Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens)
H.Q. Yu; Z.H. Jiang; C.Y. Hse; T.F. Shupe
2008-01-01
Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Selected physical and mechanical properties of 4?6 year old moso bamboo (Phyllostachys pubescens) grown in Zhejiang, China were investigated at different vertical and horizontal positions. Two way analysis of variance and Tukey?s mean comparison...
USDA-ARS?s Scientific Manuscript database
Information on physical properties of munitions compounds is necessary for assessing their environmental distribution and transport, and predict potential hazards. This information is also needed for selection and design of successful physical, chemical or biological environmental remediation proces...
Physical approaches to biomaterial design
Mitragotri, Samir; Lahann, Joerg
2009-01-01
The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389
Sando, Steven K.; Sether, Bradley A.
1993-01-01
Physical-properties were measured and water-quality, plankton, and bottom-material samples were collected at 10 sites in Devils Lake and East Devils Lake during September 1988 through October 1990 to study water-quality variability and water-quality and plankton relations in Devils Lake and East Devils Lake. Physical properties measured include specific conductance, pH, water temperature, dissolved-oxygen concentration, water transparency, and light transmission. Water-quality samples were analyzed for concentrations of major ions, selected nutrients, and selected trace elements. Plankton samples were examined for identification and enumeration of phytoplankton and zooplankton species, and bottom-material samples were analyzed for concentrations of selected nutrients. Data-collection procedures are discussed and the data are presented in tabular form.
Physical properties and moisture relations of wood
William Simpson; Anton TenWolde
1999-01-01
The versatility of wood is demonstrated by a wide variety of products. This variety is a result of a spectrum of desirable physical characteristics or properties among the many species of wood. In many cases, more than one property of wood is important to the end product. For example, to select a wood species for a product, the value of appearance- type properties,...
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.
Selection of forages by timor deer (cervus timorensis blainville) in menjangan island, bali
NASA Astrophysics Data System (ADS)
Ketut Ginantra, I.; Bagus Made Suaskara, Ida; Ketut Muksin, I.
2018-03-01
This study was conducted to determine the selection of forages plants by Timor deer (Cervus timorensis) on Menjangan Island and its relation to the availability, chemical and physical properties of feed plants. The study was conducted in July-September 2016 in savanna and monsoon forest habitats. The availability of habitat feed plants in the habitat was determined by the quadrat method, and the species of plant eaten by Timor deer was determined through the microhistological analysis of the fecal sample. The food selection index is determine by the Ivlev index. Energy contents of forages plants by bomb calorimeter apparatus, crude protein analyzed by Semi-Micro Kjeldahl technique, NDF, ADF and lignin levels refer to the method of Goering and Van Soest. Mineral content of calcium (Ca) and phosphorus (P) by using atomic absorption spectrophotometer. Determination of tannin content with Folin Denish reaction. Physical properties determine are water regain capacity and water solubility. The relationship between availability with the utilization of plants by Timor deer was analyzed with the similarity index. Multiple regression statistic to test the relationship between index selection with nutritional value factor and physical characteristic of plant species. The result showed that Timor deer selected 32 plants species of graminoids, forbs and woody plants. Feeding selection of Timor deer is strongly influenced by the availability of forage plants in habitat. The feeding selection was significantly influenced by three predictor variables i.e. positive nutritional value is crude protein and negative nutritional value were lignin and tannins. Selection of forage plant Timor deer is positively correlated with the physical properties of feed plants.
Ticehurst, Martyn David; Marziano, Ivan
2015-06-01
This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery. © 2015 Royal Pharmaceutical Society.
Wilkowske, Christopher D.; Heilweil, Victor M.; Wilberg, Dale E.
1998-01-01
Hydrologic data were collected in Washington and Iron Counties, Utah, from 1995 to 1997 to better understand the hydrologic system. Data from earlier years also are presented. Data collected from wells include well-completion data, water-level measurements, and physical properties of the water. Data collected from springs and surface-water sites include discharge and physical properties of the water. Selected water samples collected from ground- and surface-water sites were analyzed for isotopes, chlorofluorocarbons, and dissolved gases.
Self-Consistent Physical Properties of Carbon Nanotubes in Composite Materials
NASA Technical Reports Server (NTRS)
Pipes, R. B.; Frankland, S. J. V.; Hubert, P.; Saether, E.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
A set of relationships is developed for selected physical properties of single-walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of nanotube size in terms of the chiral vector integer pair, (n,m). Properties include density, principal Young's modulus, and specific Young's modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are developed for polymeric mixtures.
Myron W. Kelly
1977-01-01
The pertinent literature has been reviewed, and the apparent effects of selected processing parameters on the resultant particleboard properties, as generally reported in the literature, have been determined. Resin efficiency, type and level, furnish, and pressing conditions are reviewed for their reported effects on physical, strength, and moisture and dimensional...
Statistical Physics of Adaptation
2016-08-23
Statistical Physics of Adaptation Nikolay Perunov, Robert A. Marsland, and Jeremy L. England Department of Physics , Physics of Living Systems Group...Subject Areas: Biological Physics , Complex Systems, Statistical Physics I. INTRODUCTION It has long been understood that nonequilibrium driving can...equilibrium may appear to have been specially selected for physical properties connected to their ability to absorb work from the particular driving environment
Physical Evaluation of Cleaning Performance: We Are Only Fooling Ourselves
NASA Technical Reports Server (NTRS)
Pratz, Earl; McCool, A. (Technical Monitor)
2000-01-01
Surface cleaning processes are normally evaluated using visual physical properties such as discolorations, streaking, staining and water-break-free conditions. There is an assumption that these physical methods will evaluate all surfaces all the time for all subsequent operations. We have found that these physical methods are lacking in sensitivity and selectivity with regard to surface residues and subsequent process performance. We will report several conditions where evaluations using visual physical properties are lacking. We will identify possible alternative methods and future needs for surface evaluations.
Physical properties of sidewall cores from Decatur, Illinois
Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.
2017-10-18
To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (
Occipital TMS at phosphene detection threshold captures attention automatically.
Rangelov, Dragan; Müller, Hermann J; Taylor, Paul C J
2015-04-01
Strong stimuli may capture attention automatically, suggesting that attentional selection is determined primarily by physical stimulus properties. The mechanisms underlying capture remain controversial, in particular, whether feedforward subcortical processes are its main source. Also, it remains unclear whether only physical stimulus properties determine capture strength. Here, we demonstrate strong capture in the absence of feedforward input to subcortical structures such as the superior colliculus, by using transcranial magnetic stimulation (TMS) over occipital visual cortex as an attention cue. This implies that the feedforward sweep through subcortex is not necessary for capture to occur but rather provides an additional source of capture. Furthermore, seen cues captured attention more strongly than (physically identical) unseen cues, suggesting that the momentary state of the nervous system modulates attentional selection. In summary, we demonstrate the existence of several sources of attentional capture, and that both physical stimulus properties and the state of the nervous system influence capture. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of composition on physical properties of food powders
NASA Astrophysics Data System (ADS)
Szulc, Karolina; Lenart, Andrzej
2016-04-01
The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.
Interrogating selectivity in catalysis using molecular vibrations
NASA Astrophysics Data System (ADS)
Milo, Anat; Bess, Elizabeth N.; Sigman, Matthew S.
2014-03-01
The delineation of molecular properties that underlie reactivity and selectivity is at the core of physical organic chemistry, and this knowledge can be used to inform the design of improved synthetic methods or identify new chemical transformations. For this reason, the mathematical representation of properties affecting reactivity and selectivity trends, that is, molecular parameters, is paramount. Correlations produced by equating these molecular parameters with experimental outcomes are often defined as free-energy relationships and can be used to evaluate the origin of selectivity and to generate new, experimentally testable hypotheses. The premise behind successful correlations of this type is that a systematically perturbed molecular property affects a transition-state interaction between the catalyst, substrate and any reaction components involved in the determination of selectivity. Classic physical organic molecular descriptors, such as Hammett, Taft or Charton parameters, seek to independently probe isolated electronic or steric effects. However, these parameters cannot address simultaneous, non-additive variations to more than one molecular property, which limits their utility. Here we report a parameter system based on the vibrational response of a molecule to infrared radiation that can be used to mathematically model and predict selectivity trends for reactions with interlinked steric and electronic effects at positions of interest. The disclosed parameter system is mechanistically derived and should find broad use in the study of chemical and biological systems.
Preformulation considerations for controlled release dosage forms. Part I. Selecting candidates.
Chrzanowski, Frank
2008-01-01
The physical-chemical properties of interest for controlled release (CR) dosage form development presented are based on the author's experience. Part I addresses selection of the final form based on a logical progression of physical-chemical properties evaluation of candidate forms and elimination of forms with undesirable properties from further evaluation in order to simplify final form selection. Several candidate forms which could include salt, free base or acid, polymorphic and amorphic forms of a new chemical entity (NCE) or existing drug substance (DS) are prepared and evaluated for critical properties in a scheme relevant to manufacturing processes, predictive of problems, requiring small amounts of test materials and simple analytical tools. A stability indicating assay is not needed to initiate the evaluation. This process is applicable to CR and immediate release (IR) dosage form development. The critical properties evaluated are melting, crystallinity, solubilities in water, 0.1 N HCl, and SIF, hygrodymamics, i.e., moisture sorption and loss at extremes of RH, and LOD at typical wet granulation drying conditions, and processability, i.e., corrosivity, and filming and/or sticking upon compression.
Biophysical studies of spermatozoa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistenma, David Andrew
1970-12-01
The objectives of this thesis include characterization of spermatozoa according to several physical properties (morphology, size, electrophoretic mobility, sedimentation rate and specific gravity), correlation of these properties with several biological properties (viability, intrinsic motility, fertilizing capacity, antigenicity and genetic composition) and an evaluation of interrelationships among these properties and with selected experimental variables.
Soil carbon and soil physical properties response to incorporating mulched forest slash
Felipe G. Sanchez; Emily A. Carter; John. F. Klepac
2000-01-01
A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...
Investigation of rock samples by neutron diffraction and ultrasonic sounding
NASA Astrophysics Data System (ADS)
Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.
2000-03-01
The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.
Osiurak, François; Granjon, Marine; Bonnevie, Isabelle; Brogniart, Joël; Mechtouff, Laura; Benoit, Amandine; Nighoghossian, Norbert; Lesourd, Mathieu
2018-05-01
Recent evidence indicates that some left brain-damaged (LBD) patients have difficulties to use familiar tools because of the inability to reason about physical object properties. A fundamental issue is to understand the residual capacity of those LBD patients in tool selection. Three LBD patients with tool use disorders, three right brain-damaged (RBD) patients, and six matched healthy controls performed a novel tool selection task, consisting in extracting a target out from a box by selecting the relevant tool among eight, four, or two tools. Three criteria were manipulated to make relevant and irrelevant tools (size, rigidity, shape). LBD patients selected a greater number of irrelevant tools and had more difficulties to solve the task compared to RBD patients and controls. All participants committed more errors for selecting relevant tools based on rigidity and shape than size. In some LBD patients, the difficulties persisted even in the 2-Choice condition. Our findings confirm that tool use disorders result from impaired technical reasoning, leading patients to meet difficulties in selecting tools based on their physical properties. We also go further by showing that these difficulties can decrease as the choice is reduced, at least for some properties, opening new avenues for rehabilitation programs. (JINS, 2018, 24, 524-529).
Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation
NASA Astrophysics Data System (ADS)
Yadav, Rahul; Mathew, Shibu K.
2018-04-01
Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.
Composite patterning devices for soft lithography
Rogers, John A.; Menard, Etienne
2007-03-27
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.
Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement
Richardson, John G.
2005-11-15
An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.
Construction of Experimental Roofing.
1981-11-01
buildings at Fort Benning, GA; Fort Knox, KY; and Fort Lewis, WA. Sheets of EPDM synthetic rubber were installed on buildings at Forts Benning and Lewis...Contract and Unit Costs 14 5 Polyurethane Foam Roofing -- Initial Physical Properties 28 6 EPDM Sheet Rubber Roofing -- Initial Physical Properties 30 7...the new system. The system selected for Area A was an EPDM synthetic rubber manufactured by Carlisle Tire and Rubber Company. The contract specified
Selective correlations in finite quantum systems and the Desargues property
NASA Astrophysics Data System (ADS)
Lei, C.; Vourdas, A.
2018-06-01
The Desargues property is well known in the context of projective geometry. An analogous property is presented in the context of both classical and Quantum Physics. In a classical context, the Desargues property implies that two logical circuits with the same input show in their outputs selective correlations. In general their outputs are uncorrelated, but if the output of one has a particular value, then the output of the other has another particular value. In a quantum context, the Desargues property implies that two experiments each of which involves two successive projective measurements have selective correlations. For a particular set of projectors, if in one experiment the second measurement does not change the output of the first measurement, then the same is true in the other experiment.
DEVELOPMENT OF A COMPOSITION DATABASE FOR SELECTED MULTICOMPONENT OILS
During any oil spill incident, the properties of the spilled oil, including its chemical composition, physical properties, and changes due to weathering, are immediately important. U.S. EPA is currently developing new models for application to environmental problems associated...
Rebich, Richard A.
1994-01-01
Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.
Five year magnetic tape for unattended satellite tape recorders
NASA Technical Reports Server (NTRS)
Benn, G. S. L.; Gutfreund, K.
1972-01-01
The development and fabrication of a quantity of long life magnetic tape with properties selected specifically for unattended operation in spacecraft tape recorders was studied. A detailed analytical consideration of various binder systems was undertaken. This included the chemical aspects of the binders, cohesion and adhesion effects, stability and the mechanical and physical properties. The ability to form free films of these polymers and their combination with various oxide loadings and other additives allowed a rapid selection of four polymer candidates for a five year magnetic tape. Samples were evaluated under actual running conditions which included physical, magnetic, and extensive life testing. These sample tapes withstood 50,000 bidirectional tape passes under fairly harsh operating conditions.
Marletto, Chiara
2015-01-01
Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes: mainly, gene replication and natural selection. In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a ‘vehicle’ constituting, together with the replicator, a self-reproducer. PMID:25589566
Effect of different mixing methods on the physical properties of Portland cement.
Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz
2016-12-01
The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred sixty two samples of Portland cement were prepared for three mixing techniques for each physical property (each 6 samples). Data were analyzed using descriptive statistics, one-way ANOVA and post hoc Tukey tests. Statistical significance was set at P <0.05. The mixing technique had no significant effect on the compressive strength, film thickness and flow of Portland cement ( P >0.05). Dimensional changes (shrinkage), solubility and pH increased significantly by amalgamator and ultrasonic mixing techniques ( P <0.05). The ultrasonic technique significantly decreased working time, and the amalgamator and ultrasonic techniques significantly decreased the setting time ( P <0.05). The mixing technique exerted no significant effect on the flow, film thickness and compressive strength of Portland cement samples. Key words: Physical properties, Portland cement, mixing methods.
The physical properties and evolution of Lyα emitting galaxies
NASA Astrophysics Data System (ADS)
Pentericci, L.; Grazian, A.; Fontana, A.
2009-05-01
A significant fraction of high redshift starburst galaxies presents strong Lyα emission. Understanding the nature of these galaxies is important to assess the role they played in the early Universe and to shed light on the relation between the narrow band selected Lyα emitters and the Lyman break galaxies: are the Lyα emitters a subset of the general LBG population? or do they represent the youngest galaxies in their early phases of formation? We studied a sample of UV continuum selected galaxies from z~2.5 to z~6 (U, B, V and i-dropouts) from the GOODS-South survey, that have been observed spectroscopically. Using the GOODS-MUSIC catalog we investigated their physical properties, such as total masses, ages, SFRs, extinction etc as determined from a spectrophotometric fit to the multi-wavelength (U band to mid-IR) SEDs, and their dependence on the emission line characteristics. In particular we determined the nature of the LBGs with Lyα in emission and compared them to the properties of narrow band selected Lyα emitters. For U and B-dropouts we also compared the properties of LBGs with and without the Lyα emission line.
Learning physical descriptors for materials science by compressed sensing
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias
2017-02-01
The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.
Examining the relation between rock mass cuttability index and rock drilling properties
NASA Astrophysics Data System (ADS)
Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram
2016-12-01
Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.
Imide/arylene ether block copolymers
NASA Technical Reports Server (NTRS)
Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.
1991-01-01
Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.
Groundwater quality of southeastern Wyoming
Eddy-Miller, Cheryl A.; Blain, Liberty
2011-01-01
Groundwater is an important resource for domestic, municipal, stock, and irrigation uses in southeastern Wyoming. Thirty-seven percent of water used in the tri-County area, which includes Laramie, Platte, and Goshen Counties, is from groundwater. Most groundwater use in the tri-County area is withdrawn from three primary aquifer groups: Quaternary-age unconsolidated-deposit aquifers, Tertiary-age units of the High Plains aquifer system, and Upper Cretaceous bedrock aquifers (Lance Formation and Fox Hills Sandstone). Authors include selected physical properties and chemicals found in water samples, describe sources and importance, and report maximum levels established by the U.S. Environmental Protection Agency. They also show concentration ranges for selected physical properties and chemicals in samples collected from the three primary aquifer groups in the tri-County area.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-01-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-06-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
Multicomponent composition and corresponding physical properties data of crude oils and petroleum products are needed as input to environmental fate simulations. Complete sets of such data, however, are not available in the literature due to the complexity and expense of making t...
Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina
1996-01-01
Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.
Moolchandani, Vikas; Augsburger, Larry L; Gupta, Abhay; Khan, Mansoor; Langridge, John; Hoag, Stephen W
2015-01-01
The purpose of this work is to characterize thermal, physical and mechanical properties of different grades of lactose and better understand the relationships between these properties and capsule filling performance. Eight grades of commercially available lactose were evaluated: Pharmatose 110 M, 125 M, 150 M, 200 M, 350 M (α-lactose monohydrate), AL (anhydrous lactose containing ∼80% β-AL), DCL11 (spray dried α-lactose monohydrate containing ∼15% amorphous lactose) and DCL15 (granulated α-lactose monohydrate containing ∼12% β-AL). In this study, different lactose grades were characterized by thermal, solid state, physical and mechanical properties and later evaluated using principal component analysis (PCA) to assess the inter-relationships among some of these properties. The lactose grades were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), moisture sorption/desorption isotherms, particle size distribution; the flow was characterized by Carr Index (CI), critical orifice diameter (COD) and angle of friction. Plug mechanical strength was estimated from its diametric crushing strength. The first and second principal components (PC) captured 47.6% and 27.4% of variation in the physical and mechanical property data, respectively. The PCA plot grouped together 110 M, AL, DCL11 and DCL15 on the one side of plot which possessed superior properties for capsule formulation and these grades were selected for future formulation development studies (part II of this work).
Materials Selection. Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
This learning activity develops algorithms to ensure that the process of selecting materials is well defined and sound. These procedures require the use of many databases to provide the designer with information such as physical, mechanical, and chemical properties of the materials under consideration. A design brief, student quiz, and five…
Effects of cover crops on soil quality: Selected chemical and biological parameters
USDA-ARS?s Scientific Manuscript database
Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...
Brown, Timothy A.; Dunning, Charles P.; Batten, William G.
1997-01-01
This report presents selected references concerning the Galena-Platteville deposits in Illinois and Wisconsin published from 1877 to 1997. Sources of the bibliographic information are the Universities of Illinois and Wisconsin Library Computer Systems; Illinet Online; the Illinois and Wisconsin District Libraries of the U.S. Geological Survey; U.S. Geological Survey Selected Water Resources Abstracts; U.S. Environmental Protection Agency reports; and Federal, State, and local agencies, corporations, and consultants. The bibliography is arranged alphabetically, by county, in Illinois and Wisconsin. The references available for each county are arranged alphabetically by author. In addition, one or more selected hydrogeologic key words describing the content of the reference follow each listing. These key words are geophysical properties, hydraulic properties, inorganic geochemistry, lithology, organic geochemistry, physical properties, and water use. Included in the bibliography are 186 references obtained for 15 counties in Illinois and 21 counties in Wisconsin.
Parthasarathy, Saravanan; Henry, Kenneth; Pei, Huaxing; Clayton, Josh; Rempala, Mark; Johns, Deidre; De Frutos, Oscar; Garcia, Pablo; Mateos, Carlos; Pleite, Sehila; Wang, Yong; Stout, Stephanie; Condon, Bradley; Ashok, Sheela; Lu, Zhohai; Ehlhardt, William; Raub, Tom; Lai, Mei; Geeganage, Sandaruwan; Burkholder, Timothy P
2018-06-01
During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK 2 . A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Affordable housing and health: a health impact assessment on physical inspection frequency.
Klein, Elizabeth G; Keller, Brittney; Hood, Nancy; Holtzen, Holly
2015-01-01
To characterize the prevalence of health-related housing quality exposure for the vulnerable populations that live in affordable housing. Retrospective cross-sectional study. Affordable housing properties in Ohio inspected between 2007 and 2011. Stratified random sample of physical inspection reports (n = 370), including a case study of properties receiving multiple inspections (n = 35). Health-related housing factors, including mold, fire hazard, and others. The majority of affordable housing property inspections (85.1%) included at least 1 health-related housing quality issue. The prevalence of specific health-related violations was varied, with appliance and plumbing issues being the most common, followed by fire, mold, and pest violations. Across funding agencies, the actual implementation of inspection protocols differed. The majority of physical inspections identified housing quality issues that have the potential to impact human health. If the frequency of physical inspections is reduced as a result of inspection alignment, the most health protective inspection protocol should be selected for funding agency inspections; a standardized physical inspection tool is recommended to improve the consistency of inspection findings between mandatory physical inspections in order to promote optimum tenant health.
The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters
NASA Astrophysics Data System (ADS)
Bayliss, Matthew
2017-08-01
We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics |*| the infamous |*|gastrophysics|*| in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.
The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters
NASA Astrophysics Data System (ADS)
Bayliss, Matthew
2017-09-01
We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics -- the infamous ``gastrophysics''-- in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Fundamentals of health physics for the radiation-protection officer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.
1983-03-01
The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)
Mesoporous Silica Chips for Selective Enrichment and Stabilization of Low Molecular Weight Proteome
Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro
2010-01-01
The advanced properties of mesoporous silica have been demonstrated in applications which include chemical sensing, filtration, catalysis, drug-delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on Mesoporous Silica Chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we established the correlation between the harvesting specificity and the physico-chemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery. PMID:20013801
Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome.
Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro
2010-02-01
The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI-TOF-MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.
Rocha-Amador, Omar Gerardo; Huang, Qingrong; Rocha-Guzman, Nuria Elizabeth; Moreno-Jimenez, Martha Rocio; Gonzalez-Laredo, Ruben F.
2014-01-01
The objective of this study was to evaluate the influence of gelator, vegetable oil, stirring speed, and temperature on the physical properties of obtained organogels. They were prepared under varying independent conditions and applying a fractional experimental design. From there a rheological characterization was developed. The physical characterization also included polarized light microscopy and calorimetric analysis. Once these data were obtained, X-Ray diffraction was applied to selected samples and a microstructure lattice was confirmed. Commonly, the only conditions that affect crystallization have been analyzed (temperature, solvent, gelator, and cooling rate). We found that stirring speed is the most important parameter in the organogel preparation. PMID:26904637
Transparent Conducting Oxides: Status and Opportunities in Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutts, T. J.; Perkins, J. D.; Ginley, D.S.
1999-08-01
In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less
Flowable Resin Composites: A Systematic Review and Clinical Considerations
Rodrigues, Jean C.
2015-01-01
Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238
NASA Technical Reports Server (NTRS)
Supkis, D. E.
1975-01-01
Selected fire-retardant materials for possible application to commercial aircraft are described. The results of flammability screening tests and information on the physical and chemical properties of both original and newly installed materials after extended use are presented in tabular form, with emphasis on wear properties, strength, puncture and tear resistances, and cleanability.
Thermoplastics for aircraft interiors
NASA Technical Reports Server (NTRS)
Silverman, B.
1978-01-01
The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.
Bark thermal properties of selected central hardwood species
Gretel E. Hengst; Jeffery O. Dawson
1993-01-01
Some physical, thermal, and chemical properties of bark of eleven tree species native to the central hardwood region were measured to determine their potential to protect the vascular cambium from damage by fire. The relationship between dbh and bark thickness for each of sixteen species was determined. For purposes of monitoring seasonal trends, two species (Quercus...
USDA-ARS?s Scientific Manuscript database
Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of selected chemical [soil organic matter (SOM), pH and total N (TN)], physical (soil texture), and biochemical (six enzyme activities of C, N, P and S cycling) character...
Wiitavaara, Birgitta; Heiden, Marina
2017-06-02
The purpose was to investigate how physical function is assessed in people with musculoskeletal disorders (MSD) in the neck. Specifically, we aimed to determine: (1) Which questionnaires are used to assess physical function in people with MSD in the neck? (2) What do those questionnaires measure? (3) What are the measurement properties of the questionnaires? A systematic review was performed to identify questionnaires and psychometric evaluations. The content of the questionnaires was categorized according to the International Classification of Function, Disability and Health, and the psychometric properties were quality-rated using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. Ten questionnaires and 32 articles evaluating measurement properties were analyzed. Most questionnaires covered only the components body functions and activity and participation, more often activity participation than body function. Internal consistency was adequate in most questionnaires, whereas responsiveness was generally low. Neck Disability Index was most evaluated, but the evaluations of all questionnaires tended to cover most properties in the checklist. The questionnaires differed substantially in items and extent to which their psychometric properties had been evaluated. Focus of measurement was on activities in daily life rather than physical function as such. Implications for Rehabilitation To provide early diagnostics and effective treatment for patients with neck disorders, valid and reliable instruments that measure relevant aspects of the disorders are needed. This paper presents an overview of content and quality of questionnaires used to assess physical function in neck disorders, which may facilitate informed decisions about which measurement instruments to use when evaluating the course of neck disorders. Most of the questionnaires need more testing to judge the quality, however the NDI was the most frequently tested questionnaire. The COnsensus-based Standards for the selection of health Measurement INstruments checklist is a useful tool in relation to psychometric testing of questionnaires, but clear definitions of interpretation of the quality criteria in each study would enhance comparability of results.
Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax
2015-01-01
Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems. PMID:26181053
Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax
2015-01-01
Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.
2009-01-01
Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk
2004-01-22
Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.
Naughtin, Monica; Haftek-Terreau, Zofia; Xavier, Johan; Meyer, Sam; Silvain, Maud; Jaszczyszyn, Yan; Levy, Nicolas; Miele, Vincent; Benleulmi, Mohamed Salah; Ruff, Marc; Parissi, Vincent; Vaillant, Cédric; Lavigne, Marc
2015-01-01
Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein. PMID:26075397
Design and Construction of Airport Pavements on Expansive Soils
1976-06-01
Selection of the type anc amount of stabilizing agent (lime, cement , asphalt, only) (4) Test methods to determine the physical properties of sta...7 8.3 5.4 3.3 6.5 1 4.7 3-3, 1 (8) Investigate the effect of sulfate on cement -stabilized soils and establish...terested because the properties of soil/ cement mixtures and the relationships existing among these properties and various test values are discussed
Hoffman, Donald D.; Prakash, Chetan
2014-01-01
Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale. PMID:24987382
The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.
Hendrick, R E
1994-07-01
This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.
NASA Technical Reports Server (NTRS)
Bates, Seth P.
1990-01-01
Students are introduced to methods and concepts for systematic selection and evaluation of materials which are to be used to manufacture specific products in industry. For this laboratory exercise, students are asked to work in groups to identify and describe a product, then to proceed through the process to select a list of three candidates to make the item from. The exercise draws on knowledge of mechanical, physical, and chemical properties, common materials test techniques, and resource management skills in finding and assessing property data. A very important part of the exercise is the students' introduction to decision making algorithms, and learning how to apply them to a complex decision making process.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
Selected properties of particleboard panels manufactured from rice straws of different geometries
Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta
2010-01-01
The objective is to evaluate the primary mechanical and physical properties of particleboard made from hammer-milled rice straw particles of six different categories and two types of resins. The results show the performance of straw particleboards is highly dependent upon the straw particle size controlled by the opening size of the perforated plate inside the hammer-...
Clough, Matthew T.; Crick, Colin R.; Gräsvik, John; Niedermeyer, Heiko; Whitaker, Oliver P.
2015-01-01
Ionic liquids have earned the reputation of being ‘designer solvents’ due to the wide range of accessible properties and the degree of fine-tuning afforded by varying the constituent ions. Mixtures of ionic liquids offer the opportunity for further fine-tuning of properties. A broad selection of common ionic liquid cations and anions are employed to create a sample of binary and reciprocal binary ionic liquid mixtures, which are analysed and described in this paper. Physical properties such as the conductivity, viscosity, density and phase behaviour (glass transition temperatures) are examined. In addition, thermal stabilities of the mixtures are evaluated. The physical properties examined for these formulations are found to generally adhere remarkably closely to ideal mixing laws, with a few consistent exceptions, allowing for the facile prediction and control of properties of ionic liquid mixtures. PMID:29560198
Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete
NASA Astrophysics Data System (ADS)
Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.
2018-03-01
This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.
A study of swing-curve physics in diffraction-based overlay
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack
2016-03-01
With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.
Molluscicidal properties and selective toxicity of surface-active agents
Visser, S. A.
1965-01-01
Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185
A Grey Fuzzy Logic Approach for Cotton Fibre Selection
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Das, Partha Protim; Kumar, Vidyapati
2017-06-01
It is a well known fact that the quality of ring spun yarn predominantly depends on various physical properties of cotton fibre. Any variation in these fibre properties may affect the strength and unevenness of the final yarn. Thus, so as to achieve the desired yarn quality and characteristics, it becomes imperative for the spinning industry personnel to identify the most suitable cotton fibre from a set of feasible alternatives in presence of several conflicting properties/attributes. This cotton fibre selection process can be modelled as a Multi-Criteria Decision Making (MCDM) problem. In this paper, a grey fuzzy logic-based approach is proposed for selection of the most apposite cotton fibre from 17 alternatives evaluated based on six important fibre properties. It is observed that the preference order of the top-ranked cotton fibres derived using the grey fuzzy logic approach closely matches with that attained by the past researchers which proves the application potentiality of this method in solving varying MCDM problems in textile industries.
Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties.
Hassanein, K; Amo-Ochoa, P; Gómez-García, C J; Delgado, S; Castillo, O; Ocón, P; Martínez, J I; Perles, J; Zamora, F
2015-11-16
The properties recently reported on the Cu(I)-iodide pyrimidine nonporous 1D-coordination polymer [CuI(ANP)]n (ANP = 2-amino-5-nitropyridine) showing reversible physically and chemically driven electrical response have prompted us to carry a comparative study with the series of [CuX(ANP)]n (X = Cl (1), X = Br (2), X = CN (4), and X = SCN (5)) in order to understand the potential influence of the halide and pseudohalide bridging ligands on the physical properties and their electrical response to vapors of these materials. The structural characterization of the series shows a common feature, the presence of -X-Cu(ANP)-X- (X = Cl, Br, I, SCN) double chain structure. Complex [Cu(ANP)(CN)]n (4) presents a helical single chain. Additionally, the chains show supramolecular interlinked interactions via hydrogen bonding giving rise to the formation of extended networks. Their luminescent and electrical properties have been studied. The results obtained have been correlated with structural changes. Furthermore, the experimental and theoretical results have been compared using the density functional theory (DFT). The electrical response of the materials has been evaluated in the presence of vapors of diethyl ether, dimethyl methylphosphonate (DMMP), CH2Cl2, HAcO, MeOH, and EtOH, to build up simple prototype devices for gas detectors. Selectivity toward gases consisting of molecules with H-bonding donor or acceptor groups is clearly observed. This selective molecular recognition is likely due to the 2-amino-5-nitropyridine terminal ligand.
Braun, Christopher L.; Moring, James B.
2013-01-01
The U.S. Geological Survey (USGS), in cooperation with the Northeast Texas Municipal Water District and the Texas Commission on Environmental Quality, did a baseline assessment in 2010-11 of physical characteristics and selected aquatic biota (fish and mussels) collected at the mesohabitat scale for three stream reaches in the Big Cypress Basin in northeastern Texas for which environmental flows have been prescribed. Mesohabitats are visually distinct units of habitat within the stream with unique depth, velocity, slope, substrate, and cover. Mesohabitats in reaches of Big Cypress, Black Cypress, and Little Cypress Bayous were evaluated to gain an understanding of how fish communities and mussel populations varied by habitat. Selected water-quality properties were also measured in isolated pools in Black Cypress and Little Cypress. All of the data were collected in the context of the prescribed environmental flows. The information acquired during the study will support the long-term monitoring of biota in relation to the prescribed environmental flows.
Correlation properties of interstellar dust: Diffuse interstellar bands
NASA Technical Reports Server (NTRS)
Somerville, W. B.
1989-01-01
Results are presented from a research program in which an attempt was made to establish the physical nature of the interstellar grains, and the carriers of the diffuse interstellar bands, by comparing relations between different observed properties; the properties used include the extinction in the optical and ultraviolet (including wavelength 2200 and the far-UV rise), cloud density, atomic depletions, and strengths of the diffuse bands. Observations and also data from literature were used, selecting particularly sight-lines where some observed property was found to have anomalous behavior.
Gifty E. Acquah; Brian K. Via; Lori G. Eckhardt
2016-01-01
In a bid to control the loblolly pine decline complex, stakeholders are using the selection and deployment of genetically superior families that are disease tolerant. It is vital that we do not compromise other important properties while breeding for disease tolerance. In this preliminary study, near infrared spectroscopy was utilized in conjunction with data collected...
Trotter, B Wesley; Nanda, Kausik K; Burgey, Christopher S; Potteiger, Craig M; Deng, James Z; Green, Ahren I; Hartnett, John C; Kett, Nathan R; Wu, Zhicai; Henze, Darrell A; Della Penna, Kimberly; Desai, Reshma; Leitl, Michael D; Lemaire, Wei; White, Rebecca B; Yeh, Suzie; Urban, Mark O; Kane, Stefanie A; Hartman, George D; Bilodeau, Mark T
2011-04-15
A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Precursor Selection for Property Optimization in Biomorphic SiC Ceramics
NASA Technical Reports Server (NTRS)
Varela-Feria, F. M.; Lopez-Robledo, M. J.; Martinez-Fernandez, J.; deArellano-Lopez, A. R.; Singh, M.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Biomorphic SiC ceramics have been fabricated using different wood precursors. The evolution of volume, density and microstructure of the woods, carbon performs, and final SiC products are systematically studied in order to establish experimental guidelines that allow materials selection. The wood density is a critical characteristic, which results in a particular final SiC density, and the level of anisotropy in mechanical properties in directions parallel (axial) and perpendicular (radial) to the growth of the wood. The purpose of this work is to explore experimental laws that can help choose a type of wood as precursor for a final SiC product, with a given microstructure, density and level of anisotropy. Preliminary studies of physical properties suggest that not only mechanical properties are strongly anisotropic, but also electrical conductivity and gas permeability, which have great technological importance.
Viljoen, Joe M; Steenekamp, Jan H; Marais, Andries F; Kotzé, Awie F
2014-06-01
Chitosan does not rank highly regarding its employment as tablet filler due to certain limitations. Undesirable properties that limit its utilization as excipient in solid dosage forms include its hydration propensity that negatively affects tablet stability, strength and disintegration. The objective of this study was to investigate the physical stability of chitosan powder, mixtures, granules and tablets under accelerated conditions such as elevated temperatures and humidity over different periods of time. Selected physico-chemical properties of pure chitosan powder, physical mixtures of chitosan with Kollidon® VA64 (BASF, Ludwigshafen, Germany), chitosan granules, as well as tablets were evaluated under conditions of elevated humidity and temperature. The physical stability of chitosan tablets exhibited sensitivity towards varying exposure conditions. It was furthermore evident that the presence of moisture (sorbed water) had a marked influence on the physical stability of chitosan powder and tablets. It was evident that the presence of Kollidon® VA64 as well as the method of inclusion of this binder influenced the properties of chitosan tablets. The physical stability of chitosan powder deteriorated to a greater extent compared to that of the chitosan tablets, which were subjected to the same conditions. It is recommended that tablets containing chitosan should be stored at a temperature not exceeding 25 °C as well as at a relatively low humidity (<60%) to prevent deterioration of physical properties. Direct compression of chitosan granules which contained 5%w/w Kollidon® VA64 produced the best formulation in terms of physical stability at the different conditions.
Asymptotic Time Decay in Quantum Physics: a Selective Review and Some New Results
NASA Astrophysics Data System (ADS)
Marchetti, Domingos H. U.; Wreszinski, Walter F.
2013-05-01
Decay of various quantities (return or survival probability, correlation functions) in time are the basis of a multitude of important and interesting phenomena in quantum physics, ranging from spectral properties, resonances, return and approach to equilibrium, to dynamical stability properties and irreversibility and the "arrow of time" in [Asymptotic Time Decay in Quantum Physics (World Scientific, 2013)]. In this review, we study several types of decay — decay in the average, decay in the Lp-sense, and pointwise decay — of the Fourier-Stieltjes transform of a measure, usually identified with the spectral measure, which appear naturally in different mathematical and physical settings. In particular, decay in the Lp-sense is related both to pointwise decay and to decay in the average and, from a physical standpoint, relates to a rigorous form of the time-energy uncertainty relation. Both decay on the average and in the Lp-sense are related to spectral properties, in particular, absolute continuity of the spectral measure. The study of pointwise decay for singular continuous measures (Rajchman measures) provides a bridge between ergodic theory, number theory and analysis, including the method of stationary phase. The theory is illustrated by some new results in the theory of sparse models.
Designing relevant biochars to revitalize soil quality: Current status and advances
Biochars chemical and physical properties can be designed to improve specific soil quality issues. In order to make appropriate selections, evaluations are required of different feedstocks, pyrolysis conditions, and gross biochar particle sizes. We conducted laboratory soil incu...
Physical properties of alternatives to the fully halogenated chlorofluorocarbons
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1990-01-01
Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.
The physical properties of Lyα emitting galaxies: not just primeval galaxies?
NASA Astrophysics Data System (ADS)
Pentericci, L.; Grazian, A.; Fontana, A.; Castellano, M.; Giallongo, E.; Salimbeni, S.; Santini, P.
2009-02-01
Aims: We have analyzed a sample of Lyman break galaxies from z ~ 3.5 to z ~ 6 selected from the GOODS-S field as B, V, and i-dropouts, and with spectroscopic observations showing that they have the Lyα line in emission. Our main aim is to investigate their physical properties and their dependence on the emission line characteristic and to shed light on the relation between galaxies with Lyα emission and the general LBG population. Methods: The objects were selected from their optical continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the public spectra we derived the main properties of the Lyα emission such as total flux and rest frame EW. We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, and through standard spectro-photometric techniques we derived the physical properties of the galaxies, such as total stellar mass, stellar ages, star formation rates, and dust content. Finally we investigated the relation between emission line and physical properties. Results: Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that cannot be represented well by young models and require considerably older stellar component, up to ~1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have high line EW, and should be also selected in narrow-band surveys. Therefore not all Lyα emitting galaxies are primeval galaxies in the very early stages of formation, as is commonly assumed. We also find a range of stellar populations, with masses from 5 × 108 M_⊙ to 5 × 1010 M_⊙ and SFR from few to 60 M_⊙ yr-1. Although there is no net correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were either dustier and/or if they contained more neutral gas than less massive objects. Finally we find that more than half of the galaxies contain small but non negligible amounts of dust: the mean E(B-V) derived from the SED fit and the EW are well-correlated, although with a large scatter, as already found at lower redshift.
Development of materials for the rapid manufacture of die cast tooling
NASA Astrophysics Data System (ADS)
Hardro, Peter Jason
The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely, reduce tooling cost, shorten tooling creation time, and reduce the man-hours needed for tool creation. Though identifying the appropriate time to use RP tooling appears to be the most important aspect in achieving successful implementation.
Bastolla, Ugo
2014-01-01
The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217
Jin, Ping; Madieh, Shadi; Augsburger, Larry L
2008-01-01
The objectives of this research are: (1) to assess selected formulation-relevant physical properties of several commercial Feverfew extracts, including flowability, hygroscopicity, compressibility and compactibility (2) to develop and validate a suitable extraction method and HPLC assay, and (3) to determine the parthenolide content of several commercial Feverfew extracts. Carr's index, minimum orifice diameter and particle-particle interaction were used to evaluate powder flowability. Hygroscopicity was evaluated by determining the equilibrium moisture content (EMC) after storage at various % relative humidities. Heckle analysis and compression pressure-radial tensile strength relationship were used to represent compression and compaction properties of feverfew extracts. An adapted analytical method was developed based on literature methods and then validated for the determination of parthenolide in feverfew. The commercial extracts tested exhibited poor to very poor flowability. The comparatively low mean yield pressure suggested that feverfew extracts deformed mainly plastically. Hygroscopicity and compactibility varied greatly with source. No commercial feverfew extracts tested contained the label claimed parthenolide. Even different batches from the same manufacturer showed significantly different parthenolide content. Therefore, extract manufactures should commit to proper quality control procedures that ensure accurate label claims, and supplement manufacturers should take into account possible differences in physico-chemical properties when using extracts from multiple suppliers.
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun
2003-03-01
Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.
Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf
2014-09-15
Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiarotto, Alessandro; Maxwell, Lara J; Terwee, Caroline B; Wells, George A; Tugwell, Peter; Ostelo, Raymond W
2016-10-01
Physical functioning is a core outcome domain to be measured in nonspecific low back pain (NSLBP). A panel of experts recommended the Roland-Morris Disability Questionnaire (RMDQ) and Oswestry Disability Index (ODI) to measure this domain. The original 24-item RMDQ and ODI 2.1a are recommended by their developers. The purpose of this study was to evaluate whether the 24-item RMDQ or the ODI 2.1a has better measurement properties than the other to measure physical functioning in adult patients with NSLBP. Bibliographic databases (MEDLINE, Embase, CINAHL, SportDiscus, PsycINFO, and Google Scholar), references of existing reviews, and citation tracking were the data sources. Two reviewers selected studies performing a head-to-head comparison of measurement properties (reliability, validity, and responsiveness) of the 2 questionnaires. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist was used to assess the methodological quality of these studies. The studies' characteristics and results were extracted by 2 reviewers. A meta-analysis was conducted when there was sufficient clinical and methodological homogeneity among studies. Nine articles were included, for a total of 11 studies assessing 5 measurement properties. All studies were classified as having poor or fair methodological quality. The ODI displayed better test-retest reliability and smaller measurement error, whereas the RMDQ presented better construct validity as a measure of physical functioning. There was conflicting evidence for both instruments regarding responsiveness and inconclusive evidence for internal consistency. The results of this review are not generalizable to all available versions of these questionnaires or to patients with specific causes for their LBP. Based on existing head-to-head comparison studies, there are no strong reasons to prefer 1 of these 2 instruments to measure physical functioning in patients with NSLBP, but studies of higher quality are needed to confirm this conclusion. Foremost, content, structural, and cross-cultural validity of these questionnaires in patients with NSLBP should be assessed and compared. © 2016 American Physical Therapy Association.
Perspectives on Current Issues Is ``Anthropic Selection'' Science?
NASA Astrophysics Data System (ADS)
Larson, Ronald G.
2007-01-01
I argue that there are strong reasons for resisting as a principle of science the concept of “anthropic selection.” This concept asserts that the existence of “observers” in a universe can be used as a condition that selects physical laws and constants necessary for intelligent life from different laws or physical constants prevailing in a vast number of other universes, to thereby explain why the properties of our universe are conducive to intelligent life. My reasons for limiting “anthropic selection” to the realm of speculation rather than permitting it to creep into mainstream science include our inability to estimate the probabilities of emergence of “observers” in a universe, the lack of testability through direct observation of the assumed high variability of the constants of nature, the lack of a clear definition of an “observer,” and the arbitrariness in how and to what questions anthropic selection is applied.
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
2000-05-01
The main purpose of this paper is to show that anticipation is not only a property of biosystems but is also a fundamental property of physical systems. In electromagnetism, the anticipation is related to the Lorentz transform. In this framework the anticipation is a strong anticipation because it is not based on a prediction from a model of the physical system but is embedded in the fundamental system. So, Robert Rosen's anticipatory systems deal with weak anticipation. Contrary to Robert Rosen's affirmation, anticipation is thus not a characteristic of living systems. Finality is implicitly embedded in any system and thus the final cause of Aristotle is implicitly embedded in any physical and biological systems, contrary to what Robert Rosen argued. This paper will review some incursive and hyperincursive systems giving rise to strong anticipation. Space-time incursive parabolic systems show non-local properties. Hyperincursive crisp systems are related to catastrophe theory. Finally it will be shown that incursive and hyperincursive anticipatory systems could model properties of biosystems like free will, game strategy, theorem creation, etc. Anticipation is not only related to predictions but to decisions: hyperincursive systems create multiple choices and a decision process selects one choice. So, anticipation is not a final goal, like in cybernetics and system science, but is a fundamental property of physical and biological systems.
Classification for Estuarine Ecosystems: A Review and Comparison of Selected Classification Schemes
Estuarine scientists have devoted considerable effort to classifying coastal, estuarine and marine environments and their watersheds, for a variety of purposes. These classifications group systems with similarities – most often in physical and hydrodynamic properties – in order ...
Clinical performance of amalgam as predicted by physical property tests.
Gale, E N; Osborne, J W
1980-01-01
For a number of years, dentistry has relied upon laboratory data to select and to certify the materials to be used in restorations. The data obtained from laboratory studies are used as criteria for clinical performance and also for sales promotion.
Novel analytical methods to assess the chemical and physical properties of liposomes.
Kothalawala, Nuwan; Mudalige, Thilak K; Sisco, Patrick; Linder, Sean W
2018-08-01
Liposomes are used in commercial pharmaceutical formulations (PFs) and dietary supplements (DSs) as a carrier vehicle to protect the active ingredient from degradation and to increase the half-life of the injectable. Even as the commercialization of liposomal products has rapidly increased, characterization methodologies to evaluate physical and chemical properties of the liposomal products have not been well-established. Herein we develop rapid methodologies to evaluate chemical and selected physical properties of liposomal formulations. Chemical properties of liposomes are determined by their lipid composition. The lipid composition is evaluated by first screening of the lipids present in the sample using HPLC-ELSD followed by HPLC-MSMS analysis with high mass accuracy (<5 ppm), fragmentation pattern and lipid structure databases searching. Physical properties such as particle size and size distribution were investigated using Tunable Resistive Pulse Sensing (TRPS). The developed methods were used to analyze commercially available PFs and DSs. As results, PFs contain distinct number of lipids as indicated by the manufacture, but DSs were more complicated containing a large number of lipids belonging to different sub-classes. Commercially available liposomes have particles with wide size distribution based on size measurements performed by TRPS. The high mass accuracy as well as identification lipids using multiple fragment ions aided to accurately identify the lipids and differentiate them from other lipophilic molecules. The developed analytical methodologies were successfully adapted to measure the physiochemical properties of commercial liposomes. Copyright © 2018. Published by Elsevier B.V.
Analytical fuel property effects--small combustors
NASA Technical Reports Server (NTRS)
Sutton, R. D.; Troth, D. L.; Miles, G. A.
1984-01-01
The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.
Research of footwear lining materials thermoconductive properties
NASA Astrophysics Data System (ADS)
Maksudova, U.; Ilkhamova, M.; Mirzayev, N.; Pazilova, D.
2017-11-01
Protective properties of footwear are influenced by a number of factors and the most important of them are: design features of the top and the bottom of the footwear, it’s shape, physical and mechanical properties of the components of which they are made. In course of work there were researched thermoconductive properties of different lining membrane materials used for production of high temperature protective footwear. Research results allow to select the appropriate materials by reference to thermoconductive properties during design of protective footwear for extreme conditions to prolong the wearer’s time of comfortable stay in conditions of exposure of elevated temperatures to a stack.
Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.
2011-01-01
The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water temperature, reservoir storage, reservoir elevation, specific conductance, dissolved oxygen, pH, unfiltered salinity, unfiltered total nitrogen, filtered total nitrogen, unfiltered nitrate plus nitrite, unfiltered phosphorus, filtered phosphorus, unfiltered carbon, carbon in suspended sediment, total hardness, unfiltered noncarbonate hardness, filtered noncarbonate hardness, unfiltered calcium, filtered calcium, unfiltered magnesium, filtered magnesium, unfiltered sodium, filtered sodium, unfiltered potassium, filtered potassium, filtered chloride, filtered sulfate, unfiltered fluoride, and filtered fluoride. When possible, USGS and Texas Commission on Environmental Quality water-quality properties and constituents were matched using the database parameter codes for individual physical properties and constituents, descriptions of each physical property or constituent, and their reporting units. This report presents a collection of delimited text files of source-aggregated, spatially pooled, depth-dependent, instantaneous water-quality data as well as instantaneous, daily, and monthly storage and elevation reservoir data.
Liagkouridis, Ioannis; Cousins, Anna Palm; Cousins, Ian T
2015-08-15
Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
Economic implications of implant selection.
DeFronzo, D J; Landsman, A S; Ghareeb, J A
1995-07-01
Numerous types of implantable biomaterials are available for a variety of applications. Although much has been written about the physical properties or biocompatibility issues, very few papers have focused on the economic feasibility of these materials. This article assesses financial factors associated with first metatarsophalangeal total joint prostheses.
Sorption-desorption of indaziflam in selected agricultural soils
USDA-ARS?s Scientific Manuscript database
Sorption and desorption of indaziflam in 6 soils from Brazil and 3 soils from the USA, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in a 24-h period. The Freundlich equa...
OBSERVATIONS OF ENANTIOSELECTIVITY IN THE FATE, PERSISTENCE AND EFFECTS OF MODERN PESTICIDES
Chiral pollutants exist as 2 (or more) species, -- enantiomers -- that are non-superimposable mirror images of each other. Enantiomers have identical physical and chemical properties except when they interact with enzymes or other chiral molecules; then they usually react select...
Chiral pollutants exist as 2 species, -- enantiomers - that have identical physical and chemical properties except when they interact with enzymes or other chiral molecules; then they usually react selectively. This enantioselectivity results in different rates of microbial trans...
Microbial degradation of Cold Lake Blend and Western Canadian Select Dilbits in Freshwater
Although there are different physical and chemical properties between conventional crude oils and diluted bitumen (dilbit) information on the biodegradation patterns of dilbit is scarce. To address this issue, treatability experiments were conducted with two types of dilbits at 5...
Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
Xie, Jin; Liao, Lei; Gong, Yongji; Li, Yanbin; Shi, Feifei; Pei, Allen; Sun, Jie; Zhang, Rufan; Kong, Biao; Subbaraman, Ram; Christensen, Jake; Cui, Yi
2017-01-01
Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formation during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. The protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte. PMID:29202031
Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jin; Liao, Lei; Gong, Yongji
Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less
Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
Xie, Jin; Liao, Lei; Gong, Yongji; ...
2017-11-29
Defects are important features in two-dimensional (2D) materials that have a strong influence on their chemical and physical properties. Through the enhanced chemical reactivity at defect sites (point defects, line defects, etc.), one can selectively functionalize 2D materials via chemical reactions and thereby tune their physical properties. We demonstrate the selective atomic layer deposition of LiF on defect sites of h-BN prepared by chemical vapor deposition. The LiF deposits primarily on the line and point defects of h-BN, thereby creating seams that hold the h-BN crystallites together. The chemically and mechanically stable hybrid LiF/h-BN film successfully suppresses lithium dendrite formationmore » during both the initial electrochemical deposition onto a copper foil and the subsequent cycling. In conclusion, the protected lithium electrodes exhibit good cycling behavior with more than 300 cycles at relatively high coulombic efficiency (>95%) in an additive-free carbonate electrolyte.« less
NASA Astrophysics Data System (ADS)
Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain
2017-12-01
Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.
Electron Correlation and Tranport Properties in Nuclear Fuel Materials
NASA Astrophysics Data System (ADS)
Yin, Quan; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey; Pickett, Warren
2011-03-01
Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. Our results capture the metal--insulator Mott transition within the studied systems, and the appearance of the Zhang-Rice state in uranium dioxide. More importantly, by understanding the physics underlying their transport properties, we suggest ways to improve the efficiency of currently used fuels. This work is supported by the DOE Nuclear Energy University Program, contract No. 00088708.
Foam generator and viscometer apparatus and process
Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.
2004-10-26
An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.
Magos, L
1991-01-01
The carcinogenic properties of selected metals and their compounds are reviewed to provide a useful reference for existing knowledge on relationships between physical and chemical forms, kinetics and carcinogenic potential and between epidemiology, bioassays, and short-term tests. Extensive consideration is given to arsenic, beryllium, cadmium, chromium, lead, and nickel. Other metals such as antimony, cobalt, copper, iron, manganese, selenium, and zinc are discussed briefly. PMID:1821370
Long-term influence of physical aging processes in epoxy matrix composites
NASA Technical Reports Server (NTRS)
Kong, E. S. W.
1981-01-01
Selected mechanical properties of (plus or minus 45 degree sub 4s) graphite/epoxy composites were found to be affected by sub T sub g annealing. Postcured specimens of Thornel 300 graphite/Narmco 5208 epoxy were sub T sub G annealed at 413 K (140 C) for ca. 10 to the first through 10 to the fifth powers min., with a prior quenching from above T sub g. The ultimate tensile strength, strain-to-break, and toughness of the composite were found to decrease as a function of sub T sub g annealing time. The time-dependent change in properties can be explained on the basis of physical aging which is related to free volume changes in the non-equilibrium glassy state of network epoxies. The results imply possible changes in composite properties with service time.
You are what you choose to eat: factors influencing young adults' food selection behaviour.
Hebden, L; Chan, H N; Louie, J C; Rangan, A; Allman-Farinelli, M
2015-08-01
Young or 'emerging' adulthood (ages 18-24 years) is a life-stage characterised by rapid weight gain, particularly among those born in recent decades, when environments have become saturated with cheap, highly palatable, processed foods. Although intervening in the immediate food environments of emerging adults is indicated, little is known about the factors influencing their food selection. The present study aimed to: (i) measure the relative importance of different influences on foods selected by emerging adults for consumption from a tertiary education setting and (ii) examine whether these influences differ according to gender, adiposity status, perceived stress and dieting or physical activity behaviours. An online survey was administered with 112 emerging adults aged 19-24 years assessing demographics, perceived stress, dieting, physical activity and influences on food selection. Adiposity indicators (body mass index and waist circumference) were measured. Analyses compared the importance of influences on food selection by gender, adiposity, perceived stress, dieting and physical activity. Taste was the most important influence on food selection, followed by convenience (availability), cost, nutrition/health value, smell and stimulatory properties (alertness). Participants with an elevated waist circumference selected foods to help them cope with stress and control their weight. Those reporting a higher level of physical activity placed greater importance on nutritional/health value of foods but less importance on taste. Female dieters also placed less importance on taste and value for money. Health promotion strategies addressing tertiary education food environments of emerging adults should ensure the ready availability of tasty and nutritious foods at a low cost. © 2015 The British Dietetic Association Ltd.
NASA Astrophysics Data System (ADS)
Wang, Yanjie; Zhu, Zicai; Chen, Hualing; Luo, Bin; Chang, Longfei; Wang, Yongquan; Li, Dichen
2014-12-01
The electromechanical properties of ionic polymer-metal composites (IPMC) are affected by many factors, including resistivity of surface electrodes, bending stiffness and dielectric modulus, etc, which are closely related to physical and chemical preparation steps. This paper focuses on the effects of preparation steps on these physical parameters and electromechanical properties of IPMC actuators. The mechanisms of electrode formation in the preparation steps are also clarified and investigated. To obtain samples with different features, one or more of the crucial process steps, including pretreatment, impregnation-reduction and chemical plating, were selected to fabricate IPMC. The experimental observations revealed that the physical parameters of IPMC strongly depend on their electrode morphologies caused by different steps, which were reasonable from the standpoint of physics. IPMC with the characteristics of low surface resistance and low bending stiffness, and a large area of interface electrode exhibits a perfect performance. The improvements were considered to be attributed to the double-layer electrostatic effect, induced by the broad dispersion of penetrated electrode nanoparticles. An electrical component, consisting of an equivalent circuit of a parallel combination of the serial circuit of the resistance and the electric double-layer capacitance, is introduced to qualitatively explain the deformation behaviors of IPMC. This research helps to improve the preparation steps and promote the understanding of IPMC.
On the Usefulness of Hydrologic Landscapes on Hydrologic Model calibration and Selection
Hydrologic Landscapes (HLs) are units that can be used in aggregate to describe the watershed-scale hydrologic response of an area through use of physical and climatic properties. The HL assessment unit is a useful classification tool to relate and transfer hydrologically meaning...
Effect of binder liquid type on spherical crystallization.
Maghsoodi, Maryam; Hajipour, Ali
2014-11-01
Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.
Martinez, Adam W; Caves, Jeffrey M; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L
2014-01-01
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
MP3C - the Minor Planet Physical Properties Catalogue: a New VO Service For Multi-database Query
NASA Astrophysics Data System (ADS)
Tanga, Paolo; Delbo, M.; Gerakis, J.
2013-10-01
In the last few years we witnessed a large growth in the number of asteroids for which we have physical properties. However, these data are dispersed in a multiplicity of catalogs. Extracting data and combining them for further analysis requires custom tools, a situation further complicated by the variety of data sources, some of them standardized (Planetary Data System) others not. With these problems in mind, we created a new Virtual Observatory service named “Minor Planet Physical Properties Catalogue” (abbreviated as MP3C - http://mp3c.oca.eu/). MP3C is not a new database, but rather a portal allowing the user to access selected properties of objects by easy SQL query, even from different sources. At present, such diverse data as orbital parameters, photometric and light curve parameters, sizes and albedos derived by IRAS, AKARI and WISE, SDSS colors, SMASS taxonomy, family membership, satellite data, stellar occultation results, are included. Other data sources will be added in the near future. The physical properties output of the MP3C can be tuned by the users by query criteria based upon ranges of values of the ingested quantities. The resulting list of object can be used for interactive plots through standard VO tools such as TOPCAT. Also, their ephemerids and visibilities from given sites can be computed. We are targeting full VO compliance for providing a new standardized service to the community.
Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla
2015-04-28
Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples weremore » different.« less
The PEACE project review of clinical instruments for hospice and palliative care.
Hanson, Laura C; Scheunemann, Leslie P; Zimmerman, Sheryl; Rokoske, Franziska S; Schenck, Anna P
2010-10-01
Hospice and palliative care organizations are expanding their use of standardized instruments and other approaches to measure quality. We undertook a systematic review and evaluation of published patient-level instruments for potential application in hospice and palliative care clinical quality measurement. We searched prior reviews and computerized reference databases from 1990 through February 2007 for studies of instruments relevant to physical, psychological, social, cultural, spiritual, or ethical aspects of palliative care, or measuring prognosis, function or continuity of care. Publications were selected for full review if they provided evidence of psychometric properties or practical application of an instrument tested in or appropriate for a hospice or palliative care population. Selected instruments were evaluated and scored for scientific soundness and potential application in clinical quality measurement. The search found 1427 publications, with 229 selected for full manuscript review. Manuscripts provided information on 129 instruments which were evaluated using a structured scoring guide for psychometric properties. Thirty-nine instruments scoring near or above the 75th percentile were recommended. Most instruments covered multiple domains or focused on care for physical symptoms, psychological or social aspects of care. Few instruments were available to measure cultural aspects of care, structure and process of care, and continuity of care. Numerous patient-level instruments are available to measure physical, psychological and social aspects of palliative care with adequate evidence for scientific soundness and practical clinical use for quality improvement and research. Other aspects of palliative care may benefit from further instrument development research.
Martins, Júlia Caetano; Aguiar, Larissa Tavares; Nadeau, Sylvie; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais
2017-01-01
Introduction Self-report physical activity assessment tools are commonly used for the evaluation of physical activity levels in individuals with stroke. A great variety of these tools have been developed and widely used in recent years, which justify the need to examine their measurement properties and clinical utility. Therefore, the main objectives of this systematic review are to examine the measurement properties and clinical utility of self-report measures of physical activity and discuss the strengths and limitations of the identified tools. Methods and analysis A systematic review of studies that investigated the measurement properties and/or clinical utility of self-report physical activity assessment tools in stroke will be conducted. Electronic searches will be performed in five databases: Medical Literature Analysis and Retrieval System Online (MEDLINE) (PubMed), Excerpta Medica Database (EMBASE), Physiotherapy Evidence Database (PEDro), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Scientific Electronic Library Online (SciELO), followed by hand searches of the reference lists of the included studies. Two independent reviewers will screen all retrieve titles, abstracts, and full texts, according to the inclusion criteria and will also extract the data. A third reviewer will be referred to solve any disagreement. A descriptive summary of the included studies will contain the design, participants, as well as the characteristics, measurement properties, and clinical utility of the self-report tools. The methodological quality of the studies will be evaluated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and the clinical utility of the identified tools will be assessed considering predefined criteria. This systematic review will follow the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. Discussion This systematic review will provide an extensive review of the measurement properties and clinical utility of self-report physical activity assessment tools used in individuals with stroke, which would benefit clinicians and researchers. Trial registration number PROSPERO CRD42016037146. PMID:28193848
Exploring warm dense matter using quantum molecular dynamics
NASA Astrophysics Data System (ADS)
Clérouin, J.; Mazevet, S.
2006-06-01
For dense plasmas produced in shock experiments, the influence of the media on the isolated atomic properties can no longer be treated as a perturbation and conventional atomic physics approaches usually fail. Recently, quantum molecular dynamics (QMD) has been used to successfully predict static, dynamical and optical properties in this regime within the framework of a first principle method. In this short report, we illustrate the usefulness of the method for dense plasmas with a few selected examples: the equation of state of liquid deuterium, the electrical properties of expanded metals, the optical properties of shocked insulators, and the interaction of femto-second lasers with gold thin films.
Covariate selection with iterative principal component analysis for predicting physical
USDA-ARS?s Scientific Manuscript database
Local and regional soil data can be improved by coupling new digital soil mapping techniques with high resolution remote sensing products to quantify both spatial and absolute variation of soil properties. The objective of this research was to advance data-driven digital soil mapping techniques for ...
NASA Astrophysics Data System (ADS)
Bokiy, IB; Zoteev, OV; Pul, VV; Pul, EK
2018-03-01
The influence of structural features on the strength and elasticity modulus is studied in rock mass in the area of Mirny Mining and Processing Works. The authors make recommendations on the values of physical properties of rocks.
VizieR Online Data Catalog: LVL SEDs and physical properties (Cook+, 2014)
NASA Astrophysics Data System (ADS)
Cook, D. O.; Dale, D. A.; Johnson, B. D.; van Zee, L.; Lee, J. C.; Kennicutt, R. C.; Calzetti, D.; Staudaher, S. M.; Engelbracht, C. W.
2015-05-01
The LVL sample consists of 258 of our nearest galaxy neighbours reflecting a statistically complete, representative sample of the local Universe. The sample selection and description are detailed in Dale et al. (2009ApJ...703..517D, Cat. J/ApJ/703/517). (1 data file).
DOT National Transportation Integrated Search
2013-12-01
The Kansas Department of Transportation (KDOT) has controlled harmful alkali-silica reactions (ASR) : through testing and selective use of sand and gravel aggregates for more than 70 years. ASR can also be : controlled through the addition of a non-r...
Robinson, Karen A; Davis, Wesley E; Dinglas, Victor D; Mendez-Tellez, Pedro A; Rabiee, Anahita; Sukrithan, Vineeth; Yalamanchilli, Ramakrishna; Turnbull, Alison E; Needham, Dale M
2017-02-01
There is a growing number of studies evaluating the physical, cognitive, mental health, and health-related quality of life (HRQOL) outcomes of adults surviving critical illness. However, there is little consensus on the most appropriate instruments to measure these outcomes. To inform the development of such consensus, we conducted a systematic review of the performance characteristics of instruments measuring physical, cognitive, mental health, and HRQOL outcomes in adult intensive care unit (ICU) survivors. We searched PubMed, Embase, PsycInfo, Cumulative Index of Nursing and Allied Health Literature, and The Cochrane Library in March 2015. We also conducted manual searches of reference lists of eligible studies and relevant review articles. Two people independently selected studies, completed data abstraction, and assessed the quality of eligible studies using the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) initiative checklist. We identified 20 studies which explicitly evaluated measurement properties for 21 different instruments assessing outcomes in ICU survivors. Eleven of the instruments assessed quality of life, with few instruments assessing other domains. Of the nine measurement properties evaluated on the COSMIN checklist, six were assessed in <10% of the evaluations. Overall quality of eligible studies was generally poor to fair based on the COSMIN checklist. Although an increasing number of studies measure physical, cognitive, mental health, and HRQOL outcomes in adult ICU survivors, data on the measurement properties of such instruments are sparse and generally of poor to fair quality. Empirical analyses evaluating the performance of instruments in adult ICU survivors are needed to advance research in this field. Copyright © 2016 Elsevier Inc. All rights reserved.
Peles, Zachi; Zilberman, Meital
2012-01-01
Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand
NASA Astrophysics Data System (ADS)
Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.
2014-11-01
Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
Armellini, R; Peinado, I; Pittia, P; Scampicchio, M; Heredia, A; Andres, A
2018-07-15
Saffron, used in cookery as a flavouring and colouring agent, is well-known for its antioxidant and beneficial health properties. In the present work, the effect of saffron addition (0-control, 0.1, 0.2 and 0.4%, w/w) in the formulation of fresh pasta was evaluated on textural, physical-chemical, and sensory properties of the cooked product. Content and retention of the bioactive molecules of saffron (crocins) were evaluated by HPLC along with the corresponding antioxidant activity of enriched pasta. The presence of saffron significantly influenced textural and physical-chemical properties of pasta. Higher saffron concentrations enhanced the antioxidant activity of pasta with the higher values of crocins in samples enriched with 0.4% saffron extract even after 3 min of cooking (4.23-5.06 mg/g db). Sensory analysis showed an increased acceptability of the saffron enriched pasta for all descriptors selected (visual aspect, colour, aroma, taste, chewiness, hardness, gumminess and overall acceptability). Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fonseca, Felícia; de Figueiredo, Tomás; Leite, Micaela
2014-05-01
Human induced fire in scrublands to obtain better pastures for cattle is a relatively common practice in North Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties. Aiming at evaluating the effect of this kind of fires on a set of physical and chemical soil properties, two study areas were selected in contrasting mountain environments: Edroso, Vinhais municipality, NE Portugal, with typical Mediterranean climate, and Revelhe, Fafe, NW Portugal, with a strong ocean-influenced climate. In both, sampling was carried out in contiguous areas burnt and not burnt, covered by shrub vegetation, predominantly Cytisus multiflorus and Ulex europeus. In each study area (Edroso and Revelhe) 16 locations were selected for soil sampling (8 in the burned area and 8 in the not burnt area), six months after fire occurrence. Disturbed soil samples were collected in the layers 0-5, 5-10, 10-15, 15-20 and 20-30 cm depth, for assessing organic matter, N, P and K concentration, cation exchange capacity and related determinations, soil pH, electrical conductivity and soil texture. Undisturbed samples were collected, in 100 cm3 cylinders, to determine bulk density in the same above mentioned layers, and permeability in the 0-5 cm layer. Compared results of burnt and not burnt areas in Edroso and Revelhe study sites, show that coarse elements content and permeability decreased and bulk density slightly increased with the fire effect. Chemical properties in both sites changed with after fire, as organic matter content, exchangeable Al and cation exchange capacity increased, the opposite trend being found for phosphorus, sum of exchangeable bases and electrical conductivity. Potassium, total nitrogen and exchangeable acidity showed different soil responses to fire in the two study areas. Results stress the clear effects of fire on fertility related soil properties, not only chemical but also physical, which is decisive for the post-fire recover of burnt shrub communities, in terms of vegetation and soil functions in these marginal mountain environments.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2013-02-01
The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.
Chiwaridzo, Matthew; Ferguson, Gillian D; Smits-Engelsman, Bouwien C M
2016-07-27
Scientific focus on rugby has increased over the recent years, providing evidence of the physical or physiological characteristics and game-specific skills needed in the sport. Identification of tests commonly used to measure these characteristics is important for the development of test batteries, which in turn may be used for talent identification and injury prevention programmes. Although there are a number of tests available in the literature to measure physical or physiological variables and game-specific skills, there is limited information available on the psychometric properties of the tests. Therefore, the purpose of this study is to systematically review the literature for tests commonly used in rugby to measure physical or physiological characteristics and rugby-specific skills, documenting evidence of reliability and validity of the identified tests. A systematic review will be conducted. Electronic databases such as Scopus, MEDLINE via EBSCOhost and PubMed, Academic Search Premier, CINAHL and Africa-Wide Information via EBSCOhost will be searched for original research articles published in English from January 1, 1995, to December 31, 2015, using a pre-defined search strategy. The principal investigator will select potentially relevant articles from titles and abstracts. To minimise bias, full text of titles and abstracts deemed potentially relevant will be retrieved and reviewed by two independent reviewers based on the inclusion criteria. Data extraction will be conducted by the principal investigator and verified by two independent reviewers. The Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) checklist will be used to assess the methodological quality of the selected studies. Choosing an appropriate test to be included in the screening test battery should be based on sound psychometric properties of the test available. This systematic review will provide an overview of the tests commonly used in rugby union and other related high intermittent team sports characterised by skill executions using the hands and legs such as Rugby League and Australian Rules Football. In addition, the review will highlight the psychometric properties of the identified tests. This information is crucial in developing a sport-specific test battery which can be used for talent identification, especially among young adolescent players, and injury prevention programmes. PROSPERO CRD42015029747.
Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry.
Tao, Jianmin; Mo, Yuxiang
2016-08-12
Most density functionals have been developed by imposing the known exact constraints on the exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However, accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization of the hole. Making use of the property that the hole can be made localized under a general coordinate transformation, here we derive an exchange hole from the density matrix expansion, while the correlation part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-correlation functional is calculated. Our comprehensive test shows that this functional can achieve remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their associated holes are physically appealing and practically useful for developing nonlocal functionals.
Classification of adulterated honeys by multivariate analysis.
Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad
2017-06-01
In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission
NASA Astrophysics Data System (ADS)
Pentericci, L.; Grazian, A.; Scarlata, C.; Fontana, A.; Castellano, M.; Giallongo, E.; Vanzella, E.
2010-05-01
Aims: We investigate the physical and morphological properties of Lyman break galaxies (LBGs) at redshift ~2.5 to ~3.5, to determine if and how they depend on the nature and strength of the Lyα emission. Methods: We selected U-dropout galaxies from the z-detected GOODS-MUSIC catalog by adapting the classical Lyman break criteria on the GOODS filter set. We kept only those galaxies with spectroscopic confirmation, mainly from VIMOS and FORS public observations. Using the full multi-wavelength 14-bands information (U to IRAC), we determined the physical properties of the galaxies through a standard spectral energy distribution fitting procedure with the updated Charlot & Bruzual (2009) templates. We also added other relevant observations of the GOODS field, i.e. the 24 μm observations from Spitzer/MIPS and the 2 MSec Chandra X-ray observations. Finally, using non parametric diagnostics (Gini, Concentration, Asymmetry, M20 and ellipticity), we characterized the rest-frame UV morphologies of the galaxies. We then analyzed how these physical and morphological properties correlate with the presence of the Lyα emission line in the optical spectra. Results: We find that unlike at higher redshift, the dependence of physical properties on the Lyα line is milder: galaxies without Lyα in emission tend to be more massive and dustier than the rest of the sample, but all other parameters, ages, star formation rates (SFR), X-ray emission and UV morphology do not depend strongly on the presence of the Lyα emission. A simple scenario where all LBGs have intrinsically high Lyα emission, but where the dust and neutral hydrogen content (which shapes the final appearance of the Lyα) depend on the mass of the galaxies, is able to reproduce the majority of the observed properties at z˜3. Some modification might be needed to account for the observed evolution of these properties with cosmic epoch, which is also discussed.
Selected physical properties of various diesel blends
NASA Astrophysics Data System (ADS)
Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika
2018-01-01
The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.
The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture
Park, Il Song; Kim, Keun Sik; Lee, Min Ho
2013-01-01
The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition. PMID:24078827
Kim, Yu Kyoung; Park, Il Song; Kim, Keun Sik; Lee, Min Ho
2013-01-01
The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.
The nature of crater rays - The Copernicus example
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Adams, J. B.; Smith, M. O.; Mouginis-Mark, P. J.; Zisk, S. H.
1985-01-01
It is pointed out that crater rays are filamentous, generally high-albedo features which emanate nearly radially from young impact structures. An investigation has been conducted of the physical and chemical properties of a single lunar ray system for Copernicus crater with the objective to achieve a better understanding of the nature of crater rays, taking into account questions regarding the local or foreign origin of ray material. A combination of data is considered, giving attention to spectral reflectance (for composition), radar (for physical properties), and images (for photogeologic context). The crater Copernicus was selected because of its well-developed ray system, the crater's relative youth, and the compositional contrast between the target material of Copernicus crater and the material on which many rays were emplaced.
Physical characterization of whole and skim dried milk powders.
Pugliese, Alessandro; Cabassi, Giovanni; Chiavaro, Emma; Paciulli, Maria; Carini, Eleonora; Mucchetti, Germano
2017-10-01
The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m 3 ). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness ( L *) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness ( b *) and lower greenness (- a *). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.
NASA Astrophysics Data System (ADS)
Firdhaus Che Hassan, Muhammad; Rosli, Mohd Uzair Mohd; Redzuan, Muhammad Afiq Mohd
2018-05-01
Badminton is one of the leading sports in the world. It has its own set of rules on the equipments used and general game play. One of the main equipment used is the badminton racket. Each sections of a badminton racket have its own design requirements and one of it is the racket’s material selection. Therefore, material selection is very important to improve the usage of a badminton racket. This study describes the use of the Elimination and Choice Expressing Reality (ELECTRE) method in the material selection of a badminton racket frame with reference to the sustainable manufacturing practice of the frame. By categorizing the materials of the badminton racket frame according to mechanical, physical, chemical and environmental properties, and further detailed sub criteria were set according to the usage of these frames, the ELECTRE I method was used to determine the dominant material. Out of the six materials usually used in the manufacturing of a badminton racket frame, carbon fibre was the dominant material selected from three out of the four properties which are the mechanical, chemical and most importantly the environmental properties, as to comply with the sustainable manufacturing practice of these frames.
Variance fluctuations in nonstationary time series: a comparative study of music genres
NASA Astrophysics Data System (ADS)
Jennings, Heather D.; Ivanov, Plamen Ch.; De Martins, Allan M.; da Silva, P. C.; Viswanathan, G. M.
2004-05-01
An important problem in physics concerns the analysis of audio time series generated by transduced acoustic phenomena. Here, we develop a new method to quantify the scaling properties of the local variance of nonstationary time series. We apply this technique to analyze audio signals obtained from selected genres of music. We find quantitative differences in the correlation properties of high art music, popular music, and dance music. We discuss the relevance of these objective findings in relation to the subjective experience of music.
Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ
NASA Astrophysics Data System (ADS)
Pikalova, E. Yu.; Medvedev, D. A.; Khasanov, A. F.
2017-04-01
Ca-substituted layered nickelates with a general Pr2- x Ca x NiO4 + δ composition ( x = 0-0.7, Δ x = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2- x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general "properties-composition" dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.
Kaiser, Mohammad Rejaul; Chou, Shulei; Liu, Hua-Kun; Dou, Shi-Xue; Wang, Chunsheng; Wang, Jiazhao
2017-12-01
Electrolytes, which are a key component in electrochemical devices, transport ions between the sulfur/carbon composite cathode and the lithium anode in lithium-sulfur batteries (LSBs). The performance of a LSB mostly depends on the electrolyte due to the dissolution of polysulfides into the electrolyte, along with the formation of a solid-electrolyte interphase. The selection of the electrolyte and its functionality during charging and discharging is intricate and involves multiple reactions and processes. The selection of the proper electrolyte, including solvents and salts, for LSBs strongly depends on its physical and chemical properties, which is heavily controlled by its molecular structure. In this review, the fundamental properties of organic electrolytes for LSBs are presented, and an attempt is made to determine the relationship between the molecular structure and the properties of common organic electrolytes, along with their effects on the LSB performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Density functional theory in materials science.
Neugebauer, Jörg; Hickel, Tilmann
2013-09-01
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
Mechanical and physical properties of AlSi10Mg processed through selective laser melting
NASA Astrophysics Data System (ADS)
Raus, A. A.; Wahab, M. S.; Ibrahim, M.; Kamarudin, K.; Ahmed, Aqeel; Shamsudin, S.
2017-04-01
In the past few decade, Additive Manufacturing (AM) has become popular and substantial to manufacture direct functional parts in varieties industrial applications even in very challenging like aerospace, medical and manufacturing sectors. Selective Laser Melting (SLM) is one of the most efficient technique in the additive Manufacturing (AM) which able to manufacture metal component directly from Computer Aided Design (CAD) file data. Accuracy, mechanical and physical properties are essentials requirement in order to meet the demand of those engineering components. In this paper, the mechanical properties of SLM manufactured AlSi10Mg samples such as hardness, tensile strength, and impact toughness are investigated and compared to conventionally high pressure die cast A360 alloy. The results exposed that the hardness and the yield strength of AlSi10Mg samples by SLM were increased by 42% and 31% respectively to those of conventionally high pressure die cast A360 alloy even though without comprehensive post processing methods. It is also discovered that AlSi10Mg parts fabricated by SLM achieved the highest density of 99.13% at the best setting parameters from a previous study of 350 watts laser power, 1650 mm/s scanning speed and hatching distance 0.13 mm.
PETher - Physical Properties of Thermal Water under In-situ-Conditions
NASA Astrophysics Data System (ADS)
Herfurth, Sarah; Schröder, Elisabeth
2016-04-01
The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically designed in-house to meet any geothermal reservoir conditions present in Germany. The obtained results will be compared with standard analytical methods as well as used to calibrate laboratory measurements that simulate the encountered in-situ conditions. A series of measurements will be performed to create a data base. In addition, these data can be used as reference data for developing and validating numerical models. In-situ measurements - in contrast to laboratory measurements - record the data online and instantaneously during normal operation of the plant and without changing the properties of the investigated fluid (pressure, temperature, etc.). Due to this, the uncertainties in the thermo-physical properties caused by degassing and precipitation are studiously avoided. As a result, the thermo-physical properties density, specific isobaric heat capacity, kinematic viscosity and thermal conductivity have been measured as functions of the geothermal water temperature, pressure and salinity at five sites, up to now. The measurements show that the thermo-physical properties correlate strongly with the salinity and therefore differ considerably from pure water values when a significant salt content is present.
Ultrapermeable, reverse-selective nanocomposite membranes.
Merkel, T C; Freeman, B D; Spontak, R J; He, Z; Pinnau, I; Meakin, P; Hill, A J
2002-04-19
Polymer nanocomposites continue to receive tremendous attention for application in areas such as microelectronics, organic batteries, optics, and catalysis. We have discovered that physical dispersion of nonporous, nanoscale, fumed silica particles in glassy amorphous poly(4-methyl-2-pentyne) simultaneously and surprisingly enhances both membrane permeability and selectivity for large organic molecules over small permanent gases. These highly unusual property enhancements, in contrast to results obtained in conventional filled polymer systems, reflect fumed silica-induced disruption of polymer chain packing and an accompanying subtle increase in the size of free volume elements through which molecular transport occurs, as discerned by positron annihilation lifetime spectroscopy. Such nanoscale hybridization represents an innovative means to tune the separation properties of glassy polymeric media through systematic manipulation of molecular packing.
Utilization of Chinese tallow tree and bagasse for medium density fiberboard
Sangyeob Lee; Todd F. Shupe; Chung Y. Hse
2004-01-01
The objective of this research was to investigate various adhesive systems and determine the best composite formulation for selected mechanical and physical properties of medium density fiberboard (MDF) made from wood and bagasse fibers. This study investigated opportunities ofbiomass utilization for natural fiber-based composites from agricultural (bagasse) and...
Development of end-selective functionalized carbon nanotubes for biomedical applications
NASA Astrophysics Data System (ADS)
Lee, Seung Ho; Kim, Wan Sun; Lee, Ha Rim; Park, Kyu Chang; Lee, Chang Hoon; Park, Hun Kuk; Kim, Kyung Sook
2015-12-01
Carbon nanotube (CNT) is a type of carbon allotrope with excellent physical and electrical properties, including high thermal conductivity, mechanical strength, and thermal stability. Therefore, applications of CNT have been considered for a variety of fields, including biosensors, molecular electronics, X-ray, and fuel cells. However, the application of CNT to biomedicine is limited because this material is cytotoxic and inhomogeneous. In particular, the irregularity in the structural properties of paste or bundle-type CNTs causes an uncontrolled modification in biomolecules. Therefore, using CNT as biosensors to obtain quantitative analyses is difficult. In this study, we developed a new method to perform end-selective functionalization of CNT in order to enable quantitative analysis for biomedical applications. The process was as follows: (1) etching the tip of vertically-aligned CNTs under optimum conditions, (2) oxidation of exposed CNTs, and (3) end-selective linkage of functionalized CNTs with biomolecules (dsDNA).
Micro- and macrorheology of mucus.
Lai, Samuel K; Wang, Ying-Ying; Wirtz, Denis; Hanes, Justin
2009-02-27
Mucus is a complex biological material that lubricates and protects the human lungs, gastrointestinal (GI) tract, vagina, eyes, and other moist mucosal surfaces. Mucus serves as a physical barrier against foreign particles, including toxins, pathogens, and environmental ultrafine particles, while allowing rapid passage of selected gases, ions, nutrients, and many proteins. Its selective barrier properties are precisely regulated at the biochemical level across vastly different length scales. At the macroscale, mucus behaves as a non-Newtonian gel, distinguished from classical solids and liquids by its response to shear rate and shear stress, while, at the nanoscale, it behaves as a low viscosity fluid. Advances in the rheological characterization of mucus from the macroscopic to nanoscopic levels have contributed critical understanding to mucus physiology, disease pathology, and the development of drug delivery systems designed for use at mucosal surfaces. This article reviews the biochemistry that governs mucus rheology, the macro- and microrheology of human and laboratory animal mucus, rheological techniques applied to mucus, and the importance of an improved understanding of the physical properties of mucus to advancing the field of drug and gene delivery.
Micro- and macrorheology of mucus
Lai, Samuel K.; Wang, Ying-Ying; Wirtz, Denis; Hanes, Justin
2009-01-01
Mucus is a complex biological material that lubricates and protects the human lungs, gastrointestinal (GI) tract, vagina, eyes, and other moist mucosal surfaces. Mucus serves as a physical barrier against foreign particles, including toxins, pathogens, and environmental ultrafine particles, while allowing rapid passage of selected gases, ions, nutrients, and many proteins. Its selective barrier properties are precisely regulated at the biochemical level across vastly different length scales. At the macroscale, mucus behaves as a non-Newtonian gel, distinguished from classical solids and liquids by its response to shear rate and shear stress, while, at the nanoscale, it behaves as a low viscosity fluid. Advances in the rheological characterization of mucus from the macroscopic to nanoscopic levels have contributed critical understanding to mucus physiology, disease pathology, and the development of drug delivery systems designed for use at mucosal surfaces. This article reviews the biochemistry that governs mucus rheology, the macro- and microrheology of human and laboratory animal mucus, rheological techniques applied to mucus, and the importance of an improved understanding of the physical properties of mucus to advancing the field of drug and gene delivery. PMID:19166889
Itthivadhanapong, Pimchada; Jantathai, Srinual; Schleining, Gerhard
2016-06-01
This study aimed to compare the effects of 1 % addition of four selected hydrocolloids (xanthan, guar, hypdroxypropylmethylcellulose and carrageenan) on quality characteristics of batter and of black waxy rice steamed cake compared to a control without hydrocolloids. Dynamic frequency sweeps of the batters at 25 °C indicated that all formulations exhibited gel-like behaviour with storage moduli (G') higher than loss moduli (G″). Hydrocolloids increased the apparent viscosity and the thixotropic behaviour, depending on the type of hydrocolloids. Xanthan had the greatest effects on both moduli, whereas carrageenan had the smallest effects. During a storage period of 4 days the cakes with xanthan remained softer than control samples. The overall acceptability of cake with xanthan and guar were higher than control. This study is the first report on using black waxy rice flour as a main raw material in gluten free cake. The results of this study provided useful information for selection hydrocolloids as ingredients that can help to improve the physical properties of waxy rice steamed cake.
NASA Astrophysics Data System (ADS)
Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.
2009-04-01
We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and β-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil samples by land use, but were unable to group correctly the 100% of the samples. Surprisingly, when the scarce variance presents in components 5 to 40 was also used, the 100% of the samples were grouped by land use, as it was observed with PLFAs. But PLFAs analysis is expensive and time-consuming (some weeks). In contrast, only some minutes are needed for the obtainment of the NIR spectra. Additionally, no chemicals are need, decreasing the costs. The NIR spectrum of a soil contains relevant information about physical, chemical and biochemical properties. NIR spectrum could be considered as an integrated vision of soil quality, and as consequence offers an integrated vision of perturbations. Thus, NIR spectroscopy could be used as tool to monitoring soil quality in large areas. Acknowledgements: Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPRO"
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.
2016-04-01
Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.
Long-term leisure time physical activity and properties of bone: a twin study.
Ma, Hongqiang; Leskinen, Tuija; Alen, Markku; Cheng, Sulin; Sipilä, Sarianna; Heinonen, Ari; Kaprio, Jaakko; Suominen, Harri; Kujala, Urho M
2009-08-01
Effects of physical activity on bone properties, when controlled for genetic effects, are not fully understood. We aimed to study the association between long-term leisure time physical activity (LTPA) and bone properties using twin pairs known to be discordant for leisure time physical activity for at least 30 yr. Volumetric BMD and geometric properties were measured at the tibia shaft and distal end using pQCT in 16 middle-aged (50-74 yr) same-sex twin pairs (seven monozygotic [MZ] and nine dizygotic [DZ] pairs) selected from a population-based cohort. Paired differences between active and inactive co-twins were studied. Active members of MZ twin pairs had larger cortical bone cross-sectional area (intrapair difference: 8%, p = 0.006), thicker cortex (12%, p = 0.003), and greater moment of inertia (I(max), 20%, p = 0.024) at the tibia shaft than their inactive co-twins. At the distal tibia, trabecular BMD (12%, p = 0.050) and compressive strength index (18%, p = 0.038) were also higher in physically active MZ pair members than their inactive co-twins. The trends were similar, but less consistently so, in DZ pairs as in MZ pairs. Our genetically controlled study design shows that LTPA during adulthood strengthens bones in a site-specific manner, that is, the long bone shaft has a thicker cortex, and thus higher bending strength, whereas the distal bone has higher trabecular density and compressive strength. These results suggest that LTPA has a potential causal role in decreasing the long-term risk of osteoporosis and thus preventing osteoporotic fractures.
Dobson, F; Hinman, R S; Hall, M; Terwee, C B; Roos, E M; Bennell, K L
2012-12-01
To systematically review the measurement properties of performance-based measures to assess physical function in people with hip and/or knee osteoarthritis (OA). Electronic searches were performed in MEDLINE, CINAHL, Embase, and PsycINFO up to the end of June 2012. Two reviewers independently rated measurement properties using the consensus-based standards for the selection of health status measurement instrument (COSMIN). "Best evidence synthesis" was made using COSMIN outcomes and the quality of findings. Twenty-four out of 1792 publications were eligible for inclusion. Twenty-one performance-based measures were evaluated including 15 single-activity measures and six multi-activity measures. Measurement properties evaluated included internal consistency (three measures), reliability (16 measures), measurement error (14 measures), validity (nine measures), responsiveness (12 measures) and interpretability (three measures). A positive rating was given to only 16% of possible measurement ratings. Evidence for the majority of measurement properties of tests reported in the review has yet to be determined. On balance of the limited evidence, the 40 m self-paced test was the best rated walk test, the 30 s-chair stand test and timed up and go test were the best rated sit to stand tests, and the Stratford battery, Physical Activity Restrictions and Functional Assessment System were the best rated multi-activity measures. Further good quality research investigating measurement properties of performance measures, including responsiveness and interpretability in people with hip and/or knee OA, is needed. Consensus on which combination of measures will best assess physical function in people with hip/and or knee OA is urgently required. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Romaniuk, Romina; Lidia, Giuffre; Alejandro, Costantini; Norberto, Bartoloni; Paolo, Nannipieri
2010-05-01
Soil quality assessment is needed to evaluate the soil conditions and sustainability of soil and crop management properties, and thus requires a systematic approach to select and interpret soil properties to be used as indicators. The aim of this work was to evaluate and compare different indexing methods to assess quality of an undisturbed grassland soil (UN), a degraded pasture soil (GL) and a no tilled soil (NT) with four different A horizon depths (25, 23, 19 and 14 cm) reflecting a diverse erosion. Twenty four soil properties were measured from 0 to10 (1) and 10 to 20 cm. (2) and a minimum data set was chosen by multivariate principal component analysis (PCA) considering all measured soil properties together (A), or according to their classification in physical, chemical or microbiological (B) properties. The measured soil properties involved either inexpensive or not laborious standard protocols, to be used in routine laboratory analysis (simple soil quality index - SSQI), or a more laborious, time consuming and expensive protocols to determine microbial diversity and microbial functionality by methyl ester fatty acids (PLFA) and catabolic response profiles (CRP), respectively (complex soil quality index - CSQI). The selected properties were linearly normalized and integrated by the weight additive method to calculate SSQI A, SSQI B, CSQI A and CSQI B indices. Two microbiological soil quality indices (MSQI) were also calculated: the MSQI 1 only considered microbiological properties according to the procedure used for calculating SQI; the MSQI 2 was calculated by considering microbial carbon biomass (MCB), microbial activity (Resp) and functional diversity determined by CPR (E). The soil quality indices were SSQI A = MCB 1 + Particulate Organic Carbon (POC)1 + Mean Weight Diameter (MWD)1; SSQI B = Saturated hydraulic conductivity (K) 1 + Total Organic Carbon (TOC) 1 + MCB 1; CSQI A = MCB 1 + POC 1 + MWD 1; CSQI B = K 1+ TOC 1+ 0.3 * (MCB 1+ i/a +POC 1) + 0,05 * (E + cy/pre), where i/a and cy/pre are the iso/anteiso and cyclopropyl/precursors ratios determined by PLFA; MSQI 1 (0,3 * (MCB 1+ i/a 1 +POC 1) + 0,05 * (E 1+ cy/pre 1) ) and MSQI 2 (MCB 1+Resp 1+ E 1). All the calculated indices differentiated references plots (UN and GL), from those under no tillage (NT) system. Values were similar in NT plots with low erosion levels (NT 25 and 23) but higher than values of plots with high erosion (NT 19 and 14). Soil quality indices constructed by procedure B, (SSQI B and CSQI B) differentiated among the studied plots with the same or higher sensitivity than the other indices and allowed evaluating the impact of soil management practices and erosion on soil physical, chemical and microbiological properties. The lack of indicators representing all soil properties (physical, chemical and biological) in SQI constructed by procedure A could decrease the index sensitivity to changes in management; and the same may happen when physical, chemical and biological properties present different weights into the calculated SQI. The inclusion of CRP and PLFA data in the indices slightly increased or did not increase the index sensitivity (CSQI A and CSQI B). Generally microbiological indices (MSQI 1 and MSQI 2) were highly sensitive to soil erosion. However, we suggest that indices integrating physical, chemical and microbiological properties may give a more complete view of the soil quality than indices only based on measurement of a few microbiological properties.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Fuel property effects on USAF gas turbine engine combustors and afterburners
NASA Technical Reports Server (NTRS)
Reeves, C. M.
1984-01-01
Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.
Thongprajukaew, Karun; Yawang, Pinya; Dudae, Lateepah; Bilanglod, Husna; Dumrongrittamatt, Terdtoon; Tantikitti, Chutima; Kovitvadhi, Uthaiwan
2013-12-01
Unavailable carbohydrates are an important limiting factor for utilization of palm kernel meal (PKM) as aquafeed ingredients. The aim of this study was to improve available carbohydrate from PKM. Different physical modifications including water soaking, microwave irradiation, gamma irradiation and electron beam, were investigated in relation to chemical composition, physicochemical properties and in vitro carbohydrate digestibility using digestive enzymes from economic freshwater fish. Modified methods had significant (P < 0.05) effects on chemical composition by decreasing crude fiber and increasing available carbohydrates. Improvements in physicochemical properties of PKM, such as water solubility, microstructure, relative crystallinity and lignocellulosic spectra, were mainly achieved by soaking and microwave irradiation. Carbohydrate digestibility varied among the physical modifications tested (P < 0.05) and three fish species had different abilities to digest PKM. Soaking was the appropriate modification for increasing carbohydrate digestion specifically in Nile tilapia (Oreochromis niloticus), whereas either soaking or microwave irradiation was effective for striped snakehead (Channa striata). For walking catfish (Clarias batrachus), carbohydrate digestibility was similar among raw, soaked and microwave-irradiated PKM. These findings suggest that soaking and microwave irradiation could be practical methods for altering appropriate physicochemical properties of PKM as well as increasing carbohydrate digestibility in select economic freshwater fish. © 2013 Society of Chemical Industry.
Rocket exhaust ground cloud/atmospheric interactions
NASA Technical Reports Server (NTRS)
Hwang, B.; Gould, R. K.
1978-01-01
An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.
Solid polymeric electrolytes for lithium batteries
Angell, Charles A.; Xu, Wu; Sun, Xiaoguang
2006-03-14
Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.
Coronal Loop Evolution Observed with AIA and Hi-C
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.;
2012-01-01
Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
Spatial relationships among cereal yields and selected soil physical and chemical properties.
Lipiec, Jerzy; Usowicz, Bogusław
2018-08-15
Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Overview of the Fire Lab at Missoula Experiments (FLAME)
S. M. Kreidenweis; J. L. Collett; H. Moosmuller; W. P. Arnott; WeiMin Hao; W. C. Malm
2010-01-01
The Fire Lab at Missoula Experiments (FLAME) used a series of open biomass burns, conducted in 2006 and 2007 at the Forest Service Fire Science Laboratory in Missoula, MT, to characterize the physical, chemical and optical properties of biomass combustion emissions. Fuels were selected primarily based on their projected importance for emissions from prescribed and wild...
ERIC Educational Resources Information Center
Kangas, Brian D.; Branch, Marc N.
2012-01-01
Emerging evidence suggests that nicotine may enhance short-term memory. Some of this evidence comes from nonhuman primate research using a procedure called delayed matching-to-sample, wherein the monkey is trained to select a comparison stimulus that matches some physical property of a previously presented sample stimulus. Delays between sample…
R symmetries and a heterotic MSSM
NASA Astrophysics Data System (ADS)
Kappl, Rolf; Nilles, Hans Peter; Schmitz, Matthias
2015-02-01
We employ powerful techniques based on Hilbert and Gröbner bases to analyze particle physics models derived from string theory. Individual models are shown to have a huge landscape of vacua that differ in their phenomenological properties. We explore the (discrete) symmetries of these vacua, the new R symmetry selection rules and their consequences for moduli stabilization.
Martins, Júlia Caetano; Aguiar, Larissa Tavares; Nadeau, Sylvie; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais
2017-02-13
Self-report physical activity assessment tools are commonly used for the evaluation of physical activity levels in individuals with stroke. A great variety of these tools have been developed and widely used in recent years, which justify the need to examine their measurement properties and clinical utility. Therefore, the main objectives of this systematic review are to examine the measurement properties and clinical utility of self-report measures of physical activity and discuss the strengths and limitations of the identified tools. A systematic review of studies that investigated the measurement properties and/or clinical utility of self-report physical activity assessment tools in stroke will be conducted. Electronic searches will be performed in five databases: Medical Literature Analysis and Retrieval System Online (MEDLINE) (PubMed), Excerpta Medica Database (EMBASE), Physiotherapy Evidence Database (PEDro), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Scientific Electronic Library Online (SciELO), followed by hand searches of the reference lists of the included studies. Two independent reviewers will screen all retrieve titles, abstracts, and full texts, according to the inclusion criteria and will also extract the data. A third reviewer will be referred to solve any disagreement. A descriptive summary of the included studies will contain the design, participants, as well as the characteristics, measurement properties, and clinical utility of the self-report tools. The methodological quality of the studies will be evaluated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and the clinical utility of the identified tools will be assessed considering predefined criteria. This systematic review will follow the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. This systematic review will provide an extensive review of the measurement properties and clinical utility of self-report physical activity assessment tools used in individuals with stroke, which would benefit clinicians and researchers. PROSPERO CRD42016037146. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Abdullah, Nurulhuda; Manaf, Siti Nor Qamarina; Hassan, Aziana Abu
2017-12-01
This paper describes the chemical deproteinization process of natural rubber latex (NRL) using chemical denaturants namely urea and sodium dodecyl sulfate (SDS). Commercial high ammoniated natural rubber latex (HANRL) was incubated with both denaturants - urea and SDS for selected period of time before centrifugation and characterization. The role of SDS in NRL deproteinization process was further elucidated by manipulating the concentration of SDS at 0.3 phr and 0.5 phr during the incubation process. It was found that the physical properties of NRL especially stability, were governed by the amount of SDS, whereby higher concentration of SDS used led to greater NRL stability. However, too much concentration of SDS in the system might cause detrimental effect on the properties of low protein NRL. The effects of additional anionic surfactant namely potassium laurate on the physical properties of low protein NRL and its stabilization were also scrutinized. Characterizations include nitrogen determination by Kjeldahl method, zeta potential, and morphological analysis by Field Emission Scanning Electron Microscopy (FESEM).
Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen
2018-06-15
Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.
Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B
2017-08-01
Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.
Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition
NASA Technical Reports Server (NTRS)
Harse, J. H.
1983-01-01
A program was performed to identify and evaluate a variety of candidate rotor hub configurations for the ITR/FRR. Design criteria were established for the development of the hub concepts. Eight initial hub configurations were examined and two were selected for further refinement and evaluation. The selected concepts were bearingless designs with and without lead-lag dampers. The selected concepts were refined to the point that their physical properties relative to the Government's technical goals and manufacturing aspects could be assessed. In addition, variations that could be incorporated for the FRR were identified and compatibility for installation on the RSRA was addressed.
NASA Astrophysics Data System (ADS)
Taer, Erman; Taslim, Rika
2018-02-01
The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.
Bershtein, Shimon; Serohijos, Adrian W.R.; Shakhnovich, Eugene I.
2016-01-01
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. PMID:27810574
Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I
2017-02-01
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of fuel chemical properties on combustor radiative heat load
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jongwon; Altman, Michael D.; Baker, James
2015-06-11
Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential signal transducer downstream of the IL-1R and TLR superfamily, and selective inhibition of the kinase activity of the protein represents an attractive target for the treatment of inflammatory diseases. A series of 5-amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamides was developed via sequential modifications to the 5-position of the pyrazolopyrimidine ring and the 3-position of the pyrazole ring. Replacement of substituents responsible for poor permeability and improvement of physical properties guided by cLogD led to the identification of IRAK4 inhibitors with excellent potency, kinase selectivity, and pharmacokinetic properties suitable for oral dosing.
Prediction of solvation enthalpy of gaseous organic compounds in propanol
NASA Astrophysics Data System (ADS)
Golmohammadi, Hassan; Dashtbozorgi, Zahra
2016-09-01
The purpose of this paper is to present a novel way for developing quantitative structure-property relationship (QSPR) models to predict the gas-to-propanol solvation enthalpy (Δ H solv) of 95 organic compounds. Different kinds of descriptors were calculated for each compound using the Dragon software package. The variable selection technique of replacement method (RM) was employed to select the optimal subset of solute descriptors. Our investigation reveals that the dependence of physical chemistry properties of solution on solvation enthalpy is nonlinear and that the RM method is unable to model the solvation enthalpy accurately. The results established that the calculated Δ H solv values by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by RM model.
Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Gilwee, W. J., Jr.; Parker, J. A.
1979-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated include polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated include epoxy, bismaleimide, a modified phenolic, and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass-reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented, and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
Photometric and spectral properties of some T Tauri stars
NASA Technical Reports Server (NTRS)
Warner, J. W.; Hubbard, R. P.; Gallagher, J. S.
1978-01-01
Photometric and spectroscopic data have been obtained for selected T Tauri members of the Taurus-Aurigae cloud and the Orion complex. A correlation between the intensity ratio of calcium and hydrogen emission lines and the infrared excess at 3.5 microns is found for these stars, which indicates a causal relationship between 'chromospheric activity' and emission processes in the circumstellar shells. It is argued that a comparison with properties of well-studied novae could lead to a better understanding of the physical structure of T Tauri stars.
Laguna, George R.; Peter, Frank J.; Butler, Michael A.
1999-01-01
A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.
Laguna, G.R.; Peter, F.J.; Butler, M.A.
1999-02-16
A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.
Are there laws of genome evolution?
Koonin, Eugene V
2011-08-01
Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.
Heat exchanger selection and design analyses for metal hydride heat pump systems
Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; ...
2016-01-01
This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less
NASA Astrophysics Data System (ADS)
Patki, Mugdha; Patil, Vidya
2016-05-01
Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.
Low-Temperature Properties of Silver
Smith, David R.; Fickett, F. R.
1995-01-01
Pure silver is used extensively in the preparation of high-temperature superconductor wires, tapes, films, and other configurations in which the silver not only shields the superconducting material from the surrounding materials, but also provides a degree of flexibility and strain relief, as well as stabilization and low-resistance electrical contact. Silver is relatively expensive, but at this stage of superconductor development, its unique combination of properties seems to offer the only reasonable means of achieving usable lengths of conductor. In this role, the low-temperature physical (electrical, thermal, magnetic, optical) and mechanical properties of the silver all become important. Here we present a collection of properties data extracted from the cryogenic literature and, to the extent possible, selected for reliability. PMID:29151733
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
Lagrangian particles with mixing. I. Simulating scalar transport
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2009-06-01
The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent combustion do posses a set of scalar properties and mixing between particle properties is performed to reflect the dissipative nature of the diffusion processes. We show that the continuous scalar transport and diffusion can be accurately specified by means of localized mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. Particles with scalar properties and localized mixing represent an alternative formulation for the process, which is selected to represent the continuous diffusion. Simulating diffusion by Lagrangian particles with mixing involves three main competing requirements: minimizing stochastic uncertainty, minimizing bias introduced by numerical diffusion, and preserving independence of particles. These requirements are analyzed for two limited cases of mixing between two particles and mixing between a large number of particles. The problem of possible dependences between particles is most complicated. This problem is analyzed using a coupled chain of equations that has similarities with Bogolubov-Born-Green-Kirkwood-Yvon chain in statistical physics. Dependences between particles can be significant in close proximity of the particles resulting in a reduced rate of mixing. This work develops further ideas introduced in the previously published letter [Phys. Fluids 19, 031702 (2007)]. Paper I of this work is followed by Paper II [Phys. Fluids 19, 065102 (2009)] where modeling of turbulent reacting flows by Lagrangian particles with localized mixing is specifically considered.
On the physical interpretation of the nuclear molecular orbital energy.
Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés
2017-06-07
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; LeClair, A.
2014-01-01
Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.
Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets.
Rotzetter, Aline C C; Schumacher, Christoph M; Zako, Tamotsu; Stark, Wendelin J; Maeda, Mizuo
2013-11-19
Nanomaterials are increasingly suggested for the selective adsorption and extraction of complex compounds in biomedicine. Binding of the latter requires specific surface modifications of the nanostructures. However, even complicated macromolecules such as proteins can afford affinities toward basic surface characteristics such as hydrophobicity, topology, and electrostatic charge. In this study, we address these more basic physical interactions. In a model system, the interaction of bovine serum albumin and amyloid β 42 fibrillar aggregates with carbon-coated cobalt nanoparticles, functionalized with various polymers differing in character, was studied. The possibility of rapid magnetic separation upon binding to the surface represents a valuable tool for studying surface interactions and selectivities. We find that the surface interaction of Aβ 42 fibrillar aggregates is mostly hydrophobic in nature. Because bovine serum albumin (BSA) is conformationally adaptive, it is known to bind surfaces with widely differing properties (charge, topology, and hydrophobicity). However, the rate of tight binding (no desorption upon washing) can vary largely depending on the extent of necessary conformational changes for a specific surface. We found that BSA can only bind slowly to polyethylenimine-coated nanomagnets. Under competitive conditions (high excess BSA compared to that for β 42 fibrillar aggregates), this effect is beneficial for targeting the fibrillar species. These findings highlight the possibility of selective extractions from complex media when advantageous basic physical surface properties are chosen.
NASA Astrophysics Data System (ADS)
Portan, D. V.; Papanicolaou, G. C.
2018-02-01
From practical point of view, predictive modeling based on the physics of composite material behavior is wealth generating; by guiding material system selection and process choices, by cutting down on experimentation and associated costs; and by speeding up the time frame from the research stage to the market place. The presence of areas with different properties and the existence of an interphase between them have a pronounced influence on the behavior of a composite system. The Viscoelastic Hybrid Interphase Model (VHIM), considers the existence of a non-homogeneous viscoelastic and anisotropic interphase having properties depended on the degree of adhesion between the two phases in contact. The model applies for any physical/mechanical property (e.g. mechanical, thermal, electrical and/or biomechanical). Knowing the interphasial variation of a specific property one can predict the corresponding macroscopic behavior of the composite. Moreover, the model acts as an algorithm and a two-way approach can be used: (i) phases in contact may be chosen to get the desired properties of the final composite system or (ii) the initial phases in contact determine the final behavior of the composite system, that can be approximately predicted. The VHIM has been proven, amongst others, to be extremely useful in biomaterial designing for improved contact with human tissues.
A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample
Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...
2012-01-01
Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less
Solid Lubrication Fundamentals and Applications. Chapter 6
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2000-01-01
This chapter focuses attention on the friction and wear properties of selected solid lubricating films to aid users in choosing the best lubricant, deposition conditions, and operational variables. For simplicity, discussion of the tribological properties of concern is separated into two parts. The first part of the chapter discusses the different solid lubricating films selected for study including commercially developed solid film lubricants: (1) bonded molybdenum disulfide (MoS2), (2) magnetron-sputtered MoS2, (3) ion-plated silver, (4) ion-plated lead, (5) magnetron-sputtered diamondlike carbon (MS DLC), and (6) plasma-assisted, chemical-vapor-deposited diamondlike carbon (PACVD DEC) films. Marked differences in the friction and wear properties of the different films resulted from the different environmental conditions (ultrahigh vacuum, humid air, and dry nitrogen) and the solid film lubricant materials. The second part of the chapter discusses the physical and chemical characteristics, friction behavior, and endurance life of the magnetron-sputtered MoS2 films. The role of interface species and the effects of applied load, film thickness, oxygen pressure, environment, and temperature on the friction and wear properties are considered.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2008-01-01
This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.
Dynamic soil properties in response to anthropogenic disturbance
NASA Astrophysics Data System (ADS)
Vanacker, Veerle; Ortega, Raúl
2013-04-01
Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns
Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young
2015-04-28
We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.
A Combined Experimental and Computational Study on Selected Physical Properties of Aminosilicones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, RJ; Genovese, SE; Farnum, RL
2014-01-29
A number of physical properties of aminosilicones have been determined experimentally and predicted computationally. It was found that COSMO-RS predicted the densities of the materials under study to within about 4% of the experimentally determined values. Vapor pressure measurements were performed, and all of the aminosilicones of interest were found to be significantly less volatile than the benchmark MEA material. COSMO-RS was reasonably accurate for predicting the vapor pressures for aminosilicones that were thermally stable. The heat capacities of all aminosilicones tested were between 2.0 and 2.3 J/(g.degrees C); again substantially lower than a benchmark 30% aqueous MEA solution. Surfacemore » energies for the aminosilicones were found to be 23.3-28.3 dyne/cm and were accurately predicted using the parachor method.« less
Trevisan, Francesco; Calignano, Flaviana; Lorusso, Massimo; Pakkanen, Jukka; Aversa, Alberta; Ambrosio, Elisa Paola; Lombardi, Mariangela; Fino, Paolo; Manfredi, Diego
2017-01-01
The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical properties related to a very fine microstructure. However, SLM is very complex, from a physical point of view, due to the interaction between a concentrated laser source and metallic powders, and to the extremely rapid melting and the subsequent fast solidification. The effects of the main process variables on the properties of the final parts are analyzed in this review: from the starting powder properties, such as shape and powder size distribution, to the main process parameters, such as laser power and speed, layer thickness, and scanning strategy. Furthermore, a detailed overview on the microstructure of the AlSi10Mg material, with the related tensile and fatigue properties of the final SLM parts, in some cases after different heat treatments, is presented. PMID:28772436
The amazing graphene: an educational bridge connecting different physics concepts
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Bellomonte, Leonardo; Pizzolato, Nicola
2018-01-01
The purpose of this work is to present a learning workshop covering various physics concepts aimed at strengthening physics/engineering student understanding about the remarkable properties of two dimensional materials, graphene in particular. At the basis of this learning experience is the idea of blending and interconnecting separate pieces of knowledge already acquired by undergraduates in different courses and to help them visualize and link the concepts lying beyond separate chunks of information or equations. Graphene represents an appropriate unifying framework to achieve this task in view of its monatomic structure and various exotic processes peculiar to this and some other two dimensional crystals. We first discuss essential elements of group theory and their application to the symmetry properties of graphene with the aim of presenting to physics/electronic engineering undergraduates that in a system characterized by symmetry properties such as a crystal, the acquisition of the solutions of the Schrödinger equation is simpler and easier to visualize than when these properties are ignored. We have then selected and discussed some remarkable properties of graphene: the linear electron energy-momentum dispersion relation in proximity of some edge points of the Brillouin zone; the consequential massless Dirac behaviour of the electrons; their tunnelling behaviour and the related Klein paradox; the chiral behaviour of electrons and holes; the fractional quantum Hall effect in massless particles; and the quantum behaviour of correlated quasiparticles observable at macroscopic level. These arguments are presented in a context covering related pieces of knowledge about classical, quantum and relativistic mechanics. Finally, we mention current applications and possible future ones with the aim of providing students with an expertise that could be useful for further work experiences and scientific investigations regarding new materials, having far-reaching implications in various fields such as basic physics, materials science and engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ping; Howard, Bret H.
Thermal pretreatment of biomass by torrefaction and low temperature pyrolysis has the potential for generating high quality and more suitable fuels. To utilize a model to describe the complex and dynamic changes taking place during these two treatments for process design, optimization and scale-up, detailed data is needed on the property evolution during treatment of well-defined individual biomass particles. The objectives of this study are to investigate the influence of thermal pretreatment temperatures on wood biomass biochemical compositions, physical properties and microstructure. Wild cherry wood was selected as a model biomass and prepared for this study. The well-defined wood particlemore » samples were consecutively heated at 220, 260, 300, 350, 450 and 550 °C for 0.5 h under nitrogen. Untreated and treated samples were characterized for biochemical composition changes (cellulose, hemicellulose, and lignin) by thermogravimetric analyzer (TGA), physical properties (color, dimensions, weight, density and grindablity), chemical property (proximate analysis and heating value) and microstructural changes by scanning electron microscopy (SEM). Hemicellulose was mostly decomposed in the samples treated at 260 and 300 °C and resulted in the cell walls weakening resulting in improved grindability. The dimensions of the wood were reduced in all directions and shrinkage increased with increased treatment temperature and weight loss. With increased treatment temperature, losses of weight and volume increased and bulk density decreased. The low temperature pyrolyzed wood samples improved solid fuel property with high fuel ratio, which are close to lignite/bituminous coal. Morphology of the wood remained intact through the treatment range but the cell walls were thinner. Lastly, these results will improve the understanding of the property changes of the biomass during pretreatment and will help to develop models for process simulation and potential application of the treated biomass.« less
Wang, Ping; Howard, Bret H.
2017-12-23
Thermal pretreatment of biomass by torrefaction and low temperature pyrolysis has the potential for generating high quality and more suitable fuels. To utilize a model to describe the complex and dynamic changes taking place during these two treatments for process design, optimization and scale-up, detailed data is needed on the property evolution during treatment of well-defined individual biomass particles. The objectives of this study are to investigate the influence of thermal pretreatment temperatures on wood biomass biochemical compositions, physical properties and microstructure. Wild cherry wood was selected as a model biomass and prepared for this study. The well-defined wood particlemore » samples were consecutively heated at 220, 260, 300, 350, 450 and 550 °C for 0.5 h under nitrogen. Untreated and treated samples were characterized for biochemical composition changes (cellulose, hemicellulose, and lignin) by thermogravimetric analyzer (TGA), physical properties (color, dimensions, weight, density and grindablity), chemical property (proximate analysis and heating value) and microstructural changes by scanning electron microscopy (SEM). Hemicellulose was mostly decomposed in the samples treated at 260 and 300 °C and resulted in the cell walls weakening resulting in improved grindability. The dimensions of the wood were reduced in all directions and shrinkage increased with increased treatment temperature and weight loss. With increased treatment temperature, losses of weight and volume increased and bulk density decreased. The low temperature pyrolyzed wood samples improved solid fuel property with high fuel ratio, which are close to lignite/bituminous coal. Morphology of the wood remained intact through the treatment range but the cell walls were thinner. Lastly, these results will improve the understanding of the property changes of the biomass during pretreatment and will help to develop models for process simulation and potential application of the treated biomass.« less
Selected mechanical and physical properties of Chinese tallow tree juvenile wood
Todd F. Shupe; LEslie H. Groom; Thomas L. Eberhardt; Thomas C. Pesacreta; Timothy G. Rials
2008-01-01
Chinese tallow tree is a noxious, invasive plant in the Southeastern United States. It is generally considered a nuisance and has no current commercial use. The objective of this research was to determine the moduli of rupture (MOR) and elasticity (MOE) of the stem wood of this species at different vertical sampling locations. Three Chinese tallow trees were felled and...
Emily A. Carter; Timothy P. McDonald; John L. Torbert
1999-01-01
A study was initiated in the Winter of 1998 to examine the utility of employing Global Positioning Systems (GPS) to monitor harvest traffic throughout a loblolly pine plantation and utilize traffic intensity information to assess impacts of select soil physical properties. Traffic maps prepared from GPS positional data indicated the highest concentration of traffic...
ERIC Educational Resources Information Center
Aybek, Birsel; Aslan, Serkan
2016-01-01
Problem Statement: Various research have been conducted investigating the quality and quantity of textbooks such as wording, content, design, visuality, physical properties, activities, methods and techniques, questions and experiments, events, misconceptions, organizations, pictures, text selection, end of unit questions and assessments, indexes…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.
1991-02-01
This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is givenmore » for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.« less
Crystallographic alignment of high-density gallium nitride nanowire arrays.
Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong
2004-08-01
Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.
Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties
NASA Astrophysics Data System (ADS)
Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.
2016-11-01
Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located close to or below the best-fit E {}{{pi}}-E {}{{iso}} relation (Amati relation), whose redshift is easily measurable. With more than 300 GRBs with a redshift, we now have a much better view of the intrinsic properties of these remarkable events. At the same time, increasing statistics allow us to understand the biases acting on the measurements. The optical selection effects induced by the redshift measurement strategies cannot be neglected when we study the properties of GRBs in their rest frame, even for studies focused on prompt emission.
Ramoraswi, Nteseng O; Ndungu, Patrick G
2015-12-01
Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.
NASA Astrophysics Data System (ADS)
Ramoraswi, Nteseng O.; Ndungu, Patrick G.
2015-10-01
Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m2/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.
NASA Technical Reports Server (NTRS)
King, M. D.
1992-01-01
The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.
Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders
NASA Astrophysics Data System (ADS)
Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand
2016-10-01
The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling technological parameters and explosive consolidation conditions on the structure/properties of the obtained samples are described in the paper.
THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancini, C.; Renzini, A.; Foerster Schreiber, N. M.
2011-12-10
The zCOSMOS-SINFONI project is aimed at studying the physical and kinematical properties of a sample of massive z {approx} 1.4-2.5 star-forming galaxies, through SINFONI near-infrared integral field spectroscopy (IFS), combined with the multiwavelength information from the zCOSMOS (COSMOS) survey. The project is based on one hour of natural-seeing observations per target, and adaptive optics (AO) follow-up for a major part of the sample, which includes 30 galaxies selected from the zCOSMOS/VIMOS spectroscopic survey. This first paper presents the sample selection, and the global physical characterization of the target galaxies from multicolor photometry, i.e., star formation rate (SFR), stellar mass, age,more » etc. The H{alpha} integrated properties, such as, flux, velocity dispersion, and size, are derived from the natural-seeing observations, while the follow-up AO observations will be presented in the next paper of this series. Our sample appears to be well representative of star-forming galaxies at z {approx} 2, covering a wide range in mass and SFR. The H{alpha} integrated properties of the 25 H{alpha} detected galaxies are similar to those of other IFS samples at the same redshifts. Good agreement is found among the SFRs derived from H{alpha} luminosity and other diagnostic methods, provided the extinction affecting the H{alpha} luminosity is about twice that affecting the continuum. A preliminary kinematic analysis, based on the maximum observed velocity difference across the source and on the integrated velocity dispersion, indicates that the sample splits nearly 50-50 into rotation-dominated and velocity-dispersion-dominated galaxies, in good agreement with previous surveys.« less
Dunning, Jeffery L.; Pant, Santosh; Bass, Aaron; Coburn, Zachary; Prather, Jonathan F.
2014-01-01
In the process of mate selection by female songbirds, male suitors advertise their quality through reproductive displays in which song plays an important role. Females evaluate the quality of each signal and the associated male, and the results of that evaluation guide expression of selective courtship displays. Some studies reveal broad agreement among females in their preferences for specific signal characteristics, indicating that those features are especially salient in female mate choice. Other studies reveal that females differ in their preference for specific characteristics, indicating that in those cases female evaluation of signal quality is influenced by factors other than simply the physical properties of the signal. Thus, both the physical properties of male signals and specific traits of female signal evaluation can impact female mate choice. Here, we characterized the mate preferences of female Bengalese finches. We found that calls and copulation solicitation displays are equally reliable indicators of female preference. In response to songs from an array of males, each female expressed an individual-specific song preference, and those preferences were consistent across tests spanning many months. Across a population of females, songs of some males were more commonly preferred than others, and females preferred female-directed songs more than undirected songs, suggesting that some song features are broadly attractive. Preferences were indistinguishable for females that did or did not have social experience with the singers, indicating that female preference is strongly directed by song features rather than experiences associated with the singer. Analysis of song properties revealed several candidate parameters that may influence female evaluation. In an initial investigation of those parameters, females could be very selective for one song feature yet not selective for another. Therefore, multiple song parameters are evaluated independently. Together these findings reveal the nature of signal evaluation and mate choice in this species. PMID:24558501
Intuitive experimentation in the physical world.
Bramley, Neil R; Gerstenberg, Tobias; Tenenbaum, Joshua B; Gureckis, Todd M
2018-06-06
Many aspects of our physical environment are hidden. For example, it is hard to estimate how heavy an object is from visual observation alone. In this paper we examine how people actively "experiment" within the physical world to discover such latent properties. In the first part of the paper, we develop a novel framework for the quantitative analysis of the information produced by physical interactions. We then describe two experiments that present participants with moving objects in "microworlds" that operate according to continuous spatiotemporal dynamics similar to everyday physics (i.e., forces of gravity, friction, etc.). Participants were asked to interact with objects in the microworlds in order to identify their masses, or the forces of attraction/repulsion that governed their movement. Using our modeling framework, we find that learners who freely interacted with the physical system selectively produced evidence that revealed the physical property consistent with their inquiry goal. As a result, their inferences were more accurate than for passive observers and, in some contexts, for yoked participants who watched video replays of an active learner's interactions. We characterize active learners' actions into a range of micro-experiment strategies and discuss how these might be learned or generalized from past experience. The technical contribution of this work is the development of a novel analytic framework and methodology for the study of interactively learning about the physical world. Its empirical contribution is the demonstration of sophisticated goal directed human active learning in a naturalistic context. Copyright © 2018 Elsevier Inc. All rights reserved.
Solution formulation development of a VEGF inhibitor for intravitreal injection.
Marra, Michelle T; Khamphavong, Penney; Wisniecki, Peter; Gukasyan, Hovhannes J; Sueda, Katsuhiko
2011-03-01
PF-00337210 is a potent, selective small molecule inhibitor of VEGFRs and has been under consideration for the treatment of age-related macular degeneration. An ophthalmic solution formulation intended for intravitreal injection was developed. This formulation was designed to maximize drug properties such that the formulation would precipitate upon injection into the vitreous for sustained delivery. As a parenteral formulation with additional constraints dictated by this specialized delivery route, multiple features were balanced in order to develop a successful formulation. Some of these considerations included low dosing volumes (≤0.1 mL), a limited repertoire of safe excipients for intravitreal injection, and the unique physical chemical properties of the drug. The aqueous solubility as a function of pH was characterized, buffer stressing studies to select the minimal amount of buffer were conducted, and both chemical and physical stability studies were executed. The selected formulation consisted of an isotonic solution comprised of PF-00337210 free base in a citrate-buffered vehicle containing NaCl for tonicity. The highest strength for regulatory toxicology studies was 60 mg/mL. The selected formulation exhibited sufficient chemical stability upon storage with no precipitation, and acceptable potency and recovery through an intravitreal dosing syringe. Formulation performance was simulated by precipitation experiments using extracted vitreous humor. In simulated injection experiments, PF-00337210 solutions reproducibly precipitated upon introduction to the vitreous so that a depot was formed. To our knowledge, this is the first time that a nonpolymeric in situ-forming depot formulation has been developed for intravitreal delivery, with the active ingredient as the precipitating agent. © 2011 American Association of Pharmaceutical Scientists
NASA Astrophysics Data System (ADS)
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Characterization of polymeric solutions as injectable vehicles for hydroxyapatite microspheres.
Oliveira, Serafim M; Almeida, Isabel F; Costa, Paulo C; Barrias, Cristina C; Ferreira, M Rosa Pena; Bahia, M Fernanda; Barbosa, Mário A
2010-06-01
A polymeric solution and a reinforcement phase can work as an injectable material to fill up bone defects. However, the properties of the solution should be suitable to enable the transport of that extra phase. Additionally, the use of biocompatible materials is a requirement for tissue regeneration. Thus, we intended to optimize a biocompatible polymeric solution able to carry hydroxyapatite microspheres into bone defects using an orthopedic injectable device. To achieve that goal, polymers usually regarded as biocompatible were selected, namely sodium carboxymethylcellulose, hydroxypropylmethylcellulose, and Na-alginate (ALG). The rheological properties of the polymeric solutions at different concentrations were assessed by viscosimetry before and after moist heat sterilization. In order to correlate rheological properties with injectability, solutions were tested using an orthopedic device applied for minimal invasive surgeries. Among the three polymers, ALG solutions presented the most suitable properties for our goal and a non-sterile ALG 6% solution was successfully used to perform preliminary injection tests of hydroxyapatite microspheres. Sterile ALG 7.25% solution was found to closely match non-sterile ALG 6% properties and it was selected as the optimal vehicle. Finally, sterile ALG 7.25% physical stability was studied at different temperatures over a 3-month period. It was observed that its rheological properties presented minor changes when stored at 25 degrees C or at 4 degrees C.
Modified pavement cement concrete
NASA Astrophysics Data System (ADS)
Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.
2018-03-01
The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.
Materials and techniques for model construction
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.
Physical soil quality indicators for monitoring British soils
NASA Astrophysics Data System (ADS)
Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.
2017-09-01
Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.
NASA Astrophysics Data System (ADS)
Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh
2015-07-01
This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.
A Quality Function Deployment-Based Expert System for Cotton Fibre Selection
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Prasad, Kanika
2018-01-01
The textile industries have seen resurgence in customers' demand for quality products during the preceding few years. This product range is extremely varied, with hand-spun and hand-woven products at one end of the spectrum, while products manufactured from the capital intensive sophisticated machineries at the other end. Since, cotton fibres are predominantly employed as the raw material for manufacturing these products, their proper selection is crucial for sustainable development of the textile/spinning industries. However, availability of numerous cotton fibre alternatives with various physical properties makes this selection process unwieldy and time consuming. Thus, there is need for a structured approach that can incorporate customers' demand into the selection process. This paper demonstrates the application of a structured and logical procedure of selecting the best cotton fibre type to fulfill a set of specified end product requirements through design and development of a quality function deployment (QFD)-based expert system. The QFD technique is employed here to provide due importance to the customers' spoken and unspoken needs, and subsequently calculate the priority weights of the considered cotton fibre properties. Two real time illustrative examples are presented to explicate the applicability and potentiality of the developed expert system to resolve cotton fibre selection problems.
A Quality Function Deployment-Based Expert System for Cotton Fibre Selection
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Prasad, Kanika
2018-06-01
The textile industries have seen resurgence in customers' demand for quality products during the preceding few years. This product range is extremely varied, with hand-spun and hand-woven products at one end of the spectrum, while products manufactured from the capital intensive sophisticated machineries at the other end. Since, cotton fibres are predominantly employed as the raw material for manufacturing these products, their proper selection is crucial for sustainable development of the textile/spinning industries. However, availability of numerous cotton fibre alternatives with various physical properties makes this selection process unwieldy and time consuming. Thus, there is need for a structured approach that can incorporate customers' demand into the selection process. This paper demonstrates the application of a structured and logical procedure of selecting the best cotton fibre type to fulfill a set of specified end product requirements through design and development of a quality function deployment (QFD)-based expert system. The QFD technique is employed here to provide due importance to the customers' spoken and unspoken needs, and subsequently calculate the priority weights of the considered cotton fibre properties. Two real time illustrative examples are presented to explicate the applicability and potentiality of the developed expert system to resolve cotton fibre selection problems.
Tromp, R M; Afzali, A; Freitag, M; Mitzi, D B; Chen, Zh
2008-02-01
The problem of separating single-wall carbon nanotubes (CNTs) by diameter and/or chirality is one of the greatest impediments toward the widespread application of these promising materials in nanoelectronics. In this paper, we describe a novel physical-chemical method for diameter-selective CNT separation that is both simple and effective and that allows up-scaling to large volumes at modest cost. Separation is based on size-selective noncovalent matching of an appropriate anchor molecule to the wall of the CNT, enabling suspension of the CNTs in solvents in which they would otherwise not be soluble. We demonstrate size-selective separation in the 1-2 nm diameter range using easily synthesized oligo-acene adducts as a diameter-selective molecular anchor. CNT field effect transistors fabricated from diameter-selected CNTs show markedly improved electrical properties as compared to nonselected CNTs.
Multi-Wavelength Analysis of Active Galactic Nuclei and Host Galaxies Physical Properties
NASA Astrophysics Data System (ADS)
Azadi, Mojegan
In this dissertation we study the properties of active galactic nuclei (AGN), which are powered by the accretion activity of supermassive black holes residing at the centers of galaxies. While observations propose that growth of AGN and galaxies are globally tied, we investigate whether this connection exists in individual galaxies. We also investigate various AGN selection techniques and star formation rate (SFR) estimates using multi-wavelength data from Chandra, Spitzer and rest-frame optical spectra from the Keck telescope. We find that combining multi-wavelength identification techniques provides a more complete AGN sample, as each selection method suffers from selection biases. In particular, all selection techniques are biased against identifying AGN in lower mass galaxies. Once stellar mass selection biases are taken into account, we find that AGN reside in galaxies with similar physical properties (i.e., SFR) as inactive galaxies. We find that while AGN are prevalent in both star-forming and quiescent galaxies, AGN of a given accretion rate are more likely to reside in star-forming galaxies. The probability of fueling an AGN does not strongly depend on SFR for a star-forming galaxy, though it decreases when star formation is shut down in quiescent galaxies. We also find no evidence for a strong correlation between SFR or stellar mass of the host galaxy and AGN luminosity. These results indicate that while both AGN and galaxy growth are reliant on the same fuel, enhanced star formation activity does not necessarily go hand-in-hand with increased AGN activity. While the star formation activity of galaxies can be traced with various indicators, our investigations indicate that extrapolations from mid-infrared data using calibrations based on local galaxies overestimates SFRs at higher redshift. We show that a combina- tion of mid-infrared and far-infrared data provide a more reliable SFR estimation than the mid-infrared data alone. We also find that the robustness of UV-based SFRs depends on the extinction correction method used. We find a relatively small fraction of z 2 galaxies have SFRs from infrared observations that are elevated relative to other SFR tracers, and we do not find any contribution from AGN in this excess.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-06-01
The bibliography contains citations concerning standards and standard tests for water quality in drinking water sources, reservoirs, and distribution systems. Standards from domestic and international sources are presented. Glossaries and vocabularies that concern water quality analysis, testing, and evaluation are included. Standard test methods for individual elements, selected chemicals, sensory properties, radioactivity, and other chemical and physical properties are described. Discussions for proposed standards on new pollutant materials are briefly considered. (Contains a minimum of 203 citations and includes a subject term index and title list.)
NASA Astrophysics Data System (ADS)
Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2017-11-01
Severe plastic deformation by equal channel angular pressing has been performed to produce light aluminum and magnesium alloy billets with ultrafine-grained structure. The physical and mechanical properties of the processed alloys are examined by studying their microstructure, measuring microhardness, yield strength, and uniaxial tensile strength. A nondestructive testing technique using three-dimensional X-ray tomography is proposed for detecting internal structural defects and monitoring damage formation in the structure of alloys subjected to severe plastic deformation. The investigation results prove the efficiency of the chosen method and selected mode of producing ultrafine-grained light alloys.
Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Duchaineau, M; Goldgof, D B
2001-05-14
This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less
Caravaca, Juan; Soria-Olivas, Emilio; Bataller, Manuel; Serrano, Antonio J; Such-Miquel, Luis; Vila-Francés, Joan; Guerrero, Juan F
2014-02-01
This work presents the application of machine learning techniques to analyse the influence of physical exercise in the physiological properties of the heart, during ventricular fibrillation. To this end, different kinds of classifiers (linear and neural models) are used to classify between trained and sedentary rabbit hearts. The use of those classifiers in combination with a wrapper feature selection algorithm allows to extract knowledge about the most relevant features in the problem. The obtained results show that neural models outperform linear classifiers (better performance indices and a better dimensionality reduction). The most relevant features to describe the benefits of physical exercise are those related to myocardial heterogeneity, mean activation rate and activation complexity. © 2013 Published by Elsevier Ltd.
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-03-27
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
NASA Astrophysics Data System (ADS)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-06-01
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. The mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.
Blanchard, Robert A.; Wagner, Daniel M.; Evans, Dennis A.
2010-01-01
In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773, and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Samples were analyzed for grain size, inorganic elements (including mercury), and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed material samples collected during this investigation yielded concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines. The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 millimeters to less than 2 millimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
Atomic Force Microscopy for Soil Analysis
NASA Astrophysics Data System (ADS)
gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis
2016-04-01
Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.
Raghu, V
2013-12-01
Biogeochemical characteristics of the cattle are dealt based on the observations made in Ayurveda in the light of modern scientific developments in applied environmental geochemistry. The biogeochemical characteristics of certain important ecological components and animal products of the stall-fed animals were studied. For this purpose, a dairy farm of Tirumala-Tirupati Devasthanams, a religious organization in Tirupati, Chittoor District, Andhra Pradesh was selected. This study is intended to trace out the trace element interactions in the ecological components (soil, water, fodder, feed) of the stall-fed animals and their output components viz. dung, urine and milk. Physical, physico-chemical properties and certain trace elements were determined for composite samples of ecological components and dung, urine, and milk of stall-fed animals. The variations in the distribution of pH and EC of urine and milk reflect the variations in their physico-chemical or hydro-chemical properties. As mentioned in Ayurveda, not only the properties of milk but also the properties of dung and urine reflect their diet and conditions of their habitat. Even though the diet is the same, the cows of different breeds yield milk of variable physical, physico-chemical properties and trace element composition which can be attributed to their body colour, substantiating Ayurveda.
Variety of neutron sensors based on scintillating glass waveguides
NASA Astrophysics Data System (ADS)
Bliss, Mary; Craig, Richard A.
1995-04-01
Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate glass scintillating fiber waveguide neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e-1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors.
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Several aspects of plastics used in the building industry are discussed, and a general information format for specifying plastics in building construction is given. This format includes--(1) description of product, (2) physical properties, (3) design criteria, (4) installation, (5) maintenance, (6) economics, and (7) case histories. Several uses…
Hybrid poplar pulpwood and lumber from a reclaimed strip-mine
Walter H. Davidson
1979-01-01
A 2-acre hybrid poplar planting on a reclaimed strip-mine was harvested at age 16. The commercial clearcut yielded 90 tons of pulpwood and 9,400 board feet of lumber. This is equal to a growth rate of approximately 2 cords per acre per year. Selected physical properties of the hybrid poplars were compared with those of other commercial eastern species.
Physical and mechanical properties of bio-composites from wood particles and liquefied wood resin
Hui Pan; Todd F. Shupe; Chung-Yun Hse
2009-01-01
Compression molded composites were made from wood particles and a liquefied wood/phenol/formaldehyde co-condensed resin. Based on our previous research, a phenol to wood (P/W) ratio of 2/1 was chosen for this study. The two experimental variables selected were: 1) liquefaction temperature (150o and 180oC) and 2) cooking method (atmospheric and sealed). Panels were...
Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data.
Odermatt, Daniel; Heege, Thomas; Nieke, Jens; Kneubühler, Mathias; Itten, Klaus
2008-08-05
A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake's protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.
Bollhorst, Tobias; Shahabi, Shakiba; Wörz, Katharina; Petters, Charlotte; Dringen, Ralf; Maas, Michael; Rezwan, Kurosch
2015-01-02
Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self-assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (>1 μm) based on a single kind of particle; however, the intrinsic building-block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor-made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fire-retardant decorative inks for aircraft interiors
NASA Technical Reports Server (NTRS)
Nir, Z.; Mikroyannidis, J. A.; Kourtides, D. A.
1984-01-01
Commercial and experimental fire retardants were screened for possible use wiith acrylic printing inks on aircraft interior sandwich panels. The fire retardants were selected according to their physical properties and thermostabilities. Thermostabilities were determined by thermogravimetric analysis and differential scanning calorimetry. A criterion was then established for selecting the more stable agent. Results show that some of the bromine-containing fire retardants are more thermostable than the acrylic ink, alone, used as a control. Also, the bromine-containing fire retardants yield even better limiting oxygen index values when tested after adding carboxy-terminated butadiene acrylonitrile (CTBN) rubber.
Zhang, Shanxin; Zhou, Zhiping; Chen, Xinmeng; Hu, Yong; Yang, Lindong
2017-08-07
DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulation. It is helpful for discovering CREs by recognition of DHSs in genome. To accelerate the investigation, it is an important complement to develop cost-effective computational methods to identify DHSs. However, there is a lack of tools used for identifying DHSs in plant genome. Here we presented pDHS-SVM, a computational predictor to identify plant DHSs. To integrate the global sequence-order information and local DNA properties, reverse complement kmer and dinucleotide-based auto covariance of DNA sequences were applied to construct the feature space. In this work, fifteen physical-chemical properties of dinucleotides were used and Support Vector Machine (SVM) was employed. To further improve the performance of the predictor and extract an optimized subset of nucleotide physical-chemical properties positive for the DHSs, a heuristic nucleotide physical-chemical property selection algorithm was introduced. With the optimized subset of properties, experimental results of Arabidopsis thaliana and rice (Oryza sativa) showed that pDHS-SVM could achieve accuracies up to 87.00%, and 85.79%, respectively. The results indicated the effectiveness of proposed method for predicting DHSs. Furthermore, pDHS-SVM could provide a helpful complement for predicting CREs in plant genome. Our implementation of the novel proposed method pDHS-SVM is freely available as source code, at https://github.com/shanxinzhang/pDHS-SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recombination rate predicts inversion size in Diptera.
Cáceres, M; Barbadilla, A; Ruiz, A
1999-01-01
Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710
Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes
Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung
2013-01-01
New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor. PMID:23736838
NASA Astrophysics Data System (ADS)
Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.
2018-04-01
Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.
Investigating the Relation between Sunspots and Umbral Dots
NASA Astrophysics Data System (ADS)
Yadav, Rahul; Louis, Rohan E.; Mathew, Shibu K.
2018-03-01
Umbral dots (UDs) are transient, bright features observed in the umbral region of a sunspot. We study the physical properties of UDs observed in sunspots of different sizes. The aim of our study is to relate the physical properties of UDs with the large-scale properties of sunspots. For this purpose, we analyze high-resolution G-band images of 42 sunspots observed by Hinode/SOT, located close to disk center. The images were corrected for instrumental stray light and restored with the modeled point-spread function. An automated multilevel tracking algorithm was employed to identify the UDs located in selected G-band images. Furthermore, we employed Solar Dynamics Observatory/HMI, limb-darkening-corrected, full-disk continuum images to estimate the sunspot phase and epoch for the selected sunspots. The number of UDs identified in different umbrae exhibits a linear relation to the umbral size. The observed filling factor ranges from 3% to 7% and increases with the mean umbral intensity. Moreover, the filling factor shows a decreasing trend with the umbral size. We also found that the observed mean and maximum intensities of UDs are correlated with the mean umbral intensity. However, we do not find any significant relationship between the mean (and maximum) intensity and effective diameter of UDs and the sunspot area, epoch, and decay rate. We suggest that this lack of relation could be due to either the distinct transition of spatial scales associated with overturning convection in the umbra or the shallow depth associated with UDs, or both.
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.
Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng
2018-01-01
In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.
Flagella, flexibility and flow: Physical processes in microbial ecology
NASA Astrophysics Data System (ADS)
Brumley, D. R.; Rusconi, R.; Son, K.; Stocker, R.
2015-12-01
How microorganisms interact with their environment and with their conspecifics depends strongly on their mechanical properties, on the hydrodynamic signatures they generate while swimming and on fluid flows in their environment. The rich fluid-structure interaction between flagella - the appendages microorganisms use for propulsion - and the surrounding flow, has broad reaching effects for both eukaryotic and prokaryotic microorganisms. Here, we discuss selected recent advances in our understanding of the physical ecology of microorganisms, which have hinged on the ability to directly interrogate the movement of individual cells and their swimming appendages, in precisely controlled fluid environments, and to image them at appropriately fast timescales. We review how a flagellar buckling instability can unexpectedly serve a fundamental function in the motility of bacteria, we elucidate the role of hydrodynamics and flexibility in the emergent properties of groups of eukaryotic flagella, and we show how fluid flows characteristic of microbial habitats can strongly bias the migration and spatial distribution of bacteria. The topics covered here are illustrative of the potential inherent in the adoption of experimental methods and conceptual frameworks from physics in understanding the lives of microorganisms.
Geotechnical sensing using electromagnetic attenuation between radio transceivers
NASA Astrophysics Data System (ADS)
Ghazanfari, Ehsan; Pamukcu, Sibel; Yoon, Suk-Un; Suleiman, Muhannad T.; Cheng, Liang
2012-12-01
Monitoring the onset of a geo-event such as the intrusion of a chemical plume or a slow progressive mass slide that results in marked changes in the physical properties of the host soil could be potentially accomplished using a distributed network of embedded radio transceivers. This paper introduces a new concept of subsurface geo-event monitoring, which takes advantage of the spatial and temporal variations in signal strength of electromagnetic (EM) waves transmitted within the net of distributed radios within a sensing area. Results of experiments in the laboratory and the field demonstrated that variations in EM signal strength could be used to detect physical changes in the subsurface. Changes in selected physical properties of host soil including water content, density, and formation of discontinuities could be discerned from the changes in the signal strength of the transmitted wave between embedded radio transceivers. Good agreement was observed between a theoretical model and the experimental results for inter-transceiver distances less than 55 cm. These results demonstrated a viable new approach for distributed sensing and monitoring of subsurface hazards for civil infrastructure within a networked domain of radio transceivers.
Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine
The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less
Wang, Han; Nakamura, Haruki; Fukuda, Ikuo
2016-03-21
We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm(-1) for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.
Characterization of active paper packaging incorporated with ginger pulp oleoresin
NASA Astrophysics Data System (ADS)
Wiastuti, T.; Khasanah, L. U.; Atmaka Kawiji, W.; Manuhara, G. J.; Utami, R.
2016-02-01
Utilization of ginger pulp waste from herbal medicine and instant drinks industry in Indonesia currently used for fertilizer and fuel, whereas the ginger pulp still contains high oleoresin. Active paper packaging were developed incorporated with ginger pulp oleoresin (0%, 2%, 4%, and 6% w/w). Physical (thickness, tensile strength, and folding endurance, moisture content), sensory characteristics and antimicrobial activity of the active paper were evaluated. Selected active paper then were chemically characterized (functional groups). The additional of ginger pulp oleoresin levels are reduced tensile strength, folding endurance and sensory characteristic (color, texture and overall) and increased antimicrobial activity. Due to physical, sensory characteristic and antimicrobial activity, active paper with 2% ginger pulp oleoresin incorporation was selected. Characteristics of selected paper were 9.93% of water content; 0.81 mm of thickness; 0.54 N / mm of tensile strength; 0.30 of folding endurance; 8.43 mm inhibits the growth of Pseudomonas fluorescence and 27.86 mm inhibits the growth of Aspergillus niger (antimicrobial activity) and neutral preference response for sensory properties. For chemical characteristic, selected paper had OH functional group of ginger in 3422.83 cm-1 of wave number and indicated contain red ginger active compounds.
Physical biology of human brain development.
Budday, Silvia; Steinmann, Paul; Kuhl, Ellen
2015-01-01
Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Hyder, L. K.; Baxter, P. M.
1989-07-01
One objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory has been to examine end-member shales to develop a data base that will aid in evaluations if shales are ever considered as a repository host rock. Five end-member shales were selected for comprehensive characterization: the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. Detailed micromorphological and mineralogical characterizations of the shales were completed by Lee et al. (1987) in ORNL/TM-10567. Thismore » report is a supplemental characterization study that was necessary because second batches of the shale samples were needed for additional studies. Selected physical, chemical, and mineralogical properties were determined for the second batches; and their properties were compared with the results from the first batches. Physical characterization indicated that the second-batch and first-batch samples had a noticeable difference in apparent-size distributions but had similar primary-particle-size distributions. There were some differences in chemical composition between the batches, but these differences were not considered important in comparison with the differences among the end-member shales. The results of x-ray diffraction analyses showed that the second batches had mineralogical compositions very similar to the first batches. 9 refs., 9 figs., 4 tabs.« less
Assessment of relative flammability and thermochemical properties of some thermoplastic materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.
El-Hadidy, Gladious Naguib; Ibrahim, Howida Kamal; Mohamed, Magdi Ibrahim; El-Milligi, Mohamed Farid
2012-01-01
This work was undertaken to investigate microemulsion (ME) as a topical delivery system for the poorly water-soluble voriconazole. Different ME components were selected for the preparation of plain ME systems with suitable rheological properties for topical use. Two permeation enhancers were incorporated, namely sodium deoxycholate or oleic acid. Drug-loaded MEs were evaluated for their physical appearance, pH, rheological properties and in vitro permeation studies using guinea pig skin. MEs based on polyoxyethylene(10)oleyl ether (Brij 97) as the surfactant showed pseudoplastic flow with thixotropic behavior and were loaded with voriconazole. Jojoba oil-based MEs successfully prolonged voriconazole release up to 4 h. No significant changes in physical or rheological properties were recorded on storage for 12 months at ambient conditions. The presence of permeation enhancers favored transdermal rather than dermal delivery. Sodium deoxycholate was more effective than oleic acid for enhancing the voriconazole permeation. Voriconazole-loaded MEs, with and without enhancers, showed significantly better antifungal activity against Candida albicans than voriconazole supersaturated solution. In conclusion, the studied ME formulae could be promising vehicles for topical delivery of voriconazole.
The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.
Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu
2017-01-07
In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.
The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt
Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu
2017-01-01
In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained. PMID:28772406
Ding, X; Liang, X; Chao, Y; Han, X
2000-06-01
To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P < 0.05). There was no significant difference among the linear shrinkage ratios of three different titanium powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P < 0.05). 2. The opening porosity of specimens decreased with the increased compacted pressure(P < 0.05). Three different sized particle of titanium powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.
Physical properties of evaporite minerals
Robertson, Eugene C.
1962-01-01
The data in the following tables were abstracted from measurements of physical properties of evaporite minerals or of equivalent synthetic compounds. The compounds considered are the halide and sulfate salts which supposedly precipitated from evaporating ocean water and which form very extensive and thick "rock salt" beds. These beds are composed almost entirely of NaCl. In places where the beds are deeply buried and where fractures occur in the overlying rocks, the salt is plastically extruded upward as in a pipe to form the "salt domes". Most of the tables are for NaCl, both the natural (halite) and the synthetic salt, polycrystalline and single crystals. These measurements have been collected for use 1) in studies on storage of radioactive wastes in salt domes or beds, 2) in calculations concerned with nuclear tests in salt domes and beds, and 3) in studies of phenomena in salt of geologic interest. Rather than an exhaustive compilation of physical property measurements, there tables represent a summary of data from accessible sources. As limitations of time have presented making a more systematic and comprehensive selection, the data given may seem arbitrarily chosen. Some of the data listed are old, and newer, more accurate data are undoubtedly available. Halite (an synthetic NaCl) has been very thoroughly studied because of its relatively simple and highly symmetrical crystal structure, its easy availability naturally or synthetically, both in single crystals and polycrystalline, its useful and scientifically interesting properties, and its role as a compound of almost purely ionic bonding. The measurements of NaCl in the tables, however, represent only a small part of the total number of observations; discrimination was necessary to keep the size of the tabulations manageable. The physical properties of the evaporite minerals other than halite and sylvite have received only desultory attention of experiementalists, and appear in only a few tables. The effects of temperature, hydrostatic pressure, stress difference, and other mechanical, eletrical, and optical conditions on the physical properties have probably been observed more completely on NaCl than on any other solid substance, which makes it a unique and important substance. Several new and important phenomena have been observed first on it. The mechanical properties of NaCl, for example, depend very strongly on the condition and the composition of the gas or liquid in contact with the sample surface; the data are sparse as yet and are not reported here.
Berková, M; Topinková, E; Mádlová, P; Klán, J; Vlachová, M; Běláček, J
2013-04-01
Population ageing increases number of seniors with decline of physical capabilities and functional deficits. Targeted interventions to maintain or increase physical performance are most effective before the development of full frailty, in so-called "prefrail" period. One of the assessment tools for evaluation of the physical performance and/ or frailty in older persons is the "Short Physical Performance Battery" - SPPB. The aim of the study was to introduce the assessment battery to clinical practice in the CR and to evaluate its selected psychometric properties. Original English SPPB was translated into Czech language and back translated to ensure linguistic accuracy. SPPB was applied in the selected sample of older persons and validated against other performance tools for cognition, self- care and nutrition status used in CR and selected psychometric properties evaluated. We examined 145 older persons (108 women, i.e. 74.48 % and 37 men, i.e. 25.52 %) mean age 80.38 years (54- 101 years, SD ± 8,47). We found good physical performance in 35 (24.1 %) older persons (SPPB 10- 12 points), 21 (14.5 %) were identified as prefrail (SPPB 7- 9 points) and 89 (61.4 %) as frail in high risk of future disability or already disabled (SPPB 6 points). We found statistically significant correlation of global SPPB score with nutritional status (MNA- Short Form), activities of daily living performance (ADL) and cognitive performance (MMSE) - (Spearman correlation ρ = 0.51; 0.53 and 0.38 respectively). The Cronbachs a for SPPB variables scored 0.821, which is consistent with good internal consistency of SPPB battery. When evaluating 3 age groups [ 75 years (n = 41), 76- 85 (n = 62) and 86- 101 years (n = 42)] the most significant correlations were found between SPPB and MNA, ADL and MMSE in the young elderly (ρ = 0.74, 0.79 and 0.64 respectively) and they diminished with increasing age. We confirmed significant correlations between SPPB and self care activities, cognitive performance and nutritional status and good internal consistency of the battery. SPPB test is simple, easy to perform, with low time and cost requirements. It could be recommended for clinical practice in both community and hospitalized older patients to evaluate their overall physical performance and identify persons at risk of frailty and disability who may profit from targeted interventions.
NASA Astrophysics Data System (ADS)
Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio
2017-04-01
Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable variation was recorded in total C and N pools. Interestingly, amendment with digestate altered the soil microbial community size in both soils as MBC and MBN were increased, although the response was more evident in the clay soil (olive) than in the sandy loam (citrus) one. The considerably higher qM observed in the clay soil suggests that the C mineralization was selectively stimulated in this soil. This finding was confirmed by the increase of CO2 emissions. As a whole our results show that digestate application selectively stimulated soil C dynamics and determined an unbalanced nutrient release, strongly depending on the soil physical-chemical properties. The use of digestate can therefore represent an interesting strategy for managing the soil fertility in Mediterranean agroecosystem soils, provided that digestate and recipient soil properties are carefully taken into account.
The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers
NASA Astrophysics Data System (ADS)
Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.
2016-01-01
Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.
Grave, Daniel A; Yatom, Natav; Ellis, David S; Toroker, Maytal Caspary; Rothschild, Avner
2018-03-05
In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E
2017-10-01
Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spray Drying of Spinach Juice: Characterization, Chemical Composition, and Storage.
Çalışkan Koç, Gülşah; Nur Dirim, Safiye
2017-12-01
The 1st aim of this study is to determine the influence of inlet and outlet air temperatures on the physical and chemical properties of obtained powders from spinach juice (SJ) with 3.2 ± 0.2 °Brix (°Bx). Second, the effect of 3 different drying agents (maltodextrin, whey powder, and gum Arabic) on the same properties was investigated for the selected inlet/outlet temperatures (160/100 °C) which gives the minimum moisture content and water activity values. For this purpose, the total soluble solid content of SJ was adjusted to 5.0 ± 0.2 °Bx with different drying agents. Finally, the effects of different storage conditions (4, 20, and 30 °C) on the physical and chemical properties of spinach powders (SPs) produced at selected conditions were examined. A pilot scale spray dryer was used at 3 different inlet/outlet air temperatures (160 to 200 °C/80 to 100 °C) where the outlet air temperature was controlled by regulating the feed flow rate. Results showed that the moisture content, water activity, browning index, total chlorophyll, and total phenolic contents of the SP significantly decreased and pH and total color change of the SP significantly increased by the addition of different drying agents (P < 0.05). In addition, the changes in the above-mentioned properties were determined during the storage period, at 3 different temperatures. It was also observed that the vitamin C, β-carotene, chlorophyll, and phenolic compounds retention showed first-order degradation kinetic with activation energy of 32.6840, 10.2736, 27.7031, and 28.2634 kJ/K.mol, respectively. © 2017 Institute of Food Technologists®.
Formation enthalpies for transition metal alloys using machine learning
NASA Astrophysics Data System (ADS)
Ubaru, Shashanka; Miedlar, Agnieszka; Saad, Yousef; Chelikowsky, James R.
2017-06-01
The enthalpy of formation is an important thermodynamic property. Developing fast and accurate methods for its prediction is of practical interest in a variety of applications. Material informatics techniques based on machine learning have recently been introduced in the literature as an inexpensive means of exploiting materials data, and can be used to examine a variety of thermodynamics properties. We investigate the use of such machine learning tools for predicting the formation enthalpies of binary intermetallic compounds that contain at least one transition metal. We consider certain easily available properties of the constituting elements complemented by some basic properties of the compounds, to predict the formation enthalpies. We show how choosing these properties (input features) based on a literature study (using prior physics knowledge) seems to outperform machine learning based feature selection methods such as sensitivity analysis and LASSO (least absolute shrinkage and selection operator) based methods. A nonlinear kernel based support vector regression method is employed to perform the predictions. The predictive ability of our model is illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate the model using the formation enthalpies calculated using a model by Miedema, which is a popular semiempirical model used for the prediction of formation enthalpies of metal alloys.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.
Dumarey, Melanie; Wikström, Håkan; Fransson, Magnus; Sparén, Anders; Tajarobi, Pirjo; Josefson, Mats; Trygg, Johan
2011-09-15
Roll compaction is gaining importance in pharmaceutical industry for the dry granulation of heat or moisture sensitive powder blends with poor flowing properties prior to tabletting. We studied the influence of microcrystalline cellulose (MCC) properties on the roll compaction process and the consecutive steps in tablet manufacturing. Four dissimilar MCC grades, selected by subjecting their physical characteristics to principal components analysis, and three speed ratios, i.e. the ratio of the feed screw speed and the roll speed of the roll compactor, were included in a full factorial design. Orthogonal projection to latent structures was then used to model the properties of the resulting roll compacted products (ribbons, granules and tablets) as a function of the physical MCC properties and the speed ratio. This modified version of partial least squares regression separates variation in the design correlated to the considered response from the variation orthogonal to that response. The contributions of the MCC properties and the speed ratio to the predictive and orthogonal components of the models were used to evaluate the effect of the design variation. The models indicated that several MCC properties, e.g. bulk density and compressibility, affected all granule and tablet properties, but only one studied ribbon property: porosity. After roll compaction, Ceolus KG 1000 resulted in tablets with obvious higher tensile strength and lower disintegration time compared to the other MCC grades. This study confirmed that the particle size increase caused by roll compaction is highly responsible for the tensile strength decrease of the tablets. Copyright © 2011 Elsevier B.V. All rights reserved.
Preparation and evaluation of gelling granules to improve oral administration.
Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae
2015-06-01
We investigated the preparation of oral granules that are solid when stored and that will swell and gel via water absorption, to address problems experienced by patients when taking medication. Important physical properties of gelling granules include elasticity that is normally smooth, quick water absorption and swelling properties that allow easy swallowing. We selected gelatin (GEL), succinylated gelatin (SUC-GEL) and ι-carrageenan (CAR) as matrix polymers that can undergo gelation at room temperature or at cold temperatures. Saccharide and polyethylene glycol (PEG) were added to prepare the experimental granules. The best matrix gelling granule was SUC-GEL. When xylitol (XYL), sorbitol (SOR) and maltitol (MAL) were added, elasticity was improved, and PEG improved the granule's water absorption behavior, which is an important element involved in gelation. The best granules were prepared by selecting SUC-GEL as the matrix and adding a small amount of PEG and XYL in amounts equal to that of SUC-GEL.
Lawrence, Stephen J.
2006-01-01
This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.
Sharma, Vikas K.; Patapoff, Thomas W.; Kabakoff, Bruce; Pai, Satyan; Hilario, Eric; Zhang, Boyan; Li, Charlene; Borisov, Oleg; Kelley, Robert F.; Chorny, Ilya; Zhou, Joe Z.; Dill, Ken A.; Swartz, Trevor E.
2014-01-01
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. PMID:25512516
Physical properties of distant red galaxies in the COSMOS/UltraVISTA field
NASA Astrophysics Data System (ADS)
Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu
2015-10-01
We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.
NASA Astrophysics Data System (ADS)
Noe, Frank
To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.
Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture
NASA Astrophysics Data System (ADS)
Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan
2017-05-01
Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.
Properties of DRGs, LBGs, and BzK Galaxies in the GOODS South Field
NASA Astrophysics Data System (ADS)
Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Santini, P.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.
2007-12-01
We use the GOODS-MUSIC catalog with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, and spectroscopic or accurate photometric redshifts to select samples of BM/BX/LBGs, DRGs, and BzK galaxies. We discuss the overlap and the limitations of these selection criteria, which can be overcome with a criterion based on physical parameters (age and star formation timescale). We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. We also find that LBGs and DRGs contribute almost equally to the global Stellar Mass Density (SMD) at z≥ 2 and in general that star forming galaxies form a substantial fraction of the universal SMD.
A review on green synthesis of silver nanoparticles and their applications.
Rafique, Muhammad; Sadaf, Iqra; Rafique, M Shahid; Tahir, M Bilal
2017-11-01
Development of reliable and eco-accommodating methods for the synthesis of nanoparticles is a vital step in the field of nanotechnology. Silver nanoparticles are important because of their exceptional chemical, physical, and biological properties, and hence applications. In the last decade, numerous efforts were made to develop green methods of synthesis to avoid the hazardous byproducts. This review describes the methods of green synthesis for Ag-NPs and their numerous applications. It also describes the comparison of efficient synthesis methods via green routes over physical and chemical methods, which provide strong evidence for the selection of suitable method for the synthesis of Ag-NPs.
Low-mass materials and vertex detector systems
Cooper, William E.
2014-01-01
Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing newmore » materials.« less
Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking
Rave, Terence W.
1979-01-01
Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.
Catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels are described. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. Also described are process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.
CloudSat system engineering: techniques that point to a future success
NASA Technical Reports Server (NTRS)
Basilio, R. R.; Boain, R. J.; Lam, T.
2002-01-01
Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.
The large-scale structure of the asteroid belt
NASA Technical Reports Server (NTRS)
Zellner, B.; Thirunagari, A.; Bender, D.
1985-01-01
The distributions of 2888 numbered minor planets over orbital inclination, eccentricity, and semimajor axis are examined, and 19 zones believed to adequately isolate the selection biases in survey programs of the physical properties of minor planets are defined. Six numbered asteroids have exceptional orbits and fall into no zone. Attention is called to rather sharp upper limits, which become increasingly stringent at larger heliocentric distances, on orbital inclinations and eccentricity.
Production of bio-oil from underutilized forest biomass using an auger reactor
H. Ravindran; S. Thangalzhy-Gopakumar; S. Adhikari; O. Fasina; M. Tu; B. Via; E. Carter; S. Taylor
2015-01-01
Conversion of underutilized forest biomass to bio-oil could be a niche market for energy production. In this work, bio-oil was produced from underutilized forest biomass at selected temperatures between 425â500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, heating value, ash, and water, were analyzed and compared with an ASTM standard...
Lee, Chong Hyun; Jones, David K; Ahern, Christopher; Sarhan, Maen F; Ruben, Peter C
2011-01-01
Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage-gated sodium channels (NaV). TTX binding physically blocks the flow of sodium ions through NaV, thereby preventing action potential generation and propagation. TTX has different binding affinities for different NaV isoforms. These differences are imparted by amino acid substitutions in positions within, or proximal to, the TTX-binding site in the channel pore. These substitutions confer TTX-resistance to a variety of species. The garter snake Thamnophis sirtalis has evolved TTX-resistance over the course of an arms race, allowing some populations of snakes to feed on tetrodotoxic newts, including Taricha granulosa. Different populations of the garter snake have different degrees of TTX-resistance, which is closely related to the number of amino acid substitutions. We tested the biophysical properties and ion selectivity of NaV of three garter snake populations from Bear Lake, Idaho; Warrenton, Oregon; and Willow Creek, California. We observed changes in gating properties of TTX-resistant (TTXr) NaV. In addition, ion selectivity of TTXr NaV was significantly different from that of TTX-sensitive NaV. These results suggest TTX-resistance comes at a cost to performance caused by changes in the biophysical properties and ion selectivity of TTXr NaV.
Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan
2015-06-01
This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
Mullen, Lewis; Stamp, Robin C; Brooks, Wesley K; Jones, Eric; Sutcliffe, Christopher J
2009-05-01
In this study, a novel porous titanium structure for the purpose of bone in-growth has been designed, manufactured and evaluated. The structure was produced by Selective Laser Melting (SLM); a rapid manufacturing process capable of producing highly intricate, functionally graded parts. The technique described utilizes an approach based on a defined regular unit cell to design and produce structures with a large range of both physical and mechanical properties. These properties can be tailored to suit specific requirements; in particular, functionally graded structures with bone in-growth surfaces exhibiting properties comparable to those of human bone have been manufactured. The structures were manufactured and characterized by unit cell size, strand diameter, porosity, and compression strength. They exhibited a porosity (10-95%) dependant compression strength (0.5-350 Mpa) comparable to the typical naturally occurring range. It is also demonstrated that optimized structures have been produced that possesses ideal qualities for bone in-growth applications and that these structures can be applied in the production of orthopedic devices. (c) 2008 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lingxiang; Omid, Maryam; Lin, Haiqing
Cross-linking has been widely utilized to modify polyimide nanostructures for membrane gas separations, such as increasing size sieving ability and diffusivity selectivity for H2/CO2 and CO2/CH4 separation, and improving resistance to plasticization derived from CO2 and heavy hydrocarbons for CO2/CH4 and C3H6/C3H8 separations. However, there is a lack of fundamental understanding of the relationship between cross linked structure and membrane gas separation properties. This chapter critically reviews the effect of cross linking on polymer physical properties (such as glass transition temperature, Tg), and current strategies adopted to cross link polyimides for membrane gas separation. The information is synthesized to elucidatemore » the effect of cross linking on Tg and cross linking density in polyimides, which is then used to interpret the changes of gas permeability and selectivity. The benefits of cross linking in improving gas separation properties are also illustrated in Robeson’s upper bound plots for H2/CO2, CO2/CH4 and C3H6/C3H8 separation.« less
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
2017-03-30
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
Wu, Yu-Tzu; Nash, Paul; Barnes, Linda E; Minett, Thais; Matthews, Fiona E; Jones, Andy; Brayne, Carol
2014-10-22
An association between depressive symptoms and features of built environment has been reported in the literature. A remaining research challenge is the development of methods to efficiently capture pertinent environmental features in relevant study settings. Visual streetscape images have been used to replace traditional physical audits and directly observe the built environment of communities. The aim of this work is to examine the inter-method reliability of the two audit methods for assessing community environments with a specific focus on physical features related to mental health. Forty-eight postcodes in urban and rural areas of Cambridgeshire, England were randomly selected from an alphabetical list of streets hosted on a UK property website. The assessment was conducted in July and August 2012 by both physical and visual image audits based on the items in Residential Environment Assessment Tool (REAT), an observational instrument targeting the micro-scale environmental features related to mental health in UK postcodes. The assessor used the images of Google Street View and virtually "walked through" the streets to conduct the property and street level assessments. Gwet's AC1 coefficients and Bland-Altman plots were used to compare the concordance of two audits. The results of conducting the REAT by visual image audits generally correspond to direct observations. More variations were found in property level items regarding physical incivilities, with broad limits of agreement which importantly lead to most of the variation in the overall REAT score. Postcodes in urban areas had lower consistency between the two methods than rural areas. Google Street View has the potential to assess environmental features related to mental health with fair reliability and provide a less resource intense method of assessing community environments than physical audits.
Transport, behavior, and fate of volatile organic compounds in streams
Rathbun, R.E.
1998-01-01
Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.
1994-03-01
PARAMETER FOR K-125 POLYMER Molar p, volume, Polymer g/co cc 8d 5p 8• PMMA 1.17 86.5 16.5 5.7 9.0 19.7 PnPrMA 1.08 118.7 16.6 4.1 7.7 18.8 PnBuMA 1.05 135.2...with an usable fluid range. The limited toxicological data (Ref. 2) shows that the compounds have low acute toxicity and are only mildly irritating...expected from the similarity in structure and the similarity in physical properties that its toxicological properties will be quite like those of sulfolane
On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?
NASA Astrophysics Data System (ADS)
Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas
2014-11-01
Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.
The influence of high temperatures on selected properties of calcium aluminous composites
NASA Astrophysics Data System (ADS)
KoÅáková, Dana; KoÅ¥átková, Jaroslava; Čáchová, Monika; Vejmelková, Eva; Čechmánek, René; Reiterman, Pavel; Černý, Robert
2017-07-01
The article compares different types of aluminate cements with the reference Portland cement, used in refractory composites. The rate of influence of elevated temperatures (400 °C and 1000 °C) is studied. The investigated parameters are basic physical characteristics and mechanical properties. Results show the best behaviour of the mixture containing Portland cement for the reference state (in the means of all studied parameters); which however after exposition to 1000 °C has the worst performance. Both aluminate cements behave better after heating, which proves its suitability for refractory composites. It is concluded, that the mixture with Gorkal cement achieves the best results.
Crain, Angela S.; Martin, Gary R.
2009-01-01
Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among stations. Flow-adjustment procedures were used with these techniques at all stations to remove the effects of streamflow on water-quality variability. Flow adjustments were used for all constituents, except temperature. A decreasing trend indicates a decrease in concentration of a particular constituent; whereas, an increasing trend indicates an increase in concentration and potential degradation in water quality. Trend results varied statewide by station and by physical property and water-quality constituent. The results for all stations and all physical properties and water-quality constituents examined had at least one statistically significant (p-value <0.05) increasing or decreasing trend during the specified period of record. Water temperature and concentrations of dissolved oxygen had no significant decreasing trends at any station. Water temperature had one significant increasing trend at the South Fork Cumberland River near Blue Heron station. Specific conductance and concentrations of hardness had one significant decreasing trend at the South Fork Cumberland River near Blue Heron station. pH also had a significant decreasing trend at the Mud River near Gus station. Concentrations of total suspended solids had 1 increasing trend at the Kentucky River at High Bridge station and 10 decreasing trends with 5 of those stations located in the Cumberland River Basin. Major ions analyzed for trends included chloride and sulfate. Concentrations of chloride at the 37 stations had increasing trends at 15 stations, decreasing trends at 3 stations, and no significant trend in concentration over time at 19 stations. Most of the increasing trends in concentrations of chloride are located in the northern part of Kentucky, possibly indicating an increase in the use of road salts for road deicing and (or) the result of resource extraction (oil, gas, and coal). Increasing trends of sulfate concentrations were detected at seven stations, all located in the Appalachian
Selecting and Certifying a Landing Site for Moonrise in South Pole-Aitken Basin
NASA Technical Reports Server (NTRS)
Jolliff, B.; Watkins, R.; Petro, N.; Moriarty, D.; Lawrence, S.; Head, J.; Pieters, C.; Hagerty, J.; Fergason, R.; Hare, T.;
2017-01-01
MoonRise is a New Frontiers mission concept to land in the South Pole-Aitken (SPA) basin, collect samples, and return the samples to Earth for detailed mineral, chemical, petrologic, geochronologic, and physical properties analyses to address science questions relevant to the early evolution of the Solar System and the Moon. Science associated with this mission concept is described elsewhere; here we discuss selection of sites within SPA to address science objectives using recent scientific studies (orbital spectroscopy, gravity, topography), and the use of new data (LRO) to certify safe landing sites for a robotic sample return mission such as MoonRise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.
2016-04-10
tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
Real-Time, Interactive Sonic Boom Display
NASA Technical Reports Server (NTRS)
Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)
2012-01-01
The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.
Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...
2016-02-03
Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C 2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al 2O 3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
NASA Astrophysics Data System (ADS)
Singh, Avneet
2017-01-01
Glitches in the rotational frequency of a spinning neutron star could be promising sources of gravitational wave signals lasting between a few microseconds to a few weeks. The emitted signals and their properties depend upon the internal properties of the neutron star. In neutron stars, the most important physical properties of the fluid core are the viscosity of the fluid, the stratification of flow in the equilibrium state, and the adiabatic sound speed. Such models were previously studied [C. A. van Eysden and A. Melatos, Classical Quantum Gravity 25, 225020 (2008, 10.1088/0264-9381/25/22/225020); M. F. Bennett, C. A. van Eysden, and A. Melatos, Mon. Not. R. Astron. Soc. 409, 1705 (2010), 10.1111/j.1365-2966.2010.17416.x] following simple assumptions on all contributing factors, in which the post-glitch relaxation phase could be driven by the well-known process of Ekman pumping [G. Walin, J. Fluid Mech. 36, 289 (1969, 10.1017/S0022112069001662); M. Abney and R. I. Epstein, J. Fluid Mech. 312, 327 (1996), 10.1017/S0022112096002030]. We explore the hydrodynamic properties of the flow of fluid during this phase following more relaxed assumptions on the stratification of flow and the pressure-density gradients within the neutron star than previously studied. We calculate the time scales of duration as well as the amplitudes of the resulting gravitational wave signals, and we detail their dependence on the physical properties of the fluid core. We find that it is possible for the neutron star to emit gravitational wave signals in a wide range of decay time scales and within the detection sensitivity of aLIGO for selected domains of physical parameters.
Abasi, Mohammad Hadi; Eslami, Ahmad Ali; Rakhshani, Fatemeh; Shiri, Mansoor
2016-01-01
Self-regulation is one of the current psychological concepts that have been known as a determinant of leisure time physical activity. Due to cultural and social diversity in different societies and age groups, application of specific questionnaires is essential to perform investigations about physical activities. The aim of this study is development and evaluation of psychometric properties of a self-regulation questionnaire about leisure time physical activity in Iranian male adolescents. This cross-sectional study was conducted in 2013, and data of 603 male students from 12 high schools in Isfahan were collected. A comprehensive literature review and similar questionnaire review were conducted and 25 items were selected or developed to measure self-regulation. Comprehensibility of items was evaluated in a pilot study and an expert panel evaluated face and content validity. Exploratory factors analysis (EFA) was used for evaluation of construct validity and extraction of sub-constructs of self-regulation. Leisure time physical activity was assessed using International Physical Activity Questionnaire (IPAQ). The mean age of the participants was 16.3 years (SD =1.0) and the range was 15-19 years. Cronbach's α coefficient of the questionnaire in the pilot and main study was 0.84 and 0.90, respectively. EFA resulted in four sub-constructs including "enlistment of social support", "goal setting", "self-construction", and "self-monitoring", which explained 63.6% of the variance of self-regulation. Results of this investigation provide some support to the validity and reliability of the 16-item questionnaire of self-regulation abut leisure time physical activity in the target group.
Adelmann, S; Schembecker, G
2011-08-12
Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.
The development of efficient X-ray conversion material for digital mammography
NASA Astrophysics Data System (ADS)
Oh, K.; Shin, J.; Kim, S.; Lee, Y.; Jeon, S.; Kim, J.; Nam, S.
2012-02-01
In this study, an experimental method based on theory is used to develop photoconductor that can replace the a-Se currently used as X-ray conversion layer in digital mammography. This is necessary because a-Se produced by the commercial fabrication method, of physical vapor deposition, has exhibited several problems when applied to digital mammography: instability due to crystallization and defect expansion due to high operating voltages, which is called the aging effect. Therefore, our work focused on developing a method of fabricating X-ray conversion films that do not suffer from crystallization and X-ray damage and optimizing the factors affecting the properties of the candidate photoconductors in order to acquire sufficient electrical signals to detect minute calcifications. The photoconductors were initially selected after the requirements for X-ray conversion materials, such as high atomic absorption, density, band-gap energy, work function, and resistivity, were examined. We selected HgI2, PbI2, and PbO because of their basic properties. Next, we experimentally investigated the performance of film samples fabricated by sedimentation and screen printing instead of physical vapor deposition. The structure of the X-ray conversion films (e.g., the thickness, electrodes, and blocking layer) were optimized for the application of a relatively low voltage to the X-ray conversion layer. The performance of the films were morphologically and electrically evaluated under mammography X-ray exposure conditions, and compared with those of a-Se films produced by physical vapor deposition. PbO appeared to be the most suitable alternative material because its electrical properties, such as the dark current, sensitivity, and signal-to-noise ratio (SNR), did not reveal the X-ray damage problem, and thus were maintained after repeated exposure to X-rays. Although PbO showed low sensitivity to X-ray exposure, its SNR was superior to that of the other materials, which is expected to improve its detective quantum efficiency, one of the factors used in evaluating images acquired by digital mammography.
Sexual networks: measuring sexual selection in structured, polyandrous populations.
McDonald, Grant C; James, Richard; Krause, Jens; Pizzari, Tommaso
2013-03-05
Sexual selection is traditionally measured at the population level, assuming that populations lack structure. However, increasing evidence undermines this approach, indicating that intrasexual competition in natural populations often displays complex patterns of spatial and temporal structure. This complexity is due in part to the degree and mechanisms of polyandry within a population, which can influence the intensity and scale of both pre- and post-copulatory sexual competition. Attempts to measure selection at the local and global scale have been made through multi-level selection approaches. However, definitions of local scale are often based on physical proximity, providing a rather coarse measure of local competition, particularly in polyandrous populations where the local scale of pre- and post-copulatory competition may differ drastically from each other. These limitations can be solved by social network analysis, which allows us to define a unique sexual environment for each member of a population: 'local scale' competition, therefore, becomes an emergent property of a sexual network. Here, we first propose a novel quantitative approach to measure pre- and post-copulatory sexual selection, which integrates multi-level selection with information on local scale competition derived as an emergent property of networks of sexual interactions. We then use simple simulations to illustrate the ways in which polyandry can impact estimates of sexual selection. We show that for intermediate levels of polyandry, the proposed network-based approach provides substantially more accurate measures of sexual selection than the more traditional population-level approach. We argue that the increasing availability of fine-grained behavioural datasets provides exciting new opportunities to develop network approaches to study sexual selection in complex societies.
Boyd, R.A.; Kuzniar, R.L.; Schulmeyer, P.M.
1999-01-01
The City of Cedar Rapids, Iowa obtains its municipal water supply from four well fields along the Cedar River. The wells are completed at depths of about 60 to 80 feet in a shallow alluvial aquifer adjacent to the Cedar River. The City of Cedar Rapids and the U.S. Geological Survey have conducted a cooperative study of the groundwater flow system and water quality near the well fields since 1992. The purpose of this report is to document selected hydrologic data collected from April 1996 through March 1999. Data include the results of water-quality analyses, ground-waterlevels continuously measured with pressure transducers and data recorders, and physical properties continuously monitored using multiprobe instruments. Water-quality samples were collected from selected wells and the Cedar River to conduct periodic monitoring, to evaluate ground-water geochemistry, to assess the occurrence of pesticides and herbicide degradates in the alluvial aquifer, and to characterize water quality in shallow ground water near a wetland area in the Seminole Well Field. Types of water-quality analyses included common ions (calcium, chloride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), trace elements (boron, bromide, and fluoride), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides and herbicide degradates. Ground-water levels in selected observation wells were continuously measured to assess temporal trends in groundwater levels in the alluvial aquifer and bedrock aquifer, to help calibrate a ground-water flow model being constructed to simulate local groundwater flow under transient conditions near the well fields, and to assess hydrologic conditions near a wetland area in the Seminole Well Field. Physical properties (specific conductance, pH, dissolved oxygen, and water temperature) were continuously monitored to assess temporal variation and to help evaluate the interaction between the Cedar River and ground water in the alluvial aquifer.
Generator Set Durability Testing Using 25% ATJ Fuel Blend
2016-02-01
Table Page Table 1. Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 3 Table 2... Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 4 Table 3. Chemical & Physical...Properties of Evaluated 25% ATJ Blend .................................................... 5 Table 4. Chemical & Physical Properties of Evaluated 25
Physical property measurements on analog granites related to the joint verification experiment
NASA Astrophysics Data System (ADS)
Martin, Randolph J., III; Coyner, Karl B.; Haupt, Robert W.
1990-08-01
A key element in JVE (Joint Verification Experiment) conducted jointly between the United States and the USSR is the analysis of the geology and physical properties of the rocks in the respective test sites. A study was initiated to examine unclassified crystalline rock specimens obtained from areas near the Soviet site, Semipalatinsk and appropriate analog samples selected from Mt. Katadin, Maine. These rocks were also compared to Sierra White and Westerly Granite which have been studied in great detail. Measurements performed to characterize these rocks were: (1) Uniaxial strain with simultaneous compressional and shear wave velocities; (2) Hydrostatic compression to 150 MPa with simultaneous compressional and shear wave velocities; (3) Attenuation measurements as a function of frequency and strain amplitude for both dry and water saturated conditions. Elastic moduli determined from the hydrostatic compression and uniaxial strain test show that the rock matrix/mineral properties were comparable in magnitudes which vary within 25 percent from sample to sample. These properties appear to be approximately isotropic, especially at high pressures. However, anisotropy evident for certain samples at pressures below 35 MPa is attributed to dominant pre-existing microcrack populations and their alignments. Dependence of extensional attenuation and Young's modulus on strain amplitude were experimentally determined for intact Sierra White granite using the hysteresis loop technique.
NASA Technical Reports Server (NTRS)
Seidel, A.; Soellner, W.; Stenzel, C.
2012-01-01
Electromagnetic levitation under microgravity provides unique opportunities for the investigation of liquid metals, alloys and semiconductors, both above and below their melting temperatures, with minimized disturbances of the sample under investigation. The opportunity to perform such experiments will soon be available on the ISS with the EML payload which is currently being integrated. With its high-performance diagnostics systems EML allows to measure various physical properties such as heat capacity, enthalpy of fusion, viscosity, surface tension, thermal expansion coefficient, and electrical conductivity. In studies of nucleation and solidification phenomena the nucleation kinetics, phase selection, and solidification velocity can be determined. Advanced measurement capabilities currently being studied include the measurement and control of the residual oxygen content of the process atmosphere and a complementary inductive technique to measure thermophysical properties.
Graphene-Based Materials for Biosensors: A Review
Suvarnaphaet, Phitsini; Pechprasarn, Suejit
2017-01-01
The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO), reduced graphene oxide (RGO) and graphene quantum dot (GQD). The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications. PMID:28934118
Investigation of Cd1-xMgxTe as possible materials for X and gamma ray detectors
NASA Astrophysics Data System (ADS)
Mycielski, Andrzej; Kochanowska, Dominika M.; Witkowska-Baran, Marta; Wardak, Aneta; Szot, Michał; Domagała, Jarosław; Witkowski, Bartłomiej S.; Jakieła, Rafał; Kowalczyk, Leszek; Witkowska, Barbara
2018-06-01
In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg) for X and gamma radiation detectors. Since we have had wide technological possibilities of preparing crystals and investigating their properties, we performed crystallizations of the crystals mentioned above. Thereafter, we investigated selected properties of the obtained materials. The crystallization processes were performed by using the Low Pressure Bridgman (LPB) method. The elements used: Cd, Te, Mg were of the highest purity available at present. In order to obtain reliable conclusions the crystallization processes were carried out at identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.
Selected Physical Properties of 2-Chloroethyl-3-Chloropropyl Sulfide (CECPRS)
2010-10-01
Analysis * For this work, a TA Instruments 910 Differential Scanning Calorimeter and 2200 Controller were used. Prior to sample measurements, the DSC...controlled mass flow rate over a known time, concentrated, and the mass quantified by GC-FID analysis . This step enables vapor pressure measurements for low...Bellefonte, PA), with a 1.0 (im RTx-1 ( polydimethylsiloxane ) stationary phase, was maintained at 40 °C for 2 min following sample introduction, then heated
Recovery Efficiency Test Project: Phase 1, Activity report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.
1988-04-01
This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.
Selected ground-water data, Chester County, Pennsylvania
Sloto, Ronald A.
1989-01-01
Hydrologic data for Chester County, Pennsylvania are given for 3,010 wells and 32 springs. Water levels are given for 48 observation wells measured monthly during 1936-86. Chemical analyses of ground water are given for major ions, physical properties, nutrients, metals and other trace constituents, volatile organic compounds, acid organic compounds, base-neutral organic compounds, organochlorine insecticides, polychlorinated biphenyls, polychlorinated napthalenes, organophosphorous insecticides, organic acid herbicides, triazine herbicides, other organic compounds, and radionuclides.
Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7
NASA Astrophysics Data System (ADS)
Vaona, L.; Ciroi, S.; Di Mille, F.; Cracco, V.; La Mura, G.; Rafanelli, P.
2012-12-01
Although the properties of the narrow-line region (NLR) of active galactic nuclei (AGN) have been deeply studied by many authors in the past three decades, many questions are still open. The main goal of this work is to explore the NLR of Seyfert galaxies by collecting a large statistical spectroscopic sample of Seyfert 2 and Intermediate-type Seyfert galaxies having a high signal-to-noise ratio in order to take advantage of a high number of emission lines to be accurately measured. 2153 Seyfert 2 and 521 Intermediate-type Seyfert spectra were selected from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) with a diagnostic diagram based on the oxygen emission-line ratios. All the emission lines, broad components included, were measured by means of a self-developed code, after the subtraction of the stellar component. Physical parameters, such as internal reddening, ionization parameter, temperature, density, gas and stellar velocity dispersion were determined for each object. Furthermore, we estimated mass and radius of the NLR, kinetic energy of the ionized gas and black hole accretion rate. From the emission-line analysis and the estimated physical properties, it appears that the NLR is similar in Seyfert 2 and Intermediate-Seyfert galaxies. The only differences, lower extinction, gas kinematics in general not dominated by the host galaxy gravitational potential and higher percentage of [O III]λ5007 blue asymmetries in Intermediate-Seyfert, can be ascribed to an effect of inclination of our line of sight with respect to the torus axis.
Physical-chemical property based sequence motifs and methods regarding same
Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX
2008-09-09
A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.
Assessing potential propulsion breakthroughs.
Millis, Marc G
2005-12-01
The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations have begun. During 1996-2002 NASA supported the breakthrough propulsion physics project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging, since the breakthroughs are still only notional concepts, but energy can serve as a basis for comparison. A hypothetical space drive would require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (1) research tasks are constrained to only address the immediate unknowns, curious effects, or critical issues; (2) reliability of assertions is more important than their implications; and (3) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.
Properties of conductive thick-film inks
NASA Technical Reports Server (NTRS)
Holtze, R. F.
1972-01-01
Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.
Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints
NASA Astrophysics Data System (ADS)
Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.
2016-02-01
During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.
Thermoplastic polymers for improved fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1976-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers that were evaluated included: acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonatepoly (dimethyl siloxane) block polymer, phenolphthalein bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative ranking of some of the flammability, smoke, and toxicity properties are presented.
Marshak Lectureship: Vibrational properties of isolated color centers in diamond
NASA Astrophysics Data System (ADS)
Alkauskas, Audrius
In this talk we review our recent work on first-principles calculations of vibrational properties of isolated defect spin qubits and single photon emitters in diamond. These properties include local vibrational spectra, luminescence lineshapes, and electron-phonon coupling. They are key in understanding physical mechanisms behind spin-selective optical initialization and read-out, quantum efficiency of single-photon emitters, as well as in the experimental identification of as yet unknown centers. We first present the methodology to calculate and analyze vibrational properties of effectively isolated defect centers. We then apply the methodology to the nitrogen-vacancy and the silicon-vacancy centers in diamond. First-principles calculations yield important new insights about these important defects. Work performed in collaboration with M. W. Doherty, A. Gali, E. Londero, L. Razinkovas, and C. G. Van de Walle. Supported by the Research Council of Lithuania (Grant M-ERA.NET-1/2015).
Biophysical Fitness Landscapes for Transcription Factor Binding Sites
Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.
2014-01-01
Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
Physical properties of z ~ 4 LBGs: differences between galaxies with and without Lyα emission
NASA Astrophysics Data System (ADS)
Pentericci, L.; Grazian, A.; Fontana, A.; Salimbeni, S.; Santini, P.; de Santis, C.; Gallozzi, S.; Giallongo, E.
2007-08-01
Aims:We analysed the physical properties of z ˜4 Lyman Break Galaxies observed in the GOODS-S survey, in order to investigate possible differences between galaxies where the Lyα is present in emission, and those where the line is absent or in absorption. Methods: The objects were selected from their optical color and then spectroscopically confirmed by Vanzella et al. (2005). From the public spectra we assessed the nature of the Lyα emission and divided the sample into galaxies with Lyα in emission and objects without a Lyα line (i.e. either absent or in absorption). We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, to study the observational properties of the galaxies, such as UV spectral slopes and optical to mid-infrared colors, and the possible differences between the two samples. Lastly, we used standard spectral fitting techniques to determine the physical properties of the galaxies, such as total stellar mass, stellar ages and so on, and again we looked at the possible differences between the two samples. Results: Our results indicate that LBG with Lyα in emission are on average a much younger and less massive population than the LBGs without Lyα emission. Both populations are forming stars very actively and are relatively dust free, although those with line emission seem to be even less dusty on average. We briefly discuss these results in the context of recent models for the evolution of Lyman break galaxies and Lyα emitters.
Data mining and statistical inference in selective laser melting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamath, Chandrika
Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less
Data mining and statistical inference in selective laser melting
Kamath, Chandrika
2016-01-11
Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less
Evolution of sparsity and modularity in a model of protein allostery
NASA Astrophysics Data System (ADS)
Hemery, Mathieu; Rivoire, Olivier
2015-04-01
The sequence of a protein is not only constrained by its physical and biochemical properties under current selection, but also by features of its past evolutionary history. Understanding the extent and the form that these evolutionary constraints may take is important to interpret the information in protein sequences. To study this problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by sequence analysis and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that is consistent with observations. The model illustrates how several independent functional modules may emerge within the same protein structure, depending on the nature of past environmental fluctuations. Our model thus relates the evolutionary history of proteins to the geometry of their functional constraints, with implications for decoding and engineering protein sequences.
Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Qing; Tebben, Andrew; Dyckman, Alaric J.
Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling amore » BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.« less
Bosquillon, C; Lombry, C; Préat, V; Vanbever, R
2001-02-23
The objective of this study was to determine the effects of formulation excipients and physical characteristics of inhalation particles on their in vitro aerosolization performance, and thereby to maximize their respirable fraction. Dry powders were produced by spray-drying using excipients that are FDA-approved for inhalation as lactose, materials that are endogenous to the lungs as albumin and dipalmitoylphosphatidylcholine (DPPC); and/or protein stabilizers as trehalose or mannitol. Dry powders suitable for deep lung deposition, i.e. with an aerodynamic diameter of individual particles <3 microm, were prepared. They presented 0.04--0.25 g/cm(3) bulk tap densities, 3--5 microm geometric particle sizes, up to 90% emitted doses and 50% respirable fractions in the Andersen cascade impactor using a Spinhaler inhaler device. The incorporation of lactose, albumin and DPPC in the formulation all improved the aerosolization properties, in contrast to trehalose and the mannitol which decreased powder flowability. The relative proportion of the excipients affected aerosol performance as well. The lower the bulk powder tap density, the higher the respirable fraction. Optimization of in vitro aerosolization properties of inhalation dry powders can be achieved by appropriately selecting composition and physical characteristics of the particles.
Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy.
Wang, Zechao; Tavabi, Amir H; Jin, Lei; Rusz, Ján; Tyutyunnikov, Dmitry; Jiang, Hanbo; Moritomo, Yutaka; Mayer, Joachim; Dunin-Borkowski, Rafal E; Yu, Rong; Zhu, Jing; Zhong, Xiaoyan
2018-03-01
In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties 1-3 , experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism 4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr 2 FeMoO 6 , opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude
2015-01-22
The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, anmore » optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.« less
Colloquium : Emergent properties in plane view: Strong correlations at oxide interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakhalian, Jak; Freeland, John W.; Millis, Andrew J.
2014-10-01
Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics, and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. This Colloquium illustrates the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergentmore » properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises, and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical, or optical boundary conditions and excitations.« less
Valley excitons in two-dimensional semiconductors
Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...
2014-12-30
Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less
GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.
2015-08-01
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.
Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Aff004
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2005-01-01
An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachel, Shawn J.; Zerbinatti, Celina; Rudd, Michael T.
2016-04-14
Herein, we describe the development of a functionally selective liver X receptor β (LXRβ) agonist series optimized for Emax selectivity, solubility, and physical properties to allow efficacy and safety studies in vivo. Compound 9 showed central pharmacodynamic effects in rodent models, evidenced by statistically significant increases in apolipoprotein E (apoE) and ATP-binding cassette transporter levels in the brain, along with a greatly improved peripheral lipid safety profile when compared to those of full dual agonists. These findings were replicated by subchronic dosing studies in non-human primates, where cerebrospinal fluid levels of apoE and amyloid-β peptides were increased concomitantly with anmore » improved peripheral lipid profile relative to that of nonselective compounds. These results suggest that optimization of LXR agonists for Emax selectivity may have the potential to circumvent the adverse lipid-related effects of hepatic LXR activity.« less
NASA Astrophysics Data System (ADS)
Gesing, Adam J.; Das, Subodh K.
2017-02-01
With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale
NASA Astrophysics Data System (ADS)
Qian, Ke-Ran; He, Zhi-Liang; Chen, Ye-Quan; Liu, Xi-Wu; Li, Xiang-Yang
2017-12-01
The construction of a shale rock physics model and the selection of an appropriate brittleness index ( BI) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the selfconsistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BI. Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction.
The ambiguity of simplicity in quantum and classical simulation
NASA Astrophysics Data System (ADS)
Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.
2017-04-01
A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.
Physical and chemical characterization of biochars derived from different agricultural residues
NASA Astrophysics Data System (ADS)
Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T.
2014-12-01
Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, which are strongly related to the type of the initial material used and pyrolysis conditions, is crucial to identify the most suitable application of biochar in soil. A selection of organic wastes with different characteristics (e.g., rice husk (RH), rice straw (RS), wood chips of apple tree (Malus pumila) (AB), and oak tree (Quercus serrata) (OB)) were pyrolyzed at different temperatures (400, 500, 600, 700, and 800 °C) in order to optimize the physicochemical properties of biochar as a soil amendment. Low-temperature pyrolysis produced high biochar yields; in contrast, high-temperature pyrolysis led to biochars with a high C content, large surface area, and high adsorption characteristics. Biochar obtained at 600 °C leads to a high recalcitrant character, whereas that obtained at 400 °C retains volatile and easily labile compounds. The biochar obtained from rice materials (RH and RS) showed a high yield and unique chemical properties because of the incorporation of silica elements into its chemical structure. The biochar obtained from wood materials (AB and OB) showed high carbon content and a high absorption character.
Environmentally Friendly Corrosion Preventative Compounds
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela
2012-01-01
The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.
Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Feroz, F.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rozo, E.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Rykoff, E. S.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savelainen, M.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Wright, E. L.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.
Planck 2015 results: XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-09-20
Here, we present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that themore » estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.« less
Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines
NASA Astrophysics Data System (ADS)
Raouafi, Nour E.; Riley, Pete; Gibson, Sarah; Fineschi, Silvano; Solanki, Sami K.
2016-06-01
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the HI Ly-α and the He I 10830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.
Incorporation of nanoparticles into polymersomes: size and concentration effects.
Jaskiewicz, Karmena; Larsen, Antje; Schaeffel, David; Koynov, Kaloian; Lieberwirth, Ingo; Fytas, George; Landfester, Katharina; Kroeger, Anja
2012-08-28
Because of the rapidly growing field of nanoparticles in therapeutic applications, understanding and controlling the interaction between nanoparticles and membranes is of great importance. While a membrane is exposed to nanoparticles its behavior is mediated by both their biological and physical properties. Constant interplay of these biological and physicochemical factors makes selective studies of nanoparticles uptake demanding. Artificial model membranes can serve as a platform to investigate physical parameters of the process in the absence of any biofunctional molecules and/or supplementary energy. Here we report on photon- and fluorescence-correlation spectroscopic studies of the uptake of nanosized SiO(2) nanoparticles by poly(dimethylsiloxane)-block-poly(2-methyloxazoline) vesicles allowing species selectivity. Analogous to the cell membrane, polymeric membrane incorporates particles using membrane fission and particles wrapping as suggested by cryo-TEM imaging. It is revealed that the incorporation process can be controlled to a significant extent by changing nanoparticles size and concentration. Conditions for nanoparticle uptake and controlled filling of polymersomes are presented.
Phalen, Robert N.; Wong, Weng kee
2012-01-01
Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm−2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179
Phalen, Robert N; Wong, Weng Kee
2012-05-01
The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm(-2) were about four times less likely to leak. On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break.
Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P
2015-01-01
The top-down approach is frequently used for drug nanocrystal production. A large number of review papers have referred to the top-down approach in terms of process parameters such as stabilizer selection. However, a very important factor, that is, the influence of drug properties, has been not addressed so far. This review will first discuss different nanocrystal technologies in brief. The focus will be on reviewing the different drug properties such as solid state and particle morphology on the efficiency of particle size reduction during top-down processes. Furthermore, the drug properties in the final nanosuspensions are critical for drug dissolution velocity. Therefore, another focus is the characterization of drugs in obtained nanosuspension. Drug physical properties play an important role in the production efficiency. The combinative technologies using modified drugs could significantly improve the performances of top-down processes. However, further understanding of the drug millability and homogenization will still be needed. In addition, a carefully established characterization system for nansuspension is essential.
Haemmerli, Sarah; Thill, Corinne; Amici, Federica; Cacchione, Trix
2018-05-01
From early infancy, humans reason about the external world in terms of identifiable, solid, cohesive objects persisting in space and time. This is one of the most fundamental human skills, which may be part of our innate conception of object properties. Although object permanence has been extensively studied across a variety of taxa, little is known about how non-human animals reason about other object properties. In this study, we therefore tested how domestic horses (Equus ferus caballus) intuitively reason about object properties like solidity and height, to locate hidden food. Horses were allowed to look for a food reward behind two opaque screens, only one of which had either the proper height or inclination to hide food rewards. Our results suggest that horses could not intuitively reason about physical object properties, but rather learned to select the screen with the proper height or inclination from the second set of 5 trials.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1977-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.
Disk mass determination through CO isotopologues
NASA Astrophysics Data System (ADS)
Miotello, Anna; Kama, Mihkel; van Dishoeck, Ewine
2015-08-01
One of the key properties for understanding how disks evolve to planetary systems is their overall mass, combined with their surface density distribution. So far, virtually all disk mass determinations are based on observations of the millimeter continuum dust emission.To derive the total gas + dust disk mass from these data involves however several big assumptions. The alternative method is to directly derive the gas mass through the detection of carbon monoxide (CO) and its less abundant isotopologues. CO chemistry is well studied and easily implemented in chemical models, provided that isotope-selective processes are properly accounted for.CO isotope-selective photodissociation was implemented for the first time in a full physical-chemical code in Miotello et al. (2014). The main result is that if isotope-selective effects are not considered in the data analysis, disk masses can be underestimated by an order of magnitude or more. For example, the mass discrepancy found for the renowned TW Hya disk may be explained or at least mitigated by this implementation. In this poster, we present new results for a large grid of disk models. We derive mass correction factors for different disk, stellar and grain properties in order to account for isotope-selective effects in analyzing ALMA data of CO isotopologues (Miotello et al., in prep.).
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-04-01
*The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.
Moore, Diane E.; Ponce, David A.
2001-01-01
A larger group of samples, most of them 1"-diameter cores, on which density and magnetic susceptibility measurements were made as part of gravity and magnetic surveys of the Hayward Fault. Because this second group of samples received less extensive laboratory study, examination of them was limited to standard petrographic microscope examination of covered thin sections. The density and susceptibility measurements of this second group of samples are included in this report.
A compact disc under skimming light rays
NASA Astrophysics Data System (ADS)
De Luca, R.; Di Mauro, M.; Fiore, O.; Naddeo, A.
2018-03-01
The optical properties of a compact disc (CD) under "skimming" light rays have been analyzed. We have noticed that a clear green line can be detected when the disc is irradiated with light rays coming from a lamp in such a way that only those skimming the CD, held horizontally, are selected. We provide a physical interpretation of this phenomenon on the basis of elementary optics concepts. Extension of these concepts to digital versatile discs (DVDs) is given.
Catalysts and methods for converting carbonaceous materials to fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.
Catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels are described. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. Also described are process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.
1991-06-01
This report presents the washability and comprehensive characterization results of 247 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Western Region of the United States. Although the Western Region includes Alaska, coal data from this state will often be cited apart from the Western Region data from the lower United States. This is the third of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. Themore » complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties, and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Western Region coals. Graphical summations are presented by state, rank, and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 3 tabs.« less
Spacecraft dielectric material properties and spacecraft charging
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.
1986-01-01
The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.
Characteristics of W-26% Re Target Material(LCC-0103)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunwoo, A.
2003-10-07
The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less
Abasi, Mohammad Hadi; Eslami, Ahmad Ali; Rakhshani, Fatemeh; Shiri, Mansoor
2016-01-01
Background: Self-regulation is one of the current psychological concepts that have been known as a determinant of leisure time physical activity. Due to cultural and social diversity in different societies and age groups, application of specific questionnaires is essential to perform investigations about physical activities. The aim of this study is development and evaluation of psychometric properties of a self-regulation questionnaire about leisure time physical activity in Iranian male adolescents. Materials and Methods: This cross-sectional study was conducted in 2013, and data of 603 male students from 12 high schools in Isfahan were collected. A comprehensive literature review and similar questionnaire review were conducted and 25 items were selected or developed to measure self-regulation. Comprehensibility of items was evaluated in a pilot study and an expert panel evaluated face and content validity. Exploratory factors analysis (EFA) was used for evaluation of construct validity and extraction of sub-constructs of self-regulation. Leisure time physical activity was assessed using International Physical Activity Questionnaire (IPAQ). Results: The mean age of the participants was 16.3 years (SD =1.0) and the range was 15-19 years. Cronbach's α coefficient of the questionnaire in the pilot and main study was 0.84 and 0.90, respectively. EFA resulted in four sub-constructs including “enlistment of social support”, “goal setting”, “self-construction”, and “self-monitoring”, which explained 63.6% of the variance of self-regulation. Conclusions: Results of this investigation provide some support to the validity and reliability of the 16-item questionnaire of self-regulation abut leisure time physical activity in the target group. PMID:27095993
NASA Astrophysics Data System (ADS)
Mierke, Claudia T.
There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.
NASA Astrophysics Data System (ADS)
Mierke, Claudia T.
2015-10-01
There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.
Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi
2016-01-01
Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127
Mohideen, M Infas H; Xiao, Bo; Wheatley, Paul S; McKinlay, Alistair C; Li, Yang; Slawin, Alexandra M Z; Aldous, David W; Cessford, Naomi F; Düren, Tina; Zhao, Xuebo; Gill, Rachel; Thomas, K Mark; Griffin, John M; Ashbrook, Sharon E; Morris, Russell E
2011-04-01
Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.
Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul
2017-10-15
Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabet, Mahla; Mishra, Satish; Boy, Ramiz
Self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel statemore » to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less
Physical properties of forest soils
Charles H. Perry; Michael C. Amacher
2007-01-01
Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...
The Extraterrestrial Materials Simulation Laboratory
NASA Technical Reports Server (NTRS)
Green, J. R.
2001-01-01
In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-01-01
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427
Blandino, Massimo; Sovrani, Valentina; Marinaccio, Federico; Reyneri, Amedeo; Rolle, Luca; Giacosa, Simone; Locatelli, Monica; Bordiga, Matteo; Travaglia, Fabiano; Coïsson, Jean Daniel; Arlorio, Marco
2013-12-01
A strategy to maximise the health benefits of wheat-based products enriched with refined flour and selected fractions of kernel, obtained by sequential pearling, has been tested. Five mixtures of refined commercial flour with an increasing replacement of a pearled wheat fraction were used to prepare bread and were compared with a control for the dough rheological properties (Mixolab® parameters), the bioactive compound content, deoxynivalenol (DON) contamination and the physical properties (volume, crust colour, instrumental crunchiness and crumb texture profile analysis parameters). The antioxidant and dietary fibre contents increased linearly as the flour was enriched with the pearled fraction. The dietary fibre, β-glucan, total phenolic, alkylresorcinol content and the antioxidant activity increased significantly at a replacement level of 10%, while the technological properties were not significantly different from those of the control. It has been shown that refined flour could be enriched through the addition of a selected wheat pearled fraction and the bioactive compound content of composite bread could be improved, while few rheological and technological differences could be obtained and the risk for DON contamination could be limited. Copyright © 2013 Elsevier Ltd. All rights reserved.
Polarization selective phase-change nanomodulator
Appavoo, Kannatassen; Haglund Jr., Richard F.
2014-10-27
Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm 3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less
A SAR and QSAR study of new artemisinin compounds with antimalarial activity.
Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T
2013-12-30
The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.
Smartphones as Integrated Kinematic and Dynamic Sensors for Amusement Park Physics Applications
NASA Astrophysics Data System (ADS)
Peterson, Stephanie; Dennison, J. R.
2010-10-01
USU has hosted Physics Day at Lagoon and has attracted more than 120,000 secondary educators and students over 21 years. During this educational day, students explore basic physics concepts and apply their classroom content outdoors, in real world applications. As part of the event, USU's Physics Department provides curriculum to be used at Lagoon, in similar outside venues, and in the classroom. One such educational instrument, which is a primary focus of this work, is student workbooks filled with activities ranging from very simple to more advanced topics. Workbooks cover the properties of waves, relative velocity, and acceleration, topics which have historically challenged students and future topics include kinematics, energy, and forces. The topics were selected based on requests from teachers throughout the Intermountain Region and identified deficiencies in student performance on core curriculum assessments. An innovative approach is to identify physical application of iPhone and Android smartphone software technologies, which make use of dynamic and kinematic sensors. These technologies will allow students to realize their ability to do quantitative physics calculations anywhere, anytime; a smart device which is highly salable to today's teenage learners. This also provides an exciting approach to more fully engage students in learning physics concepts.
Selected Topics in CVD Diamond Research
NASA Astrophysics Data System (ADS)
Koizumi, Satoshi; Nebel, Christoph E.; Nesladek, Milos
2006-10-01
Since the discovery of Chemical Vapor Deposition (CVD) diamond growth in 1976, the steady scientific progress often resulted in surprising new discoveries and breakthroughs. This brought us to the idea to publish the special issue Selected Topics in CVD Diamond Research in physica status solidi (a), reflecting such advancements and interesting results at the leading edge of diamond research.The present issue summarizes this progress in the CVD diamond field by selecting contributions from several areas such as superconductivity, super-excitonic radiation, quantum computing, bio-functionalization, surface electronic properties, the nature of phosphorus doping, transport properties in high energy detectors, CVD growth and properties of nanocrystalline diamond. In all these directions CVD diamond appears to be very competitive in comparison with other semiconducting materials.As Editors of this special issue, we must admit that the selection is biased by our opinion. Nonetheless, we are sure that each contribution introduces new ideas and results which will improve the understanding of the current level of physics and chemistry of this attractive wide-bandgap semiconductor and which will help to bring it closer to applications.All submissions were invited based on the contributions of the authors to their specific research field. The Feature Articles have the format of topical reviews to give the reader a comprehensive summary. Partially, however, they are written in research paper style to report new results of ongoing research.We hope that this issue will attract the attention of a broad community of scientists and engineers, and that it will facilitate the utilization of diamond in electronic applications and technologies of the future.
Deep Spitzer/IRAC Imaging of the Subaru Deep Field
NASA Astrophysics Data System (ADS)
Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier
2013-10-01
The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru Deep Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely deep optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out deep IRAC imaging observations of the central 75% of the SDF. The proposed observations together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.
Vasanelli, Emilia; Colangiuli, Donato; Calia, Angela; Sileo, Maria; Aiello, Maria Antonietta
2015-07-01
UPV as non-destructive technique can effectively contribute to the low invasive in situ analysis and diagnosis of masonry elements related to the conservation, rehabilitation and strengthening of the built heritage. The use of non-destructive and non-invasive techniques brings all the times many advantages in diagnostic activities on pre-existing buildings in terms of sustainability; moreover, it is a strong necessity with respect to the conservation constraints when dealing with the historical-architectural heritage. In this work laboratory experiments were carried out to investigate the effectiveness of ultrasonic pulse velocity (UPV) in evaluating physical and mechanical properties of Lecce stone, a soft and porous building limestone. UPV and selected physical-mechanical parameters such as density and uniaxial compressive strength (UCS) were determined. Factors such as anisotropy and water presence that induce variations on the ultrasonic velocity were also assessed. Correlations between the analysed parameters are presented and discussed. The presence of water greatly affected the values of the analysed parameters, leading to a decrease of UPV and to a strong reduction of the compressive strength. A discussion of the role of the water on these results is provided. Regression analysis showed a reliable linear correlation between UPV and compressive strength, which allows a reasonable estimation of the strength of Lecce stone by means of non-destructive testing methods such as the ultrasonic wave velocity. Low correlation between UPV and density was found, suggesting that other factors than density, related to the fabric and composition, also influence the response of the selected stone to the UPV. They have no influence on the UCS, that instead showed to be highly correlated with the packing density. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2005-01-01
Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid and lipid-protein interactions needed for membrane integrity, fusion and division). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions. Physical and chemical properties of solvent provide strong constraints for life. Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic interactions; related to high dielectric constant of the solvent) are necessary for self-organization of matter whereas solvophilic interactions are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristics hydrophobic effects are a consequence of the temperature in sensitivity of essential properties of its liquid state. Water, however, is not the only liquid with these favorable properties. I will compare in detail properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization. I will also discuss properties of water that are unfavorable to life (e.g. its chemical activity against polymerization reactions) and close with summarizing what are alternatives to water as a matrix of life in space.
Wyrwich, KW; Phillips, GA; Vollmer, T; Guo, S
2016-01-01
Background Investigations using classical test theory support the psychometric properties of the original version of the Multiple Sclerosis Impact Scale (MSIS-29v1), a disease-specific measure of multiple sclerosis (MS) impact (physical and psychological subscales). Later, assessments of the MSIS-29v1 in an MS community-based sample using Rasch analysis led to revisions of the instrument’s response options (MSIS-29v2). Objective The objective of this paper is to evaluate the psychometric properties of the MSIS-29v1 in a clinical trial cohort of relapsing–remitting MS patients (RRMS). Methods Data from 600 patients with RRMS enrolled in the SELECT clinical trial were used. Assessments were performed at baseline and at Weeks 12, 24, and 52. In addition to traditional psychometric analyses, Item Response Theory (IRT) and Rasch analysis were used to evaluate the measurement properties of the MSIS-29v1. Results Both MSIS-29v1 subscales demonstrated strong reliability, construct validity, and responsiveness. The IRT and Rasch analysis showed overall support for response category threshold ordering, person-item fit, and item fit for both subscales. Conclusions Both MSIS-29v1 subscales demonstrated robust measurement properties using classical, IRT, and Rasch techniques. Unlike previous research using a community-based sample, the MSIS-29v1 was found to be psychometrically sound to assess physical and psychological impairments in a clinical trial sample of patients with RRMS. PMID:28607741
Bacci, E D; Wyrwich, K W; Phillips, G A; Vollmer, T; Guo, S
2016-01-01
Investigations using classical test theory support the psychometric properties of the original version of the Multiple Sclerosis Impact Scale (MSIS-29v1), a disease-specific measure of multiple sclerosis (MS) impact (physical and psychological subscales). Later, assessments of the MSIS-29v1 in an MS community-based sample using Rasch analysis led to revisions of the instrument's response options (MSIS-29v2). The objective of this paper is to evaluate the psychometric properties of the MSIS-29v1 in a clinical trial cohort of relapsing-remitting MS patients (RRMS). Data from 600 patients with RRMS enrolled in the SELECT clinical trial were used. Assessments were performed at baseline and at Weeks 12, 24, and 52. In addition to traditional psychometric analyses, Item Response Theory (IRT) and Rasch analysis were used to evaluate the measurement properties of the MSIS-29v1. Both MSIS-29v1 subscales demonstrated strong reliability, construct validity, and responsiveness. The IRT and Rasch analysis showed overall support for response category threshold ordering, person-item fit, and item fit for both subscales. Both MSIS-29v1 subscales demonstrated robust measurement properties using classical, IRT, and Rasch techniques. Unlike previous research using a community-based sample, the MSIS-29v1 was found to be psychometrically sound to assess physical and psychological impairments in a clinical trial sample of patients with RRMS.
Gamma-ray Burst Prompt Correlations: Selection and Instrumental Effects
NASA Astrophysics Data System (ADS)
Dainotti, M. G.; Amati, L.
2018-05-01
The prompt emission mechanism of gamma-ray bursts (GRB) even after several decades remains a mystery. However, it is believed that correlations between observable GRB properties, given their huge luminosity/radiated energy and redshift distribution extending up to at least z ≈ 9, are promising possible cosmological tools. They also may help to discriminate among the most plausible theoretical models. Nowadays, the objective is to make GRBs standard candles, similar to supernovae (SNe) Ia, through well-established and robust correlations. However, differently from SNe Ia, GRBs span over several order of magnitude in their energetics, hence they cannot yet be considered standard candles. Additionally, being observed at very large distances, their physical properties are affected by selection biases, the so-called Malmquist bias or Eddington effect. We describe the state of the art on how GRB prompt correlations are corrected for these selection biases to employ them as redshift estimators and cosmological tools. We stress that only after an appropriate evaluation and correction for these effects, GRB correlations can be used to discriminate among the theoretical models of prompt emission, to estimate the cosmological parameters and to serve as distance indicators via redshift estimation.
IRAS images of nearby dark clouds
NASA Technical Reports Server (NTRS)
Wood, Douglas O. S.; Myers, Philip C.; Daugherty, Debra A.
1994-01-01
We have investigated approximately 100 nearby molecular clouds using the extensive, all-sky database of IRAS. The clouds in this study cover a wide range of physical properties including visual extinction, size, mass, degree of isolation, homogeneity and morphology. IRAS 100 and 60 micron co-added images were used to calculate the 100 micron optical depth of dust in the clouds. These images of dust optical depth compare very well with (12)CO and (13)CO observations, and can be related to H2 column density. From the optical depth images we locate the edges of dark clouds and the dense cores inside them. We have identified a total of 43 `IRAS clouds' (regions with A(sub v) greater than 2) which contain a total of 255 `IRAS cores' (regions with A(sub v) greater than 4) and we catalog their physical properties. We find that the clouds are remarkably filamentary, and that the cores within the clouds are often distributed along the filaments. The largest cores are usually connected to other large cores by filaments. We have developed selection criteria to search the IRAS Point Source Catalog for stars that are likely to be associated with the clouds and we catalog the IRAS sources in each cloud or core. Optically visible stars associated with the clouds have been identified from the Herbig and Bell catalog. From these data we characterize the physical properties of the clouds including their star-formation efficiency.
Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei
2013-06-01
This study is to report the influence of conditions in spray drying process on physical and chemical properties and lung inhaling performance of Panax notoginseng Saponins - Tanshinone II A composite particles. According to the physical and chemical properties of the two types of components within the composite particles, three solvent systems were selected including ethanol, ethanol : acetone (9 : 1, v/v) and ethanol : acetone (4 : 1, v/v), and three inlet temperature: 110 degrees C, 120 degrees C, 130 degrees C to prepare seven different composite particle samples; each sample was characterized using laser diffraction, scanning electron microscopy (SEM), dynamic vapour sorption (DVS) and atomic force microscope (AFM), and their aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The results indicate that under the conditions of using the mixed solvent system of ethanol--acetone volume ratio of 9 : 1, and the inlet temperature of 110 degrees C, the resulting composite particles showed rough surface, with more tanshinone II A distributing in the outer layer, such composite particles have the best lung inhaling performance and the fine particle fraction (FPF) close to 60%. Finally it is concluded that by adjusting the conditions in co-spray drying process, the distribution amount and existence form of tanshinone II A in the outer layer of the particles can be changed so that to enhance lung inhaling performance of the drug composite particles.
Influence of physical activity on tibial bone material properties in laying hens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less
Influence of physical activity on tibial bone material properties in laying hens
Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.; ...
2017-11-03
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less
Effects of inter row management intensity on soil physical properties in European vineyards.
NASA Astrophysics Data System (ADS)
Bauer, Thomas; Strauss, Peter; Kumpan, Monika; Guzmán, Gema; Gómez, Jose A.; Stiper, Katrin; Popescou, Daniela; Guernion, Muriel; Nicolai, Annegret; Winter, Silvia; Zaller, Johann G.
2017-04-01
Successful viticulture is mainly depending on soil, climate and management capabilities of vine growers. These factors influence on the availability of water during the growing season which in turn impacts on wine quality and quantity. To protect soil from being eroded many winegrowers try to keep the inter row zones of the vineyards green for as much time as possible. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, the management strategies concerning the intensity of inter row management are widely different across Europe. They differ within regions, between regions and between countries and are mainly based on personal experience of the winegrowers. To measure possible effects of inter row management in vineyards on soil physical parameters we selected vineyards with different inter row management intensities in Austria, Romania, France and Spain. In total more than 700 undisturbed core samples (from 3 to 8 cm depth) out of 50 individual vineyards were analysed for saturated and unsaturated hydraulic conductivity, soil water retention, aggregate stability, total organic carbon, soil texture and bulk density. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with less frequent soil disturbance and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not necessarily improve for the upper soil layer in every region. The results indicate that the influence of long term and high frequency mechanical stress imposed on soil by use of agricultural machinery in inter rows as well as different fertilization strategies may in some cases exhibit higher impacts on soil physical properties than the different tillage strategies.
Hahm, Jong-in
2016-01-01
Recent bioapplications of one-dimensional (1D) zinc oxide (ZnO) nanomaterials, despite the short development period, have shown promising signs as new sensors and assay platforms offering exquisite biomolecular sensitivity and selectivity. The incorporation of 1D ZnO nanomaterials has proven beneficial to various modes of biodetection owing to their inherent properties. The more widely explored electrochemical and electrical approaches tend to capitalize on the reduced physical dimensionality, yielding a high surface-to-volume ratio, as well as on the electrical properties of ZnO. The newer development of the use of 1D ZnO nanomaterials in fluorescence-based biodetection exploits the innate optical property of their high anisotropy. This review considers stimulating research advances made to identify and understand fundamental properties of 1D ZnO nanomaterials, and examines various biosensing modes utilizing them, while focusing on the unique optical properties of individual and ensembles of 1D ZnO nanomaterials specifically pertaining to their bio-optical applications in simple and complex fluorescence assays. PMID:27215822
Gottesman, Ronen; Zaban, Arie
2016-02-16
Organic-inorganic halide perovskites are in consensus to revolutionize the field of photovoltaics and optoelectronic devices due to their superior optical and electronic properties which are unprecedented in comparison to those of other solution processed semiconductors. These hybrid materials are used as light absorbers and also as charge carriers which makes them very versatile to be implemented and studied in a multitude of fields. Traditionally, the working paradigm in solar cells and optoelectronic devices' characterization has been that the properties of photovoltaic materials remain stable following illumination of varying times and intensities. However, recently there has been a growing number of reports on prolonged illumination-dependent physical changes in perovskite films and perovskite based devices. The changes are reversible and range from structural transformations and differences in optical characteristics, to an increase in optoelectronic properties and physical parameters. In this Account, we review the physical changes in three reported model systems which display changes under prolonged illumination of light intensities of ∼0.01-1 sun. The three systems are (i) a free-standing perovskite film on a glass substrate, (ii) a symmetrical system with nonselective electrical contacts, and (iii) a working perovskite solar cell (either a planar or a porous structure). We examine each model system and discuss its photoinduced physical changes and conclude with the implications on future experimentation design, data analysis, and characterization that involve organic-inorganic halide perovskites illumination. Since hybrid perovskites are considered to be mixed ionic-electronic conductors in nature, ions that migrate in the perovskite under electrical fields can influence its properties. Therefore, an important distinction is made between photoinduced effects and photo and electric field induced effects. Thus, photoinduced effects are designated as observed effects in illuminated free-standing films or symmetrical devices without selective contacts. In contrast, photo- and electric field induced effects are designated as observed effects under open-circuit potential or during voltage scanning (internal electrical field exists across the device). In the latter case, the two effects are superimposed and it is difficult to evaluate the relative influence of each one (light or electric field). However, we show that the magnitude and the importance of the photoinduced effect are substantial.
NASA Astrophysics Data System (ADS)
Trainor, Ryan F.; Strom, Allison L.; Steidel, Charles C.; Rudie, Gwen C.
2016-12-01
We present the rest-frame optical spectroscopic properties of 60 faint (R AB ˜ 27; L ˜ 0.1 L *) Lyα-selected galaxies (LAEs) at z ≈ 2.56. These LAEs also have rest-UV spectra of their Lyα emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Lyα photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z ≈ 2-3. In particular, the LAEs have extremely high [O III] λ5008/Hβ ratios (log([O III]/Hβ) ˜ 0.8) and low [N II] λ6585/Hα ratios (log([N II]/Hα) < 1.15). Coupled with a detection of the [O III] λ4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T e ≈ 1.8 × 104 K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z neb ≈ 0.22Z ⊙), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9-7.4 (Z neb ≈ 0.02-0.05Z ⊙). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Lyα emission across the largest current sample of combined Lyα and rest-optical galaxy spectroscopy, including both the 60 KBSS-Lyα LAEs and 368 more luminous galaxies at similar redshifts. We find that the net Lyα emissivity (parameterized by the Lyα equivalent width) is strongly correlated with nebular excitation and ionization properties and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainor, Ryan F.; Strom, Allison L.; Steidel, Charles C.
We present the rest-frame optical spectroscopic properties of 60 faint ( R {sub AB} ∼ 27; L ∼ 0.1 L {sub *}) Ly α -selected galaxies (LAEs) at z ≈ 2.56. These LAEs also have rest-UV spectra of their Ly α emission line morphologies, which trace the effects of interstellar and circumgalactic gas on the escape of Ly α photons. We find that the LAEs have diverse rest-optical spectra, but their average spectroscopic properties are broadly consistent with the extreme low-metallicity end of the populations of continuum-selected galaxies selected at z ≈ 2–3. In particular, the LAEs have extremely high [O iii]more » λ 5008/H β ratios (log([O iii]/H β ) ∼ 0.8) and low [N ii] λ 6585/H α ratios (log([N ii]/H α ) < 1.15). Coupled with a detection of the [O iii] λ 4364 auroral line, these measurements indicate that the star-forming regions in faint LAEs are characterized by high electron temperatures (T{sub e} ≈ 1.8 × 10{sup 4} K), low oxygen abundances (12 + log(O/H) ≈ 8.04, Z{sub neb} ≈ 0.22 Z {sub ⊙}), and high excitations with respect to their more luminous continuum-selected analogs. Several of our faintest LAEs have line ratios consistent with even lower metallicities, including six with 12 + log(O/H) ≈ 6.9–7.4 (Z {sub neb} ≈ 0.02–0.05 Z{sub ⊙}). We interpret these observations in light of new models of stellar evolution (including binary interactions) that have been shown to produce long-lived populations of hot, massive stars at low metallicities. We find that strong, hard ionizing continua are required to reproduce our observed line ratios, suggesting that faint galaxies are efficient producers of ionizing photons and important analogs of reionization-era galaxies. Furthermore, we investigate the physical trends accompanying Ly α emission across the largest current sample of combined Ly α and rest-optical galaxy spectroscopy, including both the 60 KBSS-Ly α LAEs and 368 more luminous galaxies at similar redshifts. We find that the net Ly α emissivity (parameterized by the Ly α equivalent width) is strongly correlated with nebular excitation and ionization properties and weakly correlated with dust attenuation, suggesting that metallicity plays a strong role in determining the observed properties of these galaxies by modulating their stellar spectra, nebular excitation, and dust content.« less
Impact of soil properties on selected pharmaceuticals adsorption in soils
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej
2014-05-01
The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).
Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D
2016-10-03
The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.
Li, Kang-Kang; Yin, Shou-Wei; Yang, Xiao-Quan; Tang, Chuan-He; Wei, Zi-Hao
2012-11-21
The objective of this research was to fabricate novel antimicrobial films based on zein colloidal nanoparticles coated with sodium caseinate (SC), an emulsifier/stabilizer. Thymol-loaded zein-SC nanoparticles were prepared using an antisolvent technique, with the average particle size and zeta potential about 200 ± 20 nm and -40 mV, respectively. Zein-SC nanoparticle-based films exhibited higher mechanical resistance and water barrier capacity than the SC films and concomitant good extensibility as compared with zein films. Thymol loadings endowed zein-SC nanoparticle-based films with antimicrobial activity against Escherichia coli and Salmonella as well as DPPH radical scavenging activity. Water vapor permeability, microstructure, mechanical, and controlled release properties of the films were evaluated. The possible relationship between some selected physical properties and microstructure were also discussed. Atomic force microscopy (AFM) analysis indicated that thymol loadings resulted in the emergence phenomena of the nanoparticles to form large particles or packed structure, consisting of clusters of nanoparticles, within the film matrix, in a thymol loading dependent manner. The appearance of large particles or an agglomerate of particles may weaken the compactness of protein network of films and thus impair the water barrier capacity, mechanical resistance, and extensibility of the films. The release kinetics of thymol from nanoparticle-based films can be described as a two-step biphasic process, that is, an initial burst effect followed by subsequent slower release, and zein-SC nanoparticles within the films matrices gave them the ability to sustain the release of thymol. In addition, a schematic illustration of the formation pathway of zein-SC nanoparticle-based films with or without thymol was proposed to illuminate the possible relationship between some selected physical properties and the microstructure of the films.
Influence of UV filters on the texture profile and efficacy of a cosmetic formulation.
Fossa Shirata, M M; Campos, P M B G Maia
2017-12-01
Considering that many cosmetic products contain UV filters in their composition and that few studies have evaluated the role of UV filters in the physical properties and clinical efficacy of these products, the aim of this study was to assess the influence of UV filters on the properties and immediate effects of a cosmetic formulation. Four cosmetic formulations, vehicle (V), vehicle containing UV filters (F), vehicle containing cassava polysaccharides and alfalfa (A) oligosaccharides and vehicle containing UV filters plus cassava polysaccharides and alfalfa oligosaccharides (multifunctional formulation, M) were developed. The texture profile of the formulations was analysed with a TA.XT plus Texturometer ® . Twenty female volunteers aged 39-45 years were then selected for the assessment of immediate clinical efficacy of the formulations under study and of transepidermal water loss (TEWL), stratum corneum water content and microrelief of the skin obtained with their use. The presence of UV filters resulted in an improvement of the physical properties of the multifunctional cosmetic formulation (M) and of skin microrelief. However, the presence of UV filters also caused a significant decrease in hydration. The presence of sunscreens had a negative influence on immediate skin hydration and TEWL. On the other hand, it positively influenced parameters related to the physical properties of the multifunctional formulation and skin microrelief. Thus, we conclude that the influence of UV filters on the development of cosmetic formulations is an important factor to be considered because it can have either positive or negative effect on the efficacy of the product. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min
2017-12-01
The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.
Angular momentum properties of haloes and their baryon content in the Illustris simulation
NASA Astrophysics Data System (ADS)
Zjupa, Jolanta; Springel, Volker
2017-04-01
The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ˜320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ˜1.3 in the non-radiative case and ˜1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.
The [CII]/[NII] far-infrared line ratio at z>5: extreme conditions for “normal” galaxies
NASA Astrophysics Data System (ADS)
Pavesi, Riccardo; Riechers, Dominik; Capak, Peter L.; Carilli, Chris Luke; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas; Smolcic, Vernesa
2017-01-01
Thanks to the Atacama Large (sub-)Millimeter Array (ALMA), observations of atomic far-infrared fine structure lines are a very productive way of measuring physical properties of the interstellar medium (ISM) in galaxies at high redshift, because they provide an unobscured view into the physical conditions of star formation. While the bright [CII] line has become a routine probe of the dynamical properties of the gas, its intensity needs to be compared to other lines in order to establish the physical origin of the emission. [NII] selectively traces the emission coming from the ionized fraction of the [CII]-emitting gas, offering insight into the phase structure of the ISM. Here we present ALMA measurements of [NII] 205 μm fine structure line emission from a representative sample of galaxies at z=5-6 spanning two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized gas properties for galaxies in the first billion years of cosmic time, separated by their L[CII]/L[NII] ratio. First, we find extremely low [NII] emission compared to [CII] from a “typical” Lyman Break Galaxy (LBG-1), likely due to low dust content and reminiscent of local dwarfs. Second, the dusty Lyman Break Galaxy HZ10 and the extreme starburst AzTEC-3 show ionized gas fractions typical of local star-forming galaxies and show hints of spatial variations in their [CII]/[NII] line ratio. These observations of far-infrared lines in “normal” galaxies at z>5 yield some of the first constraints on ISM models for young galaxies in the first billion years of cosmic time and shed light on the observed evolution of the dust and gas properties.
Development and evaluation of garlic incorporated ready-to-eat extruded snacks.
Haritha, D; Vijayalakshmi, V; Gulla, S
2014-11-01
The present study was carried out to develop and evaluate ready to eat extruded snacks incorporated with garlic powder at various levels (5 %, 10 %, 15 %, 20 %). The organoleptic evaluation was conducted for the developed products and the well accepted products were selected for further studies like physical properties and shelf life (stored at room temperature for 2 months). The organoleptic evaluation of the developed snacks revealed that 15 % and 20 % garlic incorporated snacks were not acceptable due to strong garlic flavor, therefore T1 (control), T2 (5 % garlic) and T3 ( 10 % garlic) were selected for further studies. The physical properties showed significant changes with incorporation of garlic powder at 0 %-10 % level. There was an increase in mass flow rate, tap density and bulk density but decrease in the water holding capacity, oil absorption capacity and expansion ratio. The water soluble index and moisture retention of the products showed the same values for all the three selected treatments. The products were packed by ordinary, nitrogen and vacuum packing and stored for 2 months. It was found that there was an increase in moisture content and microbial load, however the increase was within limits. The increase in the moisture content was low in nitrogen packed products where as the microbial load decreased with increase in the percentage of garlic incorporation. The nitrogen and vacuum packed products showed less microbial load than the ordinary packed products. Garlic powder can be incorporated at 5 and 10 % levels in ready-to-eat extruded snacks with well acceptability and can be stored for a period of 2 months with nitrogen packing as an effective packaging.
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
Manipulation of particles by weak forces
NASA Technical Reports Server (NTRS)
Adler, M. S.; Savkar, S. D.; Summerhayes, H. R.
1972-01-01
Quantitative relations between various force fields and their effects on the motion of particles of various sizes and physical characteristics were studied. The forces considered were those derived from light, heat, microwaves, electric interactions, magnetic interactions, particulate interactions, and sound. A physical understanding is given of the forces considered as well as formulae which express how the size of the force depends on the physical and electrical properties of the particle. The drift velocity in a viscous fluid is evaluated as a function of initial acceleration and the effects of thermal random motion are considered. A means of selectively sorting or moving particles by choosing a force system and/or environment such that the particle of interest reacts uniquely was developed. The forces considered and a demonstration of how the initial acceleration, drift velocity, and ultimate particle density distribution is affected by particle, input, and environmental parameters are tabulated.
Assessing Potential Propulsion Breakthroughs
NASA Technical Reports Server (NTRS)
Millis, Marc G.
2005-01-01
The term, propulsion breakthrough, refers to concepts like propellantless space drives and faster-than-light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations into these goals have begun. From 1996 to 2002, NASA supported the Breakthrough Propulsion Physics Project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging since the breakthroughs are still only notional concepts, but kinetic energy can serve as a basis for comparison. In terms of kinetic energy, a hypothetical space drive could require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (a) research tasks are constrained to only address the immediate unknowns, curious effects or critical issues, (b) reliability of assertions is more important than their implications, and (c) reviewers judge credibility rather than feasibility. The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
Neitzert, Kathleen M.; Thompson, Ryan F.
2015-08-20
Numerous lakes, ponds, and wetlands are located within the Lower Brule Indian Reservation. Wetlands are an important resource providing aquatic habitat for plants and animals, and acting as a natural water filtration system. Several of the wetlands on or near the reservation are of particular interest, but information on the physical and biological integrity of these wetlands was needed to provide a base-line reference when planning for future water management needs. A reconnaissance-level study of selected wetlands on and near the Lower Brule Indian Reservation was completed in 2012–13 by the U.S. Geological Survey in cooperation with the Lower Brule Sioux Tribe using ground surveys and water-quality analyses. Ground surveys of six wetland areas (Dorman Slough, Little Bend Wetlands, Miller Pond, Potter Slough, an unnamed slough, and West Brule Community wetlands) were completed to map land, water, vegetation, and man-made features of the selected wetland areas using real-time kinematic global navigation satellite systems equipment. Water samples were collected from four of the selected wetlands. Two separate waterbodies were sampled at one of the wetlands for a total of five sampling locations. Water samples were analyzed for physical properties, selected inorganics, metals, nutrients, and suspended sediment. Concentrations of calcium, sodium, and sulfate were greater at the two wetland sites fed by ground water, compared to the wetland sites fed by surface runoff.
A Literature Review - Problem Definition Studies on Selected Toxic Chemicals
1978-06-16
2 III. Recommendations and Hazard Analysis 6 IV. Physical and Chemical Properties 8 V. Human Toxicity A. Conditions and Extent of Exposure - 16 B...40 H. Coral 41 I. Phytoplankton and Algae 42 J. Bacteria 44 K. Plants 46 1. Fruit Trees 46 2. Foliage 49 3. Vegetables 51 4. Aquatic Plants 52 j PACE...breathe may result. The lung condition may clear up or death may occur, especially in accidents when children drink and choke on diesel fuel. The
Hollow fiber membrane systems for advanced life support systems
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Lysaght, M. J.
1976-01-01
The practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications is described. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing; breadboard hardware was manufactured and tested, and the physical properties of the hollow fiber membrane assemblies are characterized.
2003-09-01
Ed.; Reinhold Book Corporation: New York, 1968. Daroff, P.M.; Metz, D.; Roberts, A.; Adams, J.A.; Jenkins, W. Oleoresin Capsicum : An Effective Less...Capsaicin, The Pungent Principle of Capsicum . III. J.Am. Chem. Soc. 1923, 45, p 2179. Newman, J.H., Edgewood Arsenal Notebook # NB 9298, p 64 (U...Service: Edgewood Arsenal, MD, 1921, UNCLASSIFIED Report (AD-B955153). Steadman, A. Isolation ofCapsaicin from Capsicum ; EACD 188; U.S. Army Chemical
Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3
NASA Technical Reports Server (NTRS)
1995-01-01
This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.
Global thunderstorm activity research survey
NASA Technical Reports Server (NTRS)
Coroniti, S. C.
1982-01-01
The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.
2014-01-01
resolution X - ray diffraction (XRD) were collected for all samples, and reciprocal space maps (RSMs) were collected from selected samples. The complete data...exposure. The lines represent the model fit. 19 13 Figure 1. Triple axis x - ray diffraction from the bi-layered InAsSb structures grown on GaSb at...Applied Physics, Structural properties of bismuth‐bearing semiconductor alloys, 63 (1988) 107. 18 12 Figure Captions Figure 1. Triple axis x - ray
Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays
NASA Technical Reports Server (NTRS)
Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.
1978-01-01
Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.
Catalysts and methods for converting carbonaceous materials to fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.
This disclosure relates to catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. This disclosure also describes process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.
The Physics of Thermoelectric Energy Conversion
NASA Astrophysics Data System (ADS)
Goldsmid, H. Julian
2017-04-01
This book outlines the principles of thermoelectric generation and refrigeration from the discovery of the Seebeck and Peltier effects in the 19th century through the introduction of semiconductor thermoelements in the mid-20th century to the more recent development of nanostructured materials. The conditions for favourable electronic properties are discussed. The methods for selecting materials with a low lattice thermal conductivity are outlined and the ways in which the scattering of phonons can be enhanced are described. The book is aimed at readers without specialised knowledge.
Effects of biochars on hydraulic properties of clayey soil
NASA Astrophysics Data System (ADS)
Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni
2017-04-01
Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and improving water use efficiency in agriculture.
Rieder, Karl-Heinz; Meyer, Gerhard; Hla, Saw-Wai; Moresco, Francesca; Braun, Kai F; Morgenstern, Karina; Repp, Jascha; Foelsch, Stefan; Bartels, Ludwig
2004-06-15
The scanning tunnelling microscope, initially invented to image surfaces down to the atomic scale, has been further developed in the last few years to an operative tool, with which atoms and molecules can be manipulated at will at low substrate temperatures in different manners to create and investigate artificial structures, whose properties can be investigated employing spectroscopic dI/dV measurements. The tunnelling current can be used to selectively break chemical bonds, but also to induce chemical association. These possibilities give rise to startling new opportunities for physical and chemical experiments on the single atom and single molecule level. Here we provide a short overview on recent results obtained with these techniques.
Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1995-10-01
This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on nine presentations: ``The Energy Exchange and Efficiency Consideration in Klystrons``, ``Some Properties of Microwave RF Sources for Future Colliders + Overview of Microwave Generation Activity at the University of Maryland``, ``Field Quality Improvements in Superconducting Magnets for RHIC``, ``Hadronic B-Physics``, ``Spiking Pulses from Free Electron Lasers: Observations and Computational Models``, ``Crystalline Beams inmore » Circular Accelerators``, ``Accumulator Ring for AGS & Recent AGS Performance``, ``RHIC Project Machine Status``, and ``Gamma-Gamma Colliders.``« less
NASA Astrophysics Data System (ADS)
Berselli, Luigi C.; Spirito, Stefano
2018-06-01
Obtaining reliable numerical simulations of turbulent fluids is a challenging problem in computational fluid mechanics. The large eddy simulation (LES) models are efficient tools to approximate turbulent fluids, and an important step in the validation of these models is the ability to reproduce relevant properties of the flow. In this paper, we consider a fully discrete approximation of the Navier-Stokes-Voigt model by an implicit Euler algorithm (with respect to the time variable) and a Fourier-Galerkin method (in the space variables). We prove the convergence to weak solutions of the incompressible Navier-Stokes equations satisfying the natural local entropy condition, hence selecting the so-called physically relevant solutions.
NASA Astrophysics Data System (ADS)
Zhang, Yongjun
A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves more like an elastic material at room temperature and as a ductile material at temperature above 850°C. The oxidation and the plasticity of Pd phase mainly affected the mechanical properties of HTM cermet at high temperature, also as a result of thermal cycling. Residual stress induced in the HTM by thermo cycles also plays a very critical role in defining the thermo-mechanical properties.
Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng
2014-01-01
Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668
Effect of fat content on the physical properties and consumer acceptability of vanilla ice cream.
Rolon, M Laura; Bakke, Alyssa J; Coupland, John N; Hayes, John E; Roberts, Robert F
2017-07-01
Ice cream is a complex food matrix that contains multiple physical phases. Removal of 1 ingredient may affect not only its physical properties but also multiple sensory characteristics that may or may not be important to consumers. Fat not only contributes to texture, mouth feel, and flavor, but also serves as a structural element. We evaluated the effect of replacing fat with maltodextrin (MD) on select physical properties of ice cream and on consumer acceptability. Vanilla ice creams were formulated to contain 6, 8, 10, 12, and 14% fat, and the difference was made up with 8, 6, 4, 2, and 0% maltodextrin, respectively, to balance the mix. Physical characterization included measurements of overrun, apparent viscosity, fat particle size, fat destabilization, hardness, and melting rate. A series of sensory tests were conducted to measure liking and the intensity of various attributes. Tests were also conducted after 19 weeks of storage at -18°C to assess changes in acceptance due to prolonged storage at unfavorable temperatures. Then, discrimination tests were performed to determine which differences in fat content were detectable by consumers. Mix viscosity decreased with increasing fat content and decreasing maltodextrin content. Fat particle size and fat destabilization significantly increased with increasing fat content. However, acceptability did not differ significantly across the samples for fresh or stored ice cream. Following storage, ice creams with 6, 12, and 14% fat did not differ in acceptability compared with fresh ice cream. However, the 8% fat, 6% MD and 10% fat, 4% MD ice creams showed a significant drop in acceptance after storage relative to fresh ice cream at the same fat content. Consumers were unable to detect a difference of 2 percentage points in fat level between 6 and 12% fat. They were able to detect a difference of 4 percentage points for ice creams with 6% versus 10%, but not for those with 8% versus 12% fat. Removing fat and replacing it with maltodextrin caused minimal changes in physical properties in ice cream and mix and did not change consumer acceptability for either fresh or stored ice cream. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nybergh, Lotta; Taft, Charles; Krantz, Gunilla
2013-01-01
Objective To explore psychometric properties of the Violence Against Women instrument in a randomly selected national sample of women (N=573) aged 18–65 years and residing in Sweden. Design Cross-sectional survey study. Setting Sweden. Participants A postal survey was sent to 1006 women between January and March 2009, during which 624 women (62%) returned the questionnaire. 51 women who did not answer any of the violence items were excluded from the analyses, resulting in a final sample of 573 women. Primary and secondary outcome measures Self-reported exposure to psychological, physical and sexual intimate partner violence. Results Cronbach's α coefficients were 0.79 (psychological scale), 0.80 (physical scale), 0.72 (sexual scale) and 0.88 (total scale). A predetermined three-component solution largely replicated the explored three component conceptual model of the Violence Against Women instrument. The instrument was able to discriminate between groups known from previous studies to differ in exposure to physical and/or sexual violence, that is, respondents with poor versus good self-rated health and witnessed versus not witnessed physical violence at home when growing up. Past-year prevalence of physical (8.1%; 95% CI 5.9 to 10.3) and sexual (3%; 1.6 to 4.4) violence was similar to that reported in other Nordic studies; however, earlier-in-life prevalence was lower in the current study (14.3%; 95% CI 11.4 to 17.2 and 9.2%; 95% CI 6.8 to 11.6, respectively). Reported exposure rates were higher than those obtained from a concurrently administered instrument (NorVold Abuse Questionnaire). Conclusions The Violence Against Women instrument demonstrated good construct validity and internal reliability in an adult female population in Sweden. However, further studies examining these and other psychometric properties need to be conducted in other countries. PMID:23793692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwope, A.D.; Costas, P.P.; Jackson, J.O.
1987-02-01
A variety of protective-clothing items are commerically available for emergency response and other applications where chemical hazards may be encountered. Data and information for selecting chemical-protective clothing is either not available or is inconsistant from source to source. In 1983, the U.S. Environmental Protection Agency sponsored the development of chemical-protective clothing selection guidelines to assist their own Office of Health and Safety in providing guidance to personnel, primarily EPA employees and contractors, working on hazardous-waste sites. These guidelines allowed a user to select an appropriate protective material for a specific chemical, select a clothing item (glove, suit, etc.) and thenmore » determine which manufacturers offered the clothing item in the selected material. The U.S. Coast Guard Office of Research and Development and the EPA have supplemented these guidelines with additional data on material chemical resistance, material physical properties, clothing design features, and specific-vendor products. A chapter has been added for selecting chemical protective suits. These guidelines contain data for over 750 chemicals and 700 clothing products. Volume I provides the performance information and recommendations for selecting different types of protective clothing.« less
48 CFR 1852.245-78 - Physical inventory of capital personal property.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Physical inventory of... Provisions and Clauses 1852.245-78 Physical inventory of capital personal property. As prescribed in 1845.107-70(i), insert the following clause. Physical Inventory of Capital Personal Property (JAN 2011) (a) In...
Introduction to physical properties and elasticity models: Chapter 20
Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos
2003-01-01
Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.
Ferromagnetic viscoelastic liquid crystalline materials
NASA Astrophysics Data System (ADS)
Schlesier, Cristina; Shibaev, Petr; McDonald, Scott
2012-02-01
Novel ferromagnetic liquid crystalline materials were designed by mixing ferromagnetic nanoparticles with glass forming oligomers and low molar mass liquid crystals. The matrix in which nanoparticles are embedded is highly viscous that reduces aggregation of nanoparticles and stabilizes the whole composition. Mechanical and optical properties of the composite material are studied in the broad range of nanoparticle concentrations. The mechanical properties of the viscoelastic composite material resemble those of chemically crosslinked elastomers (elasticity and reversibility of deformations). The optical properties of ferromagnetic cholesteric materials are discussed in detail. It is shown that application of magnetic field leads to the shift of the selective reflection band of the cholesteric material and dramatically change its color. Theoretical model is suggested to account for the observed effects; physical properties of the novel materials and liquid crystalline elastomers are compared and discussed. [1] P.V. Shibaev, C. Schlesier, R. Uhrlass, S. Woodward, E. Hanelt, Liquid Crystals, 37, 1601 (2010) [2] P.V. Shibaev, R. Uhrlass, S. Woodward, C. Schlesier, Md R. Ali, E. Hanelt, Liquid Crystals, 37, 587 (2010)
Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Sarac, Baran; Zhang, Long; Kosiba, Konrad; Pauly, Simon; Stoica, Mihai; Eckert, Jürgen
2016-06-01
Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material’s resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing.
Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.
2007-08-01
Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.
Modeling the internal combustion engine
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.; Mcbride, B. J.
1985-01-01
A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.
Corrosive effect of environmental change on selected properties of polymer composites
NASA Astrophysics Data System (ADS)
Markovičová, L.; Zatkalíková, V.
2017-11-01
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
An Update on Design Tools for Optimization of CMC 3D Fiber Architectures
NASA Technical Reports Server (NTRS)
Lang, J.; DiCarlo, J.
2012-01-01
Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.
Issues related to aircraft take-off plumes in a mesoscale photochemical model.
Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V
2013-07-01
The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species. Copyright © 2013 Elsevier B.V. All rights reserved.
Bajwa, Dilpreet S; Wang, Xinnan; Sitz, Evan; Loll, Tyler; Bhattacharjee, Sujal
2016-08-01
Lignin is the most abundant of renewable polymers next to cellulose with a global annual production of 70million tons, largely produced from pulping and second generation biofuel industries. Low value of industrial lignin makes it an attractive biomaterial for wide range of applications. The study investigated the application of wheat straw and corn stover based lignin derived from ethanol production for use in thermoset biocomposites. The biocomposite matrix constituted a two component low viscosity Araldite(®)LY 8601/Aradur(®) 8602 epoxy resin system and the lignin content varied from 0 to 25% by weight fraction. The analysis of the physical and mechanical properties of the biocomposites show bioethanol derived lignin can improve selective properties such as impact strength, and thermal stability without compromising the modulus and strength attributes. Copyright © 2016 Elsevier B.V. All rights reserved.
High Temperature Transfer Molding Resins Based on 2,3,3',4'-Biphenyltetracarboxylic Dianhydride
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Yokota, R.; Criss, J. M.
2002-01-01
As part of an ongoing effort to develop materials for resin transfer molding (RTM) processes to fabricate high performance/high temperature composite structures, phenylethynyl containing imides have been under investigation. New phenylethynyl containing imide compositions were prepared using 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA) and evaluated for cured glass transition temperature (Tg), melt flow behavior, and for processability into flat composite panels via RTM. The a-BPDA imparts a unique combination of properties that are desirable for high temperature transfer molding resins. In comparison to its symmetrical counterpart (i.e. 3,3',4,4'-biphenyltetracarboxylic dianhydride), a-BPDA affords oligomers with lower melt viscosities and when cured, higher Tgs. Several candidates exhibited the appropriate combination of properties such as a low and stable melt viscosity required for RTM processes, high cured Tg, and moderate toughness. The chemistry, physical, and composite properties of select resins will be discussed.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
NASA Astrophysics Data System (ADS)
Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng
2009-08-01
Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.
Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.
2003-01-01
A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.
Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys
NASA Astrophysics Data System (ADS)
Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.
The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.
Review of selective laser melting: Materials and applications
NASA Astrophysics Data System (ADS)
Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.
2015-12-01
Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.
Review of selective laser melting: Materials and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg; Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798; Chua, C. K., E-mail: mckchua@ntu.edu.sg
Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power lasermore » have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.« less
NASA Astrophysics Data System (ADS)
Deepu, M. J.; Farivar, H.; Prahl, U.; Phanikumar, G.
2017-04-01
Dual phase steels are versatile advanced high strength steels that are being used for sheet metal applications in automotive industry. It also has the potential for application in bulk components like gear. The inter-critical annealing in dual phase steels is one of the crucial steps that determine the mechanical properties of the material. Selection of the process parameters for inter-critical annealing, in particular, the inter-critical annealing temperature and time is important as it plays a major role in determining the volume fractions of ferrite and martensite, which in turn determines the mechanical properties. Selection of these process parameters to obtain a particular required mechanical property requires large number of experimental trials. Simulation of microstructure evolution and virtual compression/tensile testing can help in reducing the number of such experimental trials. In the present work, phase field modeling implemented in the commercial software Micress® is used to predict the microstructure evolution during inter-critical annealing. Virtual compression tests are performed on the simulated microstructure using finite element method implemented in the commercial software, to obtain the effective flow curve of the macroscopic material. The flow curves obtained by simulation are experimentally validated with physical simulation in Gleeble® and compared with that obtained using linear rule of mixture. The methodology could be used in determining the inter-critical annealing process parameters required for achieving a particular flow curve.
Experimental Study on Feasibility of Non Potable Water with Lime on Properties of Ppc
NASA Astrophysics Data System (ADS)
Reddy Babu, G.; Madhusudana Reddy, B.; Ramana, N. V.; Sudharshan Reddy, B.
2017-08-01
This research aimed to investigate feasibility of outlet water of water treatment plant and limewater on properties of Portland pozzolana cement (PPC). Twenty water treatment plants were found out in the Bhimavaram municipality region in West Godavari district, Andhra Pradesh, India. Approximately, each plant supplying potable water about 4000 to 5000 L/day. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. At outlet, huge quantity of wasted water is being discharged into side drains in Bhimavaram municipality. One typical treatment plant was selected, and water at outlet was collected and Physical and chemical analysis was carried out as per producer described in APHA. The effect of plant outlet water(POW), lime water(LM), and plant outlet water with lime (POWL) on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were studied in laboratory and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time in POW, LW, and (POWL) as compared with reference specimens made with distilled water (DW). Compressive strength was significantly increased with LW and (POWL) specimens compared to that of reference specimens. XRD technique was employed to study the mineralogical analysis.
Fire-retardant decorative inks for aircraft interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.
1985-01-01
Commercial and experimental fire retardants were screened as potential fire retardants for acrylic printing inks used on aircraft interior sandwich panels. The fire retardants are selected according to their physical properties and their thermostabilities. A criterion for selecting a more stable fire retardant is established. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are used to determine thermostabilities. Results show that the fire retardant formulations are more thermally stable than the acrylic ink control. It is determined that an ink formulation containing a brominated phenol and carboxy-terminated butadiene acrylonitrile which has been modified with a brominated polymeric additive (BPA), yields the highest limiting oxygen index (LOI) of all the compounds tested. All of the fire-retardant formulations have a higher oxygen index than the baseline acrylic ink.
Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinus, R.J.
2000-08-30
The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depthmore » review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology. The importance of these and future developments is emphasized, since trait measurement constitutes the largest cost associated with adding additional traits to improvement efforts, regardless of genetic approach. In subsequent sections, recent and projected advances in classical selection and breeding, marker-aided selection, and genetic transformation are documented and used to evaluate the feasibility of individual approaches. Interviews with specialists engaged in research and development on each approach were given particular emphasis in gauging feasibilities and defining future needs and directions. Summaries of important findings and major conclusions are presented at the end of individual sections. Closing portions describe the targeted workshop, conducted in December 1999 and list interviewees and literature cited in the text. Information obtained at the workshop was used to improve accuracy, refine conclusions, and recommend priorities for future research, development, and technology transfer.« less
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.
Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B
2017-05-01
Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Miller, Laura; Ziviani, Jenny; Boyd, Roslyn Nancy
2014-02-01
The purpose of this systematical review was to appraise the clinimetric properties of measures of motivation in children aged 5-16 years with a physical disability or motor delay. Six electronic databases were searched. Studies were included if they reported measuring motivation in school-aged children across occupational performance areas. Two reviewers independently identified measures from included articles. Evaluation of measures was completed using the COSMIN (consensus-based standards for the selection of health measurement instruments) checklist. A total of 13,529 papers were retrieved, 15 reporting measurement of motivation in this population. Two measures met criteria: Dimensions of Mastery Questionnaire (DMQ) and Pediatric Volitional Questionnaire (PVQ). There was evidence of adequate validity for DMQ, and preliminary evidence of test-retest reliability. Psychometric evidence for PVQ was poor. Both measures demonstrated good clinical utility. The large number of retrieved papers highlights the importance being attributed to motivation in clinical studies, although measurement is seldom performed. Both identified measures show promise but further psychometric research is required.
Sen, Bisakha
2010-02-01
To examine the association between frequency of family dinners (FFD) and selected problem behaviors for adolescents after adjusting for family connectedness, parental awareness, other family activities, and other potentially confounding factors. Data are drawn from the National Longitudinal Survey of Youth, 1997. The primary variable of interest is self-reported FFD in a typical week. Problem behaviors studied are substance-use, physical violence, property-destruction, stealing, running away from home, andgang membership. Multivariate logistic models are estimated for each behaviors. Linear regression models are estimated for behavior-frequency for the sub-samples engaging in them. Analysis is done separately by gender. FFD is negatively associated with substance-use and running away for females; drinking, physical violence, property-destruction, stealing and running away for males. Family meals are negatively associated to certain problem behaviors for adolescents even after controlling rigorously for potentially confounding factors. Thus, programs that promote family meals are beneficial. Copyright (c) 2009 The Association for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass
2015-01-01
The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.
ATLASGAL-selected massive clumps in the inner Galaxy. V. Temperature structure and evolution
NASA Astrophysics Data System (ADS)
Giannetti, A.; Leurini, S.; Wyrowski, F.; Urquhart, J.; Csengeri, T.; Menten, K. M.; König, C.; Güsten, R.
2017-07-01
Context. Observational identification of a solid evolutionary sequence for high-mass star-forming regions is still missing. Spectroscopic observations give the opportunity to test possible schemes and connect the phases identified to physical processes. Aims: We aim to use the progressive heating of the gas caused by the feedback of high-mass young stellar objects to prove the statistical validity of the most common schemes used to observationally define an evolutionary sequence for high-mass clumps, and characterise the sensitivity of different tracers to this process. Methods: From the spectroscopic follow-ups carried out towards submillimeter continuum (dust) emission-selected massive clumps (the ATLASGAL TOP100 sample) with the IRAM 30 m, Mopra, and APEX telescopes between 84 GHz and 365 GHz, we selected several multiplets of CH3CN, CH3CCH, and CH3OH emission lines to derive and compare the physical properties of the gas in the clumps along the evolutionary sequence, fitting simultaneously the large number of lines that these molecules have in the observed band. Our findings are compared with results obtained from optically thin CO isotopologues, dust, and ammonia from previous studies on the same sample. Results: The chemical properties of each species have a major role on the measured physical properties. Low temperatures are traced by ammonia, methanol, and CO (in the early phases), the warm and dense envelope can be probed with CH3CN, CH3CCH, and, in evolved sources where CO is abundant in the gas phase, via its optically thin isotopologues. CH3OH and CH3CN are also abundant in the hot cores, and we suggest that their high-excitation transitions are good tools to study the kinematics in the hot gas associated with the inner envelope surrounding the young stellar objects that these clumps are hosting. All tracers show, to different degrees according to their properties, progressive warming with evolution. The relation between gas temperature and the luminosity-to-mass (L/M) ratio is reproduced by a simple toy model of a spherical, internally heated clump. Conclusions: The evolutionary sequence defined for the clumps is statistically valid and we could identify the physical processes dominating in different intervals of L/M. For L/M ≾ 2 L⊙M⊙-1 a large quantity of the gas is still accumulated and compressed at the bottom of the potential well. Between 2 L⊙M⊙-1 ≾ L/M ≾ 40 L⊙M⊙-1 the young stellar objects gain mass and increase in luminosity; the first hot cores hosting intermediate- or high-mass ZAMS stars appear around L/M 10 L⊙M⊙-1. Finally, for L/M ≳ 40 L⊙M⊙-1 Hii regions become common, showing that dissipation of the parental clump dominates. Tables from A.1 to A.8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A33
NASA Astrophysics Data System (ADS)
Koiter, A. J.; Owens, P. N.; Petticrew, E. L.; Lobb, D. A.
2013-10-01
Sediment fingerprinting is a technique that is increasingly being used to improve the understanding of sediment dynamics within river basins. At present, one of the main limitations of the technique is the ability to link sediment back to their sources due to the non-conservative nature of many of the sediment properties. The processes that occur between the sediment source locations and the point of collection downstream are not well understood or quantified and currently represent a black-box in the sediment fingerprinting approach. The literature on sediment fingerprinting tends to assume that there is a direct connection between sources and sinks, while much of the broader environmental sedimentology literature identifies that numerous chemical, biological and physical transformations and alterations can occur as sediment moves through the landscape. The focus of this paper is on the processes that drive particle size and organic matter selectivity and biological, geochemical and physical transformations and how understanding these processes can be used to guide sampling protocols, fingerprint selection and data interpretation. The application of statistical approaches without consideration of how unique sediment fingerprints have developed and how robust they are within the environment is a major limitation of many recent studies. This review summarises the current information, identifies areas that need further investigation and provides recommendations for sediment fingerprinting that should be considered for adoption in future studies if the full potential and utility of the approach are to be realised.
Gałązka, Ann; Gałązka, Rafał
2015-01-01
The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2017-01-01
We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
NASA Astrophysics Data System (ADS)
Logan, Timothy S.
Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the selected four Asian sites. A strongly absorbing mineral dust influence is seen at the Xianghe, Taihu, and SACOL sites during the spring months (MAM) as given by coarse mode dominance. There is a shift towards weakly absorbing pollution (sulfate) and biomass (OC) aerosol dominance in the summer (JJA) and autumn (SON) months as given by a strong fine mode influence. A winter season (DJF) shift toward strongly fine mode, absorbing particles (BC and OC) is observed at Xianghe and Taihu. At Mukdahan, a strong fine mode influence is evident year round with weakly and strongly absorbing biomass particles dominant in the autumn and winter months, respectively, while particles exhibit variable absorption during the spring season. To address SQ2, four cases are selected in Asia to investigate how the optical properties of Asian aerosol plumes change during transport across the remote Pacific Ocean. In addition, six strong smoke events are selected to investigate how the physical and chemical properties of biomass smoke aerosols change during transport in North America. From four selected Asian cases, it was shown by DC-8 aircraft in situ measurements that the Asian plumes contained varying amounts of mineral dust and pollution aerosols during transport. In addition, backward trajectory analysis identified two main dust source regions (Gobi and Taklamakan deserts) and urban/industrial pollution regions in central and eastern China. During the anomalously active wildfire season of 2012 in North America, strong smoke events were observed over the Northern Great Plains region by the Grand Forks, North Dakota, AERONET site and selected as cases. The spectral dependences of absorption aerosol optical depth (AAOD) and o oabs illustrated the varying absorption of the smoke plumes due to carbonaceous particle influences. The AAOD parameter was found to be primarily influenced by aerosol particle size while ooabs was more sensitive to the carbonaceous content. The aerosols likely contain strongly absorbing carbonaceous particles generated from the flaming combustion mode. The cases represented complex mixtures of the flaming and smoldering combustion phases. Lastly, SQ3 is addressed by using a multi-platform dataset from the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Graciosa, Azores, 2009-2010 field campaign. The seasonal aerosol particle volume and number size distributions, AOD, and AEAOD during the CAP-MBL campaign have shown that a low overall mean AOD440 of 0.12 denoted a clean environment over this region that typically contains MBL sea salt. In terms of aerosol volume, a bimodal signal was prominent where the coarse mode influence (r ≥ 1 μm) dominated that of the fine mode (r < 1 μm) throughout the year. However, there are considerable continental fine mode aerosols advected to the Azores region during summer months, including Saharan mineral dust, volcanic ash, biomass smoke, and pollution from North American as identified by HYSPLIT backward trajectories. These aerosol types have been shown to have impacts on MBL cloud condensation nuclei (CCN) that are likely different from coarse mode marine aerosols (e.g., sea salt) (Remillard et al. 2014; Wood et al. 2014). The alternating presence of dominant clean air masses with periodic episodes of polluted air masses will provide a substantial variety in aerosol properties during the summer. This will provide a great opportunity to investigate the interactions between aerosol and cloud properties in terms of the aerosol indirect effect (AIE).
Comparison of thermal signatures of a mine buried in mineral and organic soils
NASA Astrophysics Data System (ADS)
Lamorski, K.; Pregowski, Piotr; Swiderski, Waldemar; Usowicz, B.; Walczak, R. T.
2001-10-01
Values of thermal signature of a mine buried in soils, which ave different properties, were compared using mathematical- statistical modeling. There was applied a model of transport phenomena in the soil, which takes into consideration water and energy transfer. The energy transport is described using Fourier's equation. Liquid phase transport of water is calculated using Richard's model of water flow in porous medium. For the comparison, there were selected two soils: mineral and organic, which differs significantly in thermal and hydrological properties. The heat capacity of soil was estimated using de Vries model. The thermal conductivity was calculated using a statistical model, which incorprates fundamental soil physical properties. The model of soil thermal conductivity was built on the base of heat resistance, two Kirchhoff's laws and polynomial distribution. Soil hydrological properties were described using Mualem-van Genuchten model. The impact of thermal properties of the medium in which a mien had been placed on its thermal signature in the conditions of heat input was presented. The dependence was stated between observed thermal signature of a mine and thermal parameters of the medium.
Aviation-fuel property effects on combustion
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.
Kostogrys, Renata B; Filipiak-Florkiewicz, Agnieszka; Dereń, Katarzyna; Drahun, Anna; Czyżyńska-Cichoń, Izabela; Cieślik, Ewa; Szymczyk, Beata; Franczyk-Żarów, Magdalena
2017-04-15
The objective of the study was to determine the effects of pomegranate seed oil, used as a source of punicic acid (CLnA) in the diets of laying hens, on the physicochemical properties of eggs. Forty Isa Brown laying hens (26weeks old) were equally subjected to 4 dietary treatments (n=10) and fed a commercial layer diet supplying 2.5% sunflower oil (control) or three levels (0.5, 1.0 and 1.5%) of punicic acid in the diets. After 12weeks of feeding the hens, eggs collection began. Sixty eggs - randomly selected from each group - were analysed for physicochemical properties. Eggs naturally enriched with CLnA preserve their composition and conventional properties in most of the analysed parameters (including chemical composition, physical as well as organoleptic properties). Dietary CLnA had positive impact on the colour of the eggs' yolk, whereas the hardness of hard-boiled egg yolks was not affected. Additionally, increasing dietary CLnA led to an increase not only the CLnA concentrations, but also CLA in egg-yolk lipids. Copyright © 2016. Published by Elsevier Ltd.
Chen, Qihui
2018-06-07
Selective probing one molecule from one class similar molecules is highly challenging due to their similar chemical and physical properties. Here, a novel metal-organic framework FJI-H15 with flexible porous cages has been designed and synthesized, which can specifically recognize ethyl-benzene with ultrahigh enhancement efficiency from series of alkyl-aromatics, in which an unusual size-dependent interaction has been found and proved. While it also can selectively detect phenolic-nitroaromatics among series of nitro-aromatics based on energy transferring and electrostatic interaction. Such unusual specificity and variable mechanisms responding to different type molecules has not been reported, which will provide a new strategy for developing more effective chemo-sensor based on MOFs for probing small structural differences in molecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SHARDS: A Global View of the Star Formation Activity at z ~ 0.84 and z ~ 1.23
NASA Astrophysics Data System (ADS)
Cava, Antonio; Pérez-González, Pablo G.; Eliche-Moral, M. Carmen; Ricciardelli, Elena; Vidal-García, Alba; Alcalde Pampliega, Belen; Alonso-Herrero, Almudena; Barro, Guillermo; Cardiel, Nicolas; Cenarro, A. Javier; Charlot, Stephane; Daddi, Emanuele; Dessauges-Zavadsky, Miroslava; Domínguez Sánchez, Helena; Espino-Briones, Nestor; Esquej, Pilar; Gallego, Jesus; Hernán-Caballero, Antonio; Huertas-Company, Marc; Koekemoer, Anton M.; Muñoz-Tunon, Casiana; Rodriguez-Espinosa, Jose M.; Rodríguez-Muñoz, Lucia; Tresse, Laurence; Villar, Victor
2015-10-01
In this paper, we present a comprehensive analysis of star-forming galaxies (SFGs) at intermediate redshifts (z ˜ 1). We combine the ultra-deep optical spectro-photometric data from the Survey for High-z Absorption Red and Dead Sources (SHARDS) with deep UV-to-FIR observations in the GOODS-N field. Exploiting two of the 25 SHARDS medium-band filters, F687W17 and F823W17, we select [O ii] emission line galaxies at z ˜ 0.84 and z ˜ 1.23 and characterize their physical properties. Their rest-frame equivalent widths (EWrf([O ii])), line fluxes, luminosities, star formation rates (SFRs), and dust attenuation properties are investigated. The evolution of EWrf([O ii]) closely follows the SFR density evolution of the universe, with a trend of EWrf([O ii]) \\propto (1 + z)3 up to redshift z ≃ 1, followed by a possible flattening. The SF properties of the galaxies selected on the basis of their [O ii] emission are compared with complementary samples of SFGs selected by their MIR and FIR emission, and also with a general mass-selected sample of galaxies at the same redshifts. We demonstrate observationally that the UVJ diagram (or, similarly, a cut in the specific SFR) is only partially able to distinguish the quiescent galaxies from the SFGs. The SFR-M* relation is investigated for the different samples, yielding a logarithmic slope ˜1, in good agreement with previous results. The dust attenuations derived from different SFR indicators (UV(1600), UV(2800), [O ii], IR) are compared and show clear trends with respect to both the stellar mass and total SFR, with more massive and highly star-forming galaxies being affected by stronger dust attenuation.
Begnini, Fernanda R; Jardim, Isabel C S F
2013-07-05
A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Spin state switching in iron coordination compounds
Gaspar, Ana B; Garcia, Yann
2013-01-01
Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535
Galaxy properties from J-PAS narrow-band photometry
NASA Astrophysics Data System (ADS)
Mejía-Narváez, A.; Bruzual, G.; Magris, C. G.; Alcaniz, J. S.; Benítez, N.; Carneiro, S.; Cenarro, A. J.; Cristóbal-Hornillos, D.; Dupke, R.; Ederoclite, A.; Marín-Franch, A.; de Oliveira, C. Mendes; Moles, M.; Sodre, L.; Taylor, K.; Varela, J.; Ramió, H. Vázquez
2017-11-01
We study the consistency of the physical properties of galaxies retrieved from spectral energy distribution (SED) fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local Universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations and degeneracies affecting the retrieved parameters and explore the role of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the Sloan Digital Sky Survey (SDSS), we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior probability distribution functions, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy, albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
Characterization and nultivariate analysis of physical properties of processing peaches
USDA-ARS?s Scientific Manuscript database
Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...
Physical Properties of Gas Hydrates: A Review
Gabitto, Jorge F.; Tsouris, Costas
2010-01-01
Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16 m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less
Periodic table of virus capsids: implications for natural selection and design.
Mannige, Ranjan V; Brooks, Charles L
2010-03-04
For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.
NASA Astrophysics Data System (ADS)
Magoba, Moses; Opuwari, Mimonitu
2017-04-01
This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.
Galenics of dermal products--vehicles, properties and drug release.
Daniels, Rolf; Knie, Ulrich
2007-05-01
The efficiency, tolerability, and applicability of topical agents are directly related to employed vehicles. Thus to achieve optimum topical therapy, a solid knowledge of the vehicles, their composition, and their physical and dermato-pharmacological actions are important. Common vehicles are complex mixtures consisting of diverse ingredients belonging to six major groups, i. e. hydrophilic and lipophilic bases, emulsifiers, gel-forming agents, preservatives, and antioxidants. This makes it possible to optimize both the cosmetic features and to adjust a vehicle to the properties of an incorporated drug and site of application. On the other hand it makes it difficult to make a proper choice between several alternatives or to use it in individual prescriptions. In order to simplify the selection of a formulation, it is useful to categorize them systemically into several groups, such as ointments, creams, gels, emulsions, and suspensions. Within these groups some general rules can be derived for the selection of a vehicle with respect to skin conditions and the application site. When active substances are incorporated into a base the dermato-biopharmaceutical properties of the whole system (drug + vehicle) also have to be considered. If for a given vehicle drug transport into the skin does not suffice, several methods are described to facilitate its penetration, such as by hydrating the skin or by adding chemical penetration enhancers.
Evanescent excitation and emission in fluorescence microscopy.
Axelrod, Daniel
2013-04-02
Evanescent light-light that does not propagate but instead decays in intensity over a subwavelength distance-appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ginkgolides and bilobalide: their physical, chromatographic and spectroscopic properties.
van Beek, Teris A
2005-09-01
Ginkgolides A, B, C, J, K, L and M and bilobalide are rare terpene trilactones that have been isolated from leaves and root bark of the Chinese tree Ginkgo biloba. The structures of the highly oxidized ginkgolides were independently elucidated in the 1960s by the groups of Nakanishi and Sakabe. Later these compounds were found to be potent and selective antagonists of platelet activating factor, which fact triggered much new research. During the past 40 years, much physical, chromatographic and spectroscopic data have been published on these compounds in various, sometimes inaccessible, sources. The published melting points, solubility in different solvents, ionization constants, chromatographic behaviour, specific optical rotations, UV, IR, MS and NMR data, and X-ray studies are summarized and, where necessary, discussed. The literature until April 2005 has been reviewed.
Acquired pellicle as a modulator for dental erosion.
Vukosavljevic, Dusa; Custodio, William; Buzalaf, Marilia A R; Hara, Anderson T; Siqueira, Walter L
2014-06-01
Dental erosion is a multifactorial condition that can result in the loss of tooth structure and function, potentially increasing tooth sensitivity. The exposure of enamel to acids from non-bacterial sources is responsible for the progression of erosion. These erosive challenges are counteracted by the anti-erosive properties of the acquired pellicle (AP), an integument formed in vivo as a result of selective adsorption of salivary proteins on the tooth surface, containing also lipids and glycoproteins. This review provides an in-depth discussion regarding how the physical structure of the AP, along with its composition, contributes to AP anti-erosive properties. The physical properties that contribute to AP protective nature include pellicle thickness, maturation time, and site of development. The pellicle contains salivary proteins embedded within its structure that demonstrate anti-erosive properties; however, rather than individual proteins, protein-protein interactions play a fundamental role in the protective nature of the AP. In addition, dietary and synthetic proteins can modify the pellicle, enhancing its protective efficiency against dental erosion. The salivary composition of the AP and its corresponding protein-profile may be employed as a diagnostic tool, since it likely contains salivary biomarkers for oral diseases that initiate at the enamel surface, including dental erosion. Finally, by modifying the composition and structure of the AP, this protein integument has the potential to be used as a target-specific treatment option for oral diseases related to tooth demineralization. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.