are exemplary model systems for the study of exciton dynamics and lasing in organic materials because of their well-defined morphology, high luminescence efficiencies, and color tunability. We use temperature-dependent continuous wave and picosecond photoluminescence (PL) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multilayered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T) serving as exciton donor and acceptor material, respectively. The high probability for RET processes is confirmed by quantum chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P-to-6T resonance-energy-transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited, for example, for organic light-emitting devices. PMID:26191119

  15. Phase coherence and energy relaxation in epitaxial graphene under microwave radiation

    NASA Astrophysics Data System (ADS)

    Eless, V.; Yager, T.; Spasov, S.; Lara-Avila, S.; Yakimova, R.; Kubatkin, S.; Janssen, T. J. B. M.; Tzalenchuk, A.; Antonov, V.

    2013-08-01

    We have performed low-temperature magnetotransport measurements on monolayer epitaxial graphene under microwave radiation and extracted the radiation-induced effective temperatures, energy relaxation, and the dephasing times. We established that the response of the graphene sample is entirely bolometric at least up to 170 GHz. Dynamic dephasing, i.e., the time-reversal symmetry breaking effect of the ac electromagnetic field rather than mediated by heating, may become significant in the terahertz frequency range and in samples with longer phase coherence time.

  16. Selecting windows for energy efficiency

    SciTech Connect

    1997-05-01

    New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

  17. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    SciTech Connect

    Li, Yuejing; Tong, Yuying; Yang, Guofeng Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  18. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    SciTech Connect

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-03-03

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing.

  19. Modulation of Pb chemical state of epitaxial lead zirconate titanate thin films under high energy irradiation

    NASA Astrophysics Data System (ADS)

    Barala, Surendra Singh; Roul, Basanta; Banerjee, Nirupam; Kumar, Mahesh

    2016-09-01

    The chemical states of epitaxial PbZrxTi1-xO3 films were investigated by an X-ray photoelectron spectroscopy as a function of the gamma-ray doses. An anomalous behaviour was observed in Pb4f states, and a core level of Pb4f shifts towards a higher binding energy at 50 kGy and towards a lower binding energy at 200 kGy. The behaviour can be explained by a radiation induced reduction of PbO to metallic Pb. The metal-insulator-metal electrodes were fabricated by lithography, and the current-voltage characteristics were measured. A negative differential resistance (NDR) was observed in the leakage currents at room temperature. A higher current and disappearance of NDR characteristics were found in the 200 kGy irradiated samples, which further confirms the presence of metallic Pb.

  20. Low temperature selective silicon epitaxy by ultra high vacuum rapid thermal chemical vapor deposition using Si2H6, H2 and Cl2

    NASA Astrophysics Data System (ADS)

    Violette, Katherine E.; O'Neil, Patricia A.; Öztürk, Mehmet C.; Christensen, Kim; Maher, Dennis M.

    1996-01-01

    We present the use of the Si2H6/H2/CL2 chemistry for selective silicon epitaxy by rapid thermal chemical vapor deposition (RTCVD). The experiments were carried out in an ultrahigh vacuum rapid thermal chemical vapor deposition reactor. Epitaxial layers were grown selectively with growth rates above 150 nm/min at 800 °C and 24 mTorr using 10% Si2H6 and H2 and Cl2 with a minimum Si:Cl ratio of 1. Excellent selectivity with respect to SiO2 and Si3N4 was obtained indicating that very low Cl2 partial pressures are sufficient to preserve selectivity. In situ doping results with B2H6 show that sharp doping transitions and a wide range of B concentrations can be obtained with a slight B incorporation rate reduction with Cl2 addition. Our results indicate that UHV-RTCVD with the Si2H6/H2/Cl2 chemistry yields highly selective Si epitaxy with growth rates well within the practical throughput limits of single wafer manufacturing and with a potential to reduce the Cl content below the levels used in conventional SiH2Cl2 based selective epitaxy processes.

  1. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    SciTech Connect

    Schmid, H. Borg, M.; Moselund, K.; Cutaia, D.; Riel, H.; Gignac, L.; Breslin, C. M.; Bruley, J.

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongside fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.

  2. Highly manufacturable silicon vertical diode switches for new memories using selective epitaxial growth with batch-type equipment

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Han, J. J.; Kim, B. H.; Lim, H. J.; Nam, S. W.; Kang, H. K.; Chung, C. H.; Jeong, H. S.; Park, H. H.; Jeong, H. W.; Kim, K. R.; Choi, B. D.

    2011-05-01

    Practical selectivity window of selective epitaxial growth (SEG) using a H2/SiH4/Cl2 cyclic chemical vapor deposition (CVD) system has been investigated with the batch-type vertical furnace equipment, replacing a conventional single-wafer H2/dichlorosilane/HCl CVD system. The process temperature was less than 700 °C, which is suitable for a low thermal budget process applicable to next-generation memories including vertical pn-diode switches. Selectivity loss is quantified by an in-line inspection tool to determine the practical number of selectivity losses. The H2/SiH4/Cl2 cyclic CVD system provides an excellent capacity of 40 wafers per batch. Selectivity loss, which is one of the most crucial features in the SEG process for the diode application, is controlled with both the amount of SiH4 and Cl2 and the period of gas supply, and the practical number of selectivity loss is confirmed to be less than 100 in 200 mm wafers. Without high temperature annealing in hydrogen ambient, low temperature cyclic SEG in the batch reactor ensures the clean interface and improved crystalline quality of SEG-Si, as well as high throughput.

  3. The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film

    NASA Astrophysics Data System (ADS)

    Isarakorn, D.; Briand, D.; Janphuang, P.; Sambri, A.; Gariglio, S.; Triscone, J.-M.; Guy, F.; Reiner, J. W.; Ahn, C. H.; de Rooij, N. F.

    2011-02-01

    This paper focuses on the fabrication and evaluation of vibration energy harvesting devices by utilizing an epitaxial Pb(Zr0.2Ti0.8)O3 (PZT) thin film. The high quality of the c-axis oriented PZT layer results in a high piezoelectric coefficient and a low dielectric constant, which are key parameters for realizing high performance piezoelectric energy harvesters. Different cantilever structures, with and without a Si proof mass, are realized using micro-patterning techniques optimized for the epitaxial oxide layers, to maintain the piezoelectric properties throughout the process. The characteristics and the energy harvesting performances of the fabricated devices are experimentally investigated and compared against analytical calculations. The optimized device based on a 0.5 µm thick epitaxial PZT film, a cantilever beam of 1 mm × 2.5 mm × 0.015 mm, with a Si proof mass of 1 mm × 0.5 mm × 0.23 mm, generates an output power, current and voltage of, respectively, 13 µW g - 2, 48 µA g - 1 and 0.27 V g - 1 (g = 9.81 m s - 2) at the resonant frequency of 2.3 kHz for an optimal resistive load of 5.6 kΩ. The epitaxial PZT harvester exhibits higher power and current with usable voltage, while maintaining lower optimal resistive load as compared with other examples present in the literature. These results indicate the potential of epitaxial PZT thin films for the improvement of the performances of energy harvesting devices.

  4. Selective epitaxial growth techniques to integrate high-quality germanium on silicon

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darin

    2011-12-01

    High-quality Ge-on-Si heterostructures have been actively pursued for many advanced applications, including near-infrared photodetectors, high-mobility field effect transistors, and virtual substrates for integrating III-V multijunction solar cells. However, growing epitaxial Ge on Si poses many engineering challenges, ranging from lattice mismatch, to thermal expansion coefficient mismatch, to non-planar morphological evolution. The lattice mismatch between Ge and Si often leads to a high density of threading dislocations. These dislocations, if not reduced, propagate through the subsequently grown GaAs layer, deteriorating its quality. To overcome these engineering challenges, we have developed three different approaches based on molecular beam epitaxy to significantly reduce, manage, or eliminate the defects in Ge films grown on Si. The first approach involves the nucleation of Ge islands within nanoscale windows in a thin layer of chemically grown SiO2 and successive island coalescence over the SiO2 to form a continuous film. Nanoscale contact areas between Ge and Si effectively relieve the lattice mismatch stress between Ge/Si so that dislocations do not nucleate. We observe that annealing the nucleated islands prior to full coalescence also leads to Ge films that are free of defects, along with significant improvement in GaAs integrated on Ge. The second approach involves trapping dislocations in Ge between high aspect ratio walls of SiO2. Defects form during coalescence of Ge from adjacent channels and at the corners of the SiO2 walls due to stress resulting from differences in thermal expansion coefficients of Ge, Si, and SiO2. The third approach involves filling etch pits, which reveal dislocations, with SiO2 and subsequent Ge growth over SiO2. The filling prevents dislocations in the lower Ge layer from propagating into the upper Ge layer. The third method reduces the defect density from 2.8 x 108 cm-2 to 9.1 x 10 6 cm-2, and is proven to be the most

  5. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGES

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  6. Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung

    2015-05-21

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  7. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    SciTech Connect

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.

  8. All-epitaxial, lithographically defined, current- and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning

    SciTech Connect

    Ahn, J.; Lu, D.; Deppe, D.G.

    2005-01-10

    An approach is presented to fabricate a current- and mode-confined vertical-cavity surface-emitting laser that is all-epitaxial and lithographically defined. The device uses selective Fermi level pinning to self-align the electrical injection to a mode-confining intracavity phase-shifting mesa.

  9. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1-xSex)4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Fan, Feng-Jia; Gong, Ming; Ge, Jin; Yu, Shu-Hong

    2014-02-01

    Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor to adjust the reactivity difference between (0002)WZ and (000-2)WZ facets. These unique polytypic CCTSSe nanocrystals may find applications in energetic semiconducting materials for energy conversion in the future.Polytypic nanocrystals with zinc blende (ZB) cores and wurtzite (WZ) arms, such as tetrapod and octopod nanocrystals, have been widely reported. However, polytypic nanocrystals with WZ cores and ZB arms or ends have been rarely reported. Here, we report a facile, solution-based approach to the synthesis of polytypic Cu2CdSn(S1-xSex)4 (CCTSSe) nanocrystals with ZB-derivative selectively engineered on (000+/-2)WZ facets of WZ-derived cores. Accordingly, two typical morphologies, i.e., bullet-like nanocrystals with a WZ-derivative core and one ZB-derivative end, and rugby ball-like nanocrystals with a WZ-derivative core and two ZB-derivative ends, can be selectively prepared. The epitaxial growth mechanism is confirmed by the time-dependent experiments. The ratio of rugby ball-like and bullet-like polytypic CCTSSe nanocrystals can be tuned through changing the amount of Cd precursor

  10. Epitaxial magnetic oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Belenky, Land J.

    Perovskite oxides exhibit a range of physical properties including insulator, semiconductor, metal, superconductor, ferromagnet and many more. Interactions between order parameters result in new properties such as the multiferroic materials. The production of artificial layered epitaxial magnetic heterostructures motivates this research. This requires atomic layer controlled growth which depends on selection of materials for their structural and chemical compatibility, preparation of substrates to achieve well-defined surfaces at the atomic level and the development of a deposition and analysis technique capable of controlling growth' at this level. We have used a pulsed laser deposition system with in situ reflection high-energy electron diffraction to produce epitaxial magnetic oxide heterostructures on lattice-matched substrates and have investigated a number of magnetic interactions. We have demonstrated an unusual antiferromagnetic interfacial exchange coupling between epitaxial bilayers of La0.67Sr0.33MnO 3 and SrRuO3 grown on (001) SrTiO3 substrates. The sign and magnitude of the exchange field depends on the cooling field. By interrupting the charge transfer at the interface with a very thin insulating layer, we have demonstrated this exchange biasing effect is related to the spin-dependent band structures of the materials. We have investigated the structural and magnetic properties of epitaxial multilayers and superlattices of manganites. These materials exhibit colossal magnetoresistance and the Curie temperature can be adjusted over a range of 100 K. We have fabricated La0.67Sr0.33MnO3/La 0.82Ba0.18MnO3 superlattices with layers as thin as 8 unit cells (32A). These superlattices have magnetic transition temperatures above 350 K and coercivities of approximately 10 Oe. Deposition techniques can effectively control the out-of-plane dimension on the nanoscale but control or lateral dimensions has proven more challenging. We have fabricated magnetic

  11. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the date, with the latest works first. Geothermal, solar, wind, and ocean/water power sources are included. Magnetohydrodynamics and electrohydrodynamics, electric power engineering, automotive power plants, and energy storage are also covered.

  12. In situ mask designed for selective growth of InAs quantum dots in narrow regions developed for molecular beam epitaxy system

    SciTech Connect

    Ohkouchi, Shunsuke; Nakamura, Yusui; Ikeda, Naoki; Sugimoto, Yoshimasa; Asakawa, Kiyoshi

    2007-07-15

    We have developed an in situ mask that enables the selective formation of molecular beam epitaxially grown layers in narrow regions. This mask can be fitted to a sample holder and removed in an ultrahigh-vacuum environment; thus, device structures can be fabricated without exposing the sample surfaces to air. Moreover, this mask enables the observation of reflection high-energy electron diffraction during growth with the mask positioned on the sample holder and provides for the formation of marker layers for ensuring alignment in the processes following the selective growth. To explore the effectiveness of the proposed in situ mask, we used it to grow quantum dot (QD) structures in narrow regions and verified the perfect selectivity of the QD growth. The grown QDs exhibited high optical quality with a photoluminescence peak at approximately 1.30 {mu}m and a linewidth of 30 meV at room temperature. The proposed technique can be applied for the integration of microstructures into optoelectronic functional devices.

  13. Selective epitaxial growth of stepwise SiGe:B at the recessed sources and drains: A growth kinetics and strain distribution study

    NASA Astrophysics Data System (ADS)

    Koo, Sangmo; Jang, Hyunchul; Kim, Sun-Wook; Ko, Dae-Hong

    2016-09-01

    The selective epitaxial growth of Si1-xGex and the related strain properties were studied. Epitaxial Si1-xGex films were deposited on (100) and (110) orientation wafers and on patterned Si wafers with recessed source and drain structures via ultrahigh vacuum chemical vapor deposition using different growing steps and Ge concentrations. The stepwise process was split into more than 6 growing steps that ranged in thicknesses from a few to 120 nm in order to cover the wide stages of epitaxial growth. The growth rates of SiGe on the plane and patterned wafers were examined and a dependence on the surface orientation was identified. As the germanium concentration increased, defects were generated with thinner Si1-xGex growth. The defect generation was the result of the strain evolution which was examined for channel regions with a Si1-xGex source/drain (S/D) structure.

  14. Low-energy electron diffraction investigation of epitaxial growth: Pt and Pd on Pd(100)

    SciTech Connect

    Flynn-Sanders, D.

    1990-09-21

    We investigate the epitaxial growth of Pt and Pd and Pd(100) via spot profile analysis using conventional low-energy electron diffraction (LEED). We resolve a central-spike and diffuse component in the spot profiles, reflecting the layer-occupations and pair-correlations, respectively. Kinetic limitations inhibit layer-by-layer growth at low temperatures. Our data suggest diffusion switches on at ca. 150 K for Pt and ca. 170 K for Pd indicating activation barriers to surface diffusion of ca. 10 and ca. 13 kcal/mol, respectively. To clarify the role of diffusion in determining the resulting film morphology, we develop a growth model that incorporates the adsorption-site requirement and predicts intensity oscillations. We present a new procedure to experimentally determine out-of-phase scattering conditions. At these energies, ring-structure is evident in the profiles during Pd growth between ca. 200 and 400 K. We report ring intensity oscillations as a function of coverage, which demonstrate the filling of individual layers.

  15. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    PubMed

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  16. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fahed, M.; Desplanque, L.; Coinon, C.; Troadec, D.; Wallart, X.

    2015-07-01

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  17. Enhancing Dopant Solubility via Epitaxial Surfactant Growth

    SciTech Connect

    Zhang, L.; Yan, Y.; Wei, S.-H.

    2009-01-01

    A general concept for enhancing dopant solubility via epitaxial surfactant growth is proposed. The key of the concept is to find the appropriate surfactants that generate high (low) levels that can transfer electrons (holes) to dopant acceptor (donor) levels in p-type (n-type) doping, thus significantly lowering the formation energy of dopants. Using first-principles density-functional calculations, our concept explains excellently the recently discovered dual-surfactant effect of Sb and H on enhancing Zn doping in epitaxially grown GaP(100) thin film and suggests that sole surfactant Te can also induce enhancement of N solubility in ZnSe(100) film. We also proposed the surfactants for enhancing p-type doing of ZnO with epitaxial growth with (000{bar 1}) surface. General rules for selecting surfactants for enhancing both p-type and n-type dopings are provided.

  18. Energy: An annotated selected bibliography

    NASA Technical Reports Server (NTRS)

    Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)

    1979-01-01

    This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.

  19. Defect Reduction via Selective Lateral Epitaxy of GaN on an Innovative Masked Structure with Serpentine Channels

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Justin P. C.; Liu, Lei; Li, Ding; Wang, Lei; Wan, Chenghao; Chen, Weihua; Yang, Zhijian; Xie, Yahong; Hu, Xiaodong; Zhang, Guoyi

    2012-05-01

    We demonstrated an innovative lateral epitaxy method to grow c-plane GaN film using serpentine masked structures, which simplified the entire fabrication process with only one single epitaxial growth step and could efficiently block the threading dislocations. The microstructural and optical properties of GaN indicated that the crystalline quality was effectively improved. Unlike the conventional epitaxial lateral overgrowth (ELOG) or the double ELOG method, the presented serpentine masked structure needs no regrowth process for obtaining low-defect-density GaN materials, and is promising for growing high-performance III-nitride-based devices including laser diodes (LDs), power transistors, and light-emitting diodes (LEDs).

  20. Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber

    NASA Astrophysics Data System (ADS)

    König, Dirk; Takeda, Yasuhiko; Puthen-Veettil, Binesh; Conibeer, Gavin

    2012-10-01

    We propose a technologically feasible concept of a hot carrier (HC) solar cell (SC) which fulfills the electronic, optical, and to some extent the phononic criteria required. The energy selective process of HCs is implemented into the hot carrier absorber (HCA). Its electronic properties are investigated by a Monte-Carlo code which simulates random deviations of structure thickness and a normal distribution of random elastic electron (e-) scattering. The structure can be grown epitaxially as a HC-SC test device.

  1. Selective-area growth of GaN microrods on strain-induced templates by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lekhal, Kaddour; Bae, Si-Young; Lee, Ho-Jun; Mitsunari, Tadashi; Tamura, Akira; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-05-01

    In this paper, we discuss the influence of parameters such as type of carrier gas and NH3/HCl flow ratio on the growth of vertical GaN microstructures by selective-area growth (SAG) hydride vapor phase epitaxy (HVPE). On various strain-induced templates such as GaN/sapphire, GaN/Si, and AlN/Si, regular arrays of Ga-polar GaN microrods were properly achieved by adjusting the growth parameters. The photoluminescence and micro-Raman measurements reveal not only the crystal quality of the GaN microrods but also strain distribution. These results will give insight into the control of the morphology of GaN microrods in terms of the strain induced from templates in SAG-HVPE. The precisely controlled arrays of GaN microrods can be used for next-generation light-emitting diodes (LEDs) by realizing InGaN/GaN multi-quantum wells (MQWs) with a radial structure.

  2. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  3. Large-scale self-assembled epitaxial growth of highly-ordered three-dimensional micro/nano single-crystalline PbSe pyramid arrays by selective chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Qiu, Jijun; Weng, Binbin; Li, Lin; Li, Xiaomin; Shi, Zhisheng

    2015-05-01

    Highly ordered three-dimensional micro- and nano- PbSe pyramid arrays were synthesized by using selective epitaxial self-assembled chemical bath deposition method. Each pyramid consists of a very sharp (111) tip with six smooth equivalent {100} facets. Every (100) facet forms an angle of about 54.7° with respect to the (111) facet. The structural features including pyramidal size and period could be precisely tailored by pre-patterned Au mask and etching time. Pyramids are self-assembled on the confined positions by the dual functions of one-dimensional and two-dimensional oriented attachment mechanisms along [110] directions on the (111) surface, following the Gibbs-Curie-Wulff minimum energy principle. This method could effectively create large, bottom-up 3D pyramidal surface patterns in a cost-effective and time-saving manner, which has potential applications in infrared photoconductors, solar cells and light emitting enhancement for display, etc.

  4. Origin of the low-energy emission band in epitaxially grown para-sexiphenyl nanocrystallites

    SciTech Connect

    Kadashchuk, A.; Schols, S.; Heremans, P.; Skryshevski, Yu.; Piryatinski, Yu.; Beinik, I.; Teichert, C.; Hernandez-Sosa, G.; Sitter, H.; Andreev, A.; Frank, P.; Winkler, A.

    2009-02-28

    A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

  5. Selective-area growth of GaN nanowires on SiO2-masked Si (111) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kruse, J. E.; Lymperakis, L.; Eftychis, S.; Adikimenakis, A.; Doundoulakis, G.; Tsagaraki, K.; Androulidaki, M.; Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P.; Koukoula, T.; Kehagias, Th.; Komninou, Ph.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO2 mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  6. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    PubMed

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  7. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    NASA Astrophysics Data System (ADS)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-08-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  8. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    PubMed Central

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  9. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    PubMed

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-08-09

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  10. Temperature stability of Al(x)Ga(1-x)As (x = 0-1) thermal oxide masks for selective-area epitaxy

    NASA Technical Reports Server (NTRS)

    Jones, Stephen H.; Lau, Kei May; Pouch, John J.

    1988-01-01

    The use of thermal oxides of Al(x)Ga(1-x)As (x = 0-1) as masking materials for selective-area epitaxy by a organometallic chemical-vapor deposition has been investigated. It was found that the thermal oxide of GaAs is only applicable for low growth temperatures (less than or equal to 600 C), and the addition of aluminum significantly improves the thermal stability of the oxide. The oxide of Al(0.4)Ga(0.6)As is suitable for high-temperature deposition, but there are criteria for the thickness and oxidation temperature. Thin layers of AlAs oxidized at 475 C are excellent masks and allow precise thickness control. Promising results of selective-area deposition using these aluminum oxide masks have been obtained. High-quality single crystal grew in mask openings uniformly surrounded by dense and fine-grain polycrystalline deposits, producing a planar duplication of the original pattern.

  11. Temperature stability of Al(x)Ga(1-x)As (x = 0-1) thermal oxide masks for selective-area epitaxy

    NASA Astrophysics Data System (ADS)

    Jones, Stephen H.; Lau, Kei May; Pouch, John J.

    1988-07-01

    The use of thermal oxides of Al(x)Ga(1-x)As (x = 0-1) as masking materials for selective-area epitaxy by a organometallic chemical-vapor deposition has been investigated. It was found that the thermal oxide of GaAs is only applicable for low growth temperatures (less than or equal to 600 C), and the addition of aluminum significantly improves the thermal stability of the oxide. The oxide of Al(0.4)Ga(0.6)As is suitable for high-temperature deposition, but there are criteria for the thickness and oxidation temperature. Thin layers of AlAs oxidized at 475 C are excellent masks and allow precise thickness control. Promising results of selective-area deposition using these aluminum oxide masks have been obtained. High-quality single crystal grew in mask openings uniformly surrounded by dense and fine-grain polycrystalline deposits, producing a planar duplication of the original pattern.

  12. Energy band alignment of atomic layer deposited HfO{sub 2} on epitaxial (110)Ge grown by molecular beam epitaxy

    SciTech Connect

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.

    2013-03-04

    The band alignment properties of atomic layer HfO{sub 2} film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO{sub 2} film. The measured valence band offset value of HfO{sub 2} relative to (110)Ge was 2.28 {+-} 0.05 eV. The extracted conduction band offset value was 2.66 {+-} 0.1 eV using the bandgaps of HfO{sub 2} of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO{sub 2}/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices.

  13. Infrared Photodiodes Made by Low Energy Ion Etching of Molecular Beam Epitaxy Grown Mercury-Cadmium Alloy

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Shik

    Ion etching was used to form junctions on the p-type (111)B Hg_{1-x}Cd_ {x}Te grown by Molecular Beam Epitaxy(MBE). When Hg_{1-x}Cd_{x}Te layers are etched by Ar ions at energies ranging between 300 and 450eV, the top Hg_{1 -x}Cd_{x}Te layer is converted to n-type. The converted region is electrically characterized as a defective n^+-region near the surface, and a low doped n^--region exist below the damaged region. The total thickness of the converted n-type layer was found to be considerable. These results suggest that the creation of the n-type layer is due to the filling of mercury vacancies by mercury atoms displaced by the Ar ion irradiation on the surface. For the performance of the resulting photodiodes on MBE grown (111)B Hg_{1-x}Cd _{x}Te using this technique, the dynamic resistances at 80K are one order of magnitude less than those of junctions made on Liquid Phase Epitaxially and Bulk grown Hg_{1 -x}Cd_{x}Te. The ion etching technique was compared with ion implantation technique by fabricating diodes on the same MBE grown (111)B Hg _{1-x}Cd_{x}Te layers. The result of the comparison illustrates that ion etching technique is as good as ion implantation technique for the fabrication of Hg_{1-x}Cd _{x}Te photodiodes. Also it is believed that the performance of the diodes is limited by a relatively large density of twin defects usually found in MBE grown (111)B Hg_{1-x}Cd _{x}Te.

  14. Azimuthal reflection high-energy electron diffraction study of MnAs growth on GaAs(001) by molecular beam epitaxy

    SciTech Connect

    Satapathy, Dillip K.; Jenichen, Bernd; Ploog, Klaus H.; Braun, Wolfgang

    2011-07-15

    Azimuthal reflection high-energy electron diffraction (ARHEED) and in situ grazing incidence synchrotron x-ray diffraction techniques are employed to investigate the growth, epitaxial orientation, and interfacial structure of MnAs layers grown on GaAs(001) by molecular beam epitaxy (MBE). We demonstrate the power and reliability of ARHEED scans as a routine tool in characterizing the formation of epitaxial films. The ARHEED scans clearly reveal the formation of the rectangular MnAs unit cell during growth on GaAs(001) for a MnAs layer thickness of 2.1 {+-} 0.2 monolayers with a tensile strain along the MnAs[1120] direction. A periodic coincidence site lattice, which is known to form along the MnAs [0001] direction to release the strain due to the huge lattice mismatch ({approx}30%) also produces periodic satellites of the diffraction spots in the ARHEED scan. The formation of different epitaxial orientations of MnAs during MBE growth can be directly observed using ARHEED scans. ARHEED is demonstrated to have a resolution similar to synchrotron x-ray diffraction with a double crystal monochromator, yielding full width at half maximum values of reflections as small as 0.005 reciprocal lattice units.

  15. Ion Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Yamada, I.

    The following sections are included: * FILM FORMATION BY ION BEAMS * Fundamental Processes in Film Formation by Low Energy Ion Beams * Comparison of ICB with Other Physical Vapor Deposition Methods * Vacuum Deposition * Sputter Deposition * Ion Plating * Ion Beam Deposition * Simultaneous Deposition and Implantation * Plasma Enhanced Deposition * Section I References * ION CLUSTER BEAM DEPOSITION AND CLUSTER BEAM FORMATION * Nucleation Process * Growth and Condensation Process * Section II References * CHARACTERISTICS OF THE CLUSTER * Velocity of Clusters * Energy of Clusters * TEM Observation of Clusters * Structural Properties * Section III References * IONIZED CLUSTER BEAM DEPOSITION SYSTEM * Section IV References * FILM DEPOSITION PROCESS BY ICB * Fundamental Process * Effects of Kinetic Energy on the Film Properties * Epitaxial phenomena * Crystallographic Structure * Physical Structure of Films * Effects of the Electric Charge on the Film Properties * Section V References * APPLICATIONS * Silicon and Silicon Alloy Films * Low Temperature Epitaxy of Silicon Films * Thermally Stable a-Si Film Growth * High Quality SiO2 Film Deposition * Epitaxial A1 Films * Electromigration Resistant A1 Film * Thermally Stable Al/Si Contact * II-VI and III-V Compound Films * Thin Multiple Layered Film * CONCLUSIONS * Acknowledgements * Section VI References

  16. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  17. Vacancies in epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-08-15

    The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphene to the substrate increases.

  18. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)

    NASA Astrophysics Data System (ADS)

    Wang, G. L.; Moeen, M.; Abedin, A.; Kolahdouz, M.; Luo, J.; Qin, C. L.; Zhu, H. L.; Yan, J.; Yin, H. Z.; Li, J. F.; Zhao, C.; Radamson, H. H.

    2013-09-01

    SiGe has been widely used for source/drain (S/D) engineering in pMOSFETs to enhance channel mobility. In this study, selective Si1-xGex growth (0.25 ≤ x ≤ 0.35) with boron concentration of 1-3 × 1020 cm-3 in the process for 22 nm node complementary metal-oxide semiconductor (CMOS) has been investigated and optimized. The growth parameters were carefully tuned to achieve deposition of high quality and highly strained material. The thermal budget was decreased to 800 °C to suppress dopant diffusion, to minimize Si loss in S/D recesses, and to preserve the S/D recess shape. Two layers of Si1-xGex were deposited: a bottom layer with high Ge content (x = 0.35) which filled the recess and a cap layer with low Ge content (x = 0.25) which was elevated in the S/D regions. The elevated SiGe cap layer was intended to be consumed during the Ni-silicidation process in order to avoid strain reduction in the channel region arising from strain relaxation in SiGe S/D. In this study, a kinetic gas model was also applied to predict the pattern dependency of the growth and to determine the epi-profile in different transistor arrays. The input parameters include growth temperature, partial pressures of reactant gases, and chip layout. By using this model, the number of test wafers for epitaxy experiments can be decreased significantly. When the epitaxy process parameters can be readily predicted by the model for epi-profile control in an advanced chip design, fast and cost-effective process development can be achieved.

  19. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    SciTech Connect

    Yurasov, D. V. Antonov, A. V.; Drozdov, M. N.; Schmagin, V. B.; Novikov, A. V.; Spirin, K. E.

    2015-10-14

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n{sup +}-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers.

  20. Molecular-beam epitaxy of monolayer and bilayer WSe2: a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy

    NASA Astrophysics Data System (ADS)

    Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H.

    2015-09-01

    Interest in two-dimensional (2D) transition-metal dichalcogenides (TMDs) has prompted some recent efforts to grow ultrathin layers of these materials epitaxially using molecular-beam epitaxy (MBE). However, growths of monolayer (ML) and bilayer (BL) WSe2—an important member of the TMD family—by the MBE method remain uncharted, probably because of the difficulty in generating tungsten fluxes from the elemental source. In this work, we present a scanning tunneling microscopy and spectroscopy (STM/S) study of MBE-grown WSe2 ML and BL, showing atomically flat epifilm with no domain boundary (DB) defect. This contrasts epitaxial MoSe2 films grown by the same method, where a dense network of the DB defects is present. The STS measurements of ML and BL WSe2 domains of the same sample reveal not only the bandgap narrowing upon increasing the film thickness from ML to BL, but also a band-bending effect across the boundary (step) between ML and BL domains. This band-bending appears to be dictated by the edge states at steps of the BL islands. Finally, comparison is made between the STS-measured electronic bandgaps with the exciton emission energies measured by photoluminescence, and the exciton binding energies in ML and BL WSe2 (and MoSe2) are thus estimated.

  1. Strain in epitaxial Bi2Se3 grown on GaN and graphene substrates: A reflection high-energy electron diffraction study

    NASA Astrophysics Data System (ADS)

    Li, Bin; Guo, Xin; Ho, Wingkin; Xie, Maohai

    2015-08-01

    Topological insulator (TI) has been one of the focus research themes in condensed matter physics in recent years. Due to the relatively large energy bandgap, Bi2Se3 has been identified as one of the most promising three-dimensional TIs with application potentials. Epitaxial Bi2Se3 by molecular-beam epitaxy has been reported by many groups using different substrates. A common feature is that Bi2Se3 grows readily along the c-axis direction irrespective of the type and condition of the substrate. Because of the weak van deer Waals interaction between Bi2Se3 quintuple layers, the grown films are reported to be strain-free, taking the lattice constant of the bulk crystal. At the very initial stage of Bi2Se3 deposition, however, strain may still exist depending on the substrate. Strain may bring some drastic effects to the properties of the TIs and so achieving strained TIs can be of great fundamental interests as well as practical relevance. In this work, we employ reflection high-energy electron diffraction to follow the lattice constant evolution of Bi2Se3 during initial stage depositions on GaN and graphene, two very different substrates. We reveal that epitaxial Bi2Se3 is tensile strained on GaN but strain-free on graphene. Strain relaxation on GaN is gradual.

  2. Copper Oxide Substrates and Epitaxial Copper Oxide/Zinc Oxide Thin Film Heterostructures for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Darvish, Davis Solomon

    Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu 2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

  3. Selective area growth of Bernal bilayer epitaxial graphene on 4H-SiC (0001) substrate by electron-beam irradiation

    SciTech Connect

    Dharmaraj, P.; Jeganathan, K.; Parthiban, S.; Kwon, J. Y.; Gautam, S.; Chae, K. H.; Asokan, K.

    2014-11-03

    We report selective area growth of large area homogeneous Bernal stacked bilayer epitaxial graphene (BLEG) on 4H-SiC (0001) substrate by electron-beam irradiation. Sublimation of Si occurs by energetic electron irradiations on SiC surface via breaking of Si–C bonds in the localized region, which allows the selective growth of graphene. Raman measurements ensure the formation of homogeneous BLEG with weak compressive strain of −0.08%. The carrier mobility of large area BLEG is ∼5100 cm{sup 2} V{sup −1} s{sup −1} with a sheet carrier density of 2.2 × 10{sup 13} cm{sup −2}. Current-voltage measurements reveal that BLEG on 4H-SiC forms a Schottky junction with an operation at mA level. Our study reveals that the barrier height at the Schottky junction is low (∼0.58 eV) due to the Fermi-level pinning above the Dirac point.

  4. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  5. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well

    NASA Astrophysics Data System (ADS)

    Achermann, Marc; Petruska, Melissa A.; Kos, Simon; Smith, Darryl L.; Koleske, Daniel D.; Klimov, Victor I.

    2004-06-01

    As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies-for example, displays, fluorescence tagging, solid-state lighting and lasers. An important limitation for such applications, however, is the difficulty of achieving electrical pumping, largely due to the presence of an insulating organic capping layer on the nanocrystals. Here, we describe an approach for indirect injection of electron-hole pairs (the electron-hole radiative recombination gives rise to light emission) into nanocrystals by non-contact, non-radiative energy transfer from a proximal quantum well that can in principle be pumped either electrically or optically. Our theoretical and experimental results indicate that this transfer is fast enough to compete with electron-hole recombination in the quantum well, and results in greater than 50 per cent energy-transfer efficiencies in the tested structures. Furthermore, the measured energy-transfer rates are sufficiently large to provide pumping in the stimulated emission regime, indicating the feasibility of nanocrystal-based optical amplifiers and lasers based on this approach.

  6. Growth and Characterization of a GaAs Quantum Well Buried in GaAsP/GaAs Vertical Heterostructure Nanowires by Selective-Area Metal Organic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Fujisawa, Shota; Sato, Takuya; Hara, Shinjiro; Motohisa, Junichi; Hiruma, Kenji; Fukui, Takashi

    2011-04-01

    We developed a growth method for forming a GaAs quantum well (QW) buried in GaAsP/GaAs heterostructure nanowires (NWs) by selective-area metal organic vapor phase epitaxy (SA-MOVPE). To determine the optimum growth conditions of GaAsP NWs, we varied the [(C4H9)PH2+ AsH3]/[(CH3)3Ga] ratio between 20 and 185. As a result, we could obtain NWs with good height uniformity when the ratio was 20. To form such NWs with a GaAs QW, we fabricated GaAs NWs of about 60 nm in diameter before the GaAsP growth. The NW uniformity was considerably improved by introducing GaAs growth. Photoluminescence (PL) measurements at 4.2 K indicated that the QW had a spectral peak about 150 meV higher than the acceptor-related recombination emission peak of GaAs, which is near 1.5 eV. The QW thickness estimated from the spectral peak energy of PL was 5.2 nm, which is in fair agreement with the value calculated from the GaAs growth rate.

  7. Promising low-damage fabrication method for the photonic crystals with hexagonal or triangular air holes: selective area metal organic vapor phase epitaxy.

    PubMed

    Yang, Lin; Motohisa, Junichi; Takeda, Junichiro; Fukui, Takashi

    2005-12-26

    The photonic band diagrams of the photonic crystal slabs (PCSs) with various structural air holes were calculated by plane wave expansion method with super cell method. The calculated results indicate that the PCSs with hexagonal or triangular air holes have enough large photonic band gaps in the guided mode spectrum, hence they are good candidates to be used for the PC devices. The PCs with hexagonal or triangular air holes were fabricated successfully on n-type GaAs (111)B substrate by selective-area metal organic vapor phase epitaxy (SA-MOVPE). Vertical and smooth facets are formed and the uniformities are very good. The same process was also used to fabricate hexagonal air hole arrays with the width of 100 nm successfully. A procedure was proposed and utilized to fabricate the air-bridge PCS with normal hexagonal air holes. The fabricated hexagonal air holes are very uniform and the sidewalls are smooth and vertical. Our experimental results indicate that SA-MOVPE growth is a promising low-damage fabrication method for PC devices and photonic nano-strucutres.

  8. Influence of the carrier Gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN

    SciTech Connect

    Rozhavskaya, M. M. Lundin, V. V.; Zavarin, E. E.; Troshkov, S. I.; Brunkov, P. N.; Tsatsulnikov, A. F.

    2013-03-15

    The influence of the carrier gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN in stripe windows oriented along the crystallographic direction Left-Pointing-Angle-Bracket 11-bar00 Right-Pointing-Angle-Bracket GaN for various widths of the mask between the stripes is studied. It is shown that the addition of nitrogen in the reactor atmosphere leads to changes in the form of the stripes in the case of wide (40 {mu}m) mask from a rectangular form restricted by a {l_brace}1 1-bar20{r_brace} lateral face to a trapezoidal form restricted by a {l_brace}1 1-bar22{r_brace} lateral face. It is also shown that during growth in the nitrogen-hydrogen mixture, the gallium flow starts to considerably affect the form of the growing stripes. It is shown that the process is significantly unstable, which leads to a noticeable variation in the form type as the transverse section of the stripe increases.

  9. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Treu, J.; Speckbacher, M.; Saller, K.; Morkötter, S.; Döblinger, M.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ˜ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  10. Strain in epitaxial Bi{sub 2}Se{sub 3} grown on GaN and graphene substrates: A reflection high-energy electron diffraction study

    SciTech Connect

    Li, Bin; Guo, Xin; Ho, Wingkin; Xie, Maohai

    2015-08-24

    Topological insulator (TI) has been one of the focus research themes in condensed matter physics in recent years. Due to the relatively large energy bandgap, Bi{sub 2}Se{sub 3} has been identified as one of the most promising three-dimensional TIs with application potentials. Epitaxial Bi{sub 2}Se{sub 3} by molecular-beam epitaxy has been reported by many groups using different substrates. A common feature is that Bi{sub 2}Se{sub 3} grows readily along the c-axis direction irrespective of the type and condition of the substrate. Because of the weak van der Waals interaction between Bi{sub 2}Se{sub 3} quintuple layers, the grown films are reported to be strain-free, taking the lattice constant of the bulk crystal. At the very initial stage of Bi{sub 2}Se{sub 3} deposition, however, strain may still exist depending on the substrate. Strain may bring some drastic effects to the properties of the TIs and so achieving strained TIs can be of great fundamental interests as well as practical relevance. In this work, we employ reflection high-energy electron diffraction to follow the lattice constant evolution of Bi{sub 2}Se{sub 3} during initial stage depositions on GaN and graphene, two very different substrates. We reveal that epitaxial Bi{sub 2}Se{sub 3} is tensile strained on GaN but strain-free on graphene. Strain relaxation on GaN is gradual.

  11. Misfit dislocations in epitaxy

    NASA Astrophysics Data System (ADS)

    van der Merwe, Jan H.

    2002-08-01

    This article on epitaxy highlights the following: the definition and some historical milestones; the introduction by Frenkel and Kontorowa (FK) of a truncated Fourier series to model the periodic interaction at crystalline interfaces; the invention by Frank and van der Merwe (FvdM)—using the FK model—of (interfacial) misfit dislocations as an important mechanism in accommodating misfit at epilayer-substrate interfaces; the generalization of the FvdM theory to multilayers; the application of the parabolic model by Jesser and van der Merwe to describe, for growing multilayers and superlattices, the impact of Fourier coefficients in the realization of epitaxial orientations and the stability of modes of misfit accommodation; the involvement of intralayer interaction in the latter—all features that impact on the attainment of perfection in crystallinity of thin films, a property that is so vital in the fabrication of useful uniformly thick epilayers (uniformity being another technological requirement), which also depends on misfit accommodation through the interfacial energy that function strongly in the criterion for growth modes, proposed by Bauer; and the ingenious application of the Volterra model by Matthews and others to describe misfit accommodation by dislocations in growing epilayers.

  12. Energy use in selected metal casting facilities - 2003

    SciTech Connect

    Eppich, Robert E.

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  13. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO{sub 3} by rutile TiO{sub 2} layer on hexagonal GaN

    SciTech Connect

    Luo, W. B.; Zhu, J.; Chen, H.; Wang, X. P.; Zhang, Y.; Li, Y. R.

    2009-11-15

    Epitaxial SrTiO{sub 3} films were fabricated by laser molecular beam epitaxy on bare and TiO{sub 2} buffered GaN(0002), respectively. The whole deposition processes were in situ monitored by reflection high energy electron diffraction (RHEED). X-ray diffraction (XRD) was carried out to study the growth orientation and crystalline quality of STO films. The interfacial characters and epitaxial relationships were also investigated by high revolution transition electron microscope and selected area electron diffraction (SAED). According to the RHEED observation, the lowest epitaxy temperature of STO on TiO{sub 2} buffered GaN was decreased compared with the direct deposited one. The epitaxial relationship was (111)[110]STO//(0002)[1120]GaN in both cases as confirmed by RHEED, XRD, and SAED. The full width at half maximum of omega-scan and PHI-scan of STO on TiO{sub 2} buffered GaN was reduced compared with that deposited on bare GaN, indicating that epitaxial quality of STO film is improved by inserting TiO{sub 2} layer. In summary, the lattice mismatch was reduced by inserting rutile TiO{sub 2}. As a result, the crystalline temperature was reduced and enhanced epitaxial quality of STO thin film was obtained.

  14. Characterization of oxide films on 4H-SiC epitaxial (0001) faces by high-energy-resolution photoemission spectroscopy: Comparison between wet and dry oxidation

    SciTech Connect

    Hijikata, Yasuto; Yaguchi, Hiroyuki; Yoshida, Sadafumi; Takata, Yasutaka; Kobayashi, Keisuke; Nohira, Hiroshi; Hattori, Takeo

    2006-09-01

    Wet and dry oxide films-4H-SiC epitaxial (0001) C-face interfaces have been characterized by capacitance-voltage (C-V) measurements and soft x-ray excited photoemission spectroscopy (SX-PES) and hard x-ray excited photoemission spectroscopy (HX-PES) using synchrotron radiation. The interface state density for wet oxidation is much smaller than that for dry oxidation at any energy level. In the PES measurements, intermediate oxidation states such as Si{sup 1+} and Si{sup 3+} were observed. In addition, the areal densities of these states were found to be in a good correspondence with those of the interface states. The reasons for the good electrical characteristics of metal-oxide-semiconductor devices fabricated by wet oxidation are discussed in terms of the depth profiles of oxide films derived from the SX-PES and HX-PES results.

  15. Oxidation of epitaxial Ce films

    NASA Astrophysics Data System (ADS)

    Vescovo, E.; Carbone, C.

    1996-02-01

    Single-crystal Ce films of more than 300 Å thickness have been epitaxially grown on W(110). Their interaction with molecular oxygen at room temperature has been studied by angle-resolved photoemission, low-energy electron diffraction, and Auger spectroscopy. As a function of the oxygen exposure, the reaction is found to proceed through a sequence of three distinct stages: (i) ordered dissociative surface adsorption; (ii) formation of an ordered Ce2O3-like surface oxide; and (iii) gradual conversion of the sesquioxide into a disordered surface dioxide CeO2-x. A structurally different Ce2O3 oxide is obtained after high oxygen exposures followed by heating at 450 K. The formation of the epitaxial surface sesquioxides is favored by the good lattice match with the Ce substrate. The same type of structural relation might lead to the formation of ordered sesquioxides on other rare-earth surfaces exposing hexagonal planes.

  16. Assessment of Selected Energy Efficiency Policies

    EIA Publications

    2005-01-01

    This report responds to a request from Senator Byron L. Dorgan, asking the Energy Information Administration (EIA) to undertake a quantitative analysis of a variety of energy efficiency policies using assumptions provided by the Alliance to Save Energy (ASE).

  17. Cassava as an energy source: a selected bibliography

    SciTech Connect

    Sherman, C.

    1980-01-01

    This selected bibliography includes 250 articles on cassava as a potential energy source. Factors included are things which influence cassava growth; such as weeding, fertilizer, diseases and genetic selection, as well as the conversion of cassava to ethanol. (DP)

  18. Method of forming silicon structures with selectable optical characteristics

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Schowalter, Leo (Inventor)

    1993-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers or phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  19. Correlating low-energy electron microscopy and micro-Raman imaging of epitaxial graphene on SiC

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Meade, Patrick; He, Guowei; Real, M. A.; Elmquist, R. E.; Feenstra, R. M.; Hight Walker, A. R.

    2013-03-01

    Several techniques exist for determining the number of graphene layers grown on SiC such as low-energy electron microscopy (LEEM) and Raman spectroscopy. The method which is arguably the most definitive for SiC-grown graphene isLEEM. Low-energy (0 - 10 eV) electrons interfere with the graphene layers, yielding minima in the electron reflectivity vs. energy curve that can be used to determine the layer number.1 LEEM also provides the means of collecting selected-area diffraction on ?m-size surface regions (micro-LEED), giving access to further useful structural information. While Raman spectroscopy is also commonly used to determine graphene layer number on SiC substrates; such measurements have no definitive calibration for large-area graphene on SiC, unlike the case of exfoliated graphene on SiO2. In this talk, results of correlated LEEM/micro-Raman imaging of large-area, mono and multilayer graphene samples are presented. These initial findings show that LEEM can show the contrast between terrace regions and step edges at particular areas of monolayer-graphene surfaces. Micro-Raman imaging of these same locations show Raman shifts in the G' (2D) band. The influence of heterogeneities on electrical behavior of graphene will be discussed. Comparative studies of multilayer graphene are in progress, and will also be reported. 1. H. Hibino, et al., Phys. Rev. B 77, 075413 (2008). 2. L. I. Johansson, et al., Phys. Rev. B 84, 125405 (2011).

  20. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  1. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  2. Energy dissipation channels affecting photoluminescence from resonantly excited Er{sup 3+} ions doped in epitaxial ZnO host films

    SciTech Connect

    Akazawa, Housei; Shinojima, Hiroyuki

    2015-04-21

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er{sup 3+} ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er{sup 3+} ions were resonantly excited at a wavelength of 532 nm between energy levels of {sup 4}I{sub 15/2} and {sup 2}H{sub 11/2}. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er{sup 3+} ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity was correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er{sup 3+} ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er{sup 3+} ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er{sub 2}O{sub 3} crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to emissions from

  3. Energy-Efficient Electric Motor Selection Handbook

    SciTech Connect

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  4. Effects of high-flux low-energy ion bombardment on the low-temperature growth morphology of TiN(001) epitaxial layers

    SciTech Connect

    Karr, Brian W.; Cahill, David G.; Petrov, I.; Greene, J. E.

    2000-06-15

    Ultrahigh vacuum scanning tunneling microscopy (STM) is used to characterize the surface morphology of TiN(001) epitaxial layers grown by dc reactive magnetron sputtering at growth temperatures of T{sub s}=650 and T{sub s}=750 degree sign C. An auxiliary anode is used to bias the N{sub 2} plasma and produce a large flux of low-energy N{sub 2}{sup +} ions that bombard the film surface during growth: the ratio of the N{sub 2}{sup +} flux to the Ti growth flux is {approx_equal}25. At ion energies E{sub i} near the threshold for the production of bulk defects (E{sub i}=43 eV and T{sub s}=650 degree sign C), ion bombardment decreases the amplitude of the roughness, decreases the average distance between growth mounds, and reduces the sharpness of grooves between growth mounds. The critical island radius for second layer nucleation R{sub c} is approximately 12 and 17 nm at growth temperatures of 650 and 750 degree sign C respectively; at 650 degree sign C, R{sub c} is reduced to (approx =)10 nm by ion bombardment. (c) 2000 The American Physical Society.

  5. Magnetic phase diagram of epitaxial dysprosium

    NASA Astrophysics Data System (ADS)

    Tsui, F.; Flynn, C. P.

    1993-08-01

    We have determined the magnetic phase diagram of Dy as a function of epitaxial strain ɛ, applied field H, and temperature T. $roman Y sub x roman Lu sub 1-x- alloys were employed as templates to clamp the films at selected strains. The separate roles of epitaxial clamping and strain are identified for the first time. There is a clearly defined transition as the strain is changed at low temperature from the clamped helical phase to the ferromagnetic phase. The transition is modeled by a linear coupling treatment of the magnetoelastic strains.

  6. Theoretical minimum energies to produce steel for selected conditions

    SciTech Connect

    Fruehan, R. J.; Fortini, O.; Paxton, H. W.; Brindle, R.

    2000-03-01

    An ITP study has determined the theoretical minimum energy requirements for producing steel from ore, scrap, and direct reduced iron. Dr. Richard Fruehan's report, Theoretical Minimum Energies to Produce Steel for Selected Conditions, provides insight into the potential energy savings (and associated reductions in carbon dioxide emissions) for ironmaking, steelmaking, and rolling processes (PDF 459 KB).

  7. Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy

    SciTech Connect

    Tsukamoto, Takahiro; Suda, Yoshiyuki; Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki

    2015-02-02

    The mechanism of Sn surface segregation during the epitaxial growth of GeSn on Si (001) substrates was investigated by Auger electron spectroscopy and energy dispersive X-ray spectroscopy. Sn surface segregation depends on the growth temperature and Sn content of GeSn layers. During Sn surface segregation, Sn-rich nanoparticles form and move on the surface during the deposition, which results in a rough surface owing to facet formation. The Sn-rich nanoparticles moving on the surface during the deposition absorb Sn from the periphery and yield a lower Sn content, not on the surface but within the layer, because the Sn surface segregation and the GeSn deposition occur simultaneously. Sn surface segregation can occur at a lower temperature during the deposition compared with that during postannealing. This suggests that the Sn surface segregation during the deposition is strongly promoted by the migration of deposited Ge and Sn adatoms on the surface originating from the thermal effect of substrate temperature, which also suggests that limiting the migration of deposited Ge and Sn adatoms can reduce the Sn surface segregation and improve the crystallinity of GeSn layers.

  8. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  9. Wind Energy Developments: Incentives In Selected Countries

    EIA Publications

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  10. InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Shapiro, J. N.; Lin, A.; Wong, P. S.; Scofield, A. C.; Tu, C.; Senanayake, P. N.; Mariani, G.; Liang, B. L.; Huffaker, D. L.

    2010-12-01

    We investigate axial GaAs/InGaAs/GaAs heterostructures embedded in GaAs nanopillars via catalyst-free selective-area metal-organic chemical vapor deposition. Structural characterization by transmission electron microscopy with energy dispersive x-ray spectroscopy (EDS) indicates formation of axial InxGa1-xAs (x˜0.20) inserts with thicknesses from 36 to 220 nm with ±10% variation and graded Ga:In transitions controlled by In segregation. Using the heterointerfaces as markers, the vertical growth rate is determined to increase linearly during growth. Photoluminescence from 77 to 290 K and EDS suggest the presence of strain in the shortest inserts. This capability to control the formation of axial nanopillar heterostructures is crucial for optimized device integration.

  11. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  12. Selection of promising sites for magma energy experiments

    SciTech Connect

    Carson, C.C.

    1985-01-01

    The Long Valley and Coso Hot Springs areas of California have been identified as the most promising sites for conducting a magma energy extraction experiment. These two locations were selected from among the potential sites on the basis of several factors that are critical to the success of the proposed long-term energy extraction experiment. These factors include the likelihood of the existence of shallow magma targets as well as several other drilling, energy extraction and programmatic considerations. As the magma energy extraction program continues, these sites will be analyzed in detail so that one can be selected as the site for the planned magma experiment.

  13. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE PAGES

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  14. Epitaxial stabilization and phase instability of VO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  15. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  16. Design, fabrication and characterization of epitaxial and non-epitaxial thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Rahimi, Nassim

    Thermophotovoltaics (TPVs) have significant potential in efficiently converting thermal energy to electrical energy. These applications include conversion from internal combustion engines, small nuclear sources and even portable fuel-based sources. Group-III antimonide semiconductors have been identified as the material of choice for such TPV devices due to the possibility of growing materials with the bandgap energies of 0.51 eV (GaInAsSb quaternary) to 0.72 eV (GaSb binary) that are correspond to commonly available heat sources. The quaternary alloys are grown epitaxially while the binary GaSb devices can be realized through non-epitaxial techniques. In this work, we have pursued fabrication and design methods that will allow us to realize large area GaSb-based diode technology for TPV applications. TPV yield is a serious issue in such large area devices. Functional TPV cells using epitaxial GaSb, epitaxial GaInAsSb, and implanted GaSb with areas up to 1 square cm are realized. The epitaxial cells fabricated in this study allow for the engineering of the bandgap in the structure and also allows for the tailoring of the absorber in the cell to 2.4 microm which is a blackbody wavelength of interest. These cells however are not straightforward to scale in dimension due to the presence of large epitaxy related defects that end up shorting the devices. We have identified and mitigated the effect of such shunt defects that were limiting the yield of the epitaxial TPVs on GaSb. The Non-epitaxial TPV cells are realized using beryllium ion implantation into an n-type GaSb substrate. Through the use of rapid thermal annealing a pn junction is formed. The ion-implanted approach is intended to maximize shunt resistance compared to the epitaxial technique. The presentation will involve in-depth characterization and analysis of the materials from the quality of the semiconductor materials and interfaces to the ohmic contacts. Extensive analysis of the material using

  17. Screening and selection of lignocellulosic crops for energy

    SciTech Connect

    Turhollow, A.F.; Cushman, J.H.; Elmore, J.L.; Johnston, J.W.

    1985-01-01

    The Department of Energy's Herbaceous Energy Crops Program at Oak Ridge National Laboratory is beginning its research on lignocellulosic energy crops with five studies in the Southeast and Midwest/Lakes regions. Early objectives for these studies include selecting species that show promise on marginal croplands typical of the regions, determining productivity rates under various levels of management, defining cost-effective and environmentally sound production systems for each region, and identifying the most promising means of reducing costs. 2 tabs.

  18. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  19. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  20. Developing a framework for energy technology portfolio selection

    NASA Astrophysics Data System (ADS)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  1. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  2. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  3. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  4. Energy availability influences microclimate selection of hibernating bats.

    PubMed

    Boyles, Justin G; Dunbar, Miranda B; Storm, Jonathan J; Brack, Virgil

    2007-12-01

    Many species hibernate to conserve energy during periods of low food and water availability. It has long been assumed that the optimal hibernation strategy involves long, deep bouts of torpor that minimize energy expenditure. However, hibernation has ecological (e.g. decreased predator avoidance) and physiological (e.g. sleep deprivation) costs that must be balanced with energy savings; therefore, individuals possessing sufficient energy reserves may reduce their use of deep torpor. We tested the hypothesis that energy (fat) availability influences temperature selection of two fat-storing bat species during hibernation. We predicted that individuals with small energy reserves would select colder temperatures for hibernation in order to minimize energy expenditure, while individuals with larger energy reserves would choose warmer temperatures to minimize the costs of hibernation. Results from our field experiment indicate that little brown myotis (Myotis lucifugus) hibernating in warm microclimates were significantly heavier than individuals hibernating in cooler microclimates. To determine if energy availability was mediating this relationship, we limited fatty acid availability with mercaptoacetate (MA) and quantified its effect on torpid metabolic rate (TMR) and thermal preference of big brown bats (Eptesicus fuscus). Administration of MA caused a 43% drop in TMR at 10 degrees C and caused bats to choose significantly colder temperatures for hibernation. Our results suggest that fat-storing bats minimize torpor expression using both physiological and behavioral mechanisms. PMID:18055623

  5. Model selection as a science driver for dark energy surveys

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin

    2006-07-01

    A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

  6. Energy-loss magnetic chiral dichroism study of epitaxial MnAs film on GaAs(001)

    SciTech Connect

    Fu, X.; Warot-Fonrose, B.; Arras, R.; Serin, V.; Demaille, D.; Eddrief, M.; Etgens, V.

    2015-08-10

    The room-temperature ferromagnetic behavior of MnAs/GaAs(001) thin film has been locally explored by Transmission Electron Microscope (TEM). We first differentiated hexagonal α-MnAs and quasi-hexagonal β-MnAs which are very similar in atomic structure by electron diffraction. Local magnetic moment information of the identified α-MnAs was extracted from manganese-L{sub 2,3} edges using Energy-loss Magnetic Circular Dichroism technique and the ratio of orbital to spin magnetic moment was measured. In this experiment, atomic structure identification, chemical analysis, and magnetic moment measurement were simultaneously achieved at high spatial resolution in TEM, thus providing a potential method for in-situ study of local properties of multiphase magnetic materials.

  7. The growth of epitaxial iron oxides on platinum (111) as studied by X-ray photoelectron diffraction, scanning tunneling microscopy, and low energy electron diffraction

    SciTech Connect

    Kim, Y.J.

    1995-05-01

    Three complementary surface structure probes, x-ray photoelectron diffraction (XPD), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED) have been combined in a single instrument. This experimental system has been utilized to study the structure and growth mechanisms of iron oxide films on Pt(111); these films were formed by first depositing a single overlayer of Fe with a certain coverage in monolayers (ML`s), and then thermally oxidizing it in an oxygen atmosphere. For films up to {approximately}1 ML in thickness, a bilayer of Fe and O similar to those in FeO(111) is found to form. In agreement with prior studies, STM and LEED show this to be an incommensurate oxide film forming a lateral superlattice with short- and long-range periodicities of {approximately}3.1 {Angstrom} and {approximately}26.0 {Angstrom}. XPD in addition shows a topmost oxygen layer to be relaxed inward by -0.6 {Angstrom} compared to bulk FeO(111), and these are new structural conclusions. The oxygen stacking in the FeO(111) bilayer is dominated by one of two possible binding sites. For thicker iron oxide films from 1.25 ML to 3.0 ML, the growth mode is essentially Stranski-Krastanov: iron oxide islands form on top of the FeO(111) bilayer mentioned above. For iron oxide films of 3.0 ML thickness, x-ray photoelectron spectroscopy (XPS) yields an Fe 2p{sub 3/2} binding energy and an Fe:O stoichiometry consistent with the presence of Fe{sub 3}O{sub 4}. Our XPD data further prove this overlayer to be Fe{sub 3}O{sub 4}(111)-magnetite in two almost equally populated domains with a 180{degrees} rotation between them. The structural parameters for this Fe{sub 3}O{sub 4} overlayer generally agree with those of a previous LEED study, except that we find a significant difference in the first Fe-O interplanar spacing. This work demonstrates the considerable benefits to be derived by using this set of complementary surface structure probes in such epitaxial growth studies.

  8. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures.

  9. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures. PMID:27414518

  10. Monitoring non-pseudomorphic epitaxial growth of spinel/perovskite oxide heterostructures by reflection high-energy electron diffraction

    SciTech Connect

    Schütz, P.; Pfaff, F.; Scheiderer, P.; Sing, M.; Claessen, R.

    2015-02-09

    Pulsed laser deposition of spinel γ-Al{sub 2}O{sub 3} thin films on bulk perovskite SrTiO{sub 3} is monitored by high-pressure reflection high-energy electron diffraction (RHEED). The heteroepitaxial combination of two materials with different crystal structures is found to be inherently accompanied by a strong intensity modulation of bulk diffraction patterns from inelastically scattered electrons, which impedes the observation of RHEED intensity oscillations. Avoiding such electron surface-wave resonance enhancement by de-tuning the RHEED geometry allows for the separate observation of the surface-diffracted specular RHEED signal and thus the real-time monitoring of sub-unit cell two-dimensional layer-by-layer growth. Since these challenges are essentially rooted in the difference between film and substrate crystal structure, our findings are of relevance for the growth of any heterostructure combining oxides with different crystal symmetry and may thus facilitate the search for novel oxide heterointerfaces.

  11. Near-Infrared Photoluminescence Enhancement in Ge/CdS and Ge/ZnS Core/Shell Nanocrystals: Utilizing IV/II-VI Semiconductor Epitaxy

    SciTech Connect

    Guo, Yijun; Rowland, Clare E; Schaller, Richard D; Vela, Javier

    2014-08-26

    Ge nanocrystals have a large Bohr radius and a small, size-tunable band gap that may engender direct character via strain or doping. Colloidal Ge nanocrystals are particularly interesting in the development of near-infrared materials for applications in bioimaging, telecommunications and energy conversion. Epitaxial growth of a passivating shell is a common strategy employed in the synthesis of highly luminescent II–VI, III–V and IV–VI semiconductor quantum dots. Here, we use relatively unexplored IV/II–VI epitaxy as a way to enhance the photoluminescence and improve the optical stability of colloidal Ge nanocrystals. Selected on the basis of their relatively small lattice mismatch compared with crystalline Ge, we explore the growth of epitaxial CdS and ZnS shells using the successive ion layer adsorption and reaction method. Powder X-ray diffraction and electron microscopy techniques, including energy dispersive X-ray spectroscopy and selected area electron diffraction, clearly show the controllable growth of as many as 20 epitaxial monolayers of CdS atop Ge cores. In contrast, Ge etching and/or replacement by ZnS result in relatively small Ge/ZnS nanocrystals. The presence of an epitaxial II–VI shell greatly enhances the near-infrared photoluminescence and improves the photoluminescence stability of Ge. Ge/II–VI nanocrystals are reproducibly 1–3 orders of magnitude brighter than the brightest Ge cores. Ge/4.9CdS core/shells show the highest photoluminescence quantum yield and longest radiative recombination lifetime. Thiol ligand exchange easily results in near-infrared active, water-soluble Ge/II–VI nanocrystals. We expect this synthetic IV/II–VI epitaxial approach will lead to further studies into the optoelectronic behavior and practical applications of Si and Ge-based nanomaterials.

  12. Supply of and demand for selected energy related mineral commodities

    USGS Publications Warehouse

    Sibley, Scott F.

    2010-01-01

    In this report, subjects discussed include components of mineral supply, production, and consumption data, and information on selected mineral commodities in which the Energy Critical Elements Study Group has an interest, and U.S. Geological Survey (USGS) recycling studies, with some results of these studies.

  13. Morphology evolution and emission properties of InGaN/GaN multiple quantum wells grown on GaN microfacets using crossover stripe patterns by selective area epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Zhenlong; Chen, Peng; Yang, Guofeng; Xu, Zhou; Xu, Feng; Jiang, Fulong; Zhang, Rong; Zheng, Youdou

    2015-03-01

    We investigate the morphological evolution of selective area epitaxy (SAE) GaN microfacets structures on crossover stripe patterns as a function of temperature, and the emission properties of semipolar InGaN/GaN multiple quantum wells (MQWs) grown on these microstructures with semipolar facets are also studied. The shapes of inner rings gradually change from nearly rectangular to hexagonal when the GaN growth temperature elevates, as a result of growth rates and surface stability varies with elevated temperatures. Three types of semipolar facets ({1 1 -2 2}, {2 1 -3 3} and {1 -1 0 1} facets) can be identified on the inner rings of these structures, which are verified by the emission properties of semipolar InGaN/GaN MQWs. The emission wavelengths of MQWs on these semipolar facets are ordered as {1 -1 0 1} > {2 1 -3 3} > {1 1 -2 2}, which is attributed to variations of growth rate and indium incorporation on different planes during InGaN growth. Furthermore, the indium composition of MQWs changes with the morphological evolution.

  14. Epitaxial Electronic Oxides on Semiconductors Using Pulsed-Laser Deposition

    SciTech Connect

    Norton, D.P.; Budai, J.D.; Chisholm, M.F.

    1999-12-01

    We describe the growth and properties of epitaxial (OO1) CeO{sub 2} on a (001) Ge surface using a hydrogen-assisted pulsed-laser deposition method. Hydrogen gas is introduced during film growth to eliminate the presence of the GeOs from the semiconductor surface during the initial nucleation of the metal oxide film. The hydrogen partial pressure and substrate temperature are selected to be sufficiently high such that the germanium native oxides are thermodynamically unstable. The Gibbs free energy of CeO{sub 2} is larger in magnitude than that of the Ge native oxides, making it more favorable for the metal oxide to reside at the interface in comparison to the native Ge oxides. By satisfying these criteria. the metal oxide/semiconductor interface is shown to be atomically abrupt with no native oxide present. Preliminary structural and electrical properties are reported.

  15. Hetero-epitaxy and Defect Formation in Nanopillars: An Experimental and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Shapiro, Joshua Nathan

    Nanopillars are a next generation platform for building high-performance opto-electronic devices. The uniform arrays of III-V semiconductor pillars are microns long, vertically oriented, and have sub 100 nm diameters. The small volumes and crystalline surfaces make them excellent candidates for low noise detectors, and with their well-controlled periodic geometry they can be engineered into novel photonic devices. This work demonstrates new growth capabilities that will improve and enhance the performance of nanopillar opto-electronic devices. Using a combined experimental and theoretical approach I demonstrate control and understanding of three-dimensional hetero-epitaxy in the GaAs and InP material systems, and control of a prevalent defect in GaAs nanopillars called a stacking fault. Nanopillars are grown by catalyst-free, selective-area metal-organic chemical-vapor-deposition, and experimental results are interpreted with first-principles calculations of adatom binding energy and defect formation energies on the relevant crystal surfaces. This methods of growth, characterization, and theoretical calculations are described in Chapter 2. Chapter 3 presents the results of InGaAs hetero-epitaxy on GaAs nanopillars and InAsP hetero-epitaxy on InP nanopillars. Experimental results and theoretical calculations identify adatom mobility on the nanopillar sidewalls as the critical element for controlling hetero-epitaxy in the axial or radial directions. Chapter 4 demonstrates that stacking faults can be eliminated from GaAs nanopillars by raising the growth temperature to 790°C, and first-principles calculations of critical nuclei on the nanopillar tip support the theory that higher temperature reduces the stacking fault density by increasing the size of the critical nucleus. The hetero-epitaxial capability in GaAs/InGaAs has already been critical in the realization of nanopillar based lasers and LEDs. Further improvements in device performance can be achieved by

  16. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect

    Hudait, Mantu K.; Zhu Yan

    2013-03-21

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  17. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.

    PubMed

    Ozel, Tuncay; Hernandez-Martinez, Pedro Ludwig; Mutlugun, Evren; Akin, Onur; Nizamoglu, Sedat; Ozel, Ilkem Ozge; Zhang, Qing; Xiong, Qihua; Demir, Hilmi Volkan

    2013-07-10

    We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Förster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complementary case of acceptor-selective plexciton we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new

  18. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.

    PubMed

    Ozel, Tuncay; Hernandez-Martinez, Pedro Ludwig; Mutlugun, Evren; Akin, Onur; Nizamoglu, Sedat; Ozel, Ilkem Ozge; Zhang, Qing; Xiong, Qihua; Demir, Hilmi Volkan

    2013-07-10

    We report selectively plasmon-mediated nonradiative energy transfer between quantum dot (QD) emitters interacting with each other via Förster-type resonance energy transfer (FRET) under controlled plasmon coupling either to only the donor QDs (i.e., donor-selective) or to only the acceptor QDs (i.e., acceptor-selective). Using layer-by-layer assembled colloidal QD nanocrystal solids with metal nanoparticles integrated at carefully designed spacing, we demonstrate the ability to enable/disable the coupled plasmon-exciton (plexciton) formation distinctly at the donor (exciton departing) site or at the acceptor (exciton feeding) site of our choice, while not hindering the donor exciton-acceptor exciton interaction but refraining from simultaneous coupling to both sites of the donor and the acceptor in the FRET process. In the case of donor-selective plexciton, we observed a substantial shortening in the donor QD lifetime from 1.33 to 0.29 ns as a result of plasmon-coupling to the donors and the FRET-assisted exciton transfer from the donors to the acceptors, both of which shorten the donor lifetime. This consequently enhanced the acceptor emission by a factor of 1.93. On the other hand, in the complementary case of acceptor-selective plexciton we observed a 2.70-fold emission enhancement in the acceptor QDs, larger than the acceptor emission enhancement of the donor-selective plexciton, as a result of the combined effects of the acceptor plasmon coupling and the FRET-assisted exciton feeding. Here we present the comparative results of theoretical modeling of the donor- and acceptor-selective plexcitons of nonradiative energy transfer developed here for the first time, which are in excellent agreement with the systematic experimental characterization. Such an ability to modify and control energy transfer through mastering plexcitons is of fundamental importance, opening up new applications for quantum dot embedded plexciton devices along with the development of new

  19. Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE)

    NASA Astrophysics Data System (ADS)

    Kaatz, F. H.; Dai, J.-Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H.

    2003-01-01

    We describe the design, construction, and use of pulsed organometallic beam epitaxy (POMBE), a plasma-enhanced CVD technique to grow oxide heterostructures. Solid-state precursors are sampled in the gas line via quartz crystal monitors and injected into the O 2 microwave plasma with pulse time durations of a few seconds. The precursors are injected through pneumatic valves in a heated valve box. The valves and microwave power are under computer control. The microwave plasma is ramped between a forward power of 600 and 1500 W to improve film epitaxy. We use POMBE to grow epitaxial BaYZrO 3/MgO, Y-ZrO 2/LAO, and YBa 2Cu 3O 7/Y-ZrO 2/LAO structures. The processing parameters leading to the heteroepitaxy are described. The best epitaxy results in X-ray FWHM of 0.12°, 0.38°, and 0.87° for BaYZrO 3, Y-ZrO 2, and YBa 2Cu 3O 7, respectively. We show the advantages of the POMBE technique over that of plasma-enhanced CVD. Selected TEM results of the heteroepitaxial oxide structures are shown, and the role that temperature plays in the oxide epitaxy. The epitaxy of BaYZrO 3 is the first described in the literature, and that of YSZ is among the best reported.

  20. 7 CFR 4280.193 - Selecting energy audit and renewable energy development assistance grant applications for award.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable...

  1. 7 CFR 4280.193 - Selecting energy audit and renewable energy development assistance grant applications for award.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable...

  2. 7 CFR 4280.193 - Selecting energy audit and renewable energy development assistance grant applications for award.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Selecting energy audit and renewable energy..., DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Energy Audit and Renewable Energy Development Assistance Grants § 4280.193 Selecting energy audit and renewable...

  3. Analysis of interface formation mechanism in GaN double-polarity selective-area growth by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuze, Kenta; Osumi, Noriyuki; Fujita, Yohei; Inoue, Yoku; Nakano, Takayuki

    2016-05-01

    The fabrication of quasi-phase-matching (QPM) crystals by selective-area growth on the two asymmetrically polar surfaces of GaN is examined. We attempted the fabrication of GaN-QPM crystals by one-time growth using a carbon mask. For GaN double-polarity selective-area growth (DP-SAG), we investigated the effect of varied nitriding times of the Al2O3 templates patterned with the carbon mask. We optimized the nitriding conditions for the DP-SAG process, and evaluated the substrate fabricated by the optimized DP-SAG process. In addition, we examined the interface formation mechanism of DP-GaN fabricated by GaN DP-SAG process. We determined that it is possible to fabricate DP-GaN with a sharp interface by optimizing the growth conditions.

  4. Predicting epitaxial orientations and lattice structure in ultrathin magnetic thin films

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Wang, Cuiping; Shi, Rongpei; Cui, Yuanyuan; Shi, Zhan; Yang, Shuiyuan; Cui, Yuwen; Liu, Xingjun

    2016-07-01

    Metastable phases, such as bcc Co or Ni and hcp Fe or Ni, reportedly possess extraordinary magnetic properties for epitaxial ultra-thin films. To understand phase stability of these epitaxy-oriented phases upon substrate lattices, we calculated novel phase diagrams of Co, Fe, and Ni ultrathin films by considering the chemical free energy, elastic strain energy, and surface energy. Verified by experimental data in the literatures, the stable epitaxy-oriented phases are readily identified from the phase diagrams. The stabilization of these metastable phases is determined by the interplay between orientation-dependent elastic strain energy and surface energy.

  5. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  6. Growth of pseudomorphic structures through organic epitaxy

    SciTech Connect

    Kaviyil, Sreejith Embekkat; Sassella, Adele; Borghesi, Alessandro; Campione, Marcello; Su Genbo; He Youping; Chen Chenjia

    2012-12-14

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor {alpha}-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  7. EFFECT OF ENERGY DRINKS ON SELECTED FINE MOTOR TASKS.

    PubMed

    Jacobson, B H; Hughes, P P; Conchola, E C; Hester, G M; Woolsey, C L

    2015-08-01

    This study assessed the effect of energy shots on selected fine motor tasks. The participants were college-age male (n=19; M age=20.5 yr., SD=0.7) and female (n=21; M age=21.1 yr., SD=0.7) volunteers who were assessed on hand steadiness, choice reaction time, rotary pursuit, and simple reaction time. The energy shots group scored significantly poorer on the hand steadiness tests and significantly better on choice reaction time and simple reaction time tests. The enhanced reaction time and disruption in hand steadiness afforded by energy shots would not be apparent in many gross motor activities, but it is possible that reaction time improvement could be beneficial in sports that require quick, reflexive movements. However, the potential adverse psychological and physiological effects warrant discretionary use of such products.

  8. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  9. EFFECT OF ENERGY DRINKS ON SELECTED FINE MOTOR TASKS.

    PubMed

    Jacobson, B H; Hughes, P P; Conchola, E C; Hester, G M; Woolsey, C L

    2015-08-01

    This study assessed the effect of energy shots on selected fine motor tasks. The participants were college-age male (n=19; M age=20.5 yr., SD=0.7) and female (n=21; M age=21.1 yr., SD=0.7) volunteers who were assessed on hand steadiness, choice reaction time, rotary pursuit, and simple reaction time. The energy shots group scored significantly poorer on the hand steadiness tests and significantly better on choice reaction time and simple reaction time tests. The enhanced reaction time and disruption in hand steadiness afforded by energy shots would not be apparent in many gross motor activities, but it is possible that reaction time improvement could be beneficial in sports that require quick, reflexive movements. However, the potential adverse psychological and physiological effects warrant discretionary use of such products. PMID:26302190

  10. Greater sage-grouse winter habitat selection and energy development

    SciTech Connect

    Doherty, K.E.; Naugle, D.E.; Walker, B.L.; Graham, J.M.

    2008-01-15

    Recent energy development has resulted in rapid and large-scale changes to western shrub-steppe ecosystems without a complete understanding of its potential impacts on wildlife populations. We modeled winter habitat use by female greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB) of Wyoming and Montana, USA, to 1) identify landscape features that influenced sage-grouse habitat selection, 2) assess the scale at which selection occurred, 3) spatially depict winter habitat quality in a Geographic Information System, and 4) assess the effect of coal-bed natural gas (CBNG) development on winter habitat selection. We developed a model of winter habitat selection based on 435 aerial relocations of 200 radiomarked female sage-grouse obtained during the winters of 2005 and 2006. Percent sagebrush (Artemisia spp.) cover on the landscape was an important predictor of use by sage-grouse in winter. Sage-grouse were 1.3 times more likely to occupy sagebrush habitats that lacked CBNG wells within a 4-km{sup 2} area, compared to those that had the maximum density of 12.3 wells per 4 km{sup 2} allowed on federal lands. We validated the model with 74 locations from 74 radiomarked individuals obtained during the winters of 2004 and 2007. This winter habitat model based on vegetation, topography, and CBNG avoidance was highly predictive (validation R{sup 2} = 0.984). Our spatially explicit model can be used to identify areas that provide the best remaining habitat for wintering sage-grouse in the PRB to mitigate impacts of energy development.

  11. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases

  12. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  13. Photo-metalorganic molecular-beam epitaxy: A new epitaxial growth technique

    SciTech Connect

    Tokumitsu, E.; Yamada, T.; Konagai, M.; Takahashi, K.

    1989-05-01

    Metalorganic molecular-beam epitaxy (MOMBE) combines many important advantages of molecular-beam epitaxy and metalorganic chemical vapor deposition. One of the most important features of MOMBE is that photochemical reaction can be used and we can call this new technique ''photo-MOMBE.'' Triisobutylaluminum (TIBA) has been used in photo-MOMBE instead of triethylaluminum (TEA) as a new aluminum source in order to enhance the photodecomposition. The optical absorption coefficient of TIBA for 193 nm was found to be three times greater than that of TEA. Selective deposition of Al, AlAs, and GaAlAs was carried out by using an ArF excimer laser. The Al mole fraction of GaAlAs ternary alloy grown with the excimer laser irradiation was greater than that of the film grown without the laser irradiation.

  14. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    SciTech Connect

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  15. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  16. Population dynamics in epitaxial Er{sub 2}O{sub 3} thin films grown on Si(111)

    SciTech Connect

    Tawara, T.; Omi, H.; Hozumi, T.; Kaji, R.; Adachi, S.; Gotoh, H.; Sogawa, T.

    2013-06-17

    We grow single crystal erbium-oxide (Er{sub 2}O{sub 3}) epitaxially on a Si (111) substrate by using molecular beam epitaxy and investigate the population dynamics in Er{sup 3+} ions for the coherent manipulation of the population in Er{sub 2}O{sub 3}. Sharp and discrete Stark energy levels of the {sup 4}I{sub 13/2} manifold as small as 200 {mu}eV are observed with inhomogeneous broadening caused by the uniform crystal field of the epitaxial Er{sub 2}O{sub 3}. We also experimentally determine the time constant of the resonant population transfer between spatially distant Er{sup 3+}-ion sites, which is limited to the manipulation time of the population in the Er{sub 2}O{sub 3} crystals. Using selective excitation of the Stark level in the {sup 4}I{sub 13/2} manifold, we obtain the energy transfer times between spatially distant Er{sup 3+} ions, and they are about 2 {mu}s between sites whose crystallographic symmetry is different and 10 {mu}s between sites whose symmetry is the same.

  17. Raman scattering of Zn doped CuGaS2 layers grown by vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Terasako, T.; Iida, S.; Ichinokura, H.; Kato, A.

    2005-11-01

    Raman spectra for non-site-selectively and site-selectively Zn-doped CuGaS2 layers grown by vapor phase epitaxy (VPE) were investigated. Although an appearance of characteristic Raman line(s) related with the doped Zn atom was not seen, an enhancement of the Raman intensity ratio of the highest LO mode to the A1 mode (ILO/IA1) was observed. The site-selectively Zn-doped layers with p-type conductivity exhibited larger ILO/IA1 ratio compared to those with n-type conductivity. The observed correlation between the ILO/IA1 ratio and the peak energy of the photoluminescence characteristic for Zn-doped p-type samples (L emission) suggests that the enhancement of ILO/IA1 is due to the increase of Zn atom substituting Ga site (ZnGa) which is acting as an acceptor.

  18. Seed layer technique for high quality epitaxial manganite films

    PubMed Central

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O’Shea, K.; MacLaren, D. A.; Bergenti, I.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-01-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  19. Seed layer technique for high quality epitaxial manganite films

    NASA Astrophysics Data System (ADS)

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O'Shea, K.; MacLaren, D. A.; Riminucci, A.; Bergenti, I.; Fugattini, S.; Prezioso, M.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-08-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

  20. Seed layer technique for high quality epitaxial manganite films

    PubMed Central

    Graziosi, P.; Gambardella, A.; Calbucci, M.; O’Shea, K.; MacLaren, D. A.; Bergenti, I.; Homonnay, N.; Schmidt, G.; Pullini, D.; Busquets-Mataix, D.; Dediu, V.

    2016-01-01

    We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived. PMID:27648371

  1. Molecular beam epitaxial growth of GaP on Si

    NASA Astrophysics Data System (ADS)

    Wright, S. L.; Kroemer, H.; Inada, M.

    1984-04-01

    The molecular beam epitaxial growth of GaP on Si was investigated, with the aim of at least approaching device-quality interfaces. Gallium-primed growth on (211)-oriented substrates yielded layers which were free of antiphase domains, and which were of much higher quality than growths on other orientations. A tentative energy-band lineup is proposed, which is consistent with the electrical data. Heterojunction bipolar transistors were fabricated with emitter injection efficiencies up to 90 percent, in spite of indications that the epitaxial emitter layer was far less heavily doped than the base.

  2. Electric circuit model for strained-layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kujofsa, Tedi; Ayers, John E.

    2016-11-01

    For the design and analysis of a strained-layer semiconductor device structure, the equilibrium strain profile may be determined numerically by energy minimization but this method is computationally intense and non-intuitive. Here we present an electric circuit model approach for the equilibrium analysis of an epitaxial stack, in which each sublayer may be represented by an analogous configuration involving a current source, a resistor, a voltage source, and an ideal diode. The resulting node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This new approach enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits may be translated to the relaxation of strained-layer structures. In this paper, we describe the mathematical foundation of the electrical circuit model and demonstrate its application to epitaxial layers of Si1‑x Ge x grown on a Si (001) substrate.

  3. Structure and magnetism of epitaxial rare-earth-transition-metal films

    SciTech Connect

    Fullerton, E.E.; Sowers, C.H.; Pearson, J.P.; Bader, S.D.

    1996-10-01

    Growth of epitaxial transition-metal superlattices; has proven essential in elucidating the role of crystal orientation and structure on magnetic properties such as giant magnetoresistance, interlayer coupling, and magnetic surface anisotropies. Extending these studies to the growth of epitaxial rare earth-transition metal (RE-TM) films and superlattices promises to play an equally important role in exploring and optimizing the properties of hard magnets. For instance, Skomski and Coey predict that a giant energy product (120 MG Oe) is possible in multilayer structures consisting of aligned hard-magnet layers exchanged coupled with soft-phase layers with high magnetization. Epitaxy provides one route to synthesizing such exchange-hardened magnets on controlled length scales. Epitaxial growth also allows the magnetic properties to be tailored by controlling the crystal orientation and the anisotropies of the magnetic layers and holds the possibility of stabilizing metastable phases. This paper describes the epitaxy and magnetic properties for several alloys.

  4. Influence of the cluster orientation on the epitaxy: deposition of Co nanoclusters on Cu(001) surfaces.

    PubMed

    Jiménez-Sáez, J C; Ettaoussi, M S; Pérez-Martín, A M C; Kerkeb, M L; Jiménez-Rodríguez, J J

    2010-02-01

    Deposition at low energy of 147-atom icosahedral Co nanoclusters on Cu(001) substrates is studied by molecular-dynamics simulations. Atomic interactions were mimicked by a many-body potential based on the tight-binding second-moment approximation. Clusters were rotated by using the two first Euler angles, in the so-called "x-convention," and subsequently, they were deposited on the substrate. The dependence of the degree of epitaxy on these angles has been obtained. Epitaxy is also related to the initial number of (001)-oriented atoms, especially for extreme values of this latter quantity. A better epitaxial matching is connected with a larger spreading index. The explanation of the epitaxial behavior of the supported clusters resides mainly in the dynamical interaction between grains during approximately the first 40 ps. Whenever the newly-formed (001)-oriented grain competes against a large number of grains after the collision, a very low epitaxial matching is obtained.

  5. Continuum model of surface roughening and epitaxial breakdown during low-temperature Ge(001) molecular beam epitaxy

    SciTech Connect

    Bratland, K. A.; Spila, T.; Cahill, D. G.; Greene, J. E.; Desjardins, P.

    2011-03-15

    Numerical simulations based on a discrete model describing step edge motion are used to compute the surface morphological evolution of Ge(001) layers deposited by low-temperature (T{sub s} = 45-230 deg. C) molecular beam epitaxy and to probe the relationship between surface roughening and the onset of epitaxial breakdown - the abrupt growth mode transition from epitaxial to amorphous - at temperature-dependent critical film thicknesses h{sub 1}(T{sub s}). Computed surface widths w and in-plane coherence lengths d as a function of layer thickness h exhibit good agreement with experimental values. Inspired by experimental results indicating that epitaxial breakdown is initiated at facetted interisland trenches as the surface roughness reaches a T{sub s}-independent overall aspect ratio, we show that simulated data for w/d = 0.03 correspond to thicknesses h{sub 1{proportional_to}} exp (-E{sub 1}/kT{sub s}) with E{sub 1} = 0.63 eV, a value equal to the Ge adatom diffusion activation energy on Ge(001). Simulated h{sub 1} values agree well with experimental data. Above a critical growth temperature of 170 deg. C, computed w/d values saturate at large film thicknesses, never reaching the critical aspect ratio w/d = 0.03. Thus, the model also predicts that epitaxial breakdown does not occur for T{sub s} > 170 deg. C as observed experimentally.

  6. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.

    PubMed

    Mølhave, Kristian; Wacaser, Brent A; Petersen, Dirch Hjorth; Wagner, Jakob B; Samuelson, Lars; Bøggild, Peter

    2008-10-01

    Free-standing epitaxially grown nanowires provide a controlled growth system and an optimal interface to the underlying substrate for advanced optical, electrical, and mechanical nanowire device connections. Nanowires can be grown by vapor-phase epitaxy (VPE) methods such as chemical vapor deposition (CVD) or metal organic VPE (MOVPE). However, VPE of semiconducting nanowires is not compatible with several microfabrication processes due to the high synthesis temperatures and issues such as cross-contamination interfering with the intended microsystem or the VPE process. By selectively heating a small microfabricated heater, growth of nanowires can be achieved locally without heating the entire microsystem, thereby reducing the compatibility problems. The first demonstration of epitaxial growth of silicon nanowires by this method is presented and shows that the microsystem can be used for rapid optimization of VPE conditions. The important issue of the cross-contamination of other parts of the microsystem caused by the local growth of nanowires is also investigated by growth of GaN near previously grown silicon nanowires. The design of the cantilever heaters makes it possible to study the grown nanowires with a transmission electron microscope without sample preparation.

  7. A review of selected energy-related data sets

    SciTech Connect

    Nicholls, A.K.; Elliott, D.B.; Jones, M.L. ); Hannifan, J.M.; Degroat, K.J.; Eichner, M.J.; King, J.E. )

    1992-09-01

    DOE's Office of Planning and Assessment (OPA) performs crosscutting technical, policy, and environmental assessments of energy technologies and markets. To support these efforts, OPA is in the process of creating a data base management system (DBMS) that will include relevant data compiled from other sources. One of the first steps is a review of selected data sets that may be considered for inclusion in the DBMS. The review covered data sets in five categories: buildings-specific data, industry-specific data, transportation-specific data, utilities-specific data, and crosscutting/general data. Reviewed data sets covered a broad array of energy efficiency, renewable, and/or benchmark technologies. Most data sets reviewed in this report are sponsored by Federal government entities and major industry organizations. Additional data sets reviewed are sponsored by the states of California and New York and regional entities in the Pacific Northwest. Prior to full review, candidate data sets were screened for their utility to OPA. Screening criteria included requirements that a data set be particularly applicable to OPA's data needs, documented, current, and obtainable. To fully implement its DBMS, OPA will need to expand the review to other data sources, and must carefully consider the implications of differing assumptions and methodologies when comparing data.

  8. A review of selected energy-related data sets

    SciTech Connect

    Nicholls, A.K.; Elliott, D.B.; Jones, M.L.; Hannifan, J.M.; Degroat, K.J.; Eichner, M.J.; King, J.E.

    1992-09-01

    DOE`s Office of Planning and Assessment (OPA) performs crosscutting technical, policy, and environmental assessments of energy technologies and markets. To support these efforts, OPA is in the process of creating a data base management system (DBMS) that will include relevant data compiled from other sources. One of the first steps is a review of selected data sets that may be considered for inclusion in the DBMS. The review covered data sets in five categories: buildings-specific data, industry-specific data, transportation-specific data, utilities-specific data, and crosscutting/general data. Reviewed data sets covered a broad array of energy efficiency, renewable, and/or benchmark technologies. Most data sets reviewed in this report are sponsored by Federal government entities and major industry organizations. Additional data sets reviewed are sponsored by the states of California and New York and regional entities in the Pacific Northwest. Prior to full review, candidate data sets were screened for their utility to OPA. Screening criteria included requirements that a data set be particularly applicable to OPA`s data needs, documented, current, and obtainable. To fully implement its DBMS, OPA will need to expand the review to other data sources, and must carefully consider the implications of differing assumptions and methodologies when comparing data.

  9. Applications of Optimal Building Energy System Selection and Operation

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

  10. Epitaxial technology for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Raccah, P. M.

    1975-01-01

    Epitaxial solar cell structures on low cost silicon substrates are compared to direct diffusion substrates. Dislocation density in the epitaxial layers is found to be significantly lower than that of the substrate material. The saturation current density of diodes epitaxially formed on the substrate is commonly 2 to 3 orders of magnitude lower than for diodes formed by direct diffusion. Solar cells made epitaxially are substantially better than those made by direct diffusion into similar material.

  11. Epitaxial Pb(Zrx,Ti1-x)O3 (0.30 ≤ x ≤ 0.63) films on (100)MgO substrates for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Yeager, Charles B.; Trolier-McKinstry, Susan

    2012-10-01

    Piezoelectric energy harvesting systems are of interest as a long-term power source for low-power wireless sensors. Transduction from elastic to electrical energy depends on the product of the piezoelectric charge and voltage coefficients; optimization of this figure of merit is an essential step towards improved microelectromechanical energy harvesting devices. This work reports on the composition dependence on the dielectric and piezoelectric properties of epitaxial {001}Pb(Zrx, Ti1-x)O3 films grown by chemical solution deposition and crystallized at 650 °C on (100)Pt//(100)MgO substrates for 0.63 ≤ x ≤ 0.30. The power generation figure of merit shows the greatest magnitude at compositions near x = 0.52, for which e31,f = -12 C/m2 and ɛr = 420. Lattice parameters were determined as a function of [Zr] to assess when comparisons to single domain properties calculated from Landau-Devonshire theory were appropriate. Furthermore, films doped with 1 at. % Mn had the highest observed figure of merit, four times greater than of AlN.

  12. Energy efficiency of substance and energy recovery of selected waste fractions

    SciTech Connect

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-15

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  13. Energy efficiency of substance and energy recovery of selected waste fractions.

    PubMed

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  14. Fluorination of epitaxial oxides: Creating ferrite and nickelate oxyfluoride films

    NASA Astrophysics Data System (ADS)

    May, Steven; Moon, Eun; Xie, Yujun; Keavney, David; Goebel, Justin; Laird, Eric; Li, Christopher

    2013-03-01

    In ABO3 perovskites, the physical properties are directly coupled to the nominal valence state of the B-site cation. In epitaxial thin films, the dominant strategy to control B-site valence is through the selection of a di- or trivalent cation on the A-site. However, this approach is limited, particularly when electron doping on the B-site is desired. Here we report a simple method for realizing oxyfluoride films, where the substitution of F for O is expected to reduce the B-site valence, providing a new means to tune electronic, optical and magnetic properties in thin films. Fluorination is achieved by spin coating an oxygen deficient film with poly(vinylidene fluoride). The film/polymer bilayer is then annealed, promoting the diffusion of F into the film. We have used this method to synthesize SrFeO3-δFδ and LaNiO3-δFδ (δ ? 0.5) films, as confirmed by x-ray photoemission spectroscopy and x-ray absorption spectroscopy. This work is supported by the U. S. Army Research Office under grant number W911NF-12-1-0132. Work at the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences under contract DE-AC02-06CH11357.

  15. Selection of herbaceous energy crops for the western corn belt

    SciTech Connect

    Anderson, I.C.; Buxton, D.R.; Hallam, J.A.

    1994-05-01

    The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

  16. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy

    PubMed Central

    Liu, Lei; Siegel, David A.; Chen, Wei; Liu, Peizhi; Guo, Junjie; Duscher, Gerd; Zhao, Chong; Wang, Hao; Wang, Wenlong; Bai, Xuedong; McCarty, Kevin F.; Zhang, Zhenyu; Gu, Gong

    2014-01-01

    Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene–Cu(100) system is well-known to assume a wide range of rotations despite graphene’s crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster’s edges and the substrate. Unlike the weaker B– and N–Cu interactions, strong C–Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer–substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials. PMID:25385622

  17. Selection rules in low energy string effective lagrangians

    NASA Astrophysics Data System (ADS)

    Dolan, L.; Lau, S.

    1992-01-01

    Selection rules which restrict elementary particle interactions are derived as the low-energy limit of superstring theory. A general mechanism is demonstrated, in four-dimensional string tree-amplitudes, whereby the supersymmetric trilinear Yukawa-like couplings in the effective lagrangian which violate lepton number vanish, terms which otherwise occur naturally in supersymmetric versions of the standard model. Explicit expressions for the vertex operators, and all cubic bosonic couplings involving the Yang-Mills gauge bosons and the graviton, together with the scalar and anti-symmetric tensor components of gravity are given. There are no √2 α' corrections to the three-point string tree-amplitudes, a result which eliminates any higher derivative trilinear couplings among these fields in the effective action. In this four-dimensional string theory, expressions are derived for the gravitational coupling constant κ and the Yang-Mills coupling constant gYM in terms of the two string parameters: the universal Regge slope parameter which is the origin of the length scale √2 α', and the dimensionless string coupling constant g. We find κ = {1}/{2}g√2α' and g YM = g .

  18. Epitaxial gallium oxide on a SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Pechnikov, A. I.; Feoktistov, N. A.

    2016-09-01

    Well-textured gallium oxide β-Ga2O3 layers with a thickness of 1 μm and a close to epitaxial layer structure were grown by the method of chloride vapor phase epitaxy on Si(111) wafers with a nano-SiC buffer layer. In order to improve the growth, a high-quality silicon carbide buffer layer 100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The β-Ga2O3 films were thoroughly investigated using reflection high-energy electron diffraction, ellipsometry, X-ray diffraction, scanning electron microscopy, and micro-Raman spectroscopy. The investigations revealed that the films are textured with a close to epitaxial structure and consist of a pure β-phase Ga2O3 with the (overline 2 01) orientation. The dependence of the dielectric constant of epitaxial β-Ga2O3 on the photon energy ranging from 0.7 to 6.5 eV in the isotropic approximation was measured.

  19. Growth of EuO/Si and EuO/SrO/Si heteroepitaxial structures by molecular-beam epitaxy

    SciTech Connect

    Teterin, P. E. Averyanov, D. V.; Sadofyev, Yu. G. Parfenov, O. E.; Likhachev, I. A.; Storchak, V. G.

    2015-01-15

    Epitaxial EuO thin films with thickness up to 60 nm have been grown by molecular beam epitaxy both on SrO sublayers and directly on Si (001) substrates. Crystal structure has been controlled in situ by reflection high energy electron diffraction. Ex situ studies by X-ray diffraction and Rutherford backscattering have confirmed high crystalline quality of the films.

  20. Temperature synchronized molecular layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kurabayashi, T.; Nishizawa, J.

    1994-12-01

    This paper reports the first results on a modified molecular layer epitaxy (MLE) technique to deposit epitaxial GaAs films by changing the substrate temperature for alternate TEG (or TMG) and AsH 3 injection. This method of temperature synchronized molecular layer epitaxy (TSMLE) is a new concept for MLE and atomic layer epitaxy (ALE). The growth rates and the doping phenomena showed different characteristics to the conventional methods which were performed at a constant temperature. This method was effective not only for the study of monolayer growth, but also for device application, especially for the heavily doped p-type layer of which carrier concentration is 10 20 cm -3 order. Carbon doped p-type layer was achieved by TMG-AsH 3 TSMLE. The carbon concentration increased by decreasing the temperature during AsH 3 injection and by increasing the temperature during TMG injection. Zn-doped layer was achieved by TEG-AsH 3 TSMLE using DEZn as a dopant gas for p-type layer fabrication. To doped heavily, DEZn injected after AsH 3 injection and the temperature during AsH 3 injection had a suitable value at 393°C.

  1. Line-on-Line Coincidence: A New Type of Epitaxy Found in Organic-Organic Heterolayers

    NASA Astrophysics Data System (ADS)

    Mannsfeld, Stefan C.; Leo, Karl; Fritz, Torsten

    2005-02-01

    We propose a new type of epitaxy, line-on-line coincidence (LOL), which explains the ordering in the organic-organic heterolayer system PTCDA on HBC on graphite. LOL epitaxy is similar to point-on-line coincidence (POL) in the sense that all overlayer molecules lie on parallel, equally spaced lines. The key difference to POL is that these lines are not restricted to primitive lattice lines of the substrate lattice. Potential energy calculations demonstrate that this new type of epitaxy is indeed characterized by a minimum in the overlayer-substrate interaction potential.

  2. Asymmetric shape transitions of epitaxial quantum dots

    NASA Astrophysics Data System (ADS)

    Wei, Chaozhen; Spencer, Brian J.

    2016-06-01

    We construct a two-dimensional continuum model to describe the energetics of shape transitions in fully faceted epitaxial quantum dots (strained islands) via minimization of elastic energy and surface energy at fixed volume. The elastic energy of the island is based on a third-order approximation, enabling us to consider shape transitions between pyramids, domes, multifaceted domes and asymmetric intermediate states. The energetics of the shape transitions are determined by numerically calculating the facet lengths that minimize the energy of a given island type of prescribed island volume. By comparing the energy of different island types with the same volume and analysing the energy surface as a function of the island shape parameters, we determine the bifurcation diagram of equilibrium solutions and their stability, as well as the lowest barrier transition pathway for the island shape as a function of increasing volume. The main result is that the shape transition from pyramid to dome to multifaceted dome occurs through sequential nucleation of facets and involves asymmetric metastable transition shapes. We also explicitly determine the effect of corner energy (facet edge energy) on shape transitions and interpret the results in terms of the relative stability of asymmetric island shapes as observed in experiment.

  3. Scanning Tunneling Spectroscopy of Proximity Superconductivity in Epitaxial Multilayer Graphene

    PubMed Central

    Natterer, Fabian D.; Ha, Jeonghoon; Baek, Hongwoo; Zhang, Duming; Cullen, William; Zhitenev, Nikolai B.; Kuk, Young; Stroscio, Joseph A.

    2016-01-01

    We report on spatial measurements of the superconducting proximity effect in epitaxial graphene induced by a graphene-superconductor interface. Superconducting aluminum films were grown on epitaxial multilayer graphene on SiC. The aluminum films were discontinuous with networks of trenches in the film morphology reaching down to exposed graphene terraces. Scanning tunneling spectra measured on the graphene terraces show a clear decay of the superconducting energy gap with increasing separation from the graphene-aluminum edges. The spectra were well described by Bardeen-Cooper-Schrieffer (BCS) theory. The decay length for the superconducting energy gap in graphene was determined to be greater than 400 nm. Deviations in the exponentially decaying energy gap were also observed on a much smaller length scale of tens of nanometers. PMID:27088134

  4. Epitaxial BaTiO{sub 3}(100) films on Pt(100): A low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study

    SciTech Connect

    Foerster, Stefan; Huth, Michael; Schindler, Karl-Michael; Widdra, Wolf

    2011-09-14

    The growth of epitaxial ultrathin BaTiO{sub 3} films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O{sub 2}. By adjusting the Ar and O{sub 2} partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO{sub 3}(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO{sub 3} films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO{sub 3}(100)-(1 x 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 x 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO{sub 3} thin film starts to decay by formation of vacancy islands. In addition (4 x 4) and (3 x 3) surface reconstructions develop upon prolonged heating.

  5. Net energy analysis: Powerful tool for selecting electric power options

    NASA Astrophysics Data System (ADS)

    Baron, S.

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  6. Net energy analysis - powerful tool for selecting elective power options

    SciTech Connect

    Baron, S.

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  7. Growth and characterization of epitaxial fcc Fe wedges on diamond (100).

    SciTech Connect

    Bader, S. D.; Keavneu, D. J.; Keune, W.; Li, D.; Pearson, J.

    1997-12-05

    Epitaxial Fe wedges with a thickness gradation from 0--20 {angstrom} were grown on diamond(100) at room temperature, subsequently annealed, and investigated with reflection high-energy electron diffraction and the surface magneto-optical Kerr effect. The results indicate that for <5 monolayer thicknesses the Fe grows on C(100) as smooth, epitaxial fcc films, which are not ferromagnetic, but that thicker films undergo a transition to become rough and the ordinary bcc ferromagnetic phase.

  8. Defect Formation in GaN Epitaxial Layers due to SHI Irradiation

    SciTech Connect

    Kumar, Ashish; Kumar, V.; Singh, R.; Kanjilal, D.

    2011-07-15

    GaN epitaxial layers were irradiated with 200 MeV swift heavy Ag ions at various fluences. These samples were then characterized by XRD and TEM. Increase in peak width (FWHM) with incident ion dose showed reduction in crystallinity of epitaxial layers. Cross sectional TEM images confirmed that at highest fluence (5x10{sup 12} ions/cm{sup 2}) electronic energy loss process caused structural defect formation in GaN layer.

  9. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    DOE PAGES

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; et al

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of themore » two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.« less

  10. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    SciTech Connect

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; Cao, Linyou

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of the two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.

  11. Theoretical Minimum Energies to Produce Steel for Selected Conditions

    SciTech Connect

    Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

    2000-05-01

    The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

  12. Chemical Vapor Deposition Epitaxy an Patternless and Patterned Substrates.

    ERIC Educational Resources Information Center

    Takoudis, Christos G.

    1990-01-01

    Discusses chemical vapor deposition epitaxy on patternless and patterned substrates for an electronic materials processing course. Describes the processs types and features of epitaxy. Presents some potential problems of epitaxy. Lists 38 references. (YP)

  13. Infrared Rugates by Molecular Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Rona, M.

    1993-01-01

    Rugates are optical structures that have a sinusoidal index of refraction (harmonic gradient-index field). As their discrete high/ low index filter counterparts, they can be used as narrow rejection band filters. However, since rugates do not have abrupt interfaces, they tend to have a smaller absorption, hence deliver a higher in band reflectivity. The absence of sharp interfaces makes rugates even more desirable for high-energy narrow band reflectors. In this application, the lack of a sharp interface at the maximum internal standing wave electric field results in higher breakdown strengths. Our method involves fabricating rugates, with molecular beam epitaxy, on GaAs wafers as an Al(x)Ga(1-x)As single-crystal film.

  14. Scattering and interference in epitaxial graphene.

    PubMed

    Rutter, G M; Crain, J N; Guisinger, N P; Li, T; First, P N; Stroscio, J A

    2007-07-13

    A single sheet of carbon, graphene, exhibits unexpected electronic properties that arise from quantum state symmetries, which restrict the scattering of its charge carriers. Understanding the role of defects in the transport properties of graphene is central to realizing future electronics based on carbon. Scanning tunneling spectroscopy was used to measure quasiparticle interference patterns in epitaxial graphene grown on SiC(0001). Energy-resolved maps of the local density of states reveal modulations on two different length scales, reflecting both intravalley and intervalley scattering. Although such scattering in graphene can be suppressed because of the symmetries of the Dirac quasiparticles, we show that, when its source is atomic-scale lattice defects, wave functions of different symmetries can mix.

  15. Recent developments in droplet epitaxy

    SciTech Connect

    Mano, Takaaki; Jo, Masafumi; Kuroda, Takashi; Abbarchi, Marco; Noda, Takeshi; Sakoda, Kazuaki

    2014-05-15

    The droplet epitaxy allows for self-assembly of lattice-matched GaAs quantum dots (QDs) with high quality and high uniformity. In this article, we show our efforts to realize the GaAs QDs with excellent optical properties. After the optimization of the several growth processes, we achieved current-injection lasing in the GaAs QDs. In addition, formation of further advanced nanostructure is presented.

  16. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    NASA Astrophysics Data System (ADS)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  17. Selected Energy Conservation Options for Homeowners: Options, Expenses and Payoffs.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This publication is a check list for homeowners and renters to help them reduce energy costs. The list consists of 126 energy conservation options. These options range from "change clothes instead of adjusting thermostat" and "air conditioners turned off when not home" to "use sink stopper" and "weatherstripping and caulking applied." For each…

  18. A Data Envelopment Analysis Model for Renewable Energy Technology Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Public and media interest in alternative energy sources, such as renewable fuels, has rapidly increased in recent years due to higher prices for oil and natural gas. However, the current body of research providing comparative decision making models that either rank these alternative energy sources a...

  19. Selected Energy Education Activities for Pennsylvania Middle School Grades. Draft.

    ERIC Educational Resources Information Center

    Hack, Nancy; And Others

    These activities are intended to help increase awareness and understanding of the energy situation and to encourage students to become energy conservationists. The document is divided into sections according to discipline area. A final section is devoted to interdisciplinary activities involving several discipline areas integrated with the energy…

  20. Summary of selected compressed air energy storage studies

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1985-01-01

    A descriptive summarily of research and development in compressed air energy storage technology is presented. Research funded primarily by the Department of Energy is described. Results of studies by other groups and experience at the Huntorf plant in West Germany are included. Feasibility studies performed by General Electric are summarized. The feasibility of air storage in dissolved salt cavities is also demonstrated. (BCS)

  1. On the density of states of disordered epitaxial graphene

    SciTech Connect

    Davydov, S. Yu.

    2015-05-15

    The study is concerned with two types of disordered epitaxial graphene: (i) graphene with randomly located carbon vacancies and (ii) structurally amorphous graphene. The former type is considered in the coherent potential approximation, and for the latter type, a model of the density of states is proposed. The effects of two types of substrates, specifically, metal and semiconductor substrates are taken into account. The specific features of the density of states of epitaxial graphene at the Dirac point and the edges of the continuous spectrum are analyzed. It is shown that vacancies in epitaxial graphene formed on the metal substrate bring about logarithmic nulling of the density of states of graphene at the Dirac point and the edges of the continuous spectrum. If the Dirac point corresponds to the middle of the band gap of the semiconductor substrate, the linear trend of the density of states to zero in the vicinity of the Dirac point in defect-free graphene transforms into a logarithmic decrease in the presence of vacancies. In both cases, the graphene-substrate interaction is assumed to be weak (quasi-free graphene). In the study of amorphous epitaxial graphene, a simple model of free amorphous graphene is proposed as the initial model, in which account is taken of the nonzero density of states at the Dirac point, and then the interaction of the graphene sheet with the substrate is taken into consideration. It is shown that, near the Dirac point, the quadratic behavior of the density of states of free amorphous graphene transforms into a linear dependence for amorphous epitaxial graphene. In the study, the density of states of free graphene corresponds to the low-energy approximation of the electron spectrum.

  2. Research Update: Enhanced energy storage density and energy efficiency of epitaxial Pb0.9La0.1(Zr0.52Ti0.48)O3 relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh D.; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Chi T. Q.; Vu, Hung N.; Rijnders, Guus

    2016-08-01

    Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) relaxor-ferroelectric thin films were grown on SrRuO3/SrTiO3/Si substrates by pulsed laser deposition. A large recoverable storage density (Ureco) of 13.7 J/cm3 together with a high energy efficiency (η) of 88.2% under an applied electric field of 1000 kV/cm and at 1 kHz frequency was obtained in 300-nm-thick epitaxial PLZT thin films. These high values are due to the slim and asymmetric hysteresis loop when compared to the values in the reference undoped epitaxial lead zirconate titanate Pb(Zr0.52Ti0.48)O3 ferroelectric thin films (Ureco = 9.2 J/cm3 and η = 56.4%) which have a high remanent polarization and a small shift in the hysteresis loop, under the same electric field.

  3. The Controller Synthesis of Metastable Oxides Utilizing Epitaxy and Epitaxial Stabilization

    SciTech Connect

    Schlom, Darrell

    2003-12-02

    Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the nanometer. These advances were made through the use of epitaxy, epitaxial stabilization, and a combination of composition-control techniques including adsorption-controlled growth and RHEED-based composition control that we have developed, understood, and utilized for the growth of oxides. Also key was extensive characterization (utilizing RHEED, four-circle x-ray diffraction, AFM, TEM, and electrical characterization techniques) in order to study growth modes, optimize growth conditions, and probe the structural, dielectric, and ferroelectric properties of the materials grown. The materials that we have successfully engineered include titanates (PbTiO3, Bi4Ti3O12), tantalates (SrBi2Ta2O9), and niobates (SrBi2Nb2O9); layered combinations of these perovskite-related materials (Bi4Ti3O12-SrTiO3 and Bi4Ti3O12-PbTiO3 Aurivillius phases and metastable PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices), and new metastable phases (Srn+1TinO3n+1 Ruddlesden-Popper phases). The films were grown by reactive MBE and pulsed laser deposition (PLD). Many of these materials are either new or have been synthesized with the highest perfection ever reported. The controlled synthesis of such layered oxide heterostructures offers great potential for tailoring the superconducting, ferroelectric, and dielectric properties of these materials. These properties are important for energy technologies.

  4. Selecting herbaceous energy crops for the southeast and midwest/lake states

    SciTech Connect

    Cushman, J.H.; Turhollow, A.F.

    1990-01-01

    This paper summarizes an approach to crop selection and development that has evolved through the five years of species screening and selection in the US Department of Energy's Herbaceous Energy Crops Program. The first phase of this program was designed to identify a number of species for development as energy crops for the Southeast and Midwest/Lake States, specifically as feedstocks for the biochemical and thermochemical conversion processes for alcohol fuels now under development. 14 refs., 1 tab.

  5. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    SciTech Connect

    Nelson, A.J.; Berry, G.; Rockett, A.

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  6. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse™, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse™ during the course of the project. FastFuse™ has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse™ transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse™ offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse™ is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  7. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  8. Growth and spin-resolved photoemission spectroscopy of the epitaxial α-Al2O3/Fe(110) system

    NASA Astrophysics Data System (ADS)

    Dedkov, Yu. S.; Fonin, M.; Rüdiger, U.; Güntherodt, G.

    2002-09-01

    Electronic and structural properties of epitaxial ultrathin aluminum oxide layers grown on epitaxial Fe(110) films were investigated at room temperature by means of spin-, angle- and energy-resolved photoemission spectroscopy. A spin polarization of -(15±5)% near the Fermi energy EF is found for 1 (ML) of α-Al2O3 on epitaxial Fe(110). This value results from the attenuation of -80% of Fe(110) by the oxide layer thickness and the spin-independent part of the scattering cross section.

  9. Interfacial phases in epitaxial growth of Y{sub 2}O{sub 3} on MgO studied via combining electron energy-loss spectroscopy and real-space self-consistent full multiple scattering calculations

    SciTech Connect

    Pailloux, F.; Jublot, M.; Gaboriaud, R.J.; Jaouen, M.; Paumier, F.; Imhoff, D.

    2005-09-15

    Electron energy loss spectroscopy (EELS), high resolution transmission electron microscopy (HRTEM), and electron diffraction were used to investigate Y{sub 2}O{sub 3} thin films epitaxially grown on (001) MgO substrate. In the vicinity of the film/substrate interface, HRTEM experiments evidenced the presence of grains with various crystallographic structures most of them crystallizing in the well-known Ia3 cubic phase. Some other grains, nanometric in size, and only observed in the vicinity of the film/substrate interface, have a different and unknown crystallographic structure. EELS spectra have been acquired close to the Y{sub 2}O{sub 3}/MgO interface, to get a better knowledge of the phases nucleated close to the substrate surface. Spectra exhibiting different fine structures have been recorded and compared to multiple scattering calculations. The Ia3 phase has been detected as constituting the main component of the Y{sub 2}O{sub 3} thin film in agreement with previous observations. It is found that calculations performed in a real space self-consistent full multiple scattering scheme (SC-FMS) and experiments are in pretty good agreement even for small cluster sizes. The second family of spectra has also been compared to calculations performed for monoclinic C2/m yttrium oxide, with a little success. Another approach considering a local oxygen neighboring close to a distorted rock-salt-like structure led to a good match between experimental and calculated spectra. Our results emphasize how powerful is the combination of spectroscopic measurements at nanometer scale, as feasible with EELS and modern microscopes, with ab initio calculations for structure determination at such small scale lengths.

  10. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF

  11. Features of impurity photoconductivity in Si:Er/Si epitaxial diodes

    SciTech Connect

    Antonov, A. V.; Kudryavtsev, K. E. Shengurov, D. V.; Shmagin, V. B.; Krasilnik, Z. F.

    2013-11-15

    The photocurrent spectra of Si:Er/Si epitaxial diode structures are studied. It is shown that the nature of the sub-band-gap photoresponse is determined by the epitaxial growth temperature of the Si:Er layer and is not related to the composition of erbium emission centers. It is found that the absorption of light with photon energies lower than the energy-gap of silicon is determined by impurity-defect complexes that appear during the growth of the epitaxial layer and form a quasi-continuous spectrum of states in the energy gap of silicon. It is assumed that these impurity centers are not related to optically active erbium centers and are not involved in excitation-energy transfer to the rare-earth impurity.

  12. Selected comments on the ORNL Residential Energy-Use Model

    SciTech Connect

    Herbert, J.H.

    1980-06-01

    This report assesses critical technical aspects of the Oak Ridge National Laboratory (ORNL) Residential Energy Use Model. An important component of the ORNL Model is determination of the thermal performance of new equipment or structures. The examples presented here are illustrative of the type of analytic problems discovered in a detailed assessment of the model. A list of references is appended.

  13. Determinants of Household Use of Selected Energy Star Appliances

    EIA Publications

    2016-01-01

    The main objective of this paper is to test a series of hypotheses regarding the influences of household characteristics (such as education, age, sex, race, income, and size of household), building characteristics (such as age, ownership, and type), and electricity prices on the use of ENERGY STAR appliances.

  14. Analyses of Selected Provisions of Proposed Energy Legislation: 2003

    EIA Publications

    2003-01-01

    This study responds to a July 31, 2003 request from Senator Byron L. Dorgan. The study is based primarily on analyses the Energy Information Administration has previously done for studies requested by Congress. It includes analysis of the Renewable Portfolio Standard, Renewable Fuels Standard, production in the Alaskan National Wildlife Refuge, the construction of an Alaskan Natural Gas pipeline, and various tax provisions.

  15. Energy Savings in School Buildings: A Selected Checklist.

    ERIC Educational Resources Information Center

    Wismer, Don, Comp.

    The 43 references in this booklet emphasize practical, rather than theoretical, information. They were chosen on that basis from two computer-retrievable data bases maintained by the U.S. Department of Energy. The citations, for the most part, are arranged by source and include industry pamphlets, journal articles, and state and consultant…

  16. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene.

    PubMed

    Kim, Jeehwan; Bayram, Can; Park, Hongsik; Cheng, Cheng-Wei; Dimitrakopoulos, Christos; Ott, John A; Reuter, Kathleen B; Bedell, Stephen W; Sadana, Devendra K

    2014-09-11

    There are numerous studies on the growth of planar films on sp(2)-bonded two-dimensional (2D) layered materials. However, it has been challenging to grow single-crystalline films on 2D materials due to the extremely low surface energy. Recently, buffer-assisted growth of crystalline films on 2D layered materials has been introduced, but the crystalline quality is not comparable with the films grown on sp(3)-bonded three-dimensional materials. Here we demonstrate direct van der Waals epitaxy of high-quality single-crystalline GaN films on epitaxial graphene with low defectivity and surface roughness comparable with that grown on conventional SiC or sapphire substrates. The GaN film is released and transferred onto arbitrary substrates. The post-released graphene/SiC substrate is reused for multiple growth and transfer cycles of GaN films. We demonstrate fully functional blue light-emitting diodes (LEDs) by growing LED stacks on reused graphene/SiC substrates followed by transfer onto plastic tapes.

  17. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Kim, Jeehwan; Bayram, Can; Park, Hongsik; Cheng, Cheng-Wei; Dimitrakopoulos, Christos; Ott, John A.; Reuter, Kathleen B.; Bedell, Stephen W.; Sadana, Devendra K.

    2014-09-01

    There are numerous studies on the growth of planar films on sp2-bonded two-dimensional (2D) layered materials. However, it has been challenging to grow single-crystalline films on 2D materials due to the extremely low surface energy. Recently, buffer-assisted growth of crystalline films on 2D layered materials has been introduced, but the crystalline quality is not comparable with the films grown on sp3-bonded three-dimensional materials. Here we demonstrate direct van der Waals epitaxy of high-quality single-crystalline GaN films on epitaxial graphene with low defectivity and surface roughness comparable with that grown on conventional SiC or sapphire substrates. The GaN film is released and transferred onto arbitrary substrates. The post-released graphene/SiC substrate is reused for multiple growth and transfer cycles of GaN films. We demonstrate fully functional blue light-emitting diodes (LEDs) by growing LED stacks on reused graphene/SiC substrates followed by transfer onto plastic tapes.

  18. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    NASA Astrophysics Data System (ADS)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  19. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; Baldasaro, Paul F.; DePoy, David M.

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  20. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J.; DePoy, David Moore; Baldasaro, Paul Francis

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  1. Tunneling Spectroscopy Studies of Epitaxial Graphene on Silicon Carbide(0001) and Its Interfaces

    NASA Astrophysics Data System (ADS)

    Sandin, Andreas Axel Tomas

    graphene. STS, STM along with DFT calculations are used to determine the interface location of Sodium, SiC-bufferlayer or bufferlayer-graphene intercalation. In this thesis, STM, and STS are used to study the interactions of paramagnetic FePc molecules with epitaxial graphene. The molecules, FePc, is found to interact with the graphene substrate where STM images show substrate induced orientation of FePc densely packed square lattice structure. At sub-monolayer coverages, FePc form a molecular gas at room temperature suggesting a low diffusion barrier on the graphene lattice. The substrate interaction is probed by STS and show an abnormally low LUMO energy that suggest strong electronic coupling between graphene and FePc. DFT calculations support the experimental observations and predict a spin-dependent molecule-graphene hybridization close to the Fermi energy in unoccupied states. For majority spins, DFT demonstrates the Dirac cone splits and a delocalized hybrid state is found in the band gap. For minority spin the Dirac cone is intact with energy of Dirac point empty. In addition, a novel method of improving UHV graphene growth on SiC(0001) is presented. During growth the SiC surface is exposed to atomic hydrogen which allows selective etching of Si over Carbon. This result in more uniform non-thermal formation of the buffer layer with many fewer defects and thus leads to nearly pit-free and defect-free thermal graphene layers.

  2. Characterization of single crystal films of molybdenum (011) grown by molecular beam epitaxy on sapphire (112¯0) and studied by low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Świȩch, W.; Mundschau, M.; Flynn, C. P.

    1999-08-01

    Films of molybdenum grown on the (112¯0) plane of sapphire (Al 2O 3) are characterized using low-energy microscopy and low-energy electron diffraction. Stress fields observed on the Mo surface originate at dislocations and at miscut steps of the buried molybdenum-alumina vicinal interface. As-grown films contain small-angle grain boundaries. These are largely eliminated upon heating to 1700 K as edge dislocations that form the boundaries become extremely mobile. Edge dislocations attract and annihilate one another, and the small-angle grain boundaries disappear. Mobility of edge dislocations is correlated with rapid diffusion of carbon, which apparently pins dislocations up to temperatures that allow diffusion of carbon from dislocations into the bulk. The main contaminants of the Mo surface are carbon, oxygen and carbon monoxide. The most stable impurities are carbides that persist to 1700 K. Oxygen promotes bunching of monatomic steps into groups of two, three and four. Electron beams dissociate CO with energy less than 1 eV and deposit residues of carbon. Fairly ideal single crystal films of Mo produced by annealing exhibit monatomic surface step and terrace structure, and a minimum of dislocations. The quality of surfaces on these films exceeds that of typical single crystal bulk samples and is well suited for fundamental studies in surface science.

  3. Epitaxial growth of europium monoxide on diamond

    SciTech Connect

    Melville, A.; Heeg, T.; Mairoser, T.; Schmehl, A.; Fischer, M.; Gsell, S.; Schreck, M.; Awschalom, D. D.; Holländer, B.; Schubert, J.; Schlom, D. G.

    2013-11-25

    We report the epitaxial integration of phase-pure EuO on both single-crystal diamond and on epitaxial diamond films grown on silicon utilizing reactive molecular-beam epitaxy. The epitaxial orientation relationship is (001) EuO ‖ (001) diamond and [110] EuO ‖[100] diamond. The EuO layer is nominally unstrained and ferromagnetic with a transition temperature of 68 ± 2 K and a saturation magnetization of 5.5 ± 0.1 Bohr magnetons per europium ion on the single-crystal diamond, and a transition temperature of 67 ± 2 K and a saturation magnetization of 2.1 ± 0.1 Bohr magnetons per europium ion on the epitaxial diamond film.

  4. Energy/Environment/Economy. An Annotated Bibliography of Selected U.S. Government Publications Concerning United States Energy Policy, Supplement.

    ERIC Educational Resources Information Center

    ENVIRO/INFO, Green Bay, WI.

    This annotated bibliography supplements ED 077 704. It provides a selective listing of 93 U.S. Federal Government publications germane to the energy crisis and its attendant environmental and economic implications. Primary emphasis is placed upon documents presenting energy policy issues which have emerged, plus statistical reportage which…

  5. Energy/Environment/Economy. An Annotated Bibliography of Selected U.S. Government Publications Concerning United States Energy Policy.

    ERIC Educational Resources Information Center

    ENVIRO/INFO, Green Bay, WI.

    This annotated bibliography attempts to provide a selective listing of 109 U.S. federal government publications germane to the energy crisis and its attendant environmental and economic implications. Primary emphasis is placed upon documents presenting energy policy issues which have emerged, plus statistical reportage which provides quantitative…

  6. Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, Michail

    The detailed knowledge of the fine atomic structure of epitaxial interface is of fundamental importance for design and fabrication of electronic devices with exotic physical properties. Recently, it has been shown that accounting for diffusion energy barriers at specific sites on the epitaxial interface (atomic terraces, steps, kinks and imperfections), allows fine tuning of the adatom thermal energy which opens up a way for specific nanoscale surface design. Hence, through simple temperature variation, the surface migration of foreign atoms and clusters leads to formation of a variety of alloyed or pure terraces, alloyed islands and alloyed atomic stripes thus forming nanoscale surface patterns. A key role in this scenario plays the density of steps and kinks at the epitaxial interface. On that physical background, in the present paper we discuss the structure, stability and rupture of alloyed terraces as a first step towards the formation of alloyed two-dimensional islands on pure, non-alloyed substrate. The atomistic simulational model reveals a temperature-dependent critical terrace width for rupture and specifies criteria for thermodynamic stability. In the case of incomplete alloying we analyze the competition and overlapping of the elastic strain fields generated by opposite terrace edges. The specific atomic ordering in alloyed islands is also discussed. The simulation results frame the limits of incomplete surface-confined intermixing and point to a path to nanoscale surface design.

  7. Molecular-Beam-Epitaxy Program

    NASA Technical Reports Server (NTRS)

    Sparks, Patricia D.

    1988-01-01

    Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.

  8. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, C.G.

    A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.

  9. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  10. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1985-05-20

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  11. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1991-09-10

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  12. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, Joseph R.; Otagawa, Takaaki

    1991-01-01

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  13. Increasing the energy yield of mechanochemical transformations: selected case studies.

    PubMed

    Politov, Anatoly; Golyazimova, Olga

    2014-01-01

    The products of mechanical treatment are surface atoms or molecules, substances with a crystal structure different from their initial one (another polymorph, amorphous), point or linear defects, radicals and new chemical substances. It is often assumed, that to increase the yield of the products of a mechanical treatment, it is necessary to increase the treatment time and the mechanical power input. In view of the low energy yield of many mechanochemical transformations, this leads to high power consumption and contamination of the matter under treatment with the wear products of the material of a mill or reactor, in which the mechanical treatment is carried out. As a result, the technological attractiveness of mechanochemical processes is reduced, so that many mechanochemical transformations that have been discovered recently do not reach the stage of commercialization. In the present paper we describe different examples of increasing successfully the energy yield of mechanochemical processes, by a factor of several times to several orders of magnitude, for inorganic and organic substances. An increase in the energy yield of mechanochemical transformations opens new possibilities for their practical usage. In particular, the methods of preliminary treatment and the modes of conducting enzymatic processes that may find application in the production of second-generation biofuels are discussed using lignocellulose materials as examples.

  14. Epitaxial Growth of ZSM-5@Silicalite-1: A Core-Shell Zeolite Designed with Passivated Surface Acidity.

    PubMed

    Ghorbanpour, Arian; Gumidyala, Abhishek; Grabow, Lars C; Crossley, Steven P; Rimer, Jeffrey D

    2015-04-28

    The design of materials with spatially controlled chemical composition has potential advantages for wide-reaching applications that span energy to medicine. Here, we present a method for preparing a core-shell aluminosilicate zeolite with continuous translational symmetry of nanopores and an epitaxial shell of tunable thickness that passivates Brønsted acid sites associated with framework Al on exterior surfaces. For this study, we selected the commercially relevant MFI framework type and prepared core-shell particles consisting of an aluminosilicate core (ZSM-5) and a siliceous shell (silicalite-1). Transmission electron microscopy and gas adsorption studies confirmed that silicalite-1 forms an epitaxial layer on ZSM-5 crystals without blocking pore openings. Scanning electron microscopy and dynamic light scattering were used in combination to confirm that the shell thickness can be tailored with nanometer resolution (e.g., 5-20 nm). X-ray photoelectron spectroscopy and temperature-programmed desorption measurements revealed the presence of a siliceous shell, while probe reactions using molecules that were either too large or adequately sized to access MFI pores confirmed the uniform shell coverage. The synthesis of ZSM-5@silicalite-1 offers a pathway for tailoring the physicochemical properties of MFI-type materials, notably in the area of catalysis, where surface passivation can enhance product selectivity without sacrificing catalyst activity. The method described herein may prove to be a general platform for zeolite core-shell design with potentially broader applicability to other porous materials.

  15. Energy expenditure studies to predict requirements of selected national athletes.

    PubMed

    Ismail, M N; Wannudri, W; Zawiah, H

    1997-03-01

    A study to predict energy requirements of national athletes, 84 males and 24 females in 9 and 4 different types of sports respectively, were conducted during centralised training. Parameters assessed were anthropometry, 3-day activity pattern and energy cost (kcal/min) of common activities to derive total daily energy expenditure (TDEE). Based on body mass index (BMI), 68 males or 81% and 19 females or 79% of the athletes were classified as normal. The mean body fat content for males and females were 13.8 ± 4.5% and 24.7 ± 5.3%, respectively. The mean daily activity pattern of males and females athletes were similar for light activities (16½ hr or 68% of day), for moderate activities (3½ hr or 15% of day in male, 4 hr or 17% in females) while moderate to heavy activities related to training were 4 hr (17%) and 3½ hr (15%) in males and females, respectively. Energy cost of some common activities ranges from 1.00-3.00 kcal/min in males and 0.84-2.04 kcal/min in females, while values for jogging were 6.60 kcal/min and 5.62 kcal/min in males and females, respectively. The mean TDEE in male ranges from 2938 kcal (12.3 MJ) in boxers (57 kg) to 4861 kcal (20.3 MJ) in weightlifters (110 kg) while the mean TDEE in female ranges from 2099 kcal (8.8 MJ) in athletics (51 kg) to 3098 kcal (13.0 MJ) in basketball (61.4 kg). The calculated physical activity level (PAL) values using measured BMR for males and females athletes ranges from 1.99-2.58 and 1.77-2.34, respectively. In conclusion, the estimated energy requirement for the various sports event studied ranges from 44-55 kcal/kg/day in males and 38-50 kcal/kg/day in female athletes.

  16. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.

    PubMed

    Caccamo, Lorenzo; Hartmann, Jana; Fàbrega, Cristian; Estradé, Sonia; Lilienkamp, Gerhard; Prades, Joan Daniel; Hoffmann, Martin W G; Ledig, Johannes; Wagner, Alexander; Wang, Xue; Lopez-Conesa, Lluis; Peiró, Francesca; Rebled, José Manuel; Wehmann, Hergo-Heinrich; Daum, Winfried; Shen, Hao; Waag, Andreas

    2014-02-26

    3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions. PMID:24517402

  17. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  18. The physics of epitaxial graphene on SiC(0001).

    PubMed

    Kageshima, H; Hibino, H; Tanabe, S

    2012-08-01

    Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to

  19. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    SciTech Connect

    Not Available

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  20. Natural selection reduces energy metabolism in the garden snail, helix aspersa (cornu aspersum).

    PubMed

    Artacho, Paulina; Nespolo, Roberto F

    2009-04-01

    Phenotypic selection is widely recognized as the primary cause of adaptive evolution in natural populations, a fact that has been documented frequently over the last few decades, mainly in morphological and life-history traits. The energetic definition of fitness predicts that natural selection will maximize the residual energy available for growth and reproduction, suggesting that energy metabolism could be a target of selection. To address this problem, we chose the garden snail, Helix aspersa (Cornu aspersum). We performed a seminatural experiment for measuring phenotypic selection on standard metabolic rate (SMR), the minimum cost of maintenance in ectotherm organisms. To discount selection on correlated traits, we included two additional whole-organism performance traits (mean speed and maximum force of dislodgement). We found a combination of linear (negative directional selection, beta=-0.106 +/- 0.06; P= 0.001) and quadratic (stabilizing selection, gamma=-0.012 +/- 0.033; P= 0.061) selection on SMR. Correlational selection was not significant for any possible pair of traits. This suggests that individuals with average-to-reduced SMRs were promoted by selection. To the best of our knowledge, this is the first study showing significant directional selection on the obligatory cost of maintenance in an animal, providing support for the energetic definition of fitness.

  1. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    SciTech Connect

    Svensson, C.E.; Cameron, J.A.; Flibotte, S.

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  2. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards

    PubMed Central

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-01-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689

  3. Selected problems in experimental intermediate energy physics. Progress report

    SciTech Connect

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1992-09-01

    Objectives of this research program are to investigate forefront problems in experimental intermediate-energy physics, educate students in this field of research, and develop the instrumentation necessary. Generally, this research is designed to search for physical processes that cannot be explained by conventional models of elementary interactions. The program has three major thrusts: strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin-dependent structure function of the neutron. Current research is reported in the following areas: hyperon physics at the AGS, electroproduction of hypernuclei, test of the standard model of electro-weak interactions, spin structure function of nucleons, and instrumentation.

  4. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  5. An assessment of selected solar energy industry activities

    NASA Astrophysics Data System (ADS)

    Roessner, J. D.

    1980-11-01

    The past, present, and near-term conditions of four industries based on solar energy technologies are examined-solar heating; photovoltaics; concentrating solar collectors for process heat and electric power applications; and passive components such as skylights and greenhouses. The report identifies key, unresolved issues for government policies intended to influence future solar industrial development; assesses the past and current federal role in these industries; and draws tentative conclusions about how government policies have affected their evolution. This evolution is compared to the evolution of typical, innovation-based industries. For each of the four solar industries researched, the collected data are discussed as follows: characteristics of sales; the government role; investment strategies and R & D activities; near-term trends; and comparisons with other industries.

  6. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  7. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  8. Energy Conservation: A Workshop for Selected Eastern U.S. Industrial Arts Teacher Educators.

    ERIC Educational Resources Information Center

    Wenig, Robert E., Ed.

    This set of 25 instructional modules was produced by a group of industrial arts teacher educators, local teachers, and supervisors from eastern United States. Topic areas of these modules include: societal implications of the energy situation; awareness of energy terms, supply, and use; assessment of conventional and selected renewable alternative…

  9. Dislocation reduction of InAs nanofins prepared on Si substrate using metal-organic vapor-phase epitaxy

    PubMed Central

    2012-01-01

    InAs nanofins were prepared on a nanopatterned Si (001) substrate by metal-organic vapor-phase epitaxy. The threading dislocations, stacked on the lowest-energy-facet plane {111}, move along the SiO2 walls, resulting in a dislocation reduction, as confirmed by transmission electron microscopy. The dislocations were trapped within a thin InAs epilayer. The obtained 90-nm-wide InAs nanofins with an almost etching-pit-free surface do not require complex intermediate-layer epitaxial growth processes and large thickness typically required for conventional epitaxial growth. PMID:23176442

  10. Erosive wear of selected materials for fossil energy applications

    SciTech Connect

    Adler, Thomas A.; Rawers, James C.; Tylczak, Joseph H.; Hawk, Jeffrey A.

    2001-01-01

    A number of materials have been evaluated to determine their erosion resistance for fossil energy applications. This is part of a larger program to study wear and corrosion at Albany Research Center. This paper will present the results for some of these materials, including FeAl, FeAl cermets, WC-Co cemented carbides, Si3N4-MoSi2, Si3N4, Stellite 6B, white cast irons and 440C steel. Trends in erosion rates due to material properties and erosive conditions will be presented. FeAl cermets performed well compared to the WC-Co cemented carbides. The interparticle spacing of the WC-Co cemented carbides correlated with the erosion rate. The erosion rate of the WC-Co cemented carbides decreased as the interparticle spacing decreased. It is important to realize that erosion resistance is not an intrinsic material property, but is a system response. A change in the wear environment can significantly alter the relative rankings of materials with respect to their wear rate. For example, at relatively low velocities, the carbides in the white cast irons are more erosion resistant than the matrix, while at higher velocities the matrix is more erosion resistant.

  11. Electronic properties of epitaxial silicene on diboride thin films.

    PubMed

    Friedlein, Rainer; Yamada-Takamura, Yukiko

    2015-05-27

    The Si counterpart of graphene—silicene—has partially similar but also unique electronic properties that relate to the presence of an extended π electronic system, the flexible crystal structure and the large spin-orbit coupling. Driven by predictions for exceptional electronic properties like the presence of massless charge carriers, the occurrence of the quantum Hall effect and perfect spin-filtering in free-standing, unreconstructed silicene, the recent experimental realization of largely sp(2)-hybridized, Si honeycomb lattices grown on a number of metallic substrates provided the opportunity for the systematic study of the electronic properties of epitaxial silicene phases. Following a discussion of theoretical predictions for free-standing silicene, we review properties of (√3 × √3)-reconstructed, epitaxial silicene phases but with the emphasis on the extensively studied case of silicene on ZrB2(0 0 0 1) thin films. As the experimental results show, the structural and electronic properties are highly interlinked and leave their fingerprint on the chemical states of individual Si atoms as revealed in core-level photoelectron spectra as well as in the valence electronic structure and low-energy interband transitions. With the critical role of substrates and of the chemical stability of epitaxial silicene highlighted, finally, benefits and challenges for any future silicene-based nanoelectronics are being put into perspective.

  12. Photoinduced topological phase transition in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Jin, Guojun

    2014-06-01

    In epitaxial graphene irradiated by an off-resonance circularly polarized light, we demonstrate a phase transition taking place between the band insulator and Floquet topological insulator. Considering the competition between staggered sublattice potential and photon dressing, we derive the dynamical energy gap and phase diagram in the tight-binding approximation. It is found that a threshold value of light intensity is necessary to realize a Floquet topological insulator. At the phase boundary, for each set of parameters, there is a special state with only one valley that is Dirac cone gapless, but the other remains gapped; in the band insulating phase, only one valley provides low-energy electrons, and it could be switched to the other by reversing the polarization direction of light. From these results, two electronic devices are designed: one is an optical-sensing np junction, where the photodriven unusual intervalley tunneling exhibits a stronger detectable signal than the intravalley tunneling, and the other is a topological field-effect transistor, where polarized light is used to turn on or turn off a nonequilibrium current.

  13. Epitaxial silicon devices for dosimetry applications

    SciTech Connect

    Bruzzi, M.; Bucciolini, M.; Casati, M.; Menichelli, D.; Talamonti, C.; Piemonte, C.; Svensson, B. G.

    2007-04-23

    A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with a n{sup +}-p junction surrounded by a guard-ring structure implanted on an epitaxial p-type Si layer grown on a Czochralski substrate. The sensitivity of devices made on 50-{mu}m-thick epitaxial Si degrades by only 7% after an irradiation with 6 MeV electrons up to 1.5 kGy, and shows no significant further decay up to 10 kGy. These results prove the enhanced radiation tolerance and stability of epitaxial diodes as compared to present state-of-the-art Si devices.

  14. Epitaxial growth of single crystal films

    NASA Technical Reports Server (NTRS)

    Lind, M. D.; Kroes, R. L.; Immorlica, A. A., Jr.

    1981-01-01

    An experiment in gallium arsenide liquid phase epitaxy (LPE) on a flight of the SPAR 6 is described. A general purpose LPE processor suitable for either SPAR or Space Transportation System flights was designed and built. The process was started before the launch, and only the final step, in which the epitaxial film is grown, was performed during the flight. The experiment achieved its objectives; epitaxial films of reasonably good quality and very nearly the thickness predicted for convection free diffusion limited growth were produced. The films were examined by conventional analytical techniques and compared with films grown in normal gravity.

  15. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  16. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  17. Aluminium or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  18. High throughput vacuum chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.

    1990-10-01

    We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The Al

  19. The Energy-Wise Homebuyer: A Guide to Selecting an Energy-Efficient Home.

    ERIC Educational Resources Information Center

    Hogarth, Peter T.; And Others

    Presented is a guide for purchasers of new or used homes who wish to make informed comparisons of energy costs. Included are 12 energy features to look for, detailed energy checklists, and charts for calculating energy expenses. Among the considerations discussed are heating systems, insulation, thermostats, caulking and weatherstripping, and…

  20. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  1. Epitaxial growth of single crystal films

    NASA Technical Reports Server (NTRS)

    Lind, M. D.

    1980-01-01

    An experiment in gallium arsenide liquid phase epitaxy was performed successfully on the SPAR 6 flight October 17, 1979. The design, fabrication, and testing of the experimental apparatus, and the performance and results of the experiment are discussed.

  2. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    NASA Astrophysics Data System (ADS)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M.; Dimoulas, A.

    2013-12-01

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  3. Silicon Holder For Molecular-Beam Epitaxy

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  4. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  5. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  6. Evaluation of the implementation of energy education curricula in selected classrooms

    SciTech Connect

    Landes, N.M.

    1981-01-01

    This study investigates the implementation of particular energy-education curriculum materials by Michigan teachers in grades K-8 who attended an energy-education inservice workshop. The study is designed to describe the inservice workshop project upon which the study is based, assess the relationship between selected workshop factors and teacher characteristics and the amount of time teachers reported teaching about energy following and inservice workshop, and determine factors which may encourage or limit the implementation of energy education in these teachers' classrooms. Data were collected through written questionnaires both before and after the inservice workshops, and through indepth interviews conducted with a sub sample of teachers. Major findings were: (1) about one-half of the teachers who responded had included energy education in their curriculum; (2) teachers tended to include energy education if they felt strongly enough that energy was an important topic about which their students needed to learn; (3) teachers found time to be the most-limiting factor in including energy education in the curriculum, (4)teachers felt limited support for including energy topics from building principals and districts, (5) teachers tended to view energy education as part of science even when provided with multidisciplinary guides, and (6) only the previous number of energy lessons taught and whether or not a teacher had attended a previous energy workshop showed any statistical relatonship to the time spent teaching about energy following the workshop.

  7. Expected Satiety: Application to Weight Management and Understanding Energy Selection in Humans

    PubMed Central

    Forde, Ciarán G.; Almiron-Roig, Eva; Brunstrom, Jeffrey M.

    2016-01-01

    Recent advances in the approaches used to quantify expectations of satiation and satiety have led to a better understanding of how humans select and consume food, and the associated links to energy intake regulation. When compared calorie for calorie some foods are expected to deliver several times more satiety than others, and multiple studies have demonstrated that people are able to discriminate between similar foods reliably and with considerable sensitivity. These findings have implications for the control of meal size and the design of foods that can be used to lower the energy density of diets. These methods and findings are discussed in terms of their implications for weight management. The current paper also highlights why expected satiety may also play an important role beyond energy selection, in moderating appetite sensations after a meal has been consumed, through memory for recent eating and the selection of foods across future meals. PMID:26627096

  8. Expected Satiety: Application to Weight Management and Understanding Energy Selection in Humans.

    PubMed

    Forde, Ciarán G; Almiron-Roig, Eva; Brunstrom, Jeffrey M

    2015-03-01

    Recent advances in the approaches used to quantify expectations of satiation and satiety have led to a better understanding of how humans select and consume food, and the associated links to energy intake regulation. When compared calorie for calorie some foods are expected to deliver several times more satiety than others, and multiple studies have demonstrated that people are able to discriminate between similar foods reliably and with considerable sensitivity. These findings have implications for the control of meal size and the design of foods that can be used to lower the energy density of diets. These methods and findings are discussed in terms of their implications for weight management. The current paper also highlights why expected satiety may also play an important role beyond energy selection, in moderating appetite sensations after a meal has been consumed, through memory for recent eating and the selection of foods across future meals.

  9. Final report on implementation of energy conservation practices training in selected public housing developments

    SciTech Connect

    Not Available

    1991-10-01

    This report on the implementation of energy conservation practices training in selected public housing developments represents an initiative of the Research and Education Division, Office of Minority Economic Impact, US Department of Energy. The Office of Minority Economic Impact (MI) was created by Congress in 1979, within the US Department of Energy, to afford the Secretary advice on the effect policies, regulations and other actions of DOE respecting minority participation in energy programs. The Director of MI is responsible for the conduct of ongoing research into the effects, including socio-economic and environmental, of national energy programs, policies, and regulations of the Department of minorities. Public housing in the United States is dominated by minorities, public housing is a large consumer of residential energy. Consequently, this project is a logical merging of these two factors and an attempt to somehow influence energy savings through improving public housing residents' energy-consumption practices. This final report attempts to capture the results of this current demonstration, and incorporate the historical basis for today's results by renewing the efforts that preceded the implementation of energy conservation practices training in selected public housing developments.

  10. Final report on implementation of energy conservation practices training in selected public housing developments

    SciTech Connect

    Not Available

    1991-10-01

    This report on the implementation of energy conservation practices training in selected public housing developments represents an initiative of the Research and Education Division, Office of Minority Economic Impact, US Department of Energy. The Office of Minority Economic Impact (MI) was created by Congress in 1979, within the US Department of Energy, to afford the Secretary advice on the effect policies, regulations and other actions of DOE respecting minority participation in energy programs. The Director of MI is responsible for the conduct of ongoing research into the effects, including socio-economic and environmental, of national energy programs, policies, and regulations of the Department of minorities. Public housing in the United States is dominated by minorities, public housing is a large consumer of residential energy. Consequently, this project is a logical merging of these two factors and an attempt to somehow influence energy savings through improving public housing residents` energy-consumption practices. This final report attempts to capture the results of this current demonstration, and incorporate the historical basis for today`s results by renewing the efforts that preceded the implementation of energy conservation practices training in selected public housing developments.

  11. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  12. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor.

    PubMed

    Cao, Ran

    2016-04-01

    Selective poly (ADP-ribose) polymerase (PARP)-1 inhibitor represents promising therapy against cancers with a good balance between efficacy and safety. Owing to the conserved structure between PARP-1 and PARP-2, most of the clinical and experimental drugs show equivalent inhibition against both targets. Most recently, it's disclosed a highly selective PARP-1 inhibitor (NMS-P118) with promising pharmacokinetic properties. Herein, we combined molecular simulation with free energy calculation to gain insights into the selective mechanism of NMS-P118. Our results suggest the reduction of binding affinity for PARP-2 is attributed to the unfavorable conformational change of protein, which is accompanied by a significant energy penalty. Alanine-scanning mutagenesis study further reveals the important role for a tyrosine residue of donor loop (Tyr889(PARP-1) and Tyr455(PARP-2)) in contributing to the ligand selectivity. Retrospective structural analysis indicates the ligand-induced movement of Tyr455(PARP-2) disrupts the intra-molecule hydrogen bonding network, which partially accounts for the "high-energy" protein conformation in the presence of NMS-P118. Interestingly, such effect isn't observed in other non-selective PARP inhibitors including BMN673 and A861695, which validates the computational prediction. Our work provides energetic insight into the subtle variations in the crystal structures and could facilitate rational design of new selective PARP inhibitor.

  13. Select Results from the Energy Assessor Experiment in the 2012 Commercial Buildings Energy Consumption Survey

    EIA Publications

    2015-01-01

    As part of an effort to make EIA’s energy consumption surveys as accurate and efficient as possible, EIA invited the National Research Council (NRC) to review the Commercial Buildings Energy Consumption Survey (CBECS) data-gathering process and make recommendations for improvements. The NRC suggested sending professional energy assessors to some sites and comparing the data obtained from the survey to the data collected by the assessors. Results from the energy assessment data collection have largely confirmed the quality of data gathered by CBECS interviewers.

  14. Single-Nucleus Polycrystallization in Thin Film Epitaxial Growth

    SciTech Connect

    Sadowski, J. T.; Nishikata, S.; Al-Mahboob, A.; Fujikawa, Y.; Nakajima, K.; Sakurai, T.; Sazaki, G.; Tromp, R. M.

    2007-01-26

    We have observed, by use of low-energy electron microscopy, the first direct evidence of self-driven polycrystallization evolved from a single nucleus in the case of epitaxial pentacene growth on the Si(111)-H terminated surface. In this Letter we demonstrate that such polycrystallization can develop in anisotropic systems (in terms of crystal structure and/or the intermolecular interactions) when kinetic growth conditions force the alignment of the intrinsic preferential growth directions along the density gradient of diffusing molecules. This finding gives new insight into the crystallization of complex molecular systems, elucidating the importance of nanoscale control of the growth conditions.

  15. In situ growth of epitaxial cerium tungstate (100) thin films.

    PubMed

    Skála, Tomáš; Tsud, Nataliya; Orti, Miguel Ángel Niño; Menteş, Tevfik Onur; Locatelli, Andrea; Prince, Kevin Charles; Matolín, Vladimír

    2011-04-21

    The deposition of ceria on a preoxidized W(110) crystal at 870 K has been studied in situ by photoelectron spectroscopy and low-energy electron diffraction. Formation of an epitaxial layer of crystalline cerium tungstate Ce(6)WO(12)(100), with the metals in the Ce(3+) and W(6+) chemical states, has been observed. The interface between the tungsten substrate and the tungstate film consists of WO suboxide. At thicknesses above 0.89 nm, cerium dioxide grows on the surface of Ce(6)WO(12), favoured by the limited diffusion of tungsten from the substrate. PMID:21399780

  16. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  17. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  18. Energy Opinions of Southern, Northern and Academically Prepared Energy Students in Selected Secondary Schools.

    ERIC Educational Resources Information Center

    Karst, Ralph R.

    1985-01-01

    Examines the effects of sex, grade level, region, and academic preparation of secondary school students on energy opinions. Assesses the responses of students on energy items related to the government, cars, and conservation. Results reveal significant regional and sex differences. (ML)

  19. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    SciTech Connect

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-15

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2x the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  20. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  1. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  2. Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films

    SciTech Connect

    Gálvez, S.; Rubio-Zuazo, J. Salas-Colera, E.; Muñoz-Noval, A.; Castro, G. R.

    2014-12-15

    Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.

  3. Band Engineering by Controlling vdW Epitaxy Growth Mode in 2D Gallium Chalcogenides.

    PubMed

    Cai, Hui; Soignard, Emmanuel; Ataca, Can; Chen, Bin; Ko, Changhyun; Aoki, Toshihiro; Pant, Anupum; Meng, Xiuqing; Yang, Shengxue; Grossman, Jeffrey; Ogletree, Frank D; Tongay, Sefaattin

    2016-09-01

    Atomically thin quasi-2D GaSe flakes are synthesized via van der Waals (vdW) epitaxy on a polar Si (111) surface. The bandgap is continuously tuned from its commonly accepted value at 620 down to the 700 nm range, only attained previously by alloying Te into GaSe (GaSex Te1- x ). This is accomplished by manipulating various vdW epitaxy kinetic factors, which allows the choice bet ween screw-dislocation-driven and layer-bylayer growth, and the design of different morphologies with different material-substrate interaction (strain) energies. PMID:27271214

  4. Epitaxial alloys of AlxGa1-xAs:Mg with different types of conductivity

    NASA Astrophysics Data System (ADS)

    Seredin, P. V.; Lenshin, A. S.; Arsentyev, I. N.; Tarasov, I. S.; Prutskij, Tatiana; Leiste, Harald; Rinke, Monika

    2016-10-01

    This project employed high-resolution X-ray diffraction, Raman spectroscopy and photoluminescence spectroscopy to investigate the structural, optical and band energy properties of the MOCVD epitaxial heterostructures, AlxGa1-xAs:Mg/GaAs(100), with different levels of magnesium doping. It was shown that the choice of technological conditions used in the preparation of the AlxGa1-xAs:Mg alloy allowed different types of conductivity and it was also possible to achieve significantly different concentrations of the charge carriers in the epitaxial film.

  5. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  6. Zinc-blende CrAs/GaAs multilayers grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Akinaga, H.; Mizuguchi, M.

    2004-12-01

    The epitaxial growth of zinc-blende CrAs/GaAs multilayers has been achieved by using the molecular-beam epitaxy method. The crystallographic quality was evaluated by reflection high-energy electron diffraction (RHEED) and cross-sectional transmission electron microscopy (TEM). The increase of the substrate temperature during growth up to 300 °C brings the RHEED pattern to a streak, in contrast to the case at 200 °C. TEM images show the atomically flat surface and interface of the multilayer.

  7. Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy

    SciTech Connect

    Pillai, P. B. E-mail: m.desouza@sheffield.ac.uk; DeSouza, M. E-mail: m.desouza@sheffield.ac.uk; Narula, R.; Reich, S.; Wong, L. Y.; Batten, T.; Pokorny, J.

    2015-05-14

    Signatures of a superlattice structure composed of a quasi periodic arrangement of atomic gold clusters below an epitaxied graphene (EG) layer are examined using dispersive Raman spectroscopy. The gold-graphene system exhibits a laser excitation energy dependant red shift of the 2D mode as compared to pristine epitaxial graphene. The phonon dispersions in both the systems are mapped using the experimentally observed Raman signatures and a third-nearest neighbour tight binding electronic band structure model. Our results reveal that the observed excitation dependent Raman red shift in gold EG primarily arise from the modifications of the phonon dispersion in gold-graphene and shows that the extent of decoupling of graphene from the underlying SiC substrate can be monitored from the dispersive nature of the Raman 2D modes. The intercalated gold atoms restore the phonon band structure of epitaxial graphene towards free standing graphene.

  8. Electrical properties of Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Belova, O. V.; Shabanov, V. N.; Kasatkin, A. P.; Kuznetsov, O. A.; Yablonskii, A. N.; Kuznetsov, M. V.; Kuznetsov, V. P. Kornaukhov, A. V.; Andreev, B. A.; Krasil'nik, Z. F.

    2008-02-15

    Temperature dependences of the concentration and electron Hall mobility in Si:Er/Sr epitaxial layers grown at T = 600 Degree-Sign C and annealed at 700 or 900 Degree-Sign C have been investigated. The layers were grown by sublimation molecular-beam epitaxy in vacuum ({approx}10{sup -5} Pa). The energy levels of Er-related donor centers are located 0.21-0.27 eV below the bottom of the conduction band of Si. In the range 80-300 K, the electron Hall mobility in unannealed Si:Er epitaxial layers was lower than that in Czochralski-grown single crystals by a factor of 3-10. After annealing the layers, the fraction of electron scattering from Er donor centers significantly decreases.

  9. Electrical properties of Si:Er/Si layers grown by sublimation molecular-beam epitaxy

    SciTech Connect

    Belova, O. V.; Shabanov, V. N.; Kasatkin, A. P.; Kuznetsov, O. A.; Yablonskii, A. N.; Kuznetsov, M. V.; Kuznetsov, V. P. Kornaukhov, A. V.; Andreev, B. A.; Krasil'nik, Z. F.

    2008-02-15

    Temperature dependences of the concentration and electron Hall mobility in Si:Er/Sr epitaxial layers grown at T = 600 deg. C and annealed at 700 or 900 deg. C have been investigated. The layers were grown by sublimation molecular-beam epitaxy in vacuum ({approx}10{sup -5} Pa). The energy levels of Er-related donor centers are located 0.21-0.27 eV below the bottom of the conduction band of Si. In the range 80-300 K, the electron Hall mobility in unannealed Si:Er epitaxial layers was lower than that in Czochralski-grown single crystals by a factor of 3-10. After annealing the layers, the fraction of electron scattering from Er donor centers significantly decreases.

  10. Van der Waals Epitaxy of Ultrathin Halide Perovkistes

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Yunfeng; Shi, Jian

    We present our understanding, with CH3NH3PbX3 as a model system, on the 2D van der Waals growth and kinetics of 3D parent materials. We show the successful synthesis of ultrathin (sub-10 nm), large scale (a few tens of μm) single crystalline 2D perovskite thin films on layered mica substrate by van der Waals (VDW) epitaxy. Classical nucleation and growth model explaining conventional epitaxy has been modified to interpret the unique 2D results under VDW mechanism. The generalization of our model shows that a 3D crystal with low cohesive energy tends to favor the 2D growth while the one with strong cohesive energy has less kinetic window. With Monte Carlo simulations, we show that the fractal 2D morphology in perovskite precisely manifests the kinetic competition between VDW diffusivity and thermodynamic driving force, a unique phenomenon to VDW growth, suggesting a fundamental limit on the morphology stability of the 2D form of a 3D material. On the other hand, our single crystal thin film growth results and subsequent cryogenic study in the iodide perovskite provide a perfect resource for the exploration of its complex optical and electronic properties and unveiling the origins of its popularity in the energy conversion field.

  11. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.

    PubMed

    Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad

    2015-07-15

    In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.

  12. Angular selective window systems: Assessment of technical potential for energy savings

    DOE PAGES

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  13. Angular selective window systems: Assessment of technical potential for energy savings

    SciTech Connect

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.

  14. Fuel Supply and Selection. CEFP Special Report No. 9. Energy Conservation: A New Challenge for Education

    ERIC Educational Resources Information Center

    Dell'Isola, A. J.

    1973-01-01

    Illustrates how fuel selection in large school systems can be based on life cycle costs for fuel and buildings as a total energy/cost package. Cites an example of how such cost data can be used to institute changes in school district fuel use. (Author/DN)

  15. Selected Resource Materials for Developing Energy Conservation Programs in the Government Sector.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This annotated bibliography is a selected listing of reference materials for use by local government officials in the development of energy conservation programs. The references are listed under the agency through which they are available. Agency listings are alphabetized and include complete mailing addresses. There are 46 agency listings, many…

  16. Selected Resource Materials for Developing Energy Conservation Programs in the Small Business/Commercial Sector.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This annotated bibliography is a selected listing of references for use by small business managers in the development of energy conservation programs. The references are listed under the agency through which they are available. The agency listings are alphabetized and include complete mailing addresses. There are 35 agency listings, many of which…

  17. Selective Energy Feasibility Study -- Richmond College, City University of New York

    ERIC Educational Resources Information Center

    Consulting Engineer, 1974

    1974-01-01

    A study of the presently available data on magnitude, duration, and coincidence of electrical demands determined that onsite electrical power generation in the form of a selective energy system should be incorporated within the central utilities plant projected for the Richmond College Campus of the City University of New York (CUNY). (Author/MLF)

  18. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al{sub 2}O{sub 3}(0001) substrates

    SciTech Connect

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-05-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al{sub 2}O{sub 3}(0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively.

  19. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  20. Merriam's kangaroo rats (Dipodomys merriami) voluntarily select temperatures that conserve energy rather than water.

    PubMed

    Banta, Marilyn R

    2003-01-01

    Desert endotherms such as Merriam's kangaroo rat (Dipodomys merriami) use both behavioral and physiological means to conserve energy and water. The energy and water needs of kangaroo rats are affected by their thermal environment. Animals that choose temperatures within their thermoneutral zone (TNZ) minimize energy expenditure but may impair water balance because the ratio of water loss to water gain is high. At temperatures below the TNZ, water balance may be improved because animals generate more oxidative water and reduce evaporative water loss; however, they must also increase energy expenditure to maintain a normal body temperature. Hence, it is not possible for kangaroo rats to choose thermal environments that simultaneously minimize energy expenditure and increase water conservation. I used a thermal gradient to test whether water stress, energy stress, simultaneous water and energy stress, or no water/energy stress affected the thermal environment selected by D. merriami. During the night (i.e., active phase), animals in all four treatments chose temperatures near the bottom of their TNZ. During the day (i.e., inactive phase), animals in all four treatments settled at temperatures near the top of their TNZ. Thus, kangaroo rats chose thermal environments that minimized energy requirements, not water requirements. Because kangaroo rats have evolved high water use efficiency, energy conservation may be more important than water conservation to the fitness of extant kangaroo rats.

  1. Phase diagram of epitaxial ferromagnets: Erbium (0001) on sapphire (112¯0)

    NASA Astrophysics Data System (ADS)

    Durfee, C. S.; Flynn, C. P.

    2000-10-01

    We have accurately determined the elastic state and the magnetic phase diagram of epitaxially clamped Er on Al2O3 through the range of strong bulk magnetostriction. The elastic free energy is too small to explain the observed change of the Curie point. The additional required energy of ˜5% of the self-energy for full perpendicular magnetization must arise from differences of domain configuration between the magnetized bulk and the film.

  2. Evaluation and Selection of Renewable Energy Technologies for Highway Maintenance Facilities

    NASA Astrophysics Data System (ADS)

    Andrews, Taylor

    The interest in renewable energy has been increasing in recent years as attempts to reduce energy costs as well the consumption of fossil fuels are becoming more common. Companies and organizations are recognizing the increasing reliance on limited fossil fuels' resources, and as competition and costs for these resources grow, alternative solutions are becoming more appealing. Many federally run buildings and associations also have the added pressure of meeting the mandates of federal energy policies that dictate specific savings or reductions. Federal highway maintenance facilities run by the Department of Transportation fall into this category. To help meet energy saving goals, an investigation into potential renewable energy technologies was completed for the Ohio Department of Transportation. This research examined several types of renewable energy technologies and the major factors that affect their performance and evaluated their potential for implementation at highway maintenance facilities. Facilities energy usage data were provided, and a facility survey and site visits were completed to enhance the evaluation of technologies and the suitability for specific projects. Findings and technology recommendations were presented in the form of selection matrices, which were designed to help make selections in future projects. The benefits of utilization of other tools such as analysis software and life cycle assessments were also highlighted. These selection tools were designed to be helpful guides when beginning the pursuit of a renewable energy technology for highway maintenance facilities, and can be applied to other similar building types and projects. This document further discusses the research strategies and findings as well as the recommendations that were made to the personnel overseeing Ohio's highway maintenance facilities.

  3. Thermodynamic Theory of Epitaxial Alloys: First-Principles Mixed-Basis Cluster Expansion of (In,Ga)N Alloy Film

    SciTech Connect

    Liu, J. Z.; Zunger, A.

    2009-01-01

    Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN){sub 2}/(GaN){sub 2} (at x = 0.50) and (InN){sub 4}/(GaN){sub 1} (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy.

  4. Thermodynamic theory of epitaxial alloys: first-principles mixed-basis cluster expansion of (In, Ga)N alloy film.

    PubMed

    Liu, Jefferson Zhe; Zunger, Alex

    2009-07-22

    Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN)(2)/(GaN)(2) (at x = 0.50) and (InN)(4)/(GaN)(1) (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy. PMID:21828531

  5. Soft Crystals in Flatland: Unraveling Epitaxial Growth.

    PubMed

    Ward, Michael D

    2016-07-26

    Thin film epitaxy typically invokes a superposition of a pair of rigid two-dimensional lattices with a well-defined orientation governed by some form of commensurism. A report by Meissner et al. in this issue of ACS Nano demonstrates that the organization of organic molecules on substrates may not be that simple, as static distortion waves involving miniscule shifts of atomic positions from substrate lattice points can lead to orientations of a molecular film that cannot be described by often used models. Herein, we provide some highlights of epitaxy, with a focus on configurations that reflect the delicate balance between intermolecular interactions within a molecular film and molecule-substrate interactions. Although geometric models for explaining and predicting epitaxial configurations can be used to guide synthesis of materials, their use must recognize energetic factors and the possibility of more complex, and possibly less predictable, interface structures.

  6. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  7. Fuzzy C-Means Clustering and Energy Efficient Cluster Head Selection for Cooperative Sensor Network

    PubMed Central

    Bhatti, Dost Muhammad Saqib; Saeed, Nasir; Nam, Haewoon

    2016-01-01

    We propose a novel cluster based cooperative spectrum sensing algorithm to save the wastage of energy, in which clusters are formed using fuzzy c-means (FCM) clustering and a cluster head (CH) is selected based on a sensor’s location within each cluster, its location with respect to fusion center (FC), its signal-to-noise ratio (SNR) and its residual energy. The sensing information of a single sensor is not reliable enough due to shadowing and fading. To overcome these issues, cooperative spectrum sensing schemes were proposed to take advantage of spatial diversity. For cooperative spectrum sensing, all sensors sense the spectrum and report the sensed energy to FC for the final decision. However, it increases the energy consumption of the network when a large number of sensors need to cooperate; in addition to that, the efficiency of the network is also reduced. The proposed algorithm makes the cluster and selects the CHs such that very little amount of network energy is consumed and the highest efficiency of the network is achieved. Using the proposed algorithm maximum probability of detection under an imperfect channel is accomplished with minimum energy consumption as compared to conventional clustering schemes. PMID:27618061

  8. Fuzzy C-Means Clustering and Energy Efficient Cluster Head Selection for Cooperative Sensor Network.

    PubMed

    Bhatti, Dost Muhammad Saqib; Saeed, Nasir; Nam, Haewoon

    2016-01-01

    We propose a novel cluster based cooperative spectrum sensing algorithm to save the wastage of energy, in which clusters are formed using fuzzy c-means (FCM) clustering and a cluster head (CH) is selected based on a sensor's location within each cluster, its location with respect to fusion center (FC), its signal-to-noise ratio (SNR) and its residual energy. The sensing information of a single sensor is not reliable enough due to shadowing and fading. To overcome these issues, cooperative spectrum sensing schemes were proposed to take advantage of spatial diversity. For cooperative spectrum sensing, all sensors sense the spectrum and report the sensed energy to FC for the final decision. However, it increases the energy consumption of the network when a large number of sensors need to cooperate; in addition to that, the efficiency of the network is also reduced. The proposed algorithm makes the cluster and selects the CHs such that very little amount of network energy is consumed and the highest efficiency of the network is achieved. Using the proposed algorithm maximum probability of detection under an imperfect channel is accomplished with minimum energy consumption as compared to conventional clustering schemes. PMID:27618061

  9. Fuzzy C-Means Clustering and Energy Efficient Cluster Head Selection for Cooperative Sensor Network.

    PubMed

    Bhatti, Dost Muhammad Saqib; Saeed, Nasir; Nam, Haewoon

    2016-01-01

    We propose a novel cluster based cooperative spectrum sensing algorithm to save the wastage of energy, in which clusters are formed using fuzzy c-means (FCM) clustering and a cluster head (CH) is selected based on a sensor's location within each cluster, its location with respect to fusion center (FC), its signal-to-noise ratio (SNR) and its residual energy. The sensing information of a single sensor is not reliable enough due to shadowing and fading. To overcome these issues, cooperative spectrum sensing schemes were proposed to take advantage of spatial diversity. For cooperative spectrum sensing, all sensors sense the spectrum and report the sensed energy to FC for the final decision. However, it increases the energy consumption of the network when a large number of sensors need to cooperate; in addition to that, the efficiency of the network is also reduced. The proposed algorithm makes the cluster and selects the CHs such that very little amount of network energy is consumed and the highest efficiency of the network is achieved. Using the proposed algorithm maximum probability of detection under an imperfect channel is accomplished with minimum energy consumption as compared to conventional clustering schemes.

  10. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2016-07-01

    Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

  11. Linking habitat selection to fitness-related traits in herbivores: the role of the energy landscape.

    PubMed

    Long, Ryan A; Bowyer, R T; Porter, Warren P; Mathewson, Paul; Monteith, Kevin L; Findholt, Scott L; Dick, Brian L; Kie, John G

    2016-07-01

    Animals may partially overcome environmental constraints on fitness by behaviorally adjusting their exposure to costs and supplies of energy. Few studies, however, have linked spatiotemporal variation in the energy landscape to behaviorally mediated measures of performance that ostensibly influence individual fitness. We hypothesized that strength of selection by North American elk (Cervus elaphus) for areas that reduced costs of thermoregulation and activity, and increased access to high-quality forage, would influence four energetically mediated traits related to fitness: birth mass of young, nutritional condition of adult females at the onset of winter, change in nutritional condition of females between spring and winter, and neonatal survival. We used a biophysical model to map spatiotemporally explicit costs of thermoregulation and activity experienced by elk in a heterogeneous landscape. We then combined model predictions with data on forage characteristics, animal locations, nutritional condition, and mass and survival of young to evaluate behaviorally mediated effects of the energy landscape on fitness-related traits. During spring, when high-quality forage was abundant, female elk that consistently selected low-cost areas before parturition gave birth to larger young than less-selective individuals, and birth mass had a strong, positive influence on probability of survival. As forage quality declined during autumn, however, lactating females that consistently selected the highest quality forage available accrued more fat and entered winter in better condition than less-selective individuals. Results of our study highlight the importance of understanding the dynamic nature of energy landscapes experienced by free-ranging animals. PMID:27003702

  12. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-01

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp3-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N2+ and Ar+ ions is a key to selectively discriminate non-sp3 BN phases. At low acceleration voltage values, the sp2-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  13. Chemical vapor deposition of epitaxial silicon

    DOEpatents

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  14. Near optimal energy selective x-ray imaging system performance with simple detectors

    SciTech Connect

    Alvarez, Robert E.

    2010-02-15

    Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519-529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959-966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a ''whitened'' vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara-Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal

  15. Application of very low energy neutron radiography with energy selection system using 4Qc(4m) supermirror

    NASA Astrophysics Data System (ADS)

    Kawabata, Yuji; Hino, Masahiro; Nakano, Takafumi; Sunohara, Hiroaki; Matsushima, Uzuki; Geltenbort, Peter

    2005-04-01

    A high contrast neutron CT system is installed in the VCN/PF2 port of Institut Laue-Langevin and VCN port of Kyoto University Reactor (KUR). A converter+C-CCD system is used for the image detection. This system has an option of the energy selection system by neutron reflection on a 4Qc (4m) supermirror. The critical angle of the neutron reflection on this mirror is four times larger than that of natural nickel and the diameter is 20 cm. As the neutron reflection on a mirror removes faster neutrons, it can be used as a low pass filter of the neutron energy. The upper limit of the reflected neutron energy can be easily changed by the rotation of the mirror. As the application of this high contrast imaging system, the density nonuniformity of an aluminum welding sample can be shown by the refraction effect of very cold neutrons in VCN/PF2/ILL.

  16. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    SciTech Connect

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-09-06

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of {eta}{sub p}=14.4{+-}0.4% and {eta}{sub p}=14.8{+-}0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  17. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    SciTech Connect

    Lee, K.; Shiu, K. T.; Zimmerman, J.; Forrest, Stephen R.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barriersolar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η{sub p}=14.4±0.4% and η{sub p}=14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-filmsolar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  18. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    NASA Astrophysics Data System (ADS)

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Renshaw, Christopher K.; Forrest, Stephen R.

    2010-09-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of ηp=14.4±0.4% and ηp=14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  19. Comparative analyisis of energy consumption of selected buildings on morehead state university's main campus

    NASA Astrophysics Data System (ADS)

    Brandt, Ronald E.

    Currently there is a need for energy efficiency on the main campus of Morehead State University main campus. Evidence shows that there is room for improvement in order to lower the usage and cost efficiency at MSU. The purpose of this study is to propose, that Net Zero technology should be implemented towards the main campus of Morehead State University in the near future. The goal is to come up with a study of comparing selected current traditional buildings with the LEED buildings (Wellness Recreational Center and CHER building). To form this analysis will be applied using SPC software on Energy usage for year by year trends from 2012. In conclusion, Net-Zero construction has steadily increased since then, with the number of completed buildings more than doubling since 2008, according to the latest study. Thanks to advances in structural insulation, energy-efficient appliances, this will help the MSU campus in the near future. As for energy efficiency, to make sure we have plenty of energy in the future, it's up to all of us to use energy wisely. We must all conserve energy and use it efficiently. It's also up to those who will create the new energy technologies of the future..

  20. Accurate determination of optical bandgap and lattice parameters of Zn{sub 1-x}Mg{sub x}O epitaxial films (0{<=}x{<=}0.3) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Stutzmann, Martin; Bergmaier, Andreas; Dollinger, Guenther; Eickhoff, Martin

    2013-06-21

    Zn{sub 1-x}Mg{sub x}O epitaxial films with Mg concentrations 0{<=}x{<=}0.3 were grown by plasma-assisted molecular beam epitaxy on a-plane sapphire substrates. Precise determination of the Mg concentration x was performed by elastic recoil detection analysis. The bandgap energy was extracted from absorption measurements with high accuracy taking electron-hole interaction and exciton-phonon complexes into account. From these results a linear relationship between bandgap energy and Mg concentration is established for x{<=}0.3. Due to alloy disorder, the increase of the photoluminescence emission energy with Mg concentration is less pronounced. An analysis of the lattice parameters reveals that the epitaxial films grow biaxially strained on a-plane sapphire.

  1. Enhanced quality of epitaxial AlN thin films on 6H-SiC by ultra-high-vacuum ion-assisted reactive dc magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tungasmita, S.; Birch, J.; Persson, P. O. A.˚.; Järrendahl, K.; Hultman, L.

    2000-01-01

    Epitaxial AlN thin films have been grown on 6H-SiC substrates by ultra-high-vacuum (UHV) ion-assisted reactive dc magnetron sputtering. The low-energy ion-assisted growth (Ei=17-27 eV) results in an increasing surface mobility, promoting domain-boundary annihilation and epitaxial growth. Domain widths increased from 42 to 135 nm and strained-layer epitaxy was observed in this energy range. For Ei>52 eV, an amorphous interfacial layer of AlN was formed on the SiC, which inhibited epitaxial growth. Using UHV condition and very pure nitrogen sputtering gas yielded reduced impurity levels in the films (O: 3.5×1018cm-3). Analysis techniques used in this study are in situ reflection high-energy electron diffraction, secondary-ion-mass spectroscopy, atomic-force microscopy, x-ray diffraction, and cross-section high-resolution electron microscopy.

  2. Quantum mechanical resonance calculations using an energy selected basis in hyperspherical coordinates

    NASA Astrophysics Data System (ADS)

    Montgomery, Jason

    2007-12-01

    Scattering resonances play a key role in many chemical processes, including unimolecular and bimolecular reactions and photodissociation. A significant theoretical emphasis over the past several decades has been placed on accurate resonance calculations for polyatomic systems. In spite of such efforts, a quantum treatment of molecular systems which exhibit a high density of states and strong coordinate coupling near dissociation remains a formidable task. The research described herein employs improved quantum mechanical methods to calculate a representation of nuclear motion, both bound and unbound, which is used subsequently to calculate accurate resonance energies and lifetimes for two triatomic systems: the neon trimer and ozone. Specifically, theory and results are given regarding the construction of an optimal, L2 eigenbasis using techniques such as the discrete variable representation, the energy selected basis (ESB) method, and iterative diagonalization methods. A new energy selection method is also developed and implemented for the neon trimer. Subsequent resonance calculations are described which make use of the artificial boundary inhomogeneity (ABI) method, adapted to work with the above mentioned ESB and hyperspherical coordinates. The ABI method is used to calculate a set of linearly independent wavefunctions (LIWs) at a given energy for the representation of the scattering wavefunction. Resonance parameters are obtained by imposing scattering boundary conditions on a linear combination of LIWs and solving for the S-matrix, S, its energy derivative, dS/dE, and the Smith lifetime matrix, Q. When available, comparisons are made with previously reported calculations.

  3. Application configuration selection for energy-efficient execution on multicore systems

    SciTech Connect

    Wang, Shinan; Luo, Bing; Shi, Weisong; Tiwari, Devesh

    2015-09-21

    Balanced performance and energy consumption are incorporated in the design of modern computer systems. Several runtime factors, such as concurrency levels, thread mapping strategies, and dynamic voltage and frequency scaling (DVFS) should be considered in order to achieve optimal energy efficiency fora workload. Selecting appropriate run-time factors, however, is one of the most challenging tasks because the run-time factors are architecture-specific and workload-specific. And while most existing works concentrate on either static analysis of the workload or run-time prediction results, we present a hybrid two-step method that utilizes concurrency levels and DVFS settings to achieve the energy efficiency configuration for a worldoad. The experimental results based on a Xeon E5620 server with NPB and PARSEC benchmark suites show that the model is able to predict the energy efficient configuration accurately. On average, an additional 10% EDP (Energy Delay Product) saving is obtained by using run-time DVFS for the entire system. An off-line optimal solution is used to compare with the proposed scheme. Finally, the experimental results show that the average extra EDP saved by the optimal solution is within 5% on selective parallel benchmarks.

  4. Application configuration selection for energy-efficient execution on multicore systems

    DOE PAGES

    Wang, Shinan; Luo, Bing; Shi, Weisong; Tiwari, Devesh

    2015-09-21

    Balanced performance and energy consumption are incorporated in the design of modern computer systems. Several runtime factors, such as concurrency levels, thread mapping strategies, and dynamic voltage and frequency scaling (DVFS) should be considered in order to achieve optimal energy efficiency fora workload. Selecting appropriate run-time factors, however, is one of the most challenging tasks because the run-time factors are architecture-specific and workload-specific. And while most existing works concentrate on either static analysis of the workload or run-time prediction results, we present a hybrid two-step method that utilizes concurrency levels and DVFS settings to achieve the energy efficiency configuration formore » a worldoad. The experimental results based on a Xeon E5620 server with NPB and PARSEC benchmark suites show that the model is able to predict the energy efficient configuration accurately. On average, an additional 10% EDP (Energy Delay Product) saving is obtained by using run-time DVFS for the entire system. An off-line optimal solution is used to compare with the proposed scheme. Finally, the experimental results show that the average extra EDP saved by the optimal solution is within 5% on selective parallel benchmarks.« less

  5. Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

    NASA Astrophysics Data System (ADS)

    Račiukaitis, G.; Grubinskas, S.; Gečys, P.; Gedvilas, M.

    2013-07-01

    Selectiveness of the laser processing is the top-most important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.

  6. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    PubMed

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  7. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  8. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  9. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    PubMed

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  10. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    SciTech Connect

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu; Zuo, Jianmin; Braun, Paul V.; Sardela, Mauro; Balaji, Manavaimaran; Lourdudoss, Sebastian; Sun, Yan-Ting

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.

  11. Epitaxial solar-cell fabrication, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1977-01-01

    Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%.

  12. Improved Boat For Liquid-Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1991-01-01

    Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.

  13. Epitaxy of semiconductor-superconductor nanowires.

    PubMed

    Krogstrup, P; Ziino, N L B; Chang, W; Albrecht, S M; Madsen, M H; Johnson, E; Nygård, J; Marcus, C M; Jespersen, T S

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures. PMID:25581626

  14. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  15. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    NASA Astrophysics Data System (ADS)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  16. Growth and characterization of epitaxial silver indium diselenide

    NASA Astrophysics Data System (ADS)

    Pena Martin, Pamela

    Photovoltaics (solar cells) are a key player in the renewable energy frontier, and will become increasingly important as their cost per watt continues to drop, especially if fossil fuel costs increase. One particularly promising photovoltaic technology is based on chalcopyrite-structure semiconductors. Within the chalcopyrite compounds the highest efficiency thin film solar cell absorber material to date is Cu(In,Ga)Se2 (CIGS). While current efficiency records are over 21% for single-junction cells, there is still room for improvement. Replacing some of the Cu with Ag has been shown to be beneficial in CIGS devices. However, the Ag- containing chalcopyrites are still relatively unknown in terms of their growth mechanism, energetics, and surface atomic and electronic properties. These are best inferred through study of epitaxial films, yet they have little mention in literature and have not been the subject of a detailed study. This work describes the growth of epitaxial AgInSe2 (AIS) on GaAs substrates, studying the morphology, structure, and surface properties to understand how growth takes place. It also seeks to experimentally determine the surface electronic and atomic structure at the atomic scale to gain insight into the part of the material that forms the heterojunction that collects photon energy in the device. Finally, this work seeks to compare and contrast these findings with what is known about CIGS to determine where similarities and, more importantly, the differences may lie. This study has found that single phase tetragonal AIS can be epitaxially grown on GaAs, as illustrated by x-ray diffraction (XRD), transmission electron microscope (TEM), and surface morphology data. Like CIGS, the close packed polar (112) planes have the lowest energy. The morphology points to a difference in step dynamics, leading to less faceted, straight edged island shapes compared to CIGS. Epitaxial temperature as a function of growth direction shows a different trend in

  17. Argon-assisted growth of epitaxial graphene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Tyagi, Parul; Mowll, Tyler R.; Ventrice, Carl A., Jr.; Hannon, James B.

    2012-12-01

    The growth of graphene by catalytic decomposition of ethylene on Cu(111) in an ultrahigh vacuum system was investigated with low-energy electron diffraction, low-energy electron microscopy, and atomic force microscopy. Attempts to form a graphene overlayer using ethylene at pressures as high as 10 mTorr and substrate temperatures as high as 900 ∘C resulted in almost no graphene growth. By using an argon overpressure, the growth of epitaxial graphene on Cu(111) was achieved. The suppression of graphene growth without the use of an argon overpressure is attributed to Cu sublimation at elevated temperatures. During the initial stages of growth, a random distribution of rounded graphene islands is observed. The predominant rotational orientation of the islands is within ±1∘ of the Cu(111) substrate lattice.

  18. Structure and transport of topological insulators on epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Kally, James; Reifsnyder Hickey, Danielle; Lin, Yu-Chuan; Richardella, Anthony; Lee, Joon Sue; Robinson, Joshua; Mkhoyan, K. Andre; Samarth, Nitin

    Recent advancements in spintronics have shown that a class of materials, topological insulators (TI), can be used as a spin-current generator or detector. Topological insulators have protected surface states with the electron's spin locked to its momentum. To access these surface states, (Bi, Sb)2Te3 can be grown by molecular beam epitaxy to have the Fermi energy near the Dirac point so that transport occurs only through the spin-dependent surface states. Graphene is another 2D material of great interest for spintronics because of its very long spin diffusion length. This is an ideal material to act as a spin channel in devices. The van der Waals nature of the growth exhibited by 2D materials such as (Bi, Sb)2Te3 and graphene allows heterostructures to be formed despite the large lattice mismatch. We explore the structure and transport of (Bi, Sb)2Te3 grown on epitaxial graphene on 6H-SiC substrates for spintronic applications. This work was supported in part by C-SPIN and LEAST, two of the six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  19. Imaging of Electron Beam Induced Current in Epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Mou, Shin; Boeckl, John; Lu, Weijie; Park, J. H.; Mitchel, W. C.; Tetlak, Stephen

    2012-02-01

    It has been observed that there forms a Schottky junction between graphene and SiC in epitaxial graphene due to the work function difference. As a result, it is viable to apply the electron beam induced current (EBIC) technique on epitaxial graphene due to the fact that it needs a built-in field and ample electron generation volume to generate EBIC. EBIC is an important characterization technique, which identifies electrically active impurities/defects, detects local built-in field, and measures minority carrier diffusion length. In this paper, we use a FEI SEM equipped with a current amplifier to investigate the spatial mapping of EBIC. The incident electron beam generates excited electron-hole pairs in SiC and the minority carriers are collected through the Schottky junction before flowing into graphene. EBIC imaging reveals mesoscopic domains of bright and dark contrast areas due to local EBIC polarity and magnitude, which is believed to be the result of spatial fluctuation in the carrier density in graphene. We also investigate the electron energy dependence, which modulates the EBIC magnitude. With an analytical drift-diffusion current model, we are able to extract the minority carrier diffusion length in the SiC, which is on the order of micro meter.

  20. Extraordinary epitaxial alignment of graphene islands on Au(111)

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Starodub, Elena; Walter, Andrew L.; Nie, Shu; Bostwick, Aaron; Bartelt, Norman C.; Thürmer, Konrad; Rotenberg, Eli; McCarty, Kevin F.; Dubon, Oscar D.

    2012-05-01

    Pristine, single-crystalline graphene displays a unique collection of remarkable electronic properties that arise from its two-dimensional, honeycomb structure. Using in situ low-energy electron microscopy, we show that when deposited on the (111) surface of Au carbon forms such a structure. The resulting monolayer, epitaxial film is formed by the coalescence of dendritic graphene islands that nucleate at a high density. Over 95% of these islands can be identically aligned with respect to each other and to the Au substrate. Remarkably, the dominant island orientation is not the better lattice-matched 30° rotated orientation but instead one in which the graphene [01] and Au [011] in-plane directions are parallel. The epitaxial graphene film is only weakly coupled to the Au surface, which maintains its reconstruction under the slightly p-type doped graphene. The linear electronic dispersion characteristic of free-standing graphene is retained regardless of orientation. That a weakly interacting, non-lattice matched substrate is able to lock graphene into a particular orientation is surprising. This ability, however, makes Au(111) a promising substrate for the growth of single crystalline graphene films.

  1. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  2. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  3. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    NASA Astrophysics Data System (ADS)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  4. Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers.

    PubMed

    Krummrich, Peter M; Akhtari, Simon

    2014-12-01

    The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components.

  5. Selective in-plane nitrogen doping of graphene by an energy-controlled neutral beam

    NASA Astrophysics Data System (ADS)

    Okada, Takeru; Samukawa, Seiji

    2015-12-01

    Nitrogen-doped graphene promises to improve current electronic devices, sensors, and energy-based devices. To this end, the bonding states between carbon and nitrogen atoms can be manipulated to tailor the properties of the doped graphene. For example, graphitic nitrogen is known to promote desired catalytic activities in graphene fuel-cell systems, resulting from a four-electron reaction. However, established nitrogen-doping methods lack selectivity in dopant chemical identity and in dopant location; both are key factors in graphene property design because the properties depend on the chemical identity and location of the dopant. Here, we utilize a nitrogen neutral beam (NB) technique—with exquisite beam energy control—to dope graphene with nitrogen. Using x-ray photoelectron and Raman spectroscopy, we show that the energy of the nitrogen NB not only determines the chemistry of the nitrogen dopant introduced to graphene, but it also dictates the doping locations within graphene layers.

  6. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows

    NASA Astrophysics Data System (ADS)

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m2 mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  7. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-10-16

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems.

  8. Development of CdZnTe energy selective arrays for industrial and medical radiation imaging

    NASA Astrophysics Data System (ADS)

    Polichar, Raulf; Schirato, Richard; Reed, John

    1994-12-01

    Recent advances in the production of CdZnTe using the high pressure Bridgman growth process now make it possible to design and fabricate complex X-ray sensor arrays on large monolithic substrates. These solid state ionization devices have the advantages of improved spatial and energy resolution, and produce significantly higher signals than competitive scintillator-photodiode systems. We have fabricated a number of linear and areal monolithic arrays in our laboratory using vacuum deposited contacts on such material with good success. These arrays operate in a pulse counting mode using hybrid and surface mount circuitry mounted in close proximity to the arrays. Linear devices with pitches of less than 0.8 mm and with 32 elements per substrate have been used for very wide dynamic range radioscopy with excellent results. Images are presented which demonstrate dynamic range in excess of 500:1 and Nyquist limited resolution at diagnostic X-ray energies for a wide variety of samples. Preliminary results demonstrate that the arrays can be used for energy selective radioscopy permitting the identification of differing materials within the image by approximate atomic number. Systems using areal arrays also have been evaluated as radiation cameras and demonstrate good spatial and energy resolution. Examples of data taken with a pin-hole collimator show the ability to distinguish source distributions by energy as well as location and intensity. Ongoing work in the improvement of spatial and energy resolution and the fabrication of larger arrays is discussed.

  9. Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows.

    PubMed

    Alghamedi, Ramzy; Vasiliev, Mikhail; Nur-E-Alam, Mohammad; Alameh, Kamal

    2014-01-01

    All-inorganic visibly-transparent energy-harvesting clear laminated glass windows are the most practical solution to boosting building-integrated photovoltaics (BIPV) energy outputs significantly while reducing cooling- and heating-related energy consumption in buildings. By incorporating luminophore materials into lamination interlayers and using spectrally-selective thin-film coatings in conjunction with CuInSe2 solar cells, most of the visible solar radiation can be transmitted through the glass window with minimum attenuation while ultraviolet (UV) radiation is down-converted and routed together with a significant part of infrared radiation to the edges for collection by solar cells. Experimental results demonstrate a 10 cm × 10 cm vertically-placed energy-harvesting clear glass panel of transparency exceeding 60%, invisible solar energy attenuation greater than 90% and electrical power output near 30 Wp/m(2) mainly generated by infrared (IR) and UV radiations. These results open the way for the realization of large-area visibly-transparent energy-harvesting clear glass windows for BIPV systems. PMID:25321890

  10. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  11. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the

  12. GaAs surface cleaning by thermal oxidation and sublimation in molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Saito, Junji; Nanbu, Kazuo; Ishikawa, Tomonori; Kondo, Kazuo

    1988-01-01

    GaAs surface cleaning by thermal oxidation and sublimation prior to molecular-beam-epitaxial growth has been investigated as a means of reducing the carrier depletion at the substrate and epitaxial layer interface. The carrier depletion between the substrate and epitaxial films, measured by a C-V carrier profiling technique, was shown to decrease significantly with an increase in the thickness of the thermal oxidation. The concentration of carbon contamination near the substrate-epitaxial interface was measured using secondary ion mass spectroscopy. The carbon concentration correlated very well with the carrier depletion. Therefore, the main origin of the carrier depletion is believed to be the carbon concentration of the initial growth surface. Based on these results, the thermal oxidation and sublimation of a semi-insulating GaAs substrate was successfully applied to improve the mobility and sheet concentration of the two-dimensional electron gas in selectively doped GaAs/N-Al0.3Ga0.7As heterostructures with very thin GaAs buffer layers.

  13. Characteristics of the Telescope for High Energy Gamma-ray Astronomy Selected for Definition Studies on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Hofstadter, R.; Johansson, A.; Rolfe, J.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1979-01-01

    The high energy gamma-ray selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  14. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Hofstadter, R.; Rolfe, J.; Johansson, A.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1980-01-01

    The high energy gamma-ray telescope selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  15. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  16. Energy expenditure of trans-tibial amputees during ambulation at self-selected pace.

    PubMed

    Gailey, R S; Wenger, M A; Raya, M; Kirk, N; Erbs, K; Spyropoulos, P; Nash, M S

    1994-08-01

    The purpose of this investigation was two-fold: 1) to compare the metabolic cost (VO2), heart rate (HR), and self-selected speed of ambulation of trans-tibial amputees (TTAs) with those of non-amputee subjects; and 2) to determine whether a correlation exists between either stump length or prosthesis mass and the energy cost of ambulation at the self-selected ambulation pace of TTAs. Subjects were thirty-nine healthy male non-vascular TTAs between the ages of 22 and 75 years (mean +/- sd = 47 +/- 16). All had regularly used their prosthesis for longer than six months and were independent of assistive ambulation devices. Twenty-one healthy non-amputee males aged 27-47 years (31 +/- 6) served as controls. Subjects ambulated at a self-selected pace over an indoor course, with steady-state VO2, HR, and ambulation speed averaged across minutes seven, eight and nine of walking. Results showed that HR and VO2 for TTAs were 16% greater, and the ambulation pace 11% slower than the non-amputee controls. Significant correlations were not observed between stump length or prosthesis mass, and the energy cost of ambulation. However, when the TTA subject pool was stratified on the basis of long and short stump length, the former sustained significantly lower steady-state VO2 and HR than the latter while walking at comparable pace. These data indicate that stump length may influence the metabolic cost of ambulation in TTAs. PMID:7991365

  17. Selective Determination of Trinitrotoluene Based on Energy Transfer between Carbon Dots and Gold Nanoparticles.

    PubMed

    Oskoei, Yones Mosaei; Fattahi, Hassan; Hassanzadeh, Javad; Azar, Ali Mousavi

    2016-01-01

    A fluorescence resonance energy transfer (FRET) system between carbon dots (C-dots) and amine-capped gold nanoparticles (AuNPs) was developed for the selective determination of 2,4,6-trinitrotoluene (TNT). C-dots have an intrinsic florescence emission depending on their exciting wavelength. In the presence of AuNPs, C-dots adsorb on the Au surfaces, and NPs treat as energy acceptor, which can receive light emitted by C-dots, leading to decrease the fluorescence intensity of C-dots. Furthermore, it is observed that nitroaromatic compounds, especially TNT, could restore this fluorescence due to selective interaction with AuNPs via amine groups, and so releasing the C-dots. Based on this effect, a sensitive and selective fluorescence turn-on probe was designed for the determination of TNT. Some important factors including AuNPs and C-dot concentrations and media pH, which would affect the efficiency of the probe, were optimized. Under the optimum experimental conditions, good linear relationships in the range of 7 - 250 nmol L(-1) TNT with the detection limit of 2.2 nmol L(-1) were obtained. The proposed method was satisfactorily applied to the determination of TNT in the environmental water samples. Compared with previous reports, the developed method has relatively high sensitivity, short analysis time, low cost and ease of operation.

  18. Energy limitation as a selective pressure on the evolution of sensory systems.

    PubMed

    Niven, Jeremy E; Laughlin, Simon B

    2008-06-01

    Evolution of animal morphology, physiology and behaviour is shaped by the selective pressures to which they are subject. Some selective pressures act to increase the benefits accrued whilst others act to reduce the costs incurred, affecting the cost/benefit ratio. Selective pressures therefore produce a trade-off between costs and benefits that ultimately influences the fitness of the whole organism. The nervous system has a unique position as the interface between morphology, physiology and behaviour; the final output of the nervous system is the behaviour of the animal, which is a product of both its morphology and physiology. The nervous system is under selective pressure to generate adaptive behaviour, but at the same time is subject to costs related to the amount of energy that it consumes. Characterising this trade-off between costs and benefits is essential to understanding the evolution of nervous systems, including our own. Within the nervous system, sensory systems are the most amenable to analysing costs and benefits, not only because their function can be more readily defined than that of many central brain regions and their benefits quantified in terms of their performance, but also because recent studies of sensory systems have begun to directly assess their energetic costs. Our review focuses on the visual system in particular, although the principles we discuss are equally applicable throughout the nervous system. Examples are taken from a wide range of sensory modalities in both vertebrates and invertebrates. We aim to place the studies we review into an evolutionary framework. We combine experimentally determined measures of energy consumption from whole retinas of rabbits and flies with intracellular measurements of energy consumption from single fly photoreceptors and recently constructed energy budgets for neural processing in rats to assess the contributions of various components to neuronal energy consumption. Taken together, these studies

  19. Free-standing electronic character of monolayer MoS2 in van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, HoKwon; Dumcenco, Dumitru; Frégnaux, Mathieu; Benayad, Anass; Chen, Ming-Wei; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier

    2016-08-01

    We have evaluated as-grown Mo S2 crystals, epitaxially grown on a monocrystalline sapphire by chemical vapor deposition (CVD), with direct electronic band-structure measurements by energy-filtered k -space photoelectron emission microscopy performed with a conventional laboratory vacuum ultraviolet He I light source under off-normal illumination. The valence states of the epitaxial Mo S2 were mapped in momentum space down to 7 eV below the Fermi level. Despite the high nucleation density within the imaged area, the CVD Mo S2 possesses an electronic structure similar to the free-standing monolayer Mo S2 single crystal, and it exhibits hole effective masses of 2.41 ±0.05 m0 , and 0.81 ±0.05 m0 , respectively, at Γ and K high-symmetry points that are consistent with the van der Waals epitaxial growth mechanism. This demonstrates the excellent ability of the Mo S2 CVD on sapphire to yield a highly aligned growth of well-stitched grains through epitaxial registry with a strongly preferred crystallographic orientation.

  20. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.; CERN RD-48 ROSE Collaboration

    1997-12-01

    Epitaxial grown thick layers ({ge} 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 {times} 10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5 {times} 10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ``sinking`` process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 {times} 10{sup 14} cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 {times} 10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  1. Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo

    2013-04-01

    Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].

  2. Energetics of dislocation dipoles in capped epitaxially strained layers

    NASA Astrophysics Data System (ADS)

    Atkinson, A.; Jain, S. C.

    1994-08-01

    Most device structures based on strained epitaxial layers are capped by a second, unstrained layer to increase the mechanical stability of the structure. In order to calculate the energies of these structures it is necessary to synthesize the total energy from the energies of the line defects they contain (interfacial dislocations and dislocation dipoles). The self energies and interaction energies of dislocations and dipoles are calculated and their behavoir examined as a function of their spacing and the thicknesses of the strained and capping layers. The results confirm the observations that capped strained layers are more stable than uncapped ones (of the same strained layer thickness) and that capping layers do not need to be thicker than approximately three times the strained layer thickness. An expression is deduced for the total energy of finite, nonuniform arrays of dipoles in capped layers and, by analogy with a similar earlier expression for dislocation in uncapped layers, it is concluded that the effect of a nonuniformity in the dipole spacing will be to increase the energy of the system compared with that of a uniform array having the same average spacing. The results in this paper can be used to assess the stability of devices and their rate of degradation by strain relaxation.

  3. Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces

    DOEpatents

    Li, Qiming; Wang, George T

    2015-01-13

    A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.

  4. Epitaxial Ba-Y-Cu-O ceramic superconducting film on perovskite structure substrate

    SciTech Connect

    Chai, B.H.

    1991-07-09

    This patent describes a superconducting structure. It comprises a crystal substrate having a superconducting film epitaxially deposited thereon, wherein the substrate is a crystal selected from the group consisting of LaAlO{sub 3}, LaGaO{sub 3}, PrGaO{sub 3} and NdGaO{sub 3}, and wherein the superconducting film is a Ba- Y- Cu- O superconductor.

  5. Bayesian model selection without evidences: application to the dark energy equation-of-state

    NASA Astrophysics Data System (ADS)

    Hee, S.; Handley, W. J.; Hobson, M. P.; Lasenby, A. N.

    2016-01-01

    A method is presented for Bayesian model selection without explicitly computing evidences, by using a combined likelihood and introducing an integer model selection parameter n so that Bayes factors, or more generally posterior odds ratios, may be read off directly from the posterior of n. If the total number of models under consideration is specified a priori, the full joint parameter space (θ, n) of the models is of fixed dimensionality and can be explored using standard Markov chain Monte Carlo (MCMC) or nested sampling methods, without the need for reversible jump MCMC techniques. The posterior on n is then obtained by straightforward marginalization. We demonstrate the efficacy of our approach by application to several toy models. We then apply it to constraining the dark energy equation of state using a free-form reconstruction technique. We show that Λ cold dark matter is significantly favoured over all extensions, including the simple w(z) = constant model.

  6. Energy and Raw Materials in the Selection of Technologies for Iron and Steel

    NASA Astrophysics Data System (ADS)

    Fortini, Otavio Macedo

    2016-09-01

    This paper discusses the selection of metal extraction technologies according to the regional availability of energy resources. The most important energy sources in iron and steel production are determined from a review of current technologies to inform possible future scenarios of capacity replacement or expansion according to geography. Alternative technologies are not discussed, considering that actual investment in capacity is most often dominated by high degrees of risk aversion. As such, only technologies proven at a reasonable scale are included in the selection matrix. Scenarios of capacity choice are defined in terms of actions from external agents, those which are not directly involved in the industry but have the capacity to regulate actions by metal producing players. Two extreme scenarios corresponding to closed and open economies are used to set bounds for future expectations. Among steelmaking processes under fully open trade conditions, it is found that EAF steelmaking with charge pre-heat should be the technology of choice in all regions of the world except for South America and Europe, where Integrated Steel Mills have a cost advantage. In fully closed exchange scenarios, Integrated Steel Mills would be the prevalent technology in South America, Sub-Saharan Africa, India, and the former USSR, EAF with scrap pre-heating prevailing in all other regions. On the other hand, HYL-ZR would be the iron making technology of choice in all regions under full exchange scenarios. Under fully closed exchange conditions, Mini-Blast Furnaces, COREX, and HYL-ZR would find regional applications. Increases in raw materials and energy costs of 38 pct in steelmaking and 63 pct in ironmaking are found in going from fully open to fully closed exchange regimes. It is also found that Southeast Asia is the most suitable region for deploying new steelmaking capacity, while Australia and Russia are the best selection for new iron making capacity.

  7. Characterization of magnetic nanoparticles using energy-selected transmission electron microscopy.

    PubMed

    Sayagués, María J; Rojas, Teresa C; Fernández, Asunción; Dunin-Borkowski, Rafal E; Doole, Ron C; Hutchison, John L

    2002-10-01

    Fe, Co, and Ni magnetic nanoparticles have been characterized using energy-selected imaging in a high-resolution transmission electron microscope. The samples comprised Fe/FeO x and Co/CoO x nanoparticles synthesized by inert gas evaporation and a Ni/C nano-composite prepared by a sonochemical method. All of the particles examined were found to be between 5 and 30 nm in size, with the Fe and Co crystals coated in 5-10 nm of metal oxide layer and the Ni metallic crystallites embedded in an amorphous carbon spherical matrix.

  8. The Influence of Mitigation on Sage-Grouse Habitat Selection within an Energy Development Field

    PubMed Central

    Fedy, Bradley C.; Kirol, Christopher P.; Sutphin, Andrew L.; Maechtle, Thomas L.

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  9. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  10. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    PubMed

    Fedy, Bradley C; Kirol, Christopher P; Sutphin, Andrew L; Maechtle, Thomas L

    2015-01-01

    Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus) are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488) within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines). The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08) than the pre-mitigation models (well density β = -0.09 ± 0.11). However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63%) were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08) and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09). Mitigation efforts implemented may

  11. SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF4)

    NASA Astrophysics Data System (ADS)

    Rana, Tawhid; Chandrashekhar, M. V. S.; Daniels, Kevin; Sudarshan, Tangali

    2016-04-01

    Tetrafluorosilane (SiF4 or TFS), a novel precursor gas, has been demonstrated to perform three primary operations of silicon carbide-related processing: SiC etching, SiC epitaxial growth and graphene epitaxial growth. TFS etches SiC substrate vigorously in a H2 ambient by efficient Si removal from the surface, where SiC etch rate is a function of TFS gas concentration. In this SiC etching process, Si is removed by TFS and C is removed by H2. When propane is added to a H2 and TFS gas mixture, etching is halted and high-quality SiC epitaxy takes place in a Si droplet-free condition. TFS's ability to remove Si can also be exploited to grow epitaxial graphene in a controllable manner in an inert (Ar) ambient. Here, TFS enhances graphene growth by selective etching of Si from the SiC surface.

  12. Crossing statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem

    SciTech Connect

    Shafieloo, Arman

    2012-05-01

    By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties.

  13. The comparison and selection of programming languages for high energy physics applications

    SciTech Connect

    White, B.

    1991-06-01

    This paper discusses the issues surrounding the comparison and selection of a programming language to be used in high energy physics software applications. The evaluation method used was specifically devised to address the issues of particular importance to high energy physics (HEP) applications, not just the technical features of the languages considered. The method assumes a knowledge of the requirements of current HEP applications, the data-processing environments expected to support these applications and relevant non-technical issues. The languages evaluated were Ada, C, FORTRAN 77, FORTRAN 99 (formerly 8X), Pascal and PL/1. Particular emphasis is placed upon the past, present and anticipated future role of FORTRAN in HEP software applications. Upon examination of the technical and practical issues, conclusions are reached and some recommendations are made regarding the role of FORTRAN and other programming languages in the current and future development of HEP software. 54 refs.

  14. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were

  15. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  16. Domain epitaxy for thin film growth

    DOEpatents

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  17. Wafer bonded epitaxial templates for silicon heterostructures

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.; Morral, Anna Fontcubera I

    2008-03-11

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  18. Resonant orbitals in fluorinated epitaxial graphene.

    PubMed

    Gunasinghe, R N; Samarakoon, D K; Arampath, A B; Shashikala, H B M; Vilus, J; Hall, J H; Wang, X-Q

    2014-09-21

    Fluorinated epitaxial graphene has potential applications in organic electronics. We present the calculation results by means of first-principles density-functional-theory for various fluorination patterns. Our results indicate that semi-fluorinated graphene conformations follow the same energetic order as the corresponding hydrogenated graphene counterparts. The distinctive electronic properties between semi-hydrogenated graphene and semi-fluorinated graphene are attributed to the polar covalent C-F bond in contrast to the covalent C-H bond. The partial ionic character of the C-F bond results in the hyperconjugation of C-F σ-bonds with an sp(2) network of graphene. Resonant orbitals stabilize the stirrup conformation via the gauche effect. Resonant orbitals also lead to electron doping of the sp(2) network and enhanced excitonic effect. The implications of resonant-orbital-induced doping for the electronic and magnetic properties of fluorinated epitaxial graphene are discussed.

  19. Photoluminescence studies in epitaxial CZTSe thin films

    NASA Astrophysics Data System (ADS)

    Sendler, Jan; Thevenin, Maxime; Werner, Florian; Redinger, Alex; Li, Shuyi; Hägglund, Carl; Platzer-Björkman, Charlotte; Siebentritt, Susanne

    2016-09-01

    Epitaxial Cu 2 ZnSnSe 4 (CZTSe) thin films were grown by molecular beam epitaxy on GaAs(001) using two different growth processes, one containing an in-situ annealing stage as used for solar cell absorbers and one for which this step was omitted. Photoluminescences (PL) measurements carried out on these samples show no dependence of the emission shape on the excitation intensity at different temperatures ranging from 4 K to 300 K . To describe the PL measurements, we employ a model with fluctuating band edges in which the density of states of the resulting tail states does not seem to depend on the excited charge carrier density. In this interpretation, the PL measurements show that the annealing stage removes a defect level, which is present in the samples without this annealing.

  20. Epitaxial Cu{sub 2}ZnSnS{sub 4} thin film on Si (111) 4° substrate

    SciTech Connect

    Song, Ning; Liu, Fangyang; Huang, Yidan; Hao, Xiaojing E-mail: xj.hao@unsw.edu.au; Green, Martin A.; Young, Matthew; Erslev, Pete; Harvey, Steven P.; Teeter, Glenn E-mail: xj.hao@unsw.edu.au; Wilson, Samual

    2015-06-22

    To explore the possibility of Cu{sub 2}ZnSnS{sub 4} (CZTS)/Si based tandem solar cells, the heteroepitaxy of tetragonal Cu{sub 2}ZnSnS{sub 4} thin films on single crystalline cubic Si (111) wafers with 4° miscut is obtained by molecular beam epitaxy. The X-ray θ-2θ scan and selected area diffraction patterns of the CZTS thin films and Si substrates, and the high resolution transmission electron microscopy image of the CZTS/Si interface region demonstrate that the CZTS thin films are epitaxially grown on the Si substrates. A CZTS/Si P-N junction is formed and shows photovoltaic responses, indicating the promising application of epitaxial CZTS thin films on Si.

  1. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling

    NASA Astrophysics Data System (ADS)

    Koukou, V.; Martini, N.; Michail, C.; Sotiropoulou, P.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-09-01

    In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNRtc) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNRtc/MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection.

  2. Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity

    NASA Astrophysics Data System (ADS)

    Sohn, Jung Inn; Hong, Woong-Ki; Lee, Sunghoon; Lee, Sanghyo; Ku, Jiyeon; Park, Young Jun; Hong, Jinpyo; Hwang, Sungwoo; Park, Kyung Ho; Warner, Jamie H.; Cha, Seungnam; Kim, Jong Min

    2014-07-01

    ZnO is a wide band-gap semiconductor with piezoelectric properties suitable for opto-electronics, sensors, and as an electrode material. Controlling the shape and crystallography of any semiconducting nanomaterial is a key step towards extending their use in applications. Whilst anisotropic ZnO wires have been routinely fabricated, precise control over the specific surface facets and tailoring of polar and non-polar growth directions still requires significant refinement. Manipulating the surface energy of crystal facets is a generic approach for the rational design and growth of one-dimensional (1D) building blocks. Although the surface energy is one basic factor for governing crystal nucleation and growth of anisotropic 1D structures, structural control based on surface energy minimization has not been yet demonstrated. Here, we report an electronic configuration scheme to rationally modulate surface electrostatic energies for crystallographic-selective growth of ZnO wires. The facets and orientations of ZnO wires are transformed between hexagonal and rectangular/diamond cross-sections with polar and non-polar growth directions, exhibiting different optical and piezoelectrical properties. Our novel synthetic route for ZnO wire fabrication provides new opportunities for future opto-electronics, piezoelectronics, and electronics, with new topological properties.

  3. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    NASA Astrophysics Data System (ADS)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  4. Mechanism of the swift heavy ion induced epitaxial recrystallization in predamaged silicon carbide

    SciTech Connect

    Benyagoub, A.; Audren, A.

    2009-10-15

    Although silicon carbide has attracted extensive investigations of ion irradiation effects at low energy owing to its potential use in harsh environments, very few works were carried out in the field of ion irradiation at high energy. A recent preliminary study exploring the combination of low and high energy ion irradiation effects in silicon carbide revealed that the damaged layer formed by low energy ion irradiation can undergo an epitaxial recrystallization under subsequent swift heavy ion irradiation. The present paper is devoted to the investigation of the mechanisms at the origin of this phenomenon by performing additional experiments. A detailed analysis of the kinetics of this recrystallization effect demonstrates that the latter cannot be explained by the models proposed for the well-known ion-beam-induced epitaxial crystallization process. Furthermore, it is found that this effect can be accounted for by a mechanism combining the melting within the ion tracks of the amorphous zones through a thermal spike process and their subsequent epitaxial recrystallization initiated from the neighboring crystalline regions wherever the size of the latter surpasses a certain critical value.

  5. Urbach absorption edge in epitaxial erbium-doped silicon

    SciTech Connect

    Shmagin, V. B. Kudryavtsev, K. E.; Shengurov, D. V.; Krasilnik, Z. F.

    2015-02-07

    We investigate the dependencies of the photocurrent in Si:Er p-n junctions on the energy of the incident photons. The exponential absorption edge (Urbach edge) just below fundamental edge of silicon was observed in the absorption spectra of epitaxial Si:Er layers grown at 400–600 C. It is shown that the introduction of erbium significantly enhances the structural disorder in the silicon crystal which was estimated from the slope of the Urbach edge. We discuss the possible nature of the structural disorder in Si:Er and a new mechanism of erbium excitation, which does not require the presence of deep levels in the band gap of silicon.

  6. Thermoelectric imaging of structural disorder in epitaxial graphene.

    PubMed

    Cho, Sanghee; Kang, Stephen Dongmin; Kim, Wondong; Lee, Eui-Sup; Woo, Sung-Jae; Kong, Ki-Jeong; Kim, Ilyou; Kim, Hyeong-Do; Zhang, Tong; Stroscio, Joseph A; Kim, Yong-Hyun; Lyeo, Ho-Ki

    2013-10-01

    Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high-sensitivity imaging of structural disorder on the atomic and nanometre scales. The thermopower measurement acts to amplify the variations in the local density of states at the Fermi level, giving high differential contrast in thermoelectric signals. Using this imaging technique, we uncovered point defects in the first layer of epitaxial graphene, which generate soliton-like domain-wall line patterns separating regions of the different interlayer stacking of the second graphene layer.

  7. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  8. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  9. Superconductivity in Ca-intercalated epitaxial graphene on silicon carbide

    NASA Astrophysics Data System (ADS)

    Li, Kang; Feng, Xiao; Zhang, Wenhao; Ou, Yunbo; Chen, Lianlian; He, Ke; Wang, Li-Li; Guo, Liwei; Liu, Guodong; Xue, Qi-Kun; Ma, Xucun

    2013-08-01

    We have prepared Ca-intercalated multilayer epitaxial graphene films on silicon carbide and observed superconductivity in them with both magnetic and transport measurements. Superconducting transition has been detected at temperature up to 7 K in Ca-intercalated epitaxial graphene with the thickness down to 10 layers grown on both Si-face and C-face of silicon carbide. The result demonstrates intercalated epitaxial graphene as a good platform to study graphene-based superconductivity.

  10. Electron holography of devices with epitaxial layers

    SciTech Connect

    Gribelyuk, M. A. Ontalus, V.; Baumann, F. H.; Zhu, Z.; Holt, J. R.

    2014-11-07

    Applicability of electron holography to deep submicron Si devices with epitaxial layers is limited due to lack of the mean inner potential data and effects of the sample tilt. The mean inner potential V{sub 0} = 12.75 V of the intrinsic epitaxial SiGe was measured by electron holography in devices with Ge content C{sub Ge} = 18%. Nanobeam electron diffraction analysis performed on the same device structure showed that SiGe is strain-free in [220] direction. Our results showed good correlation with simulations of the mean inner potential of the strain-free SiGe using density function theory. A new method is proposed in this paper to correct electron holography data for the overlap of potentials of Si and the epitaxial layer, which is caused by the sample tilt. The method was applied to the analysis of the dopant diffusion in p-Field-effect Transistor devices with the identical gate length L = 30 nm, which had alternative SiGe geometry in the source and drain regions and was subjected to different thermal processing. Results have helped to understand electrical data acquired from the same devices in terms of dopant diffusion.

  11. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    SciTech Connect

    Takeda, Yasuhiko Sugimoto, Noriaki; Ichiki, Akihisa; Kusano, Yuya; Motohiro, Tomoyoshi

    2015-09-28

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  12. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuhiko; Ichiki, Akihisa; Kusano, Yuya; Sugimoto, Noriaki; Motohiro, Tomoyoshi

    2015-09-01

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  13. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  14. Assessing risk to birds from industrial wind energy development via paired resource selection models.

    PubMed

    Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd

    2014-06-01

    When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. PMID:24405249

  15. Assessing risk to birds from industrial wind energy development via paired resource selection models.

    PubMed

    Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd

    2014-06-01

    When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development.

  16. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  17. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  18. Growth and micromagnetism of self-assembled epitaxial fcc(111) cobalt dots.

    PubMed

    Fruchart, O; Masseboeuf, A; Toussaint, J C; Bayle-Guillemaud, P

    2013-12-11

    We develop the self-assembly of epitaxial submicrometer-sized face-centered-cubic (fcc) Co(111) dots using pulsed laser deposition. The dots display atomically flat facets, from which the ratios of surface and interface energies for fcc Co are deduced. Zero-field magnetic structures are investigated with magnetic force and Lorentz microscopies, revealing vortex-based flux-closure patterns. A good agreement is found with micromagnetic simulations.

  19. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  20. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    SciTech Connect

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-05-15

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  1. Effect of a boron implantation on the electrical properties of epitaxial HgCdTe with different material composition

    NASA Astrophysics Data System (ADS)

    Lyapunov, D. V.; Pishchagin, A. A.; Grigoryev, D. V.; Korotaev, A. G.; Voitsekhovskii, A. V.; Kokhanenko, A. P.; Iznin, I. I.; Savytskyy, H. V.; Bonchik, A. U.; Dvoretskii, S. A.; Mikhailov, N. N.

    2016-08-01

    In this work the experimental results of investigations of the dynamics of accumulation and spatial distribution of electrically active radiation defects when irradiating epitaxial films of Hg1-xCdxTe (MCT) with different material composition (x). The films, grown by molecular beam epitaxy (MBE) were irradiated by B ions at room temperature in the radiation dose range 1012 -1015 ions/cm2 and with ion energy 100 keV. The results give the differences in implantation profiles, damage accumulation and electrical properties as a function of the material composition of the films.

  2. Strain effects in epitaxial Mn{sub 2}O{sub 3} thin film grown on MgO(100)

    SciTech Connect

    Dang Duc Dung; Duong Van Thiet; Duong Anh Tuan; Cho, Sunglae

    2013-05-07

    We report on the epitaxial growth and magnetic properties of Mn{sub 2}O{sub 3} thin films grown on MgO(001) substrate by molecular beam epitaxy. We observed the reduction in binding energy of Mn valence states, the increase in satellite separation up to 12.7 eV, and the smaller band gap of 3.32 eV. In addition, the antiferromagnetic ordering below 90 K in bulk changed to ferrimagnetic up to 175 K. The results were possibly to be explained by a lattice mismatch strain on Mn{sub 2}O{sub 3} film on MgO(001) substrate.

  3. Effects of ZD7114, a selective beta3-adrenoceptor agonist, on neuroendocrine mechanisms controlling energy balance.

    PubMed

    Savontaus, E; Pesonen, U; Rouru, J; Huupponen, R; Koulu, M

    1998-04-24

    Selective beta3-adrenoceptor agonists increase energy expenditure by increasing non-shivering thermogenesis in brown adipose tissue. The aim of this study was to investigate how changes in energy balance affect energy intake and interaction of peripheral metabolic feedback signals with central neuroendocrine mechanisms participating in the control of body energy balance. Expression of preproneuropeptide Y (preproNPY) mRNA in the arcuate nucleus and preprocorticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus were measured by in situ hybridisation technique after 1 day, 1 and 5 weeks of treatment with ZD7114 ((S)-4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]-N-(2-methoxyet hyl)phenoxyacetamide, 3 mg kg(-1) day(-1) in drinking water) in obese fa/fa Zucker rats. In addition, expression of leptin mRNA in epididymal fat and serum levels of leptin were analysed. Food intake, body weights, binding of GDP to brown adipose tissue mitochondria, plasma insulin and glucose were also measured. Treatment with ZD7114 significantly reduced weight gain and activated brown adipose tissue thermogenesis, but had no effect on food intake. Expressions of preproNPY or preproCRF mRNAs were similarly not changed by treatment with ZD7114. Furthermore, ZD7114 had no effect on plasma insulin or leptin and the expression of leptin mRNA in epididymal fat. However, statistically significant correlations were found between preproNPY and preproCRF mRNA expressions and brown fat thermogenic activity and plasma insulin levels in the ZD7114 treated rats, but not in the control rats. It is concluded that treatment with ZD7114 markedly activated brown fat thermogenesis, but did not affect neuropeptide Y (NPY) and CRF gene expression per se. However, the correlation analyses suggest that ZD7114 may modulate feedback connections of brown adipose tissue thermogenesis and plasma insulin with the hypothalamic neuroendocrine mechanisms integrating body energy balance. PMID:9653893

  4. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

    PubMed

    Oertell, Keriann; Harcourt, Emily M; Mohsen, Michael G; Petruska, John; Kool, Eric T; Goodman, Myron F

    2016-04-19

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.

  5. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity

    PubMed Central

    Oertell, Keriann; Harcourt, Emily M.; Mohsen, Michael G.; Petruska, John; Kool, Eric T.; Goodman, Myron F.

    2016-01-01

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 103- to 104-fold, corresponding to free energy differences of ΔΔGinc ∼ 5.5–7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013) J Am Chem Soc 135:1205–1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = −RT ln Keq, indicating ΔΔG° of 3.5–7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore, ΔΔGinc° values obtained from such steady-state evaluations of Keq are not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site. PMID:27044101

  6. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

    PubMed

    Oertell, Keriann; Harcourt, Emily M; Mohsen, Michael G; Petruska, John; Kool, Eric T; Goodman, Myron F

    2016-04-19

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site. PMID:27044101

  7. Probing cosmology with weak lensing selected clusters. II. Dark energy and f(R) gravity models

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Hamana, Takashi; Yoshida, Naoki

    2016-02-01

    Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard ΛCDM model. Weak lensing selection of clusters does not rely on conventional assumptions such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak lensing catalogs as well as analytic models to perform a Fisher analysis and make a forecast for constraining two competing cosmological models, the wCDM model and f(R) model proposed by Hu and Sawicki (2007, Phys. Rev. D, 76, 064004), with our lensing statistics. We show that weak lensing selected clusters are excellent probes of cosmology when combined with cosmic shear power spectrum even in the presence of galaxy shape noise and masked regions. With the information from weak lensing selected clusters, the precision of cosmological parameter estimates can be improved by a factor of ˜1.6 and ˜8 for the wCDM model and f(R) model, respectively. The Hyper Suprime-Cam survey with sky coverage of 1250 degrees squared can constrain the equation of state of dark energy w0 with a level of Δw0 ˜ 0.1. It can also constrain the additional scalar degree of freedom in the f(R) model with a level of |fR0| ˜ 5 × 10-6, when constraints from cosmic microwave background measurements are incorporated. Future weak lensing surveys with sky coverage of 20000 degrees squared will place tighter constraints on w0 and |fR0| even without cosmic microwave background measurements.

  8. Epitaxial growth and electrochemical transfer of graphene on Ir(111)/α-Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Koh, Shinji; Saito, Yuta; Kodama, Hideyuki; Sawabe, Atsuhito

    2016-07-01

    Low-pressure chemical vapor deposition growth of graphene on Iridium (Ir) layers epitaxially deposited on α-Al2O3 (0001) substrates was investigated. The X-ray diffraction, Raman and reflection high energy electron diffraction characterizations revealed that graphene films were epitaxially grown on Ir(111) layers, and the in-plane epitaxial relationship between graphene, Ir(111), and α-Al2O3(0001) was graphene ⟨ 1 1 ¯ 00 ⟩//Ir⟨ 11 2 ¯ ⟩//α-Al2O3⟨ 11 2 ¯ 0 ⟩. The graphene on Ir(111) was electrochemically transferred onto SiO2/Si substrates. We also demonstrated the reuse of the Ir(111)/α-Al2O3(0001) substrates in multiple growth and transfer cycles.

  9. Multiple Layer BeSeTe/Si Heteroepitaxial Growth on Vicinal Si (100) Surfaces by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Maldonado, Eduardo; Clark, Kevin; Basit, Nasir; Sandu, Titus; Bate, Robert; Kirk, Wiley

    2003-03-01

    The epitaxial growth of multiple layers of BeSeTe/Si films on arsenic passivated vicinal Si (100) substrates is reported. These are interesting wide bandgap heterostructures that are lattice matched to silicon. Reflection high-energy electron diffraction (RHEED) was used to investigate the entire growth regime and to optimize the initial growth conditions, which is important for reducing interface defects. Atomic layer epitaxy (ALE) was used as a growth method. Transmission electron microscopy (TEM) showed epitaxial growth with no crystal defects. Residual gas analyzer (RGA) was used for desorption studies and helped to determine that chemical interactions between VI-group and Si limit the interface quality. Rutherford backscattering spectroscopy (RBS) corroborate the lattice match between BeSe_0.41Te_0.59 and Si.

  10. Epitaxially grown layered MFI-bulk MFI hybrid zeolitic materials.

    PubMed

    Kim, Wun-gwi; Zhang, Xueyi; Lee, Jong Suk; Tsapatsis, Michael; Nair, Sankar

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N(2) physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO(2) and good CO(2)/CH(4) selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO(2) and CH(4) gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface.

  11. Epitaxial approaches to long-wavelength vertical-cavity lasers

    NASA Astrophysics Data System (ADS)

    Hall, Eric Michael

    The success of short-wavelength (850 nm) vertical-cavity surface-emitting lasers (VCSELs) as low-cost components in fiber optic networks has created a strong demand for similar low-cost devices at longer wavelengths (1.3--1.55mum), which are even more important in telecommunications systems. Extending the success of VCSELs to these longer wavelengths, however, has been slowed by the absence of a mature technology that incorporates all of the necessary components on one substrate without sacrificing the inexpensive and manufacturable nature of VCSELs. Although InAlGaAs active regions on InP substrates have been developed extensively, the other components of vertical-cavity lasers, especially epitaxially-grown distributed Bragg reflectors (DBRs), are less mature on these substrates. This thesis examines the materials and technologies that enable long-wavelength VCSELs to be grown in a single, epitaxial, lattice-matched step on InP substrates. The advantages and shortcomings of each material system are identified and the impact on devices examined. Additionally, processing technologies that rely on the properties of these materials are developed. From these studies, a InP-based, lattice-matched VCSEL design is presented that utilizes AlGaAsSb for high reflectivity DBRs, InAlGaAs for high quality active regions, InP for heat and current spreading, and a materials selective etch for electrical and optical confinement. In short, the design avoids the shortcomings of each material system while emphasizing the advantages. The resulting devices, showing low threshold currents, high efficiencies and powers, and high operating temperatures, not only validate this approach but demonstrate that such lattice-matched, InP-based devices may be a low-cost, manufacturable answer to this long-wavelength VCSEL demand.

  12. Energy-aware Gateway Selection for increasing the lifetime of Wireless Body Area Sensor Networks.

    PubMed

    Bayilmis, Cuneyt; Younis, Mohamed

    2012-06-01

    A Wireless Body Area Sensor Network (WBASN) is composed of a set of sensor nodes, placed on, near or within a human body. WBASNs opt to continuously monitor the health conditions of individuals under medical risk, e.g., elders and chronically ill people, without keeping them in a hospital or restraining their motion. A WBASN needs to stay connected to local or wide area networks using wireless technologies in order to send sensor readings to a medical center. The WBASN nodes are implanted within the human body and would thus have limited energy supply. Since the mission of the WBASN is very critical, increasing the lifetime of nodes is essential in order to maintain both practicality and effectiveness. This paper presents a new Gateway Selection Algorithm (GSA) that factors in the use of energy harvesting technologies and dynamically picks the most suitable WBASN node that serves as a gateway to other wireless networks. The goal of GSA is to balance the load among the nodes by adaptively changing the gateway node in WBASN depending on the energy reserve of nodes. Computer modeling and simulations of the proposed GSA are carried out using OPNET. The simulation results demonstrate the effectiveness of the proposed GSA approach. PMID:21057885

  13. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    NASA Astrophysics Data System (ADS)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  14. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions. PMID:24372936

  15. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.

    PubMed

    Belaire, J Amy; Kreakie, Betty J; Keitt, Timothy; Minor, Emily

    2014-04-01

    Migratory stopover habitats are often not part of planning for conservation or new development projects. We identified potential stopover habitats within an avian migratory flyway and demonstrated how this information can guide the site-selection process for new development. We used the random forests modeling approach to map the distribution of predicted stopover habitat for the Whooping Crane (Grus americana), an endangered species whose migratory flyway overlaps with an area where wind energy development is expected to become increasingly important. We then used this information to identify areas for potential wind power development in a U.S. state within the flyway (Nebraska) that minimize conflicts between Whooping Crane stopover habitat and the development of clean, renewable energy sources. Up to 54% of our study area was predicted to be unsuitable as Whooping Crane stopover habitat and could be considered relatively low risk for conflicts between Whooping Cranes and wind energy development. We suggest that this type of analysis be incorporated into the habitat conservation planning process in areas where incidental take permits are being considered for Whooping Cranes or other species of concern. Field surveys should always be conducted prior to construction to verify model predictions and understand baseline conditions.

  16. Electron charging in epitaxial germanium quantum dots on silicon (100)

    NASA Astrophysics Data System (ADS)

    Ketharanathan, Sutharsan

    The electron charging behavior of self assembled epitaxial Ge quantum dots on Si(100) grown using molecular beam epitaxy has been studied. Ge quantum dots encapsulated in n-type Si matrix were incorporated into Schottky diodes to investigate their charging behavior using capacitance-voltage measurements. These experimental results were interpreted in the context of theoretical models to assess the degree of charge localization to the dot. Experiments involving Ge quantum dot growth, growth of Sb-doped Si and morphological evolution during encapsulation of the Ge dots during Si overgrowth were performed in order to optimize the conditions for obtaining distinct Ge quantum dot morphologies. This investigation included finding a suitable method to minimize Sb segregation while maintaining good dot epitaxy and overall crystal quality. Holes are confined to the Ge dots for which the valence band offsets are large (˜650 meV). Electrons are confined to the strained Si regions adjacent to the Ge quantum dots which have relatively smaller confinement potentials (˜100--150 meV). Experimentally, it was found that but and pyramid clusters in the range from 20--40 nm in diameter confine ˜1electron per dot while dome clusters in the range from 60--80 nm diameter confine ˜6--8 electrons per dot. Theoretical simulations predict that similar pyramid structures confine ˜0.4 electrons per dot and dome structures confine ˜2.2--3 electrons per dot. Even though the theory and the experimental results disagree due to various uncertainties and approximations, the ratio between theory and experiment agree remarkably well for both island types. We also investigated constructive three-dimensional nanolithography. Nanoscale Au rich dots and pure Ge dots were deposited on SiO2 and Si3N4 substrates by decomposing adsorbed precursors using a focused electron beam in an environmental transmission electron microscope. Dimethyl acetylacetonate gold was used for Au and digermane was used to

  17. 5f band dispersion in epitaxial films of UO2

    SciTech Connect

    Durakiewicz, Tomasz; Jia, Quanxi; Roy, Lindsay E; Martin, Richard L; Joyce, John J

    2009-01-01

    Polymer-assisted deposition of epitaxial films utilizes lattice pinning to produce films of very high stability and properties identical with bulk crystal. Dispersion of the 5f band is shown for the first time in a actinide Mott insulator system, which suggestes hybridization as a leading process in establishing the electronic structure. Hybrid density functional is succesfully employed to calculate the electronic structure of UO{sub 2} in agreement with experiments. UO{sub 2} continues to be a mysterious and elusive compound in terms of understanding the physical properties of a material. Most actinide oxides, including UO{sub 2} are predicted to be metallic. However, UO{sub 2} is an antiferromagnetic insulator with a relatively large gap of about 2eV. The f orbital charater of the excitations across the gap places UO{sub 2} in a Mott insulator category, but no states at the gap center have ever been measured directly, in spite of intensive efforts. In this work we present the first results of the electronic structure investigation of a epitaxial film of UO{sub 2}, where we find even more unexpected properties, like the dispersive nature of 5f bands. We also demonstrate the unexpected, very high stability of the epitaxial film of UO{sub 2}. In the lattice-pinning scheme, the crystalline nature of the film is preserved all the way up to the topmost layers even after prolonged exposure to atmospheric conditions. Hybridized, dispersive bands are common in the itinerant uranium compounds. One usually finds hybridization of f-orbitals with conduction band to be quite common in f-electron systems at low temperatures. Such bands may reside in the vicinity of the Fermi level and participate in the construction of the Fermi surface. However, in the insulator like UO{sub 2}, one expects a more atomic band nature, where f-bands are relatively flat and shifted away from the Fermi level by the gap energy scale. Precise location of UO{sub 2} on the localization

  18. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    SciTech Connect

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.; Ramirez-Lopez, M.; Martinez-Velis, I.; Lopez-Lopez, M.; Escobosa-Echavarria, A.

    2013-06-07

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD) and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.

  19. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  20. Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications.

    PubMed

    Kong, Qinghua; Liao, Qing; Xu, Zhenzhen; Wang, Xuedong; Yao, Jiannian; Fu, Hongbing

    2014-02-12

    We report a sequential epitaxial growth to prepare organic branched nanowire heterostructures (BNwHs) consisting of a microribbon trunk of 1,4-dimethoxy-2,5-di[4'-(cyano)styryl]benzene (COPV) with multiple nanowire branches of 2,4,5-triphenylimidazole (TPI) in a one-pot solution synthesis. The synthesis involves a seeded-growth process, where COPV microribbons are grown first as a trunk followed by a seeded-growth of TPI nanowire branches at the pregrown trunk surfaces. Selected area electron diffraction characterizations reveal that multiple hydrogen-bonding interactions between TPI and COPV components play an essential role in the epitaxial growth as a result of the structural matching between COPV and TPI crystals. A multichannel optical router was successfully realized on the basis of the passive waveguides of COPV green photoluminescence (PL) along TPI nanowire branches in a single organic BNwH. PMID:24446808

  1. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates

    PubMed Central

    Yamauchi, Ryosuke; Hamasaki, Yosuke; Shibuya, Takuto; Saito, Akira; Tsuchimine, Nobuo; Koyama, Koji; Matsuda, Akifumi; Yoshimoto, Mamoru

    2015-01-01

    Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film. Sapphire (single-crystalline α-Al2O3) is commonly used in industry as a thin-film crystal-growth substrate, and functional thin-film materials deposited on sapphire substrates have found industrial applications. However, while sapphire is a single crystal, two types of atomic planes exist in accordance with step height. Here we discuss the need to consider the lattice mismatch for each of the sapphire atomic layers. Furthermore, through cross-sectional transmission electron microscopy analysis, we demonstrate the uniepitaxial growth of cubic crystalline thin films on bistepped sapphire (0001) substrates. PMID:26402241

  2. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  3. Method utilizing laser-processing for the growth of epitaxial p-n junctions

    DOEpatents

    Young, R.T.; Narayan, J.; Wood, R.F.

    1979-11-23

    This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.

  4. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  5. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching.

    PubMed

    Sivarajah, I; Goodman, D S; Wells, J E; Narducci, F A; Smith, W W

    2013-11-01

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field. PMID:24289382

  6. Order selection of the hearing aid Feedback Canceller filter based on its impulse response energy.

    PubMed

    Khoubrouy, Soudeh A; Panahi, Issa M S

    2012-01-01

    Numerous methods have been proposed to cancel the unpleasant effects of acoustic feedback between the loudspeaker and microphone in hearing aid systems. Adaptive Feedback Cancellation (AFC) methods are often used to estimate an FIR filter for cancelling the feedback path effect. In estimating the AFC FIR filter, it is important to select the order of the filter properly; especially when the feedback path changes from one environment to another and no knowledge about it is available. Choosing improper filter order causes deficient system performance or excessive computations and power usage in the system. We present tracking of the energy of AFC FIR filters and its convergence behavior as a new criterion for determining the proper order for AFC FIR filter. Experimental results show validity of the proposed criterion.

  7. Spectral Energy Distributions of 2XMM-selected AGN and VO tools

    NASA Astrophysics Data System (ADS)

    Gil-Merino, R.

    2009-07-01

    We present here how to use several programs from the Virtual Observatory in a particular science case: the construction of spectral energy distributions of a selection of active galactic nuclei from a sample of unidentified objects in the 2XMM catalogue. The study of statistical properties of different families of astronomical objects is now at hand. Due to technical development in computer facilities, more and more data are now available and accessible. It is therefore a need to build software tools that are able to handle large amount of data, launch numerous queries to different databases and analyse all those outputs on your screen. The European Virtual Observatory has developed a number of toolboxes which are designed to help in all these tasks.

  8. Order selection of the hearing aid Feedback Canceller filter based on its impulse response energy.

    PubMed

    Khoubrouy, Soudeh A; Panahi, Issa M S

    2012-01-01

    Numerous methods have been proposed to cancel the unpleasant effects of acoustic feedback between the loudspeaker and microphone in hearing aid systems. Adaptive Feedback Cancellation (AFC) methods are often used to estimate an FIR filter for cancelling the feedback path effect. In estimating the AFC FIR filter, it is important to select the order of the filter properly; especially when the feedback path changes from one environment to another and no knowledge about it is available. Choosing improper filter order causes deficient system performance or excessive computations and power usage in the system. We present tracking of the energy of AFC FIR filters and its convergence behavior as a new criterion for determining the proper order for AFC FIR filter. Experimental results show validity of the proposed criterion. PMID:23367105

  9. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    NASA Astrophysics Data System (ADS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  10. Stereo-epitaxial growth of single-crystal Ni nanowires and nanoplates from aligned seed crystals

    NASA Astrophysics Data System (ADS)

    Lee, Hyoban; Yoo, Youngdong; Kang, Taejoon; Lee, Jiyoung; Kim, Eungwang; Fang, Xiaosheng; Lee, Sungyul; Kim, Bongsoo

    2016-05-01

    Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni seeds are determined by the interfacial energy between the bottom plane of the seeds and the substrates. The as-synthesized Ni NWs and nanoplates have blocking temperature values greater than 300 K at 500 Oe, verifying that these Ni nanostructures can form large magnetic DWs with high magnetic anisotropy properties. We anticipate that epitaxially grown Ni NWs and nanoplates will be used in various types of 3-dimensional magnetic devices.Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni

  11. ZnO epitaxy on (111) Si using epitaxial Lu2O3 buffer layers

    NASA Astrophysics Data System (ADS)

    Guo, W.; Allenic, A.; Chen, Y. B.; Pan, X. Q.; Tian, W.; Adamo, C.; Schlom, D. G.

    2008-02-01

    We report the growth and characterization of single-crystalline, crack-free, epitaxial (0001) ZnO films on (111) Si substrates using intervening epitaxial Lu2O3 buffer layers. The epitaxial orientation relationships are (0001)ZnO∥(111)Lu2O3∥(111)Si and [12¯10]ZnO∥[1¯10]Lu2O3∥[11¯0]Si. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO /Lu2O3 interface. Temperature-dependent photoluminescence measurements show optical properties comparable to ZnO single crystals. The films have a resistivity of 0.31Ωcm, an electron concentration of 2.5×1017cm-3, and a mobility of 80cm2/Vṡs at room temperature. The epitaxial growth of ZnO on Si represents a significant step toward the integration of ZnO-based multifunctional devices with Si electronics.

  12. Selection for high and low oxygen consumption altered hepatic mitochondrial energy efficiency in mice.

    PubMed

    Hong, Yu; Ardiyanti, Astrid; Kikusato, Motoi; Shimazu, Tomoyuki; Toyomizu, Masaaki; Suzuki, Keiichi

    2015-09-01

    Selection for high (H) and low (L) oxygen consumption (OC) as an indirect estimation of maintenance energy requirement was determined. Feed intake and body weight were measured and feed conversion ratio (FCR) of 4-8-week-old mice was calculated. Respiratory activity of hepatic mitochondria was measured at 12 weeks. Total feed intake (H: 103.74 g, L: 97.92 g, P < 0.01), daily feed intake (H: 3.70 g/day, L: 3.50 g/day, P < 0.01) and FCR (H: 18.79, L: 15.50, P < 0.01) were significantly different between lines. The line by sex interaction was significant for FCR. No line differences were observed in males; and the FCR of the H line was greater than in the L line in females. H line mice had the highest hepatic mitochondrial respiratory activity in state 2 (P < 0.01), the highest uncoupled respiratory rate of mitochondria in the presence of an uncoupling agent (P < 0.001), and the mitochondrial proton leak. The adenosine diphosphate/ O ratio was highest in the L line (P < 0.05). This suggests that the selection for high and low OC induced differences in basal mitochondrial respiration and basal metabolism, resulting in difference in FCR between H and L lines.

  13. Spectrally selective, matched emitters for thermophotovoltaic energy conversion fabricated by tape casting process

    NASA Astrophysics Data System (ADS)

    Ferguson, Lucian Garret

    The thermophotovoltaic (TPV) generator converts radiant energy from a high temperature emitter element into electric power using infrared responding photovoltaic cells. Spectral control is a primary issue in TPV applications. Conventional TPV generators have relied on filters to achieve selectivity and spectral control with near-blackbody ceramic emitters. Several practical problems have limited the success of this approach, particularly the present lack of a satisfactory wide-band infrared filter. A new, spectrally selective emitter is described in this work, and will be called the "bandgap matched emitter" because its emissive power spectrum is very efficiently matched with the infrared response of the GaSb photovoltaic cell. The superior spectral efficiency has been achieved with a novel combination of spectrally active, transition-metal dopants within an infrared-transparent magnesium oxide ceramic matrix. High mechanical integrity, thermal shock resistance, excellent heat transfer characteristics, and near-ideal spectral efficiency have all been achieved for the first time by fabricating composite emitters from thin sheets of flexible ceramic ribbons made by the tape casting process.

  14. A frequency selective bolometer camera for measuring millimeter spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Logan, Daniel William

    2009-06-01

    Bolometers are the most sensitive detectors for measuring millimeter and submillimeter wavelength astrophysical signals. Cameras comprised of arrays of bolometers have already made significant contributions to the field of astronomy. A challenge for bolometer cameras is obtaining observations at multiple wavelengths. Traditionally, observing in multiple bands requires a partial disassembly of the instrument to replace bandpass filters, a task which prevents immediate spectral interrogation of a source. More complex cameras have been constructed to observe in several bands using beam splitters and dichroic filters, but the added complexity leads to physically larger instruments with reduced efficiencies. The SPEctral Energy Distribution camera (SPEED) is a new type of bolometer camera designed to efficiently observe in multiple wavebands without the need for excess bandpass filters and beam splitters. SPEED is a ground-based millimeter-wave bolometer camera designed to observe at 2.1, 1.3, 1.1, and 0.85 mm simultaneously. SPEED makes use of a new type of bolometer, the frequency selective bolometer (FSB), to observe all of the wavebands within each of the camera's four pixels. FSBs incorporate frequency selective dipole surfaces as absorbing elements allowing each detector to absorb a single, narrow band of radiation and pass all other radiation with low loss. Each FSB also contains a superconducting transition-edge sensor (TES) that acts as a sensitive thermistor for measuring the temperature of the FSB. This thesis describes the development of the SPEED camera and FSB detectors. The design of the detectors used in the instrument is described as well as the the general optical performance of frequency selective dipole surfaces. Laboratory results of both the optical and thermal properties of millimeter- wave FSBs are also presented. The SPEED instrument and its components are highlighted and the optical design of the optics which couple SPEED to the Heinrich Hertz

  15. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  16. Conceptual framework for describing selected urban and community impacts of federal energy policies

    SciTech Connect

    Morris, F.A,; Marcus, A.A.; Keller, D.

    1980-06-01

    A conceptual framework is presented for describing selected urban and community impacts of Federal energy policies. The framework depends on a simple causal model. The outputs of the model are impacts, changes in the state of the world of particular interest to policymakers. At any given time, a set of determinants account for the state of the world with respect to an impact category. Application of the model to a particular impact category requires: establishing a definition and measure for the impact category and identifying the determinants of these impacts. Analysis of the impact of a particular policy requires the following: identifying the policy and its effects (as estimated by others), isolating any effects that themselves constitute an urban and community impact, identifying any effects that change the value of determinants, and describing the impact with reference to the new values of determinants. This report provides a framework for these steps. Three impacts addressed are: neighborhood stability, housing availability, and quality and availability of public services. In each chapter, a definition and measure for the impact are specified; its principal determinants are identified; how the causal model can be used to estimate impacts by applying it to three illustrative Federal policies (domestic oil price decontrol, building energy performance standards, and increased Federal aid for mass transit) is demonstrated. (MCW)

  17. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures. PMID:27008537

  18. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures.

  19. Epitaxial Zintl aluminide SrAl4 grown on a LaAlO3 substrate

    NASA Astrophysics Data System (ADS)

    Schlipf, Lukas; Slepko, Alexander; Posadas, Agham B.; Seinige, Heidi; Dhamdhere, Ajit; Tsoi, Maxim; Smith, David J.; Demkov, Alexander A.

    2013-07-01

    Zintl phases are a class of intermetallic materials that have simultaneously ionic and covalent bonding resulting from charge transfer between two different atomic species. We present a combined first principles and experimental study of Zintl-phase SrAl4, which is grown in thin film form on the perovskite oxide LaAlO3 using molecular beam epitaxy. The structural properties are investigated using reflection-high-energy electron diffraction, x-ray diffraction, and cross-section transmission electron microscopy, which reveal relaxed epitaxial island growth. Photoelectron spectroscopy measurements verify the Zintl-Klemm nature of the bonding in the material and are utilized to determine the band offset and the work function of SrAl4, while transport measurements confirm its metallic behavior. The experimentally observed properties are confirmed using density functional calculations.

  20. Interpreting plasmonic response of epitaxial Ag/Si(100) island ensembles

    SciTech Connect

    Kong, Dexin; Jiang, Liying; Drucker, Jeff

    2015-12-07

    Associating features in the experimentally measured optical response of epitaxial Ag islands grown on Si(100) with the localized surface plasmon resonances (LSPRs) hosted by the Ag islands is challenging due to the variation of the Si dielectric function over the energy range under consideration. However, it is possible to conclusively identify features in the experimental spectra with LSPR modes oscillating both parallel and perpendicular to the epitaxial interface by simulating the optical response. The Abeles matrix method is used to describe the composite layered system and the Ag islands are modeled using the thin island film model developed by Bedeaux and Vlieger. By incorporating island morphology parameters determined by quantitative analysis of electron micrographs, the simulation faithfully reproduces the main features of the experimental spectra. Individually zeroing the dipoles associated with the LSPR modes enables conclusive identification of their contribution to the optical response of the composite system.

  1. Acceptor states in heteroepitaxial CdHgTe films grown by molecular-beam epitaxy

    SciTech Connect

    Mynbaev, K. D.; Shilyaev, A. V. Bazhenov, N. L.; Izhnin, A. I.; Izhnin, I. I.; Mikhailov, N. N.; Varavin, V. S.; Dvoretsky, S. A.

    2015-03-15

    The photoluminescence method is used to study acceptor states in CdHgTe heteroepitaxial films (HEFs) grown by molecular-beam epitaxy. A comparison of the photoluminescence spectra of HEFs grown on GaAs substrates (CdHgTe/GaAs) with the spectra of CdHgTe/Si HEFs demonstrates that acceptor states with energy depths of about 18 and 27 meV are specific to CdHgTe/GaAs HEFs. The possible nature of these states and its relation to the HEF synthesis conditions and, in particular, to the vacancy doping occurring under conditions of a mercury deficiency during the course of epitaxy and postgrowth processing are discussed.

  2. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect

    Lastras-Martínez, A. E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Lastras-Montaño, L. A.; Lastras-Montaño, M. A.

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  3. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    DOE PAGES

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film.more » We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.« less

  4. Effect of substrate temperature on the magnetic properties of epitaxial sputter-grown Co/Pt

    SciTech Connect

    Mihai, A. P.; Whiteside, A. L.; Canwell, E. J.; Marrows, C. H.; Moore, T. A.; Benitez, M. J.; McGrouther, D.; McVitie, S.; McFadzean, S.

    2013-12-23

    Epitaxial Co/Pt films have been deposited by dc-magnetron sputtering onto heated C-plane sapphire substrates. X-ray diffraction, the residual resistivity, and transmission electron microscopy indicate that the Co/Pt films are highly ordered on the atomic scale. The coercive field and the perpendicular magnetic anisotropy increase as the substrate temperature is increased from 100–250 °C during deposition of the Co/Pt. Measurement of the domain wall creep velocity as a function of applied magnetic field yields the domain wall pinning energy, which scales with the coercive field. Evidence for an enhanced creep velocity in highly ordered epitaxial Co/Pt is found.

  5. Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy

    SciTech Connect

    Sadofyev, Yu. G. Martovitsky, V. P.; Bazalevsky, M. A.; Klekovkin, A. V.; Averyanov, D. V.; Vasil’evskii, I. S.

    2015-01-15

    The growth of GeSn layers by molecular-beam epitaxy on Si (100) wafers coated with a germanium buffer layer is investigated. The properties of the fabricated structures are controlled by reflection high-energy electron diffraction, atomic-force microscopy, X-ray diffractometry, Rutherford backscattering, and Raman scattering. It is shown that GeSn layers with thicknesses up to 0.5 μm and Sn molar fractions up to 0.073 manifest no sign of plastic relaxation upon epitaxy. The lattice constant of the GeSn layers within the growth plane is precisely the same as that of Ge. The effect of rapid thermal annealing on the conversion of metastable elastically strained GeSn layers into a plastically relaxed state is examined. Ge/GeSn quantum wells with Sn molar fraction up to 0.11 are obtained.

  6. Epitaxial growth and electronic properties of mixed valence YbAl3 thin films

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shouvik; Sung, Suk Hyun; Baek, David J.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.

    2016-07-01

    We report the growth of thin films of the mixed valence compound YbAl3 on MgO using molecular-beam epitaxy. Employing an aluminum buffer layer, epitaxial (001) films can be grown with sub-nm surface roughness. Using x-ray diffraction, in situ low-energy electron diffraction, and aberration-corrected scanning transmission electron microscopy, we establish that the films are ordered in the bulk as well as at the surface. Our films show a coherence temperature of 37 K, comparable to that reported for bulk single crystals. Photoelectron spectroscopy reveals contributions from both f13 and f12 final states establishing that YbAl3 is a mixed valence compound and shows the presence of a Kondo Resonance peak near the Fermi-level.

  7. Epitaxy and stress of MgO/GaAs(001) heterostructures

    SciTech Connect

    Wang, Shibo; Sarkar, Anirban; Gruber, Markus; Koch, Reinhold

    2013-10-21

    We report on the preparation of epitaxial MgO film on GaAs(001) substrates by molecular beam epitaxy at growth temperature of 20–200 °C. Reflection high energy electron diffraction, x-ray diffraction, and high resolution transmission electron microscopy reveal the growth of ordered crystalline cubic MgO(001) film at ∼200 °C with MgO(001)[100]|| GaAs(001)[100] and a 4 : 3 lattice registry. The surface of the MgO films, characterized by atomic force microscopy, exhibits a root mean square roughness of only 0.5 nm. In situ stress measurements reveal tensile stress as low as 1.7 GPa for a growth temperature of 200 °C in good agreement with the calculated residual misfit strain.

  8. Role of thermal processes in dewetting of epitaxial Ag(111) film on Si(111)

    SciTech Connect

    Sanders, Charlotte E.; Zhang, Chendong D.; Kellogg, Gary L.; Shih, Chih-Kang

    2014-08-01

    Epitaxially grown silver (Ag) film on silicon (Si) is an optimal plasmonic device platform, but its technological utility has been limited by its tendency to dewet rapidly under ambient conditions (standard temperature and pressure). The mechanisms driving this dewetting have not heretofore been determined. In our study, scanning probe microscopy and low-energy electron microscopy are used to compare the morphological evolution of epitaxial Ag(111)/Si(111) under ambient conditions with that of similarly prepared films heated under ultra-high vacuum (UHV) conditions. Furthermore, dewetting is seen to be initiated with the formation of pinholes, which might function to relieve strain in the film. We find that in the UHV environment, dewetting is determined by thermal processes, and while under ambient conditions, thermal processes are not required. Finally, we conclude that dewetting in ambient conditions is triggered by some chemical process, most likely oxidation.

  9. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    PubMed

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications.

  10. Perspective: Oxide molecular-beam epitaxy rocks!

    SciTech Connect

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  11. Materials issues in molecular beam epitaxy

    SciTech Connect

    Tsao, J.Y.

    1993-12-31

    The technology of crystal growth has advanced enormously during the past two decades; among those advances, the development and refinement of molecular beam epitaxy (MBE) has been among the most important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today form the basis for many of the most advanced device structures in solid-state physics, electronics and optoelectronics. In addition to its numerous device applications, MBE is also an enormously rich and interesting area of materials science in and of itself. This paper, discusses a few examples of some of these materials issues, organized according to whether they involve bulk, thin films, or surfaces.

  12. Children in school cafeterias select foods containing more saturated fat and energy than the Institute of Medicine recommendations.

    PubMed

    Martin, Corby K; Thomson, Jessica L; LeBlanc, Monique M; Stewart, Tiffany M; Newton, Robert L; Han, Hongmei; Sample, Alicia; Champagne, Catherine M; Williamson, Donald A

    2010-09-01

    In this study, we examined if children's food selection met the School Meals Initiative (SMI) standards and the recently released Institute of Medicine (IOM) recommendations. Mean food selection, plate waste, and food intake were also examined. Food intake of 2049 4th-6th grade students was measured objectively at lunch over 3 d with digital photography in 33 schools. The percent of children whose food selection met the SMI standards and IOM recommendations for energy (kJ), fat and saturated fat, calcium, iron, and vitamin A and C were calculated. The SMI standards provide lower limits for most nutrients; the IOM provides a range of values, including an upper limit for energy. Seventy-seven percent of children's energy selection met the SMI lower limit, but only 16% of children met the IOM's recommended range and 74% of children exceeded the upper limit. More than 70% of children exceeded the SMI and IOM's saturated fat recommendations. Children selected (mean +/- SD) 3168 +/- 621 kJ, discarded 882 +/- 581 kJ, and consumed 2286 +/- 716 kJ. Children were less likely to discard fat than carbohydrate, resulting in proportionally more fat being consumed. Most children met SMI and IOM recommendations for protein, calcium, iron, and vitamin A. With few exceptions, energy selection was similar among groups of children, but plate waste differed (P < 0.001), resulting in greater energy intake among boys compared with girls, Caucasians compared with African Americans, and heavier compared with lighter children. Children's selection was high in saturated fat and, based on IOM criteria, included excess energy. PMID:20668251

  13. Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Andó, L.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Gallo, G.; Korn, G.; Leanza, R.; Margarone, D.; Milluzzo, G.; Petringa, G.

    2016-08-01

    A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).

  14. The Demand for Scientific and Technical Manpower in Selected Energy-Related Industries, 1970-85: A Methodology Applied to a Selected Scenario of Energy Output. A Summary.

    ERIC Educational Resources Information Center

    Gutmanis, Ivars; And Others

    The primary purpose of the study was to develop and apply a methodology for estimating the need for scientists and engineers by specialty in energy and energy-related industries. The projections methodology was based on the Case 1 estimates by the National Petroleum Council of the results of "maximum efforts" to develop domestic fuel sources by…

  15. Strong growth orientation dependence of strain relaxation in epitaxial (Ba,Sr)TiO{sub 3} films and the resulting dielectric properties

    SciTech Connect

    Yamada, Tomoaki; Kamo, Takafumi; Funakubo, Hiroshi; Su Dong; Iijima, Takashi

    2011-05-01

    The growth orientation dependence of strain relaxation and the dielectric properties were investigated for (001)- and (111)-epitaxial (Ba,Sr)TiO{sub 3} films. The films were deposited on SrRuO{sub 3}/SrTiO{sub 3} and SrTiO{sub 3} substrates using rf magnetron sputtering. The residual strain was found to be remarkably different between the two orientations, although these lattice mismatches are identical; the strain relaxation of the (001)-epitaxial films is significantly slower than that of the (111)-epitaxial films and is promoted only when the growth rate is very low ({<=}5 nm/h). The observed orientation dependence is discussed with the surface energy for both growth orientations, which influences the growth mode of the films. Due to the large contrast of the strain in the (001)- and (111)-epitaxial films, the paraelectric to ferroelectric phase transition temperature of the (001)-epitaxial films is much higher than that of unstrained bulks, while the (111)-epitaxial films show a phase transition temperature corresponding to that of unstrained bulks regardless of the growth rates.

  16. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  17. Epitaxial relationships between calcium carbonate and inorganic substrates.

    PubMed

    Yang, Taewook; Jho, Jae Young; Kim, Il Won

    2014-09-15

    The polymorph-selective crystallization of calcium carbonate has been studied in terms of epitaxial relationship between the inorganic substrates and the aragonite/calcite polymorphs with implication in bioinspired mineralization. EpiCalc software was employed to assess the previously published experimental results on two different groups of inorganic substrates: aragonitic carbonate crystals (SrCO3, PbCO3, and BaCO3) and a hexagonal crystal family (α-Al2O3, α-SiO2, and LiNbO3). The maximum size of the overlayer (aragonite or calcite) was calculated for each substrate based on a threshold value of the dimensionless potential to estimate the relative nucleation preference of the polymorphs of calcium carbonate. The results were in good agreement with previous experimental observations, although stereochemical effects between the overlayer and substrate should be separately considered when existed. In assessing the polymorph-selective nucleation, the current method appeared to provide a better tool than the oversimplified mismatch parameters without invoking time-consuming molecular simulation.

  18. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    NASA Astrophysics Data System (ADS)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  19. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Shang, Shuai; Yang, Shizhong; Liu, Jing; Shan, Meng; Cao, Hailin

    2016-07-01

    In this paper, a metamaterial electromagnetic energy harvester constructed via the capacitive loading of metal circular split rings is presented. Each energy-harvesting cell is loaded with a resistance that imitates the input impedance of a rectifier circuit. Specifically, the metamaterial energy harvester has high selective harvesting for left- and right-handed circularly polarized waves. Here, the energy absorption is mostly induced by the resistive load; thus, effective energy harvesting can be achieved. Moreover, the proposed energy harvester exhibits a high-efficiency harvesting for right-handed circularly polarized waves over a wide range of incident angles. Further, a transmission line model is adopted to interpret the energy harvesting mechanism, which shows that a good impedance matching and low dielectric loss can further enhance the harvesting efficiency. To demonstrate the design, a 15 × 15 unit-cell prototype is fabricated and measured, and the measured results reasonably agree with the simulated ones.

  20. Energy from biological processes. Volume III. Appendixes, Part B: Agriculture, unconventional crops, and select biomass wastes

    SciTech Connect

    Not Available

    1980-09-01

    This volume contains the following working papers written for OTA to assist in preparation of the report, Energy from Biological Processes: The Potential of Producing Energy From Agriculture; Cropland Availability for Biomass Production; Energy From Agriculture: Unconventional Crops; Energy From Aquaculture Biomass Systems: Fresh and Brackish Water Aquatic Plants; Energy From Agriculture: Animal Wastes; and Energy From Agriculture: Agricultural Processing Wastes.

  1. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  2. Exceptional ballistic transport in epitaxial graphene nanoribbons.

    PubMed

    Baringhaus, Jens; Ruan, Ming; Edler, Frederik; Tejeda, Antonio; Sicot, Muriel; Taleb-Ibrahimi, Amina; Li, An-Ping; Jiang, Zhigang; Conrad, Edward H; Berger, Claire; Tegenkamp, Christoph; de Heer, Walt A

    2014-02-20

    Graphene nanoribbons will be essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square. Here we show that 40-nanometre-wide graphene nanoribbons epitaxially grown on silicon carbide are single-channel room-temperature ballistic conductors on a length scale greater than ten micrometres, which is similar to the performance of metallic carbon nanotubes. This is equivalent to sheet resistances below 1 ohm per square, surpassing theoretical predictions for perfect graphene by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground-state properties of neutral graphene. At room temperature, the resistance of both modes is found to increase abruptly at a particular length--the ballistic mode at 16 micrometres and the other at 160 nanometres. Our epitaxial graphene nanoribbons will be important not only in fundamental science, but also--because they can be readily produced in thousands--in advanced nanoelectronics, which can make use of their room-temperature ballistic transport properties.

  3. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  4. Buried-heterostructure quantum-cascade laser overgrown by gas-source molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chashnikova, M.; Monastyrskyi, G.; Aleksandrova, A.; Klinkmüller, M.; Semtsiv, M. P.; Masselink, W. T.

    2012-05-01

    We describe the realization of buried-heterostructure quantum-cascade lasers (QCLs) using gas-source molecular beam epitaxy both for the growth of the active region as well as for the regrowth of InP:Fe. The regrowth of the semi-insulating InP:Fe layer was carried out at 470 °C, which is more than 100 °C below the standard growth temperature during metal-organic vapor-phase epitaxy, the standard method for laser overgrowth. The electrical resistivity of the InP:Fe insulation layer, measured in test samples grown on (001) InP, is as large as 2×108Ωcm. High-resistivity InP:Fe is overgrown non-selectively over the etched laser ridge, followed by the top contact alloyed through it to the active region. The processed quantum-cascade lasers show no evidence of parallel leakage current and exhibit lower threshold current density than lasers using SiO2 as an insulator. The ability to fabricate buried heterostructure lasers without exceeding 600 °C is important for strain-compensated AlAs-InGaAs quantum cascade lasers with large internal strain because these devices do not typically withstand temperatures used to grow InP:Fe using vapor-phase epitaxy.

  5. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    SciTech Connect

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  6. Manufacture of energy storage and return prosthetic feet using selective laser sintering.

    PubMed

    South, Brian J; Fey, Nicholas P; Bosker, Gordon; Neptune, Richard R

    2010-01-01

    Proper selection of prosthetic foot-ankle components with appropriate design characteristics is critical for successful amputee rehabilitation. Elastic energy storage and return (ESAR) feet have been developed in an effort to improve amputee gait. However, the clinical efficacy of ESAR feet has been inconsistent, which could be due to inappropriate stiffness levels prescribed for a given amputee. Although a number of studies have analyzed the effect of ESAR feet on gait performance, the relationships between the stiffness characteristics and gait performance are not well understood. A challenge to understanding these relationships is the inability of current manufacturing techniques to easily generate feet with varying stiffness levels. The objective of this study was to develop a rapid prototyping framework using selective laser sintering (SLS) for the creation of prosthetic feet that can be used as a means to quantify the influence of varying foot stiffness on transtibial amputee walking. The framework successfully duplicated the stiffness characteristics of a commercial carbon fiber ESAR foot. The feet were mechanically tested and an experimental case study was performed to verify that the locomotor characteristics of the amputee's gait were the same when walking with the carbon fiber ESAR and SLS designs. Three-dimensional ground reaction force, kinematic, and kinetic quantities were measured while the subject walked at 1.2 m/s. The SLS foot was able to replicate the mechanical loading response and locomotor patterns of the ESAR foot within +/-2 standard deviations. This validated the current framework as a means to fabricate SLS-based ESAR prosthetic feet. Future work will be directed at creating feet with a range of stiffness levels to investigate appropriate prescription criteria.

  7. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    NASA Astrophysics Data System (ADS)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  8. Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage.

    PubMed

    Bhattacharjya, Dhrubajyoti; Jeon, In-Yup; Park, Hyean-Yeol; Panja, Tandra; Baek, Jong-Beom; Yu, Jong-Sung

    2015-05-26

    In recent years, graphene-based materials have been in the forefront as electrode material for electrochemical energy generation and storage. Despite this prevalent interest, synthesis procedures have not attained three important efficiency requirements, that is, cost, energy, and eco-friendliness. In this regard, in the present work, graphene nanoplatelets with selectively functionalized edges (XGnPs) are prepared through a simple, eco-friendly and efficient method, which involves ball milling of graphite in the presence of hydrogen (H2), bromine (Br2), and iodine (I2). The resultant HGnP, BrGnP, and IGnP reveal significant exfoliation of graphite layers, as evidenced by high BET surface area of 414, 595, and 772 m(2) g(-1), respectively, in addition to incorporation of H, Br, and I along with other oxygen-containing functional groups at the graphitic edges. The BrGnP and IGnP are also found to contain 4.12 and 2.20 at % of Br and I, respectively in the graphene framework. When tested as supercapacitor electrode, all XGnPs show excellent electrochemical performance in terms of specific capacitance and durability at high current density and long-term operation. Among XGnPs, IGnP delivers superior performance of 172 F g(-1) at 1 A g(-1) compared with 150 F g(-1) for BrGnP and 75 F g(-1) for HGnP because the large surface area and high surface functionality in the IGnP give rise to the outstanding capacitive performance. Moreover, all XGnPs show excellent retention of capacitance at high current density of 10 A g(-1) and for long-term operation up to 1000 charge-discharge cycles.

  9. Epitaxial growth of gallium arsenide from elemental arsenic

    NASA Astrophysics Data System (ADS)

    Chu, Ting L.; Chu, Shirley S.; Green, Richard F.; Cerny, C. L. A.

    1991-03-01

    Epitaxial gallium arsenide (GaAs) films of controlled electrical properties are essential for the fabrication of high performance devices. Metalorganic vapor phase epitaxy (MOVPE) utilizing the reaction of trimethylgallium (TMGa) or triethylgallium (TEGa) and arsine (AsH3) is commonly used for the epitaxial growth of GaAs. The use of highly toxic AsH3 however is a serious hazard in research and manufacturing operations. In this work the MOVPE of device quality GaAs from elemental arsenic has been demonstrated for the first time thus minimizing a major safety concern. The reaction of TEGa and As on the substrate surface at 450-550C in a H2 flow was used. The parameter of the growth process and the electrical and photoluminescent properties of epitaxial GaAs are discussed. Further TMGa TEGa and arsenic show strong absorption in far ultraviolet. The epitaxial growth of GaAs films can be achieved at low substrate temperatures by irradiating the gaseous reactant with a UV laser. Epitaxial GaAs films have been grown at 425C or higher by using ArF laser enhanced reaction of TEG and As. The electrical and photoluminescent properties of these films have also beencharacterized. Epitaxial GaAs films grown by the laser enhanced process have been found to contain considerably higher carbon concentration than films grown by the thermal process. This is due presumably to the photodissociation of carbon-hydrogen bonds in TEGa.

  10. Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application

    SciTech Connect

    D. L. Fillmore

    2003-10-01

    This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

  11. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel

    PubMed Central

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-01-01

    Potassium (K+) channels are transmembrane proteins that passively and selectively allow K+ ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K+ and Na+ in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factor play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K+ channels. The data indicate that having multiple K+ ions bound simultaneously is required for selective K+ conduction, and that a reduction in the number of bound K+ ions destroys the multi-ion selectivity mechanism utilized by K+ channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K+-channels. PMID:26896693

  12. Molecular dynamics and quasidynamics simulations of the annealing of bulk and near-surface interstitials formed in molecular-beam epitaxial Si due to low-energy particle bombardment during deposition

    NASA Technical Reports Server (NTRS)

    Kitabatake, M.; Fons, P.; Greene, J. E.

    1991-01-01

    The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.

  13. Dopant profile control of epitaxial emitter for silicon solar cells by low temperature epitaxy

    NASA Astrophysics Data System (ADS)

    Lai, Donny; Tan, Yew Heng; Gunawan, Oki; He, Lining; Seng Tan, Chuan

    2011-07-01

    We report an alternative approach to grow phosphorus-doped epitaxial silicon emitter by rapid thermal chemical vapor deposition at low temperature (T ≥ 700 °C). A power conversion efficiency (PCE) of (6.6 ± 0.3)% and a pseudo PCE of (10.2 ± 0.2)% has been achieved for the solar cell with epi-emitter grown at 700 °C, in the absence of surface texturization, antireflective coating, and back surface field enhancement, without considering front contact shading. Secondary ion mass spectroscopy revealed that lower temperature silicon epitaxy yields a more abrupt p-n junction, suggesting potential applications for radial p-n junction wire array solar cells.

  14. Improvements in epitaxial lateral overgrowth of InP by MOVPE

    NASA Astrophysics Data System (ADS)

    Julian, Nick H.; Mages, Phil A.; Zhang, Chong; Bowers, John E.

    2014-09-01

    Indium phosphide and silicon play important and complementary roles in communications wavelength photonic devices. Realizing high quality coalesced epitaxial lateral overgrown (ELO) InP films on Si could greatly reduce cost and encourage the proliferation of energy efficient photonic integrated circuits in consumer devices. By adjusting a parallel line ELO mask and metalorganic vapor phase epitaxial growth conditions, we have fully coalesced and partially coalesced epitaxial lateral overgrowth of InP on InP substrates and Si substrates having strain relaxed III/V buffer layers, respectively. Extended defects were investigated using transmission electron microscopy and were not found to originate at the coalescence of the nearest neighbor growth fronts for linear parallel growth windows oriented 60° off of [0-11] when using a high V/III ratio of 406. In addition, narrowly separated linear parallel growth windows having a large aspect ratio of 7.5 were seen to inhibit the upward propagation of stacking faults through several neighboring openings. Elimination of these two defect sources would leave primarily the challenge of optimizing the morphology of the overgrown InP as a substantial barrier to achieving coalesced ELO InP of sufficient quality for photonic device applications.

  15. Stereo-epitaxial growth of single-crystal Ni nanowires and nanoplates from aligned seed crystals.

    PubMed

    Lee, Hyoban; Yoo, Youngdong; Kang, Taejoon; Lee, Jiyoung; Kim, Eungwang; Fang, Xiaosheng; Lee, Sungyul; Kim, Bongsoo

    2016-05-21

    Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni seeds are determined by the interfacial energy between the bottom plane of the seeds and the substrates. The as-synthesized Ni NWs and nanoplates have blocking temperature values greater than 300 K at 500 Oe, verifying that these Ni nanostructures can form large magnetic DWs with high magnetic anisotropy properties. We anticipate that epitaxially grown Ni NWs and nanoplates will be used in various types of 3-dimensional magnetic devices. PMID:27129106

  16. Stereo-epitaxial growth of single-crystal Ni nanowires and nanoplates from aligned seed crystals.

    PubMed

    Lee, Hyoban; Yoo, Youngdong; Kang, Taejoon; Lee, Jiyoung; Kim, Eungwang; Fang, Xiaosheng; Lee, Sungyul; Kim, Bongsoo

    2016-05-21

    Epitaxially grown anisotropic Ni nanostructures are promising building blocks for the development of miniaturized and stereo-integrated data storage kits because they can store multiple magnetic domain walls (DWs). Here, we report stereo-epitaxially grown single-crystalline Ni nanowires (NWs) and nanoplates, and their magnetic properties. Vertical and inclined Ni NWs were grown at the center and edge regions of c-cut sapphire substrates, respectively. Vertical Ni nanoplates were grown on r-cut sapphire substrates. The morphology and growth direction of Ni nanostructures can be steered by seed crystals. Cubic Ni seeds grow into vertical Ni NWs, tetrahedral Ni seeds grow into inclined Ni NWs, and triangular Ni seeds grow into vertical Ni nanoplates. The shapes of the Ni seeds are determined by the interfacial energy between the bottom plane of the seeds and the substrates. The as-synthesized Ni NWs and nanoplates have blocking temperature values greater than 300 K at 500 Oe, verifying that these Ni nanostructures can form large magnetic DWs with high magnetic anisotropy properties. We anticipate that epitaxially grown Ni NWs and nanoplates will be used in various types of 3-dimensional magnetic devices.

  17. Real-time observation of epitaxial graphene domain reorientation

    SciTech Connect

    Thuermer, Konrad; Foster, Michael E.; Bartelt, Norman Charles; Rogge, Paul C.; McCarty, Kevin F.; Dubon, Oscar D.; Bartelt, Norman C.

    2015-04-20

    Graphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, ‘ripening’; domain boundary motion within islands; and continuous lattice rotation of entire domains. By measuring the relative growth velocity of domains during ripening, we estimate that the driving force for alignment is on the order of 0.1 meV per C atom and increases with rotation angle. A simple model of the orientation-dependent energy associated with the moiré corrugation of the graphene sheet due to local variations in the graphene–substrate interaction reproduces the results. This study suggests new strategies for improving the van der Waals epitaxy of 2D materials.

  18. Real-time observation of epitaxial graphene domain reorientation

    DOE PAGES

    Thuermer, Konrad; Foster, Michael E.; Bartelt, Norman Charles; Rogge, Paul C.; Lawrence Berkeley National Lab.; McCarty, Kevin F.; Dubon, Oscar D.; Lawrence Berkeley National Lab.; Bartelt, Norman C.

    2015-04-20

    Graphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, ‘ripening’; domain boundary motion within islands; and continuous lattice rotation of entire domains. By measuring the relative growth velocity of domains during ripening, we estimate that the driving force for alignment is on the order of 0.1 meV permore » C atom and increases with rotation angle. A simple model of the orientation-dependent energy associated with the moiré corrugation of the graphene sheet due to local variations in the graphene–substrate interaction reproduces the results. This study suggests new strategies for improving the van der Waals epitaxy of 2D materials.« less

  19. Strain control of oxygen vacancies in epitaxial strontium cobaltite films

    DOE PAGES

    Jeen, Hyoung Jeen; Choi, Woo Seok; Reboredo, Fernando A.; Freeland, John W.; Eres, Gyula; Lee, Ho Nyung; Petrie, Jonathan R.; Mitra, Chandrima; Meyer, Tricia L.

    2016-01-25

    In this study, the ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced temperatures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoOx) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 °C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ≈30%, resulting inmore » a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.« less

  20. Computer modelling of nanoscale diffusion phenomena at epitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, M.; Ranguelov, B.

    2014-05-01

    The present study outlines an important area in the application of computer modelling to interface phenomena. Being relevant to the fundamental physical problem of competing atomic interactions in systems with reduced dimensionality, these phenomena attract special academic attention. On the other hand, from a technological point of view, detailed knowledge of the fine atomic structure of surfaces and interfaces correlates with a large number of practical problems in materials science. Typical examples are formation of nanoscale surface patterns, two-dimensional superlattices, atomic intermixing at an epitaxial interface, atomic transport phenomena, structure and stability of quantum wires on surfaces. We discuss here a variety of diffusion mechanisms that control surface-confined atomic exchange, formation of alloyed atomic stripes and islands, relaxation of pure and alloyed atomic terraces, diffusion of clusters and their stability in an external field. The computational model refines important details of diffusion of adatoms and clusters accounting for the energy barriers at specific atomic sites: smooth domains, terraces, steps and kinks. The diffusion kinetics, integrity and decomposition of atomic islands in an external field are considered in detail and assigned to specific energy regions depending on the cluster stability in mass transport processes. The presented ensemble of diffusion scenarios opens a way for nanoscale surface design towards regular atomic interface patterns with exotic physical features.

  1. Surface instabilities of epitaxial films on a substrate

    NASA Astrophysics Data System (ADS)

    Junqua, N.; Grilhé, J.

    1993-08-01

    The energy variation of an epitaxial film on a substrate is calculated when sinusoidal roughness appears at the surface, using the method of the surface dislocation model. The energy variation is negative beyond a critical value of wavelength which depends on the thickness of the film and on the ratio of the shear moduli of substrate and film. The kinetic of roughness development during film growing are discussed. La méthode des dislocations de surface est utilisée pour calculer la variation d'énergie d'un film mince en épitaxie sur un substrat lorsqu'une rugosité de forme sinusoïdale apparaît à sa surface. On détermine une longueur d'onde critique dépendant du rapport des coefficients d'élasticité du substrat et du film et aussi de l'épaisseur du film, au-delà de laquelle la variation d'énergie est négative. On discute également de la cinétique du développement de la rugosité.

  2. Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Peetermans, S.; Josic, L.; Leber, H.; van Swygenhoven, H.

    2014-01-01

    Crystalline-structured materials with preferentially large grains were investigated by means of energy-selective neutron imaging methods (transmission radiography and tomography) under the conditions of the best possible spatial resolution at the ICON facility, SINQ, and PSI. Because of the cold spectrum at that beam line, access to the Bragg diffraction features was possible even when the energy resolution of the used selector device was only 15%. Grains with a size below the detector resolution (approximately 25 μm) are not visible, and a quasi-homogeneous contrast variation is found when the neutron energy is varied.In the cases of welded stainless steel samples and rolled Al plates, we obtained structural information from a very short exposure of approximately 60 s. Tomographic examinations of these samples at suitable neutron energies qualitatively verified the radiographic findings by showing the same features in the bulk. Comparison to common electron backscatter diffraction (EBSD) investigations in selected regions of the samples provided a complete verification of the neutron-image data with respect to the grain size and the different grain orientations. The method of energy-selective neutron imaging provides an easy and straightforward approach for non-invasive material research that can be performed without any sample preparation if the most suitable neutron energy is chosen. Further studies will be necessary to extend the experimental data base to other materials with different crystal structures and grain sizes. A comparison to diffraction data will enhance the quantitative value of the investigations.

  3. Potential social, institutional, and environmental impacts of selected energy-conservation measures in two Washington communities. [Seattle and Yakima

    SciTech Connect

    Edelson, E.; Olsen, M.

    1980-03-01

    The likely environmental, social, and institutional impacts of selected energy-conservation measures in two communities in Washington state are reported. The five conservation measures investigated in this study were: (1) retrofitting existing buildings; (2) district heating and Integrated Community Energy Systems (ICES); (3) small automobiles and vehicle redesign; (4) land-use and housing modifications; and (5) electric-utility rate reform. Twenty potential impact areas were selected for analysis. These areas were divided into five categories of environmental impacts, economic impacts, community impacts, personal impacts, and overall quality of life in the community. The research was conducted in Seattle and Yakima, Washington. In each location, about two dozen public officials and business, labor, and community leaders were interviewed. Their diverse views are summarized. The Seattle respondents saw energy conservation as a highly desirable policy with a number of temporary, transitional problems arising as energy-conservation measures were implemented. Yakima respondents, in contrast, did not expect to encounter many serious energy problems in the foreseeable future and consequently viewed energy conservation as a relatively minor community concern. Moreover, they anticipated that many conservation measures, if implemented by the government, would encounter either apathy or resistance in their community. Two broad generalizations can bedrawn from these interviews: (1) energy conservation will basically be beneficial for the natural environment and our society; and (2) if energy conservation does become a dominant thrust in our society, it could stimulate and reinforce a much broader process of fundamental social change. (LCL)

  4. Point defect balance in epitaxial GaSb

    SciTech Connect

    Segercrantz, N. Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-08-25

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  5. Epitaxial EuO thin films on GaAs

    SciTech Connect

    Swartz, A. G.; Ciraldo, J.; Wong, J. J. I.; Li Yan; Han Wei; Lin Tao; Shi, J.; Kawakami, R. K.; Mack, S.; Awschalom, D. D.

    2010-09-13

    We demonstrate the epitaxial growth of EuO on GaAs by reactive molecular beam epitaxy. Thin films are grown in an adsorption-controlled regime with the aid of an MgO diffusion barrier. Despite the large lattice mismatch, it is shown that EuO grows well on MgO(001) with excellent magnetic properties. Epitaxy on GaAs is cube-on-cube and longitudinal magneto-optic Kerr effect measurements demonstrate a large Kerr rotation of 0.57 deg., a significant remanent magnetization, and a Curie temperature of 69 K.

  6. A proposal for epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.

  7. Spin-resolved electron spectroscopies of epitaxial magnetite (001) (abstract)

    NASA Astrophysics Data System (ADS)

    Shaw, Kimberly A.; Lochner, Eric; Lind, David M.; DiBari, Rebecca C.; Stoyanov, Plamen; Singer, Brian

    1996-04-01

    We will present the first spin-resolving electron spectroscopic studies of a magnetite (Fe3O4)(001) surface. Magnetite is a semimetal with a high density of states in the minority band, but a large band gap in the majority states at the Fermi energy. The polarization of the secondary emission cascade is measured using spin-resolved secondary electron emission spectroscopy (SRSEES), and reflects the semimetallic spin structure of Fe3O4. The polarization plateau of spin-resolved secondary emission (29.8%) matches the average 3D band polarization of stoichiometric Fe3O4 as determined from spin-resolved band structure calculations (34.2%). An enhancement of the polarization of the secondary electrons at lowest energies will also be discussed. Spin-resolved Auger emission spectroscopy (SRAES) of the Fe3O4 films have been measured and show correlation effects in the valence-valence Auger transitions. Suppressed intensity and polarization of M23M45M45 Auger emission relative to M1M45M45 Auger emission is observed, as well as strong resonant emission with shake-up. Conversely, no spin polarization is detected in the spin-resolved oxygen LMM Auger features, although oxygen Auger emission (in which we can distinguish between adsorbed and bonded oxygen) is used to verify surface cleanliness of the samples. The synthesis of Fe3O4 films grown on magnesium oxide (001) substrates using oxygen plasma-assisted molecular beam epitaxy will be discussed, as will thin-film characterization using SQUID magnetometry and x-ray and electron diffraction. A unique angle-, energy-, and spin-resolved electron spectrometer has been designed and built for the study of magnetic surfaces, and these studies represent its' first use. That spectrometer is based on a tandem configuration of an energy-dispersive energy analyzer and Mott spin polarimeter.

  8. Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films.

    PubMed

    Zhuang, Hao; Yang, Nianjun; Zhang, Lei; Fuchs, Regina; Jiang, Xin

    2015-05-27

    Microstructures of the materials (e.g., crystallinitiy, defects, and composition, etc.) determine their properties, which eventually lead to their diverse applications. In this contribution, the properties, especially the electrochemical properties, of cubic silicon carbide (3C-SiC) films have been engineered by controlling their microstructures. By manipulating the deposition conditions, nanocrystalline, microcrystalline and epitaxial (001) 3C-SiC films are obtained with varied properties. The epitaxial 3C-SiC film presents the lowest double-layer capacitance and the highest reversibility of redox probes, because of its perfect (001) orientation and high phase purity. The highest double-layer capacitance and the lowest reversibility of redox probes have been realized on the nanocrystalline 3C-SiC film. Those are ascribed to its high amount of grain boundaries, amorphous phases and large diversity in its crystal size. Based on their diverse properties, the electrochemical performances of 3C-SiC films are evaluated in two kinds of potential applications, namely an electrochemical capacitor using a nanocrystalline film and an electrochemical dopamine sensor using the epitaxial 3C-SiC film. The nanocrystalline 3C-SiC film shows not only a high double layer capacitance (43-70 μF/cm(2)) but also a long-term stability of its capacitance. The epitaxial 3C-SiC film shows a low detection limit toward dopamine, which is one to 2 orders of magnitude lower than its normal concentration in tissue. Therefore, 3C-SiC film is a novel but designable material for different emerging electrochemical applications such as energy storage, biomedical/chemical sensors, environmental pollutant detectors, and so on.

  9. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  10. Multifunctional epitaxial systems on silicon substrates

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John Thomas; Narayan, Jagdish

    2016-09-01

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO3, SrTiO3 (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called "domain matching epitaxy," is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%-25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation "smart" devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a

  11. Stranski-Krastanow islanding initiated on the stochastic rough surfaces of the epitaxially strained thin films

    SciTech Connect

    Tarik Ogurtani, Omer; Celik, Aytac; Emre Oren, Ersin

    2014-06-14

    Quantum dots (QD) have discrete energy spectrum, which can be adjusted over a wide range by tuning composition, density, size, lattice strain, and morphology. These features make quantum dots attractive for the design and fabrication of novel electronic, magnetic and photonic devices and other functional materials used in cutting-edge applications. The formation of QD on epitaxially strained thin film surfaces, known as Stranski-Krastanow (SK) islands, has attracted great attention due to their unique electronic properties. Here, we present a systematic dynamical simulation study for the spontaneous evolution of the SK islands on the stochastically rough surfaces (nucleationless growth). During the development of SK islands through the mass accumulation at randomly selected regions of the film via surface drift-diffusion (induced by the capillary and mismatch stresses) with and/or without growth, one also observes the formation of an extremely thin wetting layer having a thickness of a few Angstroms. Above a certain threshold level of the mismatch strain and/or the size of the patch, the formation of multiple islands separated by shallow wetting layers is also observed as metastable states such as doublets even multiplets. These islands are converted into a distinct SK islands after long annealing times by coalescence through the long range surface diffusion. Extensive computer simulation studies demonstrated that after an initial transient regime, there is a strong quadratic relationship between the height of the SK singlet and the intensity of the lattice mismatch strain (in a wide range of stresses up to 8.5 GPa for germanium thin crystalline films), with the exception at those critical points where the morphological (shape change with necking) transition takes place.

  12. III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wildeson, Isaac H.; Colby, Robert; Ewoldt, David A.; Liang, Zhiwen; Zakharov, Dmitri N.; Zaluzec, Nestor J.; García, R. Edwin; Stach, Eric A.; Sands, Timothy D.

    2010-08-01

    Nanopyramid light emitting diodes (LEDs) have been synthesized by selective area organometallic vapor phase epitaxy. Self-organized porous anodic alumina is used to pattern the dielectric growth templates via reactive ion etching, eliminating the need for lithographic processes. (In,Ga)N quantum well growth occurs primarily on the six {11¯01} semipolar facets of each of the nanopyramids, while coherent (In,Ga)N quantum dots with heights of up to ˜20 nm are incorporated at the apex by controlling growth conditions. Transmission electron microscopy (TEM) indicates that the (In,Ga)N active regions of the nanopyramid heterostructures are completely dislocation-free. Temperature-dependent continuous-wave photoluminescence of nanopyramid heterostructures yields a peak emission wavelength of 617 nm and 605 nm at 300 K and 4 K, respectively. The peak emission energy varies with increasing temperature with a double S-shaped profile, which is attributed to either the presence of two types of InN-rich features within the nanopyramids or a contribution from the commonly observed yellow defect luminescence close to 300 K. TEM cross-sections reveal continuous planar defects in the (In,Ga)N quantum wells and GaN cladding layers grown at 650-780 °C, present in 38% of the nanopyramid heterostructures. Plan-view TEM of the planar defects confirms that these defects do not terminate within the nanopyramids. During the growth of p-GaN, the structure of the nanopyramid LEDs changed from pyramidal to a partially coalesced film as the thickness requirements for an undepleted p-GaN layer result in nanopyramid impingement. Continuous-wave electroluminescence of nanopyramid LEDs reveals a 45 nm redshift in comparison to a thin-film LED, suggesting higher InN incorporation in the nanopyramid LEDs. These results strongly encourage future investigations of III-nitride nanoheteroepitaxy as an approach for creating efficient long wavelength LEDs.

  13. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  14. Epitaxial oxide bilayer on Pt (001) nanofacets

    NASA Astrophysics Data System (ADS)

    Hennessy, Daniel; Komanicky, Vladimir; Iddir, Hakim; Pierce, Michael S.; Menzel, Andreas; Chang, Kee-Chul; Barbour, Andi; Zapol, Peter; You, Hoydoo

    2012-01-01

    We observed an epitaxial, air-stable, partially registered (2 × 1) oxide bilayer on Pt (001) nanofacets [V. Komanicky, A. Menzel, K.-C. Chang, and H. You, J. Phys. Chem. 109, 23543 (2005)]. The bilayer is made of two half Pt layers; the top layer has four oxygen bonds and the second layer two. The positions and oxidation states of the Pt atoms are determined by analyzing crystal truncation rods and resonance scattering data. The positions of oxygen atoms are determined by density functional theory (DFT) calculations. Partial registry on the nanofacets and the absence of such registry on the extended Pt (001) surface prepared similarly are explained in DFT calculations by strain relief that can be accommodated only by nanoscale facets.

  15. Shaping metal nanocrystals through epitaxial seeded growth

    SciTech Connect

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  16. Modelling the nucleation and chirality selection of carbon nanotubes.

    PubMed

    Li, L; Reich, S; Robertson, J

    2006-05-01

    The selection of chiralities of single-walled carbon nanotubes is one of the key problems of nanotube science. We suggest that the chirality-selective growth of SWNTs could be achieved using chemical vapour deposition (CVD) by controlling the type of caps that form during the nucleation stage. As the catalyst can be solid during CVD, the formation of particular caps may be favoured by an epitaxial relationship to the catalyst surface. The corresponding tubes would then grow preferentially. We show by ab-initio calculations that the formation energy of some lattice-matched caps and tubes are 1-2 eV lower than the non lattice-matched structures.

  17. Single-crystal cubic boron nitride thin films grown by ion-beam-assisted molecular beam epitaxy

    SciTech Connect

    Hirama, Kazuyuki Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Krockenberger, Yoshiharu; Yamamoto, Hideki

    2014-03-03

    We investigated the formation of cubic boron nitride (c-BN) thin films on diamond (001) and (111) substrates by ion-beam-assisted molecular beam epitaxy (MBE). The metastable c-BN (sp{sup 3}-bonded BN) phase can be epitaxially grown as a result of the interplay between competitive phase formation and selective etching. We show that a proper adjustment of acceleration voltage for N{sub 2}{sup +} and Ar{sup +} ions is a key to selectively discriminate non-sp{sup 3} BN phases. At low acceleration voltage values, the sp{sup 2}-bonded BN is dominantly formed, while at high acceleration voltages, etching dominates irrespective of the bonding characteristics of BN.

  18. InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer.

    PubMed

    Hsu, Wei-Ju; Chen, Kuei-Ting; Huang, Wan-Chun; Wu, Chia-Jung; Dai, Jing-Jie; Chen, Sy-Hann; Lin, Chia-Feng

    2016-05-30

    A Si-heavy doped GaN:Si epitaxial layer is transformed into a directional nanopipe GaN layer through a laser-scribing process and a selectively electrochemical (EC) etching process. InGaN light-emitting diodes (LEDs) with an EC-treated nanopipe GaN layer have a high light extraction efficiency. The direction of the nanopipe structure was directed perpendicular to the laser scribing line and was guided by an external bias electric field. An InGaN LED structure with an embedded nanopipe GaN layer can enhance external quantum efficiency through a one-step epitaxial growth process and a selective EC etching process. A birefringence optical property and a low effective refractive index were observed in the directional-nanopipe GaN layer.

  19. InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer.

    PubMed

    Hsu, Wei-Ju; Chen, Kuei-Ting; Huang, Wan-Chun; Wu, Chia-Jung; Dai, Jing-Jie; Chen, Sy-Hann; Lin, Chia-Feng

    2016-05-30

    A Si-heavy doped GaN:Si epitaxial layer is transformed into a directional nanopipe GaN layer through a laser-scribing process and a selectively electrochemical (EC) etching process. InGaN light-emitting diodes (LEDs) with an EC-treated nanopipe GaN layer have a high light extraction efficiency. The direction of the nanopipe structure was directed perpendicular to the laser scribing line and was guided by an external bias electric field. An InGaN LED structure with an embedded nanopipe GaN layer can enhance external quantum efficiency through a one-step epitaxial growth process and a selective EC etching process. A birefringence optical property and a low effective refractive index were observed in the directional-nanopipe GaN layer. PMID:27410087

  20. Microdomain patterns from directional eutectic solidification and epitaxy

    PubMed

    De Rosa C; Park; Thomas; Lotz

    2000-05-25

    Creating a regular surface pattern on the nanometre scale is important for many technological applications, such as the periodic arrays constructed by optical microlithography that are used as separation media in electrophoresis, and island structures used for high-density magnetic recording devices. Block copolymer patterns can also be used for lithography on length scales below 30 nanometres (refs 3-5). But for such polymers to prove useful for thin-film technologies, chemically patterned surfaces need to be made substantially defect-free over large areas, and with tailored domain orientation and periodicity. So far, control over domain orientation has been achieved by several routes, using electric fields, temperature gradients, patterned substrates and neutral confining surfaces. Here we describe an extremely fast process that leads the formation of two-dimensional periodic thin films having large area and uniform thickness, and which possess vertically aligned cylindrical domains each containing precisely one crystalline lamella. The process involves rapid solidification of a semicrystalline block copolymer from a crystallizable solvent between glass substrates using directional solidification and epitaxy. The film is both chemically and structurally periodic, thereby providing new opportunities for more selective and versatile nanopatterned surfaces.