Sample records for selected metal ions

  1. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  2. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores

    PubMed Central

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D.; Hill, Anita J.; Wang, Huanting

    2018-01-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future. PMID:29487910

  3. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores.

    PubMed

    Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D; Hill, Anita J; Wang, Huanting

    2018-02-01

    Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future.

  4. Spectroscopic detection of metals ions using a novel selective sensor

    NASA Astrophysics Data System (ADS)

    Peralta-Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfan, N.

    2011-09-01

    Colorimetric chemosensors are simple, economical and practical optical approach for detecting toxic metal ions (Hg2+, Pb2+, Ni2+, etc.) in the environment. In this work, we present a simple but highly specific organic compound 4-chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for divalent metal ions in H2O. The mechanism of the interaction between L1 and various metal-ions has been established by UV-vis absorption and emission spectroscopic experiments that indicate favorable coordination of metal ions with L1 in different solvents. Experimental results indicate that the shape of the electronic transition band of L1 (receptor compound) changed after the interaction with divalent metal-ions, such as Hg2+, Pb2+, Mn2+, Co2+, Cu2+, and Ni2+ in aqueous solution. We found that L1 have a considerable selectivity for Ni2+ ions, even in presence of other metals ions when mixtures of DMSO/H2O as are used as solvents. L1, which has been targeted for sensing transition metal ions, exhibits binding-induced color changes from yellow to pink observed even by the naked eye in presence of Ni2+ ions.

  5. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assessment of metal ion concentration in water with structured feature selection.

    PubMed

    Naula, Pekka; Airola, Antti; Pihlasalo, Sari; Montoya Perez, Ileana; Salakoski, Tapio; Pahikkala, Tapio

    2017-10-01

    We propose a cost-effective system for the determination of metal ion concentration in water, addressing a central issue in water resources management. The system combines novel luminometric label array technology with a machine learning algorithm that selects a minimal number of array reagents (modulators) and liquid sample dilutions, such that enable accurate quantification. The algorithm is able to identify the optimal modulators and sample dilutions leading to cost reductions since less manual labour and resources are needed. Inferring the ion detector involves a unique type of a structured feature selection problem, which we formalize in this paper. We propose a novel Cartesian greedy forward feature selection algorithm for solving the problem. The novel algorithm was evaluated in the concentration assessment of five metal ions and the performance was compared to two known feature selection approaches. The results demonstrate that the proposed system can assist in lowering the costs with minimal loss in accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  8. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.

    PubMed

    Li, Zhan; Liu, Yanqi; Zhao, Yang; Zhang, Xin; Qian, Lijuan; Tian, Longlong; Bai, Jing; Qi, Wei; Yao, Huijun; Gao, Bin; Liu, Jie; Wu, Wangsuo; Qiu, Hongdeng

    2016-10-18

    Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H + concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

  9. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  10. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies.

    PubMed

    Vinod Kumar, V; Anbarasan, S; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-14

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS)) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg(2+), Cd(2+) and Pb(2+) metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    PubMed Central

    Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717

  12. DNA as Sensors and Imaging Agents for Metal Ions

    PubMed Central

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  13. Two-dimensional metal-organic frameworks with high thermoelectric efficiency through metal ion selection.

    PubMed

    He, Yuping; Spataru, Catalin D; Léonard, Francois; Jones, Reese E; Foster, Michael E; Allendorf, Mark D; Alec Talin, A

    2017-07-26

    Two-dimensional (2D) materials have attracted much attention due to their novel properties. An exciting new class of 2D materials based on metal-organic frameworks (MOFs) has recently emerged, displaying high electrical conductivity, a rarity among organic nanoporous materials. The emergence of these materials raises intriguing questions about their fundamental electronic, optical, and thermal properties, but few studies exist in this regard. Here we present an atomistic study of the thermoelectric properties of crystalline 2D MOFs X 3 (HITP) 2 with X = Ni, Pd or Pt, and HITP = 2,3,6,7,10,11-hexaiminotriphenylene, using both ab initio transport models and classical molecular dynamics simulations. We find that these materials have a high Seebeck coefficient and low thermal conductivity, making them promising for thermoelectric applications. Furthermore, we explore the dependence of thermoelectric transport properties on the atomic structure by comparing the calculated band structure, band alignment, and electronic density of states of the three 2D MOFs, and find that the thermoelectric transport properties strongly depend on both the interaction between the ligands and the metal ions, and the d orbital splitting of the metal ions induced by the ligands. This demonstrates that selection of the metal ion is a powerful approach to control and enhance the thermoelectric properties. Interestingly we reveal an unexpected effect where, unlike for electrons, the thermal and electrical current may not be equally carried by the holes, leading to a significant deviation from the Wiedemann-Franz law. The results of this work provide fundamental guidance to optimize the existing 2D MOFs, and to design and discover new families of MOF-like materials for thermoelectric applications.

  14. The Impact of Template Types on Polyeugenol to the Adsorption Selectivity of Ionic Imprinted Polymer (IIP) Fe Metal Ion

    NASA Astrophysics Data System (ADS)

    Djunaidi, M. C.; Haris, A.; Pardoyo; Rosdiana, K.

    2018-04-01

    The synthesis of IIP was carried out by variation of Fe(III) ion templates from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 compounds which then tested IIP selectivity to the Fe metal ions through adsorption process. Ionic Imprinted Polymer (IIP) is a method of printing metal ions bound in a polymer, subsequently released from the polymer matrix to produce a suitable imprint for the target ion. The purposes of this study were to produce IIP from Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates, to know the effect of templates on adsorption selectivity of IIP involving imprint cavity, and to know the impact of metal competitor on the selectivity adsorption of IIP to the Fe metals. The results obtained showed that IIP synthesized by variations of Fe(NO3)3, K3[Fe(CN)6] and NH4Fe(SO4)2 templates were successfully synthesized. The adsorption selectivity of Fe (III) metal ion in the Fe(NO3)3 template was greater than that of in the K3[Fe(CN)6] and NH4Fe(SO4)2 templates. The adsorption selectivity of Fe was greater on Fe-Cr compared to on Fe-Cd and Fe-Pb.

  15. Metal ion-dependent DNAzymes and their applications as biosensors.

    PubMed

    Lan, Tian; Lu, Yi

    2012-01-01

    Long considered to serve solely as the genetic information carrier, DNA has been shown in 1994 to be able to act as DNA catalysts capable of catalyzing a trans-esterification reaction similar to the action of ribozymes and protein enzymes. Although not yet found in nature, numerous DNAzymes have been isolated through in vitro selection for catalyzing many different types of reactions in the presence of different metal ions and thus become a new class of metalloenzymes. What remains unclear is how DNA can carry out catalysis with simpler building blocks and fewer functional groups than ribozymes and protein enzymes and how DNA can bind metal ions specifically to perform these functions. In the past two decades, many biochemical and biophysical studies have been carried out on DNAzymes, especially RNA-cleaving DNAzymes. Important insights have been gained regarding their metal-dependent activity, global folding, metal binding sites, and catalytic mechanisms for these DNAzymes. Because of their high metal ion selectivity, one of the most important practical applications for DNAzymes is metal ion detection, resulting in highly sensitive and selective fluorescent, colorimetric, and electrochemical sensors for a wide range of metal ions such as Pb(2+), UO2 2 +,[Formula: see text] including paramagnetic metal ions such as Cu(2+). This chapter summarizes recent progresses in in vitro selection of metal ion-selective DNAzymes, their biochemical and biophysical studies and sensing applications.

  16. A Liquid Chromatography Detector for Transition and Rare-Earth Metal Ions Based on a Cupric Ion-Selective Electrode

    DTIC Science & Technology

    1981-05-01

    RARE-EARTH METAL IONS BASED ON A CUPRIC ION-SELECTIVE ELECTRODE By - 4 R. CAMERON DOREY TECHNICAL REPORT FJSRL-TR-81-0005 MAY 1981 Approved for public...FORM . REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER FJSRL-TR-81-0005BO CO ENGO 4 . TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD...common anions, including halide ions, is shown, and the advantages and limitations of the system are discussed. II ’ 4 UNCLASSIFIED SECURITY

  17. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, Richard H.

    1998-01-01

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion

  18. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, R.H.

    1998-11-10

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect

  19. Theoretical studies of structure and selectivity of 5-methyl-4-(2-thiazolylazo) resorcinol as a sensor for metal ions: DFT calculation

    NASA Astrophysics Data System (ADS)

    Thaomola, Sukhontip; Sompech, Supachai

    2018-05-01

    The global minimum optimized structures of the free sensor 5-methyl-4-(2-thiazolylazo) resorcinol (5-Me-TAR) and 5-Me-TAR-Cu2+ complexes in the gas phase have been investigated by using Density Functional Theory (DFT) with the def2-TZVP basis set. To compare the selectivity of 5-Me-TAR for metal ions, the binding energy of 5-Me-TAR with various metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Pd2+, Cd2+ and Hg2+) were calculated at the same level as the theory. Binding energy values of most transition metal ions are lower than alkaline earth metal ions and alkali metal ions, respectively. The 5-Me-TAR sensor shows the highest selectivity with the Cu2+ ion. Moreover, Dependent Density Functional Theory (TDDFT) results confirm that the 5-Me-TAR-Cu2+ complex is stabilized by the sensor to metal charge transfer process. The computational studies suggested that the 5-Me-TAR is suitable for Cu2+ ion detection sensor development.

  20. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal and recovery from aqueous solutions

    DOEpatents

    Fish, Richard H.

    1997-01-01

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+,Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.

  1. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal and recovery from aqueous solutions

    DOEpatents

    Fish, R.H.

    1997-04-22

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.

  2. A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe3+ Ion.

    PubMed

    Hou, Bing-Lei; Tian, Dan; Liu, Jiang; Dong, Long-Zhang; Li, Shun-Li; Li, Dong-Sheng; Lan, Ya-Qian

    2016-10-17

    A new metal-organic framework [Zn 5 (hfipbb) 4 (trz) 2 (H 2 O) 2 ] (NNU-1) [H 2 hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), Htrz = 1H-1,2,3-triazole] was assembled by hydrothermal synthesis. Single-crystal X-ray diffraction analysis reveals that NNU-1 displays a twofold interpenetrating three-dimensional (3D) framework with a {4 24 ·6 4 }-bcu topology. Interestingly, the 3D framework contains a two-dimensional (2D) layered structure that consists of alternating left- and right-handed double helical chains. On the basis of the hydrophobic -CF 3 groups from H 2 hfipbb ligand, NNU-1 possesses excellent stability in water. It is worth noting that NNU-1 not only shows a highly selective fluorescence quenching effect to Fe 3+ ion in aqueous solution but also resists the interference of other metals including Fe 2+ ion. Accordingly, NNU-1 probably functions as a potential promising fluorescence sensor for detecting Fe 3+ ion with high sensitivity and selectivity.

  3. Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions.

    PubMed

    Yang, Zhong-Rui; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-02-07

    Here, we report that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F - ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu 3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu 3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu 3+ ions, so dual emission from both 5-bop and Eu 3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F - ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F - ions is easily achieved with high selectivity and a low detection limit (2 μM). For the first time, we reveal that rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivity toward targets.

  4. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  5. Spectroscopic studies of transition-metal ions in molten alkali-metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    This paper presents the results of electronic absorption and /sup 13/C-NMR measurements on molten alkali metal formates and acetates and on solutions of selected 3d transition metal ions therein. These studies provide a unique opportunity to explore (1) the highly ordered nature of alkali carboxylates, (2) the ligand field properties of acetate and formate ions, and (3) the coordination chemistry of the 3d transition metals in molten carboxylates. 1 figure, 2 tables.

  6. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  7. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  8. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  9. Computational Design of Metal Ion Sequestering Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Benjamin P.; Rapko, Brian M.

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach formore » discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to

  10. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    PubMed

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  11. Metal hydride compositions and lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kwo; Nei, Jean

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  12. Computational Design of Metal Ion Sequestering Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Benjamin P.; Rapko, Brian M.

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach formore » discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.« less

  13. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells

    PubMed Central

    McGhee, Claire E.; Loh, Kang Yong

    2017-01-01

    The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging the metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications. PMID:28458112

  14. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  15. Ion plating seals microcracks or porous metal components

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability.

  16. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  17. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    DOEpatents

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  18. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  19. A Single Serine Residue Determines Selectivity to Monovalent Metal Ions in Metalloregulators of the MerR Family

    PubMed Central

    Ibáñez, María M.

    2015-01-01

    ABSTRACT MerR metalloregulators alleviate toxicity caused by an excess of metal ions, such as copper, zinc, mercury, lead, cadmium, silver, or gold, by triggering the expression of specific efflux or detoxification systems upon metal detection. The sensor protein binds the inducer metal ion by using two conserved cysteine residues at the C-terminal metal-binding loop (MBL). Divalent metal ion sensors, such as MerR and ZntR, require a third cysteine residue, located at the beginning of the dimerization (α5) helix, for metal coordination, while monovalent metal ion sensors, such as CueR and GolS, have a serine residue at this position. This serine residue was proposed to provide hydrophobic and steric restrictions to privilege the binding of monovalent metal ions. Here we show that the presence of alanine at this position does not modify the activation pattern of monovalent metal sensors. In contrast, GolS or CueR mutant sensors with a substitution of cysteine for the serine residue respond to monovalent metal ions or Hg(II) with high sensitivities. Furthermore, in a mutant deleted of the Zn(II) exporter ZntA, they also trigger the expression of their target genes in response to either Zn(II), Cd(II), Pb(II), or Co(II). IMPORTANCE Specificity in a stressor's recognition is essential for mounting an appropriate response. MerR metalloregulators trigger the expression of specific resistance systems upon detection of heavy metal ions. Two groups of these metalloregulators can be distinguished, recognizing either +1 or +2 metal ions, depending on the presence of a conserved serine in the former or a cysteine in the latter. Here we demonstrate that the serine residue in monovalent metal ion sensors excludes divalent metal ion detection, as its replacement by cysteine renders a pan-metal ion sensor. Our results indicate that the spectrum of signals detected by these sensors is determined not only by the metal-binding ligand availability but also by the metal-binding cavity

  20. Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy

    PubMed Central

    Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-01-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141

  1. A bis(3-hydroxy-4-pyridinone)-EDTA derivative as a strong chelator for M3+ hard metal ions: complexation ability and selectivity.

    PubMed

    Gama, Sofia; Dron, Paul; Chaves, Silvia; Farkas, Etelka; Santos, M Amélia

    2009-08-21

    The study of chelating compounds is very important to solve problems related to human metal overload. 3-Hydroxy-3-pyridinones (HP), namely deferiprone, have been clinically used for chelating therapy of Fe and Al over the last decade. A multi-disciplinary search for alternative molecules led us to develop poly-(3-hydroxy-4-pyridinones) to increase metal chelation efficacy. We present herein a complexation study of a new bis-(3-hydroxy-4-pyridinone)-EDTA derivative with a set of M(3+) hard metal ions (M = Fe, Al, Ga), as well as Zn(2+), a biologically relevant metal ion. Thus a systematic aqueous solution equilibrium study was performed using potentiometric and spectroscopic techniques (UV-Vis, NMR methods). These set of results enables the establishment of specific models as well as the determination of thermodynamic stability constants and coordination modes of the metal complexes. The results indicate that this ligand has a higher affinity for chelating to these hard metal ions than deferiprone, and that the coordination occurs mostly through the HP moieties. Furthermore, it was also found that this ligand has a higher selectivity for chelating to M(3+) hard metal ions (M = Fe, Al, Ga) than Zn(2+).

  2. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    PubMed

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  3. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations

    PubMed Central

    Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-01-01

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  4. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  5. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.

  6. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion.

    PubMed

    Ma, Lijiao; Wang, Qing; Islam, Saiful M; Liu, Yingchun; Ma, Shulan; Kanatzidis, Mercouri G

    2016-03-02

    The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water.

  7. Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiu-Mei, E-mail: zhangxiumeilb@126.com; Li, Peng; Gao, Wei

    Three lanthanide metal-organic frameworks (Ln-MOFs), [Ln(TZI)(H{sub 2}O){sub 4}]·3H{sub 2}O (Ln=Gd (1) and Tb (2) and Dy (3), H{sub 3}TZI=5-(1H-tetrazol-5-yl)isophthalic acid), have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction reveals that 1–3 are isostructural and display a 1D double chain based on dinuclear motifs with (μ-COO){sub 2} double bridges. Magnetic studies indicate antiferromagnetic interactions in 1, ferromagnetic interactions in 2 and 3. Furthermore, compound 3 displays a slow relaxation behavior. Compound 2 exhibits intense characteristic green emission of Tb(III) ions in the solid state, which can be observed by the naked eye under UV light. Interestingly, 2 can selectivelymore » sense Pb{sup 2+} and Fe{sup 3+} ions through luminescence enhancement and quenching, respectively. The luminescence quenching mechanisms have been investigated in detail. The study on luminescence Ln-MOFs as a probe for sensing Pb{sup 2+} and Fe{sup 3+} ions is exceedingly rare example. - Graphical abstract: Three Ln-MOFs were successfully synthesized using a 5-(1H-tetrazol-5-yl)isophthalic acid ligand. They displays different magnetic behavior. Especially, the Dy(III) compound slow relaxation behavior. Interestingly, the Tb(III) compound can selectively sense Pb{sup 2+} and Fe{sup 3+} ions through luminescence enhancement and quenching, respectively. - Highlights: • Three Ln-MOFs with tetrazolate dicarboxylate ligand. • Dy(III) compound displays slow relaxation behavior. • The Tb(III) compound shows highly selective luminescence sensing of the Fe{sup 3+} and Pb{sup 2+} ions.« less

  8. Calixarene-based potentiometric ion-selective electrodes for silver.

    PubMed

    O'Connor, K M; Svehla, G; Harris, S J; McKervey, M A

    1992-11-01

    Four lipophilic sulphur and/or nitrogen containing calixarene derivatives have been tested as ionophores in Ag(I)-selective poly (vinyl chloride) membrane electrodes. All gave acceptable linear responses with one giving a response of 50 mV/dec in the Ag(I) ion activity range 10(-4)-10(-1)M and high selectivity towards other transition metals and sodium and potassium ions. This ionophore was also tested as a membrane coated glassy-carbon electrode where the sensitivity and selectivity of the conventional membrane electrode was found to be repeated. The latter electrode was then used in potentiometric titrations of halide ions with silver nitrate.

  9. New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff

    2003-12-05

    This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of

  10. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specificmore » for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.« less

  11. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater.

    PubMed

    Li, Zhaoling; Chen, Jun; Guo, Hengyu; Fan, Xing; Wen, Zhen; Yeh, Min-Hsin; Yu, Chongwen; Cao, Xia; Wang, Zhong Lin

    2016-04-20

    A fundamentally new working principle into the field of self-powered heavy-metal-ion detection and removal using the triboelectrification effect is introduced. The as-developed tribo-nanosensors can selectively detect common heavy metal ions. The water-driven triboelectric nanogenerator is taken as a sustainable power source for heavy-metal-ion removal by recycling the kinetic energy from flowing wastewater. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metallic ions in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Goldberg, R. A.

    1972-01-01

    Four positive ion composition measurements of the equatorial E region made at Thumba, India, are presented. During the day, the major ions between 90 and 125 km are NO(+) and O2(+). A metallic ion layer centered at 92 km is observed, and found to contain Mg(+), Fe(+), Ca(+), K(+), Al(+), and Na(+) ions. The layer is explained in terms of a similarly shaped latitude distribution of neutral atoms which are photoionized and charge-exchanged with NO(+) and O2(+). Three body reactions form molecular metallic ions which are rapidly lost by dissociative ion-electron recombination. Nighttime observations show downward drifting of the metallic ion layer caused by equatorial dynamo effects. These ions react and form neutral metals which exchange charges with NO(+) and O2(+) to produce an observed depletion of those ions within the metallic ion region.

  13. Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation.

    PubMed

    Guo, Yi; Ying, Yulong; Mao, Yiyin; Peng, Xinsheng; Chen, Banglin

    2016-11-21

    Extraction of lithium ions from salt-lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST-1 metal-organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST-1-6.7, with unique anchored three-dimensional sulfonate networks, shows a very high Li + conductivity of 5.53×10 -4  S cm -1 at 25 °C, 1.89×10 -3  S cm -1 at 70 °C, and Li + flux of 6.75 mol m -2  h -1 , which are five orders higher than that of the pristine HKUST-1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li + , Na + , K + , and Mg 2+ ions to the sulfonate groups, the PSS@HKUST-1-6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li + /Na + , Li + /K + , Li + /Mg 2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li + extraction membranes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, W.; Fu, D.; Chai, J.

    2010-12-10

    All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstratedmore » that ZIPB is selective for two group 12 transition metal ions, Zn{sup 2+} and Cd{sup 2+}, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.« less

  15. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    PubMed

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  16. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide.

    PubMed

    Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung

    2011-09-15

    Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions.

    PubMed

    Ye, Bao-Fen; Zhao, Yuan-Jin; Cheng, Yao; Li, Ting-Ting; Xie, Zhuo-Ying; Zhao, Xiang-Wei; Gu, Zhong-Ze

    2012-09-28

    We have developed a robust method for the visual detection of heavy metal ions (such as Hg(2+) and Pb(2+)) by using aptamer-functionalized colloidal photonic crystal hydrogel (CPCH) films. The CPCHs were derived from a colloidal crystal array of monodisperse silica nanoparticles, which were polymerized within the polyacrylamide hydrogel. The heavy metal ion-responsive aptamers were then cross-linked in the hydrogel network. During detection, the specific binding of heavy metal ions and cross-linked single-stranded aptamers in the hydrogel network caused the hydrogel to shrink, which was detected as a corresponding blue shift in the Bragg diffraction peak position of the CPCHs. The shift value could be used to estimate, quantitatively, the amount of the target ion. It was demonstrated that our CPCH aptasensor could screen a wide concentration range of heavy metal ions with high selectivity and reversibility. In addition, these aptasensors could be rehydrated from dried gels for storage and aptamer protection. It is anticipated that our technology may also be used in the screening of a broad range of metal ions in food, drugs and the environment.

  18. The Structure of the Metal Transporter Tp34 and its Affinity for Divalent Metal Ions

    NASA Astrophysics Data System (ADS)

    Knutsen, Gregory; Deka, Ranjit; Brautigam, Chad; Tomchick, Diana; Machius, Mischa; Norgard, Michael

    2007-10-01

    Tp34 is periplasmic membrane protein of the nonculitvatable spirochete Treponema pallidum, the pathogen of syphillis. It was proposed that Tp34 is a divalent metal transporter, but the identity of the preferred metal ion(s) was unclear. In this study we investigated the ability of divalent metal ions to induce rTp34 dimerization using hydrodynamic techniques and determine the crystal structure of metal bound forms. Using analytical ultracentrifugation sedimentation velocity experiments, we determined that cobalt is superior to nickel at inducing the dimerization of rTp34. rTp34 was crystallized and selected crystals were incubated at a pH 7.5 with CuSO4 and NiSO4. Diffraction experiments were conducted and the processed electron density maps showed that copper was bound to the major metal binding site as well as to three additional minor binding sites. By contrast nickel was only bound to the major metal binding site in one monomer and to three additional minor sites. These results along with previous findings support evidence of Tp34 being involved with metal transport and/or iron utilization.

  19. The new wave of ion-selective electrodes

    PubMed Central

    Pretsch, Ernö

    2007-01-01

    During the last decade, the capabilities of potentiometric analysis have changed fundamentally in that the lower limit of detection (LOD) of ion-selective electrodes (ISEs) has improved by a factor of up to one million and the discrimination factor of interferences from ions by up to one billion. These spectacular improvements are related to the control of ion fluxes through the ion-selective membrane. Nowadays, ISEs can be used for trace measurements in environmental samples. However, by reducing the volume of the samples, the LOD in terms of the amount of analytes has been reduced to the attomole range. This is promising for bioanalysis using metal nanoparticle labels. Other recent progress includes the excellent fundamental understanding of the working mechanism, the introduction of a novel kind of calibration procedure that reduces the demands on signal stability and reproducibility, and the advent of pulsed amperometric methods. PMID:12175191

  20. Laboratory Evaluation of Ion-Selective Electrodes for Simultaneous Analysis of Macronutrients in Hydroponic Solution

    USDA-ARS?s Scientific Manuscript database

    Automated sensing of macronutrients in hydroponic solution would allow more efficient management of nutrients for crop growth in closed hydroponic systems. Ion-selective microelectrode technology requires an ion-selective membrane or a solid metal material that responds selectively to one analyte in...

  1. Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.

    PubMed

    Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti

    2014-06-25

    A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.

  2. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence.

    PubMed

    Bayram, Serene S; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-15

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd 2+ , Pb 2+ , Zn 2+ and Ni 2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    NASA Astrophysics Data System (ADS)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  4. Metal Ion Modeling Using Classical Mechanics

    PubMed Central

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  5. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    PubMed

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.

  6. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.

    PubMed

    Gao, Wenfang; Liu, Chenming; Cao, Hongbin; Zheng, Xiaohong; Lin, Xiao; Wang, Haijuan; Zhang, Yi; Sun, Zhi

    2018-05-01

    Recovery of metals from spent lithium-ion batteries (LIBs) has attracted worldwide attention because of issues from both environmental impacts and resource supply. Leaching, for instance using an acidic solution, is a critical step for effective recovery of metals from spent LIBs. To achieve both high leaching efficiency and selectivity of the targeted metals, improved understanding on the interactive features of the materials and leaching solutions is highly required. However, such understanding is still limited at least caused by the variation on physiochemical properties of different leaching solutions. In this research, a comprehensive investigation and evaluation on the leaching process using acidic solutions to recycle spent LIBs is carried out. Through analyzing two important parameters, i.e. leaching speed and recovery rate of the corresponding metals, the effects of hydrogen ion concentration, acid species and concentration on these two parameters were evaluated. It was found that a leachant with organic acids may leach Co and Li from the cathode scrap and leave Al foil as metallic form with high leaching selectivity, while that with inorganic acids typically leach all metals into the solution. Inconsistency between the leaching selectivity and efficiency during spent LIBs recycling is frequently noticed. In order to achieve an optimal status with both high leaching selectivity and efficiency (especially at high solid-to-liquid ratios), it is important to manipulate the average leaching speed and recovery rate of metals to optimize the leaching conditions. Subsequently, it is found that the leaching speed is significantly dependent on the hydrogen ion concentration and the capability of releasing hydrogen ions of the acidic leachant during leaching. With this research, it is expected to improve understanding on controlling the physiochemical properties of a leaching solution and to potentially design processes for spent LIBs recycling with high industrial

  7. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  8. Accumulation of metal ions by pectinates

    NASA Astrophysics Data System (ADS)

    Deiana, S.; Deiana, L.; Palma, A.; Premoli, A.; Senette, C.

    2009-04-01

    (II). Surprisingly, simultaneous sorption tests and SEM analyses indicate that a different mechanism regulates the sorption of Cu(II) and Pb(II) by PGAE1. In fact, the amount of Pb(II) sorbed (0.92 moles mg-1of PGAE1) by PGAE1 was nearly independent by the presence of Cu(II) ions, at least at the three different concentrations tested, that indicates a higher affinity of Pb(II). Such an aspect was further confirmed by exchange experiments. Samples of PGAE1 saturated with 1.96 moles mg-1of Cu(II) or 2.01 moles mg-1of Pb(II) were put in contact with 100 mL of solutions containing 97.3 moles of Pb(II) or 99.4 moles Cu(II), respectively. The exchange kinetics show that about 80% of Cu(II) was stochiometrically exchanged by Pb(II). In contrast, only about 10% of Pb(II) complexed by PGAE1 was exchanged by Cu(II). The kinetics of simultaneous sorption of all the metal ions tested indicate that Pb(II) is selectively sorbed by the PGAE1 gels. Cd(II) and Zn(II) show a similar affinity towards PGAE1. Thus, in the simultaneous presence of these ions, their selectivity towards this matrix follows the order: Pb > Cu > Cd ? Zn. Sorption of Cr(III) in the presence of the ions considered was not possible to carry out due to interference phenomena. The sorption of the same ions by 50 mg of PGAE2 evidences that the amount of Cu(II), Pb(II), and Cr(III) sorbed is markedly lower than that found for PGAE1. By considering that two carboxylic groups are involved in the complexation of a metal ion, the data show that such a stoichiometry is respected only for Pb(II). The amount of Cu(II) sorbed is about 50% lower than that of Pb(II) at all the pH values tested whereas those of Zn(II) and Cd(II) are negligible whereas that of Cr(III) is the highest. The different behaviour of Cu(II) compared to Pb(II) can be explained taking into account for both hydrophobic and steric effects of the methyl groups as well as to their different charge density. Thus, it can be concluded that the accumulation of metals at the

  9. CO hydrogenation on PdCo/NaY catalysts: Effect of ion hydration on metal phases and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuangen Yin; Zongchao Zhang; Sachtler, W.M.H.

    1993-02-01

    Exposure of calcined PdCo/NaY catalyst precursors to water vapor, prior to reduction, strongly affects the CO hydrogenation activity and selectivity of the reduced bimetal catalysts. With samples that had been exposed to H[sub 2]O before reduction, the formation of hydrocarbons prevails; nonhydrated reference samples of the same overall composition are mainly selective for oxygenates. After 6 h of reaction time PdCo alloy particles of 5.8 nm are detected by XRD in H[sub 2]O-exposed catalysts, but in the reference samples the metal particles are below the limit of detection by XRD. The observed effects are attributed to the formation of mobilemore » aquo-complexes of metal ions; after reduction they are converted to larger alloy particles, richer on Co, than in the reference samples. Results obtained with NaOH-neutralized and Co-free Pd/NaY catalysts are also discussed. 23 refs., 13 figs., 1 tab.« less

  10. Headgroup interactions and ion flotation efficiency in mixtures of a chelating surfactant, different foaming agents, and divalent metal ions.

    PubMed

    Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan

    2014-06-10

    The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.

  11. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  12. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

    PubMed

    Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M

    2007-05-01

    The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

  13. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.

    PubMed

    Ahmad, Mudasir; Manzoor, Kaiser; Ikram, Saiqa

    2017-12-01

    The polyfunctional chitosan can act as the biological macromolecule ligand not only for the adsorption and the recovery of metal ions from an aqueous media, but also for the fabrication of novel adsorbents which shows selectivity and better adsorption properties. The unmodified chitosan itself, a single cationic polysaccharide, has hydroxyl and amine groups carrying complex properties with the metal ions. In addition, the selectivity of metal ions, the adsorption efficiency and adsorption capacity of the adsorbent can be modified chemically. This review covers the synthetic strategies of chitosan towards the synthesis of hetero-chitosan based adsorbents via chemical modifications in past two decades. It also includes how chemical modification influences the metal adsorption with N, O, S and P containing chitosan derivatives. Hope this review article provides an opportunity for researchers in the future to explore the potential of chitosan as an adsorbent for removal of metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  15. Mechanistic Enzyme Models: Pyridoxal and Metal Ions.

    ERIC Educational Resources Information Center

    Hamilton, S. E.; And Others

    1984-01-01

    Background information, procedures, and results are presented for experiments on the pyridoxal/metal ion model system. These experiments illustrate catalysis through Schiff's base formation between aldehydes/ketones and primary amines, catalysis by metal ions, and the predictable manner in which metal ions inhibit or catalyze reactions. (JN)

  16. Selectivity and permeation of alkali metal ions in K+-channels.

    PubMed

    Furini, Simone; Domene, Carmen

    2011-06-24

    Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Insufficient acetabular version increases blood metal ion levels after metal-on-metal hip resurfacing.

    PubMed

    Hart, Alister J; Skinner, John A; Henckel, Johann; Sampson, Barry; Gordon, Fabiana

    2011-09-01

    Many factors affect the blood metal ion levels after metal-on-metal (MOM) hip arthroplasty. The main surgically adjustable variable is the amount of coverage of the head provided by the cup which is a function of the inclination and version angles. However, most studies have used plain radiographs which have questionable precision and accuracy, particularly for version and large diameter metal heads; further, these studies do not simultaneously assess version and inclination. Thus the relationship between version and blood metal ions levels has not been resolved. We determined whether cup inclination and version influence blood metal ion levels while adjusting for age at assessment, gender, body mass index, horizontal femoral offset, head size, manufacturer hip type, and Oxford hip score. We prospectively followed 100 individuals (51 females, 49 males) with unilateral MOM hip resurfacing who underwent clinical assessment, CT scanning, and blood metal ion measurement. Multiple regression analysis was used to determine which variables were predictors of blood metal ion levels and to model the effect of these variables. Only cup inclination, version angles, and gender influenced blood cobalt or chromium levels. Cobalt and chromium levels positively correlated with inclination angle and negatively correlated with version angle. The effect of changes in version angle was less than for inclination angle. Based on our observations, we developed a formula to predict the effect of these parameters on metal ion levels. Our data suggest insufficient cup version can cause high blood metal ions after MOM hip arthroplasty. We were unable to show that excessive version caused high levels. Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.

  18. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.

    PubMed

    Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian

    2005-03-01

    We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.

  19. Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment.

    PubMed

    Jiang, Jiebing; Sun, Xueni; Li, Yan; Deng, Chunhui; Duan, Gengli

    2018-02-01

    Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb 5+ , Ti 4+ , Zr 4+ , Ga 3+ , Y 3+ , In 3+ , Ce 4+ , Fe 3+ , were immobilized on the polydopamine (PDA)-coated Fe 3 O 4 (denoted as Fe 3 O 4 @PDA-M n+ ), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe 3 O 4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe 3 O 4 @PDA. After characterization, the resultant Fe 3 O 4 @PDA-M n+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe 3 O 4 @PDA-Nb 5+ and Fe 3 O 4 @PDA-Ti 4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.

    2016-08-01

    Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.

  2. Binding selectivity of vitamin K3 based chemosensors towards nickel(II) and copper(II) metal ions

    NASA Astrophysics Data System (ADS)

    Patil, Amit; Lande, Dipali N.; Nalkar, Archana; Gejji, Shridhar P.; Chakrovorty, Debamitra; Gonnade, Rajesh; Moniz, Tânia; Rangel, Maria; Pereira, Eulália; Salunke-Gawali, Sunita

    2017-09-01

    The vitamin K3 derivatives 2-methyl-3-[(pyridin-2-ylmethyl)-amino]-1,4-naphthoquinone (M-1), 2-methyl-3-[(pyridin-2-ylethyl)-amino]-1,4-naphthoquinone (M-2), 2-methyl-3-((2-(thiophen-2-yl)methyl)amino)naphthalene-1,4-dione (M-3) and 2-methyl-3-((2-(thiophen-2-yl)ethyl)amino)naphthalene-1,4-dione (M-4) have been synthesized, characterized and studied for their chemosensor abilities towards transition metal ions. Crystal structures of M-1 to M-4 revealed a variety of Nsbnd H⋯O, Csbnd H⋯O, Csbnd H⋯π and π⋯π interactions. Minor variations in such interactions by chemical stimuli such as metal ions, results in change in color that can be visualized by naked eyes. It has been shown that electronic structure and 1H NMR, vibrational as well as electronic spectra from the density functional theory agree well with the experiments. The metal ion binding in ethanol, ethanol-water and in mild base triethylamine brings forth recognizing ability of M-1 toward Ni2+ whereas M-2 exhibits large sensing ability for Cu2+ ion. Interestingly M-1 display varying metal ion binding specificity in different solvents with the association constant in ethanol being 11,786 M-1 for Ni2+ compared to 9462 M-1 for the Cu2+. A reversal in preferential binding of M-2 with the respective association constants being 4190 M-1 and 6370 M-1 is discernible.

  3. Potentiometric titration of metal ions in ethanol.

    PubMed

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented.

  4. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  5. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review.

    PubMed

    Pathak, Ashish; Morrison, Liam; Healy, Mark Gerard

    2017-04-01

    Bioleaching is considered to be a low-cost, eco-friendly technique for leaching valuable metals from a variety of matrixes. However, the inherent slow dissolution kinetics and low metal leaching yields have restricted its wider commercial applicability. Recent advancements in bio-hydrometallurgy have suggested that these critical issues can be successfully alleviated through the addition of a catalyst. The catalyzing properties of a variety of metals ions (Ag + , Hg ++ , Bi +++ , Cu ++ , Co ++ etc.) during bioleaching have been successfully demonstrated. In this article, the role and mechanisms of these metal species in catalyzing bioleaching from different minerals (chalcopyrite, complex sulfides, etc.) and waste materials (spent batteries) are reviewed, techno-economic and environmental challenges associated with the use of metals ions as catalysts are identified, and future prospectives are discussed. Based on the analysis, it is suggested that metal ion-catalyzed bioleaching will play a key role in the development of future industrial bio-hydrometallurgical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions.

    PubMed

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-01-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  7. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    NASA Astrophysics Data System (ADS)

    Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj

    2017-07-01

    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  8. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  9. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  10. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  11. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    PubMed

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  12. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  13. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    PubMed Central

    2012-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271

  14. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    PubMed Central

    Ciotta, Erica; Paoloni, Stefano; Richetta, Maria; Tagliatesta, Pietro; Lorecchio, Chiara; Casciardi, Stefano

    2017-01-01

    A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs) is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III) was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM) images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III) and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor. PMID:29135946

  15. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-09

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  16. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    PubMed Central

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  17. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: combined QM and MD based investigations.

    PubMed

    Sadhu, Biswajit; Sundararajan, Mahesh; Bandyopadhyay, Tusar

    2017-10-18

    The bacterial NaK ion channel is distinctly different from other known ion channels due to its inherent non-selective feature. One of the unexplored and rather interesting features is its ability to permeate divalent metal ions (such as Ca 2+ and Ba 2+ ) and not monovalent alkali metal ions. Several intriguing questions about the energetics and structural aspects still remain unanswered. For instance, what causes Ca 2+ to permeate as well as block the selectivity filter (SF) of the NaK ion channel and act as a "permeating blocker"? How and at what energetic cost does another chemical congener, Sr 2+ , as well as Ba 2+ , a potent blocker of the K + ion channel, permeate through the SF of the NaK ion channel? Finally, how do their translocation energetics differ from those of monovalent ions such as K + ? Here, in an attempt to address these outstanding issues, we elucidate the structure, binding and selectivity of divalent ions (Ca 2+ , Sr 2+ and Ba 2+ ) as they permeate through the SF of the NaK ion channel using all-atom molecular dynamics simulations and density functional theory based calculations. We unveil mechanistic insight into this translocation event using well-tempered metadynamics simulations in a polarizable environment using the mean-field model of water and incorporating electronic continuum corrections for ions via charge rescaling. The results show that, akin to K + coordination, Sr 2+ and Ba 2+ bind at the SF in a very similar fashion and remain octa-coordinated at all sites. Interestingly, differing from its local hydration structure, Ca 2+ interacts with eight carbonyls to remain at the middle of the S3 site. Furthermore, the binding of divalent metals at SF binding sites is more favorable than the binding of K + . However, their permeation through the extracellular entrance faces a considerably higher energetic barrier compared to that for K + , which eventually manifests their inherent blocking feature.

  18. Filtered cathodic arc deposition with ion-species-selective bias.

    PubMed

    Anders, André; Pasaja, Nitisak; Sansongsiri, Sakon

    2007-06-01

    A dual-cathode arc plasma source was combined with a computer-controlled bias amplifier to synchronize substrate bias with the pulsed production of plasma. In this way, bias can be applied in a material-selective way. The principle has been applied to the synthesis of metal-doped diamondlike carbon films, where the bias was applied and adjusted when the carbon plasma was condensing and the substrate was at ground when the metal was incorporated. In doing so, excessive sputtering by energetic metal ions can be avoided while the sp(3)sp(2) ratio can be adjusted. It is shown that the resistivity of the film can be tuned by this species-selective bias; Raman spectroscopy was used to confirm expected changes of the amorphous ta-C:Mo films. The species-selective bias principle could be extended to multiple material plasma sources and complex materials.

  19. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  20. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  1. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  2. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  3. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes

    PubMed Central

    Deveau, Jason S.T.; Grodzinski, Bernard

    2005-01-01

    We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of ~150 μm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix. PMID:16136222

  4. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    PubMed

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage

  5. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review).

    PubMed

    Deshmukh, Megha A; Shirsat, Mahendra D; Ramanaviciene, Almira; Ramanavicius, Arunas

    2018-07-04

    Current review signifies recent trends and challenges in the development of electrochemical sensors based on organic conducting polymers (OCPs), carbon nanotubes (CNTs) and their composites for the determination of trace heavy metal ions in water are reviewed. OCPs and CNTs have some suitable properties, such as good electrical, mechanical, chemical and structural properties as well as environmental stability, etc. However, some of these materials still have significant limitations toward selective and sensitive detection of trace heavy metal ions. To overcome the limitations of these individual materials, OCPs/CNTs composites were developed. Application of OCPs/CNTs composite and their novel properties for the adsorption and detection of heavy metal ions outlined and discussed in this review.

  6. Structurally colored biopolymer thin films for detection of dissolved metal ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cathell, Matthew David

    Natural polymers, such as the polysaccharides alginate and chitosan, are noted sorbents of heavy metals. Their polymer backbone structures are rich in ligands that can interact with metal ions through chelation, electrostatics, ion exchange and nonspecific mechanisms. These water-soluble biopolymer materials can be processed into hydrogel thin films, creating high surface area interfaces ideal for binding and sequestering metal ions from solution. By virtue of their uniform nanoscale dimensions (with thicknesses smaller than wavelengths of visible light) polymer thin films exhibit structure-based coloration. This phenomenon, frequently observed in nature, causes the transparent and essentially colorless films to reflect light in a wide array of colors. The lamellar film structures act as one-dimensional photonic crystals, allowing selective reflection of certain wavelengths of light while minimizing other wavelengths by out-of-phase interference. The combination of metal-binding and reflective properties make alginate and chitosan thin films attractive candidates for analyte sensing. Interactions with metal ions can induce changes in film thicknesses and refractive indices, thus altering the path of light reflected through the film. Small changes in dimensional or optical properties can lead to shifts in film color that are perceivable by the unaided eye. These thin films offer the potential for optical sensing of toxic dissolved materials without the need for instrumentation, external power or scientific expertise. With the use of a spectroscopic ellipsometer and a fiber optic reflectance spectrometer, the physical and optical characteristics of biopolymer thin films have been characterized in response to 50 ppm metal ion solutions. It has been determined that metal interactions can lead to measurable changes in both film thicknesses and effective refractive indices. The intrinsic response behaviors of alginate and chitosan, as well as the responses of modified

  7. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  8. Pseudo ribbon metal ion beam source.

    PubMed

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  9. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  10. PDMS based photonic lab-on-a-chip for the selective optical detection of heavy metal ions.

    PubMed

    Ibarlucea, Bergoi; Díez-Gil, César; Ratera, Inma; Veciana, Jaume; Caballero, Antonio; Zapata, Fabiola; Tárraga, Alberto; Molina, Pedro; Demming, Stephanie; Büttgenbach, Stephanus; Fernández-Sánchez, César; Llobera, Andreu

    2013-02-21

    The selective absorbance detection of mercury(II) (Hg(2+)) and lead(II) (Pb(2+)) ions using ferrocene-based colorimetric ligands and miniaturized multiple internal reflection (MIR) systems implemented in a low-cost photonic lab on a chip (PhLoC) is reported. The detection principle is based on the formation of selective stable complexes between the heavy metal ion and the corresponding ligand. This interaction modulates the ligand spectrum by giving rise to new absorbance bands or wavelength shifting of the existing ones. A comparative study for the detection of Hg(2+) was carried out with two MIR-based PhLoC systems showing optical path lengths (OPLs) of 0.64 cm and 1.42 cm as well as a standard cuvette (1.00 cm OPL). Acetonitrile solutions containing the corresponding ligand and increasing concentrations of the heavy metal ion were pumped inside the systems and the absorbance in the visible region of the spectra was recorded. The optical behaviour of all the tested systems followed the expected Beer-Lambert law. Thus, the best results were achieved with the one with the longest OPL, which showed a linear behaviour in a concentration range of 1 μM-90 μM Hg(2+), a sensitivity of 5.6 × 10(-3) A.U. μM(-1) and a LOD of 2.59 μM (0.49 ppm), this being 1.7 times lower than that recorded with a standard cuvette, and using a sample/reagent volume around 190 times smaller. This microsystem was also applied for the detection of Pb(2+) and a linear behaviour in a concentration range of 3-100 μM was obtained, and a sensitivity of 9.59 × 10(-4) A.U. μM(-1) and a LOD of 4.19 μM (0.868 ppm) were achieved. Such a simple analytical tool could be implemented in portable instruments for automatic in-field measurements and, considering the minute sample and reagent volume required, would enable the deployment of high throughput environmental analysis of these pollutants and other related hazardous species.

  11. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.

    PubMed

    Peroza, Estevão A; dos Santos Cabral, Augusto; Wan, Xiaoqiong; Freisinger, Eva

    2013-09-01

    Metallothioneins (MTs) are among others involved in the cellular regulation of essential Zn(II) and Cu(I) ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the Zn(II)-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. Zn(II) competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the Zn(II) release processes. The Cu(I)-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. Zn(II) release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

  12. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization.

    PubMed

    Lee, Chuping; Lu, I-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser. Graphical Abstract ᅟ.

  13. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun

    2009-01-26

    A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.

  14. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    PubMed

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  15. Nuclear quantum effects on adsorption of H2 and isotopologues on metal ions

    NASA Astrophysics Data System (ADS)

    Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; Jakowski, Jacek; Garashchuk, Sophya

    2017-02-01

    The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of H2 and isotopologues on metal ions, are examined using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. The lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions. Analysis of the nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) performed for complexes of Li+ and Cu+2 with H2/D2/HD shows that the PES anharmonicity changes the ZPE by up to 9%.

  16. Yeast enolase: mechanism of activation by metal ions.

    PubMed

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  17. Effect of metal ions on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp. 99-125.

    PubMed

    Lu, Jike; Wang, Pei; Ke, Zhaodi; Liu, Xin; Kang, Qiaozhen; Hao, Limin

    2018-07-15

    In order to study the effect of metal ions on the enzymatic hydrolysis of hemp seed oil by Candida sp. 99-125, the spectroscopy, stability and hydrolytic activity of the biocatalyst were investigated in presence of Ca 2+ , Mg 2+ , Fe 2+ , Fe 3+ , Cu 2+ , Sn 2+ , Pb 2+ , Zn 2+ and Ba 2+ metal ions, respectively. The UV spectroscopy showed that all the metal ions enhanced the absorbance but the decrease of fluorescence intensity was observed. All the metal ions could improve the lipase thermal stability except Cu 2+ and Ba 2+ . Hydrolysis of hemp seed oil proved that Ca 2+ , Fe 3+ , Pb 2+ and Ba 2+ could significantly improve the hydrolytic rate, and metal ions could influence lipase selectivity. The study revealed that metal ions could improve lipase stability, hydrolysis activity in the hydrolytic process of hemp seed oil by Candida sp. 99-125. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  19. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    PubMed

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  20. Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams.

    PubMed

    Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz

    2016-04-01

    Heavy metals from industrial processes are of special concern because they produce chronic poisoning in the aquatic environment. More strict environmental regulations on the discharge of toxic metals require the development of various technologies for their removal from polluted streams (i.e. industrial wastewater, mine waters, landfill leachate, and groundwater). The separation of toxic metal ions using immobilized materials (novel sorbents and membranes with doped ligands), due to their high selectivity and removal efficiency, increased stability, and low energy requirements, is promising for improving the environmental quality. This critical review is aimed at studying immobilized materials as potential remediation agents for the elimination of numerous toxic metal (e.g. Pb, Cd, Hg, and As) ions from polluted streams. This study covers the general characteristics of immobilized materials and separation processes, understanding of the metal ion removal mechanisms, a review of the application of immobilized materials for the removal of toxic metal ions, as well as the impacts of various parameters on the removal efficiency. In addition, emerging trends and opportunities in the field of remediation technologies using these materials are addressed.

  1. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    PubMed

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  2. Ion Implantation Studies of Titanium Metal Surfaces.

    DTIC Science & Technology

    1981-01-01

    sf.Th. 82-0 327 11,y 604.)___ _ 4 . TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Ion Implantation Studies of Titanium Metal Suf s 6 ...AD-A113 7ag GEORGIA INST OF TECH ATLANTA SCHOOL OF PHYSICS FIG 11/ 6 ION IMPLANTATION STUDOIES OF TITANIUM METAL SURtFACES. (U) 1901 J R STEVENSON. K...LL0 kpproved ror 82 4 ±s~rutic iui.~o 82r-~~ ION IMPLANTATION STUDIES OF TITANIUM METAL SURFACES SECURITY CLASSIFICATION OIOF THIS PAGE (0fen Date

  3. An Innovative Metal Ions Sensitive “Test Paper” Based on Virgin Nanoporous Silicon Wafer: Highly Selective to Copper(II)

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Chen, Xiuhua; Ma, Wenhui; Ding, Zhao; Zhang, Cong; Chen, Zhengjie; He, Xiao; Shang, Yudong; Zou, Yuxin

    2016-11-01

    Developing an innovative “Test Paper” based on virgin nanoporous silicon (NPSi) which shows intense visible emission and excellent fluorescence stability. The visual fluorescence quenching “Test Paper” was highly selective and sensitive recognizing Cu2+ at μmol/L level. Within the concentration range of 5 × 10-7 ~50 × 10-7mol/L, the linear regression equation of IPL = 1226.3-13.6[CCu2+] (R = 0.99) was established for Cu2+ quantitative detection. And finally, Cu2+ fluorescence quenching mechanism of NPSi prober was proposed by studying the surface chemistry change of NPSi and metal ions immersed-NPSi using XPS characterization. The results indicate that SiHx species obviously contribute to the PL emission of NPSi, and the introduce of oxidization state and the nonradiative recombination center are responsible for the PL quenching. These results demonstrate how virgin NPSi wafer can serve as Cu2+ sensor. This work is of great significant to promote the development of simple instruments that could realize rapid, visible and real-time detection of various toxic metal ions.

  4. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  5. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  6. Growth of metal phthalocyanine on deactivated semiconducting surfaces steered by selective orbital coupling

    DOE PAGES

    Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...

    2015-08-25

    Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.

  7. In-situ imaging of chloride ions at the metal/solution interface by scanning combination microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.J.; Du, R.G.; Nguyen, T.

    2000-01-01

    Combination solid silver-silver chloride (Ag-AgCl) and liquid membrane Cl{sup {minus}} ion-selective microelectrodes were designed and constructed. These microelectrodes, which had a micrometer-sized tip, contained two compartments: one served as the reference electrode and the other as the Cl{sup {minus}} ion-selective electrode. The microelectrodes were used to map in-situ Cl{sup {minus}} ion distribution in several localized corrosion systems. When used with a computerized scanning stage, the microelectrodes provided information on the distribution of Cl{sup {minus}} ions near the metal/electrolyte interface. Cl{sup {minus}} ions were observed migrating toward and accumulating near the anodic region forming a Cl{sup {minus}}ion-rich island on the metalmore » surface. Scanning combination Cl{sup {minus}} ion-selective microelectrodes may provide a useful tool for mechanistic studies of localized corrosion.« less

  8. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions.

    PubMed

    Yang, Shengyuan; Wu, Chao; Tan, Hui; Wu, Yan; Liao, Shuzhen; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2013-01-02

    In this study, to enhance the capability of metal ions disturbing the orientation of liquid crystals (LCs), we designed a new label-free LC biosensor for the highly selective and sensitive detection of heavy metal ions. This strategy makes use of the target-induced DNA conformational change to enhance the disruption of target molecules for the orientation of LC leading to an amplified optical signal. The Hg(2+) ion, which possesses a unique property to bind specifically to two DNA thymine (T) bases, is used as a model heavy metal ion. In the presence of Hg(2+), the specific oligonucleotide probes form a conformational reorganization of the oligonucleotide probes from hairpin structure to duplex-like complexes. The duplex-like complexes are then bound on the triethoxysilylbutyraldehyde/N,N-dimethyl-N-octadecyl (3-aminopropyl) trimethoxysilyl chloride (TEA/DMOAP)-coated substrate modified with capture probes, which can greatly distort the orientational profile of LC, making the optical image of LC cell birefringent as a result. The optical signal of LC sensor has a visible change at the Hg(2+) concentration of low to 0.1 nM, showing good detection sensitivity. The cost-effective LC sensing method can translate the concentration signal of heavy metal ions in solution into the presence of DNA duplexes and is expected to be a sensitive detection platform for heavy metal ions and other small molecule monitors.

  9. Effect of heavy metals ions on enzyme activity in the Mediterranean mussel, Donax trunculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrahi, L.; Achituv, Y.

    Heavy metal ions strongly are bound by sulfhydryl groups of proteins. Sulfhydryl binding changes the structure and enzymatic activities of proteins and causes toxic effects evident at the whole organism level. Heavy metal ions like Cd, Cu, Hg, Zn, and Pb in sufficiently high concentrations might kill organisms or cause other adverse effects that changing aquatic community structures. Bivalves are known to be heavy metal accumulators. The aim of the present study was to examine the effects of different concentrations of each of five heavy metal ions on the activity of four enzymes in D. trunculus. As it is knownmore » that heavy metals inhibit the activity of a wide range of enzymes, the authors chose representative examples of dehydrogenases (lactate and malate dehydrogenases), respiratory enzyme (cytochrome oxidase) and digestive enzyme ({alpha}-amylase). The acute effects of different concentrations of selected metals were examined. These concentrations were higher than those found usually in the locality where the animals occur, but might be encountered during a given event of pollution.« less

  10. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    PubMed

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn 4+ into Mn 2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion

    NASA Astrophysics Data System (ADS)

    Manjunath, Rangasamy; Kannan, Palaninathan

    2018-05-01

    A new rhodamine-based colorimetric and fluorescent turn-on chemosensor (L) has been designed and synthesized for selective and sensitive detection of Al3+ ion. The sensing behavior toward metal ion was investigated by UV/Vis and fluorescence spectroscopy. Upon addition of Al3+ ion to solution of L provided a visual color change as well as significantly fluorescent enhancement, while other metal ions including Na+, Mg2+, K+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+ and Hg2+ ions fails to generate a distinct color and spectral changes, the distinct color change and rapid switch-on fluorescence also provide naked eye detection for Al3+ ion. The mechanism involved equilibrium between non-fluorescent spirocyclic form and highly fluorescent ring open form process was utilized and 1:2 stoichiometry for L-Al3+ complex formed with an association constant of 1.42 × 103 M-1. Moreover, chemosensor L was applied for living cell imaging and confirmed that can be used as a fluorescent probe for monitoring Al3+ ion in living cells.

  12. Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer.

    PubMed

    Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2010-11-05

    In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Metal cation detection in positive ion mode electrospray ionization mass spectrometry using a tetracationic salt as a gas-phase ion-pairing agent: evaluation of the effect of chelating agents on detection sensitivity.

    PubMed

    Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W

    2012-12-30

    The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the

  14. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  15. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud

    2014-01-01

    Preparation of Zn2+ ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn2+ ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn2+ ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.

  16. Solution NMR Refinement of a Metal Ion Bound Protein Using Metal Ion Inclusive Restrained Molecular Dynamics Methods

    PubMed Central

    Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.

    2013-01-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  17. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  18. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    NASA Astrophysics Data System (ADS)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  19. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  20. Property enchancement of polyimide films by way of the incorporation of lanthanide metal ions

    NASA Technical Reports Server (NTRS)

    Thompson, David W.

    1993-01-01

    selective gas permeability. Much more commonly than above, polyimide films are prepared by casting the film as the poly(amic acid) precursor which is then converted to the imidized form during the thermal cure cycle. Very limited success was achieved in the past in adding lanthanide metal ions to the amide precursors because of gellation and lack of solubility. With the use of the diketone ligands cited above, the solubility and gellation problems were overcome. However, the films after curing were clear but unacceptably brittle. Attempts to overcome this cure embrittlement problem are in progress.

  1. Selective Recovery of Metals from Geothermal Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventura, Susanna; Bhamidi, Srinivas; Hornbostel, Marc

    The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithiummore » battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li + adsorption capacity as high as 2.8 mg Li +/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn 2+ adsorption capacity of more than 23 mg Mn 2+/g polymer at 75°C. The Li + extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li +, 410 ppm Na +, and 390 ppm K + was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li +, 10,000 ppm Na +, and 3,000 ppm K +, the Li separation efficiency of the imprinted

  2. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  3. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.

    PubMed

    Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker

    2018-05-01

    Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nuclear quantum effects on adsorption of H 2 and isotopologues on metal ions

    DOE PAGES

    Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; ...

    2017-01-03

    The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of Hmore » $$_2$$ and isotopologues on metal ions, are examined in this study using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. To estimate for the anharmonicity, a nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) have been employed for complexes of Li$^+$ and Cu$$^{+2}$$ with H$$_2$$, D$$_2$$, HD. The dynamics analysis shows that incorporation of the PES anharmonicity changes the ZPE by up to 9%. Finally, the lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions.« less

  5. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  6. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  7. Predictivity and fate of metal ion release from metal-on-metal total hip prostheses.

    PubMed

    Nicolli, Annamaria; Bisinella, Gianluca; Padovani, Giovanni; Vitella, Antonio; Chiara, Federica; Trevisan, Andrea

    2014-09-01

    Blood metal ion levels in 72 patients with large head metal-on-metal hip arthroplasty were studied to determine the correlation between the values measured in whole blood and urine. Urinary cobalt and chromium levels of 30μg and 21μg, respectively, adjusted to creatinine were found to correspond to the 7μg/l cut-off value that has been accepted in whole blood. Cobalt and chromium levels in whole blood and urine both significantly correlated with increased acetabular component inclination angle over 50 degrees and pain scores. There was no correlation with socket anteversion angle or femoral head diameter. The data support the use of urinary measurement of metal ions adjusted to creatinine to monitor patients with large head metal-on-metal total hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Adsorption of metal ions by pecan shell-based granular activated carbons.

    PubMed

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-09-01

    The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgon's Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.

  9. Adsorptive Removal of Metal Ions from Water using Functionalized Biomaterials.

    PubMed

    Deshpande, Kanchanmala

    2017-01-01

    Synthesis and modification of cost-effective sorbents for removing heavy metals from water resources is an area of significance. It had been reported that materials with biological origins, such as agricultural and animal waste, are excellent alternatives to conventional adsorbents due to their higher affinity, capacity and selectivity towards metal ions. These properties of biomaterials help to reduce or detoxify metal ions concentration in contaminated water to acceptable regulatory standards. Synthesis of novel, efficient, cost effective, eco-friendly biomaterials for heavy metal adsorption from water is still an area of challenge. In this comprehensive review, acompilation of patents as well as published articles is carried out to outline the properties of different biomaterials based on their precursors along withdetailed description of biomaterial morphology and various surface modification approaches. A detailed study of the performance of adsorbents and the role of physical and chemical modification in terms of enhancing their potential for metal adsorption from water is compiled here. The factors affecting adsorption behavior i.e., capacity and affinity of e biomaterials is also compiled. This paper presents a concise review of reported studies on the synthesis and modification of biomaterials, their use for heavy metal removal from waters and future prospects of this technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Do ion levels in hip resurfacing differ from metal-on-metal THA at midterm?

    PubMed

    Moroni, A; Savarino, L; Hoque, M; Cadossi, M; Baldini, N

    2011-01-01

    Metal-on-metal Birmingham hip resurfacing (MOM-BHR) is an alternative to metal-on-metal total hip arthroplasty (MOM-THA), especially for young and/or active patients. However, wear resulting in increased serum ion levels is a concern. We asked whether (1) serum chromium (Cr), cobalt (Co), and molybdenum (Mo) concentrations would differ between patients with either MOM-BHR or MOM-THA at 5 years, (2) confounding factors such as gender would influence ion levels; and (3) ion levels would differ at 2 and 5 years for each implant type. Ions were measured in two groups with either MOM-BHR (n = 20) or MOM-THA (n = 35) and a mean 5-year followup, and two groups with either MOM-BHR (n = 15) or MOM-THA (n = 25) and a mean 2-year followup. Forty-eight healthy blood donors were recruited for reference values. At 5 years, there were no differences in ion levels between patients with MOM-BHR or MOM-THA. Gender was a confounding factor, and in the MOM-BHR group at 5 years, Cr concentrations were greater in females compared with those of males. Mean ion levels were similar in patients with 2 and 5 years of followup for each implant type. Ion levels in patients were sevenfold to 10-fold higher than in controls. As the metal ion concentrations in the serum at 5 years were in the range reported in the literature, we do not believe concerns regarding excessive metal ion levels after MOM-BHR are justified. Level III, therapeutic study. See the Guidelines for Authors for a complete description of level of evidence.

  11. Multiple Metal Binding Domains Enhance the Zn(II) Selectivity of the Divalent Metal Ion Transporter AztA†

    PubMed Central

    Liu, Tong; Reyes-Caballero, Hermes; Li, Chenxi; Scott, Robert A.; Giedroc, David P.

    2013-01-01

    Transition metal-transporting P1B-type CPx ATPases play crucial roles in mediating metal homeostasis and resistance in all cells. The degree to which N-terminal metal binding domains (MBDs) confer metal specificity to the transporter is unclear. We show that the two MBDs of the Zn/Cd/Pb effluxing pump Anabaena AztA are functionally nonequivalent, but only with respect to zinc resistance. Inactivation of the a-MBD largely abrogates resistance to high intracellular Zn(II) levels, whereas inactivation of the b-MBD is not as deleterious. In contrast, inactivation of either the a- or b-MBD has little measurable impact on Cd(II) and Pb(II) resistance. The membrane proximal b-MBD binds Zn(II) with a higher affinity than the distal N-terminal a-MBD. Facile Zn(II)-specific intermolecular transfer from the a-MBD to the higher-affinity b-MBD is readily observed by 1H–15N HSQC spectroscopy. Unlike Zn(II), Cd(II) and Pb(II) form saturated 1:1 S4 or S3(O/N) complexes with AztAaHbH, where a single metal ion bridges the two MBDs. We propose that the tandem MBDs enhance Zn(II)-specific transport, while stabilizing a non-native inter-MBD Cd/Pb cross-linked structure that is a poor substrate and/or regulator for the transporter. PMID:17824670

  12. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  13. Application of Freeze-Dried Powders of Genetically Engineered Microbial Strains as Adsorbents for Rare Earth Metal Ions.

    PubMed

    Moriwaki, Hiroshi; Masuda, Reiko; Yamazaki, Yuki; Horiuchi, Kaoru; Miyashita, Mari; Kasahara, Jun; Tanaka, Tatsuhito; Yamamoto, Hiroki

    2016-10-12

    The adsorption behaviors of the rare earth metal ions onto freeze-dried powders of genetically engineered microbial strains were compared. Cell powders obtained from four kinds of strains, Bacillus subtilis 168 wild type (WT), lipoteichoic acid-defective (ΔLTA), wall teichoic acid-defective (ΔWTA), and cell wall hydrolases-defective (EFKYOJLp) strains, were used as an adsorbent of the rare earth metal ions at pH 3. The adsorption ability of the rare earth metal ions was in the order of EFKYOJLp > WT > ΔLTA > ΔWTA. The order was the same as the order of the phosphorus quantity of the strains. This result indicates that the main adsorption sites for the ions are the phosphate groups and the teichoic acids, LTA and WTA, that contribute to the adsorption of the rare earth metal ions onto the cell walls. The contribution of WTA was clearly greater than that of LTA. Each microbial powder was added to a solution containing 16 kinds of rare earth metal ions, and the removals (%) of each rare earth metal ion were obtained. The scandium ion showed the highest removal (%), while that of the lanthanum ion was the lowest for all the microbial powders. Differences in the distribution coefficients between the kinds of lanthanide ions by the EFKYOJLp and ΔWTA powders were greater than those of the other strains. Therefore, the EFKYOJLp and ΔWTA powders could be applicable for the selective extraction of the lanthanide ions. The ΔLTA powder coagulated by mixing with a rare earth metal ion, although no sedimentation of the WT or ΔWTA powder with a rare earth metal ion was observed under the same conditions. The EFKYOJLp powder was also coagulated, but its flocculating activity was lower than that of ΔLTA. The ΔLTA and EFKYOJLp powders have a long shape compared to those of the WT or ΔWTA strain. The shapes of the cells will play an important role in the sedimentation of the microbial powders with rare earth metal ions. As the results, three kinds of the genetically

  14. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  15. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity

    PubMed Central

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-01-01

    Zinc and cadmium are similar metal ions, but though Zn2+ is an essential nutrient, Cd2+ is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn2+ vs. Cd2+ suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn2+ transport, but reject Cd2+, thus constituting the first mammalian metal transporter with a refined selectivity against Cd2+. Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn2+ and Cd2+. A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn2+ transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd2+ by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn2+ and Cd2+, and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd2+ binding. PMID:22529353

  16. Divalent Metal-Ion Complexes with Dipeptide Ligands Having Phe and His Side-Chain Anchors: Effects of Sequence, Metal Ion, and Anchor.

    PubMed

    Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos

    2015-09-24

    Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.

  17. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport.

    PubMed

    Ehrnstorfer, Ines A; Geertsma, Eric R; Pardon, Els; Steyaert, Jan; Dutzler, Raimund

    2014-11-01

    Members of the SLC11 (NRAMP) family transport iron and other transition-metal ions across cellular membranes. These membrane proteins are present in all kingdoms of life with a high degree of sequence conservation. To gain insight into the determinants of ion selectivity, we have determined the crystal structure of Staphylococcus capitis DMT (ScaDMT), a close prokaryotic homolog of the family. ScaDMT shows a familiar architecture that was previously identified in the amino acid permease LeuT. The protein adopts an inward-facing conformation with a substrate-binding site located in the center of the transporter. This site is composed of conserved residues, which coordinate Mn2+, Fe2+ and Cd2+ but not Ca2+. Mutations of interacting residues affect ion binding and transport in both ScaDMT and human DMT1. Our study thus reveals a conserved mechanism for transition-metal ion selectivity within the SLC11 family.

  18. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A coated-wire ion-selective electrode for ionic calcium measurements

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  20. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  1. Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions.

    PubMed

    Thakkar, Rakesh; Chudasama, Uma

    2009-12-15

    An advanced inorganic ion exchanger, zirconium titanium phosphate (ZTP) of the class of tetravalent bimetallic acid (TBMA) salt has been synthesized by sol-gel route. ZTP has been characterized for ICP-AES, TGA, FTIR and XRD. Chemical stability of the material in various media-acids, bases and organic solvents has been assessed. Cation exchange capacity (CEC) and effect of calcination (100-500 degrees C) on CEC has also been studied. Distribution behaviour of metal ions Co2+, Ni2+, Cu2+, Zn2+ (d-block), Cd2+, Hg2+, Pb2+, Bi3+ (heavy) and La3+, Ce3+, Th4+, UO(2)2+ (f-block) towards ZTP has been studied and distribution coefficient (K(d)) determined in aqueous as well as various electrolyte media/concentrations. Based on the differential selectivity, breakthrough capacity (BTC) and elution behaviour of various metal ions towards ZTP, a few binary and ternary metal ion separations have been carried out.

  2. Metalloregulatory Proteins: Metal Selectivity and Allosteric Switching

    PubMed Central

    Caballero, Hermes Reyes; Campanello, Gregory C.; Giedroc, David P.

    2011-01-01

    Prokaryotic organisms have evolved an impressive capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins control the expression of genes encoding membrane transporters and metal trafficking proteins, that collectively manage metal homeostasis and resistance. These “metal sensors” are specialized allosteric proteins, in which the direct binding of a specific or small number of “cognate” metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding. PMID:21511390

  3. Complexation-induced supramolecular assembly drives metal-ion extraction.

    PubMed

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cyanobacterial megamolecule sacran efficiently forms LC gels with very heavy metal ions.

    PubMed

    Okajima, Maiko K; Miyazato, Shinji; Kaneko, Tatsuo

    2009-08-04

    We extracted the megamolecular polysaccharide sacran, which contains carboxylate and sulfate groups, from the jellylike extracellular matrix (ECM) of the cyanobacterium Aphanothece sacrum, which has mineral adsorption bioactivity. We investigated the gelation properties of sacran binding with various heavy metal ions. The sacran chain adsorbed heavier metal ions such as indium, rare earth metals, and lead ions more efficiently to form gel beads. In addition, trivalent metal ions adsorbed onto the sacran chains more efficiently than did divalent ions. The investigation of the metal ion binding ratio on sacran chains demonstrated that sacran adsorbed gadolinium trivalent ions more efficiently than indium trivalent ions. Gel bead formation may be closely correlated to the liquid-crystalline organization of sacran.

  5. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  6. Highly selective and sensitive detection of metal ions and nitroaromatic compounds by an anionic europium(iii) coordination polymer.

    PubMed

    Feyisa Bogale, Raji; Ye, Junwei; Sun, Yuan; Sun, Tongxin; Zhang, Siqi; Rauf, Abdul; Hang, Cheng; Tian, Peng; Ning, Guiling

    2016-07-05

    A luminescent Eu(iii)-based coordination polymer, {[Eu(H2O)5(BTEC)][H(C5H6N2)]·3H2O} () has been synthesized under hydrothermal conditions using 1,2,4,5-benzenetetracarboxylic acid (H4BTEC) as a linker. Compound possesses an anionic zig-zag chain constructed from the BTEC ligands and [EuO4(H2O)5] nodes. The protonated 4-aminopyridine groups as guests are located between chains. exhibits the characteristic sharp emission bands of Eu(3+) at 578, 593, 615, 652 and 693 nm upon excitation at 290 nm. The strong emission of could be quenched effectively by trace amounts of Fe(3+) ions even in the presence of other metal ions including Al(3+), Ca(2+), Cd(2+), Co(2+), Cr(3+), Cu(2+), Fe(2+), K(+), Mg(2+), Mn(2+), Pd(2+) and Zn(2+). Similarly, also exhibits superior selectivity and sensitivity towards 4-nitrophenol (4-NP) compared with other competing interfering analytes, such as 2,4,6-trinitrophenol, 2,6-dinitrotolune, 4-nitrotoluene, nitrobenzene, 1,3-dinitrobenzene, o-xylene, nitromethane, nitropropane, phenol, 4-bromophenol and bromobenzene, through a fluorescence quenching mechanism. The possible fluorescence quenching mechanisms are discussed. Moreover, could be used as a visual fluorescent test paper for selectively detecting trace amounts of Fe(3+) and 4-NP.

  7. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry.

    PubMed

    Morrison, Kelsey A; Bendiak, Brad K; Clowers, Brian H

    2018-05-25

    Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts. Graphical Abstract ᅟ.

  8. Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Morrison, Kelsey A.; Bendiak, Brad K.; Clowers, Brian H.

    2018-05-01

    Adduction of multivalent metal ions to glycans has been shown in recent years to produce altered tandem mass spectra with collision-induced dissociation, electron transfer techniques, and photon-based fragmentation approaches. However, these approaches assume the presence of a well-characterized precursor ion population and do not fully account for the possibility of multimeric species for select glycan-metal complexes. With the use of ion mobility separations prior to mass analysis, doubly charged dimers are not necessarily problematic for tandem MS experiments given that monomer and dimer drift times are sufficiently different. However, multistage mass spectrometric experiments performed on glycans adducted to multivalent metals without mobility separation can yield chimeric fragmentation spectra that are essentially a superposition of the fragments from both the monomeric and dimeric adducts. For homodimeric adducts, where the dimer contains two of the same glycan species, this is less of a concern but if heterodimers can form, there exists the potential for erroneous and misleading fragment ions to appear if a heterodimer containing two different isomers is fragmented along with a targeted monomer. We present an assessment of heterodimer formation between a series of six tetrasaccharides, of which three are isomers, adducted with cobalt(II) and a monodeuterated tetrasaccharide. Using ion mobility separations prior to single-stage and tandem mass analysis, the data shown demonstrate that heterodimeric species can indeed form, and that ion mobility separations are highly necessary prior to using tandem techniques on metal-glycan adducts.

  9. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  10. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions.

    PubMed

    Zhang, Yu; Li, Xiao; Li, Hui; Song, Ming; Feng, Liang; Guan, Yafeng

    2014-10-07

    The sensitive determination of heavy-metal ions has been widely investigated in recent years due to their threat to the environment and to human health. Among various analytical detection techniques, inexpensive colorimetric testing papers/strips play a very important role. The limitation, however, is also clear: the sensitivity is usually low and the selectivity is poor. In this work, we have developed a postage stamp-sized array sensor composed of nine commercially available heterocyclic azo indicators. Combining filtration-based enrichment with an array of technologies-based pattern-recognition, we have obtained the discrimination capability for seven heavy-metal ions (Hg(2+), Pb(2+), Ag(+), Ni(2+), Cu(2+), Zn(2+), and Co(2+)) at their Chinese wastewater discharge standard concentrations. The allowable detection level of Hg(2+) was down to 0.05 mg L(-1). The heavy-metal ions screening test was readily achieved using a standard chemometric approach. And the array sensor applied well in real water samples.

  11. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    PubMed

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Metal ion removal from aqueous solution using physic seed hull.

    PubMed

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  13. Selectivity of bis(calix[4]diquinone) ionophores towards metal ions in solvent dimethylsulfoxide: a molecular mechanics and molecular dynamics study.

    PubMed

    Felix, Vitor; Drew, Michael G B; Webber, Philip R A; Beer, Paul D

    2006-01-28

    Molecular modelling studies have been carried out on two bis(calix[4]diquinone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH(2))(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na(+), K(+), Rb(+), and Cs(+) in dmso solution. Conformational analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb(+) approximately K(+) > Cs(+) > Na(+), which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs(+) and K(+) complexes is only 0.60, showing that has only a slight

  14. Correlation of serum metal ion levels with pathological changes of ARMD in failed metal-on-metal-hip-resurfacing arthroplasties.

    PubMed

    Grammatopoulos, George; Munemoto, Mitsuru; Pollalis, Athanasios; Athanasou, Nicholas A

    2017-08-01

    Metal-on-metal-hip-resurfacing arthroplasties (MoMHRAs) have been associated with an increased failure rates due to an adverse-response-to-metal-debris (ARMD) associated with a spectrum of pathological features. Serum levels of cobalt (Co) and chromium (Cr) are used to assess MoMHRAs, with regard to ARMD, but it is not certain whether ion levels correlate with pathological changes in periprosthetic tissues. Serum Co and Cr levels were correlated with histological findings in 38 revised MoMHRAs (29 pseudotumour cases and 9 non-pseudotumour cases revised for pain). The extent of necrosis and macrophage infiltrate as well as the aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response was assessed semi-quantitatively; the prosthesis linear wear rate (PLWR) was also determined in ten cases. Cr levels were elevated in 82% and Co levels elevated in 53% of cases; the PLWR correlated with Cr level (rho = 0.8, p = 0.006). Tissue necrosis and macrophage infiltration were noted in all, most of which also exhibited significant ALVAL. Although a discrete correlation was not seen between Co and/or Cr ion levels and the extent of necrosis, degree of macrophage infiltration, or ALVAL score, it was noted that cases with acceptable metal ions levels had high ALVAL score. Histological features of both innate and adaptive immune response to metal wear are seen in periprosthetic tissues in cases with both elevated and non-elevated metal ion levels. MoMHRA failures with acceptable ion levels exhibited a pronounced ALVAL response. Although metal ion levels are elevated in most cases of MoMHRA failure due to ARMD, the finding of a normal metal ion level does not exclude this diagnosis.

  15. A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles.

    PubMed

    Tan, Enzhong; Yin, Penggang; Lang, Xiufeng; Zhang, Hongyan; Guo, Lin

    2012-11-01

    A novel, effective and simple surface-enhanced Raman scattering (SERS) nanosensor for selectively and sensitively detecting heavy metal ions in aqueous solution has been developed in the form of 2-mercaptoisonicotinic acid (2 MNA)-modified gold nanoparticles (AuNPs). Multiple heavy metal ions can be identified and quantified by using relative peak intensity ratios of selected vibrational bands in the SERS spectra of 2 MNA. Especially, concentration of Hg(2+) and Pb(2+) ions are determined by comparing the intensity ratios of the bands 1160/1230 cm(-1) for Hg(2+) and 861/815 cm(-1) (or 815/1392 cm(-1)) for Pb(2+), with detection limits of 3.4×10(-8) and 1.0×10(-7)M, respectively. 2 MNA-AuNPs sensors show a high selectivity for Hg(2+) without masking reagent, and they can also be highly selective for Pb(2+) when using sodium thiosulphate and l-cysteine as masking reagents. These results demonstrate that these 2 MNA-AuNPs nanosensors are promising candidates for in situ heavy metal ions detection and quantification, maybe even inside living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Metal-assisted SIMS and cluster ion bombardment for ion yield enhancement

    NASA Astrophysics Data System (ADS)

    Heile, A.; Lipinsky, D.; Wehbe, N.; Delcorte, A.; Bertrand, P.; Felten, A.; Houssiau, L.; Pireaux, J.-J.; De Mondt, R.; Van Vaeck, L.; Arlinghaus, H. F.

    2008-12-01

    In addition to structural information, a detailed knowledge of the local chemical environment proves to be of ever greater importance, for example for the development of new types of materials as well as for specific modifications of surfaces and interfaces in multiple fields of materials science or various biomedical and chemical applications. But the ongoing miniaturization and therefore reduction of the amount of material available for analysis constitute a challenge to the detection limits of analytical methods. In the case of time-of-flight secondary ion mass spectrometry (TOF-SIMS), several methods of secondary ion yield enhancement have been proposed. This paper focuses on the investigation of the effects of two of these methods, metal-assisted SIMS and polyatomic primary ion bombardment. For this purpose, thicker layers of polystyrene (PS), both pristine and metallized with different amounts of gold, were analyzed using monoatomic (Ar +, Ga +, Xe +, Bi +) and polyatomic (SF 5+, Bi 3+, C 60+) primary ions. It was found that polyatomic ions generally induce a significant increase of the secondary ion yield. On the other hand, with gold deposition, a yield enhancement can only be detected for monoatomic ion bombardment.

  17. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  18. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    PubMed

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.

    PubMed

    Mahajan, R K; Kumar, M; Sharma, V; Kaur, I

    2001-04-01

    A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.

  20. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    PubMed

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  1. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  2. Do ion levels in metal-on-metal hip resurfacing differ from those in metal-on-metal THA at long-term followup?

    PubMed

    Savarino, Lucia; Cadossi, Matteo; Chiarello, Eugenio; Baldini, Nicola; Giannini, Sandro

    2013-09-01

    Metal-on-metal hip resurfacing arthroplasty (MOM HR) has become an established alternative to traditional metal-on-metal total hip arthroplasty (MOM THA) for younger, more active patients. Nevertheless, concerns remain regarding wear and corrosion of the bearing surfaces and the resulting systemic metal ion distribution. We therefore asked whether (1) serum ion concentrations in patients with MOM HR at the time of long-term followup were higher than concentrations in a control population with no hip implants; (2) the ion concentrations in patients with MOM HR were different from those in patients with MOM THA; and (3) sex would influence ion levels with regard to implant type. The MOM HR and MOM THA groups consisted of 25 patients (evaluated at a minimum of 96 months) and 16 patients (evaluated at a minimum of 106 months), respectively. Forty-eight healthy donors were recruited for reference values. Cobalt, chromium, nickel, and molybdenum were measured by furnace graphite atomic absorption spectrophotometry. Ion concentrations of cobalt, chromium, and molybdenum in MOM HR were higher than in controls. Chromium and cobalt release were higher in MOM HR than in MOM THA. The sex-based analysis showed the difference was because women had higher concentrations in the MOM HR group than in the MOM THA group, whereas there was no difference between the men in the two groups. In MOM HR, high metal ion release persists for the long term. Consequently, it is important to implement strict biomonitoring for patients who have received these implants. The sustained high levels of chromium in females within the MOM HR group are concerning and merits strong consideration when choosing implants in this patient group.

  3. Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon

    2009-11-01

    Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30Å, and contained as much as 8.2 weight percent N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl4-2 and H2VO4-1. 1,10-phenanthroline functionalized mesoporous carbon (“Phen-FMC”) was found to have a high affinity for Cu(II), even down to amore » pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion exchange resin or activated carbon.« less

  4. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    PubMed

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  5. Metal ion transport quantified by ICP-MS in intact cells

    PubMed Central

    Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.

    2016-01-01

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181

  6. Metal ion transport quantified by ICP-MS in intact cells.

    PubMed

    Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A

    2016-02-03

    The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.

  7. Predicting high blood metal ion concentrations following hip resurfacing.

    PubMed

    Matharu, Gulraj S; Berryman, Fiona; Brash, Lesley; Pynsent, Paul B; Treacy, Ronan B C; Dunlop, David J

    2015-01-01

    To determine whether gender, femoral head size, acetabular inclination, and time since surgery predicted high blood metal ion concentrations following Birmingham Hip Resurfacing (BHR). BHR patients with unilateral bearings at one specialist centre with blood cobalt and chromium concentrations measured up to May 2013 were included. This comprised a mixed (at-risk) group including symptomatic patients and asymptomatic individuals with specific clinical and/or radiological findings. Blood sampling was at a mean of 7.5 years (range 1-15.4 years) postoperatively. Of 319 patients (mean age 49.3 years; 53% male), blood metal ions greater than 7 µg/l were observed in 9% (n = 28). Blood metal ions were significantly higher in females (p<0.001), femoral head sizes ≤48 mm (p<0.01), and cup inclinations >55° (p<0.001). Linear regression demonstrated femoral head size was responsible for the highest proportion of variance in blood metal ions (cobalt p<0.001, R2 = 8%; chromium p<0.001, R2 = 11%). Analysis of femoral head size and inclination together demonstrated 36% of BHRs with head sizes of 38-44 mm and inclination >55° had blood metal ions >7 µg/l. BHR 10-year survival for this at-risk group was 91% (95% confidence intervals 86.0%-95.0%) with 30 hips revised. If blood metal ions are used to screen hip resurfacing patients for adverse reactions to metal debris it is recommended those with small femoral head sizes (38-44 mm) and high acetabular inclinations (>55°) are targeted. These findings require validation in other cohorts as they may not be applicable to all hip resurfacing devices given the differences in radial clearance, coverage arc, and metallurgy.

  8. Redox-switchable copper(I) metallogel: a metal-organic material for selective and naked-eye sensing of picric acid.

    PubMed

    Sarkar, Sougata; Dutta, Soumen; Chakrabarti, Susmita; Bairi, Partha; Pal, Tarasankar

    2014-05-14

    Thiourea (TU), a commercially available laboratory chemical, has been discovered to introduce metallogelation when reacted with copper(II) chloride in aqueous medium. The chemistry involves the reduction of Cu(II) to Cu(I) with concomitant oxidation of thiourea to dithiobisformamidinium dichloride. The gel formation is triggered through metal-ligand complexation, i.e., Cu(I)-TU coordination and extensive hydrogen bonding interactions involving thiourea, the disulfide product, water, and chloride ions. Entangled network morphology of the gel selectively develops in water, maybe for its superior hydrogen-bonding ability, as accounted from Kamlet-Taft solvent parameters. Complete and systematic chemical analyses demonstrate the importance of both Cu(I) and chloride ions as the key ingredients in the metal-organic coordination gel framework. The gel is highly fluorescent. Again, exclusive presence of Cu(I) metal centers in the gel structure makes the gel redox-responsive and therefore it shows reversible gel-sol phase transition. However, the reversibility does not cause any morphological change in the gel phase. The gel practically exhibits its multiresponsive nature and therefore the influences of different probable interfering parameters (pH, selective metal ions and anions, selective complexing agents, etc.) have been studied mechanistically and the results might be promising for different applications. Finally, the gel material shows a highly selective visual response to a commonly used nitroexplosive, picric acid among a set of 19 congeners and the preferred selectivity has been mechanistically interpreted with density functional theory-based calculations.

  9. Photoassisted reduction of metal ions and organic dye by titanium dioxide nanoparticles in aqueous solution under anoxic conditions.

    PubMed

    Doong, Ruey-An; Hsieh, Tien-Chin; Huang, Chin-Pao

    2010-07-15

    The photoassisted reduction of metal ions and organic dye by metal-deposited Degussa P25 TiO(2) nanoparticles was investigated. Copper and silver ions were selected as the target metal ions to modify the surface properties of TiO(2) and to enhance the photocatalytic activity of TiO(2) towards methylene blue (MB) degradation. X-ray powder diffraction (XRPD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used to characterize the crystallinity, chemical species and morphology of metal-deposited TiO(2), respectively. Results showed that the particle size of metal-deposited TiO(2) was larger than that of Degussa P25 TiO(2). Based on XRPD patterns and XPS spectra, it was observed that the addition of formate promoted the photoreduction of metal ion by lowering its oxidation number, and subsequently enhancing the photodegradation efficiency and rate of MB. The pseudo-first-order rate constant (k(obs)) for MB photodegradation by Degussa P25 TiO(2) was 3.94 x 10(-2) min(-1) and increased by 1.4-1.7 times in k(obs) with metal-deposited TiO(2) for MB photodegradation compared to simple Degussa P25 TiO(2). The increase in mass loading of metal ions significantly enhanced the photodegradation efficiency of MB; the k(obs) for MB degradation increased from 3.94 x 10(-2) min(-1) in the absence of metal ion to 4.64-7.28 x 10(-2) min(-1) for Ag/TiO(2) and to 5.14-7.61 x 10(-2) min(-1) for Cu/TiO(2). In addition, the electrons generated from TiO(2) can effectively reduce metal ions and MB simultaneously under anoxic conditions. However, metal ions and organic dye would compete for electrons from the illuminated TiO(2). Copyright 2010 Elsevier B.V. All rights reserved.

  10. Multiresponsive polysiloxane bearing spiropyran: synthesis and sensing of pH and metal ions of different valence

    NASA Astrophysics Data System (ADS)

    Li, Hongqi; Zheng, Tao; Zhao, Yong; Xu, Zhenxiang; Dai, Xuhang; Shao, Zhiyu

    2018-03-01

    A spiropyran-appended polysiloxane (SP-Si) was synthesized and characterized. The pH-responsive behavior of SP-Si was investigated. It was found that with the decrease of the pH of SP-Si solution the intensity of the absorption peak at 440 nm increased and the color of SP-Si solution turned from colorless to yellow gradually. The polymer serves as chemosensor for colorimetric detection of Ag+ and Fe3+ ions. Addition of Ag+ and Fe3+ ions to SP-Si solution induced color change from colorless to brown and earthy yellow, respectively. Sensing of Ag+ ions by SP-Si was not affected by common competitive metal ions except Hg2+ ions. Based on the transformation from colorless SP-Si solution with negligible absorption at 440 nm to brown SP-Si/Ag+ showing extremely strong absorption at 440 nm by addition of Ag+ ions and subsequent transformation from brown to colorless SP-Si/Ag+/Hg2+ with relatively weak absorption at 440 nm after addition of 1 equivalent of Hg2+ ions, SP-Si/Ag+ system serves as a dual colorimetric and spectroscopic probe for highly selective and sensitive detection of Hg2+ ions. The selective detection of Fe3+ ions by SP-Si is not interfered by common competitive metal ions including Na+, K+, Li+, Hg2+, Ni2+, Fe2+, Zn2+, Co2+, Sr2+, Cu2+, Al3+, Ce3+ and Cr3+. The detection limit of Ag+ and Fe3+ ions is 1.45 × 10-6 M and 3.52 × 10-6 M, respectively.

  11. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    NASA Astrophysics Data System (ADS)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  12. Metal Ion Concentrations in Body Fluids after Implantation of Hip Replacements with Metal-on-Metal Bearing – Systematic Review of Clinical and Epidemiological Studies

    PubMed Central

    Hartmann, Albrecht; Hannemann, Franziska; Lützner, Jörg; Seidler, Andreas; Drexler, Hans; Günther, Klaus-Peter; Schmitt, Jochen

    2013-01-01

    Introduction The use of metal-on-metal (MoM) total hip arthroplasty (THA) increased in the last decades. A release of metal products (i.e. particles, ions, metallo-organic compounds) in these implants may cause local and/or systemic adverse reactions. Metal ion concentrations in body fluids are surrogate measures of metal exposure. Objective To systematically summarize and critically appraise published studies concerning metal ion concentrations after MoM THA. Methods Systematic review of clinical trials (RCTs) and epidemiological studies with assessment of metal ion levels (cobalt, chromium, titanium, nickel, molybdenum) in body fluids after implantation of metalliferous hip replacements. Systematic search in PubMed and Embase in January 2012 supplemented by hand search. Standardized abstraction of pre- and postoperative metal ion concentrations stratified by type of bearing (primary explanatory factor), patient characteristics as well as study quality characteristics (secondary explanatory factors). Results Overall, 104 studies (11 RCTs, 93 epidemiological studies) totaling 9.957 patients with measurement of metal ions in body fluids were identified and analyzed. Consistently, median metal ion concentrations were persistently elevated after implantation of MoM-bearings in all investigated mediums (whole blood, serum, plasma, erythrocytes, urine) irrespective of patient characteristics and study characteristics. In several studies very high serum cobalt concentrations above 50 µg/L were measured (detection limit typically 0.3 µg/L). Highest metal ion concentrations were observed after treatment with stemmed large-head MoM-implants and hip resurfacing arthroplasty. Discussion Due to the risk of local and systemic accumulation of metallic products after treatment with MoM-bearing, risk and benefits should be carefully balanced preoperatively. The authors support a proposed „time out“ for stemmed large-head MoM-THA and recommend a restricted indication for hip

  13. Metal ion-improved complexation countercurrent chromatography for enantioseparation of dihydroflavone enantiomers.

    PubMed

    Han, Chao; Wang, Wenli; Xue, Guimin; Xu, Dingqiao; Zhu, Tianyu; Wang, Shanshan; Cai, Pei; Luo, Jianguang; Kong, Lingyi

    2018-01-12

    Cu(II) ion was selected as an additive to improve the enantioseparation efficiency of three dihydroflavone enantiomers in high-speed counter-current chromatography (HSCCC), using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as the chiral selector. The influences of important parameters, including the metal ion, the concentrations of HP-β-CyD and the Cu(II) ion, and the sample size were investigated. Under optimal conditions, three dihydroflavone enantiomers, including (±)-hesperetin, (±)-naringenin, and (±)-farrerol, were successfully enantioseparated. The chiral recognition mechanism was investigated. The enantioseparation was attributed to the different thermodynamic stabilities of the binary complexes of HP-β-CyD and (±)-hesperetin, and Cu(II) ion could enhance this difference by forming ternary complexes with the binary complexes. This Cu(II) ion-improved complexation HSCCC system exhibited improved performance for chiral separation, and therefore it has great application potential in the preparative enantioseparation of other compounds with similar skeletons. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ion conducting polymers and polymer blends for alkali metal ion batteries

    DOEpatents

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  15. Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution.

    PubMed

    Hasegawa, Hiroshi; Rahman, Ismail M M; Nakano, Masayoshi; Begum, Zinnat A; Egawa, Yuji; Maki, Teruya; Furusho, Yoshiaki; Mizutani, Satoshi

    2011-10-15

    Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min(-1). The 'captured' ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants

  16. Selective Metal-Ion-Mediated Vesicle Adhesion Based on Dynamic Self-Organization of a Pyrene-Appended Glutamic Acid.

    PubMed

    Xing, Pengyao; Wang, Yajie; Yang, Minmin; Zhang, Yimeng; Wang, Bo; Hao, Aiyou

    2016-07-13

    Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.

  17. Architecture of optical sensor for recognition of multiple toxic metal ions from water.

    PubMed

    Shenashen, M A; El-Safty, S A; Elshehy, E A

    2013-09-15

    Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Coordination ability determined transition metal ions substitution of Tb in Tb-Asp fluorescent nanocrystals and a facile ions-detection approach.

    PubMed

    Duan, Jiazhi; Ma, Baojin; Liu, Feng; Zhang, Shan; Wang, Shicai; Kong, Ying; Du, Min; Han, Lin; Wang, Jianjun; Sang, Yuanhua; Liu, Hong

    2018-04-26

    Although the synthesis and fluorescent properties of lanthanide-amino acid complex nanostructures have been investigated extensively, limited studies have been reported on metal ions' substitution ability for the lanthanide ions in the complex and their effect on the fluorescent property. In this study, taking biocompatible Tb-aspartic acid (Tb-Asp) complex nanocrystals as a model, the substitution mechanism of metal ions, particularly transition metals, for Tb ions in Tb-Asp nanocrystals and the change in the fluorescent property of the Tb-Asp nanocrystals after substitution were systematically investigated. The experimental results illustrated that metal ions with higher electronegativity, higher valence, and smaller radius possess stronger ability for Tb ions' substitution in Tb-Asp nanocrystals. Based on the effect of substituting ions' concentration on the fluorescent property of Tb-Asp, a facile method for copper ions detection with high sensitivity was proposed by measuring the fluorescent intensity of Tb-Asp nanocrystals' suspensions containing different concentrations of copper ions. The good biocompatibility, great convenience of synthesis and sensitive detection ability make Tb-Asp nanocrystals a very low cost and effective material for metal ions detection, which also opens a new door for practical applications of metal-Asp coordinated nanocrystals.

  19. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  20. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  1. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  2. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  3. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  4. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    PubMed

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Systemic levels of metallic ions released from orthodontic mini-implants.

    PubMed

    de Morais, Liliane Siqueira; Serra, Glaucio Guimarães; Albuquerque Palermo, Elisabete Fernandes; Andrade, Leonardo Rodrigues; Müller, Carlos Alberto; Meyers, Marc André; Elias, Carlos Nelson

    2009-04-01

    Orthodontic mini-implants are a potential source of metallic ions to the human body because of the corrosion of titanium (Ti) alloy in body fluids. The purpose of this study was to gauge the concentration of Ti, aluminum (Al), and vanadium (V), as a function of time, in the kidneys, livers, and lungs of rabbits that had Ti-6Al-4V alloy orthodontic mini-implants placed in their tibia. Twenty-three New Zealand rabbits were randomly divided into 4 groups: control, 1 week, 4 weeks, and 12 weeks. Four orthodontic mini-implants were placed in the left proximal tibia of 18 rabbits. Five control rabbits had no orthodontic mini-implants. After 1, 4, and 12 weeks, the rabbits were killed, and the selected tissues were extracted and prepared for analysis by graphite furnace atomic absorption spectrophotometry. Low amounts of Ti, Al, and V were detectable in the 1-week, 4-weeks, and 12-weeks groups, confirming that release of these metals from the mini-implants occurs, with diffusion and accumulation in remote organs. Despite the tendency of ion release when using the Ti alloy as orthodontic mini-implants, the amounts of metals detected were significantly below the average intake of these elements through food and drink and did not reach toxic concentrations.

  6. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    PubMed

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  8. Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions.

    PubMed

    Svegl, I G; Ogorevc, B

    2000-08-01

    Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.

  9. Cellular sensing and transport of metal ions: implications in micronutrient homeostasis

    PubMed Central

    Bird, Amanda J.

    2015-01-01

    Micronutrients include the transition metal ions zinc, copper, and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage, and export. By tightly regulating the expression of these genes each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, post-transcriptional, and post-translational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is know about how these metallo-regulatory factors sense fluctuations in metal ion levels, and how changes in gene expression maintain nutrient homeostasis. PMID:26342943

  10. Effect of ion implantation on the tribology of metal-on-metal hip prostheses.

    PubMed

    Bowsher, John G; Hussain, Azad; Williams, Paul; Nevelos, Jim; Shelton, Julia C

    2004-12-01

    Nitrogen ion implantation (which considerably hardens the surface of the bearing) may represent one possible method of reducing the wear of metal-on-metal (MOM) hip bearings. Currently there are no ion-implanted MOM bearings used clinically. Therefore a physiological hip simulator test was undertaken using standard test conditions, and the results compared to previous studies using the same methods. N2-ion implantation of high carbon cast Co-Cr-Mo-on-Co-Cr-Mo hip prostheses increased wear by 2-fold during the aggressive running-in phase compared to untreated bearing surfaces, plus showing no wear reductions during steady-state conditions. Although 2 specimens were considered in the current study, it would appear that ion implantation has no clinical benefit for MOM.

  11. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    PubMed

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  12. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao, E-mail: zhoutao@csu.edu.cn

    2015-04-15

    Highlights: • Selective precipitation and solvent extraction were adopted. • Nickel, cobalt and lithium were selectively precipitated. • Co-D2EHPA was employed as high-efficiency extraction reagent for manganese. • High recovery percentages could be achieved for all metal values. - Abstract: Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt andmore » lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe–Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC{sub 2}O{sub 4}⋅2H{sub 2}O and Li{sub 2}CO{sub 3} using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.« less

  13. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  14. Adsorption of heavy metal ions by sawdust of deciduous trees.

    PubMed

    Bozić, D; Stanković, V; Gorgievski, M; Bogdanović, G; Kovacević, R

    2009-11-15

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g(-1) of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu(2+) ions but it is very low for Fe(2+) ions, not exceeding 10%.

  15. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    PubMed

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  17. Metal-ion interactions and the structural organization of Sepia eumelanin.

    PubMed

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  18. Determination of theoretical capacity of metal ion-doped LiMn 2O 4 as the positive electrode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Todorov, Yanko M.; Hideshima, Yasufumi; Noguchi, Hideyuki; Yoshio, Masaki

    The theoretical capacity and cation vacancy of metal ion (M)-doped LiMn 2- xM xO 4 spinel compounds serving as positive electrodes in a 4-V lithium ion batteries are calculated. The capacity depends strongly on the mole fraction of doped metal ion and vacancies. The theoretical capacity increases with increasing oxidation number of the doped metal ion in the 16d site of LiMn 2O 4 at the same doping fraction. The validity of the proposed equation for calculation of the capacity has been initially confirmed using a metal ion with well-known valence, such as the Al ion. The oxidation state of Co, Ni and Cr ions in the spinel structure is found to be trivalent, divalent and trivalent, respectively. Analysis shows that metal ion-doped spinel compounds with low vacancy content promote high capacity.

  19. Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Graichen, Adam M.; Vachet, Richard W.

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  20. Incorporation of metal ions into polyimides

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; Carver, V. C.; Furtsch, T. A.; Saint Clair, A. K.

    1980-01-01

    The effects of the incorporation of metal ions into various polyimides on polyimide properties are investigated. Polyimide films derived from 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BDTA) 3,3'-diaminobenzophenone (m,m'-DABP), 4,4'-diaminobenzophenone (p,p'-DABP) or 4,4'-oxydianiline were prepared with the concurrent addition of approximately 20 metals in a variety of forms. In general, it is found that the films derived from BDTA + p,p'-DABP were brittle and of poor quality, with brittle films also produced in most of the BDTA + m, m'-DABP polyimides regardless of whether the added metal was hydrate or anhydrous. Thermomechanical analysis, torsional braid analysis, thermal gravimetric analysis, infrared spectral analysis and isothermal studies on many of the polyimide films produced indicate that the softening temperature is generally increased upon the addition of metal ions, at the expense of thermal stability, while no changes in chemical functionality are observed. The best system studied in regard to polymer property enhancement appears to be tri(acetylacetonato)aluminum(III) added to the m, m'-DABP polyamide, which has been found to exhibit four times the lap shear strength of the polyimide alone.

  1. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  2. Does bearing size influence metal ion levels in large-head metal-on-metal total hip arthroplasty? A comparison of three total hip systems

    PubMed Central

    2014-01-01

    Background The purpose of the study was twofold: first, to determine whether there is a statistically significant difference in the metal ion levels among three different large-head metal-on-metal (MOM) total hip systems. The second objective was to assess whether position of the implanted prostheses, patient demographics or factors such as activity levels influence overall blood metal ion levels and whether there is a difference in the functional outcomes between the systems. Methods In a cross-sectional cohort study, three different metal-on-metal total hip systems were assessed: two monoblock heads, the Durom socket (Zimmer, Warsaw, IN, USA) and the Birmingham socket (Smith and Nephew, Memphis, TN, USA), and one modular metal-on-metal total hip system (Pinnacle, Depuy Orthopedics, Warsaw, IN, USA). Fifty-four patients were recruited, with a mean age of 59.7 years and a mean follow-up time of 41 months (12 to 60). Patients were evaluated clinically, radiologically and biochemically. Statistical analysis was performed on all collected data to assess any differences between the three groups in terms of overall blood metal ion levels and also to identify whether there was any other factor within the group demographics and outcomes that could influence the mean levels of Co and Cr. Results Although the functional outcome scores were similar in all three groups, the blood metal ion levels in the larger monoblock large heads (Durom, Birmingham sockets) were significantly raised compared with those of the Pinnacle group. In addition, the metal ion levels were not found to have a statistically significant relationship to the anteversion or abduction angles as measured on the radiographs. Conclusions When considering a MOM THR, the use of a monoblock large-head system leads to higher elevations in whole blood metal ions and offers no advantage over a smaller head modular system. PMID:24472283

  3. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO 2 reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Kun; Sandberg, Robert B.; Akey, Austin J.

    Here, electrocatalytic CO 2 reduction to higher-value hydrocarbons beyond C 1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C 2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO 2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C 2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil throughmore » the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C 2+ to C 1 product ratio, with a highest C 2+ Faradaic efficiency of over 60% and H 2 below 20%, and a corresponding C 2+ current of more than 40 mA cm –2.« less

  4. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO 2 reduction

    DOE PAGES

    Jiang, Kun; Sandberg, Robert B.; Akey, Austin J.; ...

    2018-01-15

    Here, electrocatalytic CO 2 reduction to higher-value hydrocarbons beyond C 1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C 2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO 2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C 2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil throughmore » the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C 2+ to C 1 product ratio, with a highest C 2+ Faradaic efficiency of over 60% and H 2 below 20%, and a corresponding C 2+ current of more than 40 mA cm –2.« less

  5. Metal ion influence on eumelanin fluorescence and structure.

    PubMed

    Sutter, Jens-Uwe; Birch, David J S

    2014-04-10

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  6. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  7. What are the predictors and prevalence of pseudotumor and elevated metal ions after large-diameter metal-on-metal THA?

    PubMed

    Bayley, Nick; Khan, Habeeb; Grosso, Paul; Hupel, Thomas; Stevens, David; Snider, Matthew; Schemitsch, Emil; Kuzyk, Paul

    2015-02-01

    Soft tissue masses, or "pseudotumors," around metal-on-metal total hip arthroplasty (MoM THA) have been reported frequently; however, their prevalence remains unknown. Several risk factors, including elevated metal ion levels, have been associated with the presence of pseudotumor, although this remains controversial. The goals of this study were to (1) determine the prevalence of pseudotumors after large-diameter head MoM THA; (2) identify risk factors associated with pseudotumor formation and elevated metal ion levels; and (3) determine the early failure rate of large-diameter MoM THA. Between December 2005 and November 2012, 258 hips (215 patients) underwent large-diameter head primary MoM THA at our institution. Clinical followup was obtained in 235 hips (91%). Using an inclusion criteria of a minimum followup of 1 year, a subset of 191 hips (mean followup, 4 years; range, 1-7 years) was recruited for high-resolution ultrasound screening for the presence of pseudotumor. Whole blood cobalt and chromium ion levels, UCLA activity level, WOMAC score, patient demographics as well as surgical, implant, and radiographic data were collected. Bivariate correlations and multivariate log-linear regression models were used to compare the presence of pseudotumor and elevated metal ions with all other factors. Ultrasound detected a solid, cystic, or mixed mass in 20% hips (38 of 191). No correlation was found between the presence of pseudotumor and any risk factor that we examined. After controlling for confounding variables, elevated cobalt ions were correlated (p<0.001, R=0.50, R2=0.25) with smaller femoral head size, the presence of bilateral MoM THA, and female sex. Elevated chromium ions were correlated (p<0.001, R=0.59, R2=0.34) with smaller femoral head size, presence of bilateral MoM THA, and lower body mass index. The overall survival of MoM THA was 96% at a mean followup of 4.5 years (range, 2-8 years). With the numbers available, we found no associations between

  8. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    PubMed

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  9. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    NASA Astrophysics Data System (ADS)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd < Ag < Cu series, the increasing chemical activity of metal nanoparticles raises the degree of oxygen sorption due to its chemisorption and subsequent reduction, while the role of the molecular chemisorption stage increases in the Cu < Ag < Pd series. Metal particles or their oxides are shown to act as adsorption sites on the surface and in the pores of the ion-exchanger matrix; the equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  10. Ohmic model for electrodeposition of metallic ions

    NASA Astrophysics Data System (ADS)

    Gliozzi, A. S.; Alexe-Ionescu, A. L.; Barbero, G.

    2015-10-01

    An ohmic model to describe the electrodeposition of metallic ions on the electrodes is proposed. We assume that the ionic distribution is homogeneous across the electrolytic cell, and that the ionic current is due to the bulk electric field. The nucleation in the electrodeposition is supposed to be well described by a kinetic equation at the electrode, taking into account the neutralization of metallic ions on the electrodes. Two cases are considered. In the first case the characteristic time describing the neutralization of the ions is supposed to be negligible with respect to the flight time of the ions across the cell. In this framework the bulk electric field coincides with the external electric field, and our analysis gives analytical formulae for the surface density of deposited ions and for the electric current in the external circuit. The case where the two characteristic times are comparable, and the effective electric field in the bulk depends on the surface deposition, is considered too. In this case the ordinary differential equations describing the ionic distribution and the adsorption phenomenon have to be solved numerically. The agreement between the presented model and the experimental results published by several groups is reasonably good.

  11. Real-time detection of metal ions using conjugated polymer composite papers.

    PubMed

    Lee, Ji Eun; Shim, Hyeon Woo; Kwon, Oh Seok; Huh, Yang-Il; Yoon, Hyeonseok

    2014-09-21

    Cellulose, a natural polymeric material, has widespread technical applications because of its inherent structural rigidity and high surface area. As a conjugated polymer, polypyrrole shows practical potential for a diverse and promising range of future technologies. Here, we demonstrate a strategy for the real-time detection and removal of metal ions with polypyrrole/cellulose (PPCL) composite papers in solution. Simply, the conjugated polymer papers had different chemical/physical properties by applying different potentials to them, which resulted in differentiable response patterns and adsorption efficiencies for individual metal ions. First, large-area PPCL papers with a diameter of 5 cm were readily obtained via vapor deposition polymerization. The papers exhibited both mechanical flexibility and robustness, in which polypyrrole retained its redox property perfectly. The ability of the PPCL papers to recognize metal ions was examined in static and flow cells, in which real-time current change was monitored at five different applied potentials (+1, +0.5, 0, -0.5, and -1 V vs. Ag/AgCl). Distinguishable signals in the PPCL paper responses were observed for individual metal ions through principal component analysis. Particularly, the PPCL papers yielded unique signatures for three metal ions, Hg(ii), Ag(i), and Cr(iii), even in a real sample, groundwater. The sorption of metal ions by PPCL papers was examined in the flow system. The PPCL papers had a greatly superior adsorption efficiency for Hg(ii) compared to that of the other metal ions. With the strong demand for the development of inexpensive, flexible, light-weight, and environmentally friendly devices, the fascinating characteristics of these PPCL papers are likely to provide good opportunities for low-cost paper-based flexible or wearable devices.

  12. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Sebastian M; Ivanov, Ivaylo N; Wang, Hailong

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculationsmore » reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.« less

  13. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    PubMed

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  14. MCTBI: a web server for predicting metal ion effects in RNA structures.

    PubMed

    Sun, Li-Zhen; Zhang, Jing-Xiang; Chen, Shi-Jie

    2017-08-01

    Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg 2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures. © 2017 Sun et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites.

    PubMed

    Khaydarov, Rashid A; Khaydarov, Renat R; Gapurova, Olga

    2010-03-01

    The paper deals with a novel method of obtaining nanocarbon-conjugated polymer nanocomposites (NCPC) using nanocarbon colloids (NCC) and polyethylenimine (PEI) for water purification from metal ions. Size of NCC, process of NCPC synthesis, its chemical characteristics, ratio of NCC and PEI in NCPC, speed of coagulation of NCPC, mechanism of interaction of metal ions with NCPC, ability of removing metal ions from water by NCPC against pH have been studied. NCPC has a bonding capacity of 4.0-5.7mmol/g at pH 6 for most of the divalent metal ions. Percent of sorption of Zn(2+), Cd(2+), Cu(2+), Hg(2+), Ni(2+), Cr(6+) ions is higher than 99%. Lifetime of NCPC before coagulation in the treated water is 1s-1000min and depends on the ratio of polymeric molecules and carbon nanoparticle concentrations. Results of laboratory tests of the method are described. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Determination of heavy metal ions in vegetable samples using a magnetic metal-organic framework nanocomposite sorbent.

    PubMed

    Hassanpour, Akbar; Hosseinzadeh-Khanmiri, Rahim; Babazadeh, Mirzaagha; Abolhasani, Jafar; Ghorbani-Kalhor, Ebrahim

    2015-01-01

    This paper describes the synthesis and application of a novel magnetic metal-organic framework (MOF) [(Fe₃O₄-benzoyl isothiocyanate)/Cu₃(benzene-1,3,5-tricarboxylate)₂] to pre-concentrate trace amounts of Cd(II), Pb(II), Zn(II) and Cr(III) ions and their determination by flame atomic absorption spectrometry. A Box-Behnken design was used to find the parameters affecting the pre-concentration procedure through response surface methodology. Three factors including uptake time, amount of the magnetic sorbent and pH of the sample were selected as affecting factors in the sorption step, and four factors including type, volume and concentration of the eluent as well as the elution time were selected in the elution step for the optimisation study. The opted values were 30 mg, 10.1 min, 5.9, EDTA, 4.0 ml, 0.57 mol l(-1) EDTA solution and 13.0 min for the amount of the magnetic sorbent, uptake time, pH of the sample, type, volume, concentration of the eluent, and elution time, respectively. The limits of detection (LODs) were 0.12, 0.7, 0.16, and 0.4 ng ml(-1) for Cd(II), Pb(II), Zn(II) and Cr(III) ions, respectively. The relative standard deviations (RSDs) of the method were less than 7.2% for five separate batch experiments for the determination of 30 μg l(-1) of Cd(II), Pb(II), Zn(II) and Cr(III) ions. The sorption capacity of the [(Fe₃O₄-benzoyl isothiocyanate)/MOF] was 175 mg g(-1) for Cd(II), 168 mg g(-1) for Pb(II), 210 mg g(-1) for Zn(II) and 196 mg g(-1) for Cr(III). It was found that the magnetic MOF nanocomposite demonstrated a higher capacity compared with Fe₃O₄-benzoyl isothiocyanate. Finally, the magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace amounts of the heavy metal ions from vegetable samples.

  17. The salen based chemosensors for highly selective recognition of Zn2+ ion.

    PubMed

    Zhu, Wenkai; Du, LongChao; Li, Wensheng; Zuo, Jinyan; Shan, Jingrui

    2018-06-03

    Two novel salen based chemosensors have been successfully synthesized. UV-vis absorption, fluorescence emission spectroscopy and cyclic voltammetry (CV) were exploited to investigate their recognition toward various metal ions, including Na + , K + , Mg 2+ , Al 3+ , Zn 2+ , Ag + , Pb 2+ , Co 2+ , Li + , Ba 2+ , Ca 2+ , Cd 2+ , La 3+ , Cu 2+ and Mn 2+ ions. The results indicated that the sensor L1 and L2 exhibited highly selective and sensitive recognition for Zn 2+ ions. The binding stoichiometry ratio of L1-Zn 2+ /L2-Zn 2+ were recognized as 4:1 by the method of Job's plot. Meanwhile, this investigation is confirmed by 1 H NMR. These results indicated that L1 and L2 can be applied as chemosensor for the detection of Zn 2+ ion. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Metal selectivity of the E. coli nickel metallochaperone, SlyD

    PubMed Central

    Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.

    2012-01-01

    SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179

  19. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media.

    PubMed

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo; Hyvrard, François; Borrini, Julien; Carboni, Michaël; Meyer, Daniel

    2016-11-05

    An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal, M. J., E-mail: mattiti@gmail.com; University of Cape Town, Rondebosch, Cape Town 7700; Bark, R. A.

    An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.

  1. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  2. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.

    PubMed

    Liu, Xiaowang; Hu, Qiyan; Fang, Zhen; Zhang, Xiaojun; Zhang, Beibei

    2009-01-06

    Magnetic chitosan nanocomposites have been synthesized on the basis of amine-functionalized magnetite nanoparticles. These nanocomposites can be removed conveniently from water with the help of an external magnet because of their exceptional properties. The nanocomposites were applied to remove heavy metal ions from water because chitosan that is inactive on the surface of the magnetic nanoparticles is coordinated with them. The interaction between chitosan and heavy metal ions is reversible, which means that those ions can be removed from chitosan in weak acidic deionized water with the assistance of ultrasound radiation. On the basis of the reasons referred to above, synthesized magnetic chitosan nanocomposites were used as a useful recyclable tool for heavy metal ion removal. This work provides a potential platform for developing a unique route for heavy metal ion removal from wastewater.

  3. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  4. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation.

    PubMed

    Zou, Fang; Yu, Runhan; Li, Rongguan; Li, Wei

    2013-08-26

    A simple, rapid and efficient synthesis of the metal-organic framework (MOF) HKUST-1 [Cu3(1,3,5-benzene-tri-carboxilic-acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST-1-MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST-1-MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg(2+) under the same experimental conditions. Of particular importance is the preservation of the structure after metal-ion adsorption, which remained virtually intact, with only a few changes in X-ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate-containing HKUST-1-MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin-type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10-20 μm and their structures were determined using synchrotron-based X-ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent.

    PubMed

    Bartczak, Przemysław; Klapiszewski, Łukasz; Wysokowski, Marcin; Majchrzak, Izabela; Czernicka, Weronika; Piasecki, Adam; Ehrlich, Hermann; Jesionowski, Teofil

    2017-12-15

    A chitin/lignin material with defined physicochemical and morphological properties was used as an effective adsorbent of environmentally toxic metals from model systems. Particularly significant is its use in the neutralization of real industrial wastes. The ions Ni 2+ , Cu 2+ , Zn 2+ and Pb 2+ were adsorbed on the functional sorbent, confirming the high sorption capacity of the newly obtained product, primarily due to the presence on its surface of numerous active functional groups from the component biopolymers. The kinetics of the process of ion adsorption from model solution were investigated, and the experimental data were found to fit significantly better to a type 1 pseudo-second-order kinetic model, as confirmed by the high correlation coefficient of 0.999 for adsorption of both nickel(II) copper(II) zinc(II) and lead(II) ions. The experimental data obtained on the basis of adsorption isotherms corresponded to the Langmuir model. The sorption capacity of the chitin/lignin material was measured at 70.41 mg(Ni 2+ )/g, 75.70 mg(Cu 2+ )/g, 82.41 mg(Zn 2+ )/g and 91.74 mg(Pb 2+ )/g. Analysis of thermodynamic parameters confirmed the endothermic nature of the process. It was also shown that nitric acid is a very effective desorbing (regenerating) agent, enabling the chitin/lignin material to be reused as an effective sorbent of metal ions. The sorption abilities of the chitin/lignin system with respect to particular metal ions can be ordered in the sequence Ni 2+ ions of nickel(II), copper(II), zinc(II) and lead(II) from wastewater obtained from galvanization and battery production plants, confirming the ability of the chitin/lignin sorbent to adsorb harmful ions from real industrial wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism.

    PubMed

    Castaneda, Carol Ann; Lopez, Jeffrey E; Joseph, Caleb G; Scholle, Michael D; Mrksich, Milan; Fierke, Carol A

    2017-10-24

    Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.

  7. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  8. Metal ion levels in patients with stainless steel spinal instrumentation.

    PubMed

    McPhee, I Bruce; Swanson, Cheryl E

    2007-08-15

    Case-control study. To determine whether metal ion concentrations are elevated in patients with spinal instrumentation. Studies have shown that serum and urinary levels of component metal ions are abnormally elevated in patients with total joint arthroplasties. Little is known of metal ion release and concentrations in patients with spinal instrumentation. The study group consisted of patients who had undergone spinal instrumentation for various spinal disorders with a variety of stainless steel implants, 5 to 25 years previously. A group of volunteers without metal implants were controls. All subjects were tested for serum nickel, blood chromium, and random urine chromium/creatinine ratio estimation. The study group consisted of 32 patients with retained implants and 12 patients whose implants had been removed. There were 26 unmatched controls. There was no difference in serum nickel and blood chromium levels between all 3 groups. The mean urinary chromium/creatinine ratio for patients with implants and those with implants removed was significantly greater than controls (P < 0.001). The difference between study subgroups was not significant (P = 0.16). Of several patient and instrumentation variables, only the number of couplings approached significance for correlation with the urine chromium excretion (P = 0.07). Spinal implants do not raise the levels of serum nickel and blood chromium. There is evidence that metal ions are released from spinal implants and excreted in urine. The excretion of chromium in patients with spinal implants was significantly greater than normal controls although lower where the implants have been removed. The findings are consistent with low-grade release of ions from implants with rapid clearance, thus maintaining normal serum levels. Levels of metal ions in the body fluids probably do not reach a level that causes late side-effect; hence, routine removal of the implants cannot be recommended.

  9. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations

    PubMed Central

    Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J

    2017-01-01

    Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results 15-year implant survival was similar in both groups (MoM 96% [95% CI 88–100] versus MoP 97% [95% CI 91–100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p < 0.001) and the mean chromium concentration was double in the MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term. PMID:28699417

  10. Postsynthesis Modification of a Metallosalen-Containing Metal-Organic Framework for Selective Th(IV)/Ln(III) Separation.

    PubMed

    Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi

    2017-10-16

    An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.

  11. Theoretical study of transition-metal ions bound to benzene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Theoretical binding energies are reported for all first-row and selected second-row transition metal ions (M+) bound to benzene. The calculations employ basis sets of at least double-zeta plus polarization quality and account for electron correlation using the modified coupled-pair functional method. While the bending is predominantly electrostatic, the binding energies are significantly increased by electron correlation, because the donation from the metal d orbitals to the benzene pi* orbitals is not well described at the self-consistent-field level. The uncertainties in the computed binding energies are estimated to be about 5 kcal/mol. Although the calculated and experimental binding energies generally agree to within their combined uncertainties, it is likely that the true binding energies lie in the lower portion of the experimental range. This is supported by the very good agreement between the theoretical and recent experimental binding energies for AgC6H6(+).

  12. Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution.

    PubMed

    Li, Keyan; Li, Min; Xue, Dongfeng

    2012-04-26

    By incorporating the solvent effect into the Born effective radius, we have proposed an electronegativity scale of metal ions in aqueous solution with the most common oxidation states and hydration coordination numbers in terms of the effective ionic electrostatic potential. It is found that the metal ions in aqueous solution are poorer electron acceptors compared to those in the gas phase. This solution-phase electronegativity scale shows its efficiency in predicting some important properties of metal ions in aqueous solution such as the aqueous acidities of the metal ions, the stability constants of metal complexes, and the solubility product constants of the metal hydroxides. We have elaborated that the standard reduction potential and the solution-phase electronegativity are two different quantities for describing the processes of metal ions in aqueous solution to soak up electrons with different final states. This work provides a new insight into the chemical behaviors of the metal ions in aqueous solution, indicating a potential application of this electronegativity scale to the design of solution reactions.

  13. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  14. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Duznovic, Ivana; Nasir, Saima; Mafe, Salvador; Ensinger, Wolfgang

    2017-02-01

    We design and characterize a nanofluidic device for the label-free specific detection of histamine neurotransmitter based on a metal ion displacement mechanism. The sensor consists of an asymmetric polymer nanopore fabricated via ion track-etching technique. The nanopore sensor surface having metal-nitrilotriacetic (NTA-Ni 2+ ) chelates is obtained by covalent coupling of native carboxylic acid groups with N α ,N α -bis(carboxymethyl)-l-lysine (BCML), followed by exposure to Ni 2+ ion solution. The BCML immobilization and subsequent Ni 2+ ion complexation with NTA moieties change the surface charge concentration, which has a significant impact on the current-voltage (I-V) curve after chemical modification of the nanopore. The sensing mechanism is based on the displacement of the metal ion from the NTA-Ni 2+ chelates. When the modified pore is exposed to histamine solution, the Ni 2+ ion in NTA-Ni 2+ chelate recognizes histamine through a metal ion coordination displacement process and formation of stable Ni-histamine complexes, leading to the regeneration of metal-free NTA groups on the pore surface, as shown in the current-voltage characteristics. Nanomolar concentrations of the histamine in the working electrolyte can be detected. On the contrary, other neurotransmitters such as glycine, serotonin, gamma-aminobutyric acid, and dopamine do not provoke significant changes in the nanopore electronic signal due to their inability to displace the metal ion and form a stable complex with Ni 2+ ion. The nanofluidic sensor exhibits high sensitivity, specificity and reusability towards histamine detection and can then be used to monitor the concentration of biological important neurotransmitters. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Multivariate correlations between properties of metal ions and their acute toxicity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.E.; Williams, M.W.; Hingerty, B.E.

    1986-01-01

    This paper extends our earlier study of correlations of acute metal-ion toxicity (14-day LD50) in mice and physicochemical properties of the ions. Here we put metal ions into two main groups as defined by Kaiser. Using most of the metals in the periodic system, we find the least redundant linear combinations W/sub i/ of the ionic radius, sum of ionization potentials, atomic weight, Williams softness parameter, and electronegativity for each of Kaiser's two groups. Information is provided so that the W/sub i/ can be evaluated for any metal from these five quantities. For the two groups of metals we thenmore » tested for multivariate correlations between the S/sub i/ having the highest sample variance and our mouse LD50. For our LD50 involving the five metal ions in Kaiser's group (1) the correlation is poor, whereas a good correlation is found for the 14 ions in group (2). 10 refs., 3 tabs.« less

  16. A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging

    NASA Astrophysics Data System (ADS)

    Manjunath, Rangasamy; Hrishikesan, Elango; Kannan, Palaninathan

    2015-04-01

    A new rhodamine-based fluorescent turn-on chemosensor (L) for selective detection of Al3+ ion has been developed and characterized. The fluorescent chemosensor L was synthesized by the reaction of intermediate (4) with 2,5-bis (4-phenylacyl chloride)-1,3,4-oxadiazole (3). The chemosensor L displays an excellent selective and sensitive response to Al3+ ion over other metal ions, in which the spirocyclic (non-fluorescent) to ring opened amide (fluorescent) process was utilized and a 1:2 stoichiometry for L-Al3+ complex was formed with an association constant of 2.03 × 103 M-1. Furthermore, chemosensor L can be applied as a fluorescent probe for monitoring Al3+ in living cells by performing cell imaging studies.

  17. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.

    PubMed

    Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S

    2017-10-01

    A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  19. Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite

    PubMed Central

    2018-01-01

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal–organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb2+ and Hg2+, from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg2+ and 394 mg of Pb2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na+, are present at concentrations up to 14 000 times that of Pb2+. The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles. PMID:29632880

  20. Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    1996-01-01

    Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.

  1. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin.

    PubMed

    de Aquino, Luciana Cristina Lins; de Sousa, Heloisa Ribeiro Tunes; Miranda, Everson Alves; Vilela, Luciano; Bueno, Sônia Maria Alves

    2006-04-13

    Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).

  2. Oxidation of β-blockers by birnessite: Kinetics, mechanism and effect of metal ions.

    PubMed

    Chen, Yong; Lu, Xiye; Liu, Lu; Wan, Dong; Chen, Huabin; Zhou, Danna; Sharma, Virender K

    2018-03-01

    Manganese dioxides are ubiquitous in natural waters, soils, and sediments and play an important role in oxidative transformation of organic pollutants. This work presents the kinetics of the oxidation of selected β-blockers, betaxolol, metoprolol, and atenolol by birnessite (δ-MnO 2 ) as a function of concentration of the β-blocker, dosage of δ-MnO 2 , and solution pH. The values of pseudo-first-order rate constants (k obs ) of β-blockers decreased in the order betaxolol > atenolol > metoprolol, which was positively correlated with their acid dissociation constants (K a ). Effect of series of metal ions (Fe 3+ , Cr 3+ , Al 3+ , Pb 2+ , Cu 2+ , Zn 2+ , Ni 2+ , Cd 2+ , Mg 2+ , and Ca 2+ ) on the degradation of β-blockers by δ-MnO 2 was systematically examined. All of these metal ions inhibited the oxidation reaction under the same constant ionic strength. The inhibition efficiency was positively correlated with the logarithm of stability constant of metal ions in aqueous solution (logK MeOH ). By LC-ESI-MS/MS analyses, the oxidation of β-blockers primarily involved hydroxylation and cleavage of the parent molecules to the short branched chain compounds. An electron transfer mechanism for the oxidation of β-blockers by δ-MnO 2 was proposed. The oxidation was initiated by the electron transfer from the nonbonding electrons on nitrogen (N-electrons) of β-blockers to δ-MnO 2 , followed by transformation of radical intermediates. These findings will help to understand the oxidation processes of β-blockers and predict the effect of metal ions on the removal of pollutants by δ-MnO 2 in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tuning Sensory Properties of Triazole-Conjugated Spiropyrans: Metal-Ion Selectivity and Paper-Based Colorimetric Detection of Cyanide

    PubMed Central

    Lee, Juhyen; Choi, Eun Jung; Kim, Inwon; Lee, Minhe; Satheeshkumar, Chinnadurai; Song, Changsik

    2017-01-01

    Tuning the sensing properties of spiropyrans (SPs), which are one of the photochromic molecules useful for colorimetric sensing, is important for efficient analysis, but their synthetic modification is not always simple. Herein, we introduce an alkyne-functionalized SP, the modification of which would be easily achieved via Cu-catalyzed azide-alkyne cycloaddition (“click reaction”). The alkyne-SP was conjugated with a bis(triethylene glycol)-benzyl group (EG-BtSP) or a simple benzyl group (BtSP), forming a triazole linkage from the click reaction. The effects of auxiliary groups to SP were tested on metal-ion sensing and cyanide detection. We found that EG-BtSP was more Ca2+-sensitive than BtSP in acetonitrile, which were thoroughly examined by a continuous variation method (Job plot) and UV-VIS titrations, followed by non-linear regression analysis. Although both SPs showed similar, selective responses to cyanide in a water/acetonitrile co-solvent, only EG-BtSP showed a dramatic color change when fabricated on paper, highlighting the important contributions of the auxiliary groups. PMID:28783127

  4. [Detection of metal ions in hair after metal-metal hip arthroplasty].

    PubMed

    Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C

    2014-01-01

    There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  5. Do soft drinks affect metal ions release from orthodontic appliances?

    PubMed

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    PubMed

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  7. An embryo of protocells: The capsule of graphene with selective ion channels

    PubMed Central

    Li, Zhan; Wang, Chunmei; Tian, Longlong; Bai, Jing; Yao, Huijun; Zhao, Yang; Zhang, Xin; Cao, Shiwei; Qi, Wei; Wang, Suomin; Shi, Keliang; Xu, Youwen; Mingliang, Zhang; Liu, Bo; Qiu, Hongdeng; Liu, Jie; Wu, Wangsuo; Wang, Xiaoli; Wenzhen, An

    2015-01-01

    The synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into a secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused 84Kr25+, has a high selectivity for permeation of the monovalent metal ions ( Rb+ > K+ > Cs+ > Na+ > Li+, based on permeation concentration), but does not allow Cl- go through. It is similar to K+ channels, which would cause an influx of K+ into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life. PMID:25989440

  8. An embryo of protocells: The capsule of graphene with selective ion channels

    DOE PAGES

    Li, Zhan; Wang, Chunmei; Tian, Longlong; ...

    2015-05-19

    In this study, the synthesis of artificial cell is a route for searching the origin of protocell. Here, we create a novel cell model of graphene capsules with selective ion channels, indicating that graphene might be an embryo of protocell membrane. Firstly, we found that the highly oxidized graphene and phospholipid-graphene oxide composite would curl into capsules under a strongly acidic saturated solution of heavy metallic salt solution at low temperature. Secondly, L-amino acids exhibited higher reactivity than D-amino acids on graphene oxides to form peptides, and the formed peptides in the influence of graphene would be transformed into amore » secondary structure, promoting the formation of left-handed proteins. Lastly, monolayer nanoporous graphene, prepared by unfocused 84Kr 25+, has a high selectivity for permeation of the monovalent metal ions ( Rb + > K + > Cs + > Na + > Li +, based on permeation concentration), but does not allow Cl- go through. It is similar to K+ channels, which would cause an influx of K + into capsule of graphene with the increase of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Therefore, we built a model cell of graphene, which would provide a route for reproducing the origin of life.« less

  9. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    PubMed

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  10. Benzophenone based fluorophore for selective detection of Sn2+ ion: Experimental and theoretical study.

    PubMed

    Jadhav, Amol G; Shinde, Suvidha S; Lanke, Sandip K; Sekar, Nagaiyan

    2017-03-05

    Synthesis of novel benzophenone-based chemosensor is presented for the selective sensing of Sn 2+ ion. Screening of competitive metal ions was performed by competitive experiments. The specific cation recognition ability of chemosensor towards Sn 2+ was investigated by experimental (UV-visible, fluorescence spectroscopy, 1 H NMR, 13 C NMR, FTIR and HRMS) methods and further supported by Density Functional Theory study. The stoichiometric binding ratio and binding constant (K a ) for complex is found to be 1:1 and 1.50×10 4 , respectively. The detection limit of Sn 2+ towards chemosensor was found to be 0.3898ppb. Specific selectivity and superiority of chemosensor over another recently reported chemosensor is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 4-(2-Pyridylazo)-resorcinol Functionalized Thermosensitive Ionic Microgels for Optical Detection of Heavy Metal Ions at Nanomolar Level.

    PubMed

    Zhou, Xianjing; Nie, Jingjing; Du, Binyang

    2015-10-07

    4-(2-Pyridylazo)-resorcinol (PAR) functionalized thermosensitive ionic microgels (PAR-MG) were synthesized by a one-pot quaternization method. The PAR-MG microgels were spherical in shape with radius of ca. 166.0 nm and narrow size distribution and exhibited thermo-sensitivity in aqueous solution. The PAR-MG microgels could optically detect trace heavy metal ions, such as Cu(2+), Mn(2+), Pb(2+), Zn(2+), and Ni(2+), in aqueous solutions with high selectivity and sensitivity. The PAR-MG microgel suspensions exhibited characteristic color with the presence of various trace heavy metal ions, which could be visually distinguished by naked eyes. The limit of colorimetric detection (DL) was determined to be 38 nM for Cu(2+) at pH 3, 12 nM for Cu(2+) at pH 7, and 14, 79, 20, and 21 nM for Mn(2+), Pb(2+), Zn(2+), and Ni(2+), respectively, at pH 11, which was lower than (or close to) the United States Environmental Protection Agency standard for the safety limit of these heavy metal ions in drinking water. The mechanism of detection was attributed to the chelation between the nitrogen atoms and o-hydroxyl groups of PAR within the microgels and heavy metal ions.

  12. Dislocation loop formation by swift heavy ion irradiation of metals.

    PubMed

    Khara, Galvin S; Murphy, Samuel T; Duffy, Dorothy M

    2017-07-19

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  13. Dislocation loop formation by swift heavy ion irradiation of metals

    NASA Astrophysics Data System (ADS)

    Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.

    2017-07-01

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  14. Highly selective fluorescent and colorimetric chemosensor for detection of Hg2 + ion in aqueous media

    NASA Astrophysics Data System (ADS)

    Zareh Jonaghani, Mohammad; Zali-Boeini, Hassan

    2017-05-01

    A highly efficient and selective fluorescent and colorimetric chemosensor based on naphthothiazole skeleton was synthesized and its colorimetric and fluorescent properties were investigated. The sensor displays a rapid and highly selective colorimetric and fluorescence response toward Hg2 + without interference with other metal ions in CH3CN/H2O mixture (50/50, v/v). The detection limit for the fluorescent chemosensor S1 toward Hg2 + was 3.42 × 10- 8 M.

  15. Metal site occupancy and allosteric switching in bacterial metal sensor proteins.

    PubMed

    Guerra, Alfredo J; Giedroc, David P

    2012-03-15

    All prokaryotes encode a panel of metal sensor or metalloregulatory proteins that govern the expression of genes that allows an organism to quickly adapt to toxicity or deprivation of both biologically essential transition metal ions, e.g., Zn, Cu, Fe, and heavy metal pollutants. As such, metal sensor proteins can be considered arbiters of intracellular transition metal bioavailability and thus potentially control the metallation state of the metalloproteins in the cell. Metal sensor proteins are specialized allosteric proteins that regulate transcription as a result direct binding of one or two cognate metal ions, to the exclusion of all others. In most cases, the binding of the cognate metal ion induces a structural change in a protein oligomer that either activates or inhibits operator DNA binding. A quantitative measure of the degree to which a particular metal drives metalloregulation of operator DNA-binding is the allosteric coupling free energy, ΔGc. In this review, we summarize recent work directed toward understanding metal occupancy and metal selectivity of these allosteric switches in selected families of metal sensor proteins and examine the structural origins of ΔGc in the functional context a thermodynamic "set-point" model of intracellular metal homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Effects of lability of metal complex on free ion measurement using DMT.

    PubMed

    Weng, Liping; Van Riemsdijk, Willem H; Temminghoff, Erwin J M

    2010-04-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT. Analysis of new experimental studies using synthetic solution containing NTA as the ligand and Cu(2+) ions shows that when the ionic strength is low (metals. By comparing the fraction of labile species measured using other dynamic sensors (DGT, GIME) in several freshwaters, it is concluded that in most waters ion transport in DMT is controlled by diffusion in the membrane. Only in very soft waters (<0.7 mM Ca+Mg), the dissociation rate of natural metal complex may influence ion transport in DMT. In this case, neglecting this effect may lead to an underestimation of the free metal ion concentration measured.

  17. Fluorescence enhancement of photoswitchable metal ion sensors

    NASA Astrophysics Data System (ADS)

    Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.

    2016-12-01

    Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.

  18. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets

    NASA Astrophysics Data System (ADS)

    Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X. S.; Chan, Siew Hwa; Sun, Qiang

    2012-06-01

    Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], 10.1021/ja108628r, where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO2 capture by considering the adsorptions of H2/CO2 gas mixtures. It is found that ScPc sheet shows a good selectivity for CO2, and the excess uptake capacity of single-component CO2 on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO2 molecules play a key role in the capture.

  19. Study of irradiation damage induced by He2+ ion irradiation in Ni62Ta38 metallic glass and W metal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonan; Mei, Xianxiu; Zhang, Qi; Li, Xiaona; Wang, Yingmin; Wang, Younian

    2017-09-01

    Metallic glasses are considered to possess good resistant against irradiation due to their inherent structural long-range disorder and a lack of grain boundaries. The He2+ with an energy of 300 keV was used to irradiate Ni62Ta38 binary metallic glass to investigate its resistance against the irradiation, and the irradiated behaviour of the metallic glass was compared with that of W metal. The irradiation fluence range over 2.0 × 1017 ions/cm2-1.6 × 1018 ions/cm2. The TEM results show that nanocrystals of μ-NiTa phase and Ni2Ta phase appeared in Ni62Ta38 metallic glass under the irradiation fluence of 1.6 × 1018 ions/cm2. The SEM results show that the surfaces of Ni62Ta38 metallic glasses maintained flat and smooth, whereas a large area of blisters with peeling formed on the surface of W metal at the irradiation fluence of 1.0 × 1018 ions/cm2. It indicates that the critical irradiation fluence of surface breakage of the Ni62Ta38 metallic glass is higher than that of W metal. After the irradiation, stress was generated in the surface layer of W metal, leading to the increase of the hardness of W metal.

  20. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    PubMed

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  1. Poultry litter-based activated carbon for removing heavy metal ions in water.

    PubMed

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  2. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.

    PubMed

    Hu, Xiuzhen; Dong, Qiwen; Yang, Jianyi; Zhang, Yang

    2016-11-01

    More than half of proteins require binding of metal and acid radical ions for their structure and function. Identification of the ion-binding locations is important for understanding the biological functions of proteins. Due to the small size and high versatility of the metal and acid radical ions, however, computational prediction of their binding sites remains difficult. We proposed a new ligand-specific approach devoted to the binding site prediction of 13 metal ions (Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+ , Mn 2+ , Na + , K + ) and acid radical ion ligands (CO3 2- , NO2 - , SO4 2- , PO4 3- ) that are most frequently seen in protein databases. A sequence-based ab initio model is first trained on sequence profiles, where a modified AdaBoost algorithm is extended to balance binding and non-binding residue samples. A composite method IonCom is then developed to combine the ab initio model with multiple threading alignments for further improving the robustness of the binding site predictions. The pipeline was tested using 5-fold cross validations on a comprehensive set of 2,100 non-redundant proteins bound with 3,075 small ion ligands. Significant advantage was demonstrated compared with the state of the art ligand-binding methods including COACH and TargetS for high-accuracy ion-binding site identification. Detailed data analyses show that the major advantage of IonCom lies at the integration of complementary ab initio and template-based components. Ion-specific feature design and binding library selection also contribute to the improvement of small ion ligand binding predictions. http://zhanglab.ccmb.med.umich.edu/IonCom CONTACT: hxz@imut.edu.cn or zhng@umich.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.

    PubMed

    Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-04-15

    A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    PubMed

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  5. Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.

    PubMed

    El-Sharif, H F; Yapati, H; Kalluru, S; Reddy, S M

    2015-12-01

    We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our

  6. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Sebastian; Ivanov, Ivaylo; Wang, Hailong

    2010-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel ismore » open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.« less

  7. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, I.A.H.; Rubio, J.

    1999-07-01

    The removal of heavy metal ions by the nonliving biomass of aquatic macrophytes was investigated. The work involved studies of physical and biochemical properties of the materials, batch sorption experiments carried out in agitation flasks, and continuous runs in a packed bed column at laboratory scale. Results showed that the dried biomass of Potamogeton lucens, Salvinia herzogii, and Eichhornia crassipes were excellent biosorbents for Cr(III), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II). The sorption mechanism by these biomaterials was found to proceed mainly by ion exchange reactions between the metal ions and the cationic weak exchanger groups present on the plantmore » surface. Sorption followed the Langmuir isotherm, and maximum metal uptakes values (independent of the metal ion species) were attained at about 1.5 mequiv g{sup {minus}1} for P. lucens, 0.9 mequiv g{sup {minus}1} for S. herzogii, and 0.7 mequiv g{sup {minus}1} for E. crassipes. Advantages and disadvantages found in the use of these natural adsorbents for heavy metals ions present in industrial wastewaters are envisaged.« less

  8. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  9. Measuring free metal ion concentrations in situ in natural waters using the Donnan Membrane Technique.

    PubMed

    Kalis, Erwin J J; Weng, Liping; Dousma, Freerk; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2006-02-01

    Metal toxicity is not related to the total but rather to the free or labile metal ion concentration. One of the techniques that can be used to measure several free metal ion concentrations simultaneously is the Donnan Membrane Technique (DMT) in combination with the inductively coupled plasma-mass spectrometer (ICP-MS). However, free metal ion concentrations in natural waters are commonly below the detection limit of ICP-MS. We decreased the detection limit by making use of a ligand, and we developed a field DMT cell that can be applied in situ in natural waters. A kinetic approach can be used to calculate free metal ion concentrations when the equilibrium time becomes too large. The field DMT measured in situ in natural waters a free metal ion concentration ranging from 0.015% (Cu) to 13% (Zn) of a total metal concentration ranging from 0.06 nM (Cd) to 237 nM (Zn). The free metal ion concentrations were difficult to predict using an equilibrium speciation model, probably due to the uncertainty in the nature of the dissolved organic matter or the presence of other reactive colloids. It is shown that DMT can follow changes in the free metal ion concentration on times scales less than a day under certain conditions.

  10. Apparatus for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  11. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Flame-ion chemistry of the lanthanide metals Ce, Pr and Nd

    NASA Astrophysics Data System (ADS)

    Patterson, Patricia M.; Goodings, John M.

    1996-01-01

    A pair of premixed, H2---O2---Ar flames of fuel-rich (FR) and fuel-lean (FL) composition, both at atmospheric pressure and 2425 K, were doped with about 10-6 mol fraction of the lanthanide metals La, Ce, Pr and Nd; from a previous study, La was used as a benchmark. The metals produce solid particles in the flames and gaseous metallic species. The latter include metallic atoms A near the flame reaction zone, but only the monoxide AO, the oxide hydroxide OAOH and, in some cases, the dioxide AO2 further downstream at equilibrium. Metallic ions (< 1% of the total metal) were observed by sampling the flames through a nozzle into a mass spectrometer. All of the observed ions can be represented by four hydrate series: (a) major signals of AO+·nH2O (n = 0-3) for La, Ce, Pr and Nd; (b) small signals of AO2H+·nH2O (n = 0-2) for Ce, Pr and Nd; (c) still smaller signals of AO2+·nH2O (n = 0, 1) for Ce, Pr and Nd in the FL flame only; and (d) tiny signals of AOH+·nH2O (n = 0, 1) for Pr and Nd in the FR flame only. The actual structures of some of these ions may not correspond to simple hydrates: e.g. AO+·H2O = A(OH)2+ = protonated OAOH; AO2H+·H2O = A(OH)3+, etc. Since hydrogen flames contain essentially no natural ionization, a major objective was to consider probable ionization mechanisms for the metals. The primary reactions include both chemi-ionization, and thermal (collisional) ionization of AO whose ionization energy is low (about 5 eV). Some of the ions are formed by secondary ion/molecule reactions including three-body hydration, proton transfer, electron (charge) transfer, H atom abstraction by radicals and oxidation. In addition, the chemical ionization of the metallic species by H3O+ was investigated. The flame-ion chemistry of these metals is discussed in detail.

  13. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata

    PubMed Central

    Cabral, Augusto C. S.; Jakovleska, Jovana; Deb, Aniruddha; Penner-Hahn, James E.; Pecoraro, Vincent L.

    2017-01-01

    The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding. PMID:29218632

  14. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity

    PubMed Central

    Otto, Caitlin C.; Koehl, Jennifer L.; Solanky, Dipesh; Haydel, Shelley E.

    2014-01-01

    Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions. PMID:25502790

  15. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.

    PubMed

    Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-05-02

    A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  17. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  18. Metal ion reactive thin films using spray electrostatic LbL assembly.

    PubMed

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  19. Analytical strategies based on quantum dots for heavy metal ions detection.

    PubMed

    Vázquez-González, Margarita; Carrillo-Carrion, Carolina

    2014-01-01

    Heavy metal contamination is one of the major concerns to human health because these substances are toxic and retained by the ecological system. Therefore, in recent years, there has been a pressing need for fast and reliable methods for the analysis of heavy metal ions in environmental and biological samples. Quantum dots (QDs) have facilitated the development of sensitive sensors over the past decade, due to their unique photophysical properties, versatile surface chemistry and ligand binding ability, and the possibility of the encapsulation in different materials or attachment to different functional materials, while retaining their native luminescence property. This paper comments on different sensing strategies with QD for the most toxic heavy metal ions (i.e., cadmium, Cd2+; mercury, Hg2+; and lead, Pb2+). Finally, the challenges and outlook for the QD-based sensors for heavy metals ions are discussed.

  20. Development of a linear-type double reflectron for focused imaging of photofragment ions from mass-selected complex ions

    NASA Astrophysics Data System (ADS)

    Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2017-05-01

    An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.

  1. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    NASA Astrophysics Data System (ADS)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  2. Production of needle-type liquid-metal ion sources and their application in a scanning ion muscope

    NASA Astrophysics Data System (ADS)

    Knapp, Helmut; Rübesame, Detlef; Niedrig, Heinz

    1991-07-01

    A tungsten wire is electrochemically etched in NaOH to produce tip radii of 4-10 μm for use in liquid-metal ion sources (LMIS). To ensure complete wetting of the needle with the liquid metal (Sn, Ga), the needle has to be annealed at 800-1000°C by electron bombardment in a vacuum. It is then immediately dipped into the liquid metal in the same vacuum chamber. An anode prepared in this way is part of a triode system, followed by an octupole stigmator, an electrostatic einzel lens and the scanning unit. Upon application of a high voltage the liquid metal will form a Taylor cone at the needle tip. In the resulting high electrical field ions are extracted through field evaporation. Typical beam current and spot size values during scanning ion muscope (SIM) operation are 2.5 μA and 10 μm respectively. An Everhart-Thornley detector and a quadrupole mass spectrometer are available to allow analysis of secondary particles emitted from the target.

  3. Nanostructured Block Polymer Membranes as High Capacity Adsorbers for the Capture of Metal Ions from Water

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan; Weidman, Jacob; Mulvenna, Ryan; Phillip, William

    The efficient removal of metal ions from aqueous streams is of significant import in applications ranging from industrial waste treatment to the purification of drinking water. An emerging paradigm associated with this separation is one that utilizes membrane adsorbers as a means by which to bind metal salt contaminants. Here, we demonstrate that the casting of an A-B-C triblock polymer using the self-assembly and non-solvent induced phase separation (SNIPS) methodology results in a nanoporous membrane geometry. The nature of the triblock polymer affords an extremely high density of binding sites within the membrane. As such, we demonstrate that the membranes with binding capacities equal to that of state-of-the-art packed bed columns. Moreover, because the affinity of the C moiety can be tuned, highly selective binding events can occur based solely on the chemistry of the block polymer and the metal ions in solution (i.e., in a manner that is independent of the size of the metal ions). Due to these combined facts, these membranes efficiently remove heavy metal (e.g., lead- and cadmium-based) salts from contaminated water streams with greater than 95% efficiency. Finally, we show that the membranes can be regenerated through a simple treatment in order to provide long-lasting adsorber systems as well. Thus, it is anticipated that these nanostructured triblock polymer membranes are a platform by which to obtain next-generation water purification processes.

  4. NOTE: Ranges of ions in metals for use in particle treatment planning

    NASA Astrophysics Data System (ADS)

    Jäkel, Oliver

    2006-05-01

    In proton and ion radiotherapy, the range of particles is calculated from x-ray computed tomography (CT) numbers. Due to the strong absorption of x-rays in a metal and a cut-off for large Hounsfield units (HU) in the software of most CT-scanners, a range calculation in metals cannot be based on the measured HU. This is of special importance when metal implants such as gold fillings or hip prostheses are close to the treatment volume. In order to overcome this problem in treatment planning for heavy charged particles, the correct ranges of ions in the metal relative to water have to be assigned in the CT data. Measurements and calculations of carbon ion ranges in various metals are presented that can be used in treatment planning to allow for a more accurate range calculation of carbon ion beams in titanium, steel, tungsten and gold. The suggested values for the relative water-equivalent range and their uncertainties are 3.13 (±3%) for titanium, 5.59 (±3%) for stainless steel and 10.25 (±4%) for gold.

  5. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  6. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium.

    PubMed

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto

    2005-05-15

    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)

  7. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  8. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  9. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    PubMed

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  11. Solid lithium ion conducting electrolytes and methods of preparation

    DOEpatents

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  12. Solid lithium ion conducting electrolytes and methods of preparation

    DOEpatents

    Narula, Chaitanya K.; Daniel, Claus

    2015-11-19

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  13. Rational composition control of mixed-lanthanide metal-organic frameworks by an interfacial reaction with metal ion-doped polymer substrates

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Takaaki; Miyanaga, Ayumi; Ohhashi, Takashi; Hata, Manami; Takashima, Yohei; Akamatsu, Kensuke

    2017-09-01

    A simple composition control route to mixed-lanthanide metal-organic frameworks (MOFs) was developed based on an interfacial reaction with mixed-lanthanide metal ion-doped polymer substrates. By controlling the composition of lanthanide ion (Eu3+ and Tb3+) dopants in polymer substrates to be used as metal ion precursors and scaffolding for the formation of MOFs, [EuxTb2-x(bdc)3(H2O)4]n crystals with a tunable metal composition could be routinely prepared on polymer substrates. Inductively coupled plasma (ICP) measurements revealed that the composition of the obtained frameworks was almost the same as that of the initial polymer substrates. In addition, the resulting [EuxTb2-x(bdc)3(H2O)4]n crystals showed strong phosphorescence because of Eu3+ transitions, indicating that the energy transfer from Tb3+ to Eu3+ ions in the frameworks could be achieved with high efficiency.

  14. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  15. Protein scaffolds for selective enrichment of metal ions

    DOEpatents

    He, Chuan; Zhou, Lu; Bosscher, Michael

    2016-02-09

    Polypeptides comprising high affinity for the uranyl ion are provided. Methods for binding uranyl using such proteins are likewise provided and can be used, for example, in methods for uranium purification or removal.

  16. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  17. Ion selectivity of graphene nanopores

    DOE PAGES

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K + cations over Cl - anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly thanmore » divalent cations. Furthermore, the observed K +/Cl - selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  18. A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe(3+) ions.

    PubMed

    Zhang, Chuanqi; Yan, Yan; Pan, Qinhe; Sun, Libo; He, Hongming; Liu, Yunling; Liang, Zhiqiang; Li, Jiyang

    2015-08-07

    A microporous lanthanum metal-organic framework [La(TPT)(DMSO)2]·H2O (La-MOF ()), has been synthesized using a rigid unsymmetrical tricarboxylate ligand of p-terphenyl-3,4'',5-tricarboxylic acid (H3TPT). The structure of is constructed by bi-nuclear lanthanum clusters and fully deprotonated TPT(3-) ligands, which can be simplified into a 3,6-connected flu-3,6-C2/c topology with a point symbol of (4(4)·6)2(4·6(2)·8(7)·10(2)). The π-electron rich ligand H3TPT enables to have blue luminescence when excited at 342 nm at ambient temperature. Meanwhile, exhibits the selective detection of picric acid (PA) and Fe(3+) ions in ethanol solution over other nitroaromatic compounds and metal ions. The high quenching efficiency and selectivity of makes it a potential bi-functional chemosensor for both PA and Fe(3+) ions.

  19. Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal.

    PubMed

    Kampalanonwat, Pimolpun; Supaphol, Pitt

    2010-12-01

    Polyacrylonitrile (PAN) nanofiber mats were prepared by electrospinning and they were further modified to contain amidino diethylenediamine chelating groups on their surface via heterogeneous reaction with diethylenetriamine (DETA). The obtained aminated PAN (APAN) nanofiber mats were evaluated for their chelating property with four types of metal ions, namely Cu(II), Ag(I), Fe(II), and Pb(II) ions. The amounts of the metal ions adsorbed onto the APAN nanofiber mats were influenced by the initial pH and the initial concentration of the metal ion solutions. Increasing the contact time also resulted in a monotonous increase in the adsorbed amounts of the metal ions, which finally reached equilibria at about 10 h for Cu(II) ions and about 5 h for Ag(I), Fe(II), and Pb(II) ions. The maximal adsorption capacities of the metal ions on the APAN nanofiber mats, as calculated from the Langmuir model, were 150.6, 155.5, 116.5, and 60.6 mg g(-1), respectively. Lastly, the spent APAN nanofiber mats could be facilely regenerated with a hydrochloric acid (HCl) aqueous solution.

  20. Effects of central metal ions on vibrational circular dichroism spectra of tris-(beta-diketonato)metal(III) complexes.

    PubMed

    Sato, Hisako; Taniguchi, Tohru; Nakahashi, Atsufumi; Monde, Kenji; Yamagishi, Akihiko

    2007-08-06

    Vibrational circular dichroism (VCD) spectra of a series of [M(III)(acac)3] (acac = acetylacetonato; M = Cr, Co, Ru, Rh, Ir, and Al) and [M(III)(acac)2(dbm)] (dbm = dibenzoylmethanato; M = Cr, Co, and Ru) have been investigated experimentally and/or theoretically in order to see the effect of the central metal ion on the vibrational dynamics of ligands. The optical antipodes give the mirror-imaged spectra in the region of 1700-1000 cm(-1). The remarkable effect of the central metal ion is observed experimentally on the VCD peaks due to C-O stretches (1500-1300 cm(-1)) for both [M(III)(acac)3] and [M(III)(acac)2(dbm)]. In the case of Delta-[M(III)(acac)3], for example, the order of frequency of two C-O stretches (E and A2 symmetries) is dependent on the kind of a central metal ion as follows: E (-) > A2 (+) for M = Co, Rh, and Ir, while A2 (+) > E (-) for M = Cr and Ru. In the case of Delta-[M(III)(acac)2(dbm)], the order of frequency of three C-O stretches (A, B, and B symmetries) is as follows: A (-) > B (+) > B (+) for Co(III), B (+) > A (-) > B (-) for Cr(III), and A (-) > B (+) > B (-) for Ru(III). These results imply that the energy levels of C-O stretches are delicately affected by the kind of central metal ion. Since such detailed information is not obtained from the IR spectra alone, the VCD spectrum can probe the effect of the central metal ion on interligand cooperative vibration modes.

  1. Chemistry of carcinogenic metals.

    PubMed Central

    Martell, A E

    1981-01-01

    The periodic distribution of known and suspected carcinogenic metal ions is described, and the chemical behavior of various types of metal ions is explained in terms of the general theory of hard and soft acids and bases. The chelate effect is elucidated, and the relatively high stability of metal chelates in very dilute solutions is discussed. The concepts employed for the chelate effect are extended to explain the high stabilities of macrocyclic and cryptate complexes. Procedures for the use of equilibrium data to determine the speciation of metal ions and complexes under varying solution conditions are described. Methods for assessing the interferences by hydrogen ion, competing metal ions, hydrolysis, and precipitation are explained, and are applied to systems containing iron(III) chelates of fourteen chelating agents designed for effective binding of the ferric ion. The donor groups available for the building up of multidentate ligands are presented, and the ways in which they may be combined to achieve high affinity and selectivity for certain types of metal ions are explained. PMID:6791915

  2. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy

    2009-03-01

    Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.

  4. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less

  6. Chemical multisensors with selective encapsulation of ion-selective membranes

    NASA Astrophysics Data System (ADS)

    Schwager, Felix J.; Bousse, Luc J.; Bowman, Lyn; Meindl, J. D.

    Chemical sensors fabricated with simultaneous wafer scale encapsulation of ion selective electrode mambranes are described. The sensors are miniature ion selective electrodes in chambers located on a silicon substrate. These chambers are made by anodically bonding to the silicon a no. 7740 pyrex glass wafer in which cavities were drilled. Pores with dimensions selectable from 50 microns upwards are opened in the roofs of the chambers by drilling with a CO2 laser. Each sensor die contains four cavities which are filled under reduced pressure with liquid membrane material which is subsequently polymerized. The transducers on the cavity floor are Ag/AgCl electrodes. Interconnects between the sensor chambers on each die and bonding pads are made in the silicon substrate.

  7. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  8. Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries

    PubMed Central

    Ying, Hangjun

    2017-01-01

    Abstract With the fast‐growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn‐based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium‐ion batteries (LIBs) (994 mA h g−1) and sodium‐ion batteries (847 mA h g−1). Though Sony has used Sn–Co–C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn‐based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn‐based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in‐depth understanding of the theoretical works and practical developments of metallic Sn‐based anode materials. PMID:29201624

  9. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    PubMed

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  10. Ion implantation enhanced metal-Si-metal photodetectors

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  11. Ion-Selective Electrodes for Basic Drugs.

    DTIC Science & Technology

    1981-01-01

    coated wire ion selective electrodes for methadone , methylamphetamine, J cocaine, protriptyline i 20. ABSTRACT (Continue on reverse side If neeeeary...end Identify by block number) Coated-wire ion-selective electrodes based on dinonylnaphthalene u-i sulfonic acid (DNNS) are prepared for methadone ...range from 10- 5.5M for cocaine and methylamphetamine electrodes to 10Ś.0M for methadone , and 10-6.5M for DD I 󈨍 1473 EDITION OF I NOV 5 IS OBSOLETE

  12. Microfluidic systems with ion-selective membranes.

    PubMed

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-01-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  13. Microfluidic Systems with Ion-Selective Membranes

    NASA Astrophysics Data System (ADS)

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-06-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  14. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    PubMed

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  15. Tetrahydroindazolone substituted 2-aminobenzamides as fluorescent probes: switching metal ion selectivity from zinc to cadmium by interchanging the amino and carbamoyl groups on the fluorophore.

    PubMed

    Jia, Jia; Xu, Qin-Chao; Li, Ri-chen; Tang, Xi; He, Ying-Fang; Zhang, Meng-Yu; Zhang, Yuan; Xing, Guo-Wen

    2012-08-21

    Three fluorescent probes CdABA', CdABA and ZnABA', which are structural isomers of ZnABA, have been designed with N,N-bis(2-pyridylmethyl) ethylenediamine (BPEA) as chelator and 2-aminobenzamide as fluorophore. These probes can be divided into two groups: CdABA, CdABA' for Cd(2+) and ZnABA, ZnABA' for Zn(2+). Although there is little difference in their chemical structures, the two groups of probes exhibit totally different fluorescence properties for preference of Zn(2+) or Cd(2+). In the group of Zn(2+) probes, ZnABA/ZnABA' distinguish Zn(2+) from Cd(2+) with F(Zn)(2+)-F(Cd)(2+) = 1.87-2.00. Upon interchanging the BPEA and carbamoyl groups on the aromatic ring of the fluorophore, the structures of ZnABA/ZnABA' are converted into CdABA/CdABA'. Interestingly, the metal ions selectivity of CdABA/CdABA' was switched to discriminate Cd(2+) from Zn(2+) with F(Cd)(2+)-F(Zn)(2+) = 2.27-2.36, indicating that a small structural modification could lead to a remarkable change of the metal ion selectivity. (1)H NMR titration and ESI mass experiments demonstrated that these fluorescent probers exhibited different coordination modes for Zn(2+) and Cd(2+). With CdABA' as an example, generally, upon addition of Cd(2+), the fluorescence response possesses PET pathway to display no obvious shift of maximum λ(em) in the absence or presence of Cd(2+). However, an ICT pathway could be employed after adding Zn(2+) into the CdABA' solution, resulting in a distinct red-shift of maximal λ(em).

  16. An intelligent displacement pumping film system: a new concept for enhancing heavy metal ion removal efficiency from liquid waste.

    PubMed

    Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti

    2014-06-15

    A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO4)2; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni(2+) ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni(2+) ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni(2+) ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni(2+) ions and/or other heavy metal ions from wastewater in various industrial processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Redox-activated MRI contrast agents based on lanthanide and transition metal ions.

    PubMed

    Tsitovich, Pavel B; Burns, Patrick J; McKay, Adam M; Morrow, Janet R

    2014-04-01

    The reduction/oxidation (redox) potential of tissue is tightly regulated in order to maintain normal physiological processes, but is disrupted in disease states. Thus, the development of new tools to map tissue redox potential may be clinically important for the diagnosis of diseases that lead to redox imbalances. One promising area of chemical research is the development of redox-activated probes for mapping tissue through magnetic resonance imaging (MRI). In this review, we summarize several strategies for the design of redox-responsive MRI contrast agents. Our emphasis is on both lanthanide(III) and transition metal(II/III) ion complexes that provide contrast either as T1 relaxivity MRI contrast agents or as paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents. These agents are redox-triggered by a variety of chemical reactions or switches including redox-activated thiol groups, and heterocyclic groups that interact with the metal ion or influence properties of other ancillary ligands. Metal ion centered redox is an approach which is ripe for development by coordination chemists. Redox-triggered metal ion approaches have great potential for creating large differences in magnetic properties that lead to changes in contrast. An attractive feature of these agents is the ease of fine-tuning the metal ion redox potential over a biologically relevant range. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    PubMed

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  19. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  20. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor.

    PubMed

    Long, Feng; Zhu, Anna; Shi, Hanchang; Wang, Hongchen; Liu, Jingquan

    2013-01-01

    A structure-switching DNA optical biosensor for rapid on-site/in situ detection of heavy metal ions is reported. Mercury ions (Hg²⁺), highly toxic and ubiquitous pollutants, were selected as model target. In this system, fluorescence-labeled DNA containing T-T mismatch structure was introduced to bind with DNA probes immobilized onto the sensor surface. In the presence of Hg²⁺, some of the fluorescence-labeled DNAs bind with Hg²⁺ to form T-Hg²⁺-T complexes through the folding of themselves into a hairpin structure and dehybridization from the sensor surface, which leads to decrease in fluorescence signal. The total analysis time for a single sample was less than 10 min with detection limit of 1.2 nM. The rapid on-site/in situ determination of Hg²⁺ was readily performed in natural water. This sensing strategy can be extended in principle to other metal ions by substituting the T-Hg²⁺-T complexes with other specificity structures that selectively bind to other analytes.

  1. Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes.

    PubMed

    Chumbimuni-Torres, Karin Y; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-08-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.

  2. Electrochemical Sample Matrix Elimination for Trace Level Potentiometric Detection with Polymeric Membrane Ion-Selective Electrodes

    PubMed Central

    Chumbimuni-Torres, Karin Y.; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-01-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultra-trace level (sub-nanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination (EMPM) of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth coated electrodes, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte. PMID:18570385

  3. Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems

    PubMed Central

    2015-01-01

    DNAzymes, an important type of metal ion-dependent functional nucleic acid, are widely applied in bioanalysis and biomedicine. However, the use of DNAzymes in practical applications has been impeded by the intrinsic drawbacks of natural nucleic acids, such as interferences from nuclease digestion and protein binding, as well as undesired intermolecular interactions with other nucleic acids. On the basis of reciprocal chiral substrate specificity, the enantiomer of D-DNAzyme, L-DNAzyme, could initiate catalytic cleavage activity with the same achiral metal ion as a cofactor. Meanwhile, by using the advantage of nonbiological L-DNAzyme, which is not subject to the interferences of biological matrixes, as recognition units, a facile and stable L-DNAzyme sensor was proposed for sensing metal ions in complex biological samples and live cells. PMID:26691677

  4. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    PubMed Central

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  6. Comparison of synovial fluid, urine, and serum ion levels in metal-on-metal total hip arthroplasty at a minimum follow-up of 18 years.

    PubMed

    Lass, Richard; Grübl, Alexander; Kolb, Alexander; Stelzeneder, David; Pilger, Alexander; Kubista, Bernd; Giurea, Alexander; Windhager, Reinhard

    2014-09-01

    Diagnosis of adverse reactions to metal debris in metal-on-metal hip arthroplasty is a multifactorial process. Systemic ion levels are just one factor in the evaluation and should not be relied upon solely to determine the need for revision surgery. Furthermore, the correlation between cobalt or chromium serum, urine, or synovial fluid levels and adverse local tissue reactions is still incompletely understood. The hypothesis was that elevated serum and urine metal-ion concentrations are associated with elevated local metal-ion concentrations in primary total hip arthroplasties (THA) and with failure of metal-on-metal articulations in the long-term. In our present study, we evaluated these concentrations in 105 cementless THA with metal-on-metal articulating surfaces with small head diameter at a minimum of 18 years postoperatively. Spearman correlation showed a high correlation between the joint fluid aspirate concentration of cobalt and chromium with the serum cobalt (r = 0.81) and chromium level (r = 0.77) in patients with the THA as the only source of metal-ions. In these patients serum metal-ion analysis is a valuable method for screening. In patients with more than one source of metal or renal insufficiency additional investigations, like joint aspirations are an important tool for evaluation of wear and adverse tissue reactions in metal-on-metal THA. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    PubMed

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  8. Surface Immobilization of Transition Metal Ions on Nitrogen-Doped Graphene Realizing High-Efficient and Selective CO2 Reduction.

    PubMed

    Bi, Wentuan; Li, Xiaogang; You, Rui; Chen, Minglong; Yuan, Ruilin; Huang, Weixin; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2018-05-01

    Electrochemical conversion of CO 2 to value-added chemicals using renewable electricity provides a promising way to mitigate both global warming and the energy crisis. Here, a facile ion-adsorption strategy is reported to construct highly active graphene-based catalysts for CO 2 reduction to CO. The isolated transition metal cyclam-like moieties formed upon ion adsorption are found to contribute to the observed improvements. Free from the conventional harsh pyrolysis and acid-leaching procedures, this solution-chemistry strategy is easy to scale up and of general applicability, thus paving a rational avenue for the design of high-efficiency catalysts for CO 2 reduction and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer?

    PubMed

    Selevsek, Nathalie; Rival, Sandrine; Tholey, Andreas; Heinzle, Elmar; Heinz, Uwe; Hemmingsen, Lars; Adolph, Hans W

    2009-06-12

    The reversible unfolding of metallo-beta-lactamase from Chryseobacterium meningosepticum (BlaB) by guanidinium hydrochloride is best described by a three-state model including folded, intermediate, and unfolded states. The transformation of the folded apoenzyme into the intermediate state requires only very low denaturant concentrations, in contrast to the Zn2-enzyme. Similarly, circular dichroism spectra of both BlaB and metallo-beta-lactamase from Bacillus cereus 569/H/9 (BcII) display distinct differences between metal-free and Zn2-enzymes, indicating that the zinc ions affect the folding of the proteins, giving a larger alpha-helix content. To identify the regions of the protein involved in this zinc ion-induced change, a hydrogen deuterium exchange study with matrix-assisted laser desorption ionization tandem time of flight mass spectrometry on metal-free and Zn1- and Zn2-BcII was carried out. The region spanning the metal binding metallo-beta-lactamases (MBL) superfamily consensus sequence His-X-His-X-Asp motif and the loop connecting the N- and C-terminal domains of the protein undergoes a zinc ion-dependent structural change between intrinsically disordered and ordered states. The inherent flexibility even appears to allow for the formation of metal ion-bridged protein-protein complexes which may account for both electrospray ionization-mass spectroscopy results obtained upon variation of the zinc/protein ratio and stoichiometry-dependent variations of 199mHg-perturbed angular correlation of gamma-rays spectroscopic data. We suggest that this flexible "zinc arm" motif, present in all the MBL subclasses, is disordered in metal-free MBLs and may be involved in metal ion acquisition from zinc-carrying molecules different from MBL in an "activation on demand" regulation of enzyme activity.

  10. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis.

    PubMed

    Kliegman, Joseph I; Griner, Sarah L; Helmann, John D; Brennan, Richard G; Glasfeld, Arthur

    2006-03-21

    The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.

  11. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  12. Examining metallic glass formation in LaCe:Nb by ion implantation

    DOE PAGES

    Sisson, Richard; Reinhart, Cameron; Bridgman, Paul; ...

    2017-01-01

    In order to combine niobium (Nb) with lanthanum (La) and cerium (Ce), Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film ofmore » La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. As a result, using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.« less

  13. An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction.

    PubMed Central

    Shan, S O; Herschlag, D

    2000-01-01

    The presence of catalytic metal ions in RNA active sites has often been inferred from metal-ion rescue of modified substrates and sometimes from inhibitory effects of alternative metal ions. Herein we report that, in the Tetrahymena group I ribozyme reaction, the deleterious effect of a thio substitution at the pro-Sp position of the reactive phosphoryl group is rescued by Mn2+. However, analysis of the reaction of this thio substrate and of substrates with other modifications strongly suggest that this rescue does not stem from a direct Mn2+ interaction with the Sp sulfur. Instead, the apparent rescue arises from a Mn2+ ion interacting with the residue immediately 3' of the cleavage site, A(+1), that stabilizes the tertiary interactions between the oligonucleotide substrate (S) and the active site. This metal site is referred to as site D herein. We also present evidence that a previously observed Ca2+ ion that inhibits the chemical step binds to metal site D. These and other observations suggest that, whereas the interactions of Mn2+ at site D are favorable for the chemical reaction, the Ca2+ at site D exerts its inhibitory effect by disrupting the alignment of the substrates within the active site. These results emphasize the vigilance necessary in the design and interpretation of metal-ion rescue and inhibition experiments. Conversely, in-depth mechanistic analysis of the effects of site-specific substrate modifications can allow the effects of specific metal ion-RNA interactions to be revealed and the properties of individual metal-ion sites to be probed, even within the sea of metal ions bound to RNA. PMID:10864040

  14. Understanding the Role of Metal Ions in RNA Folding and Function: Lessons from RNase P, a Ribonucleoprotein Enzyme

    NASA Astrophysics Data System (ADS)

    Harris, Michael E.; Christian, Eric L.

    There is a large and rapidly growing literature relating RNA function to metal ion identity and concentration; however, due to the complexity and large number of interactions it remains a significant experimental challenge to tie the interactions of individual ions to specific aspects of RNA function. Investigation of the ribonculeopro-tein enzyme RNase P function has assisted in defining characteristics of RNA—metal ion interactions and provided a useful model system for understanding RNA catalysis and ribonucleoprotein assembly. The goal of this chapter is to review progress in understanding the physical basis of functional metal ion interactions with P RNA and relate this progress to the development of our understanding of RNA metal ion interactions in general. The research results reviewed here encompass: (1) Determination of the contribution of divalent metal ion binding to specific aspects of enzyme function, (2) Identification of individual metal ion binding sites in P RNA and their contribution to function, and (3) The effect of protein binding on RNA—metal ion affinity.

  15. Generic NICA-Donnan model parameters for metal-ion binding by humic substances.

    PubMed

    Milne, Christopher J; Kinniburgh, David G; van Riemsdijk, Willem H; Tipping, Edward

    2003-03-01

    A total of 171 datasets of literature and experimental data for metal-ion binding by fulvic and humic acids have been digitized and re-analyzed using the NICA-Donnan model. Generic parameter values have been derived that can be used for modeling in the absence of specific metalion binding measurements. These values complement the previously derived generic descriptions of proton binding. For ions where the ranges of pH, concentration, and ionic strength conditions are well covered by the available data,the generic parameters successfully describe the metalion binding behavior across a very wide range of conditions and for different humic and fulvic acids. Where published data for other metal ions are too sparse to constrain the model well, generic parameters have been estimated by interpolating trends observable in the parameter values of the well-defined data. Recommended generic NICA-Donnan model parameters are provided for 23 metal ions (Al, Am, Ba, Ca, Cd, Cm, Co, CrIII, Cu, Dy, Eu, FeII, FeIII, Hg, Mg, Mn, Ni, Pb, Sr, Thv, UVIO2, VIIIO, and Zn) for both fulvic and humic acids. These parameters probably represent the best NICA-Donnan description of metal-ion binding that can be achieved using existing data.

  16. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    PubMed

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  17. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less

  18. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse

    PubMed Central

    Perera, Lalith; Freudenthal, Bret D.; Beard, William A.; Shock, David D.; Pedersen, Lee G.; Wilson, Samuel H.

    2015-01-01

    DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is “balanced,” as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3′ of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability. PMID:26351676

  19. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  20. DFT study of the interaction between DOTA chelator and competitive alkali metal ions.

    PubMed

    Frimpong, E; Skelton, A A; Honarparvar, B

    2017-09-01

    1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    PubMed Central

    Lee, Seong-Ki; Boron, Walter F.; Parker, Mark D.

    2013-01-01

    Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study. PMID:23322102

  2. Selective Solid-Phase Extraction of Zinc(II) from Environmental Water Samples Using Ion Imprinted Activated Carbon.

    PubMed

    Moniri, Elham; Panahi, Homayon Ahmad; Aghdam, Khaledeh; Sharif, Amir Abdollah Mehrdad

    2015-01-01

    A simple ion imprinted amino-functionalized sorbent was synthesized by coupling activated carbon with iminodiacetic acid, a functional compound for metal chelating, through cyanoric chloride spacer. The resulting sorbent has been characterized using FTIR spectroscopy, elemental analysis, and thermogravimetric analysis and evaluated for the preconcentration and determination of trace Zn(II) in environmental water samples. The optimum pH value for sorption of the metal ion was 6-7.5. The sorption capacity of the functionalized sorbent was 66.6 mg/g. The chelating sorbent can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 100% was obtained for the metal ion with 0.5 M nitric acid as the eluent. Compared with nonimprinted polymer particles, the prepared Zn-imprinted sorbent showed high adsorption capacity, significant selectivity, and good site accessibility for Zn(II). Scatchard analysis revealed that the homogeneous binding sites were formed in the polymer. The equilibrium sorption data of Zn(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin, and Redlich-Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.139, 12.82, and 2.34, respectively, at 25°C.

  3. Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel

    PubMed Central

    Haas, Stephan; Farley, Robert A.

    2014-01-01

    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882

  4. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field

    NASA Astrophysics Data System (ADS)

    Jing, Zhifeng; Qi, Rui; Liu, Chengwen; Ren, Pengyu

    2017-10-01

    The interactions between metal ions and proteins are ubiquitous in biology. The selective binding of metal ions has a variety of regulatory functions. Therefore, there is a need to understand the mechanism of protein-ion binding. The interactions involving metal ions are complicated in nature, where short-range charge-penetration, charge transfer, polarization, and many-body effects all contribute significantly, and a quantitative description of all these interactions is lacking. In addition, it is unclear how well current polarizable force fields can capture these energy terms and whether these polarization models are good enough to describe the many-body effects. In this work, two energy decomposition methods, absolutely localized molecular orbitals and symmetry-adapted perturbation theory, were utilized to study the interactions between Mg2+/Ca2+ and model compounds for amino acids. Comparison of individual interaction components revealed that while there are significant charge-penetration and charge-transfer effects in Ca complexes, these effects can be captured by the van der Waals (vdW) term in the AMOEBA force field. The electrostatic interaction in Mg complexes is well described by AMOEBA since the charge penetration is small, but the distance-dependent polarization energy is problematic. Many-body effects were shown to be important for protein-ion binding. In the absence of many-body effects, highly charged binding pockets will be over-stabilized, and the pockets will always favor Mg and thus lose selectivity. Therefore, many-body effects must be incorporated in the force field in order to predict the structure and energetics of metalloproteins. Also, the many-body effects of charge transfer in Ca complexes were found to be non-negligible. The absorption of charge-transfer energy into the additive vdW term was a main source of error for the AMOEBA many-body interaction energies.

  5. Pre-evaluation of metal ions as a catalyst on chemiluminometric sequential injection analysis with luminol-H2O2 system.

    PubMed

    Takayanagi, Toshio; Inaba, Yuya; Kanzaki, Hiroyuki; Jyoichi, Yasutaka; Motomizu, Shoji

    2009-09-15

    Catalytic effect of metal ions on luminol chemiluminescence (CL) was investigated by sequential injection analysis (SIA). The SIA system was set up with two solenoid micropumps, an eight-port selection valve, and a photosensor module with a fountain-type chemiluminescence cell. The SIA system was controlled and the CL signals were collected by a LabVIEW program. Aqueous solutions of luminol, H(2)O(2), and a sample solution containing metal ion were sequentially aspirated to the holding coil, and the zones were immediately propelled to the detection cell. After optimizing the parameters using 1 x 10(-5)M Fe(3+) solution, catalytic effect of some metal species was compared. Among 16 metal species examined, relatively strong CL responses were obtained with Fe(3+), Fe(2+), VO(2+), VO(3)(-), MnO(4)(-), Co(2+), and Cu(2+). The limits of detection by the present SIA system were comparable to FIA systems. Permanganate ion showed the highest CL sensitivity among the metal species examined; the calibration graph for MnO(4)(-) was linear at the concentration level of 10(-8)M and the limit of detection for MnO(4)(-) was 4.0 x 10(-10)M (S/N=3).

  6. First-principles simulations of transition metal ions in silicon as potential quantum bits

    NASA Astrophysics Data System (ADS)

    Ma, He; Seo, Hosung; Galli, Giulia

    Optically active spin defects in semiconductors have gained increasing attention in recent years for use as potential solid-state quantum bits (or qubits). Examples include the nitrogen-vacancy center in diamond, transition metal impurities, and rare earth ions. In this talk, we present first-principles theoretical results on group 6 transition metal ion (Chromium, Molybdenum and Tungsten) impurities in silicon, and we investigate their potential use as qubits. We used density functional theory (DFT) to calculate defect formation energies and we found that transition metal ions have lower formation energies at interstitial than substitutional sites. We also computed the electronic structure of the defects with particular attention to the position of the defect energy levels with respect to the silicon band edges. Based on our results, we will discuss the possibility of implementing qubits in silicon using group 6 transition metal ions. This work is supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  7. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-02

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.

  8. Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal ions and Temperature.

    PubMed

    Li, Wei; Jin, Jing; Liu, Xiaoqing; Wang, Li

    2018-06-15

    The transformation effects of metal ions and temperature on the DNA bases guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water- highly oriented pyrolytic graphite (HOPG) interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H, 7H) tautomer by increasing the temperature of the G solution to 38.6oC. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+ and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of the alkali-metal ions in cellular environment.

  9. A highly selective and fast-response fluorescent probe based on Cd-MOF for the visual detection of Al3+ ion and quantitative detection of Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Lv, Rui; Chen, Zhihengyu; Fu, Xin; Yang, Boyi; Li, Hui; Su, Jian; Gu, Wen; Liu, Xin

    2018-03-01

    A new luminescent Cd(II)-based metal-organic framework, [Cd(PAM)(4-bpdb)1.5]·DMF (Cd-MOF, PAM = 4,4‧-methylenebis(3-hydroxy-2-naphthalene-carboxylic acid) and 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) was successfully synthesized by solvothermal synthesis method. The Cd-MOF reveals excellent luminescence property which can selectively detect Al3+ and Fe3+ ions among other interfering metal ions. The detection limit is 0.56 μM for Al3+ ion in aqueous solutions, and it is obvious lower than the maximum standard of Al3+ ion in drinking water of 7.41 μM which is defined by the WHO. More importantly, the Cd-MOF shows an obvious luminescent color change from yellow to blue under the UV lamp irradiation at 365 nm with the dropping of Al3+ ion, which can make it apply to the visual detection. And, the detection based on the test paper was explored for the first time. In addition, the Cd-MOF can also be used for quantitative detecting Fe3+ ion, and the LOD for Fe3+ ion can be as low as 0.3 μM which is lower than most reported MOFs. It is worth noting that Fe3+ and Al3+ ions can not interfere with each other. These properties make it become an excellent luminescence sensor for the detection of Al3+ and Fe3+ ions.

  10. Crystallization of calcium sulfate dihydrate in the presence of some metal ions

    NASA Astrophysics Data System (ADS)

    Hamdona, Samia K.; Al Hadad, Umaima A.

    2007-02-01

    Crystallization of calcium sulfate dihydrate (CaSO 4·2H 2O gypsum) in sodium chloride solutions in the presence of some metal ions, and over a range of relative super-saturation has been studied. The addition of metal ions, even at relatively low concentration (10 -6 mol l -1), markedly retard the rate of crystallization of gypsum. Retardation effect was enhanced with increase in the additives contents. Moreover, the effect was enhanced as the relative super-saturation decreases. Influence of mixed additives on the rate of crystallization (Cd 2++Arg, Cd 2++H 3PO 4 and Cd 2++PAA) has also been studied. Direct adsorption experiments of these metal ions on the surface of gypsum crystals have been made for comparison.

  11. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-01-15

    As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparison of metal ion release from different bracket archwire combinations: an in vitro study.

    PubMed

    Karnam, Srinivas Kumar; Reddy, A Naveen; Manjith, C M

    2012-05-01

    The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations.

  13. Synthesis of diethylaminoethyl dextran hydrogel and its heavy metal ion adsorption characteristics.

    PubMed

    Demirbilek, Celile; Dinç, Cemile Özdemir

    2012-10-01

    Epichlorohydrin-crosslinked diethylaminoethyl dextran (DEAE-D/ECH) hydrogel was synthesized by intermolecular side-chain reaction of DEAE-D hydroxyl groups with monomeric crosslinking agent, ECH. Swelling ability, adsorption capacity and metal removal of the hydrogel were profoundly determined and some structural parameters for the hydrogel such as volume of non-swollen gel, percentages of gellation, swelling ratio and equilibrium water content were evaluated in this study. The ability of removing heavy metal ions from Orontes River by the synthesized hydrogel, thoroughly characterized by photometric spectrometer and the adsorption characteristics of metal ions, was investigated as well as surface morphologies of the hydrogel before and after metal adsorption were examined by SEM. Structure of DEAE-D/ECH gel was analyzed by FTIR, TGA, and DSC. Gellation point of binary system reaction between DEAE-D and ECH was determined via monitoring viscosity changes during reaction. The order of affinity based on amount of metal ion uptake was found as follows: Zn(2+)>Mn(2+)>Pb(2+)>Cd(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Genetic and physiological responses of Bacillus subtilis to metal ion stress.

    PubMed

    Moore, Charles M; Gaballa, Ahmed; Hui, Monica; Ye, Rick W; Helmann, John D

    2005-07-01

    Metal ion homeostasis is regulated principally by metalloregulatory proteins that control metal ion uptake, storage and efflux genes. We have used transcriptional profiling to survey Bacillus subtilis for genes that are rapidly induced by exposure to high levels of metal ions including Ag(I), Cd(II), Cu(II), Ni(II) and Zn(II) and the metalloid As(V). Many of the genes affected by metal stress were controlled by known metalloregulatory proteins (Fur, MntR, PerR, ArsR and CueR). Additional metal-induced genes are regulated by two newly defined metal-sensing ArsR/SmtB family repressors: CzrA and AseR. CzrA represses the CadA efflux ATPase and the cation diffusion facilitator CzcD and this repression is alleviated by Zn(II), Cd(II), Co(II), Ni(II) and Cu. CadA is the major determinant for Cd(II) resistance, while CzcD protects the cell against elevated levels of Zn(II), Cu, Co(II) and Ni(II). AseR negatively regulates itself and AseA, an As(III) efflux pump which contributes to arsenite resistance in cells lacking a functional ars operon. Our results extend the range of identified effectors for the As(III)-sensor ArsR to include Cd(II) and Ag(I) and for the Cu-sensor CueR to include Ag(I) and, weakly, Cd(II) and Zn(II). In addition to systems dedicated to metal homeostasis, specific metal stresses also strongly induced pathways related to cysteine, histidine and arginine metabolism.

  15. Component Position and Metal Ion Levels in Computer-Navigated Hip Resurfacing Arthroplasty.

    PubMed

    Mann, Stephen M; Kunz, Manuela; Ellis, Randy E; Rudan, John F

    2017-01-01

    Metal ion levels are used as a surrogate marker for wear in hip resurfacing arthroplasties. Improper component position, particularly on the acetabular side, plays an important role in problems with the bearing surfaces, such as edge loading, impingement on the acetabular component rim, lack of fluid-film lubrication, and acetabular component deformation. There are little data regarding femoral component position and its possible implications on wear and failure rates. The purpose of this investigation was to determine both femoral and acetabular component positions in our cohort of mechanically stable hip resurfacing arthroplasties and to determine if these were related to metal ion levels. One hundred fourteen patients who had undergone a computer-assisted metal-on-metal hip resurfacing were prospectively followed. Cobalt and chromium levels, Harris Hip, and UCLA activity scores in addition to measures of the acetabular and femoral component position and angles of the femur and acetabulum were recorded. Significant changes included increases in the position of the acetabular component compared to the native acetabulum; increase in femoral vertical offset; and decreases in global offset, gluteus medius activation angle, and abductor arm angle (P < .05). Multiple regression analysis found no significant predictors of cobalt and chromium metal ion levels. Femoral and acetabular components placed in acceptable position failed to predict increased metal ion levels, and increased levels did not adversely impact patient function or satisfaction. Further research is necessary to clarify factors contributing to prosthesis wear. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Gellyfish: An In-Situ Equilibrium-Based Sampler for Determining Multiple Free Metal Ion Concentrations in Marine Ecosystems

    PubMed Central

    Dong, Zhao; Lewis, Christopher G.; Burgess, Robert M.; Shine, James P.

    2016-01-01

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure due to their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated, time-consuming, and can only measure one metal at a time. We developed a new version of the ‘Gellyfish’, an in-situ equilibrium-based sampler, with significantly reduced equilibration time and the capability of measuring multiple free metal ions simultaneously. By calibrating the Gellyfish to account for its uptake of cationic metal complexes and validating them in multi-metal competition experiments, we were able to determine free metal ion concentrations previously collected over ten months at five locations in Boston Harbor for Cu, Zn, Pb, Ni, and Cd. This work generated one of the largest free metal ion datasets and demonstrated the applicability of the Gellyfish as an easy-to-use and inexpensive tool for monitoring free ion concentrations of metal mixtures in marine ecosystems. PMID:25598362

  17. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    PubMed

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  18. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Interaction of Ions with Two-Dimensional Transition Metal Carbide (MXene) Films

    NASA Astrophysics Data System (ADS)

    Ren, Chang

    transport of ions, which enhanced the ion storage capabilities. After cation intercalation, size occupation of ions caused the expansion of MXene interlayer, while electrostatic attraction between negative MXene and cations caused contraction. Due to the narrow 2D nanochannels between MXene layers, the Ti3C2Tx membranes showed high selectivity towards metal cations and dye cations of different sizes and charges, as ion separation membranes. Additionally, MXene membranes with abundant water between layers showed fast water flux. By applying positive voltage on the Ti3C2Tx membranes, the salt (NaCl and MgSO4) permeation was accelerated, while negative voltage decelerated the permeation. In addition, Ti3C 2Tx MXene membranes as thin as 100 nm showed high rejection (over 98 %) of methylene blue dye molecules, with fast water flow through the membranes. Completion of this work opened several paths to modify and enhance the MXene films' properties, and shed light on the ions' interaction with MXenes for related applications with voltage applied or not.

  20. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    NASA Astrophysics Data System (ADS)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  1. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    NASA Astrophysics Data System (ADS)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  2. Identification of metal ion binding sites based on amino acid sequences.

    PubMed

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  3. Identification of metal ion binding sites based on amino acid sequences

    PubMed Central

    Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211

  4. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  5. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  6. Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal.

    PubMed

    Jaiswal, Amit; Ghsoh, Siddhartha Sankar; Chattopadhyay, Arun

    2012-11-06

    We report the use of biopolymer-stabilized ZnS quantum dots (Q-dots) for cation exchange reaction-based easy sensing and removal of heavy metal ions such as Hg(2+), Ag(+), and Pb(2+) in water. Chitosan-stabilized ZnS Q-dots were synthesized in aqueous medium and were observed to have been converted to HgS, Ag(2)S, and PbS Q-dots in the presence of corresponding ions. The transformed Q-dots showed characteristic color development, with Hg(2+) being exceptionally identifiable due to the visible bright yellow color formation, while brown coloration was observed in other metal ions. The cation exchange was driven by the difference in the solubility product of the reactant and the product Q-dots. The cation exchanged Q-dots preserved the morphology of the reactant Q-dots and displayed volume increase based on the bulk crystal lattice parameters. The band gap of the transformed Q-dots showed a major increase from the corresponding bulk band gap of the material, demonstrating the role of quantum confinement. Next, we fabricated ZnS Q-dot impregnated chitosan film which was used to remove heavy metal ions from contaminated water as measured using atomic absorption spectroscopy (AAS). The present system could suitably be used as a simple dipstick for elimination of heavy metal ion contamination in water.

  7. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  8. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    PubMed

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  9. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Interactions of atrazine with transition metal ions in aqueous media: experimental and computational approach.

    PubMed

    Kumar, Vijay; Kumar, Virender; Upadhyay, Niraj; Sharma, Sitansh

    2015-10-01

    Transition metal ions have their own significances and utility. Externally applied pesticides may alter the bioavailability of these metal ions to plants through the coordinating ability of these pesticides with metal ions. In current study a series of metal complexes containing atrazine (Atr) group(s) attached to metal(II) (M) frame, with the formula; [M(Atr) n .xH 2 O.yCl] (where M = Mn, Fe, Co, Ni, Cu or Zn; n = 1 or 2; x = 1-4; y = 1-2), have been synthesized for the first time to check the interactions of atrazine with transition metal ions. More importantly, all the complexes were synthesized at neutral pH in aqueous medium. The major differences among the FTIR spectra were observed between 3,700-2,800 and 1,800-1,350 cm -1 . On the basis of FTIR, CHN and computational study, it was observed that Mn, Ni and Cu formed complexes in 1:2 and Fe, Co and Zn in 1:1. The obtained results were supported by 3D molecular modeling using GAMESS computations as a package of ChemBio3D Ultra14 program. The FTIR spectral analysis and 3D molecular modeling suggests that the Atr can show coordination through the nitrogen (in between two side chains) of ring as well as nitrogen (non steric amine) of side chain with different metal ions.

  11. Novel kinetic model of the removal of divalent heavy metal ions from aqueous solutions by natural clinoptilolite.

    PubMed

    Jovanovic, Mina; Rajic, Nevenka; Obradovic, Bojana

    2012-09-30

    Removal of heavy metal ions from aqueous solutions using zeolites is widely described by pseudo-second order kinetics although this model may not be valid under all conditions. In this work, we have extended approaches used for derivation of this model in order to develop a novel kinetic model that is related to the ion exchange mechanism underlying sorption of metal ions in zeolites. The novel model assumed two reversible steps, i.e. release of sodium ions from the zeolite lattice followed by bonding of the metal ion. The model was applied to experimental results of Cu(II) sorption by natural clinoptilolite-rich zeolitic tuff at different initial concentrations and temperatures and then validated by predictions of ion exchange kinetics of other divalent heavy metal ions (i.e. Mn(II), Zn(II) and Pb(II)). Model predictions were in excellent agreements with experimental data for all investigated systems. In regard to the proposed mechanism, modeling results implied that the sodium ion release rate was constant for all investigated metals while the overall rate was mainly determined by the rate of heavy metal ion bonding to the lattice. In addition, prediction capabilities of the novel model were demonstrated requiring one experimentally determined parameter, only. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Visual offline sample stacking via moving neutralization boundary electrophoresis for analysis of heavy metal ion.

    PubMed

    Fan, Yinping; Li, Shan; Fan, Liuyin; Cao, Chengxi

    2012-06-15

    In this paper, a moving neutralization boundary (MNB) electrophoresis is developed as a novel model of visual offline sample stacking for the trace analysis of heavy metal ions (HMIs). In the stacking system, the cathodic-direction motion MNB is designed with 1.95-2.8mM HCl+98 mM KCl in phase alfa and 4.0mM NaOH+96 mM KCl in phase beta. If a little of HMI is present in phase alfa, the metal ion electrically migrates towards the MNB and react with hydroxyl ion, producing precipitation and moving precipitation boundary (MPB). The alkaline precipitation is neutralized by hydrogen ion, leading to a moving eluting boundary (MEB), release of HMI from its precipitation, circle of HMI from the MEB to the MPB, and highly efficient visual stacking. As a proof of concept, a set of metal ions (Cu(II), Co(II), Mn(II), Pb(II) and Cr(III)) were chosen as the model HMIs and capillary electrophoresis (CE) was selected as an analytical tool for the experiments demonstrating the feasibility of MNB-based stacking. As shown in this paper, (i) the visual stacking model was manifested by the experiments; (ii) there was a controllable stacking of HMI in the MNB system; (iii) the offline stacking could achieve higher than 123 fold preconcentration; and (iv) the five HMIs were simultaneously stacked via the developed stacking technique for the trace analyses with the limits of detection (LOD): 3.67×10(-3) (Cu(II)), 1.67×10(-3) (Co(II), 4.17×10(-3) (Mn(II)), 4.6×10(-4) (Pb(II)) and 8.40×10(-4)mM (Cr(III)). Even the off-line stacking was demonstrated for the use of CE-based HMI analysis, it has potential applications in atomic absorption spectroscopy (AAS), inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC) etc. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Jiang, Jing; Li, Yizhi; Liang, Jing; Wan, Xiaochun; Ko, Sanghoon

    2017-08-01

    In this work, we report a novel type of thiol-functionalized magnetic core-shell metal-organic framework (MOF) microspheres that can be potentially used for selective removal of Hg2+ and Pb2+ in the presence of other background ions from wastewater. The monodisperse Fe3O4@Cu3(btc)2 core-shell magnetic microspheres have been fabricated by a versatile step-by-step assembly strategy. Further, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres were successfully synthesized by utilizing a facile postsynthetic strategy. Significantly, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres exhibit remarkably selective adsorption affinity for Hg2+ (Kd = 5.98 × 104 mL g-1) and Pb2+ (Kd = 1.23 × 104 mL g-1), while a weaker binding affinity occurred for the other background ions such as Ni2+, Na+, Mg2+, Ca2+, Zn2+ and Cd2+. The adsorption kinetics follow the pseudo-second-order rate equation and with an almost complete removal of Hg2+ and Pb2+ from the mixed heavy metal ions wastewater (0.5 mM) within 120 min. Moreover, this adsorbent can be easily recycled because of the presence of the magnetic Fe3O4 core. This work provides a promising functionalized porous magnetic Fe3O4@MOF-based adsorbent with easy recycling property for the selective removal of heavy metal ions from wastewater.

  14. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    PubMed

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  15. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    PubMed

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    NASA Astrophysics Data System (ADS)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Azah Yusof, Noor; Tee, Tan Wee; Yook Heng, Lee; Halim Abdullah, Abd

    2011-02-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl+ cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 × 10-8 to 1.0 × 10-1M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu2+ Ni2+ and Pb2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl+ cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl+ cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 × 10-8 to 1.0 × 10-1M is linear with a Nernstian slope of 57.27 mV.

  17. Gluteal muscle fatty atrophy is not associated with elevated blood metal ions or pseudotumors in patients with a unilateral metal-on-metal hip replacement.

    PubMed

    Reito, Aleksi; Elo, Petra; Nieminen, Jyrki; Puolakka, Timo; Eskelinen, Antti

    2016-02-01

    There are no international guidelines to define adverse reaction to metal debris (ARMD). Muscle fatty atrophy has been reported to be common in patients with failing metal-on-metal (MoM) hip replacements. We assessed whether gluteal muscle fatty atrophy is associated with elevated blood metal ion levels and pseudotumors. 263 consecutive patients with unilateral ASR XL total hip replacement using a posterior approach and with an unoperated contralateral hip were included in the study. All patients had undergone a standard screening program at our institution, including MRI and blood metal ion measurement. Muscle fatty atrophy was graded as being absent, mild, moderate, or severe in each of the gluteal muscles. The prevalence of moderate-to-severe gluteal muscle atrophy was low (12% for gluteus minimus, 10% for gluteus medius, and 2% for gluteus maximus). Muscle atrophy was neither associated with elevated blood metal ion levels (> 5 ppb) nor with the presence of a clear (solid- or mixed-type) pseudotumor seen in MRI. A combination of moderate-to-severe atrophy in MRI, elevated blood metal ion levels, and MRI-confirmed mixed or solid pseudotumor was rare. Multivariable regression revealed that "preoperative diagnosis other than osteoarthrosis" was the strongest predictor of the presence of fatty atrophy. Gluteal muscle atrophy may be a clinically significant finding with influence on hip muscle strength in patients with MoM hip replacement. However, our results suggest that gluteal muscle atrophy seen in MRI is not associated with either the presence or severity of ARMD, at least not in patients who have been operated on using the posterior approach.

  18. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    PubMed

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-05-09

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  20. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater.

    PubMed

    Badruddoza, Abu Zayed M; Shawon, Zayed Bin Zakir; Tay, Wei Jin Daniel; Hidajat, Kus; Uddin, Mohammad Shahab

    2013-01-02

    In this work, carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe(3)O(4) nanoparticles (CDpoly-MNPs) was synthesized for selective removal of Pb(2+), Cd(2+), Ni(2+) ions from water. This magnetic adsorbent was characterized by TEM, FTIR, XPS and VSM. The adsorption of all studied metal ions onto CDpoly-MNPs was found to be dependent on pH, ionic strength, and temperature. Batch adsorption equilibrium was reached in 45 min and maximum uptakes for Pb(2+), Cd(2+) and Ni(2+) in non-competitive adsorption mode were 64.5, 27.7 and 13.2 mg g(-1), respectively at 25 °C. Adsorption data were fitted well to Langmuir isotherm and pseudo-second-order models for kinetic study. The polymer grafted on MNPs enhanced the adsorption capacity because of the complexing abilities of the multiple hydroxyl and carboxyl groups in polymer backbone with metal ions. In competitive adsorption experiments, CDpoly-MNPs could preferentially adsorb Pb(2+) ions with an affinity order of Pb(2+)>Cd(2+)>Ni(2+) which can be explained by hard and soft acids and bases (HASB) theory. Furthermore, we explored the recyclability of CDpoly-MNPs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  2. Reexamination of the ORAC assay: effect of metal ions.

    PubMed

    Nkhili, E; Brat, P

    2011-05-01

    The oxygen radical absorbance capacity (ORAC) assay method has been employed extensively in the field of antioxidant and oxidative stress. It uses fluorescein as probe for oxidation by peroxyl radical. Hundreds of reports have been published on the use of this method to determine antioxidant capacity in food and biological samples. The question is whether the results of all these reports are influenced by antioxidant autoxidation, which occurs during the ORAC test. Indeed, the presence of metal ions in the studied matrix will influence antioxidant stability, thereby leading to the underestimation of their antioxidant properties. Ethylenediaminetetraacetic acid hydrate (EDTA) can be used as a metal complexation agent. This paper examines the effect of the addition of EDTA on the ORAC values of pure compounds (quercetin, ascorbic, and dehydroascorbic acid) and five food juices (kiwi, orange, tomato, red grape, and apple). Metal complexation by EDTA (80 μM) clearly increased the ORAC values, given that the antioxidant was protected against rapid autoxidation incited by trace metal ions within samples and then by free radicals. Our finding also undoubtedly demonstrated that the number of literature values is potentially underestimated.

  3. Selective Extraction of Metals from Pacific Sea Nodules with Dissolved Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    Khalafalla, Sanaa E.; Pahlman, John E.

    1981-08-01

    How to tritrate a rock? … The following article illustrates the possibility of titrating a metallic constituent in a mineral with a selective reagent to an endpoint of near complete metal extraction. A very rapid and efficient—almost instantaneous and quantitative—method has been devised to differentially leach manganese, nickel, and cobalt to the exclusion of copper and iron from deep-sea nodules.1 In this method, a given weight of raw sea nodules ground to -200 mesh in an aqueous slurry is contacted for 10 min at room temperature and ambient pressure with a specified quantity of SO2. An independent leaching parameter R has been defined as the ratio of the number of moles of SO2 in the leaching solution to the weight of sea nodules. Variation of metal extraction with R generates sigmoidal curves characteristic of the metals extracted. A threshold value of R is required to initiate the leaching of a given metal from the mixed oxides. Once this threshold is reached, the metal recovery can rise above 95% in less than 10 minutes. For increasing value of R the extractability of various metals from Pacific sea nodules by SO2 follows the order: Mn > Ni > Co ≫ Fe, Al, Cu. Disparity in the R values permits a variety of selective leaching systems and metal separations simply by changing the quantity of SO2 in the contacting solution. Success in this leaching system depends on comminuting the nodules to less than 100 mesh. Above this critical size, leaching is slowed due to the inaccessibility of the inner particle reacting groups to the SO2 leaching agent, resulting in lower and nonselective extractions of preferred metal values. Leaching with HCl solutions of the same pH level as dissolved SO2 yielded mixed, slow, and incomplete metal extractions. This finding rules out any interpretation based on hydrogen ion from the ionization of sulfurous acid as the leaching agent. The leaching curves observed in the new system resemble the complexometric titration curves of

  4. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    PubMed Central

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  5. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction.

    PubMed

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L

    2015-10-20

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn(2+) specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH-rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction.

  6. Synchronized metal-ion irradiation as a way to control growth of transition-metal nitride alloy films during hybrid HIPIMS/DCMS co-sputtering

    NASA Astrophysics Data System (ADS)

    Greczynski, Grzegorz

    2016-09-01

    High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic

  7. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.

    PubMed

    Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen

    2018-05-07

    Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .

  8. Ions of Eight Metals from Comet Dust Detected in Mars Atmosphere

    NASA Image and Video Library

    2014-11-07

    These eight graphs present data from the Neutral Gas and Ion Mass Spectrometer on NASA MAVEN orbiter identifying ions of different metals added to the Martian atmosphere shortly after comet C/2013 A1 Siding Spring sped close to Mars.

  9. Inorganic-organic Ag-rhodamine 6G hybrid nanorods: "turn on" fluorescent sensors for highly selective detection of Pb2+ ions in aqueous solution.

    PubMed

    Tyagi, A K; Ramkumar, Jayshree; Jayakumar, O D

    2012-02-07

    Lead metal ions are of great concern and the monitoring of their concentration in the environment has become extremely important. In the present study, a new inorganic-organic hybrid assay of Ag nanorods (AgNR)-Rhodamine 6G (R6G) was developed for the sensitive and selective determination of Pb(2+) ions in aqueous solutions. To the best of our knowledge there is almost no literature on the use of silver nanorod sensors for determination of lead ions in aqueous solutions. The sensor is developed by the coating of R6G on the surface of AgNRs. The sensing is based on the photoluminescence of R6G. The sensor was rapid as the measurements were carried out within 3 min of addition of the test solution to the AgNR-R6G hybrid. Moreover, the system showed excellent stability at tested concentration levels of Pb(2+) ions. The naked eye detection of the colour was possible with 1 mg L(-1) of Pb(2+) ions. The present method has a detection limit of 50 μg L(-1) of Pb(2+) (for a signal/noise (S/N) ratio > 3). The selectivity toward Pb(2+) ions against other metal ions was improved using chelating agents. The proposed method was validated by analysis using different techniques.

  10. Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester

    2015-07-07

    A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.

  11. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    PubMed

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  12. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography.

    PubMed

    Moyna, Áine; Connolly, Damian; Nesterenko, Ekaterina; Nesterenko, Pavel N; Paull, Brett

    2013-03-01

    Lauryl methacrylate-co-ethylene dimethacrylate monoliths were polymerised within fused silica capillaries and subsequently photo-grafted with varying amounts of glycidyl methacrylate (GMA). The grafted monoliths were then further modified with iminodiacetic acid (IDA), resulting in a range of chelating ion-exchange monoliths of increasing capacity. The IDA functional groups were attached via ring opening of the epoxy group on the poly(GMA) structure. Increasing the amount of attached poly(GMA), via photo-grafting with increasing concentrations of GMA, from 15 to 35%, resulted in a proportional and controlled increase in the complexation capacity of the chelating monoliths. Scanning capacitively coupled contactless conductivity detection (sC(4)D) was used to characterise and verify homogenous distribution of the chelating ligand along the length of the capillaries non-invasively. Chelation ion chromatographic separations of selected transition and heavy metals were carried out, with retention factor data proportional to the concentration of grafted poly(GMA). Average peak efficiencies of close to 5,000 N/m were achieved, with the isocratic separation of Na, Mg(II), Mn(II), Co(II), Cd(II) and Zn(II) possible on a 250-mm-long monolith. Multiple monolithic columns produced to the same recipes gave RSD data for retention factors of <15% (averaged for several metal ions). The monolithic chelating ion-exchanger was applied to the separation of alkaline earth and transition metal ions spiked in natural and potable waters.

  13. Ultrasensitive and highly selective detection of Cu2 + ions based on a new carbazole-Schiff

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Bing, Qijing; Wang, Lin; Wang, Guang

    2018-01-01

    A new chemosensor for Cu2 + based on Schiff base with high sensitivity and selectivity was designed and synthesized. The fluorescence intensity of the chemosensor in CH3CN solution was enhanced 160-fold after the addition of 10 equiv. Cu2 + over other metal ions. In addition, it also facilitates colorimetric detection for Cu2 + in CH3CN solution. The chemosensor displayed low detection limit and fast response time to Cu2 +.

  14. Synthesis, characterization and analytical application of hybrid; acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions.

    PubMed

    Nabi, Syed A; Shalla, Aabid H

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na(+) ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 degrees C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb(2+) ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb(2+) has been selectively removed from synthetic mixtures containing Mg(2+), Ca(2+), Sr(2+), Zn(2+) and Cu(2+), Al(3+), Ni(2+), Fe(3+). In order to demonstrate practical utility of the material quantitative separation of the Cu(2+) and Zn(2+) in brass sample has been achieved on its columns.

  15. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexion of Actinide Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murrray, George M.; Uy, O. Manuel

    The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions. Selectivity for a specific actinide ion is obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide ion. These cavity-containing polymers are produced by using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands are polymerized. The polymers provide useful sequestering agents for removing actinide ions from wastes and will formmore » the basis for a variety of analytical techniques for actinide determination.« less

  16. Metallic and nonmetallic shine in luster: An elastic ion backscattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradell, T.; Climent-Font, A.; Molera, J.

    2007-05-15

    Luster is a metal glass nanocomposite layer first produced in the Middle East in early Islamic times (9th AD) made of metal copper or silver nanoparticles embedded in a silica-based glassy matrix. These nanoparticles are produced by ion exchange between Cu{sup +} and Ag{sup +} and alkaline ions from the glassy matrix and further growth in a reducing atmosphere. The most striking property of luster is its capability of reflecting light like a continuous metal layer and it was unexpectedly found to be linked to one single production parameter: the presence of lead in the glassy matrix composition. The purposemore » of this article is to describe the characteristics and differences of the nanoparticle layers developed on lead rich and lead free glasses. Copper luster layers obtained using the ancient recipes and methods are analyzed by means of elastic ion backscattering spectroscopy associated with other analytical techniques. The depth profile of the different elements is determined, showing that the luster layer formed in lead rich glasses is 5-6 times thinner and 3-4 times Cu richer. Therefore, the metal nanoparticles are more densely packed in the layer and this fact is related to its higher reflectivity. It is shown that lead influences the structure of the metal nanoparticle layer through the change of the precipitation kinetics.« less

  17. Highly sensitive and selective detection of Al(III) ions in aqueous buffered solution with fluorescent peptide-based sensor.

    PubMed

    In, Byunggyu; Hwang, Gi Won; Lee, Keun-Hyeung

    2016-09-15

    A fluorescent sensor based on a tripeptide (SerGluGlu) with a dansyl fluorophore detected selectively Al(III) among 16 metal ions in aqueous buffered solutions without any organic cosolvent. The peptide-based sensor showed a highly sensitive turn on response to aluminium ion with high binding affinity (1.84×10(4)M(-1)) in aqueous buffered solutions. The detection limit (230nM, 5.98ppb) of the peptide-based sensor was much lower than the maximum allowable level (7.41μM) of aluminium ions in drinking water demanded by EPA. The binding mode of the peptide sensor with aluminium ions was characterized using ESI mass spectrometry, NMR titration, and pH titration experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process

    NASA Astrophysics Data System (ADS)

    Huang, Yanfang; Han, Guihong; Liu, Jiongtian; Chai, Wencui; Wang, Wenjuan; Yang, Shuzhen; Su, Shengpeng

    2016-09-01

    The recovering of valuable metals in spent lithium-ion battery cathodes brings about economic and environmental benefits. A stepwise leaching-flotation-precipitation process is adopted to separate and recover Li/Fe/Mn from the mixed types of cathode materials (hybrid wastes of LiFePO4 and LiMn2O4). The optimal operating conditions for the stepwise recovery process are determined and analyzed by factorial design, thermodynamics calculation, XRD and SEM characterization in this study. First, Li/Fe/Mn ions are released from the cathode using HCl assisted with H2O2 in the acid leaching step. The leachability of metals follows the series Li > Fe > Mn in the acidic environment. Then Fe3+ ions are selectively floated and recovered as FeCl3 from the leachate in the flotation step. Finally, Mn2+/Mn3+ and Li+ ions are sequentially precipitated and separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and hot saturated Na3PO4 solution, respectively. Under the optimized and advisable conditions, the total recovery of Li, Fe and Mn is respectively 80.93 ± 0.16%, 85.40 ± 0.12% and 81.02 ± 0.08%. The purity for lithium, ferrum and manganese compounds is respectively 99.32 ± 0.07%, 97.91 ± 0.05% and 98.73 ± 0.05%. This stepwise process could provide an alternative way for the effective separation and recovery of metal values from spent Li-ion battery cathodes in industry.

  19. Acridine-based fluorescence chemosensors for selective sensing of Fe3+ and Ni2+ ions

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyu; Fu, Jiaxin; Yao, Kun; Xue, Kun; Xu, Kuoxi; Pang, Xiaobin

    2018-06-01

    Two novel acridine-based fluorescence chemosensors (L1 and L2) were prepared and their metal ions sensing properties were investigated. L1 (L2) exhibited an excellent selective fluorescence response toward Fe3+ (Ni2+) and the stoichiometry ratio of L1-Fe3+ and L2-Ni2+ were 1:1. The detection limits of L1 and L2 were calculated by the fluorescence titration to be 4.13 μM and 1.52 μM, respectively, which were below the maximum permissive level of Fe3+ and Ni2+ ions in drinking water set by the EPA. The possible mechanism of the fluorescence detection of Fe3+ and Ni2+ had been proposed according to the analysis of Job's plot, IR spectra and ESI-MS. The determination of Fe3+ and Ni2+ ions in living cells had been applied successfully.

  20. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant.

    PubMed

    Aşçi, Yeliz; Nurbaş, Macid; Sağ Açikel, Yeşim

    2010-01-01

    In the present study, the sorption characteristics of Cd(II) and Zn(II) ions on quartz, a representative soil-component, and the desorption of these metal ions from quartz using rhamnolipid biosurfactant were investigated. In the first part of the studies, the effects of initial metal ion concentration and pH on sorption of Cd(II) and Zn(II) ions by a fixed amount of quartz (1.5g) were studied in laboratory batch mode. The equilibrium sorption capacity for Cd(II) and Zn(II) ions was measured and the best correlation between experimental and model predicted equilibrium uptake was obtained using the Freundlich model. Although investigations on the desorption of heavy metal ions from the main soil-components are crucial to better understand the mobility and bioavailability of metals in the environment, studies on the description of desorption equilibrium were performed rarely. In the second part, the desorption of Cd(II) and Zn(II) from quartz using rhamnolipid biosurfactant was investigated as a function of pH, rhamnolipid concentration, and the amounts of sorbed Cd(II) and Zn(II) ions by quartz. The Freundlich model was also well fitted to the obtained desorption isotherms. Several indexes were calculated based on the differences of the quantity of Cd-Zn sorbed and desorbed. A desorption hysteresis (irreversibility) index based on the Freundlich exponent, concentration-dependent metal distribution coefficients, and the irreversibility index based on the metal distribution coefficient were used to quantify hysteretic behavior observed in the systems. 2009 Elsevier Ltd. All rights reserved.

  1. Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio

    PubMed Central

    2012-01-01

    Background Research interest in phosphonates metal organic frameworks (MOF) has increased extremely in the last two decades, because of theirs fascinating and complex topology and structural flexibility. In this paper we present a mathematical model for ligand/metal ion ratio of an octahedral (Oh) network of cobalt vinylphosphonate (Co(vP)·H2O). Results A recurrent relationship of the ratio between the number of ligands and the number of metal ions in a lamellar octahedral (Oh) network Co(vP)·H2O, has been deducted by building the 3D network step by step using HyperChem 7.52 package. The mathematical relationship has been validated using X ray analysis, experimental thermogravimetric and elemental analysis data. Conclusions Based on deducted recurrence relationship, we can conclude prior to perform X ray analysis, that in the case of a thermogravimetric analysis pointing a ratio between the number of metal ions and ligands number around 1, the 3D network will have a central metal ion that corresponds to a single ligand. This relation is valid for every type of supramolecular network with divalent metal central ion Oh coordinated and bring valuable information with low effort and cost. PMID:22932493

  2. MS/MS Automated Selected Ion Chromatograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, Matthew

    2005-12-12

    This program can be used to read a LC-MS/MS data file from either a Finnigan ion trap mass spectrometer (.Raw file) or an Agilent Ion Trap mass spectrometer (.MGF and .CDF files) and create a selected ion chromatogram (SIC) for each of the parent ion masses chosen for fragmentation. The largest peak in each SIC is also identified, with reported statistics including peak elution time, height, area, and signal to noise ratio. It creates several output files, including a base peak intensity (BPI) chromatogram for the survey scan, a BPI for the fragmentation scans, an XML file containing the SICmore » data for each parent ion, and a "flat file" (ready for import into a database) containing summaries of the SIC data statistics.« less

  3. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations

    DOE PAGES

    Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.; ...

    2014-09-15

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less

  4. Superhydrogels of nanotubes capable of capturing heavy-metal ions.

    PubMed

    Song, Shasha; Wang, Haiqiao; Song, Aixin; Hao, Jingcheng

    2014-01-01

    Self-assembly regulated by hydrogen bonds was successfully achieved in the system of lithocholic acid (LCA) mixed with three organic amines, ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA), in aqueous solutions. The mixtures of DEA/LCA exhibit supergelation capability and the hydrogels consist of plenty of network nanotubes with uniform diameters of about 60 nm determined by cryogenic TEM. Interestingly, the sample with the same concentration in a system of EA and LCA is a birefringent solution, in which spherical vesicles and can be transformed into nanotubes as the amount of LCA increases. The formation of hydrogels could be driven by the delicate balance of diverse noncovalent interactions, including electrostatic interactions, hydrophobic interactions, steric effects, van der Waals forces, and mainly hydrogen bonds. The mechanism of self-assembly from spherical bilayer vesicles into nanotubes was proposed. The dried hydrogels with nanotubes were explored to exhibit the excellent capability for capturing heavy-metal ions, for example, Cu(2+), Co(2+), Ni(2+), Pb(2+), and Hg(2+). The superhydrogels of nanotubes from the self-assembly of low-molecular-weight gelators mainly regulated by hydrogen bonds used for the removal of heavy-metal ions is simple, green, and high efficiency, and provide a strategic approach to removing heavy-metal ions from industrial sewage. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  6. Inner-shell photodetachment of transition metal negative ions

    NASA Astrophysics Data System (ADS)

    Dumitriu, Ileana

    This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p→3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d→epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.

  7. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  8. Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.

    2014-12-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.

  9. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    PubMed Central

    Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.

    2017-01-01

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082

  10. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.

    PubMed

    Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J

    2017-07-28

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.

  11. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Physicochemical characterisation of natural K-clinoptilolite and heavy-metal forms from Gördes (Manisa, western Turkey)

    NASA Astrophysics Data System (ADS)

    Ünaldı, Tevfik; Mızrak, İbrahim; Kadir, Selahattin

    2013-12-01

    Physicochemical characterisation of natural K-clinoptilolite and heavy-metal (Ag+, Cd2+, Cr3+ and Co3+) forms was accomplished through ion exchange by batch, X-ray diffractometric (XRD), X-ray fluorescence (XRF), infrared-spectral (FT-IR), differential thermal analysis-thermal gravimetric (DTA-TG) and scanning-electron microscopic (SEM) methods. Increasing the normality in the cases of heavy-metal forms resulted in decrease in crystallinity and increases in unit-cell volume, rate of ion exchange, and percentage of ion selectivity. In this study, the order of ion-selectivity percentages (rather than ion selectivity) of heavy-metal forms was determined to be Ag+ > Cd2+ > Cr3+ > Co3+. This finding is consistent with the results of worldwide research on the order of ion selectivity in modified clinoptilolite.

  13. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    NASA Astrophysics Data System (ADS)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  14. Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries.

    PubMed

    Xiang, Pan; Chen, Xianfei; Zhang, Wentao; Li, Junfeng; Xiao, Beibei; Li, Longshan; Deng, Kuisen

    2017-09-20

    Applications of rechargeable non-lithium-ion batteries (Na + , K + , Ca 2+ , Mg 2+ , and Al 3+ NLIBs) are significantly hampered by the deficiency of suitable electrode materials. Searching for anode materials with desirable electrochemical performance is urgent for the large-scale energy storage demands of next generation renewable energy technologies. In this study, three types of recently synthesized borophenes are predicted to serve as high-performing anodes for NLIBs based on density functional theory. All the borophenes considered here are metallic with favorable in-plane stiffness. Dirac fermions were identified in two types of borophenes, guaranteeing their high electron mobility. Moreover, borophene configuration-dependent metal-ion migration, theoretical capacities, and open-circuit voltages were demonstrated with respect to the different adsorption behaviors and atom mass densities of anode materials. Our results provide insights into the configuration-dependent electrode performance of borophene and the corresponding metal-ion storage mechanism.

  15. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Zhihui; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049; Zhang, Feng

    2015-04-15

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface areamore » up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.« less

  16. Surface-Functionalized Electrospun Titania Nanofibers for the Scavenging and Recycling of Precious Metal Ions.

    PubMed

    Dai, Yunqian; Formo, Eric; Li, Haoxuan; Xue, Jiajia; Xia, Younan

    2016-10-20

    Precious metals are widely used as catalysts in industry. It is of critical importance to keep the precious metal ions leached from catalysts at a level below one part per million (ppm) in the final products and to recycle the expensive precious metals. Here we demonstrate a simple and effective method for scavenging precious metal ions from an aqueous solution and thereby reduce their concentrations down to the parts per billion (ppb) level. The key component is a filtration membrane comprised of titania (TiO 2 ) nanofibers whose surface has been functionalized with a silane bearing amino or thiol group. When operated under continuous flow at a rate of 1 mL min -1 and at room temperature, up to 99.95 % of the Pd 2+ ions could be removed from a stock solution with an initial concentration of 100 ppm. This work offers a viable strategy not only for the removal of precious metal ions but also for recovering and further recycling them for use as catalysts. For example, the captured Pd 2+ ions could be converted to nanoparticles and used as catalysts for organic reactions such as Suzuki coupling in a continuous flow reactor. This system can be potentially applied to pharmaceutical industry and waste stream treatment. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  18. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  19. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  20. A Comparison of Blood Metal Ions in Total Hip Arthroplasty Using Metal and Ceramic Heads.

    PubMed

    White, Peter B; Meftah, Morteza; Ranawat, Amar S; Ranawat, Chitranjan S

    2016-10-01

    In recent time, metal ion debris and adverse local tissue reaction have reemerged as an area of clinical concern with the use of large femoral heads after total hip arthroplasty (THA). Between June 2014 and January 2015, 60 patients with a noncemented THA using a titanium (titanium, molybdenum, zirconium, and iron alloy) femoral stem and a V40 trunnion were identified with a minimum 5-year follow-up. All THAs had a 32- or 36-mm metal (n = 30) or ceramic (n = 30) femoral head coupled with highly cross-linked polyethylene. Cobalt, chromium, and nickel ions were measured. Patients with metal heads had detectable cobalt and chromium levels. Cobalt levels were detectable in 17 (56.7%) patients with a mean of 2.0 μg/L (range: <1.0-10.8 μg/L). Chromium levels were detectable in 5 (16.7%) patients with a mean of 0.3 μg/L (range: <1.0-2.2 μg/L). All patients with a ceramic head had nondetectable cobalt and chromium levels. Cobalt and chromium levels were significantly higher with metal heads compared to ceramic heads (P < .01). Cobalt levels were significantly higher with 36-mm metal heads compared with 32-mm heads (P < .01). Seven patients with metal femoral heads had mild hip symptoms, 4 of whom had positive findings of early adverse local tissue reaction on magnetic resonance imaging. All ceramic THA was asymptomatic. The incidence and magnitude of cobalt and chromium levels is higher in metal heads compared to ceramic heads with this implant system (P < .01). Thirty-six millimeter metal femoral heads result in larger levels of cobalt compared with 32-mm metal heads. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    PubMed

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P < 0.05). Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  2. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-08-01

    There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in the insulating matrix. These nanocomposites have been characterized by measuring the resistivity of the composite layer as a function of the implantation dose. The experimental results are compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement is found between the experimental results and the predictions of the theory. We conclude in that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

  3. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution

    PubMed Central

    2011-01-01

    The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O–D stretching bands of partially deuterated water bound to these metal ions and the O–D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M–O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M–O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M–O bond distances and coordination numbers also for the alkali metal ions even though the M–O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M–O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) Å, which corresponds to six-, seven-, eight- and

  5. Molecular Designs for Controlling the Local Environments around Metal Ions

    PubMed Central

    Cook, Sarah A.; Borovik, A.S.

    2015-01-01

    of an Mn–oxyl radical. We therefore probed the amount of spin density on the oxido ligand of our complexes using EPR spectroscopy in conjunction with oxygen-17 labeling. Our findings showed that there is a significant amount of spin on the oxido ligand, yet the M–oxo bonds are best described as highly covalent and there is no indication that an oxyl radical is formed. These results offer the intriguing possibility that high spin M–oxo complexes are involved in O–O bond formation in biology. Ligand redesign to incorporate H-bond accepting units (sulfonamido groups) simultaneously provided a metal ion binding pocket, adjacent H-bond acceptors, and an auxiliary binding site for a second metal ion. These properties allowed us to isolate a series of heterobimetallic complexes of FeIII and MnIII in which a group II metal ion was coordinated within the secondary coordination sphere. Examination of the influence of the second metal ion on the electron transfer properties of the primary metal center revealed unexpected similarities between CaII and SrII ions—a result with relevance to the OEC. In addition, the presence of a second metal ion was found to prevent intramolecular oxidation of the ligand with an O-atom transfer reagent. PMID:26181849

  6. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    PubMed

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  7. A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions.

    PubMed

    Huang, Zhanhua; Wu, Qinglin; Liu, Shouxin; Liu, Tian; Zhang, Bin

    2013-09-12

    A novel biodegradable β-cyclodextrin-based gel (CAM) was prepared and applied to the removal of Cd(2+), Pb(2+) and Cu(2+) ions from aqueous solutions. CAM hydrogel has a typical three-dimensional network structure, and showed excellent capability for the removal of heavy metal ions. The effect of different experimental parameters, such as initial pH, adsorbent dosage and initial metal ion concentration, were investigated. The adsorption isotherm data fitted well to the Freundlich model. The adsorption capacity was in the order Pb(2+)>Cu(2+)>Cd(2+) under the same experimental conditions. The maximum adsorption capacities for the metal ions in terms of mg/g of dry gel were 210.6 for Pb(2+), 116.41 for Cu(2+), and 98.88 for Cd(2+). The biodegradation efficiency of the resin reached 79.4% for Gloeophyllum trabeum. The high adsorption capacity and kinetics results indicate that CAM can be used as an alternative adsorbent to remove heavy metals from aqueous solution. Published by Elsevier Ltd.

  8. Conformational plasticity in the selectivity filter of the TRPV2 ion channel.

    PubMed

    Zubcevic, Lejla; Le, Son; Yang, Huanghe; Lee, Seok-Yong

    2018-05-01

    Transient receptor potential vanilloid (TRPV) channels are activated by ligands and heat and are involved in various physiological processes. In contrast to the architecturally related voltage-gated cation channels, TRPV1 and TRPV2 subtypes possess another activation gate at the selectivity filter that can open widely enough to permeate large organic cations. Despite recent structural advances, the mechanism of selectivity filter gating and permeation for both metal ions and large molecules by TRPV1 or TRPV2 is not well known. Here, we determined two crystal structures of rabbit TRPV2 in its Ca 2+ -bound and resiniferatoxin (RTx)- and Ca 2+ -bound forms, to 3.9 Å and 3.1 Å, respectively. Notably, our structures show that RTx binding leads to two-fold symmetric opening of the selectivity filter of TRPV2 that is wide enough for large organic cation permeation. Combined with functional characterizations, our studies reveal a structural basis for permeation of Ca 2+ and large organic cations in TRPV2.

  9. In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions

    PubMed Central

    Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia

    2014-01-01

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913

  10. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivitymore » of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.« less

  11. Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger.

    PubMed

    Sepehrian, H; Ahmadi, S J; Waqif-Husain, S; Faghihian, H; Alighanbari, H

    2010-04-15

    Mesoporous aluminosilicates, have been prepared with various mole ratios of Si/Al and Cethyltrimethylammonium bromide (CTAB). They have been characterized by XRD, nitrogen adsorption/desorption measurements, FT-IR and thermogravimetry. Adsorption behavior of heavy metal ions on this adsorbent have been studied and discussed. The results show that incorporation of aluminum ions in the framework of the mesoporous MCM-41 has transformed it into an effective cation exchanger. The K(d) values of several metal ions have been increased. Separation of Sr(II)-Ce(III), Sr(II)-U(VI) and Cd(II)-Ce(III) has been developed on columns of this novel mesoporous cation exchanger. 2009 Elsevier B.V. All rights reserved.

  12. Modulation of Crystal Surface and Lattice by Doping: Achieving Ultrafast Metal-Ion Insertion in Anatase TiO2.

    PubMed

    Wang, Hsin-Yi; Chen, Han-Yi; Hsu, Ying-Ya; Stimming, Ulrich; Chen, Hao Ming; Liu, Bin

    2016-10-26

    We report that an ultrafast kinetics of reversible metal-ion insertion can be realized in anatase titanium dioxide (TiO 2 ). Niobium ions (Nb 5+ ) were carefully chosen to dope and drive anatase TiO 2 into very thin nanosheets standing perpendicularly onto transparent conductive electrode (TCE) and simultaneously construct TiO 2 with an ion-conducting surface together with expanded ion diffusion channels, which enabled ultrafast metal ions to diffuse across the electrolyte/solid interface and into the bulk of TiO 2 . To demonstrate the superior metal-ion insertion rate, the electrochromic features induced by ion intercalation were examined, which exhibited the best color switching speed of 4.82 s for coloration and 0.91 s for bleaching among all reported nanosized TiO 2 devices. When performed as the anode for the secondary battery, the modified TiO 2 was capable to deliver a highly reversible capacity of 61.2 mAh/g at an ultrahigh specific current rate of 60 C (10.2 A/g). This fast metal-ion insertion behavior was systematically investigated by the well-controlled electrochemical approaches, which quantitatively revealed both the enhanced surface kinetics and bulk ion diffusion rate. Our study could provide a facile methodology to modulate the ion diffusion kinetics for metal oxides.

  13. Characterization of charge and kinetic energy distribution of ions emitted during nanosecond pulsed laser ablation of several metals

    NASA Astrophysics Data System (ADS)

    Dogar, A. H.; Ullah, S.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.

    2017-09-01

    The ion flux from various metals (Al, Ti, Cu, Sn and W) ablated with 20 ns Nd:YAG laser radiation at a wavelength of 1064 nm was investigated by an ion collector operating in time-of-flight (TOF) configuration. The laser irradiance at the target was varied in the range of 1.7  ×  108-5.73  ×  108 W cm-2. Ion yield from various metals showed a linearly increasing trend with increasing laser irradiance, whereas ion yield was found to decrease with an increasing atomic mass of the target. Our results clearly indicate that ion yield is not a function of the volatility of the metal. TOF ion spectra showed at least two groups of low intensity peaks due to fast ions. The first group of ion peaks, which was present in the spectra of all five metals, was due to surface contamination. The additional fast ion structures in the spectra of Sn and W can be related to the ion acceleration due to the prompt electron emission from these high-Z metals. The ion velocity follows the anticipated inverse square root dependence on the ion mass. For the range of laser irradiance investigated here, the most probable energy of the Cu ions increases from about 100-600 eV. The fast increase in ion energy above ~3  ×  108 W cm-2 is related to the increase of the Columb part of the ion energy due to the production of multiply charged ions.

  14. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.

    PubMed

    De Riccardis, Francesco; Izzo, Irene; Montesarchio, Daniela; Tecilla, Paolo

    2013-12-17

    platform to obtain 3D-structures that can form unimolecular channels in membranes. In these systems, the selection of proper donor groups allows us to control the ion selectivity of the process. We can switch from cation to anion transport by substituting protonated amines for the oxygen donors. Large and stable tubular structures with nanometric sized transmembrane nanopores that provide ample internal space represent a different approach for the preparation of synthetic ion channels. We used the metal-mediated self-assembly of porphyrin ligands with Re(I) corners as a new method for producing to robust channel-like structures. Such structures can survive in the complex membrane environment and show interesting ionophoric behavior. In addition to the development of new design principles, the selective modification of the biological membrane permeability could lead to important developments in medicine and technology.

  15. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries

    PubMed Central

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-01-01

    Abstract Lithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future. PMID:29051856

  16. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  17. Asymptomatic prospective and retrospective cohorts with metal-on-metal hip arthroplasty indicate acquired lymphocyte reactivity varies with metal ion levels on a group basis

    PubMed Central

    Hallab, NJ; Caicedo, M; McAllister, K; Skipor, A; Amstutz, H; Jacobs, JJ

    2012-01-01

    Some tissues from metal-on-metal (MoM) hip arthroplasty revisions have shown evidence of adaptive-immune reactivity (i.e., excessive peri-implant lymphocyte infiltration/activation). We hypothesized that, prior to symptoms, some people with MoM hip arthroplasty will develop quantifiable metal-induced lymphocyte reactivity responses related to peripheral metal ion levels. We tested 3 cohorts (Group-1: n=21 prospective longitudinal MoM hip arthroplasty; Group-2: n=17 retrospective MoM hip arthroplasty; and Group-3: n=20 controls without implants). We compared implant position, metal-ion release, and immuno-reactivity. MoM cohorts had elevated (p<0.01) amounts of serum Co and Cr compared to controls as early as 3 mos post-op (Group-1:1.2ppb-Co, 1.5ppb-Cr; Group-2: 3.4ppb-Co,, 5.4ppb-Cr; Group-3: 0.01ppb-Co, 0.1ppb-Cr). However, only after 1 to 4 yrs post-op did 56% of Group-1 develop metal-reactivity (vs. 5%pre-op, metal-LTT, SI>2), compared with 76% of Group-2 and 15% of Group-3 controls (patch testing was a poor diagnostic indicator with only 1/21 Group-1 positive). Higher cup-abduction angles (50° vs. 40°) in Group-1 were associated with higher serum Cr (p<0.07). However, sub-optimal cup-anteversion angles (9° vs. 20°) had higher serum Co (p<0.08). Serum Cr and Co were significantly elevated in reactive vs. non-reactive Group-1 participants (p<0.04). CD4+CD69+ T-helper lymphocytes (but not CD8+) and IL-1β, IL-12 and IL-6 cytokines were all significantly elevated in metal-reactive vs. non-reactive Group-1 participants. Our results showed that lymphocyte reactivity to metals can develop within the first 1 to 4 years after MoM arthroplasty in asymptomatic patients and lags increases in metal ion levels. This increased metal reactivity was more prevalent in those individuals with extreme cup angles and higher amounts of circulating metal. PMID:22941579

  18. Selective determination of pyridine alkaloids in tobacco by PFTBA ions/analyte molecule reaction ionization ion trap mass spectrometry.

    PubMed

    Zhang, Jianxun; Ji, Houwei; Sun, Shihao; Mao, Duobin; Liu, Huwei; Guo, Yinlong

    2007-10-01

    The application of perfluorotributylamine (PFTBA) ions/analyte molecule reaction ionization for the selective determination of tobacco pyridine alkaloids by ion trap mass spectrometry (IT-MS) is reported. The main three PFTBA ions (CF(3)(+), C(3)F(5)(+), and C(5)F(10)N(+)) are generated in the external source and then introduced into ion trap for reaction with analytes. Because the existence of the tertiary nitrogen atom in the pyridine makes it possible for PFTBA ions to react smoothly with pyridine and forms adduct ions, pyridine alkaloids in tobacco were selectively ionized and formed quasi-molecular ion [M + H](+)and adduct ions, including [M + 69](+), [M + 131](+), and [M + 264](+), in IT-MS. These ions had distinct abundances and were regarded as the diagnostic ions of each tobacco pyridine alkaloid for quantitative analysis in selected-ion monitoring mode. Results show that the limit of detection is 0.2 microg/mL, and the relative standard deviations for the seven alkaloids are in the range of 0.71% to 6.8%, and good recovery of 95.6% and 97.2%. The proposed method provides substantially greater selectivity and sensitivity compared with the conventional approach and offers an alternative approach for analysis of tobacco alkaloids.

  19. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels

    PubMed Central

    Li, Hui; Francisco, Joseph S.; Zeng, Xiao Cheng

    2015-01-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K+/Na+ selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na+ and K+ ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3–5 Å (these radii are comparable to those of the biological potassium K+ channels). We find that the hydration shell of aqua Na+ ion is smaller than that of aqua K+ ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na+ in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na+ ion requires higher formation energy than aqua K+ ion in the hydrophobic nanochannels. As such, we find that the ion (K+ vs. Na+) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K+ channel due in part to its special interior environment in which Na+ can be fully solvated, whereas K+ cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels. PMID:26283377

  20. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels.

    PubMed

    Li, Hui; Francisco, Joseph S; Zeng, Xiao Cheng

    2015-09-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K(+)/Na(+) selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na(+) and K(+) ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3-5 Å (these radii are comparable to those of the biological potassium K(+) channels). We find that the hydration shell of aqua Na(+) ion is smaller than that of aqua K(+) ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na(+) in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na(+) ion requires higher formation energy than aqua K(+) ion in the hydrophobic nanochannels. As such, we find that the ion (K(+) vs. Na(+)) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K(+) channel due in part to its special interior environment in which Na(+) can be fully solvated, whereas K(+) cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels.

  1. Metal-on-metal hip resurfacing: correlation between clinical and radiological assessment, metal ions and ultrasound findings.

    PubMed

    Scaglione, M; Fabbri, L; Bianchi, N; Dell'Omo, D; Guido, G

    2015-04-01

    We report the clinical, radiological and wear analysis of 52 consecutive MoM hip resurfacings (performed on 49 younger patients) to a mean follow-up of 9.2 years. Every patient underwent X-ray and clinical evaluation (HHS). Ultrasonography of the hip was performed in all patients in order to identify possible cystic or solid mass in periprosthetic tissue. In case of mass >20 mm, further MRI was performed to better analyse the characteristics of lesion. Five patients (five hips) had a revision. The overall survival rate was 90.38 %. The average HHS at follow-up examination was 95.5 points. No progressive radiolucent areas and no sclerosis or osteolysis around the implants were found. The US and RMI imaging showed a pseudotumour formation in two patients (correlated with high metal ion levels in blood and urine), both asymptomatic. A significant positive correlation between inclination of the acetabular component and serum metal ion levels was found (r = 0.64 and r = 0.62 for cobalt and chromium, respectively).

  2. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  3. Highly sensitive and selective fluoride detection in water through fluorophore release from a metal-organic framework

    PubMed Central

    Hinterholzinger, Florian M.; Rühle, Bastian; Wuttke, Stefan; Karaghiosoff, Konstantin; Bein, Thomas

    2013-01-01

    The detection, differentiation and visualization of compounds such as gases, liquids or ions are key challenges for the design of selective optical chemosensors. Optical chemical sensors employ a transduction mechanism that converts a specific analyte recognition event into an optical signal. Here we report a novel concept for fluoride ion sensing where a porous crystalline framework serves as a host for a fluorescent reporter molecule. The detection is based on the decomposition of the host scaffold which induces the release of the fluorescent dye molecule. Specifically, the hybrid composite of the metal-organic framework NH2-MIL-101(Al) and fluorescein acting as reporter shows an exceptional turn-on fluorescence in aqueous fluoride-containing solutions. Using this novel strategy, the optical detection of fluoride is extremely sensitive and highly selective in the presence of many other anions. PMID:24008779

  4. Insight into the Interaction of Metal Ions with TroA from Streptococcus suis

    PubMed Central

    Zheng, Beiwen; Zhang, Qiangmin; Gao, Jia; Han, Huiming; Li, Ming; Zhang, Jingren; Qi, Jianxun; Yan, Jinghua; Gao, George F.

    2011-01-01

    Background The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. Methodology/Principal Findings Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn2+ and Mn2+. Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn2+ and Mn2+ induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn2+/Mn2+ bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein. Conclusions/Significance Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport. PMID:21611125

  5. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  6. Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment.

    PubMed

    Alqadami, Ayoub Abdullah; Naushad, Mu; Alothman, Zeid Abdullah; Ghfar, Ayman A

    2017-10-18

    The combination of magnetic nanoparticles and metal-organic frameworks (MOFs) has demonstrated their prospective for pollutant sequestration. In this work, a magnetic metal-organic framework nanocomposite (Fe 3 O 4 @AMCA-MIL53(Al) was prepared and used for the removal of U(VI) and Th(IV) metal ions from aqueous environment. Fe 3 O 4 @AMCA-MIL53(Al) nanocomposite was characterized by TGA, FTIR, SEM-EDX, XRD, HRTEM, BET, VSM (vibrating sample magnetometry), and XPS analyses. A batch technique was applied for the removal of the aforesaid metal ions using Fe 3 O 4 @AMCA-MIL53(Al) at different operating parameters. The isotherm and kinetic data were accurately described by the Langmuir and pseudo-second-order models. The adsorption capacity was calculated to be 227.3 and 285.7 mg/g for U(VI) and Th(IV), respectively, by fitting the equilibrium data to the Langmuir model. The kinetic studies demonstrated that the equilibrium time was 90 min for each metal ion. Various thermodynamic parameters were evaluated which indicated the endothermic and spontaneous nature of adsorption. The collected outcomes showed that Fe 3 O 4 @AMCA-MIL53(Al) was a good material for the exclusion of these metal ions from aqueous medium. The adsorbed metals were easily recovered by desorption in 0.01 M HCl. The excellent adsorption capacity and the response to the magnetic field made this novel material an auspicious candidate for environmental remediation technologies.

  7. Theoretical study of the bonding of the first-row transition-metal positive ions to ethylene

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1992-01-01

    Ab initio calculations were performed to study the bonding of the first-row transition-metal ions with ethylene. While Sc(+) and Ti(+) insert into the pi bond of ethylene to form a three-membered ring, the ions V(+) through Cu(+) form an electrostatic complex with ethylene. The binding energies are compared with those from experiment and with those of comparable calculations performed previously for the metal-acetylene ion systems.

  8. Selective Sampling with Direct Ion Mobility Spectrometric Detection for Explosives Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D; Ewing, Robert G; Waltman, Melanie J

    2009-06-29

    This study investigates the potential and limitations of a streamlined, field-deployable analytical approach that involves selective capture of explosive materials with direct analysis by ion mobility spectrometry (IMS). Selective capture of explosives was performed on deactivated quartz fiber filters impregnated with metal β-diketonate polymers. These Lewis acidic polymers selectively interact with Lewis base analytes such as explosives. The filter coupons could be directly inserted into an IMS instrument for analysis. The uptake kinetics of 2,4,6-trinitrotoluene (TNT) from a saturated atmosphere were characterized, and based on these studies, passive equilibrium sampling was applied to estimate the TNT concentration within an ammunitionmore » magazine that contained bulk TNT. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) uptake from a saturated environment also was examined over a one-month period. Each incremental sampling period showed increasing quantities of RDX culminating with collection of approximately 5 ng of RDX on the coupon at the end of one month. This is the first time that gas-phase uptake of RDX has been demonstrated.« less

  9. A study of H+ production using metal hydride and other compounds by means of laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine M.; Kondo K.; Okamura, M.

    2012-02-22

    A laser ion source can provide wide variety of ion beams from solid target materials, however, it has been difficult to create proton beam efficiently. We examined capability of proton production using beeswax, polyethylene, and metal hydrides (MgH2 and ZrH2) as target materials. The results showed that beeswax and polyethylene could not be used to produce protons because these targets are transparent to the laser wavelength of 1064 nm. On the other hand, the metal hydrides could supply protons. Although the obtained particle numbers of protons were less than those of the metal ions, the metal hydrides could be usedmore » as a target for proton laser ion source.« less

  10. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  11. Selective ion accumulation in an ICP/ITMS using a filtered noise field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1995-12-31

    Selective accumulation of ions in an ion trap mass spectrometer (ITMS) has been characterized using both single frequency and broadband resonant excitation. The goal of this work is to enhance selective accumulation of ions from plasmas and other external ion sources. The charge capacity of the ITMS is 10{sup 6} to 10{sup 7} ions, although the mass spectrum is distorted at much lower space charge. Detection of trace ions necessitates selective detection schemes such as selective trapping or optical detection. The authors report results of selective trapping studies for Sr, Y, and Zr solutions (100 ppb Y and 1 ppbmore » each Sr, Zr). {open_quotes}Background{close_quotes} ions in mass channels adjacent to the channel of interest is a worst case situation with respect to selective ejection and abundance sensitivity. Real samples will often have matrix ion m/z values much further removed from the m/z of the ions of interest. Thus, the authors also give results for a multielement solution. Ions from an inductively coupled plasma ion source are endcap injected into the ITMS. Broadband waveforms were generated by an HST-1000 (Teledyne MEC) instrument, using the filtered noise field (FNF) method. The experiment is controlled by the ITMS electronics and ICMS software. The sequence of experimental events is: ion injection at q{sub z} = 0.4 (typical), collisionally cool ions, set trapping potential for resonant excitation (q{sub z} = 0.2 to 0.6), analysis rf ramp.« less

  12. Studies on the surface modification of TiN coatings using MEVVA ion implantation with selected metallic species

    NASA Astrophysics Data System (ADS)

    Ward, L. P.; Purushotham, K. P.; Manory, R. R.

    2016-02-01

    Improvement in the performance of TiN coatings can be achieved using surface modification techniques such as ion implantation. In the present study, physical vapor deposited (PVD) TiN coatings were implanted with Cr, Zr, Nb, Mo and W using the metal evaporation vacuum arc (MEVVA) technique at a constant nominal dose of 4 × 1016 ions cm-2 for all species. The samples were characterized before and after implantation, using Rutherford backscattering (RBS), glancing incident angle X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical microscopy. Friction and wear studies were performed under dry sliding conditions using a pin-on-disc CSEM Tribometer at 1 N load and 450 m sliding distance. A reduction in the grain size and surface roughness was observed after implantation with all five species. Little variation was observed in the residual stress values for all implanted TiN coatings, except for W implanted TiN which showed a pronounced increase in compressive residual stress. Mo-implanted samples showed a lower coefficient of friction and higher resistance to breakdown during the initial stages of testing than as-received samples. Significant reduction in wear rate was observed after implanting with Zr and Mo ions compared with unimplanted TiN. The presence of the Ti2N phase was observed with Cr implantation.

  13. Malic enzyme: Tritium isotope effects with alternative dinucleotide substrates and divalent metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsten, W.E.; Harris, B.G.; Cook, P.F.

    1992-01-01

    The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion dependent oxidative decarboxylation of L-malate to yield pyruvate, carbon dioxide and NADH. Multiple isotope effect studies suggest a stepwise chemical mechanism with hydride transfer from L-malate to NAD occurring first to form oxalacetate, followed by decarboxylation. Utilizing L-malate-2-T, tritium V/K isotope effects have been determined for the hydride transfer step using a variety of alternative dinucleotide substrates and divalent metal ions. Combination of these data with deuterium isotope effects data and previously determined [sup 13]C isotope effects has allowed the calculation of intrinsic isotope effects for the malic enzymemore » catalyzed reaction. The identity of both the dinucleotide substrate and divalent metal ion has an effect of the size of the intrinsic isotope effect for hydride transfer.« less

  14. Structures and physical properties of gaseous metal cationized biological ions.

    PubMed

    Burt, Michael B; Fridgen, Travis D

    2012-01-01

    Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.

  15. Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): From physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions.

    PubMed

    Araújo, Marlyete Chagas de; Assis, Caio Rodrigo Dias; Silva, Luciano Clemente; Machado, Dijanah Cota; Silva, Kaline Catiely Campos; Lima, Ana Vitória Araújo; Carvalho, Luiz Bezerra; Bezerra, Ranilson de Souza; Oliveira, Maria Betânia Melo de

    2016-08-01

    This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.

    PubMed

    Verma, V K; Tewari, Saumyata; Rai, J P N

    2008-04-01

    In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.

  17. Impact of sodium ion on multivalent metal ion content in extracellular polymeric substances of granular sludge from an expanded granular sludge bed.

    PubMed

    Fang, Peixiang; He, Xinlin; Li, Junfeng; Yang, Guang; Wang, Zhaoyang; Sun, Zhihua; Zhang, Xuan; Zhao, Chun

    2018-05-15

    The long-term and short-term effects of salinity on the multivalent metal ions within extracellular polymeric substance (EPS) were investigated in this study. The results indicated that the Na + content within the EPS increased significantly from 19.53% to 60.86% under high salinity, and this content in the saline system was 2.2 times higher than that of the control system at the end of the operation. The K + , Ca 2+ and Mg 2+ contents within the EPS decreased from 33.85%, 39.19% and 5.54% to 7.07%, 25.64% and 3.28%, respectively, when the salinity was increased from 0 g/L to 30 g/L. These ions were replaced by Na + through ion exchange and competing ionic binding sites under salt stress. The interaction between divalent metal ions and Na + was reversible with the adaption of anammox to salinity. Salinity exhibited a limited influence on the Fe 3+ within the EPS. Sludge granulation was inhibited under conditions of high salinity due to the replacement of multivalent metal ions by Na + .

  18. Comparison between the electrocatalytic properties of different metal ion phthalocyanines and porphyrins towards the oxidation of hydroxide.

    PubMed

    De Wael, Karolien; Adriaens, Annemie

    2008-02-15

    This work reports on the electrocatalytic oxidation of hydroxide using different central metal ion phthalocyanines and porphyrins immobilized on gold electrodes. The apparent electrocatalytic activity of cobalt phthalocyanine or porphyrin modified electrodes was found to be the greatest among the present series of metal ion macrocycles investigated. Copper and unmetallated phthalocyanine or porphyrin modified electrodes show no electrocatalytic behaviour towards hydroxide, such as bare gold. A possible mechanism for the enhanced reactivity of cobalt ion macrocycles towards the oxygen evolution is given. It is also stated that the electrocatalytic activity towards an adsorbate involves several aspects, such as the coordination state of the central metal ion, the nature of the ligand, the stability of the complexes, the number of d electrons, the energy of orbitals and the strength of the bonding between the central metal ion and the axial ligand.

  19. Ion-sculpting of nanopores in amorphous metals, semiconductors, and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, H. Bola; Madi, Charbel S.; Aziz, Michael J.

    2010-06-28

    We report the closure of nanopores to single-digit nanometer dimensions by ion sculpting in a range of amorphous materials including insulators (SiO{sub 2} and SiN), semiconductors (a-Si), and metallic glasses (Pd{sub 80}Si{sub 20})--the building blocks of a single-digit nanometer electronic device. Ion irradiation of nanopores in crystalline materials (Pt and Ag) does not cause nanopore closure. Ion irradiation of c-Si pores below 100 deg. C and above 600 deg. C, straddling the amorphous-crystalline dynamic transition temperature, yields closure at the lower temperature but no mass transport at the higher temperature. Ion beam nanosculpting appears to be restricted to materials thatmore » either are or become amorphous during ion irradiation.« less

  20. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  1. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  2. Selective and sensitive optical chemosensor for detection of Ag(I) ions based on 2(4-hydroxy pent-3-en-2-ylideneamine) phenol in aqueous samples

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mohammad; Saeed, Jaber

    2011-11-01

    A selective and sensitive chemosensor, based on the 2(4-hydroxy pent-3-en-2-ylideneamine) phenol (HPYAP) as chromophore, has been developed for colorimetric and visual detection of Ag(I) ions. HPYAP shows a considerable chromogenic behavior toward Ag(I) ions by changing the color of the solution from pale-yellow to very chromatic-yellow, which can be easily detected with the naked-eye. The chemosensor exhibited selective absorbance enhancement to Ag(I) ions in water samples over other metal ions at 438 nm, with a linear range of 0.4-500 μM ( r2 = 0.999) and a limit of detection 0.07 μM of Ag(I) ions with UV-vis spectrophotometer detection. The relative standard deviation (RSD) for 100 μM Ag(I) ions was 2.05% ( n = 7). The proposed method was applied for the determination Ag(I) ions in water and waste water samples.

  3. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    PubMed

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  4. Infrared Photodissociation Spectroscopy of Metal Ion -WATER Complexes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, B.; Carnegie, P. D.; Duncan, M. A.

    2011-06-01

    Metal ion-water complexes are produced in a supersonic expansion cluster source via laser vaporization technique. Infrared photodissociation spectroscopy has been performed in the O-H stretch region. DFT calculations have also been carried out to obtain the structures and vibrational frequencies. Infrared spectra show partially resolved rotational structures which will be analyzed.

  5. Selective complexation of K+ and Na+ in simple polarizable ion-ligating systems.

    PubMed

    Bostick, David L; Brooks, Charles L

    2010-09-29

    An influx of experimental and theoretical studies of ion transport protein structure has inspired efforts to understand underlying determinants of ionic selectivity. Design principles for selective ion binding can be effectively isolated and interrogated using simplified models composed of a single ion surrounded by a set of ion-ligating molecular species. While quantum mechanical treatments of such systems naturally incorporate electronic degrees of freedom, their computational overhead typically prohibits thorough dynamic sampling of configurational space and, thus, requires approximations when determining ion-selective free energy. As an alternative, we employ dynamical simulations with a polarizable force field to probe the structure and K(+)/Na(+) selectivity in simple models composed of one central K(+)/Na(+) ion surrounded by 0-8 identical model compounds: N-methylacetamide, formamide, or water. In the absence of external restraints, these models represent gas-phase clusters displaying relaxed coordination structures with low coordination number. Such systems display Na(+) selectivity when composed of more than ∼3 organic carbonyl-containing compounds and always display K(+) selectivity when composed of water molecules. Upon imposing restraints that solely enforce specific coordination numbers, we find all models are K(+)-selective when ∼7-8-fold ion coordination is achieved. However, when models composed of the organic compounds provide ∼4-6-fold coordination, they retain their Na(+) selectivity. From these trends, design principles emerge that are of basic importance in the behavior of K(+) channel selectivity filters and suggest a basis not only for K(+) selectivity but also for modulation of block and closure by smaller ions.

  6. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983

    DOE R&D Accomplishments Database

    Cram, D. J.

    1982-09-15

    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  7. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate

    PubMed Central

    Lott, William B.; Pontius, Brian W.; von Hippel, Peter H.

    1998-01-01

    Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 μM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and >50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and >37.5 μM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2′-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5′-oxygen in the transition state. We suggest structural reasons why the Mg2+–La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction. PMID:9435228

  8. New hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates as highly selective and sensitive fluorescent chemosensor for Co2+ ions

    NASA Astrophysics Data System (ADS)

    Şenkuytu, Elif; Tanrıverdi Eçik, Esra

    2018-06-01

    In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1H, 13C and 31P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641 nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co2+ ions due to showing high selectivity with a low limit of detection.

  9. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Kim, Jeom-Soo [Naperville, IL; Johnson, Christopher S [Naperville, IL

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  10. Immobilization of 5-aminopyridine-2-tetrazole on cross-linked polystyrene for the preparation of a new adsorbent to remove heavy metal ions from aqueous solution.

    PubMed

    Zhang, Yu; Chen, Youning; Wang, Chaozhan; Wei, Yinmao

    2014-07-15

    Novel 5-aminopyridine-2-tetrazole-functionalized polystyrene resin (APTZ-PS) was prepared by anchoring 5-aminopyridine-2-carbonitrile onto chloromethylated polystyrene beads (CMPS) and subsequently using the cyano-tetrazole conversion reaction. The APTZ-PS resin was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and specific surface area and pore size analyses. The adsorption experiments of the prepared resin for heavy metal ions were conducted by batch methods. The effects of the experimental conditions, such as pH, contact time and initial metal ion concentration on the adsorption properties of Cu(II), Pb(II) and Hg(II) were investigated. The results showed that the resin possessed perfect adsorption capacities for Cu(II), Pb(II) and Hg(II), and the selectivity was different from the commonly used iminodiacetic acid-chelating resin. The sorption kinetics of the three metal ions followed the pseudo-second-order equation. The adsorption isotherms for Cu(II) and Pb(II) could be better fitted by the Langmuir model than the Freundlich model, whereas the Freundlich model was the best for the Hg(II) ion. Even after five consecutive adsorption-desorption cycles, no obvious change in the adsorption capacity of the resin was found, which implied that the APTZ-PS resin was suitable for the efficient removal of heavy metal ions from aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Development of sensitive holographic devices for physiological metal ion detection

    NASA Astrophysics Data System (ADS)

    Sabad-e.-Gul; Martin, Suzanne; Cassidy, John; Naydenova, Izabela

    2017-08-01

    The development of selective alkali metal ions sensors in particular is a subject of significant interest. In this respect, the level of blood electrolytes, particularly H+, Na+, K+ and Cl- , is widely used to monitor aberrant physiologies associated with pulmonary emphysema, acute and chronic renal failure, heart failure, diabetes. The sensors reported in this paper are created by holographic recording of surface relief structures in a self-processing photopolymer material. The structures are functionalized by ionophores dibenzo-18-crown-6 (DC) and tetraethyl 4-tert-butylcalix[4]arene (TBC) in plasticised polyvinyl chloride (PVC) matrix. Interrogation of these structures by light allows indirect measurements of chemical analytes' concentration in real time. We present results on the optimisation and testing of the holographic sensor. A self-processing acrylamide-based photopolymer was used to fabricate the required photonic structures. The performance of the sensors for detection of K+ and Na+ was investigated. It was observed that the functionalisation with DC provides a selective response of the devices to K+ over Na+ and TBC coated surface structures are selectively sensitive to Na+. The sensor responds to Na+ within the physiological ranges. Normal levels of Na+ and K+ in human serum lie within the ranges 135-148mM and 3.5-5.3 mM respectively.

  12. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.

    PubMed

    Jiao, Yang; Zhang, Lei; Zhou, Peng

    2016-04-01

    This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    PubMed

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.

  14. The binding energies of one and two water molecules to the first transition-row metal positive ions

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1989-01-01

    The bonding of water to the transition metal positive ions is electrostatic in origin. The electrostatic bonding is enhanced by a variety of mechanisms: mixing in 4p character, 4s-3d hybridization, and 4s promotion into the compact 3d orbital. The importance of these effects varies between the different metal ions due to changes in the separation of the metal ion atomic states. Furthermore, the change in the metal-water repulsion when a second water is added also changes the relative importance of the different metal asymptotes. The second water binding energy varies from being 11 kcal/mol smaller than the first for Mn(+) to 3 kcal/mol larger for V(+) and Fe(+).

  15. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis Of Noble Metal Nanoparticle Composite Glasses Using Low Energy Ion Beam Mixing

    NASA Astrophysics Data System (ADS)

    Varma, Ranjana S.; Kothari, D. C.; Mahadkar, A. G.; Kulkarni, N. A.; Kanjilal, D.; Kumar, P.

    2010-12-01

    Carbon coated thin films of Cu or Au on fused silica glasses have been irradiated using 100 keV Ar+ ions at different fluences ranging from 1×1013 to 1×1016 ion/cm2. In this article, we explore a route to form noble metal nanoparticles in amorphous glass matrices without post irradiation annealing using low energy ion beam mixing where nuclear energy loss process is dominant. Optical and structural properties were studied using UV-Vis-NIR absorbance spectroscopy and Glancing angle X-ray Diffraction (GXRD). Results showed that Cu and Au nanoparticles are formed at higher fluence of 1×1016 ion/cm2 used in this work without annealing. The diameters of metal nanoparticles obtained from UV-Vis NIR and GXRD are in agreement.

  17. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.

    PubMed Central

    Tripathi, S; Hladky, S B

    1998-01-01

    Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels. J. Gen. Physiol. 72:327-340) in which the streaming potentials were calculated as the difference between electrical potentials measured in the presence of gramicidin and in the presence of the ion carriers valinomycin and nonactin. PMID:9635745

  18. Low Temperature, Selective Atomic Layer Deposition of Nickel Metal Thin Films.

    PubMed

    Kerrigan, Marissa M; Klesko, Joseph P; Blakeney, Kyle J; Winter, Charles H

    2018-04-25

    We report the growth of nickel metal films by atomic layer deposition (ALD) employing bis(1,4-di- tert-butyl-1,3-diazadienyl)nickel and tert-butylamine as the precursors. A range of metal and insulating substrates were explored. An initial deposition study was carried out on platinum substrates. Deposition temperatures ranged from 160 to 220 °C. Saturation plots demonstrated self-limited growth for both precursors, with a growth rate of 0.60 Å/cycle. A plot of growth rate versus substrate temperature showed an ALD window from 180 to 195 °C. Crystalline nickel metal was observed by X-ray diffraction for a 60 nm thick film deposited at 180 °C. Films with thicknesses of 18 and 60 nm grown at 180 °C showed low root mean square roughnesses (<2.5% of thicknesses) by atomic force microscopy. X-ray photoelectron spectroscopies of 18 and 60 nm thick films deposited on platinum at 180 °C revealed ionizations consistent with nickel metal after sputtering with argon ions. The nickel content in the films was >97%, with low levels of carbon, nitrogen, and oxygen. Films deposited on ruthenium substrates displayed lower growth rates than those observed on platinum substrates. On copper substrates, discontinuous island growth was observed at ≤1000 cycles. Film growth was not observed on insulating substrates under any conditions. The new nickel metal ALD procedure gives inherently selective deposition on ruthenium and platinum from 160 to 220 °C.

  19. Positive ions of the first- and second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1987-01-01

    Theoretical dissociation energies for the first- and second-row transition metal hydride positive ions are critically compared against recent experimental values obtained from ion beam reactive scattering methods. Theoretical spectroscopic parameters and dipole moments are presented for the ground and several low-lying excited states. The calculations employ large Gaussian basis sets and account for electron correlation using the single-reference single- and double-excitation configuration interaction and coupled-pair-functional methods. The Darwin and mass-velocity contributions to the relativistic energy are included in the all-electron calculations on the first-row systems using first-order perturbation theory, and in the second-row systems using the Hay and Wadt relativistic effective core potentials. The theoretical D(0) values for the second-row transition metal hydride positive ions should provide a critical measure of the experimental values, which are not as refined as many of those in the first transition row.

  20. Ion Selectivity in the KcsA Potassium Channel from the Perspective of the Ion Binding Site

    PubMed Central

    Dixit, Purushottam D.; Merchant, Safir; Asthagiri, D.

    2009-01-01

    To understand the thermodynamic exclusion of Na+ relative to K+ from the S2 site of the selectivity filter, the distribution PX(ɛ) (X = K+ or Na+) of the binding energy (ɛ) of the ion with the channel is analyzed using the potential distribution theorem. By expressing the excess chemical potential of the ion as a sum of mean-field 〈ɛ〉 and fluctuation μexflux,X contributions, we find that selectivity arises from a higher value of μflux,Na+ex relative to μflux,K+ex. To understand the role of site-site interactions on μexflux,X, we decompose PX(ɛ) into n-dependent distributions, where n is the number of ion-coordinating ligands within a distance λ from the ion. For λ comparable to typical ion-oxygen bond distances, investigations building on this multistate model reveal an inverse correlation between favorable ion-site and site-site interactions: the ion-coordination states that most influence the thermodynamics of the ion are also those for which the binding site is energetically less strained and vice versa. This correlation motivates understanding entropic effects in ion binding to the site and leads to the finding that μexflux,X is directly proportional to the average site-site interaction energy, a quantity that is sensitive to the chemical type of the ligand coordinating the ion. Increasing the coordination number around Na+ only partially accounts for the observed magnitude of selectivity; acknowledging the chemical type of the ion-coordinating ligand is essential. PMID:19289040