Sample records for selected soil parameters

  1. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    PubMed

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  2. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  3. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  4. A framework for streamflow prediction in the world's most severely data-limited regions: Test of applicability and performance in a poorly-gauged region of China

    NASA Astrophysics Data System (ADS)

    Alipour, M. H.; Kibler, Kelly M.

    2018-02-01

    A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.

  5. Estimating Soil Moisture Using Polsar Data: a Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Khedri, E.; Hasanlou, M.; Tabatabaeenejad, A.

    2017-09-01

    Soil moisture is an important parameter that affects several environmental processes. This parameter has many important functions in numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures for moisture calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating soil moisture in vast territories and high-cost nature as well as spatial and local variability of soil moisture. Polarimetric synthetic aperture radar (PolSAR) imaging is a powerful tool for estimating soil moisture. These images provide a wide field of view and high spatial resolution. For estimating soil moisture, in this study, a model of support vector regression (SVR) is proposed based on obtained data from AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection (SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C channels, which has provided better accuracy compared to other feature selection algorithms.

  6. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    PubMed

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  7. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  8. Justification of parameters and selection of equipment for laboratory researches of a rammer's operating element dynamics in a soil foundation of a tank for oil and oil products storage

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2017-08-01

    The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.

  9. Modelling the water balance of irrigated fields in tropical floodplain soils using Hydrus-1D

    NASA Astrophysics Data System (ADS)

    Beyene, Abebech; Frankl, Amaury; Verhoest, Niko E. C.; Tilahun, Seifu; Alamirew, Tena; Adgo, Enyew; Nyssen, Jan

    2017-04-01

    Accurate estimation of evaporation, transpiration and deep percolation is crucial in irrigated agriculture and the sustainable management of water resources. Here, the Hydrus-1D process-based numerical model was used to estimate the actual transpiration, soil evaporation and deep percolation from irrigated fields of floodplain soils. Field experiments were conducted from Dec 2015 to May 2016 in a small irrigation scheme (50 ha) called 'Shina' located in the Lake Tana floodplains of Ethiopia. Six experimental plots (three for onion and three for maize) were selected along a topographic transect to account for soil and groundwater variability. Irrigation amount (400 to 550 mm during the growing period) was measured using V-notches installed at each plot boundary and daily groundwater levels were measured manually from piezometers. There was no surface runoff observed in the growing period and rainfall was measured using a manual rain gauge. All daily weather data required for the evapotranspiration calculation using Pen Man Monteith equation were collected from a nearby metrological station. The soil profiles were described for each field to include the vertical soil heterogeneity in the soil water balance simulations. The soil texture, organic matter, bulk density, field capacity, wilting point and saturated moisture content were measured for all the soil horizons. Soil moisture monitoring at 30 and 60 cm depths was performed. The soil hydraulic parameters for each horizon was estimated using KNN pedotransfer functions for tropical soils and were effectively fitted using the RETC program (R2= 0.98±0.011) for initial prediction. A local sensitivity analysis was performed to select and optimize the most important hydraulic parameters for soil water flow in the unsaturated zone. The most sensitive parameters were saturated hydraulic conductivity (Ks), saturated moisture content (θs) and pore size distribution (n). Inverse modelling using Hydrus-1D further optimized these parameters (R2 =0.74±0.13). Using the optimized hydraulic parameters, the soil water dynamics were simulated using Hydrus-1D. The atmospheric boundary conditions with surface runoff was used as upper boundary condition with measured rainfall and irrigation input data. The variable pressure head was selected as lower boundary conditions with daily records of groundwater level as time-variable input data. The Hydrus-1D model was successfully applied and calibrated in the study area. The average seasonal actual transpiration values are 310±13 mm for onion and 429±24.7 mm for maize fields. The seasonal average soil evaporation ranges from 12±2.05 mm for maize fields to 38±2.85 mm for onion fields. The seasonal deep percolation from irrigation appeared to be 12 to 40% of applied irrigation. The Hydrus-1D model was able to simulate the temporal and the spatial variations of soil water dynamics in the unsaturated zone of tropical floodplain soils. Key words: floodplains, hydraulic parameters, parameter optimization, small-scale irrigation

  10. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.

  11. Effects of cover crops on soil quality: Selected chemical and biological parameters

    USDA-ARS?s Scientific Manuscript database

    Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...

  12. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  13. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J.

    2015-02-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonise soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments 5 years after the fire event were selected. A mature Aleppo pine stand, unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation recovery normalises post-fire soil microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors affecting soil properties after 17 years.

  14. Exploring innovative techniques for identifying geochemical elements as fingerprints of sediment sources in an agricultural catchment of Argentina affected by soil erosion.

    PubMed

    Torres Astorga, Romina; de Los Santos Villalobos, Sergio; Velasco, Hugo; Domínguez-Quintero, Olgioly; Pereira Cardoso, Renan; Meigikos Dos Anjos, Roberto; Diawara, Yacouba; Dercon, Gerd; Mabit, Lionel

    2018-05-15

    Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This research proposes the complementary and integrated application of two analytical techniques to select the most suitable fingerprint tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers. EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction models (R 2  = 0.91) for Fe content and moderate useful prediction (R 2  = 0.72) for Ti content. For Ca, P, and Ba, the R 2 were 0.44, 0.58, and 0.59 respectively.

  15. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  16. Animal waste and FGD gypsum effects on bermudagrass and soil leachate nutrient contents

    USDA-ARS?s Scientific Manuscript database

    In previous experiments on newly relcaimed coal mine soils in northeastern Mississippi, applying poultry litter at 22.4 Mg ha-1 yr-1 enhanced bermudagrass (Cynodon dactylon L.) biomass and selected soil quality parameters. Additionally, co-application of 11.2 Mg ha-1 FGD gypsum and litter reduced so...

  17. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  18. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    NASA Astrophysics Data System (ADS)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  19. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.

    PubMed

    Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L

    2007-01-01

    The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.

  20. Applying the Training Range Environmental Evaluation and Characterization System (TREECS) (User Guide)

    DTIC Science & Technology

    2012-08-01

    calculation of the erosion rate is based on the United States Department of Agriculture (USDA) Universal Soil Loss Equation ( USLE ). ERDC/EL TR-12-16 147...to specifying the USLE input parameters, the user must select which method to use for computing the soil loss type (i.e., “SDR,” or “Without SDR...34  Soil Model

  1. EFFECTS OF THE VARIATION OF SELECT SAMPLING PARAMETERS ON SOIL VAPOR CONCENTRATIONS

    EPA Science Inventory

    Currently soil vapor surveys are commonly used as a screening technique to delineate subsurface volatile organic compound (VOC) contaminant plumes and to provide information for vapor intrusion and contaminated site evaluations. To improve our understanding of the fate and transp...

  2. A test of ecological optimality for semiarid vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.; Eagleson, Peter S.; Turner, Edmund K.

    1992-01-01

    Three ecological optimality hypotheses which have utility in parameter reduction and estimation in a climate-soil-vegetation water balance model are reviewed and tested. The first hypothesis involves short term optimization of vegetative canopy density through equilibrium soil moisture maximization. The second hypothesis involves vegetation type selection again through soil moisture maximization, and the third involves soil genesis through plant induced modification of soil hydraulic properties to values which result in a maximum rate of biomass productivity.

  3. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés Abellán, M.; de Las Heras, J.

    2014-10-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonize soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments five years after the fire event were selected. A mature Aleppo pine stand unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Thus, the long-term consequences and post-fire silvicultural management in the form of thinning have a significant effect on the site recovery after fire. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation restoration normalises microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors of soil properties after 17 years.

  4. Beyond clay - using selective extractions to improve predictions of soil carbon content

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.

    2016-12-01

    A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP < 1). In contrast, the correlation of soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.

  5. Bare soil erosion modelling with rainfall simulations: experiments on crop and recently burned areas

    NASA Astrophysics Data System (ADS)

    Catani, F.; Menci, S.; Moretti, S.; Keizer, J.

    2006-12-01

    The use of numerical models is of fundamental importance in the comprehension and prediction of soil erosion. At the very basis of the calibration process of the numerical models are the direct measurements of the governing parameters, carried out during field or laboratory tests. To measure and model soil erosion rainfall simulations can be used, that allow the reproduction of project rainfall having chosen characteristics of intensity and duration. The main parameters that rainfall simulators can measure are hydraulic conductivity, parameters of soil erodibility, rate and features of splash erosion, discharge coefficient and sediment yield. Other important parameters can be estimated during the rainfall simulations through the use of photogrammetric instruments able to memorize high definition stereographic models of the soil plot under analysis at different time steps. In this research rainfall simulator experiments (rse) were conducted to measure and quantify runoff and erosion processes on selected bare soil plots. The selected plots are located in some vineyards, olive groves and crops in central Italy and in some recently burned areas in north-central Portugal, affected by a wildfire during early July 2005 and, at the time, largely covered by commercial eucalypt plantations. On the Italian crops the choice of the rainfall intensities and durations were performed on the basis of the previous knowledge of the selected test areas. The procedure was based on an initial phase of soil wetting and a following phase of 3 erosion cycles. The first should reproduce the effects of a normal rainfall with a return time of 2 years (23 mm/h). The second should represent a serious episode with a return time of 10 years (34 mm/h). The third has the objective to reproduce and understand the effects of an intense precipitation event, with a return time of 50 years (41 mm/h). During vineyards experiments some photogrammetric surveys were carried out as well. In the Portugal burned areas, to measure the influence of rain intensities, two rainfall simulations have been carried out simultaneously, one with an intensity of 45 mm/h and one with 85 mm/h. In both cases, before the experiments, soil and vegetation cover description have been made and soil samples have been taken. During the simulations soil samples leaving the parcels were taken at suitable time intervals to measure the sediment yield and the runoff. The rse data have been thought to provide a sufficient basis for erosion modelling at the small-plot scale and, through upscaling, for predicting erosion rates at the slope scale. For this purpose two soil erosion models, WEPP and MEFIDIS, have been selected and then compared. The comparison has shown a certain degree of uncertainty in numeric erosion prediction, due to the non linearity of the overland erosion processes, and to technical and conceptual difficulties, including the data collection. In the following laboratory phase high resolution (2 by 2 mm) DEMs of the vineyards plot are being produced for each meaningful processing phase. The digital elevation models will then be analysed to asses calibration parameters such as soil roughness (expressed by standard deviation of elevations, fractal dimension and local relief energy), soil and sediment transfer (hypsometric curves, local elevation and volume differences) and rill network evolution (Horton ordering, stream lengths, contributing area, drainage density, Hack's law)

  6. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.

    PubMed

    Vanderborght, Jan; Tiktak, Aaldrik; Boesten, Jos J T I; Vereecken, Harry

    2011-03-01

    For the registration of pesticides in the European Union, model simulations for worst-case scenarios are used to demonstrate that leaching concentrations to groundwater do not exceed a critical threshold. A worst-case scenario is a combination of soil and climate properties for which predicted leaching concentrations are higher than a certain percentile of the spatial concentration distribution within a region. The derivation of scenarios is complicated by uncertainty about soil and pesticide fate parameters. As the ranking of climate and soil property combinations according to predicted leaching concentrations is different for different pesticides, the worst-case scenario for one pesticide may misrepresent the worst case for another pesticide, which leads to 'scenario uncertainty'. Pesticide fate parameter uncertainty led to higher concentrations in the higher percentiles of spatial concentration distributions, especially for distributions in smaller and more homogeneous regions. The effect of pesticide fate parameter uncertainty on the spatial concentration distribution was small when compared with the uncertainty of local concentration predictions and with the scenario uncertainty. Uncertainty in pesticide fate parameters and scenario uncertainty can be accounted for using higher percentiles of spatial concentration distributions and considering a range of pesticides for the scenario selection. Copyright © 2010 Society of Chemical Industry.

  7. Influence of selected physicochemical parameters on microbiological activity of mucks.

    NASA Astrophysics Data System (ADS)

    Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.

    2009-04-01

    One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.

  8. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  9. Relationship between selected physicochemical properties of peaty-mucks soils and main absorbance bands of its FTIR spectra*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Peatlands are a large reservoir of organic matter that is responsible for sorption properties, structure of soils and microbial activity. However, most of the peatlands in Poland have been drained and subjected to agricultural use. Processes of such kind cause acceleration of peat mass transformation to mucks. Changes in peat evolution under melioration processes are mostly characterised by mineralisation and humification. The above processes lead to changes in the morphological, chemical, biological and physical properties of peat soils. Knowledge about changes of these parameters is very important in suitable application of conditions and fertilisers in order to improve agricultural value of soil. One of the indicators which could describe the changes in peat mass could be the water holding capacity index proposed by Gawlik. This parameter characterises the secondary transformation processes taking place in soils. Mucking processes are also well described by humification indexes and organic/inorganic carbon content. However, changes of above physical and physicochemical properties of soils are also connected with changes of chemical structure of organic matter contained in soil material. Organic matter is a significant component of organic soils and it influences such important parameters of all soil like sorptivity. So that, it is also valuable to control state of functional groups which determine sorption capacity of soil. One of the methods which could be applied in this case is observation of absorbance values of functional groups in infrared spectra of samples. This is quick and method but it could be used only in approximate way because of some content of ash and inorganic parts. Main aim of this work was attempt to find relationships beetwen selected physicochemical properties of peats soils and height of the most important infrared bands of these materials. 11 peaty-muck soils were taken from different places in Eastern part of Poland from deph 0-20cm. After homogenizing, selected parameters were determined for all samples. Content of organic carbon was investigated using TOC analyzer (MultiNC 2000, Analityk Jena), water holding capacity indexes were determined via centrifugation/ weighting method proposed by Gawlik, humification index was calculated using colorimetric method proposed by Springer. Infrared spectra were recorded for samples in form of pellets with KBr. Absorbance of the most important bands were measured: carboxylic for COO- as. (1619-1639cm-1), COO- sym. (1383 - 1387cm-1), COOH sym. (1240 - 1266cm-1) and phenolic groups for (~3389-3401cm-1). After this, relationships between all parameters were found. Results showed presence of statistically significant correlation between absorbance of functional groups and organic carbon content. This relation indicated that increase in organic carbon caused increase in functional groups of organic matter. No statistically significant correlation was found for relation of bands height and water holding capacity and humification index. *This work was partly supported by the National Science Centre in Poland, grant No. UMO-2011/03/N/NZ9/04239.

  10. Detecting seasonal variations of soil parameters via field measurements and stochastic simulations in the hillslope

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun

    2015-04-01

    Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.

  11. Toxocara (Nematoda: Ascaridida) and Other Soil-Transmitted Helminth Eggs Contaminating Soils in Selected Urban and Rural Areas in the Philippines

    PubMed Central

    Paller, Vachel Gay V.; de Chavez, Emmanuel Ryan C.

    2014-01-01

    The extent of contamination of soils with soil transmitted helminthes (STH) eggs, particularly Toxocara, was determined in selected urban and rural towns of Laguna, Philippines. Soil samples were collected from public schools, house yards, and empty lots. Results revealed that, of the 1480 soil samples collected, 460 (31%) were positive for STH eggs. Toxocara sp. was the most prevalent (77%), followed by Ascaris sp. (11%), hookworms/strongyles/free-living nematodes (7%), and Trichuris sp. (5%). Some soil physicochemical parameters were also determined and associated with Toxocara eggs prevalence and density in soil. Results revealed that Toxocara sp. eggs were most prevalent in less acidic, relatively high temperature and high moisture soil conditions. They were also prevalent in sandy, silty, and loamy soil textures but less prevalent in clayey. No significant differences were found between depth 1 (0–5 cm) and depth 2 (6–10 cm). This study revealed that Toxocara sp. eggs are ubiquitous and the extent of contamination in soils from the selected towns of Laguna is relatively high. Hence, the data generated in this study can be used in promoting public awareness, particularly for pet owners and local health officials, for effective prevention and control of this parasitosis. PMID:25383372

  12. A multi-objective framework to predict flows of ungauged rivers within regions of sparse hydrometeorologic observation

    NASA Astrophysics Data System (ADS)

    Alipour, M.; Kibler, K. M.

    2017-12-01

    Despite advances in flow prediction, managers of ungauged rivers located within broad regions of sparse hydrometeorologic observation still lack prescriptive methods robust to the data challenges of such regions. We propose a multi-objective streamflow prediction framework for regions of minimum observation to select models that balance runoff efficiency with choice of accurate parameter values. We supplement sparse observed data with uncertain or low-resolution information incorporated as `soft' a priori parameter estimates. The performance of the proposed framework is tested against traditional single-objective and constrained single-objective calibrations in two catchments in a remote area of southwestern China. We find that the multi-objective approach performs well with respect to runoff efficiency in both catchments (NSE = 0.74 and 0.72), within the range of efficiencies returned by other models (NSE = 0.67 - 0.78). However, soil moisture capacity estimated by the multi-objective model resonates with a priori estimates (parameter residuals of 61 cm versus 289 and 518 cm for maximum soil moisture capacity in one catchment, and 20 cm versus 246 and 475 cm in the other; parameter residuals of 0.48 versus 0.65 and 0.7 for soil moisture distribution shape factor in one catchment, and 0.91 versus 0.79 and 1.24 in the other). Thus, optimization to a multi-criteria objective function led to very different representations of soil moisture capacity as compared to models selected by single-objective calibration, without compromising runoff efficiency. These different soil moisture representations may translate into considerably different hydrological behaviors. The proposed approach thus offers a preliminary step towards greater process understanding in regions of severe data limitations. For instance, the multi-objective framework may be an adept tool to discern between models of similar efficiency to select models that provide the "right answers for the right reasons". Managers may feel more confident to utilize such models to predict flows in fully ungauged areas.

  13. Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia

    NASA Astrophysics Data System (ADS)

    Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Morris, Mark; Woodall, George; Zhang, Tong; Bacon, Allan; Richter, Daniel De B.; Vandenberg, John

    2011-12-01

    Detailed Spanish records of mercury use and silver production during the colonial period in Potosí, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosí and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosí and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosí. Total mercury in soils ranged from 0.105 to 155 mg kg-1, among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the current community of Potosí and vicinity is at risk of adverse health effects from historical mercury contamination.

  14. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  15. Denaturing gradient gel electrophoresis fingerprinting of soil bacteria in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica.

    PubMed

    Pan, Qi; Wang, Feng; Zhang, Yang; Cai, Minghong; He, Jianfeng; Yang, Haizhen

    2013-08-01

    Bacterial diversity was investigated in soil samples collected from 13 sites around the Great Wall Station, Fildes Peninsula, King George Island, Antarctica, using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The classes alpha-, beta-, and gamma-Proteobacteria, as well as the phylum Actinobacteria, were found to be the dominant bacteria in the soils around the Great Wall Station. Although the selected samples were not contaminated by oil, a relationship between soil parameters, microbial biodiversity, and human impact was still seen. Sample sites in human impacted areas showed lower bacterial biodiversity (average H' = 2.65) when compared to non-impacted sites (average H' = 3.05). There was no statistically significant correlation between soil bacterial diversity and total organic carbon (TOC), total nitrogen, or total phosphorus contents of the soil. Canonical correlation analysis showed that TOC content was the most important factor determining bacterial community profiles among the measured soil parameters. In conclusion, microbial biodiversity and community characteristics within relatively small scales (1.5 km) were determined as a function of local environment parameters and anthropogenic impact.

  16. SENSITIVE PARAMETER EVALUATION FOR A VADOSE ZONE FATE AND TRANSPORT MODEL

    EPA Science Inventory

    This report presents information pertaining to quantitative evaluation of the potential impact of selected parameters on output of vadose zone transport and fate models used to describe the behavior of hazardous chemicals in soil. The Vadose 2one Interactive Processes (VIP) model...

  17. Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach.

    PubMed

    Szuszkiewicz, Marcin; Łukasik, Adam; Magiera, Tadeusz; Mendakiewicz, Maria

    2016-07-01

    Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include selected parameters, both magnetic (mass magnetic susceptibility - χ, frequency-dependent magnetic susceptibility - χfd and thermomagnetic susceptibility measurement - TSM), and geochemical (selected heavy metal contents: Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn). Additionally, the enrichment factor (EF) and index of geoaccumulation (Igeo) were calculated. Our results suggest the following: (1) the χ/Fe ratio may be a reliable indicator for determining changes of magnetic signal origin in soil profiles; (2) magnetic and geochemical signals are simultaneously higher (the increment of χ and lead and zinc was noted) in topsoil horizons because of the deposition of technogenic magnetic particles (TMPs); (3) EF and Igeo evaluated for lead and zinc unambiguously showed anthropogenic influence in terms of increasing heavy metal contents in topsoil regardless of bedrock or soil type; (4) magnetic susceptibility measurements supported by TSM curves for soil samples of different genetic horizons are a helpful tool for interpreting the origin and nature of the mineral phases responsible for the changes of magnetic susceptibility values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Optimization of application parameters of soil seed bank in vegetation recovery via response surface methodology].

    PubMed

    He, Meng-Xuan; Li, Hong-Yuan; Mo, Xun-Qiang; Meng, Wei-Qing; Yang, Jia-Nan

    2014-08-01

    The thickness of surface soil, the covering thickness and the number of adding arbor seeds are all important factors to be considered in the application of soil seed bank (SSB) for vegetation recovery. To determine the optimal conditions, the Box-Behnken central composite design with three parameters and three levels was conducted and Design-Expert was used for response surface optimization. Finally, the optimal model and optimal level of each parameter were selected. The quadratic model was more suitable for response surface optimization (P < 0.0001), indicating the model had good statistical significance which could express ideal relations between all the independent variable and dependent variable. For the optimum condition, the thickness of surface soil was 4.3 cm, the covering thickness was 2 cm, and the number of adding arbor seeds was 224 ind x m(-2), under which the number of germinated seedlings could be reached up to 6222 plants x m(-2). During the process of seed germination, significant interactions between the thickness of surface soil and the covering thickness, as well as the thickness of surface soil and the number of adding arbor seeds were found, but the relationship between the covering thickness and the number of adding arbor seeds was relatively unremarkable. Among all the parameters, the thickness of surface soil was the most important one, which had the steepest curve and the largest standardized coefficient.

  19. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values.

    PubMed

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-10-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc.

  20. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values

    PubMed Central

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-01-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight–normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. Environ Toxicol Chem 2014;33:2386–2398. PMID:24944000

  1. Multi-site assimilation of a terrestrial biosphere model (BETHY) using satellite derived soil moisture data

    NASA Astrophysics Data System (ADS)

    Wu, Mousong; Sholze, Marko

    2017-04-01

    We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.

  2. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  3. Projecting date palm distribution in Iran under climate change using topography, physicochemical soil properties, soil taxonomy, land use, and climate data

    NASA Astrophysics Data System (ADS)

    Shabani, Farzin; Kumar, Lalit; Taylor, Subhashni

    2014-11-01

    This study set out to model potential date palm distribution under current and future climate scenarios using an emission scenario, in conjunction with two different global climate models (GCMs): CSIRO-Mk3.0 (CS), and MIROC-H (MR), and to refine results based on suitability under four nonclimatic parameters. Areas containing suitable physicochemical soil properties and suitable soil taxonomy, together with land slopes of less than 10° and suitable land uses for date palm ( Phoenix dactylifera) were selected as appropriate refining tools to ensure the CLIMEX results were accurate and robust. Results showed that large regions of Iran are projected as likely to become climatically suitable for date palm cultivation based on the projected scenarios for the years 2030, 2050, 2070, and 2100. The study also showed CLIMEX outputs merit refinement by nonclimatic parameters and that the incremental introduction of each additional parameter decreased the disagreement between GCMs. Furthermore, the study indicated that the least amount of disagreement in terms of areas conducive to date palm cultivation resulted from CS and MR GCMs when the locations of suitable physicochemical soil properties and soil taxonomy were used as refinement tools.

  4. Method for analyzing soil structure according to the size of structural elements

    NASA Astrophysics Data System (ADS)

    Wieland, Ralf; Rogasik, Helmut

    2015-02-01

    The soil structure in situ is the result of cropping history and soil development over time. It can be assessed by the size distribution of soil structural elements such as air-filled macro-pores, aggregates and stones, which are responsible for important water and solute transport processes, gas exchange, and the stability of the soil against compacting and shearing forces exerted by agricultural machinery. A method was developed to detect structural elements of the soil in selected horizontal slices of soil core samples with different soil structures in order for them to be implemented accordingly. In the second step, a fitting tool (Eureqa) based on artificial programming was used to find a general function to describe ordered sets of detected structural elements. It was shown that all the samples obey a hyperbolic function: Y(k) = A /(B + k) , k ∈ { 0 , 1 , 2 , … }. This general behavior can be used to develop a classification method based on parameters {A and B}. An open source software program in Python was developed, which can be downloaded together with a selection of soil samples.

  5. Relationship between genetic parameters in maize (Zea mays) with seedling growth parameters under 40-100% soil moisture conditions.

    PubMed

    Muhammad, R W; Qayyum, A

    2013-10-18

    We estimated the association of genetic parameters with production characters in 64 maize (Zea mays) genotypes in a green house in soil with 40-100% moisture levels (percent of soil moisture capacity). To identify the major parameters that account for variation among the genotypes, we used single linkage cluster analysis and principle component analysis. Ten plant characters were measured. The first two, four, three, and again three components, with eigen values > 1 contributed 75.05, 80.11, 68.67, and 75.87% of the variability among the genotypes under the different moisture levels, i.e., 40, 60, 80, and 100%, respectively. Other principal components (3-10, 5-10, and 4-10) had eigen values less than 1. The highest estimates of heritability were found for root fresh weight, root volume (0.99), and shoot fresh weight (0.995) in 40% soil moisture. Values of genetic advance ranged from 23.4024 for SR at 40% soil moisture to 0.2538 for shoot dry weight in 60% soil moisture. The high magnitude of broad sense heritability provides evidence that these plant characters are under the control of additive genetic effects. This indicates that selection should lead to fast genetic improvement of the material. The superior agronomic types that we identified may be exploited for genetic potential to improve yield potential of the maize crop.

  6. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    NASA Astrophysics Data System (ADS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-08-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.

  7. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  8. ROLE OF LABORATORY SAMPLING DEVICES AND LABORATORY SUBSAMPLING METHODS IN OPTIMIZING REPRESENTATIVENESS STRATEGIES

    EPA Science Inventory

    Sampling is the act of selecting items from a specified population in order to estimate the parameters of that population (e.g., selecting soil samples to characterize the properties at an environmental site). Sampling occurs at various levels and times throughout an environmenta...

  9. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.

    PubMed

    Aaen, Karoline Nolsø; Holm, Peter E; Priemé, Anders; Hung, Ngoc Ngo; Brandt, Kristian Koefoed

    2011-03-01

    Pollution-induced community tolerance (PICT) constitutes a sensitive and ecologically relevant impact parameter in ecotoxicology. We report the development and application of a novel anaerobic [(3) H]leucine incorporation assay and its comparison with the conventional aerobic [(3) H]leucine incorporation assay for PICT detection in soil bacterial communities. Selection of bacterial communities was performed over 42 d in bulk soil microcosms (no plants) and in rice (Oryza sativa) rhizosphere soil mesocosms. The following experimental treatments were imposed using a full factorial design: two soil types, two soil water regimes, and four Cu application rates (0, 30, 120, or 280 µg g(-1)). Bacterial communities in bulk soil microcosms exhibited similar Cu tolerance patterns when assessed by aerobic and anaerobic PICT assays, whereas aerobic microorganisms tended to be more strongly selected for Cu tolerance than anaerobic microorganisms in rhizosphere soil. Despite similar levels of water-extractable Cu, bacterial Cu tolerance was significantly higher in acid sulfate soil than in alluvial soil. Copper amendment selected for significant PICT development in soils subjected to alternate wetting and drying, but not in continuously flooded soils. Our results demonstrate that soil bacterial communities subjected to alternate wetting and drying may be more affected by Cu than bacterial communities subjected to continuous flooding. We conclude that the parallel use of anaerobic and aerobic [(3) H]leucine PICT assays constitutes a valuable improvement over existing procedures for PICT detection in irrigated soils and other redox gradient environments such as sediments and wetlands. Copyright © 2010 SETAC.

  10. Enzyme activities by indicator of quality in organic soil

    NASA Astrophysics Data System (ADS)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice for the recovery of degraded soils, because these soils have the highest levels of enzymatic activities.

  11. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot

    PubMed Central

    Fortes, Nara Lúcia Perondi; Navas-Cortés, Juan A; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. A multiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil. PMID:27176597

  12. Hydrologic and micrometeorologic data from an unsaturated zone study at a low-level radioactive waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1985-01-01

    Two years of selected hydrologic and micrometeorologic data collected at a low-level radioactive waste burial site near Barnwell, South Carolina are available on magnetic tape in card-image format. Hydrologic data include daily measurements of soil-moisture tension, soil-moisture specific conductance, and soil temperature at four monitoring site locations. Micrometeorlogic data include hourly measurements for the following parameters: dry- and wet-bulb temperatures, soil temperatures, soil heat flux, wind speeds and direction, incoming and reflected short-wave solar radiation, incoming and emitted long-wave radiation, net radiation and precipitation. (USGS)

  13. Transforming Pinus pinaster forest to recreation site: preliminary effects on LAI, some forest floor, and soil properties.

    PubMed

    Öztürk, Melih; Bolat, İlyas

    2014-04-01

    This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.

  14. Genetic algorithm applied to a Soil-Vegetation-Atmosphere system: Sensitivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk

    2010-05-01

    Numerical models are of precious help for predicting water fluxes in the vadose zone and more specifically in Soil-Vegetation-Atmosphere (SVA) systems. For such simulations, robust models and representative soil hydraulic parameters are required. Calibration of unsaturated hydraulic properties is known to be a difficult optimization problem due to the high non-linearity of the water flow equations. Therefore, robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. Additionally, GAs offer the opportunity to assess the confidence in the hydraulic parameter estimations, because of the large number of model realizations. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the Campine region in the north of Belgium. Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step in two lysimeters. The water table level, which is varying between 95 and 170 cm, has been recorded with intervals of 0.5 hour. The leaf area index was measured as well at some selected time moments during the year in order to evaluate the energy which reaches the soil and to deduce the potential evaporation. Water contents at several depths have been recorded. Based on the profile description, five soil layers have been distinguished in the podzol. Two models have been used for simulating water fluxes: (i) a mechanistic model, the HYDRUS-1D model, which solves the Richards' equation, and (ii) a compartmental model, which treats the soil profile as a bucket into which water flows until its maximum capacity is reached. A global sensitivity analysis (Morris' one-at-a-time sensitivity analysis) was run previously to the calibration, in order to check the sensitivity in the chosen parameter search space. For the inversion procedure a genetical algorithm (GA) was used. Specific features such as elitism, roulette-wheel process for selection operator and island theory were implemented. Optimization was based on the water content measurements recorded at several depths. Ten scenarios have been elaborated and applied on the two lysimeters in order to investigate the impact of the conceptual model in terms of processes description (mechanistic or compartmental) and geometry (number of horizons in the profile description) on the calibration accuracy. Calibration leads to a good agreement with the measured water contents. The most critical parameters for improving the goodness of fit are the number of horizons and the type of process description. Best fit are found for a mechanistic model with 5 horizons resulting in absolute differences between observed and simulated water contents less than 0.02 cm3cm-3 in average. Parameter estimate analysis shows that layers thicknesses are poorly constrained whereas hydraulic parameters are much well defined.

  15. Identification of regional soil quality factors and indicators: a case study on an alluvial plain (central Turkey)

    NASA Astrophysics Data System (ADS)

    Şeker, Cevdet; Hüseyin Özaytekin, Hasan; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan

    2017-05-01

    Sustainable agriculture largely depends on soil quality. The evaluation of agricultural soil quality is essential for economic success and environmental stability in rapidly developing regions. In this context, a wide variety of methods using vastly different indicators are currently used to evaluate soil quality. This study was conducted in one of the most important irrigated agriculture areas of Konya in central Anatolia, Turkey, to analyze the soil quality indicators of Çumra County in combination with an indicator selection method, with the minimum data set using a total of 38 soil parameters. We therefore determined a minimum data set with principle component analysis to assess soil quality in the study area and soil quality was evaluated on the basis of a scoring function. From the broad range of soil properties analyzed, the following parameters were chosen: field capacity, bulk density, aggregate stability, and permanent wilting point (from physical soil properties); electrical conductivity, Mn, total nitrogen, available phosphorus, pH, and NO3-N (from chemical soil properties); and urease enzyme activity, root health value, organic carbon, respiration, and potentially mineralized nitrogen (from biological properties). According to the results, the chosen properties were found as the most sensitive indicators of soil quality and they can be used as indicators for evaluating and monitoring soil quality at a regional scale.

  16. Parametric soil water retention models: a critical evaluation of expressions for the full moisture range

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; Huibert de Rooij, Gerrit; Mielenz, Henrike; Mai, Juliane

    2018-02-01

    Few parametric expressions for the soil water retention curve are suitable for dry conditions. Furthermore, expressions for the soil hydraulic conductivity curves associated with parametric retention functions can behave unrealistically near saturation. We developed a general criterion for water retention parameterizations that ensures physically plausible conductivity curves. Only 3 of the 18 tested parameterizations met this criterion without restrictions on the parameters of a popular conductivity curve parameterization. A fourth required one parameter to be fixed. We estimated parameters by shuffled complex evolution (SCE) with the objective function tailored to various observation methods used to obtain retention curve data. We fitted the four parameterizations with physically plausible conductivities as well as the most widely used parameterization. The performance of the resulting 12 combinations of retention and conductivity curves was assessed in a numerical study with 751 days of semiarid atmospheric forcing applied to unvegetated, uniform, 1 m freely draining columns for four textures. Choosing different parameterizations had a minor effect on evaporation, but cumulative bottom fluxes varied by up to an order of magnitude between them. This highlights the need for a careful selection of the soil hydraulic parameterization that ideally does not only rely on goodness of fit to static soil water retention data but also on hydraulic conductivity measurements. Parameter fits for 21 soils showed that extrapolations into the dry range of the retention curve often became physically more realistic when the parameterization had a logarithmic dry branch, particularly in fine-textured soils where high residual water contents would otherwise be fitted.

  17. Utilization of Ancillary Data Sets for SMAP Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    ONeill, P.; Podest, E.; Njoku, E.

    2011-01-01

    Algorithms being developed for the Soil Moisture Active Passive (SMAP) mission require a variety of both static and ancillary data. The selection of the most appropriate source for each ancillary data parameter is driven by a number of considerations, including accuracy, latency, availability, and consistency across all SMAP products and with SMOS (Soil Moisture Ocean Salinity). It is anticipated that initial selection of all ancillary datasets, which are needed for ongoing algorithm development activities on the SMAP algorithm testbed at JPL, will be completed within the year. These datasets will be updated as new or improved sources become available, and all selections and changes will be documented for the benefit of the user community. Wise choices in ancillary data will help to enable SMAP to provide new global measurements of soil moisture and freeze/thaw state at the targeted accuracy necessary to tackle hydrologically-relevant societal issues.

  18. Soil management effect on soil quality indicators in vineyards of the Appellation of Origin "Montilla-Moriles" in southern Spain

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Cabezas, José Manuel; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Gómez, José Alfonso

    2017-04-01

    The effect soil management on several indicators frequently used in the assessment of soil quality it is not always reflected unambiguously when measured at the field although it is normally assumed that this relation is straightforward. Within the European project VineDivers (www.vinedivers.eu), sixteen commercial vineyards belonging to the Appellation of Origin "Montilla-Moriles" (Córdoba) and covering a wide range of textural classes were selected. These farms were classified 'a priori' under two soil management categories: temporal cover crop and bare soil during the whole year. In each of the vineyards one representative inter-row was selected in order to characterise different physical, chemical and biological parameters to evaluate some aspects related to soil quality. Results indicate that the studied indicators respond clearly to soil textural class and vegetation cover biomass. However, there was no clear difference in above-ground biomass of the two management categories (Guzmán et al., 2016). These results suggest that the interpretation and extrapolation of the indicators evaluated should incorporate complementary information to characterise small variations of soil management intensity among vineyards that are apparently managed under the same management category. The communication presents this analysis based on the number and type of soil disturbance events of all vineyards. The high variability found among vineyards under the same management highlights the relevance of measuring these soil parameters used as quality indicators, instead of extrapolating from other vineyards or agricultural systems, and interpreting them according to baseline levels. References: Guzmán G., Cabezas J.M., Gómez J.A. 2016. Evaluación preliminar del efecto del manejo del suelo en indicadores que determinan su calidad en viñedos de la Denominación de Origen Montilla Moriles. II Jornadas de Viticultura SECH. Madrid.

  19. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Xiao, Tangfu; Dong, Yiran; Tang, Song; Ning, Zengping; Huang, Zhengyu; Sun, Weimin

    2017-02-01

    Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial Biomass C and N in the upper 10 cm decreased with distance (C: r²=0.22, p<0.001; N: r²=0.3, p<0.001) as well as total soil respiration. This decrease was affected by tree size but independent from tree species. We conclude that savannah ecosystems exhibit a large spatial variability of soil parameters within the upper horizons which is strongly depend on the structure of aboveground biomass.

  1. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO).

    PubMed

    Kumpiene, Jurate; Bert, Valérie; Dimitriou, Ioannis; Eriksson, Jan; Friesl-Hanl, Wolfgang; Galazka, Rafal; Herzig, Rolf; Janssen, Jolien; Kidd, Petra; Mench, Michel; Müller, Ingo; Neu, Silke; Oustriere, Nadège; Puschenreiter, Markus; Renella, Giancarlo; Roumier, Pierre-Hervé; Siebielec, Grzegorz; Vangronsveld, Jaco; Manier, Nicolas

    2014-10-15

    During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Magnetic Susceptibility Measurements for in Situ Characterization of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Oder, R. R.

    1992-01-01

    Magnetic separation is a viable method for concentration of components of lunar soils and rocks for use as feedstocks for manufacture of metals, oxygen, and for recovery of volatiles such as He-3. Work with lunar materials indicates that immature soils are the best candidates for magnetic beneficiation. The magnetic susceptibility at which selected soil components such as anorthite, ilmenite, or metallic iron are separated is not affected by soil maturity, but the recovery of the concentrated components is. Increasing soil maturity lowers recovery. Mature soils contain significant amounts of glass-encased metallic iron. Magnetic susceptibility, which is sensitive to metallic iron content, can be used to measure soil maturity. The relationship between the ratio of magnetic susceptibility and iron oxide and the conventional maturity parameter, I(sub s)/FeO, ferromagnetic resonant intensity divided by iron oxide content is given. The magnetic susceptibilities were determined using apparatus designed for magnetic separation of the lunar soils.

  3. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C.

    2010-06-01

    The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km 2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed "hotspots" of high erosion of up to 16 t ha -1 a -1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.

  4. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

  6. Relationships between Soil and Levels of Meloidogyne incognita and Tobacco Yield and Quality.

    PubMed

    Barker, K R; Weeks, W W

    1991-01-01

    A 2-year study with six soils and four levels of Meloidogyne incognita in microplots was designed to determine the effects of these parameters on nematode activity and tobacco yield and quality. Key components under study were affected by soil, nematode level, and season (year-cultivar). In 1980, low initial nematode numbers (1,250) enhanced tobacco yield in Cecil clay loam, but caused slight to moderate yield losses in the other soils. Yield losses to M. incognita were generally greatest in sandy and muck soils. In 1980, regression analyses of the independent parameters Pi - clay-sand vs. yield gave an R(2) of 0.40. Examples of other coefficients of determination for yield vs. selected factors were root-necrosis index, 0.40; root-gall index, 0.18; root-gall index-cation exchange capacity (CEC), 0.34; root-necrosis index-CEC, 0.56; and root-necrosis index-sand-soil acidity-calcium, 0.62. In contrast, the R(2) for Pi alone versus yield in 1981 was 0.84. Soil also affected nematode reproduction with the greatest increases occurring in the sandy soils. In both years, low nematode numbers enhanced the synthesis of sugar in tobacco, whereas leaves from all other nematode treatments had low sugar levels. A low nicotine content was associated with nematode infection. Tobacco from sandy soils had a higher nicotine content than tobacco from clay soils.

  7. Quantifying Spatial Variability of Selected Soil Trace Elements and Their Scaling Relationships Using Multifractal Techniques

    PubMed Central

    Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin

    2013-01-01

    Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944

  8. Root zone water quality model (RZWQM2): Model use, calibration and validation

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  9. Relation between Soil Order and Sorptive Capacity for Dissolved Organic Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heal, Katherine R; Brandt, Craig C; Mayes, Melanie

    2012-01-01

    Soils have historically been considered a temporary sink for organic C, but deeper soils may serve as longer term C sinks due to the sorption of dissolved organic C (DOC) onto Fe- and clay-rich mineral soil particles. This project provides an improved understanding and predictive capability of the physical and chemical properties of deep soils that control their sorptive capacities for DOC. Two hundred thirteen subsurface soil samples (72 series from five orders) were selected from the eastern and central United States. A characterized natural DOC source was added to the soils, and the Langmuir sorption equation was fitted tomore » the observed data by adjusting the maximum DOC sorption capacity (Q{sub max}) and the binding coefficient (k). Different isotherm shapes were observed for Ultisols, Alfisols, and Mollisols due to statistically significant differences in the magnitude of k, while Q{sub max} was statistically invariant among these three orders. Linear regressions were performed on the entire database and as a function of soil order to correlate Langmuir fitted parameters with measured soil properties, e.g., pH, clay content, total organic C (TOC), and total Fe oxide content. Together, textural clay and Fe oxide content accounted for 35% of the variation in Q{sub max} in the database, and clay was most important for Alfisols and Ultisols. The TOC content, however, accounted for 27% of the variation in Q{sub max} in Mollisols. Soil pH accounted for 45% of the variation in k for the entire database, 41% for Mollisols, and 22% for Alfisols. Our findings demonstrate that correlations between Langmuir parameters and soil properties are different for different soil orders and that k is a more sensitive parameter for DOC sorption than is Q{sub max} for temperate soils from the central and eastern United States.« less

  10. Binational digital soils map of the Ambos Nogales watershed, southern Arizona and northern Sonora, Mexico

    USGS Publications Warehouse

    Norman, Laura

    2004-01-01

    We have prepared a digital map of soil parameters for the international Ambos Nogales watershed to use as input for selected soils-erosion models. The Ambos Nogales watershed in southern Arizona and northern Sonora, Mexico, contains the Nogales wash, a tributary of the Upper Santa Cruz River. The watershed covers an area of 235 km2, just under half of which is in Mexico. Preliminary investigations of potential erosion revealed a discrepancy in soils data and mapping across the United States-Mexican border due to issues including different mapping resolutions, incompatible formatting, and varying nomenclature and classification systems. To prepare a digital soils map appropriate for input to a soils-erosion model, the historical analog soils maps for Nogales, Ariz., were scanned and merged with the larger-scale digital soils data available for Nogales, Sonora, Mexico using a geographic information system.

  11. Thermal properties of degraded lowland peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat has decreased in a non-linear manner. Thermal parameters of the dry mass of the studied soils (Kdry, Cdry) were characterised by the mean value of approximately 0.11±0.028 W.m-1.K-1 and 0.781±0.220 MJ.m-3.K-1. The application of the correlation analysis showed that the most significant predictor of these properties of soils is the soil bulk density which, respectively explains: 54.6% and 67.1% of their variation. The increase of the accuracy in determining Kdry and Cdry was obtained by developing regression models, which apart from the bulk density also include the chemical properties of the peat soils. In the fully saturated soil the Ksat value ranged from 0.47 to 0.63 W.m-1.K-1, and the Csat varied from 3.200 to 3.995 MJ.m-3.K-1. The variation coefficients of these soil thermal features are at the level of approx. 5%. The obtained results allowed to conclude that the significant diversity of studied soils doesn't cause the significant differences in thermal soil parameters in fully saturated soils. The developed statistical relationships indicate that parameters Ksat and Csat were poorly correlated with saturated moisture content.

  12. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark.

    PubMed

    Bou Kheir, Rania; Greve, Mogens H; Bøcher, Peder K; Greve, Mette B; Larsen, René; McCloy, Keith

    2010-05-01

    Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME=29.5%; N=54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME=31.5%; N=14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME=30%; N=39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1/Map T2), 95% (Map T1/Map T3) and 91% (Map T2/Map T3). The overall accuracies of these maps once compared with field observations were estimated to be 69.54% (Map T1), 68.87% (Map T2) and 69.41% (Map T3). The proposed tree models are relatively simple, and may be also applied to other areas. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Development of a composite soil degradation assessment index for cocoa agroecosystems in southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Adenrele Adeniyi, Sunday; de Clercq, Willem Petrus; van Niekerk, Adriaan

    2017-08-01

    Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1-10, 11-40, and 41-80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.

  14. Remote sensing studies of immature soils on the Moon (Reiner-gamma formation)

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.; Pinet, P.; Chevrel, S.

    1993-01-01

    On the base of laboratory results and telescopic data it is shown that the spectropolarization ratio P(sub max(sup B))/P(sub max(sup R)) for blue and red spectral regions is a remote sensing parameter of lunar soil maturity. It correlates with value of maturity index derived from morphological or ferromagnetic methods of exposure age determination. This parameter is equal to 0.315 for Reiner-gamma formation. So Reiner-gamma area is covered by immature soil. An extensive spectral mapping of the Reiner-gamma formation with high spatial resolution (0.2 km/pixel) was produced. This result was obtained at the 2-meter aperture telescope of Pic-du-Midi (France). The data sets consist in repeated runs comprising 10 selected narrow-band images (from 0.4 to 1.05 micron). The analysis of these data suggests that such a type of immature material includes not more than 28% of agglutinattes. We find the model grain size of fine fraction to be 40 micrometers grain size, of more immature soil 400-500 micrometers, and of the formation soil 120-150 micrometers. The exposure age of the Reiner-gamma immature soil is equal about 10 x 10(exp 6) years.

  15. The Soil Microbiome Influences Grapevine-Associated Microbiota

    PubMed Central

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel

    2015-01-01

    ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. PMID:25805735

  16. The soil microbiome influences grapevine-associated microbiota

    DOE PAGES

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; ...

    2015-03-24

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  17. Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model – Evidence from MOPEX Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.

    2013-12-01

    With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less

  18. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    NASA Astrophysics Data System (ADS)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  19. Application of principal component analysis in the pollution assessment with heavy metals of vegetable food chain in the old mining areas

    PubMed Central

    2012-01-01

    Background The aim of the paper is to assess by the principal components analysis (PCA) the heavy metal contamination of soil and vegetables widely used as food for people who live in areas contaminated by heavy metals (HMs) due to long-lasting mining activities. This chemometric technique allowed us to select the best model for determining the risk of HMs on the food chain as well as on people's health. Results Many PCA models were computed with different variables: heavy metals contents and some agro-chemical parameters which characterize the soil samples from contaminated and uncontaminated areas, HMs contents of different types of vegetables grown and consumed in these areas, and the complex parameter target hazard quotients (THQ). Results were discussed in terms of principal component analysis. Conclusion There were two major benefits in processing the data PCA: firstly, it helped in optimizing the number and type of data that are best in rendering the HMs contamination of the soil and vegetables. Secondly, it was valuable for selecting the vegetable species which present the highest/minimum risk of a negative impact on the food chain and human health. PMID:23234365

  20. An overview of impact of subsurface drainage project studies on salinity management in developing countries

    NASA Astrophysics Data System (ADS)

    Tiwari, Priyanka; Goel, Arun

    2017-05-01

    Subsurface drainage has been used for more than a century to keep water table at a desired level of salinity and waterlogging control. This paper has been focused on the impact assessment of pilot studies in India and some other countries from 1969 to 2014 . This review article may prove quite useful in deciding the installation of subsurface drainage project depending on main design parameters, such as drain depth and drain spacing, installation area and type of used outlet. A number of pilot studies have been taken up in past to solve the problems of soil salinity and waterlogging in India. The general guidelines that arise on the behalf of this review paper are to adapt drain depth >1.2 m and spacing depending on soil texture classification, i.e., 100-150 m for light-textured soils, 50-100 m for medium-textured soils and 30-50 m heavy-textured soils, for better result obtained from the problem areas in Indian soil and climatic conditions. An attempt has been made in the manner of literature survey to highlight the salient features of these studies, and it is hopeful to go a long way in selecting design parameters for subsurface drainage problems in the future with similar soil, water table and climatic conditions.

  1. Determination of the atrazine migration parameters in Vertisol

    NASA Astrophysics Data System (ADS)

    Raymundo-Raymundo, E.; Hernandez-Vargas, J.; Nikol'Skii, Yu. N.; Guber, A. K.; Gavi-Reyes, F.; Prado-Pano, B. L.; Figueroa-Sandoval, B.; Mendosa-Hernandez, J. R.

    2010-05-01

    The parameters of the atrazine migration in columns with undisturbed Vertisol sampled from an irrigated plot in Guanajuato, Mexico were determined. A model of the convection-dispersion transport of the chemical compounds accounting for the decomposition and equilibrium adsorption, which is widely applied for assessing the risk of contamination of natural waters with pesticides, was used. The model parameters were obtained by solving the inverse problem of the transport equation on the basis of laboratory experiments on the transport of the 18O isotope and atrazine in soil columns with an undisturbed structure at three filtration velocities. The model adequately described the experimental data at the individual selection of the parameters for each output curve. Physically unsubstantiated parameters of the atrazine adsorption and degradation were obtained when the parameter of the hydrodynamic dispersion was determined from the data on the 18O migration. The simulation also showed that the use of parameters obtained at water content close to saturation in the calculations for an unsaturated soil resulted in the overestimation of the leaching rate and the maximum concentration of atrazine in the output curve compared to the experimental data.

  2. Antecedent wetness conditions based on ERS scatterometer data

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2009-01-01

    SummarySoil moisture is widely recognized as a key parameter in environmental processes mainly for the role of rainfall partitioning into runoff and infiltration. Therefore, for storm rainfall-runoff modeling the estimation of the antecedent wetness conditions ( AWC) is one of the most important aspect. In this context, this study investigates the potential of scatterometer on board of the ERS satellites for the assessment of wetness conditions in three Tiber sub-catchments (Central Italy), of which one includes an experimental area for soil moisture monitoring. The satellite soil moisture data are taken from the ERS/METOP soil moisture archive. First, the scatterometer-derived soil wetness index ( SWI) data are compared with two on-site soil moisture data sets acquired by different methodologies on areas of different extension ranging from 0.01 km 2 to ˜60 km 2. Moreover, the reliability of SWI to estimate the AWC at a catchment scale is investigated considering the relationship between SWI and the soil potential maximum retention parameter, S, of the Soil Conservation Service-Curve Number (SCS-CN) method for abstraction. Several flood events occurred from 1992 to 2005 are selected for this purpose. Specifically, the performance of the SWI for S estimation is compared with two antecedent precipitation indices ( API) and one base flow index ( BFI). The S values obtained through the observed direct runoff volume and rainfall depth are used as benchmark. Results show the great reliability of the SWI for the estimation of wetness conditions both at the plot and catchment scale despite the complex orography of the investigated areas. As far as the comparison with on site soil moisture data set is concerned, the SWI is found quite reliable in representing the soil moisture at layer depth of 15 cm, with a mean correlation coefficient equal to 0.81. The characteristic time length parameter variations, as expected, is depended on soil type, with values in accordance with previous studies. In terms of AWC assessment at catchment scale, based on selected flood events, the SWI is found highly correlated with the observed maximum potential retention of the SCS-CN method with a correlation coefficient R equal to -0.90. Besides, SWI in representing the AWC of the three investigated catchments, outperformed both API indices, poorly representative of AWC, and BFI. Finally, the classical SCS-CN method applied for direct runoff depth estimation, where S is assessed by SWI, provided good performance with a percentage error not exceeding ˜25% for 80% of investigated rainfall-runoff events.

  3. Comparative assessment of five water infiltration models into the soil

    NASA Astrophysics Data System (ADS)

    Shahsavaramir, M.

    2009-04-01

    The knowledge of the soil hydraulic conditions particularly soil permeability is an important issue hydrological and climatic study. Because of its high spatial and temporal variability, soil infiltration monitoring scheme was investigated in view of its application in infiltration modelling. Some of models for infiltration into the soil have been developed, in this paper; we design and describe capability of five infiltration model into the soil. We took a decision to select the best model suggested. In this research in the first time, we designed a program in Quick Basic software and wrote algorithm of five models that include Kostiakove, Modified Kostiakove, Philip, S.C.S and Horton. Afterwards we supplied amounts of factual infiltration, according of get at infiltration data, by double rings method in 12 series of Saveh plain which situated in Markazi province in Iran. After accessing to models coefficients, these equations were regenerated by Excel software and calculations related to models acuity rate in proportion to observations and also related graphs were done by this software. Amounts of infiltration parameters, such as cumulative infiltration and infiltration rate were obtained from designed models. Then we compared amounts of observation and determination parameters of infiltration. The results show that Kostiakove and Modified Kostiakove models could quantify amounts of cumulative infiltration and infiltration rate in triple period (short, middle and long time). In tree series of soils, Horton model could determine infiltration amounts better than others in time trinal treatments. The results show that Philip model in seven series had a relatively good fitness for determination of infiltration parameters. Also Philip model in five series of soils, after passing of time, had curve shape; in fact this shown that attraction coefficient (s) was less than zero. After all S.C.S model among of others had the least capability to determination of infiltration parameters.

  4. Analysis of soils - Part II: Determination of oligosaccharides in soils by MALDI-time-of-flight mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuerch, S.; Howald, M.; Schlunegger, U.P.

    1995-12-31

    Polysaccharides are the most abundant organic compounds in nature. Decomposition of plant and animal residues leads to a high polysaccharide content in soils. The decomposition of carbohydrates and subsequent mineralization of the products are part of the cycle of life on earth. In extracts of soils collected in the Valle Onsernone (Ticino, Switzerland), oligosaccharides of different size and structure have been identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The selected soils show identical climatic parameters and pedological factors, whereas the age of fallow land is the only varying factor. Identification and structure elucidation of the oligosaccharides is performedmore » by substrate-specific enzymatic hydrolysis. Moreover the appearance and the distribution of the oligosaccharides is correlated to soil genesis.« less

  5. QA/QC requirements for physical properties sampling and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less

  6. Bioremediation of chlorpyrifos contaminated soil by two phase bioslurry reactor: Processes evaluation and optimization by Taguchi's design of experimental (DOE) methodology.

    PubMed

    Pant, Apourv; Rai, J P N

    2018-04-15

    Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mountain bike trail compaction relation to selected physical parameters

    Treesearch

    Jeff Hale; Rodney R. Zwick

    2002-01-01

    The purpose of this research is to explore the rates of compaction and their relation to trail contextual aspects of: soil type, slope and crown cover on a newly established mountain bike trail in the northern reach of Vermont. A random sample of 52 sites was selected for monitoring on the 1.09-mile trail. Three penetrometer readings were taken at each of the sample...

  8. Functional assessment of three wetlands constructed by the West Virginia Division of Highways

    DOT National Transportation Integrated Search

    2000-11-01

    This study focused on soil nutrients, wildlife usage, diversity of vascular plants and major wildlife groups, and productivity as indicators. To provide a comparison to baseline values for these parameters, we selected three natural wetlands to serve...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela

    Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less

  10. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  11. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence). Therefore, the approach is applicable to the combination of SMAP and Sentinel-1A/B data for active-passive and high-resolution soil moisture estimation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Ahlström, Anders; Allison, Steven D.

    Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  13. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  14. State-Space Estimation of Soil Organic Carbon Stock

    NASA Astrophysics Data System (ADS)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  15. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  16. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  17. Toward more realistic projections of soil carbon dynamics by Earth system models

    DOE PAGES

    Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...

    2016-01-21

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  18. Optimization of Physiochemical Parameters during Bioremediation of Synthetic Dye by Marasmius cladophyllus UMAS MS8 Using Statistical Approach.

    PubMed

    Shuib, Fatin Nur Sufinas; Husaini, Ahmad; Zulkharnain, Azham; Roslan, Hairul Azman; Guan, Tay Meng

    2016-01-01

    In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days.

  19. Optimization of Physiochemical Parameters during Bioremediation of Synthetic Dye by Marasmius cladophyllus UMAS MS8 Using Statistical Approach

    PubMed Central

    Shuib, Fatin Nur Sufinas

    2016-01-01

    In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days. PMID:27803944

  20. The Laboratory Study of Shear Strength of the Overconsolidated and Quasi - Overconsolidated Fine - Grained Soil

    NASA Astrophysics Data System (ADS)

    Strozyk, Joanna

    2017-12-01

    The paper presents results of laboratory shear strength test conducted on fine-grained soil samples with different grain size distribution and with different geological age and stress history. The Triaxial Isotopic Consolidation Undrained Tests (TXCIU) were performed under different consolidation stress in normal and overconsolidadion stress state on the samples with natural structure. Soil samples were selected from soil series of different age and geological origins: overconsolidated sensu stricto Miopliocene silty clay (siCl) and quasi overconsolidated Pleistocene clayey silt (clSi). Paper pointed out that overconsolidated sensu stricto and quasi overconsolidated fine-grained soil in same stress and environmental condition could show almost similar behaviour, and in other condition could behave significantly different. The correct evaluation of geotechnical parameters, the possibility of predicting their time-correct ability is only possible with appropriately recognized geological past and past processes that accompanied the soil formation.

  1. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    NASA Astrophysics Data System (ADS)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out to determine the physical and chemical soil properties. The parent material is gneiss andassociated deposits and, as a result, soils are acid. The soils have a low to medium organic matter content and are non-saline. They are moderately to well drained soils and have no or slight evidence of erosion. The soil within the high mountain area has clear evidence of frost heave that has a vertical displacement of the surface in the centimeter range. The stations within the lowland and mid mountain areas represent the most degraded sites as a result of the livestock keeping, whereas the high mountain area is mainly influenced by natural environmental conditions. These soil and geomorphological parameters will constitute a basis for site characterization in future studies regarding soil degradation; determining the interaction between soil, vegetation and atmosphere with respect to human induced activities (e.g. atmospheric contamination and effects of fires); determining the nitrogen and carbon cycles; and the influence of heavy metal contaminants in the soils.

  2. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    PubMed

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, Mª Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of Harsh or Mild Extraction of Soil on Pesticide Leaching to Groundwater.

    PubMed

    Boesten, Jos J T I

    2016-07-01

    Assessment of leaching to groundwater is an important aspect of pesticide risk assessment. The first leaching tier usually consists of simulations with leaching scenarios based on pesticide-soil properties derived from laboratory studies. Because the extractability of pesticide residues in such studies decreases with time, the harshness of the extraction method influences these pesticide-soil properties. This study investigates the effect of using a mild or harsh extraction method on simulated leaching to groundwater with consideration of substances with a range of half-lives and organic matter sorption coefficient values for selected leaching scenarios. The model for linking the concentrations of the mild and the harsh systems was based on laboratory studies with two pesticides and a Dutch sandy soil and was tested against Canadian field studies with atrazine (6-chloro-2-ethyl-4-isopropyl-1,3,5-triazine-2,4-diamine). The degradation rate and the aged-sorption parameters of each "mild" soil-substance system were derived from a hypothetical laboratory incubation study using prescribed parameter values for the corresponding "harsh" soil-substance system. Simulations were performed for three European leaching scenarios (United Kingdom, France, Portugal). For the best-guess parameter set, the leaching concentrations of the harsh system were approximately equal to those of the mild system at leaching concentrations greater than 1 μg L and were at most approximately a factor of two higher than those of the mild systems at mild leaching concentrations between 0.01 and 0.1 μg L. However, an extreme parameter set led to harsh leaching concentrations that were at most approximately 10 times higher than the mild leaching concentrations at levels between 0.01 and 0.1 μg L. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Khusfi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-05-01

    This study was carried out to evaluate possible improvements of the soil moisture (SM) retrievals from the SMAP observations, based on the synergy between SMAP and SMOS. We assessed the impacts of the vegetation and soil roughness parameters on SM retrievals from SMAP observations. To do so, the effects of three key input parameters including the vegetation optical depth (VOD), effective scattering albedo (ω) and soil roughness (HR) parameters were assessed with the emphasis on the synergy with the VOD product derived from SMOS-IC, a new and simpler version of the SMOS algorithm, over two years of data (April 2015 to April 2017). First, a comprehensive comparison of seven SM retrieval algorithms was made to find the best one for SM retrievals from the SMAP observations. All results were evaluated against in situ measurements over 548 stations from the International Soil Moisture Network (ISMN) in terms of four statistical metrics: correlation coefficient (R), root mean square error (RMSE), bias and unbiased RMSE (UbRMSE). The comparison of seven SM retrieval algorithms showed that the dual channel algorithm based on the additional use of the SMOS-IC VOD product (selected algorithm) led to the best results of SM retrievals over 378, 399, 330 and 271 stations (out of a total of 548 stations) in terms of R, RMSE, UbRMSE and both R & UbRMSE, respectively. Moreover, comparing the measured and retrieved SM values showed that this synergy approach led to an increase in median R value from 0.6 to 0.65 and a decrease in median UbRMSE from 0.09 m3/m3 to 0.06 m3/m3. Second, using the algorithm selected in a first step and defined above, the ω and HR parameters were calibrated over 218 rather homogenous ISMN stations. 72 combinations of various values of ω and HR were used for the calibration over different land cover classes. In this calibration process, the optimal values of ω and HR were found for the different land cover classes. The obtained results indicated that the impact of the VOD parameter on SM retrievals is more considerable than the effects of HR and ω. Overall, the inclusion of the VOD parameter in the SMAP SM retrieval algorithm was found to be a very interesting approach and showed the large potential benefit of the synergy between SMAP and SMOS.

  5. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    PubMed

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  6. Relationship between the erosion properties of soils and other parameters

    USDA-ARS?s Scientific Manuscript database

    Soil parameters are essential for erosion process prediction and ultimately improved model development, especially as they relate to dam and levee failure. Soil parameters including soil texture and structure, soil classification, soil compaction, moisture content, and degree of saturation can play...

  7. Urban Soil Hydrology: bridging the data gap with a nationwide field study

    NASA Astrophysics Data System (ADS)

    Schifman, L. A.; Shuster, W.

    2016-12-01

    Urban communities generally rely on hydrologic models or tools for assessing suitable sites for green infrastructure. These rainfall-runoff models, e.g. National Stormwater Calculator (NSWC), query soil hydrologic information from national databases, e.g. Soil Survey Geographic Database (SSURGO), or are estimated via pedotransfer-based algorithms like USDA Rosetta. As part of urban soil hydrologic assessments we have collected soil textural and hydrologic data in 12 cities throughout the United States and compared these measurements to NSWC and SSURGO queried infiltration rates (Kunsat) and Rosetta-estimated drainage rates (Ksat and Kunsat). We found that soil hydrologic parameters obtained through pedotransfer functions and queries to soil databases are not representative of field-measured values (RMSE range from 6.2 to 15.2 for infiltration and from 13.2 to 16.3 for drainage). Although the NSWC queries SSURGO, we found that SSURGO overestimates infiltration and NSWC underestimates with MEs of 4.9, and -1.4, respectively. In Rosetta, we found that pedotransfer functions overestimated drainage rates (MEs 1.8 to 3.8). In an attempt to improve drainage estimates using Rosetta the soil texture was adjusted in soils with an apparent portion of finer sands. Here, sand included: very coarse, coarse, and medium sand, whereas silt included fine, and very fine sand and silt, with the justification that fine sands behave similarly to silt. These adjusted estimates resulted in generally underestimating drainage and still not suitable for use in planning for stormwater detention (e.g., infiltrative green infrastructure). With this work we highlight the importance of obtaining field measured values when assessing sites for green infrastructure planning instead of relying on estimates, as the discrepancies in sensitive parameters such as Kunsat and Ksat, implications for parameter selection in error propagation through rainfall-runoff models, and consequences for over- or under-design of stormwater control measures for detention.

  8. Growth kinetics and efficacy as parameters for ranking and selecting biocontrol agents that reduce pink rot in stored potatoes

    USDA-ARS?s Scientific Manuscript database

    Increased production of organic agricultural products and the relative ineffectiveness of traditional control measures support development of new biocontrol technologies for use against pink rot infections in storage. The microbiota of 84 different agricultural soils was individually transferred to...

  9. On soil textural classifications and soil-texture-based estimations

    NASA Astrophysics Data System (ADS)

    Ángel Martín, Miguel; Pachepsky, Yakov A.; García-Gutiérrez, Carlos; Reyes, Miguel

    2018-02-01

    The soil texture representation with the standard textural fraction triplet sand-silt-clay is commonly used to estimate soil properties. The objective of this work was to test the hypothesis that other fraction sizes in the triplets may provide a better representation of soil texture for estimating some soil parameters. We estimated the cumulative particle size distribution and bulk density from an entropy-based representation of the textural triplet with experimental data for 6240 soil samples. The results supported the hypothesis. For example, simulated distributions were not significantly different from the original ones in 25 and 85 % of cases when the sand-silt-clay and very coarse+coarse + medium sand - fine + very fine sand - silt+clay were used, respectively. When the same standard and modified triplets were used to estimate the average bulk density, the coefficients of determination were 0.001 and 0.967, respectively. Overall, the textural triplet selection appears to be application and data specific.

  10. [Mycotrophic capacity and efficiency of microbial consortia of arbuscular mycorrhizal fungi native of soils from Buenos Aires province under contrasting management].

    PubMed

    Thougnon Islas, Andrea J; Eyherabide, Mercedes; Echeverría, Hernán E; Sainz Rozas, Hernán R; Covacevich, Fernanda

    2014-01-01

    We characterized the infective and sporulation capacities of microbial consortia of arbuscular mycorrhizal fungi (AMF) native of Buenos Aires province (Argentina) and determined if some soil characteristics and mycorrhizal parameters could allow to select potentially beneficial inocula. Soil samples were selected from seven locations in Buenos Aires province all under agricultural (A) and pristine (P) conditions. The AMF were multiplied and mycorrhizal root colonization of trap plants was observed at 10 weeks of growth. Spore number in field was low; however, after multiplication spore density accounted for 80-1175 spores per 100g of soil. The principal component analysis showed that the P and Fe soil contents are the main modulators of infectivity and sporulation capacity. The mycorrhizal potential was determined in three locations, being high in Pristine Lobería and Agricultural Trenque Lauquen and low in Junín. Agricultural Lobería (AL) and Pristine Lobería (PL) inocula were selected and their efficiency was evaluated under controlled conditions. Even though shoot dry matter increases after inoculation was not significant (p>0.05) mycorrhizal response was greater than 40% for tomato and 25% for corn, particularly after inoculation with inocula from the agricultural management. These results could be associated to the incipient development of mycorrhizae in both species. Additional research should be conducted to further develop our findings in order to determine the factors involved in the selection of efficient inocula. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. The optimisation of electrokinetic remediation for heavy metals and radioactivity contamination on Holyrood-Lunas soil (acrisol species) in Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia.

    PubMed

    Mohamed Johar, S; Embong, Z

    2015-11-01

    The optimisation of electrokinetic remediation of an alluvial soil, locally named as Holyrood-Lunas from Sri Gading Industrial Area, Batu Pahat, Johor, Malaysia, had been conducted in this research. This particular soil was chosen due to its relatively high level of background radiation in a range between 139.2 and 539.4 nGy h(-1). As the background radiation is correlated to the amount of parent nuclides, (238)U and (232)Th, hence, a remediation technique, such as electrokinetic, is very useful in reducing these particular concentrations of heavy metal and radionuclides in soils. Several series of electrokinetics experiments were performed in laboratory scale in order to study the influence of certain electrokinetic parameters in soil. The concentration before (pre-electrokinetic) and after the experiment (post-electrokinetic) was determined via X-ray fluorescence (XRF) analysis technique. The best electrokinetic parameter that contributed to the highest achievable concentration removal of heavy metals and radionuclides on each experimental series was incorporated into a final electrokinetic experiment. Here, High Pure Germanium (HPGe) was used for radioactivity elemental analysis. The XRF results suggested that the most optimised electrokinetic parameters for Cr, Ni, Zn, As, Pb, Th and U were 3.0 h, 90 volts, 22.0 cm, plate-shaped electrode by 8 × 8 cm and in 1-D configuration order whereas the selected optimised electrokinetic parameters gave very low reduction of (238)U and (232)Th at 0.23 ± 2.64 and 2.74 ± 23.78 ppm, respectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Use of mobile gammaspectrometry for estimation of texture at regional scale

    NASA Astrophysics Data System (ADS)

    Dierke, C.; Werban, U.; Dietrich, P.

    2012-04-01

    In the last years gamma-ray measurements from air and ground were increasingly used for spatial mapping of physical soil parameters. Many applications of gamma-ray measurements for soil characterisation and in digital soil mapping (DSM) are known from Australia or single once from Northern America. During the last years there are attempts to use that method in Europe as well. The measured isotope concentration of the gamma emitter 40K, 238U and 232Th in soils depends on different soil parameters, which are the result of composition and properties of parent rock and processes during soil geneses under different climatic conditions. Grain size distribution, type of clay minerals and organic matter are soil parameters which influence directly the gamma-ray concentration. From former studies we know, that there are site specific relationships at the field scale between gamma-ray measurements and soil properties. One of the target soil properties in DSM is for e.g. the spatial distribution of texture at the landscape scale. Thus there is a need of more regional understanding of gamma-ray concentration and soil properties with regard to the complex geology of Europe. We did systematic measurements at different field sites across Europe to investigate the relationship between the concentrations of gamma radiant and grain size. The areas are characterised by different pedogenesis and varying clay content. For the measurement we used a mobile 4l Na(I) detector with GPS connection, which is mounted on a sledge and can be towed across the agricultural used plane. Additionally we selected points for soil sampling and analysis of soil texture. For the interpretation we used the single nuclide concentration as well as the ratios. The results show site specific relationships dependent from source material. At soils developed from alluvial sediments the K/Th ratio is an indicator for clay content at regional scale. At soils developed from loess sediments Th can be used do discriminate between fine (clay + silt) and coarse (sand) fraction. This knowledge will led to a more conceptual understanding of gamma-ray measurements at regional scale. These activities are done within the iSOIL project. iSOIL- Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment; iSOIL is one member of the SOIL TECHNOLOGY CLUSTER of Research Projects funded by the EC.

  13. Soil quality and carbon sequestration in a reclaimed coal mine spoil of Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sangeeta; Masto, Reginald; Ram, Lal

    2016-04-01

    Revegetation of coal mine spoil helps in carbon storage and the success of remediation depend on the selection of appropriate tree species. A study was conducted at the coalmine overburden dumps of Jharia Coalfield, Dhanbad, India to evaluate the impact of revegetation on the overall soil quality and carbon sequestration. Morphological parameters (tree height, diameter at breast height, tree biomass, wood specific gravity) of the dominant tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo and Leucaena leucocephala) growing on the mine spoil was recorded. Mine spoil samples were collected under the canopy cover of different tree species and analyzed for soil physical, chemical, and biological parameters. In general reclaimed sites had better soil quality than the reference site. For instance, D. sissoo and C. siamea improved soil pH (+28.5%, +27.9%), EC (+15.65%, +19%), cation exchange capacity (+58.7%, +52.3%), organic carbon (+67.5%, +79.5%), N (+97.2%, +75.7%), P (+98.2%, +76.9%), K (+31.8%, +37.4%), microbial biomass carbon (+143%, +164%) and dehydrogenase activity (+228%, +262%) as compared to the unreclaimed reference coal mine site. The concentration of polycyclic aromatic hydrocarbons (PAHs) decreased significantly in the reclaimed site than the reference spoil, C. siamea was found to be more promising for PAH degradation. The overall impact of tree species on the quality of reclaimed mine spoil cannot be assessed by individual soil parameters, as most of the parameters are interlinked and difficult to interpret. However, combination of soil properties into an integrated soil quality index provides a more meaningful assessment of reclamation potential of tree species. Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity were the most critical properties controlling growth of tree species. The indicator values were converted into a unitless score (0-1.00) and integrated into mine soil quality index (SQI). Higher SQI values were obtained for sites reclaimed with Dalbergia sissoo (0.585) and Cassia siamea (0.565) compared to the reference mine spoil (0.303). The calculated index was significantly correlated (r = 0.84) with plant growth parameters. The carbon dioxide sequestration potential of the reclaimed site was 133.3 t/ha, while the total tree carbon density was highest in D. sissoo (13.93 t/ha) and C. siamea (11.35 t/ha). Based on SQI and C sequestration potential, Dalbergia sissoo and Cassia siamea was found to be more suitable for reclamation of mine spoil.

  14. The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation.

    PubMed

    Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe

    2014-10-01

    The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.

  15. BOREAS TGB-12 Soil Carbon Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  16. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    PubMed Central

    Alves, Ricardo J Eloy; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M; Schleper, Christa; Urich, Tim

    2013-01-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils. PMID:23466705

  17. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).

  18. Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots

    NASA Astrophysics Data System (ADS)

    Chahinian, Nanée; Moussa, Roger; Andrieux, Patrick; Voltz, Marc

    2006-07-01

    Tillage operations are known to greatly influence local overland flow, infiltration and depressional storage by altering soil hydraulic properties and soil surface roughness. The calibration of runoff models for tilled fields is not identical to that of untilled fields, as it has to take into consideration the temporal variability of parameters due to the transient nature of surface crusts. In this paper, we seek the application of a rainfall-runoff model and the development of a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled plot (3240 m 2) located in southern France. The selected model couples the (Morel-Seytoux, H.J., 1978. Derivation of equations for variable rainfall infiltration. Water Resources Research. 14(4), 561-568). Infiltration equation to a transfer function based on the diffusive wave equation. The parameters to be calibrated are the hydraulic conductivity at natural saturation Ks, the surface detention Sd and the lag time ω. A two-step calibration procedure is presented. First, eleven rainfall-runoff events are calibrated individually and the variability of the calibrated parameters are analysed. The individually calibrated Ks values decrease monotonously according to the total amount of rainfall since tillage. No clear relationship is observed between the two parameters Sd and ω, and the date of tillage. However, the lag time ω increases inversely with the peakflow of the events. Fairly good agreement is observed between the simulated and measured hydrographs of the calibration set. Simple mathematical laws describing the evolution of Ks and ω are selected, while Sd is considered constant. The second step involves the collective calibration of the law of evolution of each parameter on the whole calibration set. This procedure is calibrated on 11 events and validated on ten runoff inducing and four non-runoff inducing rainfall events. The suggested calibration methodology seems robust and can be transposed to other gauged sites.

  19. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.

  20. Soil and leaf litter metaproteomics—a brief guideline from sampling to understanding

    PubMed Central

    Keiblinger, Katharina M.; Fuchs, Stephan; Zechmeister-Boltenstern, Sophie; Riedel, Katharina

    2016-01-01

    The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters. PMID:27549116

  1. Effects of pH and phosphate on glyphosate adsorption to Argentina soils.

    NASA Astrophysics Data System (ADS)

    De Geronimo, Eduardo; Aparicio, Virginia; Costa, José Luis

    2017-04-01

    Glyphosate is a non-selective, post-emergence herbicide that is widely used in Argentina. Due to the similar molecular structures, glyphosate and phosphate compete for the same adsorption sites in soil. Soil pH has a strong influence in glyphosate and phosphate adsorption since it modifies the net charge of the molecules and, consequently, the force of the electrostatic interaction between these molecules and soil components. Glyphosate adsorption generally decreases as the soil pH was increased, although there were exceptions. In this work, we study the effects of pH and the presence of phosphate on the adsorption of glyphosate on six different types of Argentina soils. Batch equilibrium technique was employed to study the adsorption of glyphosate onto soils at different pH values (from 3 to 9) and phosphate content (0.5 and 1 mM). Stepwise multiple linear regression analysis was applied to obtain a relationship between the sorption parameters and soil properties. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients with Kf values range from 24.9 to 397.4. Clay contents and soil pH were found to be the most significant soil factors affecting the glyphosate adsorption process. The presence of phosphate significantly decreased the adsorption of glyphosate to soils. The Kf values obtained for all six soils decreased a 40% at 0.5 mM of phosphate and a 55% at 1 mM of phosphate. On the other hand, the affinity parameters of glyphosate to soils varied with changes in pH. A general trend of decrease in glyphosate adsorption with increase in pH was observed for all six studied soils. In turn, there appears to be a maximum glyphosate adsorption at pH close to 6 for most soils when the net charge of the molecule at this pH was approximately -1.7.

  2. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, Pingjiu; Li, Lianqing; Pan, Genxing; Ren, Jingchen

    2006-12-01

    Not only the nutritional status and biological activity but also the soil ecological functioning or soil health has been impacted profoundly by land degradation in the karst area of southwest China where the karst ecosystems are generally considered as extremely vulnerable to land degradation under intensified land-use changes. The objectives of this study are to elucidate the changes in overall soil quality by a holistic approach of soil nutritional, biological activity, and soil health indicators in the karst area as impacted by intense cultivation and vegetation degradation. Topsoil samples were collected on selected eco-tesserae in a sequence of land degradation in a karst area of southwest Guizhou in 2004. The soil nutrient pools of organic carbon (Corg), extractable extracellular carbon (Cext), total soil nitrogen (Nt), alkali-hydrolyzable nitrogen (Nah), total phosphorus (Pt), available phosphorus (Pa) were analyzed by wet soil chemistry. The soil biological properties were studied by means of measurements of microbial biomass carbon (both by fumigation-extraction, FE-Cmic, and by calculation from substrate-incubation respiration, SIR-Cmic) of respiration [respiration without addition of substrates, basal respiration (BR), and potential respiration (PR) with substrate-incubation] and of soil enzyme activities (invertase, urease, and alkaline phosphatase). Soil health status was assessed by simple indices of Cmic/Corg and BR/Cmic in conjunction with bacterial community structures determined by polymerase chain reaction and denaturing gradient gel electrophoresis. While the nutritional pool parameters, such as Corg and Cext, described basically the changes in soil life-supporting capacity with cultivation interference and vegetation declined, those parameters of biological activity such as FE-Cmic, SIR, and SIR-Cmic as well as bacterial community structures measured by molecular method evidenced well the changes in soil functioning for ecosystem health with the land degradation.

  3. Suitable Site Selection of Small Dams Using Geo-Spatial Technique: a Case Study of Dadu Tehsil, Sindh

    NASA Astrophysics Data System (ADS)

    Khalil, Zahid

    2016-07-01

    Decision making about identifying suitable sites for any project by considering different parameters, is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30 meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pair wise comparison method, also known as Analytical Hierarchy Process (AHP) is took into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision making about suitable sites analysis for small dams using geo-spatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

  4. Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity

    NASA Astrophysics Data System (ADS)

    Granieri, D.; Avino, R.; Chiodini, G.

    2010-01-01

    Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.

  5. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  6. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  7. Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil

    NASA Astrophysics Data System (ADS)

    Zhu, Q.

    2017-12-01

    Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.

  8. Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, P.

    The concentrations (C) of several semivolatile organic compounds (SOCs) in Norway spruce needles (N) and in the local humus horizon (O) of 25 remote Austrian forest sites were used to calculate an ecosystem-oriented partition coefficient needles/humus horizon (C{sub N}/C{sub O}). Between 66 and 78% of the compounds' variation of this quotient could be explained by each of the following physicochemical parameters: vapor pressure (p{sub s}) and the partition coefficients n-octanol/water (K{sub OW}), n-octanol/air (K{sub OA}), and adsorbed/ dissolved in soil (K{sub OC}) of the compounds. This result further underlines the usefulness of these parameters for predicting the behavior of SOCsmore » in terrestrial ecosystems. Compounds with low p{sub s} and high K{sub OW}, K{sub OA}, and K{sub OC} show a very low C{sub N}/C{sub O} quotient, which implies a higher accumulation of these compounds in the O horizon than in the needles. The role of forest soils as sink for these SOCs is demonstrated. Alternatively, C{sub N}/C{sub O} > 1, due to higher concentrations in the needles than in the O horizon, have been shown for SOCs with comparably high p{sub s} and low K{sub OW}, K{sub OA}, and K{sub OC}. In this respect, the possible role of revolatilization of the more volatile SOCs from soils to needles is discussed. In the mineral soil layers below the O horizon, SOCs with lower K{sub OC} and better water solubility tend to be less accumulated. However, if all investigated compounds are taken into consideration, accumulation in the mineral soil layers showed no general trend in relation to the selected physicochemical parameters.« less

  9. Soil quality index for evaluation of reclaimed coal mine spoil.

    PubMed

    Mukhopadhyay, S; Masto, R E; Yadav, A; George, J; Ram, L C; Shukla, S P

    2016-01-15

    Success in the remediation of mine spoil depends largely on the selection of appropriate tree species. The impacts of remediation on mine soil quality cannot be sufficiently assessed by individual soil properties. However, combination of soil properties into an integrated soil quality index provides a more holistic status of reclamation potentials of tree species. Remediation potentials of four tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo, and Leucaena leucocephala) were studied on reclaimed coal mine overburden dumps of Jharia coalfield, Dhanbad, India. Soil samples were collected under the canopies of the tree species. Comparative studies on the properties of soils in the reclaimed and the reference sites showed improvements in soil quality parameters of the reclaimed site: coarse fraction (-20.4%), bulk density (-12.8%), water holding capacity (+0.92%), pH (+25.4%), EC (+2.9%), cation exchange capacity (+46.6%), organic carbon (+91.5%), N (+60.6%), P (+113%), K (+19.9%), Ca (+49.6%), Mg (+12.2%), Na (+19.6%), S (+46.7%), total polycyclic aromatic hydrocarbons (-71.4%), dehydrogenase activity (+197%), and microbial biomass carbon (+115%). Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Selected indicators include: coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity. The indicator values were converted into a unitless score (0-1.00) and integrated into SQI. The calculated SQI was significantly (P<0.001) correlated with tree biomass and canopy cover. Reclaimed site has 52-93% higher SQI compared to the reference site. Higher SQI values were obtained for sites reclaimed with D.sissoo (+93.1%) and C.siamea (+86.4%). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Sentinel surveillance of soil-transmitted helminthiasis in preschool-aged and school-aged children in selected local government units in the Philippines: follow-up assessment.

    PubMed

    Belizario, Vicente Y; Totañes, Francis Isidore G; de Leon, Winifreda U; Ciro, Raezelle Nadine T; Lumampao, Yvonne F

    2015-03-01

    This study was a follow-up to the baseline nationwide survey of soil-transmitted helminth (STH) infections in preschool-aged children in the Philippines and in school-aged children in selected sentinel sites to assess the Integrated Helminth Control Program of the Department of Health. The objective of the study was to describe the current prevalence and intensity of STH infections in preschool-aged and school-aged children in 6 sentinel provinces and to compare these data with baseline findings. A cross-sectional study design was used to determine the prevalence and intensity of STH infections. Parasitological assessment involved the examination of stool samples by the Kato-Katz method. Although parasitological parameters in the 2 age groups at follow-up showed significant reductions from the baseline, these parameters remained high despite 3 years of mass drug administration (MDA). Efforts toward achieving high MDA coverage rates, provision of clean water, environmental sanitation, and promotion of hygiene practices must be prioritized. © 2013 APJPH.

  11. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira, Hygor Evangelista; Pissarra, Teresa Cristina Tarlé; Farias do Valle Junior, Renato

    Road spills of hazardous substances are common in developing countries due to increasing industrialization and traffic accidents, and represent a serious threat to soils and water in catchments. There is abundant literature on equations describing the wash-off of pollutants from roads during a storm event and there are a number of watershed models incorporating those equations in storm water quality algorithms that route runoff and pollution yields through a drainage system towards the catchment outlet. However, methods describing catchment vulnerability to contamination by road spills based solely on biophysical parameters are scarce. These methods could be particularly attractive to managersmore » because they can operate with a limited amount of easily collectable data, while still being able to provide important insights on the areas more prone to contamination within the studied watershed. The purpose of this paper was then to contribute with a new vulnerability model. To accomplish the goal, a selection of medium properties appearing in wash-off equations and routing algorithms were assembled and processed in a parametric framework based on multi criteria analysis to define the watershed vulnerability. However, parameters had to be adapted because wash-off equations and water quality models have been developed to operate primarily in the urban environment while the vulnerability model is meant to run in rural watersheds. The selected parameters were hillside slope, ground roughness (depending on land use), soil permeability (depending on soil type), distance to water courses and stream density. The vulnerability model is a spatially distributed algorithm that was prepared to run under the IDRISI Selva software, a GIS platform capable of handling spatial and alphanumeric data and execute the necessary terrain model, hydrographic and thematic analyses. For illustrative purposes, the vulnerability model was applied to the legally protected Environmental Protection Area (APA), located in the Uberaba region, state of Minas Gerais, Brazil. In this region, the risk of accidents causing chemical spills is preoccupying because large quantities of dangerous materials are transported in two important distribution highways while the APA is fundamental for the protection of water resources, the riverine ecosystems and remnants of native vegetation. In some tested scenarios, model results show 60% of vulnerable areas within the studied area. The most sensitive parameter to vulnerability is soil type. To prevent soils from contamination, specific measures were proposed involving minimization of land use conflicts that would presumably raise the soil's organic matter and in the sequel restore the soil's structural functions. Additionally, the present study proposed the preservation and reinforcement of riparian forests as one measure to protect the quality of surface water. - Highlights: • A multi criteria analog model was developed to assess rural catchment vulnerability along roads. • Model parameters were defined by analogy with urban wash-off equations and routing algorithms. • The model mixes up various biophysical and socio-economic parameters. • Model application was based on a scenario analysis. • The study is focused on the Environmental Protection Area of Uberaba River, Brazil.« less

  12. Comparison of thermal signatures of a mine buried in mineral and organic soils

    NASA Astrophysics Data System (ADS)

    Lamorski, K.; Pregowski, Piotr; Swiderski, Waldemar; Usowicz, B.; Walczak, R. T.

    2001-10-01

    Values of thermal signature of a mine buried in soils, which ave different properties, were compared using mathematical- statistical modeling. There was applied a model of transport phenomena in the soil, which takes into consideration water and energy transfer. The energy transport is described using Fourier's equation. Liquid phase transport of water is calculated using Richard's model of water flow in porous medium. For the comparison, there were selected two soils: mineral and organic, which differs significantly in thermal and hydrological properties. The heat capacity of soil was estimated using de Vries model. The thermal conductivity was calculated using a statistical model, which incorprates fundamental soil physical properties. The model of soil thermal conductivity was built on the base of heat resistance, two Kirchhoff's laws and polynomial distribution. Soil hydrological properties were described using Mualem-van Genuchten model. The impact of thermal properties of the medium in which a mien had been placed on its thermal signature in the conditions of heat input was presented. The dependence was stated between observed thermal signature of a mine and thermal parameters of the medium.

  13. Avoidance, biomass and survival response of soil dwelling (endogeic) earthworms to OECD artificial soil: potential implications for earthworm ecotoxicology.

    PubMed

    Brami, C; Glover, A R; Butt, K R; Lowe, C N

    2017-05-01

    Soil dwelling earthworms are now adopted more widely in ecotoxicology, so it is vital to establish if standardised test parameters remain applicable. The main aim of this study was to determine the influence of OECD artificial soil on selected soil-dwelling, endogeic earthworm species. In an initial experiment, biomass change in mature Allolobophora chlorotica was recorded in Standard OECD Artificial Soil (AS) and also in Kettering Loam (KL). In a second experiment, avoidance behaviour was recorded in a linear gradient with varying proportions of AS and KL (100% AS, 75% AS + 25% KL, 50% KS + 50% KL, 25% AS + 75% KL, 100% KL) with either A. chlorotica or Octolasion cyaneum. Results showed a significant decrease in A. chlorotica biomass in AS relative to KL, and in the linear gradient, both earthworm species preferentially occupied sections containing higher proportions of KL over AS. Soil texture and specifically % composition and particle size of sand are proposed as key factors that influenced observed results. This research suggests that more suitable substrates are required for ecotoxicology tests with soil dwelling earthworms.

  14. Functional test of pedotransfer functions to predict water flow and solute transport with the dual-permeability model MACRO

    NASA Astrophysics Data System (ADS)

    Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.

    2012-07-01

    Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the estimation of water flow parameters. Overall, the results are encouraging for the use of this modelling set-up to estimate pesticide leaching risks at the regional-scale, especially where the objective is to identify vulnerable soils and "source" areas of contamination.

  15. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  16. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  17. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem to act as a C sink is directly and indirectly dependent on the vegetation structure.

  18. Characterizing potential water quality impacts from soils treated with dust suppressants.

    PubMed

    Beighley, R Edward; He, Yiping; Valdes, Julio R

    2009-01-01

    Two separate laboratory experiment series, surface runoff and steady-state seepage, were performed to determine if dust suppressant products can be applied to soils with an expected minimal to no negative impact on water quality. The experiments were designed to mimic arid field conditions and used two soils (clayey and sandy) and six different dust suppressants. The two experiments consisted of: (i) simulated rainfall (intensities of 18, 33, or 61 mm h(-1)) and associated runoff from soil trays at a surface slope of 33%; and (ii) steady-state, constant head seepage through soil columns. Both experiment series involved two product application scenarios and three application ages (i.e., to account for degradation effects) for a total of 126 surface runoff and 80 column experiments. One composite effluent sample was collected from each experiment and analyzed for pH, electrical conductivity, total suspended solids (TSS), total dissolved solids, dissolved oxygen, total organic carbon, nitrate, nitrite, and phosphate. Paired t tests at 1 and 5% levels of significance and project specific data quality objectives are used to compare water quality parameters from treated and untreated soils. Overall, the results from this laboratory scale study suggest that the studied dust suppressants have minimal potential for adverse impacts to selected water quality parameters. The primary impacts were increased TSS for two synthetic products from the surface runoff experiments on both soils. The increase in TSS was not expected based on previous studies and may be attributed to this study's focus on simulating real-world soil agitation/movement at an active construction site subjected to rough grading.

  19. Composition variability of spent mushroom compost in Ireland.

    PubMed

    Jordan, S N; Mullen, G J; Murphy, M C

    2008-01-01

    Spent mushroom compost (SMC) has proven to be an attractive material for improving soil structure in tilled soils and increasing dry matter production in grassland soils, owing to its high organic matter content and availability of essential plant nutrients. Because of this, it is important to identify the variability in composition of SMC in order to evaluate its merit as a fertilizer/soil conditioner. For this reason, a study was carried out involving the analysis of SMC samples obtained from five mushroom growers using compost from each of the 13 mushroom composting yards currently operating in both Northern Ireland (5 yd) and the Republic of Ireland (8 yd). The selected parameters measured include dry matter, organic matter, total N, P and K, C/N ratio; plant-available P and K, pH, EC, total Ca, Mg, Na, Cu, Zn, Fe, Mn, Cd, Cr, Ni, Pb; and cellulose, hemicellulose and lignin constituents. Yield of mushroom data were also collected from the selected growers. There were significant differences (P<0.05) within two compost production yards for some parameters, therefore, for the most part, the uniformity of SMC within each yard is relatively consistent. However, significant differences (P<0.05) were evident when comparing SMC obtained from growers supplied with compost from Northern Ireland and the Republic of Ireland independently, particularly among total and available phosphorus and potassium values. The results obtained show that, while SMC has fertilizer merit, its variability of composition must be taken into account when assessing this value. The variability of composition is also of particular interest in the context of recent emphasis on plant nutrient management in agriculture.

  20. Assessment of derelict soil quality: Abiotic, biotic and functional approaches.

    PubMed

    Vincent, Quentin; Auclerc, Apolline; Beguiristain, Thierry; Leyval, Corinne

    2018-02-01

    The intensification and subsequent closing down of industrial activities during the last century has left behind large surfaces of derelict lands. Derelict soils have low fertility, can be contaminated, and many of them remain unused. However, with the increasing demand of soil surfaces, they might be considered as a resource, for example for non-food biomass production. The study of their physico-chemical properties and of their biodiversity and biological activity may provide indications for their potential re-use. The objective of our study was to investigate the quality of six derelict soils, considering abiotic, biotic, and functional parameters. We studied (i) the soil bacteria, fungi, meso- and macro-fauna and plant communities of six different derelict soils (two from coking plants, one from a settling pond, two constructed ones made from different substrates and remediated soil, and an inert waste storage one), and (ii) their decomposition function based on the decomposer trophic network, enzyme activities, mineralization activity, and organic pollutant degradation. Biodiversity levels in these soils were high, but all biotic parameters, except the mycorrhizal colonization level, discriminated them. Multivariate analysis showed that biotic parameters co-varied more with fertility proxies than with soil contamination parameters. Similarly, functional parameters significantly co-varied with abiotic parameters. Among functional parameters, macro-decomposer proportion, enzyme activity, average mineralization capacity, and microbial polycyclic aromatic hydrocarbon degraders were useful to discriminate the soils. We assessed their quality by combining abiotic, biotic, and functional parameters: the compost-amended constructed soil displayed the highest quality, while the settling pond soil and the contaminated constructed soil displayed the lowest. Although differences among the soils were highlighted, this study shows that derelict soils may provide a biodiversity ecosystem service and are functional for decomposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    NASA Astrophysics Data System (ADS)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  2. Evaluating experimental design for soil-plant model selection using a Bootstrap Filter and Bayesian model averaging

    NASA Astrophysics Data System (ADS)

    Wöhling, T.; Schöniger, A.; Geiges, A.; Nowak, W.; Gayler, S.

    2013-12-01

    The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), we analyze the changes in posterior model weights and posterior model choice uncertainty when more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. Using a Bootstrap Filter (BF), the models were then conditioned on field measurements of soil moisture, matric potential, leaf-area index, and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at a field site at the Swabian Alb in Southwestern Germany. Following our new method, we derived model weights when using all data or different subsets thereof. We discuss to which degree the posterior mean outperforms the prior mean and all individual posterior models, how informative the data types were for reducing prediction uncertainty of evapotranspiration and deep drainage, and how well the model structure can be identified based on the different data types and subsets. We further analyze the impact of measurement uncertainty und systematic model errors on the effective sample size of the BF and the resulting model weights.

  3. Reliability and Validity of Kinetic and Kinematic Parameters Determined With Force Plates Embedded Under a Soil-Filled Baseball Mound.

    PubMed

    Yanai, Toshimasa; Matsuo, Akifumi; Maeda, Akira; Nakamoto, Hiroki; Mizutani, Mirai; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2017-08-01

    We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto 3 force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over the entire duration of pitching motion were 5.3 N˙s, 1.9 N˙s, and 8.2 N˙s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.

  4. Parameter sensitivity analysis of the mixed Green-Ampt/Curve-Number method for rainfall excess estimation in small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Romano, N.; Petroselli, A.; Grimaldi, S.

    2012-04-01

    With the aim of combining the practical advantages of the Soil Conservation Service - Curve Number (SCS-CN) method and Green-Ampt (GA) infiltration model, we have developed a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt). The basic concept is that, for a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model so as to distribute in time the information provided by the SCS-CN method. In a previous contribution, the proposed mixed procedure was evaluated on 100 observed events showing encouraging results. In this study, a sensitivity analysis is carried out to further explore the feasibility of applying the CN4GA tool in small ungauged catchments. The proposed mixed procedure constrains the GA model with boundary and initial conditions so that the GA soil hydraulic parameters are expected to be insensitive toward the net hyetograph peak. To verify and evaluate this behaviour, synthetic design hyetograph and synthetic rainfall time series are selected and used in a Monte Carlo analysis. The results are encouraging and confirm that the parameter variability makes the proposed method an appropriate tool for hydrologic predictions in ungauged catchments. Keywords: SCS-CN method, Green-Ampt method, rainfall excess, ungauged basins, design hydrograph, rainfall-runoff modelling.

  5. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.

    PubMed

    Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2007-05-25

    The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree.

  6. Soil- and crop-dependent variation in correlation lag between precipitation and agricultural drought indices as predicted by the SWAP model

    NASA Astrophysics Data System (ADS)

    Wright, Azin; Cloke, Hannah; Verhoef, Anne

    2017-04-01

    Droughts have a devastating impact on agriculture and economy. The risk of more frequent and more severe droughts is increasing due to global warming and certain anthropogenic activities. At the same time, the global population continues to rise and the need for sustainable food production is becoming more and more pressing. In light of this, drought prediction can be of great value; in the context of early warning, preparedness and mitigation of drought impacts. Prediction of meteorological drought is associated with uncertainties around precipitation variability. As meteorological drought propagates, it can transform into agricultural drought. Determination of the maximum correlation lag between precipitation and agricultural drought indices can be useful for prediction of agricultural drought. However, the influence of soil and crop type on the lag needs to be considered, which we explored using a 1-D Soil-Vegetation-Atmosphere-Transfer model (SWAP (http://www.swap.alterra.nl/), with the following configurations, all forced with ERA-Interim weather data (1979 to 2014): i) different crop types in the UK; ii) three generic soil types (clay, loam and sand) were considered. A Sobol sensitivity analysis was carried out (perturbing the SWAP model van Genuchten soil hydraulic parameters) to study the effect of soil type uncertainty on the water balance variables. Based on the sensitivity analysis results, a few variations of each soil type were selected. Agricultural drought indices including Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) were calculated. The maximum correlation lag between precipitation and these drought indices was calculated, and analysed in the context of crop and soil model parameters. The findings of this research can be useful to UK farming, by guiding government bodies such as the Environment Agency when issuing drought warnings and implementing drought measures.

  7. Assessing soil hydraulic characteristics using HYPROP and BEST: a comparison

    NASA Astrophysics Data System (ADS)

    Leitinger, Georg; Obojes, Nikolaus; Lassabatère, Laurent

    2015-04-01

    Knowledge of ecohydrological characteristics with high spatial resolution is a prerequisite for large-scale hydrological modelling. Data on soil hydraulic characteristics are of major importance, but measurements are often seen as time consuming and costly. In order to accurately model grassland productivity and in particular evapotranspiration, soil sampling and infiltration experiments at 25 grassland sites ranging from 900m to 2300m a.s.l. were conducted in the long term socio-ecological research (LTSER) site Stubai Valley, Tyrolean Alps, Austria, covering 265 km². Here we present a comparison of two methods to determine important hydrological properties of soils: (1) the evaporation method HYPROP (Hydraulic Property Analyzer; UMS Munich, 2010), and (2) the BEST-model (Beerkan Estimation of Soil Transfer Parameters; Lassabatère et al. (2006)), each determining the soil hydraulic characteristics and in particular the water retention curve. For the most abundant soil types we compared the pf-curves calculated from HYPROP data suing the Van Genuchten equation to the ones resulting from the comparatively time efficient BEST approach to find out if the latter is a suitable method to determine pf curves of alpine grassland soils. Except for the soil type Rendzina, the comparison of HYPROP and BEST showed slightly variations in the pF curves and resulting hydraulic characteristics. At the starting point BEST curves presented a slower dehydration, HYPROP a fast and continuous water loss. HYPROP analyses showed the highest variability in the measured values of Rendzina. Regarding BEST, the Alluvial Soils showed the highest variability. To assess equivalence between HYPROP and BEST we deduced several hydraulic characteristics from the pF curves, e.g. saturated water content, field capacity, permanent wilting point, pore size distribution, and minimum water retention. The comparison of HYPROP and BEST revealed that the results of soil water characteristics may depend on the methodological Approach with differences in equivalence between selected soil types. Thus, the used method is crucial to derive soil hydraulic parameters right from pF curves for water balance models. The results further showed that the BEST model is a promising method to determine soil water characteristics with minimal field- and laboratory work in large-scale studies. Reference: Lassabatère L, Angulo-Jaramillo R, Soria Ugalde JM, Cuenca R, Braud I and Haverkamp R (2006) Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments-BEST. Soil Sci. Soc. Am. J., 70: 521-532, doi:10.2136/sssaj2005.0026.

  8. Crop classification using multidate/multifrequency radar data. [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Shanmugam, K. S.; Narayanan, V.; Dobson, C.

    1981-01-01

    Both C- and L-band radar data acquired over a test site near Colby, Kansas during the summer of 1978 were used to identify three types of vegetation cover and bare soil. The effects of frequency, polarization, and the look angle on the overall accuracy of recognizing the four types of ground cover were analyzed. In addition, multidate data were used to study the improvement in recognition accuracy possible with the addition of temporal information. The soil moisture conditions had changed considerably during the temporal sequence of the data; hence, the effects of soil moisture on the ability to discriminate between cover types were also analyzed. The results provide useful information needed for selecting the parameters of a radar system for monitoring crops.

  9. Development of a fuzzy logic expert system for pile selection. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulshafer, M.L.

    1989-01-01

    This thesis documents the development of prototype expert system for pile selection for use on microcomputers. It concerns the initial selection of a pile foundation taking into account the parameters such as soil condition, pile length, loading scenario, material availability, contractor experience, and noise or vibration constraints. The prototype expert system called Pile Selection, version 1 (PS1) was developed using an expert system shell FLOPS. FLOPS is a shell based on the AI language OPS5 with many unique features. The system PS1 utilizes all of these unique features. Among the features used are approximate reasoning with fuzzy set theory, themore » blackboard architecture, and the emulated parallel processing of fuzzy production rules. A comprehensive review of the parameters used in selecting a pile was made, and the effects of the uncertainties associated with the vagueness of these parameters was examined in detail. Fuzzy set theory was utilized to deal with such uncertainties and provides the basis for developing a method for determining the best possible choice of piles for a given situation. Details of the development of PS1, including documenting and collating pile information for use in the expert knowledge data bases, are discussed.« less

  10. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area.

    PubMed

    Hossain, M A; Furumai, H; Nakajima, F

    2009-01-01

    Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.

  11. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Lilly, A.

    2001-10-01

    There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.

  12. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  13. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests.

    PubMed

    Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco

    2016-11-01

    Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  15. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil.

    PubMed

    Kounaves, Samuel P; Lukow, Stefan R; Comeau, Brian P; Hecht, Michael H; Grannan-Feldman, Sabrina M; Manatt, Ken; West, Steven J; Wen, Xiaowen; Frant, Martin; Gillette, Tim

    2003-07-25

    The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.

  16. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil

    NASA Technical Reports Server (NTRS)

    Kounaves, Samuel P.; Lukow, Stefan R.; Comeau, Brian P.; Hecht, Michael H.; Grannan-Feldman, Sabrina M.; Manatt, Ken; West, Steven J.; Wen, Xiaowen; Frant, Martin; Gillette, Tim

    2003-01-01

    The Mars Environmental Compatibility Assessment (MECA) instrument was designed, built, and flight qualified for the now canceled MSP (Mars Surveyor Program) '01 Lander. The MECA package consisted of a microscope, electrometer, material patch plates, and a wet chemistry laboratory (WCL). The primary goal of MECA was to analyze the Martian soil (regolith) for possible hazards to future astronauts and to provide a better understanding of Martian regolith geochemistry. The purpose of the WCL was to analyze for a range of soluble ionic chemical species and electrochemical parameters. The heart of the WCL was a sensor array of electrochemically based ion-selective electrodes (ISE). After 20 months storage at -23 degrees C and subsequent extended freeze/thawing cycles, WCL sensors were evaluated to determine both their physical durability and analytical responses. A fractional factorial calibration of the sensors was used to obtain slope, intercept, and all necessary selectivity coefficients simultaneously for selected ISEs. This calibration was used to model five cation and three anion sensors. These data were subsequently used to determine concentrations of several ions in two soil leachate simulants (based on terrestrial seawater and hypothesized Mars brine) and four actual soil samples. The WCL results were compared to simulant and soil samples using ion chromatography and inductively coupled plasma optical emission spectroscopy. The results showed that flight qualification and prolonged low-temperature storage conditions had minimal effects on the sensors. In addition, the analytical optimization method provided quantitative and qualitative data that could be used to accurately identify the chemical composition of the simulants and soils. The WCL has the ability to provide data that can be used to "read" the chemical, geological, and climatic history of Mars, as well as the potential habitability of its regolith.

  17. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal soil depth without restriction for rice root elongation was at least 25 cm from the soil surface. We suggest these values as indicative for optimal physical soil quality when growing rice in fine-textured alluvial soils and their definition as a first step towards presenting real threshold values.

  18. A new Bayesian recursive technique for parameter estimation

    NASA Astrophysics Data System (ADS)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  19. Measurements, interpretation and climate change effects evaluation for pyroclastic bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Rianna, G.; Pagano, L.; Mercogliano, P.; Montesarchio, M.

    2012-12-01

    A physical model has been designed to achieve the following goals: to mark out the main features of the soil-atmosphere interaction; to quantify the water and energy fluxes through the soil surface during several years; to monitor the trends of the main variables regulating the hydraulic and thermal conditions. It is constituted by a soil volume (about 1mc) exposed to weather forcing; it is instrumented at four depths by sensors for measuring suction, water content and temperature. Therefore, a station allows knowing the meteo variables (rainfall, wind velocity and direction, air temperature, air pressure and relative humidity) and the two directly measurable components of the energy balance at the soil surface (net radiation and soil heat flux). Under the soil specimen, three shear beam load cells measure the soil weight and, hence, because the soil particles weight can be assumed as constant, the sample water storage. As first attempt, the soil surface is kept bare to avoid the complications led by overlapping processes induced by vegetation (interception, transpiration). Since May 2010, the soil involved in testing is pyroclastic material (silty sand) representative of air fall deposits covering a large part of Campania (South Italy) and erupted in the last 10,000 years by different volcanic centres (Phlegrean fields, Vesuvius). Because of their genesis, these soils show peculiar features: high porosity, low weight of soil unit volume, high water retention capacity; they cause an unusual hydraulic behaviour, halfway between coarse and fine soils in terms of saturated hydraulic permeability and mean slope of soil-water characteristic curve. In turn, these elements induce, among other things, that the currently adopted predictive approaches to estimate, for example, infiltration and evaporation processes are not directly suitable for these soils as the available parameters, even for grain sizes comparable to those of pyroclastic soils, fail to reproduce the observed trends. The measurements of water weight changes obtained during the dry days of the monitoring time span (2010-2012) furnish an adequately accurate estimate of daily evaporation values and so they can be used to calibrate the parameters of an approach for estimating evaporation method; in this work, the selected model is FAO-56 Dual Crop Coefficient Method for the case of bare soil (Allen et al., 2005) Firstly,the performance of method adopting the set of parameters recommended for soils with the same grain size is tested ; checking poor capability of this set parameters to reproduce the observed values, is retrieved the set for which is obtained best fitting between monitored and estimated values. The dataset covering the monitoring period and the approach so developed can be then used for a preliminary estimate of the effects of incoming climatic changes on evaporation processes in a specific Mediterranean context. Measured air temperatures and precipitation values are modified according their predicted climate anomalies for examined area (Giorgi and Lionello, 2008) in the XXI century; the effect of these variations on potential and actual evaporation through FAO approach are then investigated.

  20. [Quality level assessment of lowly efficient Tamarix chinensis secondary shrubs in Laizhou Bay of Yellow River Delta].

    PubMed

    Xia, Jiang-Bao; Liu, Yu-Ting; Zhu, Jin-Fang; Xu, Jing-Wei; Lu, Zhao-Hua; Liu, Jing-Tao; Liu, Qing

    2013-06-01

    Taking the Tamarix chinensis secondary shrubs in Laizhou Bay of Yellow River Delta as test objects, and by using synthetic factor method, this paper studied the main factors causing the lowly efficiency of T. chinensis secondary shrubs as well as the main parameters for the classification of lowly efficient T. chinensis secondary shrubs. A total of 24 indices including shrubs growth and soil physical and chemical properties were selected to determine the main affecting factors and parameters in evaluating and classifying the lowly efficient shrubs. There were no obvious correlations between the indices reflecting the shrubs growth and soil quality, and thus, only using shrub growth index to reflect the lowly efficiency level of T. chinensis was not enough, and it would be necessary to combine with soil quality factors to make a comprehensive evaluation. The principal factors reflecting the quality level of lowly efficient T. chinensis shrubs included soil salt content and moisture content, stand age, single tree's aboveground stem, leaf biomass, and basal diameter, followed by soil density, porosity, and soil nutrient status. The lowly efficient T. chinensis shrubs in the Bay could be classified into five types, namely, shrub with growth potential, slightly low quality shrub, moderately lowly efficient shrub, moderately low quality and lowly efficient shrub, and seriously low quality and lowly efficient shrub. The main features, low efficiency causes, and management measures of these shrubs were discussed based on the mean cluster value.

  1. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong

    2017-01-01

    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses.

    PubMed

    Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Skierucha, Wojciech; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz

    2015-01-01

    The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ (2.5 cm), T (2.5 cm)) = A/(1 + B · e (-C · (θ (2.5 cm) · T (2.5 cm)), where: ETR(θ (2.5 cm), T (2.5 cm)) is evapotranspiration [mm · h(-1)], θ (2.5 cm) is volumetric moisture of soil at the depth of 2.5 cm [m(3) · m(-3)], T (2.5 cm) is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm · h(1)], and [-], [(m(3) · m(-3) · °C)(-1)]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards.

  4. Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.

    2016-12-01

    Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.

  5. Improvement of shallow landslide prediction accuracy using soil parameterisation for a granite area in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Onda, Y.; Kim, J. K.

    2015-01-01

    SHALSTAB model applied to shallow landslides induced by rainfall to evaluate soil properties related with the effect of soil depth for a granite area in Jinbu region, Republic of Korea. Soil depth measured by a knocking pole test and two soil parameters from direct shear test (a and b) as well as one soil parameters from a triaxial compression test (c) were collected to determine the input parameters for the model. Experimental soil data were used for the first simulation (Case I) and, soil data represented the effect of measured soil depth and average soil depth from soil data of Case I were used in the second (Case II) and third simulations (Case III), respectively. All simulations were analysed using receiver operating characteristic (ROC) analysis to determine the accuracy of prediction. ROC analysis results for first simulation showed the low ROC values under 0.75 may be due to the internal friction angle and particularly the cohesion value. Soil parameters calculated from a stochastic hydro-geomorphological model were applied to the SHALSTAB model. The accuracy of Case II and Case III using ROC analysis showed higher accuracy values rather than first simulation. Our results clearly demonstrate that the accuracy of shallow landslide prediction can be improved when soil parameters represented the effect of soil thickness.

  6. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil.

    PubMed

    Chu, Qun; Wang, Xinxin; Yang, Yang; Chen, Fanjun; Zhang, Fusuo; Feng, Gu

    2013-08-01

    The aim of this study was to compare the mycorrhizal responsiveness among old and recent Chinese maize genotypes (released from 1950s to 2008) in low- and high-Olsen-P soils and to identify parameters that would indicate the relationships between the mycorrhizal responsiveness and the functional traits related to P uptake of maize. A greenhouse factorial experiment was conducted. The factors were maize genotype [Huangmaya (HMY), Zhongdan 2 (ZD2), Nongda 108 (ND108), and NE15], inoculation with or without arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis), and Olsen-P levels (4, 9, 18, 36, or 60 mg P kg(-1)). Old and recently released genotypes differed in their response to AMF under low- and high-P supply. Three kinds of responses (in terms of shoot growth) were observed: the response was positive if the soil P content was low, but negative if the soil Olsen-P content was high (HMY and ND108); the response was neutral regardless of soil P content (ZD2); and the response was positive regardless of soil P content (NE15). Principle component (PC) analysis showed that the first PC comprised morphological and physiological traits of maize roots, and the second PC comprised mycorrhizal traits. The opposite was the case, however, in high-P soil. It is concluded that maize breeding selection from 1950s to 2000s is not always against the AM association and that AMF play positive roles in promoting the growth of some maize genotypes in high-P soil. The root length colonization by efficient AMF might be a useful parameter for breeding varieties with increased mycorrhizal responsiveness.

  7. Empirical flow parameters : a tool for hydraulic model validity

    USGS Publications Warehouse

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  8. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    PubMed Central

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  10. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  11. Selective Separation and Determination of Heavy Metals (Cd, Pb, Cr) Speciation Forms from Hortic Antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.

    2009-04-01

    The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).

  12. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    PubMed

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; P<0.01) between K(f) values and the organic carbon (OC) content was found, but some soils showed higher sorption coefficients than that expected from their OC values. The normalized sorption coefficients with the soil organic carbon content (K(oc)) were dispersed and low, implying that other characteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  13. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: a case study of the middle Heihe River basin, China.

    PubMed

    Jiang, Penghui; Cheng, Liang; Li, Manchun; Zhao, Ruifeng; Duan, Yuewei

    2015-02-15

    Large-scale changes in land use and land cover over long timescales can induce significant variations in soil physicochemical properties, particularly in the riparian zones of arid regions. Frequent reclamation of wetlands and grasslands and intensive agricultural activity have induced significant changes in both land use/cover and soil physicochemical properties in the riparian zones of the middle Heihe River basin of China. The present study aims to explore whether land use/land cover change (LUCC) can well explain the variations in soil properties in the riparian zones of the middle Heihe River basin. To achieve this, we mapped LUCC and quantified the type of land use change using remote sensing images, topographic maps, and GIS analysis techniques. Forty-two sites were selected for soil and vegetation sampling. Then, physical and chemical experiments were employed to determine soil moisture, soil bulk density, soil pH, soil organic carbon, total nitrogen, total potassium, total phosphorous, available nitrogen, available potassium, and available phosphorous. The Independent-Samples Kruskal-Wallis Test, principal component analysis, and a scatter matrix were used to analyze the effects of LUCC on soil properties. The results indicate that the majority of the parameters investigated were affected significantly by LUCC. In particular, soil moisture and soil organic carbon can be explained well by land cover change and land use change, respectively. Furthermore, changes in soil moisture could be attributed primarily to land cover changes. Changes in soil organic carbon were correlated closely with the following land use change types: wetlands-arable, forest-grasslands, and grasslands-desert. Other parameters, including pH and total K, were also found to exhibit significant correlations with LUCC. However, changes in soil nutrients were shown to be induced most probably by human agricultural activity (i.e. fertilize, irrigation, tillage, etc.), rather than by simple conversions from one land use/cover types to the others. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Prediction of the effects of soil-based countermeasures on soil solution chemistry of soils contaminated with radiocesium using the hydrogeochemical code PHREEQC.

    PubMed

    Hormann, Volker; Kirchner, Gerald

    2002-04-22

    For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically studied. It is shown that calculating the impacts of soil-based chemical countermeasures on soil solution chemistry using geochemical codes such as PHREEQC offers an attractive alternative to establishing these impacts by often time-consuming and site-specific experiments.

  15. How serious a problem is subsoil compaction in the Netherlands? A survey based on probability sampling

    NASA Astrophysics Data System (ADS)

    Brus, Dick J.; van den Akker, Jan J. H.

    2018-02-01

    Although soil compaction is widely recognized as a soil threat to soil resources, reliable estimates of the acreage of overcompacted soil and of the level of soil compaction parameters are not available. In the Netherlands data on subsoil compaction were collected at 128 locations selected by stratified random sampling. A map showing the risk of subsoil compaction in five classes was used for stratification. Measurements of bulk density, porosity, clay content and organic matter content were used to compute the relative bulk density and relative porosity, both expressed as a fraction of a threshold value. A subsoil was classified as overcompacted if either the relative bulk density exceeded 1 or the relative porosity was below 1. The sample data were used to estimate the means of the two subsoil compaction parameters and the overcompacted areal fraction. The estimated global means of relative bulk density and relative porosity were 0.946 and 1.090, respectively. The estimated areal fraction of the Netherlands with overcompacted subsoils was 43 %. The estimates per risk map unit showed two groups of map units: a low-risk group (units 1 and 2, covering only 4.6 % of the total area) and a high-risk group (units 3, 4 and 5). The estimated areal fraction of overcompacted subsoil was 0 % in the low-risk unit and 47 % in the high-risk unit. The map contains no information about where overcompacted subsoils occur. This was caused by the poor association of the risk map units 3, 4 and 5 with the subsoil compaction parameters and subsoil overcompaction. This can be explained by the lack of time for recuperation.

  16. Impacts of different types of measurements on estimating unsaturated flow parameters

    NASA Astrophysics Data System (ADS)

    Shi, Liangsheng; Song, Xuehang; Tong, Juxiu; Zhu, Yan; Zhang, Qiuru

    2015-05-01

    This paper assesses the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.

  17. Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters

    NASA Astrophysics Data System (ADS)

    Shi, L.

    2015-12-01

    This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.

  18. The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction

    NASA Astrophysics Data System (ADS)

    Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L. J.; George, B.

    2016-04-01

    Calibration of spatially distributed hydrologic models is frequently limited by the availability of ground observations. Remotely sensed (RS) hydrologic information provides an alternative source of observations to inform models and extend modelling capability beyond the limits of ground observations. This study examines the capability of RS evapotranspiration (ET) and soil moisture (SM) in calibrating a hydrologic model and its efficacy to improve streamflow predictions. SM retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and daily ET estimates from the CSIRO MODIS ReScaled potential ET (CMRSET) are used to calibrate a simplified Australian Water Resource Assessment - Landscape model (AWRA-L) for a selection of parameters. The Shuffled Complex Evolution Uncertainty Algorithm (SCE-UA) is employed for parameter estimation at eleven catchments in eastern Australia. A subset of parameters for calibration is selected based on the variance-based Sobol' sensitivity analysis. The efficacy of 15 objective functions for calibration is assessed based on streamflow predictions relative to control cases, and relative merits of each are discussed. Synthetic experiments were conducted to examine the effect of bias in RS ET observations on calibration. The objective function containing the root mean square deviation (RMSD) of ET result in best streamflow predictions and the efficacy is superior for catchments with medium to high average runoff. Synthetic experiments revealed that accurate ET product can improve the streamflow predictions in catchments with low average runoff.

  19. [Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil].

    PubMed

    Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong

    2007-11-01

    Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).

  20. Application of neural network to remote sensing of soil moisture using theoretical polarimetric backscattering coefficients

    NASA Technical Reports Server (NTRS)

    Wang, L.; Shin, R. T.; Kong, J. A.; Yueh, S. H.

    1993-01-01

    This paper investigates the potential application of neural network to inversion of soil moisture using polarimetric remote sensing data. The neural network used for the inversion of soil parameters is multi-layer perceptron trained with the back-propagation algorithm. The training data include the polarimetric backscattering coefficients obtained from theoretical surface scattering models together with an assumed nominal range of soil parameters which are comprised of the soil permittivity and surface roughness parameters. Soil permittivity is calculated from the soil moisture and the assumed soil texture based on an empirical formula at C-, L-, and P-bands. The rough surface parameters for the soil surface, which is described by the Gaussian random process, are the root-mean-square (rms) height and correlation length. For the rough surface scattering, small perturbation method is used for the L-band frequency, and Kirchhoff approximation is used for the C-band frequency to obtain the corresponding backscattering coefficients. During the training, the backscattering coefficients are the inputs to the neural net and the output from the net are compared with the desired soil parameters to adjust the interconnecting weights. The process is repeated for each input-output data entry and then for the entire training data until convergence is reached. After training, the backscattering coefficients are applied to the trained neural net to retrieve the soil parameters which are compared with the desired soil parameters to verify the effectiveness of this technique. Several cases are examined. First, for simplicity, the correlation length and rms height of the soil surface are fixed while soil moisture is varied. Soil moisture obtained using the neural networks with either L-band or C-band backscattering coefficients for the HH and VV polarizations as inputs is in good agreement with the desired soil moisture. The neural net output matches the desired output for the soil moisture range of 16 to 60 percent for the C-band case. The next case investigated is to vary both soil moisture and rms height while keeping the correlation length fixed. For this case, C-band backscattering coefficients are not sufficient for retrieving two parameters because the Kirchhoff approximation gives the same HH and VV backscattering coefficients. Therefore, the backscattering coefficients at two different frequency bands are necessary to find both the soil moisture and rms height. Finally, the neural nets are also applied to simultaneously invert soil moisture, rms height, and correlation length. Overall, the soil moisture retrieved from the neural network agrees very well with the desired soil moisture. This suggests that the neural network shows potential for retrieval of soil parameters from remote sensing data.

  1. Use of crop residues for the control of Meloidogyne incognita under laboratory conditions.

    PubMed

    Piedrabuena, Ana; García-Alvarez, Avelino; Díez-Rojo, Miguel A; Bello, Antonio

    2006-10-01

    This laboratory study evaluates the biofumigant effect of different organic materials with the aim of developing non-chemical alternatives for the management of Meloidogyne incognita (Kofoid & White) Chitwood populations. Sources of organic material from the production system were selected with the aim of reducing agricultural residue accumulation problems as well as decreasing the costs due to the use of chemical fertilizers and pesticides. The selected materials were residues from pepper, strawberry, tomato and cucumber crops, orange juice industry residues, commercial manure and sheep manure, applied at different dosages. Two biofumigation assays were performed under laboratory conditions, using alkaline soils from the Torreblanca area (Murcia, Spain) and acidic soils from the Villa del Prado area (Madrid, Spain). The assays evaluated the effect of the treatments on M. incognita juveniles and other soil organisms, the nematode galling index on tomato roots (susceptible cv. Marmande) grown in the biofumigated soil and soil fertility parameters. The results showed that all biofumigant materials significantly decreased M. incognita populations and galling indices in tomato cv. Marmande. A greater effect was observed on galling indices when applying crop residues together with manure than with the residues alone. Biofumigation had a general beneficial effect on soil fertility, generally increasing nitrogen, organic carbon, pH and potassium levels, and also calcium levels when crop residues of pepper and strawberry were applied. There were no important variations in the number of saprophagous nematodes, dorylaimids and enchytraeids.

  2. Spatially distributed modeling of soil organic carbon across China with improved accuracy

    NASA Astrophysics Data System (ADS)

    Li, Qi-quan; Zhang, Hao; Jiang, Xin-ye; Luo, Youlin; Wang, Chang-quan; Yue, Tian-xiang; Li, Bing; Gao, Xue-song

    2017-06-01

    There is a need for more detailed spatial information on soil organic carbon (SOC) for the accurate estimation of SOC stock and earth system models. As it is effective to use environmental factors as auxiliary variables to improve the prediction accuracy of spatially distributed modeling, a combined method (HASM_EF) was developed to predict the spatial pattern of SOC across China using high accuracy surface modeling (HASM), artificial neural network (ANN), and principal component analysis (PCA) to introduce land uses, soil types, climatic factors, topographic attributes, and vegetation cover as predictors. The performance of HASM_EF was compared with ordinary kriging (OK), OK, and HASM combined, respectively, with land uses and soil types (OK_LS and HASM_LS), and regression kriging combined with land uses and soil types (RK_LS). Results showed that HASM_EF obtained the lowest prediction errors and the ratio of performance to deviation (RPD) presented the relative improvements of 89.91%, 63.77%, 55.86%, and 42.14%, respectively, compared to the other four methods. Furthermore, HASM_EF generated more details and more realistic spatial information on SOC. The improved performance of HASM_EF can be attributed to the introduction of more environmental factors, to explicit consideration of the multicollinearity of selected factors and the spatial nonstationarity and nonlinearity of relationships between SOC and selected factors, and to the performance of HASM and ANN. This method may play a useful tool in providing more precise spatial information on soil parameters for global modeling across large areas.

  3. Agricultural Research Service research highlights in remote sensing for calendar year 1981

    NASA Technical Reports Server (NTRS)

    Ritchie, J. C. (Compiler)

    1982-01-01

    Selected examples of research accomplishments related to remote sensing are compiled. A brief statement is given to highlight the significant results of each research project. A list of 1981 publication and location contacts is given also. The projects cover emission and reflectance analysis, identification of crop and soil parameters, and the utilization of remote sensing data.

  4. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    PubMed Central

    Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru

    2013-01-01

    Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715

  5. Multifractal Model of Soil Water Erosion

    NASA Astrophysics Data System (ADS)

    Oleshko, Klaudia

    2017-04-01

    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which graphically represents the critical points of the dynamics of soil erodibility as function of the vegetation cover and precipitation parameters.

  6. Characterizing scale- and location-dependent correlation of water retention parameters with soil physical properties using wavelet techniques.

    PubMed

    Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng

    2008-01-01

    Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions.

  7. Fauna-associated changes in chemical and biochemical properties of soil.

    PubMed

    Tripathi, G; Sharma, B M

    2006-12-01

    To study the impacts of abundance of woodlice, termites, and mites on some functional aspects of soil in order to elucidate the specific role of soil fauna in improving soil fertility in desert. Fauna-rich sites were selected as experimental sites and adjacent areas were taken as control. Soil samples were collected from both sites. Soil respiration was measured at both sites. The soil samples were sent to laboratory, their chemical and biochemical properties were analyzed. Woodlice showed 25% decrease in organic carbon and organic matter as compared to control site. Whereas termites and mites showed 58% and 16% decrease in organic carbon and organic matter. In contrast, available nitrogen (nitrate and ammonical both) and phosphorus exhibited 2-fold and 1.2-fold increase, respectively. Soil respiration and dehydrogenase activity at the sites rich in woodlice, termites and mites produced 2.5-, 3.5- and 2-fold increases, respectively as compared to their control values. Fauna-associated increase in these biological parameters clearly reflected fauna-induced microbial activity in soil. Maximum decrease in organic carbon and increase in nitrate-nitrogen and ammonical-nitrogen, available phosphorus, soil respiration and dehydrogenase activity were produced by termites and minimum by mites reflecting termite as an efficient soil improver in desert environment. The soil fauna-associated changes in chemical (organic carbon, nitrate-nitrogen, ammonical-nitrogen, phosphorus) and biochemical (soil respiration, dehydrogenase activity) properties of soil improve soil health and help in conservation of desert pedoecosystem.

  8. Hyperparameterization of soil moisture statistical models for North America with Ensemble Learning Models (Elm)

    NASA Astrophysics Data System (ADS)

    Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.

    2017-12-01

    Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.

  9. Plant germination and growth after exposure to iron cyanide complexes.

    PubMed

    Kang, Dong-Hee; Hong, Lee Y; Schwab, A Paul; Banks, M Katherine

    2008-05-01

    Phytoremediation has been proposed for treatment of cyanide-contaminated soil. This study was conducted to identify plants with the highest potential for phytoremediation of iron cyanide contaminated soil. Multiple cultivars of two cyanogenic species, sorghum (Sorghum bicolor) and flax (Linum usitatissimum), and one non-cyanogenic species, switchgrass (Panicum virgatum L), were selected for evaluation. The cultivars were screened by quantifying germination and root elongation. Differences in germination emerged among the cultivars (P < 0.05), but these differences appeared to be unrelated to cyanide concentration. The presence of 1000 mg/kg Prussian blue tended to suppress root growth parameters of flax and switchgrass but did not affect sorghum similarly.

  10. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).

  11. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    EPA Science Inventory

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  12. Potential impacts of CO2 leakage from the CCS sites on seed germination and soil microbial enzyme activities

    NASA Astrophysics Data System (ADS)

    Wenmei, H.; Yoo, G.; Kim, Y.; Moonis, M.

    2015-12-01

    To ensure the safety of carbon capture and storage (CCS) technology, it is essential to assess the impacts of potential CO2 leakage on the soil and ecosystem. The changes in soil environment due to the CO2 leakage might have an enormous effect on the plant growth. As a preliminary study, we conducted a research focusing on the germination process because it is known to be especially sensitive to the environmental change. The objective of this study is to investigate the impacts of high soil CO2 concentration on the germination of different species. A laboratory experiment was designed to investigate the effect of high soil CO2 concentration on germination rate and soil physicochemical/microbial parameters. Cabbage, corn, bean, and wheat were selected for this study. The concentrations of the injected CO2 treatments were 10%, 30%, 60% and 100%, and the actual soil CO2 concentration ranged from 3.6% to 53.2%. Two types of controls were employed: the one connected with ambient air tank and the other connected with nothing. The final germination rates of four crops were not different between the controls and 10% treatment, but the delay of germination was observed in cabbage, corn, and bean. At 30% treatment, the germination rates of cabbage, corn and bean were 38%, while that of wheat was 78%. No seed was germinated at 60% and 100% treatments. After the incubation, soil pH decreased from 6.0 in the controls to 5.6 in the 100% treatment. The contents of soil total C and total N were not different among treatments. Activities of microbial fluorescein diacetate hydrolysis were not different among treatments for all plants. Five kinds of soil extracellular enzyme activities were not affected by the CO2 treatments. Our results suggest that: 1) Soil CO2 concentration at 3-4% did not inhibit germination of four crops. 2) Wheat is most resistant to high soil CO2 concentration in this study. 3) Soil microbial parameters were more tolerant during the short term injection.

  13. Effect of biochars produced from solid organic municipal waste on soil quality parameters.

    PubMed

    Randolph, P; Bansode, R R; Hassan, O A; Rehrah, Dj; Ravella, R; Reddy, M R; Watts, D W; Novak, J M; Ahmedna, M

    2017-05-01

    New value-added uses for solid municipal waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that soil deficiencies can be remedied by the application of municipal waste-based biochars. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually or in a 25% blend of all four waste streams were used as feedstocks of biochars. Three sets of pyrolysis temperatures (350, 500, and 750 °C) and 3 sets of pyrolysis residence time (2, 4 and 6 h) were used for biochar preparation. The biochar yield was in the range of 21-62% across all feedstocks and pyrolysis conditions. We observed variations in key biochar properties such as pH, electrical conductivity, bulk density and surface area depending on the feedstocks and production conditions. Biochar increased soil pH and improved its electrical conductivity, aggregate stability, water retention and micronutrient contents. Similarly, leachate from the soil amended with biochar showed increased pH and electrical conductivity. Some elements such as Ca and Mg decreased while NO 3 -N increased in the leachates of soils incubated with biochars. Overall, solid waste-based biochar produced significant improvements to soil fertility parameters indicating that solid municipal wastes hold promising potential as feedstocks for manufacturing value-added biochars with varied physicochemical characteristics, allowing them to not only serve the needs for solid waste management and greenhouse gas mitigation, but also as a resource for improving the quality of depleted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessing spatial variability of soil properties and ions associated to salinity using the multifractal approach

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Soares da Silva, Jucicleia; Farías França e Silva, Ênio; Lado, Marcos; Paz-González, Antonio; Vidal-Vázquez, Eva

    2017-04-01

    The lowlands coastal region of the state of Pernambuco, Northeast of Brazil, was formerly covered by humid Atlantic forest (Mata Atlântica) and then has been increasingly devoted to Sugar cane production. Because the water table is near to the soil surface salinity can occur in this area. The objective of this study was to assess the scale dependence of parameters associated to soil salinity and ions responsible for salination using multifractal analysis. The field work was conducted at an experimental field located in the Goiania municipality, Pernambuco, Brazil. This site is located 10 km east from the Atlantic coast. The field has been devoted to monoculture of sugarcane (Saccharum of?cinarum sp.) since 25 years. The climate of the region is tropical, with average annual temperature of 24°C and 1800 mm of precipitation per year. Soil was sampled every 3 m at 128 locations across a 384 m transect at a depth of 0-20 cm. The soil samples were analysed for pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Cl- and SO4-2; also sodium adsorption ratio (SAR) was calculated. The spatial distributions of all the studied variables associated to soil salinity exhibited multifractal behaviour. Although all the variables studied exhibited a very strong power law scaling, different degrees of multifractality, assessed by differences in the amplitude and several selected parameters of the generalized dimension and singularity spectrum curves, have been appreciated. The multifractal approach gives a good description of the patterns of spatial variability of properties and ions describing soil salinity, and allows discriminating differences between them.

  15. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes.

    PubMed

    Ginocchio, Rosanna; De la Fuente, Luz María; Sánchez, Pablo; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Rodríguez, Patricio H

    2009-10-01

    Pollution of soil with mine wastes results in both Cu enrichment and soil acidification. This confounding effect may be very important in terms of phytotoxicity, because pH is a key parameter influencing Cu solubility in soil solution. Laboratory toxicity tests were used to assess the effect of acidification by acidic mine wastes on Cu solubility and on root elongation of barley (Hordeum vulgare L.). Three contrasting substrates (two soils and a commercial sand) and two acidic, Cu-rich mine wastes (oxidized tailings [OxT] and smelter dust [SmD]) were selected as experimental materials. Substrates were spiked with a fixed amount of either SmD or OxT, and the pH of experimental mixtures was then modified in the range of 4.0 to 6.0 and 7.0 using PIPES (piperazine-1,4-bis(2-ethanesulfonic acid)), MES (2-(N-morpholino)ethanesulfonic acid), and MOPS (3-(N-Morpholino)-propanesulfonic acid) buffers. Chemical (pore-water Cu and pH) and toxicological (root length of barley plants) parameters were determined for experimental mixtures. Addition of SmD and OxT to substrates resulted in acidification (0.11-1.16 pH units) and high levels of soluble Cu and Zn. Neutralization of experimental mixtures with MES (pH 6.0) and MOPS (pH 7.0) buffers resulted in a marked decrease in soluble Cu and Zn, but the intensity of the effect was substrate-dependent. Adjustment of soil pH above the range normally considered to be toxic to plants (pH in water extract, > 5.5) significantly reduced metal toxicity in barley, but phytotoxicity was not completely eliminated. The present results stress the importance of considering confounding effects on derivation of toxicity thresholds to plants when using laboratory phytotoxicity tests.

  16. Fate of napropamide herbicide in selected Malaysian soils.

    PubMed

    Sadegh-Zadeh, Fardin; Wahid, Samsuri A; Seh-Bardan, Bahi J; Othman, Radziah; Omar, Dzolkhifli

    2012-01-01

    This study was carried out to determine the sorption-desorption, degradation and leaching of napropamide in selected Malaysian soils. The sorption capacities of the selected Malaysian soils for napropamide were the following in descending order: Linau > Teringkap > Gunung Berinchang > Jambu > Rudua > Baging soil. The results indicate that napropamide degradation decreased with increasing soil sorption capacity. Napropamide was leached out earlier in the Baging soil than the other soils. Overall, the application of napropamide in the selected Malaysian soils would not pose a threat to the environment except in soil with low organic matter and clay content and high hydraulic conductivity, such as the Baging soil.

  17. Removal of toxic metals from vanadium-contaminated soils using a washing method: Reagent selection and parameter optimization.

    PubMed

    Jiang, Jianguo; Yang, Meng; Gao, Yuchen; Wang, Jiaming; Li, Dean; Li, Tianran

    2017-08-01

    Vanadium (V) contamination in soils is an increasing worldwide concern facing human health and environmental conservation. The fractionation of a metal influences its mobility and biological toxicity. We analyzed the fractionations of V and several other metals using the BCR three-step sequential extraction procedure. Among methods for removing metal contamination, soil washing is an effective permanent treatment. We conducted experiments to select the proper reagents and to optimize extraction conditions. Citric acid, tartaric acid, oxalic acid, and Na 2 EDTA all exhibited high removal rates of the extractable state of V. With a liquid-to-solid ratio of 10, washing with 0.4 mol/L citric acid, 0.4 mol/L tartaric acid, 0.4 mol/L oxalic acid, and 0.12 mol/L Na 2 EDTA led to removal rates of 91%, 88%, 88%, and 61%, respectively. The effect of multiple washing on removal rate was also explored. According to the changes observed in metal fractionations, differences in removal rates among reagents is likely associated with their pK a value, pH in solution, and chemical structure. We concluded that treating with appropriate washing reagents under optimal conditions can greatly enhance the remediation of vanadium-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  19. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    NASA Astrophysics Data System (ADS)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  20. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  1. Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foye, Kevin C.; Soong, Te-Yang

    2012-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less

  2. Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile

    2010-05-01

    In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 and project PNCDI 2 - D5 no. 52-141 / 2008).

  3. Optimizing available water capacity using microwave satellite data for improving irrigation management

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into two steps during one time interval: the state variable is optimized through the state filter and the optimal parameter values are then transferred for retrieving soil moisture. However, soil moisture from sensors such as AMSR-E can only be retrieved for the top few centimeters of soil. So, for the present study, a homogeneous soil system has been considered. By assimilating this information into the model, the accuracy of model structure in relating surface moisture dynamics to deeper soil profiles can be ascertained. To evaluate the performance of the system in helping improve simulation accuracy and whether they can be used to obtain soil moisture profiles at poorly gauged catchments alongwith the available water capacity, the root mean square error (RMSE) and Mean Bias error (MBE) are used to measure the performance of the soil moisture simulations. The optimized parameters as compared to the pedo-transfer based parameters were found to reduce the RMSE from 0.14 to 0.04 and 0.15 to 0.07 in surface layer and root zone respectively.

  4. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses

    PubMed Central

    Janik, Grzegorz; Wolski, Karol; Daniel, Anna; Albert, Małgorzata; Wilczek, Andrzej; Szyszkowski, Paweł; Walczak, Amadeusz

    2015-01-01

    The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form ETR(θ 2.5 cm, T 2.5 cm) = A/(1 + B · e −C·(θ2.5 cm · T2.5 cm)), where: ETR(θ 2.5 cm, T 2.5 cm) is evapotranspiration [mm·h−1], θ 2.5 cm is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], T 2.5 cm is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. PMID:26448964

  5. Planning spatial sampling of the soil from an uncertain reconnaissance variogram

    NASA Astrophysics Data System (ADS)

    Lark, R. Murray; Hamilton, Elliott M.; Kaninga, Belinda; Maseka, Kakoma K.; Mutondo, Moola; Sakala, Godfrey M.; Watts, Michael J.

    2017-12-01

    An estimated variogram of a soil property can be used to support a rational choice of sampling intensity for geostatistical mapping. However, it is known that estimated variograms are subject to uncertainty. In this paper we address two practical questions. First, how can we make a robust decision on sampling intensity, given the uncertainty in the variogram? Second, what are the costs incurred in terms of oversampling because of uncertainty in the variogram model used to plan sampling? To achieve this we show how samples of the posterior distribution of variogram parameters, from a computational Bayesian analysis, can be used to characterize the effects of variogram parameter uncertainty on sampling decisions. We show how one can select a sample intensity so that a target value of the kriging variance is not exceeded with some specified probability. This will lead to oversampling, relative to the sampling intensity that would be specified if there were no uncertainty in the variogram parameters. One can estimate the magnitude of this oversampling by treating the tolerable grid spacing for the final sample as a random variable, given the target kriging variance and the posterior sample values. We illustrate these concepts with some data on total uranium content in a relatively sparse sample of soil from agricultural land near mine tailings in the Copperbelt Province of Zambia.

  6. Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region

    NASA Astrophysics Data System (ADS)

    Gorrab, A.; Zribi, M.; Baghdadi, N.; Lili Chabaane, Z.

    2015-10-01

    The goal of this paper is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to demonstrate that it is possible to estimate of both soil moisture and texture from the same experimental campaign, using a single radar signal configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between X-band SAR (TerraSAR-X) backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 36°, over a semi-arid site in Tunisia (North Africa). Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter. Then, we proposed to retrieve of both soil moisture and texture using these multi-temporal X-band SAR images. Our approach is based on the change detection method and combines the seven radar images with different continuous thetaprobe measurements. To estimate soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our approaches are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. Finally, by considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved.

  7. Recycled grains in lunar soils as an additional, necessary, regolith evolution parameter

    NASA Technical Reports Server (NTRS)

    Basu, A.

    1990-01-01

    Recycled lunar soil grains are defined as those soil grains that have been a part of either regolith breccias or agglutinates; thus, mineral grains, rock fragments, older agglutinates, and volcanic glass spherules, if dislodged from an agglutinate or a regolith breccia, would all qualify as recycled grains. This paper shows that it is possible to estimate the proportion of recycled material in lunar soils. Optical data from 12 soils in the Apollo 16 core 64001/2 were collected to estimate the proportion (W) of recycled crystalline grains in each of these soils. The W values show a correspondence with other independently derived parameters and the history of the core soils, indicating that W can be used as a valid soil-evolution parameter.

  8. Research progress of on-the-go soil parameter sensors based on NIRS

    NASA Astrophysics Data System (ADS)

    An, Xiaofei; Meng, Zhijun; Wu, Guangwei; Guo, Jianhua

    2014-11-01

    Both the ever-increasing prices of fertilizer and growing ecological concern over chemical run-off into sources of drinking water have brought the issues of precision agriculture and site-specific management to the forefront of present technological development within agriculture and ecology. Soil is an important and basic element in agriculture production. Acquisition of soil information plays an important role in precision agriculture. The soil parameters include soil total nitrogen, phosporus, potassium, soil organic matter, soil moisture, electrical conductivity and pH value and so on. Field rapid acquisition to all the kinds of soil physical and chemical parameters is one of the most important research directions. And soil parameter real-time monitoring is also the trend of future development in precision agriculture. While developments in precision agriculture and site-specific management procedures have made significant in-roads on these issues and many researchers have developed effective means to determine soil properties, routinely obtaining robust on-the-go measurements of soil properties which are reliable enough to drive effective fertilizer application remains a challenge. NIRS technology provides a new method to obtain soil parameter with low cost and rapid advantage. In this paper, research progresses of soil on-the-go spectral sensors at domestic and abroad was combed and analyzed. There is a need for the sensing system to perform at least six key indexes for any on-the-go soil spectral sensor to be successful. The six indexes are detection limit, specificity, robustness, accuracy, cost and easy-to-use. Both the research status and problems were discussed. Finally, combining the national conditions of china, development tendency of on-the-go soil spectral sensors was proposed. In the future, on-the-go soil spectral sensors with reliable enough, sensitive enough and continuous detection would become popular in precision agriculture.

  9. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties?

    NASA Astrophysics Data System (ADS)

    Stoppe, N.; Horn, R.

    2017-01-01

    A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.

  10. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  11. Easily degradable carbon - an indicator of microbial hotspots and soil degradation

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Banach, Artur; Szafranek-Nakonieczna, Anna; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2018-01-01

    The effect of arable soil was quantified against non-cultivated soil on easily degradable carbon and other selected microbiological factors, i.e. soil microbial biomass, respiration activity, and dehydrogenase activity. The intent was to ascertain whether easily degradable carbo can be useful as a sensitive indicator of both soil biological degradation and microbial hot-spots indication. As a result, it was found that soil respiration activity was significantly higher (p <0.0001) in all controls, ranging between 30-60 vs. 11.5-23.7 μmol CO2 kg d.m.-1 h-1 for the arable soils. Dehydrogenase activity was significantly lower in the arable soil (down to 35-40% of the control values, p <0.001) varying depending on the soil type. The microbial biomass was also significantly higher at the non-cultivated soil (512-2807 vs. 416-1429 µg g-1 d.m., p <0.001), while easily degradable carbon ranged between 620-1209 mg kg-1 non-cultivated soil and 497-877 mg kg-1 arable soil (p <0.0001). It was demonstrated that agricultural practices affected soil properties by significantly reducing the levels of the studied parameters in relation to the control soils. The significant correlations of easily degradable carbon-respiration activity (ρ = 0.77*), easily degradable carbon-dehydrogenase activity (ρ = 0.42*), and easily degradable carbon-microbial biomass (ρ = 0.53*) reveal that easily degradable carbon is a novel, suitable factor indicative of soil biological degradation. It, therefore, could be used for evaluating the degree of soil degradation and for choosing a proper management procedure.

  12. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.

    2017-04-01

    The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.

  13. Vs30 mapping at selected sites within the Greater Accra Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina

    2018-06-01

    A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.

  14. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  15. 77 FR 12234 - Changes in Hydric Soils Database Selection Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Conservation Service [Docket No. NRCS-2011-0026] Changes in Hydric Soils Database Selection Criteria AGENCY... Changes to the National Soil Information System (NASIS) Database Selection Criteria for Hydric Soils of the United States. SUMMARY: The National Technical Committee for Hydric Soils (NTCHS) has updated the...

  16. Evaluation of biomass quality of selected woody species depending on the soil enrichment practice

    NASA Astrophysics Data System (ADS)

    Stolarski, Mariusz J.; Krzyżaniak, Michał; Załuski, Dariusz; Niksa, Dariusz

    2018-01-01

    Perennial energy crops are a source of the bio-mass used to generate energy. The aim of this study was to determine the chemical and thermophysical parameters of short rotation woody crops (black locust, poplar and willow), depending on soil enrichment practice (mineral fertilisation, lignin and mycorrhiza), in three- and four-year harvest cycles. In the study, the thermophysical properties and elemental composition of the biomass were determined. All analyses were performed in trip-licate according to the standards. The fresh black locust biomass had the lowest moisture content, which resulted in the best lower heating value (10.16 MJ kg-1, on average) in the four-year harvest cycle. The poplar biomass had the greatest higher heating value, fixed carbon, carbon and ash content, the highest concentrations of which were found in the biomass in which lignin was applied (2.00% d.m.). On the other hand, the willow biomass contained the lowest concentrations of ash and fixed carbon. Soil enrichment significantly differentiated the quality parameters of black locust, poplar and willow. This effect is of particular importance to those who grow and use biomass as a fuel.

  17. Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers.

    PubMed

    Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P

    2018-10-15

    Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A stratified two-stage sampling design for digital soil mapping in a Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Blaschek, Michael; Duttmann, Rainer

    2015-04-01

    The quality of environmental modelling results often depends on reliable soil information. In order to obtain soil data in an efficient manner, several sampling strategies are at hand depending on the level of prior knowledge and the overall objective of the planned survey. This study focuses on the collection of soil samples considering available continuous secondary information in an undulating, 16 km²-sized river catchment near Ussana in southern Sardinia (Italy). A design-based, stratified, two-stage sampling design has been applied aiming at the spatial prediction of soil property values at individual locations. The stratification based on quantiles from density functions of two land-surface parameters - topographic wetness index and potential incoming solar radiation - derived from a digital elevation model. Combined with four main geological units, the applied procedure led to 30 different classes in the given test site. Up to six polygons of each available class were selected randomly excluding those areas smaller than 1ha to avoid incorrect location of the points in the field. Further exclusion rules were applied before polygon selection masking out roads and buildings using a 20m buffer. The selection procedure was repeated ten times and the set of polygons with the best geographical spread were chosen. Finally, exact point locations were selected randomly from inside the chosen polygon features. A second selection based on the same stratification and following the same methodology (selecting one polygon instead of six) was made in order to create an appropriate validation set. Supplementary samples were obtained during a second survey focusing on polygons that have either not been considered during the first phase at all or were not adequately represented with respect to feature size. In total, both field campaigns produced an interpolation set of 156 samples and a validation set of 41 points. The selection of sample point locations has been done using ESRI software (ArcGIS) extended by Hawth's Tools and later on its replacement the Geospatial Modelling Environment (GME). 88% of all desired points could actually be reached in the field and have been successfully sampled. Our results indicate that the sampled calibration and validation sets are representative for each other and could be successfully used as interpolation data for spatial prediction purposes. With respect to soil textural fractions, for instance, equal multivariate means and variance homogeneity were found for the two datasets as evidenced by significant (P > 0.05) Hotelling T²-test (2.3 with df1 = 3, df2 = 193) and Bartlett's test statistics (6.4 with df = 6). The multivariate prediction of clay, silt and sand content using a neural network residual cokriging approach reached an explained variance level of 56%, 47% and 63%. Thus, the presented case study is a successful example of considering readily available continuous information on soil forming factors such as geology and relief as stratifying variables for designing sampling schemes in digital soil mapping projects.

  19. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi

    2013-12-10

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

  20. Process dominance analysis for fate modeling of flubendazole and fenbendazole in liquid manure and manured soil.

    PubMed

    Moenickes, Sylvia; Höltge, Sibylla; Kreuzig, Robert; Richter, Otto

    2011-12-01

    Fate monitoring data on anaerobic transformation of the benzimidazole anthelmintics flubendazole (FLU) and fenbendazole (FEN) in liquid pig manure and aerobic transformation and sorption in soil and manured soil under laboratory conditions were used for corresponding fate modeling. Processes considered were reversible and irreversible sequestration, mineralization, and metabolization, from which a set of up to 50 different models, both nested and concurrent, was assembled. Five selection criteria served for model selection after parameter fitting: the coefficient of determination, modeling efficiency, a likelihood ratio test, an information criterion, and a determinability measure. From the set of models selected, processes were classified as essential or sufficient. This strategy to identify process dominance was corroborated through application to data from analogous experiments for sulfadiazine and a comparison with established fate models for this substance. For both, FLU and FEN, model selection performance was fine, including indication of weak data support where observed. For FLU reversible and irreversible sequestration in a nonextractable fraction was determined. In particular, both the extractable and the nonextractable fraction were equally sufficient sources for irreversible sequestration. For FEN generally reversible formation of the extractable sulfoxide metabolite and reversible sequestration of both the parent and the metabolite were dominant. Similar to FLU, irreversible sequestration in the nonextractable fraction was determined for which both the extractable or the nonextractable fraction were equally sufficient sources. Formation of the sulfone metabolite was determined as irreversible, originating from the first metabolite. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  2. Characteristics of soils in selected maize growing sites along altitudinal gradients in East African highlands

    PubMed Central

    Njuguna, Elijah; Gathara, Mary; Nadir, Stanley; Mwalusepo, Sizah; Williamson, David; Mathé, Pierre-Etienne; Kimani, Jackson; Landmann, Tobias; Juma, Gerald; Ong’amo, George; Gatebe, Erastus; Ru, Bruno Le; Calatayud, Paul-andré

    2015-01-01

    Maize is the main staple crop in the East African Mountains. Understanding how the edaphic characteristics change along altitudinal gradients is important for maximizing maize production in East African Highlands, which are the key maize production areas in the region. This study evaluated and compared the levels of some macro and micro-elements (Al, Ca, Fe, K, Mg, Mn, Na and P) and other soil parameters (pH, organic carbon content, soil texture [i.e. % Sand, % Clay and % Silt], cation exchange capacity [CEC], electric conductivity [EC], and water holding capacity [HC]). Soil samples were taken from maize plots along three altitudinal gradients in East African highlands (namely Machakos Hills, Taita Hills and Mount Kilimanjaro) characterized by graded changes in climatic conditions. For all transects, pH, Ca, K and Mg decreased with the increase in altitude. In contrast, % Silt, organic carbon content, Al and water holding capacity (HC) increased with increasing altitude. The research provides information on the status of the physical–chemical characteristics of soils along three altitudinal ranges of East African Highlands and includes data available for further research. PMID:26509187

  3. Particle Density Substitution Method for Trafficability of Soil in Different Gravity Environments

    NASA Astrophysics Data System (ADS)

    Huang, Chuan; Gao, Feng; Xie, Xiaolin; Jiang, Hui; Zeng, Wen

    2017-12-01

    By selecting metal powders with comparable particle size class, similar shape and material and almost the same void ratio but different particle densities, the influence of different gravity on the trafficability of soil under different states of gravitational fields is found to be equivalent to the change in particle density. This method is named particle density substitution. The shearing and bearing characteristics of simulated soil were studied. An influence of different factors on the experimental results was achieved, and a minimal influence of factors other than particle density on experimental results was obtained. Regression of shearing and bearing characteristics of the simulated soil was designed. The relationship between particle density and mechanical parameters of soil was fitted with curves. The formulation between particle density and maximal static thrust was established. By analyzing these data, the maximal static thrust slowly decreased with increasing particle density, reached the minimum when particle density was 3 g/cm3, and then sharply increased. This trend is consistent with the theoretical result. It can also certify that the particle density substitution method established here is reasonable.

  4. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence onmore » chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.« less

  5. Site Selection for Hvdc Ground Electrodes

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the inversion of the combined deep, near-surface and shallow apparent resistivity curves, results in the layered crust resistivity models. These models will allow for the preliminary interference studies, that will result on the selection of the final electrode site (one for each converter substation).

  6. Evolution of Pedostructure Parameters Under Tillage Practices

    USDA-ARS?s Scientific Manuscript database

    The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are 15 unique pedostructure parameters that define the macropore and micropore soil water behavior fo...

  7. Inference of soil hydrologic parameters from electronic soil moisture records

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...

  8. Advancement of a soil parameters geodatabase for the modeling assessment of conservation practice outcomes in the United States

    USDA-ARS?s Scientific Manuscript database

    US-ModSoilParms-TEMPLE is a database composed of a set of geographic databases functionally storing soil-spatial units and soil hydraulic, physical, and chemical parameters for three agriculture management simulation models, SWAT, APEX, and ALMANAC. This paper introduces the updated US-ModSoilParms-...

  9. Determination of Shear Wave Velocity in Offshore Terengganu for Ground Response Analysis

    NASA Astrophysics Data System (ADS)

    Mazlina, M.; Liew, M. S.; Adnan, A.; Harahap, I. S. H.; Hamid, N. A.

    2018-04-01

    Amount of vibration received in any location can be analysed by conducting ground response analysis. Even though there are three different methods available in this analysis, One Dimensional ground response analysis method has been widely used. Shear wave velocity is one of the key parameters in this analysis. A lot of correlations have been formulated to determine shear wave velocity with cone penetration test. In this study, correlations developed for Quaternary geological age have been selected. Six equations have been adopted comprise of all soil and soil type dependent correlations. Two platforms sites consist of clay and combination of clay and sand have been analysed. Shear velocity to be used in ground response analysis has been obtained. Results have been illustrated in graphs where shear velocity for each case has been plotted. In avoiding under or over predicting of shear wave velocity, the average of all soil and soil type dependent results will be used as final Vs value.

  10. Impact of mine waste dumps on growth and biomass of economically important crops.

    PubMed

    Mathiyazhagan, Narayanan; Natarajan, Devarajan

    2012-11-01

    The present study aimed to investigate the effect of magnesite and bauxite waste dumps on growth and biochemical parameters of some edible and economically important plants such as Vigna radiata, V. mungo, V. unguiculata, Eleusine coracana, Cajanus cajan, Pennisetum glaucum, Macrotyloma uniflorum, Oryza sativa, Sorghum bicolour, Sesamum indicum, Ricinus communis, Brassica juncea, Gossypium hirsutum and Jatropha curcas. The growth rate of all the crops was observed in the range of 75 to 100% in magnesite and 15 to 100% in bauxite mine soil. The moisture content of roots and shoots of all the crops were in the range of 24 to 77, 20 to 88% and 42 to 87, 59 to 88% respectively. The height of the crops was in the range of 2.6 to 48 cm in magnesite soil and 3 to 33 cm in bauxite soil. Thus the study shows that both mine soils reflects some physical and biomolecule impact on selected crops.

  11. Practical issues relating to soil column chromatography for sorption parameter determination.

    PubMed

    Bi, Erping; Schmidt, Torsten C; Haderlein, Stefan B

    2010-08-01

    Determination of sorption distribution coefficients (K(d)) of organic compounds by a dynamic soil column chromatography (SCC) method was developed and validated. Eurosoil 4, quartz, and alumina were chosen as exemplary packing materials. Heterocyclic aromatic compounds were selected in the validation of SCC. The prerequisites of SCC with regard to column dimension, packing procedure, and sample injection volume are discussed. Reproducible soil column packing was achieved by addition of a pre-column and an HPLC pump for subsequent compression of the packed material. Various methods to determine retention times from breakthrough curves are discussed and the use of the half mass method is recommended. To dilute soil with inert material can prevent column-clogging and help to complete experiments in a reasonable period of time. For the chosen probe compounds, quartz rather than alumina proved a suitable dilution material. Non-equilibrium issue can be overcome by conducting the experiments under different flowrates and/or performing numerical simulation. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Gemas: issues from the comparison of aqua regia and X-ray fluorescence results

    NASA Astrophysics Data System (ADS)

    Dinelli, Enrico; Birke, Manfred; Reimann, Clemens; Demetriades, Alecos; DeVivo, Benedetto; Flight, Dee; Ladenberger, Anna; Albanese, Stefano; Cicchella, Domenico; Lima, Annamaria

    2014-05-01

    The comparison of analytical results from aqua regia (AR) and X-ray fluorescence spectroscopy (XRF) can provide information on soil processes controlling the element distribution. The GEMAS (GEochemical Mapping of Agricultural and grazing land Soils) agricultural soil database is used for this comparison. Analyses for the same suite of elements and parameters were carried out in the same laboratory under strict quality control procedures. Sample preparation has been conducted at the laboratory of the The comparison of analytical results from aqua regia (AR) and X-ray fluorescence spectroscopy (XRF) can provide information on soil processes controlling the element distribution in soil. The GEMAS (GEochemical Mapping of Agricultural and grazing land Soils) agricultural soil database, consisting of 2 x ca. 2100 samples spread evenly over 33 European countries, is used for this comparison. Analyses for the same suite of elements and parameters were carried out in the same laboratory under strict quality control procedures. Sample preparation has been conducted at the laboratory of the Geological Survey of the Slovak Republic, AR analyses were carried out at ACME Labs, and XRF analyses at the Federal Institute for Geosciences and Natural Resources, Germany Element recovery by AR is very different, ranging from <1% (e.g. Na, Zr) to > 80% (e.g. Mn, P, Co). Recovery is controlled by mineralogy of the parent material, but geographic and climatic factors and the weathering history of the soils are also important. Nonetheless, even the very low recovery elements show wide ranges of variation and spatial patterns that are affected by other factors than soil parent material. For many elements soil pH have a clear influence on AR extractability: under acidic soil conditions almost all elements tend to be leached and their extractability is generally low. It progressively increases with increasing pH and is highest in the pH range 7-8. Critical is the clay content of the soil that almost for all elements correspond to higher extractability with increasing clay abundance. Also other factors such as organic matter content of soil, Fe and Mn occurrence are important for certain elements or in selected areas. This work illustrates that there are significant differences in the extractability of elements from soils and addresses important influencing factors related to soil properties, geology, climate.

  13. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    NASA Astrophysics Data System (ADS)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were obtained from theoretical forward-scattering models with controlled parameters, thus allowing the control of wide range of soil and crop parameters with which the network was trained. A preliminary performance analysis showed good results with estimation of soil moisture with RMSE better than 6%.

  14. Testing the Visual Soil Assessment tool on Estonian farm fields

    NASA Astrophysics Data System (ADS)

    Reintam, Endla; Are, Mihkel; Selge, Are

    2017-04-01

    Soil quality estimation plays important role in decision making on farm as well on policy level. Sustaining the production ability and good health of the soil the chemical, physical and biological indicators should be taken into account. The system to use soil chemical parameters is usually quite well established in most European counties, including Estonia. However, measuring soil physical properties, such bulk density, porosity, penetration resistance, structural stability ect is time consuming, needs special tools and is highly weather dependent. In that reason these parameters are excluded from controllable quality parameters in policy in Estonia. Within the project "Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience" (iSQAPER) the visual soil assessment (VSA) tool was developed for easy detection of soil quality as well the different soil friendly agricultural management practices (AMP) were detected. The aim of current study was to test the VSA tool on Estonian farm fields under different management practices and compare the results with laboratory measurements. The main focus was set on soil physical parameters. Next to the VSA, the undisturbed soil samples were collected from the depth of 5-10 cm and 25-30 cm. The study revealed that results of a visually assessed soil physical parameters, such a soil structure, soil structural stability, soil porosity, presence of tillage pan, were confirmed by laboratory measurements in most cases. Soil water stable structure measurement on field (on 1 cm2 net in one 1 l box with 4-6 cm air dry clods for 5-10 min) underestimated very well structured soil on grassland and overestimated the structure aggregates stability of compacted soil. The slightly better soil quality was detected under no-tillage compared to ploughed soils. However, the ploughed soil got higher quality points compared with minimum tillage. The slurry application (organic manuring) had controversial impact - it increased the number of earthworms but decreased soil structural stability. Even the manuring with slurry increases organic matter amount in the soil, the compaction due to the use of heavy machinery during the application, especially on wet soil, reduces the positive effect of slurry.

  15. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James; Knight, Paul J.

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less

  16. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.

  17. Correlation between soil physicochemical properties and vegetation parameters in secondary tropical forest in Sabal, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Karyati, K.; Ipor, I. B.; Jusoh, I.; Wasli, M. E.

    2018-04-01

    The tree growth is influenced by soil morphological and physicochemical properties in the site. The purpose of this study was to describe correlation between soil properties under various stage secondary forests and vegetation parameters, such as floristic structure parameters and floristic diversity indices. The vegetation surveys were conducted in 5, 10, and 20 years old at secondary tropical forests in Sarawak, Malaysia. Nine sub plots sized 20 m × 20 m were established within each study site. The Pearson analysis showed that soil physicochemical properties were significantly correlated to floristic structure parameters and floristic diversity indices. The result of PCA clarified the correlation among most important soil properties, floristic structure parameters, and floristic diversity indices. The PC1 represented cation retention capacity and soil texture which were little affected by the fallow age and its also were correlated by floristic structure and diversity. The PC2 was linked to the levels of soil acidity. This property reflected the remnant effects of ash addition and fallow duration, and the significant correlation were showed among pH (H2O), floristic structure and diversity. The PC3 represented the soil compactness. The soil hardness could be influenced by fallow period and it was also correlated by floristic structure.

  18. [Ex-situ remediation of PAHs contaminated site by successive methyl-beta-cyclodextrin enhanced soil washing].

    PubMed

    Sun, Ming-Ming; Teng, Ying; Luo, Yong-Ming; Li, Zhen-Gao; Jia, Zhong-Jun; Zhang, Man-Yun

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) polluted sites caused by abandoned coking plants have attracted great attentions. This study investigated the feasibility of using methyl-beta-cyclodextrin (MCD) solution to enhance ex situ soil washing for extracting PAHs. Treatment with elevated temperature (50 degrees C) in combination with ultrasonication (35 kHz, 30 min) at 100 g x L(-1) was effective. It was found that 96.7% +/- 2.4% of 3-ring PAH, 89.7% +/- 3.2% of 4-ring PAH, 76.3% +/- 2.2% of 5 (+6)-ring PAH and 91.3% +/- 3.1% of total PAHs were removed from soil after five successive washing cycles. The desorption kinetics of PAHs from contaminated soil was determined before and after successive washings. The 400 h Tenax extraction of PAHs from soil was decreasing gradually with increasing washing times. Furthermore, the F(r), F(sl), k(r), k(sl) and k(vl) were significantly lower than those of CK (P < 0.01). Therefore, considering the removal efficiency and potential environmental risk after soil )ashing, successive washing three times was selected as a reasonable parameter. These results have practical implications for site risk assessment and cleanup strategies.

  19. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not well defined. The scattering is due to high values of S in subsoil, which does not always coincide with favourable physical properties, as it can be seen from the relationship with the PAW content. It was found that values of S ≥ 0.05 correspond to PAW > 20 % vol. in the topsoil horizons. The high values of S in subsoil horizons are due to the low PAW and restrict the application of the S categories in these cases. Well defined links are found between the PAW content and the S-parameter when the data from the topsoil horizons are grouped in 2 groups according to the ratio between air-filled pores (at pF 2.52) and plant available water: <2 and ≥ 2. The authors acknowledge gratefully the European Commission Research Directorate-General for funding the SoilTrEC project (Contract No 244118) under its 7th Framework Programme.

  20. A large scale GIS geodatabase of soil parameters supporting the modeling of conservation practice alternatives in the United States

    USDA-ARS?s Scientific Manuscript database

    Water quality modeling requires across-scale support of combined digital soil elements and simulation parameters. This paper presents the unprecedented development of a large spatial scale (1:250,000) ArcGIS geodatabase coverage designed as a functional repository of soil-parameters for modeling an...

  1. Soil degradation effect on biological activity in Mediterranean calcareous soils

    NASA Astrophysics Data System (ADS)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  2. Variation in shrub and herb cover and production on ungrazed pine and sagebrush sites in eastern Oregon: a 27-year photomonitoring study.

    Treesearch

    Frederick C. Hall

    2007-01-01

    Study objectives were to evaluate yearly fluctuations in herbage canopy cover and production to aid in defining characteristics of range condition guides. Sites are located in the forested Blue Mountains of central Oregon. They were selected from those used to develop range condition guides where soil, topographic, and vegetation parameters were measured as a...

  3. Geogenic Factors as Drivers of Microbial Community Diversity in Soils Overlying Polymetallic Deposits.

    PubMed

    Reith, Frank; Zammit, Carla M; Pohrib, Rebecca; Gregg, Adrienne L; Wakelin, Steven A

    2015-11-01

    This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Geogenic Factors as Drivers of Microbial Community Diversity in Soils Overlying Polymetallic Deposits

    PubMed Central

    Zammit, Carla M.; Pohrib, Rebecca; Gregg, Adrienne L.; Wakelin, Steven A.

    2015-01-01

    This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. PMID:26341204

  5. Plutonium-239 + 240 and Americium-241 in soils east of Rocky Flats, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaor, M.I.; Barth, G.R.; Molzer, P.C.

    1994-11-01

    Soils east of the Rocky Flats (RF) near Golden, CO, were contaminated with Pu-239 + 240 and Am-241 as a result of past waste-storage practices. The physiocochemical parameters that govern the actinides distribution in the soil are poorly understood. Twenty-six soil pits at various distances and directions from a contaminated site at RF were excavated, sampled, and analyzed for actinide activities as well as selected physical, chemical, and mineralogical attributes. Plutonium-239+240 and Am-241 activities in the soils ranged form 164 280 Bq/kg to 0.0037 Bq/kg, decreasing with distance from the source. More than 90% of the Pu-239 + 240 andmore » Am-241 activities were confined to the upper 12 cm of the soil, regardless of the soil characteristics, or distance and direction from the source. Evidence of preferential transport in macropores formed along decayed root channels was observed in four soil pits and had translocated Pu-239 + 240 to a depth of 90 cm. This transport mechanism increased by a factor of 30 the level of Pu-239 + 240 activity at this depth. Earthworm activity is probably important in the redistribution of actinides in the upper 40 cm of many of the soils investigated. Planning of future remedial activities at RF should consider the findings of this contaminant-transport study. 34 refs., 5 figs., 2 tabs.« less

  6. Effects of soil water content on the external exposure of fauna to radioactive isotopes.

    PubMed

    Beaugelin-Seiller, K

    2016-01-01

    Within a recent model intercomparison about radiological risk assessment for contaminated wetlands, the influence of soil saturation conditions on external dose rates was evidenced. This issue joined concerns of assessors regarding the choice of the soil moisture value to input in radiological assessment tools such as the ERICA Tool. Does it really influence the assessment results and how? This question was investigated under IAEA's Modelling and Data for Radiological Impacts Assessments (MODARIA) programme via 42 scenarios for which the soil water content varied from 0 (dry soil) to 100% (saturated soil), in combination with other parameters that may influence the values of the external dose conversion coefficients (DCCs) calculated for terrestrial organisms exposed in soil. A set of α, β, and γ emitters was selected in order to cover the range of possible emission energies. The values of their external DCCs varied generally within a factor 1 to 1.5 with the soil water content, excepted for β emitters that appeared more sensitive (DCCs within a factor of about 3). This may be of importance for some specific cases or for upper tiers of radiological assessments, when refinement is required. But for the general purpose of screening assessment of radiological impact on fauna and flora, current approaches regarding the soil water content are relevant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Local soil effects on the Ground Motion Prediction model for the Racha region in Georgia

    NASA Astrophysics Data System (ADS)

    Jorjiashvili, N.; Shengelia, I.; Otinashvili, M.; Tvaliashvili, A.

    2016-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is the peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment that was selected for the analysis. One of the most important topics that have a significant influence on earthquake records is the site ground conditions that are the main issue of the study because the same earthquake recorded at the same distance may cause different damage according to ground conditions. In the study earthquake records were selected for the Racha region in Georgia which has the highest seismic activity in the region. Next, new GMP models are obtained based on new digital data recorded in the same area. After removing the site effect the earthquake records on the rock site were obtained. Thus, two GMP models were obtained: one for the ground surface and the other for the rock site. At the end, comparison was done for the both models in order to analyze the influence of the local soil conditions on the GMP model.

  8. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  9. Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions.

    PubMed

    Svegl, I G; Ogorevc, B

    2000-08-01

    Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.

  10. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  11. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  12. Estimating effective soil properties of heterogeneous areas for modeling infiltration and redistribution

    USDA-ARS?s Scientific Manuscript database

    Field scale water infiltration and soil-water and solute transport models require spatially-averaged “effective” soil hydraulic parameters to represent the average flux and storage. The values of these effective parameters vary for different conditions, processes, and component soils in a field. For...

  13. Investigating a method for estimating direct nitrous oxide emissions from grazed pasture soils in New Zealand using NZ-DNDC.

    PubMed

    Giltrap, Donna L; Ausseil, Anne-Gaelle E; Thakur, Kailash P; Sutherland, M Anne

    2013-11-01

    In this study, we developed emission factor (EF) look-up tables for calculating the direct nitrous oxide (N2O) emissions from grazed pasture soils in New Zealand. Look-up tables of long-term average direct emission factors (and their associated uncertainties) were generated using multiple simulations of the NZ-DNDC model over a representative range of major soil, climate and management conditions occurring in New Zealand using 20 years of climate data. These EFs were then combined with national activity data maps to estimate direct N2O emissions from grazed pasture in New Zealand using 2010 activity data. The total direct N2O emissions using look-up tables were 12.7±12.1 Gg N2O-N (equivalent to using a national average EF of 0.70±0.67%). This agreed with the amount calculated using the New Zealand specific EFs (95% confidence interval 7.7-23.1 Gg N2O-N), although the relative uncertainty increased. The high uncertainties in the look-up table EFs were primarily due to the high uncertainty of the soil parameters within the selected soil categories. Uncertainty analyses revealed that the uncertainty in soil parameters contributed much more to the uncertainty in N2O emissions than the inter-annual weather variability. The effect of changes to fertiliser applications was also examined and it was found that for fertiliser application rates of 0-50 kg N/ha for sheep and beef and 60-240 kg N/ha for dairy the modelled EF was within ±10% of the value simulated using annual fertiliser application rates of 15 kg N/ha and 140 kg N/ha respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Probabilistic evaluation of damage potential in earthquake-induced liquefaction in a 3-D soil deposit

    NASA Astrophysics Data System (ADS)

    Halder, A.; Miller, F. J.

    1982-03-01

    A probabilistic model to evaluate the risk of liquefaction at a site and to limit or eliminate damage during earthquake induced liquefaction is proposed. The model is extended to consider three dimensional nonhomogeneous soil properties. The parameters relevant to the liquefaction phenomenon are identified, including: (1) soil parameters; (2) parameters required to consider laboratory test and sampling effects; and (3) loading parameters. The fundamentals of risk based design concepts pertient to liquefaction are reviewed. A detailed statistical evaluation of the soil parameters in the proposed liquefaction model is provided and the uncertainty associated with the estimation of in situ relative density is evaluated for both direct and indirect methods. It is found that the liquefaction potential the uncertainties in the load parameters could be higher than those in the resistance parameters.

  15. Biodegradation of oil tank bottom sludge using microbial consortia.

    PubMed

    Gallego, José Luis R; García-Martínez, María Jesús; Llamas, Juan F; Belloch, Carmen; Peláez, Ana I; Sánchez, Jesús

    2007-06-01

    We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur-aromatic compounds (31-55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.

  16. Synergy of the SimSphere land surface process model with ASTER imagery for the retrieval of spatially distributed estimates of surface turbulent heat fluxes and soil moisture content

    NASA Astrophysics Data System (ADS)

    Petropoulos, George; Wooster, Martin J.; Carlson, Toby N.; Drake, Nick

    2010-05-01

    Accurate information on spatially explicit distributed estimates of key land-atmosphere fluxes and related land surface parameters is of key importance in a range of disciplines including hydrology, meteorology, agriculture and ecology. Estimation of those parameters from remote sensing frequently employs the integration of such data with mathematical representations of the transfers of energy, mass and radiation between soil, vegetation and atmosphere continuum, known as Soil Vegetation Atmosphere Transfer (SVAT) models. The ability of one such inversion modelling scheme to resolve for key surface energy fluxes and of soil surface moisture content is examined here using data from a multispectral high spatial resolution imaging instrument, the Advanced Spaceborne Thermal Emission and Reflection Scanning Radiometer (ASTER) and SimSphere one-dimensional SVAT model. Accuracy of the investigated methodology, so-called as the "triangle" method, is verified using validated ground observations obtained from selected days collected from nine CARBOEUROPE IP sites representing a variety of climatic, topographic and environmental conditions. Subsequently, a new framework is suggested for the retrieval of two additional parameters by the investigated method, namely the Evaporative (EF) and the Non-Evaporative (NEF) Fractions. Results indicated a close agreement between the inverted surface fluxes and surface moisture availability maps as well as of the EF and NEF parameters with the observations both spatially and temporally with accuracies comparable to those obtained in similar experiments with high spatial resolution data. Inspection of the inverted surface fluxes maps regionally, showed an explainable distribution in the range of the inverted parameters in relation with the surface heterogeneity. Overall performance of the "triangle" inversion methodology was found to be affected predominantly by the SVAT model "correct" initialisation representative of the test site environment, most importantly the atmospheric conditions required in the SVAT model initial conditions. This study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting using the SimSphere SVAT with the ASTER data. The present work is also very timely in that, a variation of this specific inversion methodology has been proposed for the operational retrieval of the soil surface moisture content by National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellite platforms that are due to be launched in the next 12 years starting from 2012. KEYWORDS: micrometeorology, surface heat fluxes, soil moisture content, ASTER, triangle method, SimSphere, CarboEurope IP

  17. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    NASA Astrophysics Data System (ADS)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate parameters values.

  18. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani

    NASA Astrophysics Data System (ADS)

    Araújo, J. M. C.; Otero, X. L.; Marques, A. G. B.; Nóbrega, G. N.; Silva, J. R. F.; Ferreira, T. O.

    2012-08-01

    Bioturbation by crabs may affect processes associated with organic matter decomposition in mangrove soils. This study examines how two crabs ( Uca maracoani and Ucides cordatus), which are of substantial ecological and economic importance in semiarid coastal areas of Brazil, affect biogeochemical processes in mangrove soils. For this purpose, the physicochemical and geochemical parameters of the soils at different sites were analyzed. The redox potential was always positive at bioturbated sites (+12 to +218 mV), indicating more oxidizing conditions conducive to the oxidation of pyrite and precipitation of oxyhydroxides. In contrast, anoxic conditions prevailed at the control site (Eh < 0 mV), and the most abundant form of iron was Fe-pyrite. The highest degree of iron pyritization (DOP) was observed in soils from the control site (˜48%) and the lowest in the bioturbated soils (5-16%), indicating that crabs have an oxidative effect on iron sulfides. The results also suggest that U. cordatus has a higher oxidizing capacity than U. maracoani, probably because it constructs larger and deeper burrows. The results demonstrate that both crabs must be considered as important bioturbators in Brazilian semiarid mangrove soils, being capable of enhancing organic matter decomposition and also shifting the dominant pathway of organic matter degradation.

  20. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  1. Effect of addition of organic materials and irrigation conditions on soil quality in olive groves in the region of Messinia, Greece.

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Vavoulidou, Evangelia; Theocharopoulos, Sideris; Repas, Spiros; Koubouris, Georgos; Psaras, Georgios

    2017-04-01

    Intensive cultivation practices are associated to soil degradation mainly due to low soil organic matter content. The application of organic materials to land is a common practice in sustainable agriculture in the last years. However, its implementation in olive groves under different irrigation regimes has not been systematically tested under the prevailing Mediterranean conditions. The aim of this work was to study the effect of alternative carbon input techniques (i.e. wood shredded, pruning residues, returning of olive mill wastes the field with compost) and irrigation conditions (irrigated and rainfed olive orchards) on spatial distribution of soil chemical (pH, EC, total organic carbon, total nitrogen, inorganic nitrogen, humic and fulvic acids, available P, and exchangeable K) and microbial properties (soil basal microbial respiration and microbial biomass carbon) in two soil depths (0-10 cm and 10-40 cm). The study took place in the region of Messinia, South western Peloponnese, Greece during three year soil campaigns. Forty soil plots of olive groves were selected (20 rainfed and 20 irrigated) and carbon input practices were applied on the half of the irrigated and rainfed soil parcels (10 rainfed and 10 irrigated), while the remaining ones were used as controls. The results showed significant changes of chemical and biological properties of soil in olive orchards due to carbon treatments. However, these changes were depended on irrigation conditions. Microbial parameters appeared to be reliable indicators of changes in soil management. Proper management of alternative soil carbon inputs in olive orchards can positively affect soil fertility.

  2. Characterization of adsorption and desorption of lawn herbicide siduron in heavy metal contaminated soils.

    PubMed

    Jiang, Rong; Wang, Meie; Chen, Weiping

    2018-08-01

    Siduron is a widely used herbicide in urban lawn and has been frequently detected in urban and suburban surface water. However, characteristics of its environmental behavior in soil are seldom reported. The combined pollution of heavy metals, especially for Cu, Pb, Cd, Zn and siduron would be common because of the widely existence of heavy metal pollution in urban soils. In this study, four soils with similar physicochemical properties but different levels of preexisting heavy metals were selected to investigate the adsorption and successive desorption of siduron using batch experiments. The results revealed a low sorption of siduron to all the tested soils. The organic carbon normalized distribution coefficient (K oc ) of siduron in the studied soils ranged from 117 to 137 L kg -1 and was not significantly correlated to heavy metal levels. No apparent desorption hysteresis was observed with the hysteresis index (HI) ranging from 0.921 to 1.11. More than 50% of the sorbed siduron was readily released into soil solution. Results suggested that siduron was highly mobile and bioavailable in the studied soils. Significant correlation was found between adsorption/desorption parameters and soil organic carbon (SOC) in four soils. soil organic matter was thus considered as the dominant factor determining the adsorption and desorption of siduron in soils. Different from most of reported studies conducted by laboratory-amended soils, the influence of preexisting heavy metals on the adsorption-desorption of siduron was not significant in this work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.

    PubMed

    Nissim, Werther Guidi; Hasbroucq, Séverine; Kadri, Hafssa; Pitre, Frederic E; Labrecque, Michel

    2015-01-01

    In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.

  4. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.

    2017-03-01

    Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.

  5. Time series models for prediction the total and dissolved heavy metals concentration in road runoff and soil solution of roadside embankments

    NASA Astrophysics Data System (ADS)

    Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd

    2017-04-01

    Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building

  6. Thermodynamics of imidacloprid sorption in Croatian soils

    NASA Astrophysics Data System (ADS)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature treatments existed, and it was more pronounced at 20°C in the soils with higher organic carbon content. The study results emphasize the importance of thermodynamic parameters in controlling soil pesticide mobility in different geographical locations, seasons and greenhouses condition.

  7. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Šimůnek, Jirka; Nimmo, John R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.

  8. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  9. Spatial Distribution of the Relationship Between Soil Moisture and Soil Particle Size in Typical Plots on Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.

    2017-12-01

    Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing soil quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between soil moisture and soil particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of soil moisture by using soil physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A soil auger with a diameter of 5 cm was used to obtain soil samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy analysis (RDA) were used to estimate and analyze the soil water characteristic curve, soil particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with soil water content, while D0 (capacity dimension) is negatively correlated with soil water content as the depth increases; (2) the relationship between soil moisture and soil particle size shows differences under different plants and precipitation gradient.

  10. A multi-scale ''soil water structure'' model based on the pedostructure concept

    NASA Astrophysics Data System (ADS)

    Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.

    2009-02-01

    Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.

  11. Real-time soil sensing based on fiber optics and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Minzan

    2005-08-01

    Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.

  12. Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions - A case study in an intensively-used Mediterranean catchment.

    PubMed

    Herrmann, Frank; Baghdadi, Nicolas; Blaschek, Michael; Deidda, Roberto; Duttmann, Rainer; La Jeunesse, Isabelle; Sellami, Haykel; Vereecken, Harry; Wendland, Frank

    2016-02-01

    We used observed climate data, an ensemble of four GCM-RCM combinations (global and regional climate models) and the water balance model mGROWA to estimate present and future groundwater recharge for the intensively-used Thau lagoon catchment in southern France. In addition to a highly resolved soil map, soil moisture distributions obtained from SAR-images (Synthetic Aperture Radar) were used to derive the spatial distribution of soil parameters covering the full simulation domain. Doing so helped us to assess the impact of different soil parameter sources on the modelled groundwater recharge levels. Groundwater recharge was simulated in monthly time steps using the ensemble approach and analysed in its spatial and temporal variability. The soil parameters originating from both sources led to very similar groundwater recharge rates, proving that soil parameters derived from SAR images may replace traditionally used soil maps in regions where soil maps are sparse or missing. Additionally, we showed that the variance in different GCM-RCMs influences the projected magnitude of future groundwater recharge change significantly more than the variance in the soil parameter distributions derived from the two different sources. For the period between 1950 and 2100, climate change impacts based on the climate model ensemble indicated that overall groundwater recharge will possibly show a low to moderate decrease in the Thau catchment. However, as no clear trend resulted from the ensemble simulations, reliable recommendations for adapting the regional groundwater management to changed available groundwater volumes could not be derived. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analytical Results for Agricultural Soils Samples from a Monitoring Program Near Deer Trail, Colorado (USA)

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District, MWRD), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado, USA. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream bed sediment. Soils for this study were defined as the plow zone of the dry land agricultural fields - the top twelve inches of the soil column. This report presents analytical results for the soil samples collected at the Metro District farm land near Deer Trail, Colorado, during three separate sampling events during 1999, 2000, and 2002. Soil samples taken in 1999 were to be a representation of the original baseline of the agricultural soils prior to any biosolids application. The soil samples taken in 2000 represent the soils after one application of biosolids to the middle field at each site and those taken in 2002 represent the soils after two applications. There have been no biosolids applied to any of the four control fields. The next soil sampling is scheduled for the spring of 2010. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity (Colorado Department of Public Health and Environment, Hazardous Materials and Waste Management Division, 1997; Colorado Department of Public Health and Environment,1998; U.S. Environmental Protection Agency, 1993). Since these were the identified priority parameters for the biosolids, the soils have the same set of priority parameters. Although the composite soils' priority analytes have been reported earlier to Metro District, the remaining elemental datasets for both the composite soils samples and selected fields' individual subsamples' data are presented here for the first time. More information about the other monitoring components is presented elsewhere in the literature (http://co.water.usgs.gov/projects/CO406/CO406.html). In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, and(or) (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. The method chosen for sampling the soils proved to be an efficient and reliable representation of the average composition of each field. This was shown by analyzing individual subsamples, averaging the resulting values, and then comparing the values to the composited samples' values. The soil chemistry shows distinct differences between the two sites, most likely due to the different underlying parent material. Biosolids data were used to compile an inorganic-chemical biosolids signature that can be contrasted with the geochemical signature of the agricultural soils for this site. The biosolids signature and an understanding of the geology and hydrology of the site can be used to separate biosolids effects from natural geochemical effects. Elements of particular interest for a biosolids signature after application in the soils include bismuth, copper, silver, mercury, and phosphorus. This signat

  14. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape

    PubMed Central

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-01-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km2, by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. PMID:25922908

  15. Tropical soils degraded by slash-and-burn cultivation can be recultivated when amended with ashes and compost.

    PubMed

    Gay-des-Combes, Justine Marie; Sanz Carrillo, Clara; Robroek, Bjorn Jozef Maria; Jassey, Vincent Eric Jules; Mills, Robert Thomas Edmund; Arif, Muhammad Saleem; Falquet, Leia; Frossard, Emmanuel; Buttler, Alexandre

    2017-07-01

    In many tropical regions, slash-and-burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re-cultivation. In the dry region of south-western Madagascar, we tested, according to a split-plot design, an alternative selective slash-and-burn cultivation technique coupled with compost amendment on 30-year-old abandoned fields. Corn plants ( Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash-and-burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash-and-burn cultivation) and 50% tree cover (selective slash-and-burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4-5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the primary forest by increasing lifespan of agricultural lands.

  16. Soil organic carbon content assessment in a heterogeneous landscape: comparison of digital soil mapping and visible and near Infrared spectroscopy approaches

    NASA Astrophysics Data System (ADS)

    Michot, Didier; Fouad, Youssef; Pascal, Pichelin; Viaud, Valérie; Soltani, Inès; Walter, Christian

    2017-04-01

    This study aims are: i) to assess SOC content distribution according to the global soil map (GSM) project recommendations in a heterogeneous landscape ; ii) to compare the prediction performance of digital soil mapping (DSM) and visible-near infrared (Vis-NIR) spectroscopy approaches. The study area of 140 ha, located at Plancoët, surrounds the unique mineral spring water of Brittany (Western France). It's a hillock characterized by a heterogeneous landscape mosaic with different types of forest, permanent pastures and wetlands along a small coastal river. We acquired two independent datasets: j) 50 points selected using a conditioned Latin hypercube sampling (cLHS); jj) 254 points corresponding to the GSM grid. Soil samples were collected in three layers (0-5, 20-25 and 40-50cm) for both sampling strategies. SOC content was only measured in cLHS soil samples, while Vis-NIR spectra were measured on all the collected samples. For the DSM approach, a machine-learning algorithm (Cubist) was applied on the cLHS calibration data to build rule-based models linking soil carbon content in the different layers with environmental covariates, derived from digital elevation model, geological variables, land use data and existing large scale soil maps. For the spectroscopy approach, we used two calibration datasets: k) the local cLHS ; kk) a subset selected from the regional spectral database of Brittany after a PCA with a hierarchical clustering analysis and spiked by local cLHS spectra. The PLS regression algorithm with "leave-one-out" cross validation was performed for both calibration datasets. SOC contents for the 3 layers of the GSM grid were predicted using the different approaches and were compared with each other. Their prediction performance was evaluated by the following parameters: R2, RMSE and RPD. Both approaches led to satisfactory predictions for SOC content with an advantage for the spectral approach, particularly as regards the pertinence of the variation range.

  17. [Estimation of the effect derived from wind erosion of soil and dust emission in Tianjin suburbs on the central district based on WEPS model].

    PubMed

    Chen, Li; Han, Ting-Ting; Li, Tao; Ji, Ya-Qin; Bai, Zhi-Peng; Wang, Bin

    2012-07-01

    Due to the lack of a prediction model for current wind erosion in China and the slow development for such models, this study aims to predict the wind erosion of soil and the dust emission and develop a prediction model for wind erosion in Tianjin by investigating the structure, parameter systems and the relationships among the parameter systems of the prediction models for wind erosion in typical areas, using the U.S. wind erosion prediction system (WEPS) as reference. Based on the remote sensing technique and the test data, a parameter system was established for the prediction model of wind erosion and dust emission, and a model was developed that was suitable for the prediction of wind erosion and dust emission in Tianjin. Tianjin was divided into 11 080 blocks with a resolution of 1 x 1 km2, among which 7 778 dust emitting blocks were selected. The parameters of the blocks were localized, including longitude, latitude, elevation and direction, etc.. The database files of blocks were localized, including wind file, climate file, soil file and management file. The weps. run file was edited. Based on Microsoft Visualstudio 2008, secondary development was done using C + + language, and the dust fluxes of 7 778 blocks were estimated, including creep and saltation fluxes, suspension fluxes and PM10 fluxes. Based on the parameters of wind tunnel experiments in Inner Mongolia, the soil measurement data and climate data in suburbs of Tianjin, the wind erosion module, wind erosion fluxes, dust emission release modulus and dust release fluxes were calculated for the four seasons and the whole year in suburbs of Tianjin. In 2009, the total creep and saltation fluxes, suspension fluxes and PM10 fluxes in the suburbs of Tianjin were 2.54 x 10(6) t, 1.25 x 10(7) t and 9.04 x 10(5) t, respectively, among which, the parts pointing to the central district were 5.61 x 10(5) t, 2.89 x 10(6) t and 2.03 x 10(5) t, respectively.

  18. Handling the unknown soil hydraulic parameters in data assimilation for unsaturated flow problems

    NASA Astrophysics Data System (ADS)

    Lange, Natascha; Erdal, Daniel; Neuweiler, Insa

    2017-04-01

    Model predictions of flow in the unsaturated zone require the soil hydraulic parameters. However, these parameters cannot be determined easily in applications, in particular if observations are indirect and cover only a small range of possible states. Correlation of parameters or their correlation in the range of states that are observed is a problem, as different parameter combinations may reproduce approximately the same measured water content. In field campaigns this problem can be helped by adding more measurement devices. Often, observation networks are designed to feed models for long term prediction purposes (i.e. for weather forecasting). A popular way of making predictions with such kind of observations are data assimilation methods, like the ensemble Kalman filter (Evensen, 1994). These methods can be used for parameter estimation if the unknown parameters are included in the state vector and updated along with the model states. Given the difficulties related to estimation of the soil hydraulic parameters in general, it is questionable, though, whether these methods can really be used for parameter estimation under natural conditions. Therefore, we investigate the ability of the ensemble Kalman filter to estimate the soil hydraulic parameters. We use synthetic identical twin-experiments to guarantee full knowledge of the model and the true parameters. We use the van Genuchten model to describe the soil water retention and relative permeability functions. This model is unfortunately prone to the above mentioned pseudo-correlations of parameters. Therefore, we also test the simpler Russo Gardner model, which is less affected by that problem, in our experiments. The total number of unknown parameters is varied by considering different layers of soil. Besides, we study the influence of the parameter updates on the water content predictions. We test different iterative filter approaches and compare different observation strategies for parameter identification. Considering heterogeneous soils, we discuss the representativeness of different observation types to be used for the assimilation. G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143-10162, 1994

  19. Assessment of soil toxicity from an antitank firing range using Lumbricus terrestris and Eisenia andrei in mesocosms and laboratory studies.

    PubMed

    Robidoux, Pierre Yves; Dubois, Charles; Hawari, Jalal; Sunahara, Geoffrey I

    2004-08-01

    Earthworm mesocosms studies were carried out on a explosives-contaminated site at an antitank firing range. Survival of earthworms and the lysosomal neutral red retention time (NRRT), a biomarker of lysosomal membrane stability, were used in these studies to assess the effect of explosives-contaminated soils on the earthworms Lumbricus terrestris and Eisenia andrei under field conditions. Toxicity of the soils samples for E. andrei was also assessed under laboratory conditions using the earthworms reproduction test and the NRRT. Results indicate that the survival was reduced up to 40% in certain explosive-contaminated soil mesocosms following 10 days of exposure under field conditions, whereas survival was reduced up to 100% following 28 days of exposure under laboratory conditions. Reproduction parameters such as number of cocoons and number of juveniles were reduced in many of the selected contaminated soils. Compared to the reference, NRRT was significantly reduced for E. andrei exposed to explosive-contaminated soils under both field and laboratory conditions, whereas for L. terrestris NRRT was similar compared to the reference mesocosm. Analyses showed that HMX was the major polynitro-organic compound in soils. HMX was also the only explosive detected in earthworm tissues. Thus, results from both field mesocosms and laboratory studies, showed lethal and sub-lethal effects associated to soil from the contaminated area of the antitank firing range.

  20. Spatio temporal analysis of microbial habitats in soil-root interfaces

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2017-04-01

    Microbial habitats in soils are formed by the arrangement and availability of inorganic and organic compounds. They can be characterized by physico-chemical parameters and the resulting colonization by microorganisms. Areas being preferably colonized are known as microbial hot spots which can be found in (bio)pores within the aggregatusphere or in the rhizosphere. The latter is directly influenced by plants i.e. the growth and activity of plant roots which has an influence on physico-chemical dynamics in the rhizosphere and can even shape plants' root microbiome. As microbial communities play an important role in nutrient cycling their response in soil-root interfaces is of great importance. Especially in complex systems such as paddy soils used for the cultivation of wetland rice the analysis of spatio-temporal aspects is important to get knowledge about their influence on the microbial dynamics in the respective habitats. But also other spatial variations on larger scales up to landscape scale may have an impact on the soil microorganisms in their habitats. This PICO presentation will introduce a set of techniques which are useful to analyze both the physico-chemical characteristics of microbial habitats and the microbial colonization and dynamics in soil-root interfaces. Examples will be given on various studies from rice cultivation in different paddy soils up to an European transect representing rhizosphere soils of selected plant species.

  1. Adaptive use of a personal glucose meter (PGM) for acute biotoxicity assessment based on the glucose consumption of microbes.

    PubMed

    Fang, Deyu; Gao, Guanyue; Yu, Yuan; Shen, Jie; Zhi, Jinfang

    2016-05-10

    In this study, a new method for acute biotoxicity assessment was proposed by measuring the glucose consumption of microbes with a personal glucose meter (PGM). To obtain an ideal biotoxicity assessment performance, an appropriate microbe was selected first, and then the relevant parameters, such as temperature and microbial concentration were optimized. Under the optimized parameters, the acute biotoxicity of four environmental pollutants (As(3+), Ni(2+), 4-chlorophenol, and 2,4-dichlorophenol), three wastewater samples and three soil samples were evaluated. This technology breakthrough will help us develop a low cost, easy to use water-environmental early-warning kit.

  2. Development and deployment of a water-crop-nutrient simulation model embedded in a web application

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Coppola, Antonio; Manna, Piero; Orefice, Nadia; Terribile, Fabio

    2016-04-01

    It is long time by now that scientific research on environmental and agricultural issues spent large effort in the development and application of models for prediction and simulation in spatial and temporal domains. This is fulfilled by studying and observing natural processes (e.g. rainfall, water and chemicals transport in soils, crop growth) whose spatiotemporal behavior can be reproduced for instance to predict irrigation and fertilizer requirements and yield quantities/qualities. In this work a mechanistic model to simulate water flow and solute transport in the soil-plant-atmosphere continuum is presented. This desktop computer program was written according to the specific requirement of developing web applications. The model is capable to solve the following issues all together: (a) water balance and (b) solute transport; (c) crop modelling; (d) GIS-interoperability; (e) embedability in web-based geospatial Decision Support Systems (DSS); (f) adaptability at different scales of application; and (g) ease of code modification. We maintained the desktop characteristic in order to further develop (e.g. integrate novel features) and run the key program modules for testing and validation purporses, but we also developed a middleware component to allow the model run the simulations directly over the web, without software to be installed. The GIS capabilities allows the web application to make simulations in a user-defined region of interest (delimited over a geographical map) without the need to specify the proper combination of model parameters. It is possible since the geospatial database collects information on pedology, climate, crop parameters and soil hydraulic characteristics. Pedological attributes include the spatial distribution of key soil data such as soil profile horizons and texture. Further, hydrological parameters are selected according to the knowledge about the spatial distribution of soils. The availability and definition in the geospatial domain of these attributes allow the simulation outputs at a different spatial scale. Two different applications were implemented using the same framework but with different configurations of the software pieces making the physically based modelling chain: an irrigation tool simulating water requirements and their dates and a fertilization tool for optimizing in particular mineral nitrogen adds.

  3. Comparison of SWAT Hydrological Model Results from TRMM 3B42, NEXRAD Stage III, and Oklahoma Mesonet Data

    NASA Astrophysics Data System (ADS)

    Tobin, K. J.; Bennett, M. E.

    2008-05-01

    The Cimarron River Basin (3110 sq km) between Dodge and Guthrie, Oklahoma is located in northern Oklahoma and was used as a test bed to compare the hydrological model performance associated with different methods of precipitation quantification. The Soil and Water Assessment Tool (SWAT) was selected for this project, which is a comprehensive model that, besides quantifying watershed hydrology, can simulate water quality as well as nutrient and sediment loading within stream reaches. An advantage of this location is the extensive monitoring of MET parameters (precipitation, temperature, relative humidity, wind speed, solar radiation) afforded by the Oklahoma Mesonet, which has been documented to improve the performance of SWAT. The utility of TRMM 3B42 and NEXRAD Stage III data in supporting the hydrologic modeling of Cimarron River Basin is demonstrated. Minor adjustments to selected model parameters were made to make parameter values more realistic based on results from previous studies and information and to more realistically simulate base flow. Significantly, no ad hoc adjustments to major parameters such as Curve Number or Available Soil Water were made and robust simulations were obtained. TRMM and NEXRAD data are aggregated into an average daily estimate of precipitation for each TRMM grid cell (0.25 degree X 0.25 degree). Preliminary simulation of stream flow (year 2004 to 2006) in the Cimarron River Basin yields acceptable monthly results with very little adjustment of model parameters using TRMM 3B42 precipitation data (mass balance error = 3 percent; Monthly Nash-Sutcliffe efficiency coefficients (NS) = 0.77). However, both Oklahoma Mesonet rain gauge (mass balance error = 13 percent; Monthly NS = 0.91; Daily NS = 0.64) and NEXRAD Stage III data (mass balance error = -5 percent; Monthly NS = 0.95; Daily NS = 0.69) produces superior simulations even at a sub-monthly time scale; daily results are time averaged over a three day period. Note that all types of precipitation data perform better than a synthetic precipitation dataset generated using a weather simulator (mass balance error = 12 percent; Monthly NS = 0.40). Our study again documents that merged precipitation satellite products, such as TRMM 3B42, can support semi-distributed hydrologic modeling at the watershed scale. However, apparently additional work is required to improve TRMM precipitation retrievals over land to generate a product that yields more robust hydrological simulations especially at finer time scales. Additionally, ongoing work in this basin will compare TRMM results with stream flow model results generated using CMORPH precipitation estimates. Finally, in the future we plan to use simulated, semi-distributed soil moisture values determined by SWAT for comparison with gridded soil moisture estimates from TRMM-TMI that should provide further validation of our modeling efforts.

  4. SMOS first results over land

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Waldteufel, Philippe; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Bitar, Ahmad Al; Mamhoodi, Ali; Delwart, Steven; Wigneron, Jean-Pierre

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 consists mainly of angular brightness temperatures while level 2 consists of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric signal is difficult to model. Moreover, the exact description of pixels, given by a weighting function which expresses the directional pattern of the SMOS interferometric radiometer, depends on the incidence angle. The goal is to retrieve soil moisture over fairly large and thus inhomogeneous areas. The retrieval is carried out at nodes of a fixed Earth surface grid. To achieve this purpose, after checking input data quality and ingesting auxiliary data, the retrieval process per se can be initiated. This cannot be done blindly as the direct model will be dependent upon surface characteristics. It is thus necessary to first assess what is the dominant land use of a node. For this, an average weighing function (MEAN_WEF) which takes into account the "antenna"pattern is run over the high resolution land use map to assess the dominant cover type. This is used to drive the decision tree which, step by step, selects the type of model to be used as per surface conditions. All this being said and done the retrieval procedure starts if all the conditions are satisfied, ideally to retrieve 3 parameters over the dominant class (the so-called rich retrieval). If the algorithm does not converge satisfactorily, a new trial is made with less floating parameters ("poorer retrieval") until either results are satisfactory or the algorithm is considered to fail. The retrieval algorithm also delivers whenever possible a dielectric constant parameter (using the-so called cardioid approach). Finally, once the retrieval converged, it is possible to compute the brightness temperature at a given fixed angle (42.5°) using the selected forward models applied to the set of parameters obtained at the end of the retrieval process. So the output product of the level 2 soil moisture algorithm should be node position, soil moisture, dielectric constants, computed brightness temperature at 42.5°, flags and quality indices. During the presentation we will describe in more details the algorithm and accompanying work in particular decision tree principle and characteristics, the auxiliary data used and the special and "exotic"cases. We will also be more explicit on the algorithm validation and verification through the data collected during the commissioning phase. The main hurdle being working in spite of spurious signals (RFI) on some areas of the globe.

  5. Functional Diversity of Microbial Communities in Sludge-Amended Soils

    NASA Astrophysics Data System (ADS)

    Sun, Y. H.; Yang, Z. H.; Zhao, J. J.; Li, Q.

    The BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge.

  6. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    PubMed

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Soil properties, strontium isotopic signatures and multi-element profiles to authenticate the origin of vegetables from small-scale regions: illustration with early potatoes from southern Italy.

    PubMed

    Zampella, Mariavittoria; Quétel, Christophe R; Paredes, Eduardo; Goitom Asfaha, Daniel; Vingiani, Simona; Adamo, Paola

    2011-10-15

    We propose a method for the authentication of the origin of vegetables grown under similar weather conditions, in sites less than 10 km distance from the sea and distributed over a rather small scale area (58651 km(2)). We studied how the strontium (Sr) isotopic signature and selected elemental concentrations ([Mn], [Cu], [Zn], [Rb], [Sr] and [Cd]) in early potatoes from three neighbouring administrative regions in the south of Italy were related to the geological substrate (alluvial sediments, volcanic substrates and carbonate rocks) and to selected soil chemical properties influencing the bioavailability of elements in soils (pH, cation exchange capacity and total carbonate content). Through multiple-step multivariate statistics (PLS-DA) we could assign 26 potatoes (including two already commercialised samples) to their respective eight sites of production, corresponding to the first two types of geological substrates. The other 12 potatoes from four sites of production had similar characteristics in terms of the geological substrate (third type) and these soil properties could be grouped together. In this case, more discriminative parameters would be required to allow the differentiation between sites. The validation of our models included external prediction tests with data of potatoes harvested the year before and a study on the robustness of the uncertainties of the measurement results. Annual variations between multi-elemental and Sr isotopic fingerprints were observed in potatoes harvested from soils overlying carbonate rocks, stressing the importance of testing long term variations in authentication studies. Copyright © 2011 John Wiley & Sons, Ltd. and European Union [2011].

  8. Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils.

    PubMed

    Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S

    2015-01-01

    The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.

  9. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.

  10. Soil pH determines microbial diversity and composition in the park grass experiment.

    PubMed

    Zhalnina, Kateryna; Dias, Raquel; de Quadros, Patricia Dörr; Davis-Richardson, Austin; Camargo, Flavio A O; Clark, Ian M; McGrath, Steve P; Hirsch, Penny R; Triplett, Eric W

    2015-02-01

    The Park Grass experiment (PGE) in the UK has been ongoing since 1856. Its purpose is to study the response of biological communities to the long-term treatments and associated changes in soil parameters, particularly soil pH. In this study, soil samples were collected across pH gradient (pH 3.6-7) and a range of fertilizers (nitrogen as ammonium sulfate, nitrogen as sodium nitrate, phosphorous) to evaluate the effects nutrients have on soil parameters and microbial community structure. Illumina 16S ribosomal RNA (rRNA) amplicon sequencing was used to determine the relative abundances and diversity of bacterial and archaeal taxa. Relationships between treatments, measured soil parameters, and microbial communities were evaluated. Clostridium, Bacteroides, Bradyrhizobium, Mycobacterium, Ruminococcus, Paenibacillus, and Rhodoplanes were the most abundant genera found at the PGE. The main soil parameter that determined microbial composition, diversity, and biomass in the PGE soil was pH. The most probable mechanism of the pH impact on microbial community may include mediation of nutrient availability in the soil. Addition of nitrogen to the PGE plots as ammonium sulfate decreases soil pH through increased nitrification, which causes buildup of soil carbon, and hence increases C/N ratio. Plant species richness and plant productivity did not reveal significant relationships with microbial diversity; however, plant species richness was positively correlated with soil microbial biomass. Plants responded to the nitrogen treatments with an increase in productivity and a decrease in the species richness.

  11. Modeling Environmental Controls on Tree Water Use at Different Temporal scales

    NASA Astrophysics Data System (ADS)

    Guan, H.; Wang, H.; Simmons, C. T.

    2014-12-01

    Vegetation covers 70% of land surface, significantly influencing water and carbon exchange between land surface and the atmosphere. Vegetation transpiration (Et) contributes 80% of the global terrestrial evapotranspiration, making an adequate illustration of how important vegetation is to any hydrological or climatological applications. Transpiration can be estimated through upscaling from sap flow measurements on selected trees. Alternatively, transpiration (or tree water use for forests) can be correlated with environmental variables or estimated in land surface simulations in which a canopy conductance (gc) model is often used. Transpiration and canopy conductance are constrained by supply and demand control factors. Some previous studies estimated Et and gc considering the stresses from both the supply (soil water condition) and demand (e.g. temperature, vapor pressure deficit, solar radiation) factors, while some only considered the demand controls. In this study, we examined the performance of two types of models at daily and half-hourly scales for transpiration and canopy conductance modelling based on a native species in South Australia. The results show that the significance of soil water condition for Et and gc modelling varies with time scales. The model parameter values also vary across time scales. This result calls for attention in choosing models and parameter values for soil-plant-atmosphere continuum and land surface modeling.

  12. Pesticide mobility and leachate toxicity in two abandoned mine soils. Effect of organic amendments.

    PubMed

    Rodríguez-Liébana, José Antonio; Mingorance, M Dolores; Peña, Aránzazu

    2014-11-01

    Abandoned mine areas, used in the past for the extraction of minerals, constitute a degraded landscape which needs to be reintegrated to productive or leisure activities. However these soils, mainly composed by silt or sand and with low organic matter content, are vulnerable to organic and inorganic pollutants posing a risk to the surrounding ecosystems and groundwater. Soils from two mining areas from Andalusia were evaluated: one from Nerva (NCL) in the Iberian Pyrite Belt (SW Andalusia) and another one from the iron Alquife mine (ALQ) (SE Andalusia). To improve soil properties and fertility two amendments, stabilised sewage sludge (SSL) and composted sewage sludge (CSL), were selected. The effect of amendment addition on the mobility of two model pesticides, thiacloprid and fenarimol, was assessed using soil columns under non-equilibrium conditions. Fenarimol, more hydrophobic than thiacloprid, only leached from native ALQ, a soil with lower organic carbon (OC) content than NCL (0.21 and 1.4%, respectively). Addition of amendments affected differently pesticide mobility: thiacloprid in the leachates was reduced by 14% in NCL-SSL and by 4% in ALQ-CSL. Soil OC and dissolved OC were the parameters which explained pesticide residues in soil. Chemical analysis revealed that leachates from the different soil columns did not contain toxic element levels, except As in NCL soil. Finally ecotoxicological data showed moderate toxicity in the initial leachates, with an increase coinciding with pesticide maximum concentration. The addition of SSL slightly reduced the toxicity towards Vibrio fischeri, likely due to enhanced retention of pesticides by amended soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study.

    PubMed

    Sizirici, Banu; Tansel, Berrin

    2015-04-01

    Monitoring contaminant concentrations in groundwater near closed municipal solid waste landfills requires long term monitoring program which can require significant investment for monitoring efforts. The groundwater monitoring data from a closed landfill in Florida was analyzed to reduce the monitoring efforts. The available groundwater monitoring data (collected over 20 years) were analyzed (i.e., type, concentration and detection level) to identify the trends in concentrations of contaminants and spatial mobility characteristics of groundwater (i.e., groundwater direction, retardation characteristics of contaminants, groundwater well depth, subsoil characteristics), to identify critical monitoring locations. Among the 7 groundwater monitoring well clusters (totaling 22 wells) in landfill, the data from two monitoring well clusters (totaling 7 wells) located along direction of groundwater flow showed similarities (the highest concentrations and same contaminants). These wells were used to assess the transport characteristics of the contaminants. Some parameters (e.g., iron, sodium, ammonia as N, chlorobenzene, 1,4-dichlorobenzene) showed decreasing trends in the groundwater due to soil absorption and retardation. Metals were retarded by ion exchange and their concentration increased by depth indicating soil reached breakthrough over time. Soil depth did not have a significant effect on the concentrations of volatile organic contaminants. Based on the analyses, selective groundwater monitoring modifications were developed for effective monitoring to acquire data from the most critical locations which may be impacted by leachate mobility. The adjustments in the sampling strategy reduced the amount of data collected by as much as 97.7% (i.e., total number of parameters monitored). Effective groundwater sampling strategies can save time, effort and monitoring costs while improving the quality of sample handling and data analyses for better utilization of post closure monitoring funds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.

    2014-08-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.

  15. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    PubMed

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  16. Sensing technologies to measure metabolic activities in soil and assess its health conditions

    NASA Astrophysics Data System (ADS)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Soil is a complex ecosystem comprised of several and mutually interacting components, both abiotic (organo-mineral associations) and biotic (microbial and pedofaunal populations and plants), where a single parameter depends on other factors and affects the same and other factors, so that a network of influences among organisms coexists with the reciprocal actions between organisms and their environment. Therefore, it is difficult to undoubtedly determine what is the cause and what the effect within relationships between factors and processes. Soil is commonly studied through the evaluation and measurement of single parameters (e.g. the content of soil organic matter (SOM), microbial biomass, enzyme activities, pH, etc.), events (e.g. soil erosion, compaction, etc.) and processes (e.g. soil respiration, carbon fluxes, nitrification/denitrification, etc.), often carried out in laboratory conditions in order to limit the number of factors acting within the ecosystem under study, but missing the information about the global soil environment that way. In the last decade, several scientists have proposed and suggested the need for a holistic approach to soil ecosystems in different contexts. Recently, we have applied a sensing system developed in the last decades and capable of analysing complex mixtures of gases and volatiles (odours or aromas) in atmospheres, namely called electronic nose (EN). Typically, ENs are devices consisting of an array of differentially and partially specific, despite selective, sensors upon diverse coatings of sensitive films, i.e. interacting with single analytes of the same chemical class, despite not highly specific for a single substance, only, but showing also lower extent of cross-selectivity towards compounds of other chemical classes. ENs can be used in the classifications of odours by processing the collected responses of all sensors in the array through pattern recognition analyses, in order to obtain a chemical fingerprint (olfactory fingerprint) typical of the analysed air sample. Due to these features, we decided to apply such a sensing technology to the analyses of soil atmospheres, because several processes in soil, both abiotic and biotic, result in gas and/or volatile production and the dynamics of such releases may also be affected by several additional environmental factors, such as soil moisture, temperature, gas exchange rates with outer atmosphere, adsorption/desorption processes, etc. Then, the analysis of soil atmosphere may provide information about global soil conditions (e.g. soil quality and health), according to a holistic approach, where several factors are contemporarily taken into account. At the same time, the use of such a technology, if adequately trained on purpose, can supply information about a single or a pool of processes sharing similar features, which occur in soil over a certain period of time and mostly affecting soil atmosphere. According to these premises and hypotheses, we demonstrated that EN is an useful technology to measure soil microbial activity, through its correlation to specific metabolic activities occurring in soil (i.e. global and specific respiration and some enzyme activities), but also soil microbial biomass. On the basis of such evidences, we also were able to use this technology to assess the quality and health conditions of soil ecosystems in terms of metabolic indices previously identified, according to some metabolic parameters and biomass quantification of microbial populations. In other studies, we also applied EN technology, despite using a different set of sensors in the array, to analyse the atmosphere of soil ecosystems in order to assess their environmental conditions after contamination with polycyclic aromatic hydrocarbons (PAHs) (i.e. semivolatile - SVOCs - organic pollutants). In this case, EN technology resulted capable of distinguishing between contaminated and uncontaminated soils, according to the differences in a list of substances, occurring in the atmospheres of differently treated soils, which were identified through SPME-GC/MS analyses and then suggested to be responsible for the different classification. Analysing the EN responses, it was also possible to follow the degradation process of pollutants by resident microbial populations over time, on the basis of the contemporary decrease of contaminant and the increased release of CO2. Then, we suggest that EN technology may be usefully employed in the analyses of soil ecosystems in order to both supply information about global soil environment, according to the holistic approach, and about specific processes occurring therein. Furthermore, since EN technology resulted to be effective and successful in detecting processes in soil, in both natural and perturbed conditions, involving microbial populations, which are commonly considered as the most sensitive and responsive to soil environmental modifications, we suggest it might be reasonably employed in analyses concerning the assessment of soil quality and health. Consequently, such a technology may also be used to study several processes involving soil ecosystems, such as soil management practices, soil restoration, soil contamination and remediation, soil fertility, etc.

  17. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    NASA Astrophysics Data System (ADS)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  18. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    PubMed

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  19. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0, allowing for a good fitting of the experimental data, are in agreement with the values of water potential marking the limit between capillary and adsorptive soil water retention, which can be estimated from the shape of the water retention curve. Therefore, with the proposed approach, at least in principle it is possible to derive the SSSC directly from the knowledge of the SWRC.

  20. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    PubMed

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  1. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples.

    PubMed

    Alizadeh, Taher; Zare, Mashaalah; Ganjali, Mohamad Reza; Norouzi, Parviz; Tavana, Babak

    2010-01-15

    A high selective voltammetric sensor for 2,4,6-trinitrotoluene (TNT) was introduced. TNT selective MIP and non-imprinted polymer (NIP) were synthesized and then used for carbon paste (CP) electrode preparation. The MIP, incorporated in the carbon paste electrode, functioned as selectively recognition element and pre-concentrator agent for TNT determination. The prepared electrode was used for TNT measurement by the three steps procedure, including analyte extraction in the electrode, electrode washing and electrochemical measurement of TNT. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CP. It was shown that electrode washing after TNT extraction led to enhanced selectivity. The response of square wave voltammetry for TNT determination by proposed electrode was higher than that of differential pulse voltammetry. Some parameters affecting sensor response were optimized and then a calibration curve plotted. A dynamic linear range of 5x10(-9) to 1x10(-6) mol l(-1) was obtained. The detection limit of the sensor was calculated equal to 1.5x10(-9) mol l(-1). This sensor was used successfully for TNT determination in different water and soil samples. Copyright 2009 Elsevier B.V. All rights reserved.

  2. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.

  3. Assessing tungsten transport in the vadose zone: from dissolution studies to soil columns.

    PubMed

    Tuna, Gulsah Sen; Braida, Washington; Ogundipe, Adebayo; Strickland, David

    2012-03-01

    This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effects of inter row management intensity on soil physical properties in European vineyards.

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Strauss, Peter; Kumpan, Monika; Guzmán, Gema; Gómez, Jose A.; Stiper, Katrin; Popescou, Daniela; Guernion, Muriel; Nicolai, Annegret; Winter, Silvia; Zaller, Johann G.

    2017-04-01

    Successful viticulture is mainly depending on soil, climate and management capabilities of vine growers. These factors influence on the availability of water during the growing season which in turn impacts on wine quality and quantity. To protect soil from being eroded many winegrowers try to keep the inter row zones of the vineyards green for as much time as possible. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, the management strategies concerning the intensity of inter row management are widely different across Europe. They differ within regions, between regions and between countries and are mainly based on personal experience of the winegrowers. To measure possible effects of inter row management in vineyards on soil physical parameters we selected vineyards with different inter row management intensities in Austria, Romania, France and Spain. In total more than 700 undisturbed core samples (from 3 to 8 cm depth) out of 50 individual vineyards were analysed for saturated and unsaturated hydraulic conductivity, soil water retention, aggregate stability, total organic carbon, soil texture and bulk density. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with less frequent soil disturbance and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not necessarily improve for the upper soil layer in every region. The results indicate that the influence of long term and high frequency mechanical stress imposed on soil by use of agricultural machinery in inter rows as well as different fertilization strategies may in some cases exhibit higher impacts on soil physical properties than the different tillage strategies.

  5. Biochar application for the remediation of salt-affected soils: Challenges and opportunities.

    PubMed

    Saifullah; Dahlawi, Saad; Naeem, Asif; Rengel, Zed; Naidu, Ravi

    2018-06-01

    Soil salinization and sodification are two commonly occurring major threats to soil productivity in arable croplands. Salt-affected soils are found in >100 countries, and their distribution is extensive and widespread in arid and semi-arid regions of the world. In order to meet the challenges of global food security, it is imperative to bring barren salt-affected soils under cultivation. Various inorganic and organic amendments are used to reclaim the salt-affected lands. The selection of a sustainable ameliorant is largely determined by the site-specific geographical and soil physicochemical parameters. Recently, biochar (solid carbonaceous residue, produced under oxygen-free or oxygen-limited conditions at temperatures ranging from 300 to 1000°C) has attracted considerable attention as a soil amendment. An emerging pool of knowledge shows that biochar addition is effective in improving physical, chemical and biological properties of salt-affected soils. However, some studies have also found an increase in soil salinity and sodicity with biochar application at high rates. Further, the high cost associated with production of biochar and high application rates remains a significant challenge to its widespread use in areas affected by salinity and sodicity. Moreover, there is relatively limited information on the long-term behavior of salt-affected soils subjected to biochar applications. The main objective of the present paper was to review, analyze and discuss the recent studies investigating a role of biochar in improving soil properties and plant growth in salt-affected soils. This review emphasizes that using biochar as an organic amendment for sustainable and profitable use of salt-affected soils would not be practicable as long as low-cost methods for the production of biochar are not devised. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    NASA Astrophysics Data System (ADS)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  7. Verification and completion of a soil data base for process based erosion model applications in Mato Grosso/Brazil

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2014-05-01

    The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.

  8. Precipitation-runoff modeling system; user's manual

    USGS Publications Warehouse

    Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.

    1983-01-01

    The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)

  9. Deforestation effects on soil quality and water retention curve parameters in eastern Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Asghari, Sh.; Ahmadnejad, S.; Keivan Behjou, F.

    2016-03-01

    The land use change from natural to managed ecosystems causes serious soil degradation. The main objective of this research was to assess deforestation effects on soil physical quality attributes and soil water retention curve (SWRC) parameters in the Fandoghlou region of Ardabil province, Iran. Totally 36 surface and subsurface soil samples were taken and soil water contents measured at 13 suctions. Alfa (α) and n parameters in van Genuchten (1980) model were estimated by fitting SWRC data by using RETC software. The slope of SWRC at inflection point (SP) was calculated by Dexter (2004) equation. The results indicated that with changing land use from forest (F) to range land (R) and cultivated land (C), and also with increasing soil depth from 0-25 to 75-100 cm in each land use, organic carbon, micropores, saturated and available water contents decreased and macropores and bulk density increased significantly ( P < 0.05). The position of SWRC shape in F was higher than R and C lands at all soil depths. Changing F to R and C lands and also increasing soil depth in each land use significantly ( P < 0.05) increased α and decreased n and SP. The average values of SP were obtained 0.093, 0.051 and 0.031 for F, R and C, respectively. As a result, deforestation reduced soil physical quality by affecting SWRC parameters.

  10. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  11. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  12. Soil Moisture and Temperature Measuring Networks in the Tibetan Plateau and Their Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Chen, Yingying; Qin, Jun; Lu, Hui

    2017-04-01

    Multi-sphere interactions over the Tibetan Plateau directly impact its surrounding climate and environment at a variety of spatiotemporal scales. Remote sensing and modeling are expected to provide hydro-meteorological data needed for these process studies, but in situ observations are required to support their calibration and validation. For this purpose, we have established two networks on the Tibetan Plateau to measure densely two state variables (soil moisture and temperature) and four soil depths (0 5, 10, 20, and 40 cm). The experimental area is characterized by low biomass, high soil moisture dynamic range, and typical freeze-thaw cycle. As auxiliary parameters of these networks, soil texture and soil organic carbon content are measured at each station to support further studies. In order to guarantee continuous and high-quality data, tremendous efforts have been made to protect the data logger from soil water intrusion, to calibrate soil moisture sensors, and to upscale the point measurements. One soil moisture network is located in a semi-humid area in central Tibetan Plateau (Naqu), which consists of 56 stations with their elevation varying over 4470 4950 m and covers three spatial scales (1.0, 0.3, 0.1 degree). The other is located in a semi-arid area in southern Tibetan Plateau (Pali), which consists of 25 stations and covers an area of 0.25 degree. The spatiotemporal characteristics of the former network were analyzed, and a new spatial upscaling method was developed to obtain the regional mean soil moisture truth from the point measurements. Our networks meet the requirement for evaluating a variety of soil moisture products, developing new algorithms, and analyzing soil moisture scaling. Three applications with the network data are presented in this paper. 1. Evaluation of Current remote sensing and LSM products. The in situ data have been used to evaluate AMSR-E, AMSR2, SMOS and SMAP products and four modeled outputs by the Global Land Data Assimilation System (GLDAS). 2. Development of New Products. We developed a dual-pass land data assimilation system. The essential idea of the system is to calibrate a land data assimilation system before a normal data assimilation. The calibration is based on satellite data rather than in situ data. Through this way, we may alleviate the impact of uncertainties in determining the error covariance of both observation operator and model operation, as it is always tough to determine the covariance. The performance of the data assimilation system is presented through comparison against the Tibetan Plateau soil moisture measuring networks. And the results are encouraging. 3. Estimation of Soil Parameter Values in a Land Surface Model. We explored the possibility to estimate soil parameter values by assimilating AMSR-E brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.

  13. Automated system for generation of soil moisture products for agricultural drought assessment

    NASA Astrophysics Data System (ADS)

    Raja Shekhar, S. S.; Chandrasekar, K.; Sesha Sai, M. V. R.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Drought is a frequently occurring disaster affecting lives of millions of people across the world every year. Several parameters, indices and models are being used globally to forecast / early warning of drought and monitoring drought for its prevalence, persistence and severity. Since drought is a complex phenomenon, large number of parameter/index need to be evaluated to sufficiently address the problem. It is a challenge to generate input parameters from different sources like space based data, ground data and collateral data in short intervals of time, where there may be limitation in terms of processing power, availability of domain expertise, specialized models & tools. In this study, effort has been made to automate the derivation of one of the important parameter in the drought studies viz Soil Moisture. Soil water balance bucket model is in vogue to arrive at soil moisture products, which is widely popular for its sensitivity to soil conditions and rainfall parameters. This model has been encoded into "Fish-Bone" architecture using COM technologies and Open Source libraries for best possible automation to fulfill the needs for a standard procedure of preparing input parameters and processing routines. The main aim of the system is to provide operational environment for generation of soil moisture products by facilitating users to concentrate on further enhancements and implementation of these parameters in related areas of research, without re-discovering the established models. Emphasis of the architecture is mainly based on available open source libraries for GIS and Raster IO operations for different file formats to ensure that the products can be widely distributed without the burden of any commercial dependencies. Further the system is automated to the extent of user free operations if required with inbuilt chain processing for every day generation of products at specified intervals. Operational software has inbuilt capabilities to automatically download requisite input parameters like rainfall, Potential Evapotranspiration (PET) from respective servers. It can import file formats like .grd, .hdf, .img, generic binary etc, perform geometric correction and re-project the files to native projection system. The software takes into account the weather, crop and soil parameters to run the designed soil water balance model. The software also has additional features like time compositing of outputs to generate weekly, fortnightly profiles for further analysis. Other tools to generate "Area Favorable for Crop Sowing" using the daily soil moisture with highly customizable parameters interface has been provided. A whole India analysis would now take a mere 20 seconds for generation of soil moisture products which would normally take one hour per day using commercial software.

  14. Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan.

    PubMed

    Chandra, Rachna; Prusty, B Anjan Kumar; Azeez, P A

    2014-06-01

    Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location.

  15. Characteristics of Four Plant Species Used for Soil Bioengineering Techniques in River Bank Stabilization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gao, J. R.; Lou, H. P.; Zhang, J. R.; Rauch, H. P.

    2010-05-01

    Use the potential values of soil bioengineering techniques are important for the wide attention river ecological restoration works in Beijing. At first, demand for basic knowledge of the technical and biological properties of plants is essential for development of such techniques. Species for each chosen plant material type should be selected with an emphasis on the following: suitability for anticipated environment conditions, reasonable availability in desired quantity and probability of successful establishment. Account on these criteria, four species which used as live staking and rooted cutting techniques were selected, namely, Salix X aureo-pendula, Salix cheilophila, Vitex negundo var. heterophylla and Amorpha fruticosa L.. And monitoring work was performed on three construction sites of Beijing. Various survival rates and morphological parameters data were collected. Concerning plants hydraulic and hydrological behavior, bending tests were used to analysis the flexibility of each plant species. The results from rate and morphological parameters monitoring show that: Salix cheilophila performed the best. Other three plants behaved satisfactorily in shoots or roots development respectively. In the bending test mornitoring, Salix cheilophila branch had the least broken number. Then were Salix X aureo-pendula and Amorpha fruticosa L.. Vitex negundo var. branch had the highest broken number, but it tolerated the highest amount of stress. All plant species should be considered in the future scientific research and construction works in Beijing. Keywords: River bank stabilization, live staking, rooted cutting

  16. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.

    PubMed

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.

  17. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert

    PubMed Central

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203

  18. Predicting first-year bare-root seedling establishment with soil and community dominance factors

    Treesearch

    Robin E. Durham; Benjamin A. Zamora; Michael R. Sackschewsky; Jason C. Ritter

    2001-01-01

    The usefulness of measuring community dominance factors and the soil parameters of geometric mean particle size and percent fines as predictors of first-year bare-root establishment of Wyoming big sagebrush seedlings was investigated. The study was conducted on six sandy soils in south-central Washington. Soil parameters that could affect the distribution of Sandberg’s...

  19. Does sheep selectivity along grazing paths negatively affect biological crusts and soil seed banks in arid shrublands? A case study in the Patagonian Monte, Argentina.

    PubMed

    Bertiller, M B; Ares, J O

    2011-08-01

    Domestic animals potentially affect the reproductive output of plants by direct removal of aboveground plant parts but also could alter the structure and fertility of the upper soil and the integrity of biological crusts through trampling. We asked whether sheep selectivity of plant patches along grazing paths could lead to negative changes in biological crusts and soil seed banks. We randomly selected ten floristically homogeneous vegetation stands distributed across an area (1250 ha) grazed by free ranging sheep. Vegetation stands were differently selected by sheep as estimated through sheep-collaring techniques combined with remote imagery mapping. At each stand, we extracted 15 paired cylindrical soil cores from biological crusts and from neighboring soil without crusts. We evaluated the crust cover enclosed in each core and incubated the soil samples at field capacity at alternating 10-18 °C during 24 months. We counted the emerged seedlings and identified them by species. Sheep selectivity along grazing paths was largest at mid-distances to the watering point of the paddock. Increasing sheep selectivity was associated with the reduction of the cover of biological crusts and the size and species number of the soil seed bank of preferred perennial grasses under biological crusts. The size of the soil seed bank of annual grasses was reduced with increasing sheep selectivity under both crust and no crust soil conditions. We did not detect changes in the soil seed banks of less- and non- preferred species (shrubs and forbs) related to sheep selectivity. Our findings highlight the negative effects of sheep selectivity on biological crusts and the soil seed bank of preferred plant species and the positive relationship between biological crusts and the size of the soil seed bank of perennial grasses. Accordingly, the state of conservation of biological crusts could be useful to assess the state of the soil seed banks of perennial grasses for monitoring, conservation and planning the sustainable management of grazing lands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Estimating Unsaturated Zone N Fluxes and Travel Times to Groundwater at Watershed Scales

    NASA Astrophysics Data System (ADS)

    Liao, L.; Green, C. T.; Harter, T.; Nolan, B. T.; Juckem, P. F.; Shope, C. L.

    2016-12-01

    Nitrate concentrations in groundwater vary at spatial and temporal scales. Local variability depends on soil properties, unsaturated zone properties, hydrology, reactivity, and other factors. For example, the travel time in the unsaturated zone can cause contaminant responses in aquifers to lag behind changes in N inputs at the land surface, and variable leaching-fractions of applied N fertilizer to groundwater can elevate (or reduce) concentrations in groundwater. In this study, we apply the vertical flux model (VFM) (Liao et al., 2012) to address the importance of travel time of N in the unsaturated zone and its fraction leached from the unsaturated zone to groundwater. The Fox-Wolf-Peshtigo basins, including 34 out of 72 counties in Wisconsin, were selected as the study area. Simulated concentrations of NO3-, N2 from denitrification, O2, and environmental tracers of groundwater age were matched to observations by adjusting parameters for recharge rate, unsaturated zone travel time, fractions of N inputs leached to groundwater, O2 reduction rate, O2 threshold for denitrification, denitrification rate, and dispersivity. Correlations between calibrated parameters and GIS parameters (land use, drainage class and soil properties etc.) were evaluated. Model results revealed a median of recharge rate of 0.11 m/yr, which is comparable with results from three independent estimates of recharge rates in the study area. The unsaturated travel times ranged from 0.2 yr to 25 yr with median of 6.8 yr. The correlation analysis revealed that relationships between VFM parameters and landscape characteristics (GIS parameters) were consistent with expected relationships. Fraction N leached was lower in the vicinity of wetlands and greater in the vicinity of crop lands. Faster unsaturated zone transport in forested areas was consistent with results of studies showing rapid vertical transport in forested soils. Reaction rate coefficients correlated with chemical indicators such as Fe and P concentrations. Overall, the results demonstrate applicability of the VFM at a regional scale, as well as potential to generate N transport estimates continuously across regions based on statistical relationships between VFM model parameters and GIS parameters.

  1. Seasonal and geothermal production variations in concentrations of He and CO2 in soil gases, Roosevelt Hot Springs Known Geothermal Resource Area, Utah, U.S.A.

    USGS Publications Warehouse

    Hinkle, M.E.

    1991-01-01

    To increase understanding of natural variations in soil gas concentrations, CO2, He, O2 and N2 were measured in soil gases collected regularly for several months from four sites at the Roosevelt Hot Springs Known Geothermal Resource Area, Utah. Soil temperature, air temperature, per cent relative humidity, barometric pressure and amounts of rain and snowfall were also monitored to determine the effect of meteorological parameters on concentrations of the measured gases. Considerable seasonal variation existed in concentrations of CO2 and He. The parameters that most affected the soil-gas concentrations were soil and air temperatures. Moisture from rain and snow probably affected the soil-gas concentrations also. However, annual variations in meteorological parameters did not appear to affect measurements of anomalous concentrations in samples collected within a time period of a few days. Production from some of the geothermal wells probably affected the soil-gas concentrations. ?? 1990.

  2. Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Tappen, J.

    1978-06-01

    The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented inmore » the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)« less

  3. A GIS-assisted regional screening tool to evaluate the leaching potential of volatile and non-volatile pesticides

    NASA Astrophysics Data System (ADS)

    Ki, Seo Jin; Ray, Chittaranjan

    2015-03-01

    A regional screening tool-which is useful in cases where few site-specific parameters are available for complex vadose zone models-assesses the leaching potential of pollutants to groundwater over large areas. In this study, the previous pesticide leaching tool used in Hawaii was revised to account for the release of new volatile organic compounds (VOCs) from the soil surface. The tool was modified to introduce expanded terms in the traditional pesticide ranking indices (i.e., retardation and attenuation factors), allowing the estimation of the leaching fraction of volatile chemicals based on recharge, soil, and chemical properties to be updated. Results showed that the previous tool significantly overestimated the mass fraction of VOCs leached through soils as the recharge rates increased above 0.001801 m/d. In contrast, the revised tool successfully delineated vulnerable areas to the selected VOCs based on two reference chemicals, a known leacher and non-leacher, which were determined in local conditions. The sensitivity analysis with the Latin-Hypercube-One-factor-At-a-Time method revealed that the new leaching tool was most sensitive to changes in the soil organic carbon sorption coefficient, fractional organic carbon content, and Henry's law constant; and least sensitive to parameters such as the bulk density, water content at field capacity, and particle density in soils. When the revised tool was compared to the analytical (STANMOD) and numerical (HYDRUS-1D) models as a susceptibility measure, it ranked particular VOCs well (e.g., benzene, carbofuran, and toluene) that were consistent with other two models under the given conditions. Therefore, the new leaching tool can be widely used to address intrinsic groundwater vulnerability to contamination of pesticides and VOCs, along with the DRASTIC method or similar Tier 1 models such as SCI-GROW and WIN-PST.

  4. Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins

    NASA Astrophysics Data System (ADS)

    Atieh, M.; Mehltretter, S. L.; Gharabaghi, B.; Rudra, R.

    2015-12-01

    One of the most uncertain modeling tasks in hydrology is the prediction of ungauged stream sediment load and concentration statistics. This study presents integrated artificial neural networks (ANN) models for prediction of sediment rating curve parameters (rating curve coefficient α and rating curve exponent β) for ungauged basins. The ANN models integrate a comprehensive list of input parameters to improve the accuracy achieved; the input parameters used include: soil, land use, topographic, climatic, and hydrometric data sets. The ANN models were trained on the randomly selected 2/3 of the dataset of 94 gauged streams in Ontario, Canada and validated on the remaining 1/3. The developed models have high correlation coefficients of 0.92 and 0.86 for α and β, respectively. The ANN model for the rating coefficient α is directly proportional to rainfall erosivity factor, soil erodibility factor, and apportionment entropy disorder index, whereas it is inversely proportional to vegetation cover and mean annual snowfall. The ANN model for the rating exponent β is directly proportional to mean annual precipitation, the apportionment entropy disorder index, main channel slope, standard deviation of daily discharge, and inversely proportional to the fraction of basin area covered by wetlands and swamps. Sediment rating curves are essential tools for the calculation of sediment load, concentration-duration curve (CDC), and concentration-duration-frequency (CDF) analysis for more accurate assessment of water quality for ungauged basins.

  5. Determining fate and transport parameters for nitroglycerine, 2,4-dinitrotoluine, and nitroguanidine in soils

    NASA Astrophysics Data System (ADS)

    Gosch, D. L.; Dontsova, K.; Chorover, J.; Ferré, T.; Taylor, S.

    2010-12-01

    During military operations, a small fraction of propellant mass is not consumed during firing and is deposited onto the ground surface (Jenkins et al., 2006). Soluble propellant constituents can be released from particulate residues into the environment. Propellant constituents of interest for this study are nitroglycerine (NG), 2,4-dinitrotoluine (2,4-DNT), 2,6-dinitrotoluine (2,6-DNT), and nitroguanidine (NQ). The goal of this work is to determine fate and transport parameters for these constituents in three soils that represent a range of geographic locations and soil properties. This supports a companion study that looks at dissolution of NG, 2,4-DNT, 2,6-DNT, and NQ from fired and unfired solid propellant formulations and their transport in soils. The three soils selected for the study are Catlin silt loam (fine-silty, mixed, mesic, superactive Oxyaquic Argiudoll), Plymouth sandy loam (mesic, coated Typic Quartzipsamment), and Sassafras loam (fine loamy, siliceous, mesic Typic Hapudult). Two of these soils, Plymouth sandy loam and Sassafras loam, were collected on military installations. Linear adsorption coefficients and transformation rates of propellant constituents were determined in batch kinetic experiments. Soils were mixed with propellant constituent solutions (2 mg L-1) at 4:1 solution/soil mass ratio and equilibrated for 0, 1, 2, 6, 12, 24, 48, and 120 hr at which time samples were centrifuged and supernatant solutions were analyzed for target compounds by high performance liquid chromatography (HPLC) using U.S. EPA Method 8330b for NG, 2,4-DNT, and 2,6-DNT, and Walsh (1989) method for NQ. Adsorption and transformation of propellant constituents were determined from the decrease in solution concentration of these compounds. It was determined that all studied compounds were subjected to sorption by the solid phase and degradation. Catlin soil, with finer texture and high organic matter content, influenced solution concentration of NG, 2,4-DNT, 2,6-DNT, and NQ to the greatest extent. Estimated fate and transport parameters will support ongoing release and column transport studies and will allow environmental managers on military installations to better estimate potential for propellant constituent transport off-site. Jenkins, T.F., A.D. Hewitt, C.L. Grant, S. Thiboutot, G. Ampleman, M.E. Walsh, T.A. Ranney, C.A. Ramsey, A.J. Palazzo, and J.C. Pennington. 2006. Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere 63:1280-1290. Walsh, M.E. 1989. Analytical Methods for Determining Nitroguanidine in Soil and Water. Special Report 89-35. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

  6. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils.

    PubMed

    Hogendoom, E A; Huls, R; Dijkman, E; Hoogerbrugge, R

    2001-12-14

    A screening method has been developed for the determination of acidic pesticides in various types of soils. Methodology is based on the use of microwave assisted solvent extraction (MASE) for fast and efficient extraction of the analytes from the soils and coupled-column reversed-phase liquid chromatography (LC-LC) with UV detection at 228 nm for the instrumental analysis of uncleaned extracts. Four types of soils, including sand, clay and peat, with a range in organic matter content of 0.3-13% and ten acidic pesticides of different chemical families (bentazone, bromoxynil, metsulfuron-methyl, 2,4-D, MCPA, MCPP, 2,4-DP, 2,4,5-T, 2,4-DB and MCPB) were selected as matrices and analytes, respectively. The method developed included the selection of suitable MASE and LC-LC conditions. The latter consisted of the selection of a 5-microm GFF-II internal surface reversed-phase (ISRP, Pinkerton) analytical column (50 x 4.6 mm, I.D.) as the first column in the RAM-C18 configuration in combination with an optimised linear gradient elution including on-line cleanup of sample extracts and reconditioning of the columns. The method was validated with the analysis of freshly spiked samples and samples with aged residues (120 days). The four types of soils were spiked with the ten acidic pesticides at levels between 20 and 200 microg/kg. Weighted regression of the recovery data showed for most analyte-matrix combinations, including freshly spiked samples and aged residues, that the method provides overall recoveries between 60 and 90% with relative standard deviations of the intra-laboratory reproducibility's between 5 and 25%; LODs were obtained between 5 and 50 microg/kg. Evaluation of the data set with principal component analysis revealed that the parameters (i) increase of organic matter content of the soil samples and (ii) aged residues negatively effect the recovery of the analytes.

  7. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  8. Mining-related metals in terrestrial food webs of the upper Clark Fork River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.A.; LaTier, A.J.; Butcher, M.K.

    1994-12-31

    Fluvial deposits of tailings and other mining-related waste in selected riparian habitats of the Upper Clark Fork River basin (Montana) have resulted in metals enriched soils. The significance of metals exposure to selected wildlife species was evaluated by measuring tissue residues of metals (arsenic, cadmium, copper, lead, zinc) in key dietary species, including dominant grasses (tufted hair grass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Average metals concentrations in grasses, invertebrates, and deer mice collected from tailings-affected sites were elevated relative to reference to reference levels. Soil-tissue bioconcentration factors for grasses and invertebrates weremore » generally lower than expected based on the range of values in the literature, indicating the reduced bioavailability of metals from mining waste. In general, metals concentrations in willows, alfalfa, and barley were not elevated above reference levels. Using these data and plausible assumptions for other exposure parameters for white-tailed deer, red fox, and American kestrel, metals intake was estimated for soil and diet ingestion pathways. Comparisons of exposure estimates with toxicity reference values indicated that the elevated concentrations of metals in key food web species do not pose a significant risk to wildlife.« less

  9. Uncertainty in dual permeability model parameters for structured soils.

    PubMed

    Arora, B; Mohanty, B P; McGuire, J T

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.

  10. Uncertainty in dual permeability model parameters for structured soils

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2012-01-01

    Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.

  11. Boundary Condition Effects on Hillslope Form and Soil Development Along a Climatic Gradient From Semiarid to Hyperarid in Northern Chile

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Dietrich, W. E.; Nishiizumi, K.; Bellugi, D.; Amundson, R.

    2008-12-01

    Modeling the development of hillslopes using mass balance equations has generated many testable hypotheses related to morphology, process rates, and soil properties, however it is only relatively recently that techniques for constraining these models (such as cosmogenic radionuclides) have become commonplace. As such, many hypotheses related to the effects of boundary conditions or climate on process rates and soil properties have been left untested. We selected pairs of hillslopes along a precipitation gradient in northern Chile (24°-30° S) which were either bounded by actively eroding (bedrock-bedded) channels or by stable or aggradational landforms (pediments, colluvial aprons, valley bottoms). For each hillslope we measured soil properties, atmospheric deposition rates, and bedrock denudation rates. We observe significant changes in soil properties with climate: there is a shift from thick, weathered soils in the semiarid south, to the near absence of soil in the arid middle, to salt-rich soils in the hyperarid north. Coincident with these are dramatic changes in the types and rates of processes acting on the soils. We found relatively quick, biotically-driven soil formation and transport in the south, and very slow, salt-driven processes in the north. Additionally, we observe systematic differences between hillslopes of different boundary condition within the same climate zone, such as thicker soils, gentler slopes, and slower erosion rates on hillslopes with a non-eroding boundary versus an eroding boundary. These support general predictions based on hillslope soil mass balance equations and geomorphic transport laws. Using parameters derived from our field data, we attempt to use a mass balance model of hillslope development to explore the effect of changing boundary conditions and/or shifting climate.

  12. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system.

    PubMed

    Arun Jyoti, Nath; Lal, Rattan; Das, Ashesh Kumar

    2015-07-15

    It is widely recognized that farmers' hold important knowledge of folk soil classification for agricultural land for its uses, yet little has been studied for traditional agroforestry systems. This article explores the ethnopedology of bamboo (Bambusa sp.) based agroforestry system in North East India, and establishes the relationship of soil quality index (SQI) with bamboo productivity. The study revealed four basic folk soil (mati) types: kalo (black soil), lal (red soil), pathal (stony soil) and balu (sandy soil). Of these, lal mati soil was the most predominant soil type (~ 40%) in bamboo-based agroforestry system. Soil physio-chemical parameters were studied to validate the farmers' soil hierarchal classification and also to correlate with productivity of the bamboo stand. Farmers' hierarchal folk soil classification was consistent with the laboratory scientific analysis. Culm production (i.e. measure of productivity of bamboo) was the highest (27culmsclump(-1)) in kalo mati (black soil) and the lowest (19culmsclump(-1)) in balu mati (sandy soil). Linear correlation of individual soil quality parameter with bamboo productivity explained 16 to 49% of the variability. A multiple correlation of the best fitted linear soil quality parameter (soil organic carbon or SOC, water holding capacity or WHC, total nitrogen) with productivity improved explanatory power to 53%. Development of SQI from ten relevant soil quality parameters and its correlation with bamboo productivity explained the 64% of the variation and therefore, suggest SQI as the best determinant of bamboo yield. Data presented indicate that the kalo mati (black soil) is sustainable or sustainable with high input. However, the other three folk soil types (red, stony and sandy soil) are also sustainable but for other land uses. Therefore, ethnopedological studies may move beyond routine laboratory analysis and incorporate SQI for assessing the sustainability of land uses managed by the farmers'. Additional research is required to incorporate principal component analysis for improving the SQI and site potential assessment. It is also important to evaluate the minimum data set (MDS) required for SQI and productivity assessment in agroforestry systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil.

    PubMed

    Tian, Huifang; Liang, Ying; Zhu, Tianle; Zeng, Xiaolan; Sun, Yifei

    2018-03-01

    In this study a NZVI was prepared by the liquid phase reduction method. The modified NZVI obtained was characterized by BET, TEM and XRD. The results showed that the iron in the PEG-4000 modified material is mainly zero-valent iron with a stable crystal structure. It has a uniform particle size, ranging from 20 to 80 nm, and a larger specific surface area than CTAB modified NZVI, SDS modified NZVI and commercial zero-valent iron. The two surfactants CTAB and SDS are also selected as solubilizers, the results showed that the two selected surfactants obviously solubilize trichloroethylene in soil. Compared with commercial zero-valent iron, PEG-4000 modified NZVI is better removed trichloroethylene from soil; Also, the optimal operational parameters were obtained. When the experimental conditions were: PEG-4000 modified NZVI dosage 1.0 g/L, CTAB/SDS concentration equal to the CMC, SDS concentration was 2.0 × CMC, CTAB was concentration 1.0 × CMC and the vibration speed 150 r/min, the removal efficiency of trichloroethylene in a soil-water system reached 100% after 4 h. Both NZVI combined with CTAB and NZVI combined with SDS followed fitted first order reaction kinetics during the removal of trichloroethylene and their reaction rate constant k was 0.6869 mg/(L·h) and 0.5659 mg/(L·h), respectively. According to the chloride ion detection test, the trichloroethylene degradation is mainly due to reductive dechlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.

  15. Assessing the fate of radioactive nickel in cultivated soil cores.

    PubMed

    Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis

    2009-10-01

    Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.

  16. Can Physiological Endpoints Improve the Sensitivity of Assays with Plants in the Risk Assessment of Contaminated Soils?

    PubMed Central

    Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth

    2013-01-01

    Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays. PMID:23565165

  17. Iron Compounds and the Color of Soils in the Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Kirillova, N. P.; Manakhov, D. V.; Karpukhin, M. M.

    2018-02-01

    Numerical parameters of soil color were studied according to the CIE-L*a*b color system before and after the Tamm's and Mehra-Jackson's treatments; we also determined the total Fe content in the samples from the main genetic horizons of the alluvial gray-humus soil, two profiles of burozems, and two profiles of podzols in the Sakhalin Island. In the analyzed samples, the numerical color parameters L* (lightness), a* (redness) and b* (yellowness) are found to vary within 46-73, 3-11, and 8-28, respectively. A linear relationship is revealed between the numerical values of a* parameters and Fe content in the Mehra-Jackson extracts; the regression equations are derived with the determination coefficients ( R 2): 0.49 (typical burozem), 0.79 (podzolized burozem), 0.96 (shallow-podzolic mucky podzol), 0.98 (gray-humus gley alluvial soil). For the surface-podzolic mucky podzol contaminated with petroleum hydrocarbons, R 2 was equal to only 0.03. In the gray humus (AY) and structural-metamorphic (BM) horizons of the studied soils, a* and b* parameters decrease after their treatment with the Tamm's reagent by 2 points on average. After the Mehra-Jackson treatment, the a* parameter decreased by 6 (AY) and 8 (BM) points; whereas b* parameter, by 10 and 15 points, respectively. In the E horizons of podzols, the Tamm's treatment increased a* and b* parameters by 1 point; whereas the Mehra-Jackson's treatment decreased these parameters by only 1 and 3 points, respectively. The redness (a*) decreased maximally in the lower gley horizon of the alluvial gray humus soil, i.e., by 6 (in the Tamm's extract) and 10 points (in the Mehra-Jackson's) extract. Yellowness (b*) decreased by 12 and 17 points, respectively. The revealed color specifics in the untreated samples and the color transformation under the impact of reagents in the studied soils and horizons may serve as an additional parameter that characterizes quantitatively the object of investigation in the reference databases.

  18. Simultaneous Assimilation of AMSR-E Brightness Temperature and MODIS LST to Improve Soil Moisture with Dual Ensemble Kalman Smoother

    NASA Astrophysics Data System (ADS)

    Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan

    2017-04-01

    Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.

  19. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  20. Soil attributes drive nest-site selection by the campo miner Geositta poeciloptera.

    PubMed

    Meireles, Ricardo Camargos de; Teixeira, João Paulo Gusmão; Solar, Ricardo; Vasconcelos, Bruno Nery F; Fernandes, Raphael B A; Lopes, Leonardo Esteves

    2018-01-01

    Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common.

  1. Soil attributes drive nest-site selection by the campo miner Geositta poeciloptera

    PubMed Central

    Teixeira, João Paulo Gusmão; Solar, Ricardo; Vasconcelos, Bruno Nery F.; Fernandes, Raphael B. A.; Lopes, Leonardo Esteves

    2018-01-01

    Substrate type is a key-factor in nest-site selection and nest architecture of burrowing birds. However, little is known about which factors drive nest-site selection for these species, especially in the tropics. We studied the influence of soil attributes on nest-site selection by the campo miner Geositta poeciloptera, an open grassland bird that builds its nests within soil cavities. For all nests found, we measured the depth of the nest cavity and the resistance of the soil to penetration, and identified the soil horizon in which the nest was located. In soil banks with nests, we collected soil samples for granulometric analysis around each nest cavity, while in soil banks without nests we collected these samples at random points. From 43 nests found, 86% were located in the deeper soil horizons (C-horizon), and only 14% in the shallower horizons (B-horizon). Granulometric analysis showed that the C-horizons possessed a high similar granulometric composition, with high silt and low clay contents. These characteristics are associated with a low degree of structural development of the soil, which makes it easier to excavate. Contrarily, soil resistance to penetration does not seem to be an important criterion for nest site selection, although nests in more resistant the soils tend to have shallower nest cavities. Among the soil banks analyzed, 40% of those without cavities possessed a larger proportion of B-horizon relative to the C-horizon, and their texture was more clayey. On the other hand, almost all soil banks containing nest cavities had a larger C-horizon and a silty texture, indicating that soil attributes drive nest-site selection by G. poeciloptera. Thus, we conclude that the patchy distribution of G. poeciloptera can attributed to the infrequent natural exposure of the C-horizon in the tropical region, where well developed, deep and permeable soils are more common. PMID:29381768

  2. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Treesearch

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  3. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  4. Critical State of Sand Matrix Soils

    PubMed Central

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  5. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    PubMed Central

    She, Dongli; Yu, Shuang'en; Shao, Guangcheng

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ 0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils. PMID:25197699

  6. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    PubMed

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  7. Using satellite image data to estimate soil moisture

    NASA Astrophysics Data System (ADS)

    Chuang, Chi-Hung; Yu, Hwa-Lung

    2017-04-01

    Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.

  8. Efficiency of different techniques to identify changes in land use

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Mateix-Solera, Jorge; Gerrero, César

    2013-04-01

    The need for the development of sensitive and efficient methodologies for soil quality evaluation is increasing. The ability to assess soil quality and identify key soil properties that serve as indicators of soil function is complicated by the multiplicity of physical, chemical and biological factors that control soil processes. In the mountain region of the Mediterranean Basin of Spain, almond trees have been cultivated in terraced orchards for centuries. These crops are immersed in the Mediterranean forest scenery, configuring a mosaic landscape where orchards are integrated in the forest masses. In the last decades, almond orchards are being abandoned, leading to an increase in vegetation cover, since abandoned fields are naturally colonized by the surrounded natural vegetation. Soil processes and properties are expected to be associated with vegetation successional dynamics. Thus, the establishment of suitable parameters to monitor soil quality related to land use changes is particularly important to guarantee the regeneration of the mature community. In this study, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations in SE Spain. The main purpose was to evaluate if changes in management have significantly influenced different sets of soil characteristics. For this purpose, we used a discriminant analysis (DA). The different sets of soil characteristics tested in this study were 1: physical, chemical and biochemical properties; 2: soil near infrared (NIR) spectra; and 3: phospholipid fatty acids (PLFAs). After the DA performed with the sets 1 and 2, the three land uses were clearly separated by the two first discriminant functions, and more than 85 % of the samples were correctly classified (grouped). Using the sets 3 and 4 for DA resulted in a slightly better separation of land uses, being more than 85% of the samples correctly classified. These results suggest that the combination of properties of different nature is effective to show the state of soil quality, owing to the close interaction among physical, chemical and biochemical properties in soil. In addition, NIR spectra offer an integrate vision of soil quality, as they synthesize information regarding mineralogy, soil chemistry, soil biology, organic matter and physical attributes. With the DA developed with the PLFAs, the 100% of samples were correctly classified or grouped, indicating a clear impact of land management. This confirms the higher sensitivity of parameters related to soil microbial community structure to evaluate soil quality, perturbations and management. This result was expected as microbial communities respond very fast to changes in land use, faster than measurements of total microbial biomass and activity. Key Words: Land use changes; Phospholipids fatty acids; Near Infrared Spectroscopy

  9. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  10. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are persistence (DT50) of the pesticide, and its sorption/desorption(Koc) characteristics. These parameters may vary for the same pesticide from geographic site-to-site and with soil depth. The interactions that normally occur between pesticides and dissolved organic matter (DOM) or WDC are yet other factors that may complicate pesticide leaching behavior.The soil mobility of pesticides is normally tested both in the laboratory and in the field. Lab studies are initially performed to give researchers a preliminary appraisal of the relative mobility of a pesticide. Later, field lysimeter studies can be performed to provide more natural leaching conditions that emulate the actual field use pattern. Lysimeter studies give the most reliable information on the leaching behavior of a pesticide under field conditions, but these studies are time-consuming and expensive and cannot be performed everywhere. It is for this reason that the laboratory soil column leaching approach is commonly utilized to profile the mobility of a pesticide,and appraise how it behaves in different soils, and relative to other pesticides.Because the soil structure is chemically and physically heterogenous, different pesticide tests may produce variable DT50 and Koc values; therefore, initial pesticide mobility testing is undertaken in homogeneously packed columns that contain two or more soils and are eluted at constant flow rates. Such studies are done in duplicate and utilize a conservative tracer element. By fitting an appropriate mathematical model to the breakthrough curve of the conservative tracer selected,researchers determine key mobility parameters, such as pore water velocity, the column-specific dispersion coefficient, and the contribution of non equilibrium transport processes. Such parameters form the basis for estimating the probable transport and degradation rates that will be characteristic of the tested pesticide. Researchers also examine how a pesticide interacts with soil DOM and WDC, and what contribution from facilitated transport to mobility is made as a result of the effects of pH and ionic strength. Other methods are used to test how pesticides may interact with soil components to change mobility. Spectroscopic approaches are used to analyze the nature of soil pesticide complexes. These may provide insight into the mechanism by which interactions occur. Other studies may be performed to determine the effect of agricultural practices (e.g., tillage) on pesticide leaching under controlled conditions using intact soil cores from the field. When preferential flow is suspected to occur, dye staining is used to examine the contribution of macropores to pesticide transport. These methods and others are addressed in the text of this review.

  11. Synergistic Utilization of Microwave Satellite Data and GRACE-Total Water Storage Anomaly for Improving Available Water Capacity Prediction in Lower Mekong Basin

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2015-12-01

    The Mekong River is the longest river in Southeast Asia and the world's eighth largest in discharge with draining an area of 795,000 km² from the eastern watershed of the Tibetan Plateau to the Mekong Delta including three provinces of China, Myanmar, Lao PDR, Thailand, Cambodia and Viet Nam. This makes the life of people highly vulnerable to availability of the water resources as soil moisture is one of the major fundamental variables in global hydrological cycles. The day-to-day variability in soil moisture on field to global scales is an important quantity for early warning systems for events like flooding and drought. In addition to the extreme situations the accurate soil moisture retrieval are important for agricultural irrigation scheduling and water resource management. The present study proposes a method to determine the effective soil hydraulic parameters directly from information available for the soil moisture state from the recently launched SMAP (L-band) microwave remote sensing observations. Since the optimized parameters are based on the near surface soil moisture information, further constraints are applied during the numerical simulation through the assimilation of GRACE Total Water Storage (TWS) within the physically based land surface model. This work addresses the improvement of available water capacity as the soil hydraulic parameters are optimized through the utilization of satellite-retrieved near surface soil moisture. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on FAO. The optimization process is divided into two steps: the state variable are optimized and the optimal parameter values are then transferred for retrieving soil moisture and streamflow. A homogeneous soil system is considered as the soil moisture from sensors such as AMSR-E/SMAP can only be retrieved for the top few centimeters of soil. To evaluate the performance of the system in helping improve simulation accuracy and whether they can be used to obtain soil moisture profiles at poorly gauged catchments the root mean square error (RMSE) and Mean Bias error (MBE) are used to measure the performance of the simulations.

  12. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation.

    PubMed

    Majer, Bernhard J; Tscherko, Dagmar; Paschke, Albrecht; Wennrich, Rainer; Kundi, Michael; Kandeler, Ellen; Knasmüller, Siegfried

    2002-03-25

    The aim of this study was to investigate correlation between genotoxic effects and changes of microbial parameters caused by metal contamination in soils. In total, 20 soils from nine locations were examined; metal contents and physicochemical soil parameters were measured with standard methods. In general, a pronounced induction of the frequency of micronuclei (MN) in the Tradescantia micronucleus (Trad-MN) assay was seen with increasing metal concentration in soils from identical locations. However, no correlations were found between metal contents and genotoxicity of soils from different locations. These discrepancies are probably due to differences of the physicochemical characteristics of the samples. Also, the microbial parameters depended on the metal content in soils from identical sampling locations. Inconsistent responses of the individual enzymes were seen in soils from different locations, indicating that it is not possible to define a specific marker enzyme for metal contamination. The most sensitive microbial parameters were dehydrogenase and arylsulfatase activity, biomass C, and biomass N. Statistical analyses showed an overall correlation between genotoxicity in Tradescantia on the one hand and dehydrogenase activity, biomass C, and the metabolic quotient on the other hand. In conclusion, the results of the present study show that the Trad-MN assay is suitable for the detection of genotoxic effects of metal contamination in soils and furthermore, that the DNA-damaging potential of soils from different origin cannot be predicted on the basis of chemical analyses of their metal concentrations.

  13. Land use and Hydrological Characteristics of Volcanic Urban Soils for Flood Susceptibility Modeling, Ciudad de Colima (Mexico)

    NASA Astrophysics Data System (ADS)

    Perez Gonzalez, M. L.; Capra, L.; Borselli, L.; Ortiz, A.

    2015-12-01

    The fast population rate growth and the unplanned urban development has created an increase of urban floods in the City of Colima. Land use change has transformed the hydrological behavior of the watersheds that participates on the runoff-infiltration processes that governs the pluvial concentrations. After the urban areas enlargement, 13% from 2010 to 2015, rainfall has caused significant damages to the downtown community. Therefore it is important to define the main hydraulic properties of the soils surrounding the city. The soil of the region is derived from the debris avalanche deposits of the Volcano of Colima. The volcanic soil cover is only 10 to 15 cm depth. To test the soils of the region, sampling locations were chosen after making a land use map from a Landsat image. The map was done by selecting and dividing similar surface images patterns into three main classifications: Natural (N1), Agricultural (N5) and Urban (N4) surfaces. Thirty-Three soil samples were collected and grouped in nine out of ten land use subdivisions. The 10thsubdivision, represents the completed urbanized area. The land use model is made using spot 4 1A images from the year 2010 up to year 2015. This land use evolutionary analysis will be a base to evaluate the change of the runoff-infiltration rate, direction, and concentration areas for the future flood susceptibility model. To get the parameters above, several soil analysis were performed. The results were that all the soil samples tested were classified as sandy soils. The water content values were from 7% (N4) to 45% (N1) while bulk density values for the same sample were form 0.65 (N1) to 1.50 (N4) g/cm3. The particle density and the porosity values were from 1.65 g/cm3 /5.5% (N4) - 2.65 g/cm3/ 75.40% (N1). The organic matter content was around 0.1% for urban soils and up to 6% on natural and agricultural soils. Some other test like electric conductivity and pH were performed. The obtained parameters were used to get other soil characteristics using the Pedotransfer Functions. The hydraulic conductivity measured in situ using a Drip-Infiltrometer device provide Ks values of 4.5, 2.4 and 5 cm/h for urban, agricultural and natural soils respectively. The information described is integrated on a GIS data base and it is an input for the Flood Susceptibility Model of Colima's metropolitan area on progress.

  14. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  15. DOE-EPSCOR SPONSORED PROJECT FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianting

    Concern over the quality of environmental management and restoration has motivated the model development for predicting water and solute transport in the vadose zone. Soil hydraulic properties are required inputs to subsurface models of water flow and contaminant transport in the vadose zone. Computer models are now routinely used in research and management to predict the movement of water and solutes into and through the vadose zone of soils. Such models can be used successfully only if reliable estimates of the soil hydraulic parameters are available. The hydraulic parameters considered in this project consist of the saturated hydraulic conductivity andmore » four parameters of the water retention curves. To quantify hydraulic parameters for heterogeneous soils is both difficult and time consuming. The overall objective of this project was to better quantify soil hydraulic parameters which are critical in predicting water flows and contaminant transport in the vadose zone through a comprehensive and quantitative study to predict heterogeneous soil hydraulic properties and the associated uncertainties. Systematic and quantitative consideration of the parametric heterogeneity and uncertainty can properly address and further reduce predictive uncertainty for contamination characterization and environmental restoration at DOE-managed sites. We conducted a comprehensive study to assess soil hydraulic parameter heterogeneity and uncertainty. We have addressed a number of important issues related to the soil hydraulic property characterizations. The main focus centered on new methods to characterize anisotropy of unsaturated hydraulic property typical of layered soil formations, uncertainty updating method, and artificial neural network base pedo-transfer functions to predict hydraulic parameters from easily available data. The work also involved upscaling of hydraulic properties applicable to large scale flow and contaminant transport modeling in the vadose zone and geostatistical characterization of hydraulic parameter heterogeneity. The project also examined the validity of the some simple average schemes for unsaturated hydraulic properties widely used in previous studies. A new suite of pedo-transfer functions were developed to improve the predictability of hydraulic parameters. We also explored the concept of tension-dependent hydraulic conductivity anisotropy of unsaturated layered soils. This project strengthens collaboration between researchers at the Desert Research Institute in the EPSCoR State of Nevada and their colleagues at the Pacific Northwest National Laboratory. The results of numerical simulations of a field injection experiment at Hanford site in this project could be used to provide insights to the DOE mission of appropriate contamination characterization and environmental remediation.« less

  16. Using Remotely-Sensed Estimates of Soil Moisture to Infer Soil Texture and Hydraulic Properties across a Semi-arid Watershed

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Peters-Lidard, Christa D.; Garcia, Matthew E.; Mocko, David M.; Tischler, Michael A.; Moran, M. Susan; Thoma, D. P.

    2007-01-01

    Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed. In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut Gulch using a new soil moisture product from active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results demonstrate the potential to gain physically meaningful soils information using simple parameter estimation with few but appropriately timed remote sensing retrievals.

  17. Hyperspectral Technique for Detecting Soil Parameters

    NASA Astrophysics Data System (ADS)

    Garfagnoli, F.; Ciampalini, A.; Moretti, S.; Chiarantini, L.

    2011-12-01

    In satellite and airborne remote sensing, hyperspectral technique has become a very powerful tool, due to the possibility of rapidly realizing chemical/mineralogical maps of the studied areas. Many studies are trying to customize the algorithms to identify several geo-physical soil properties. The specific objective of this study is to investigate those soil characteristics, such as clay mineral content, influencing degradation processes (soil erosion and shallow landslides), by means of correlation analysis, in order to examine the possibility of predicting the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from about 80 dried, crushed and sieved samples under controlled laboratory conditions. Samples were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo, over an area of about 5 km2 and their positions were recorded with a differential GPS. The quantitative determination of clay minerals content was performed by means of XRD and Rietveld refinement. Different chemometric techniques were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A slightly better result was achieved by plotting the absorption peak depth at 2210 versus total clay content (band-depth analysis). The complete SIM.GA hyperspectral geocoded row dataset, with an approximate pixel resolution of 0.6 m (VNIR) and 1.2 m (SWIR), was firstly transformed into at sensor radiance values, by applying calibration coefficients and parameters from laboratory measurements to non-georeferred VNIR/SWIR DN values. Then, airborne imagery needed to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. The geocoded products were obtained for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters were applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps were available for GIS application and 3D view as well as for the retrieval of different geophysical parameters by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties. In this study, we established a complete procedure for mapping clay content areal variations in agricultural soils starting form airborne hyperspectral imagery.

  18. EXPERIMENTAL EVALUATION OF GEOMETRICAL SHAPE FACTORS FOR SHORT CYLINDRICAL PROBES USED TO MEASURE SOIL PERMEABILITY TO AIR

    EPA Science Inventory

    Permeability of soil has become recognized as an important parameter in determining the rate of transport and entry of radon from the soil into indoor environments. This parameter is usually measured in the field by inserting a cylindrical tube with a short porous section into th...

  19. A genetic-algorithm approach for assessing the liquefaction potential of sandy soils

    NASA Astrophysics Data System (ADS)

    Sen, G.; Akyol, E.

    2010-04-01

    The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.

  20. Analysis of influencing factors on public perception in contaminated site management: Simulation by structural equation modeling at four sites in China.

    PubMed

    Li, Xiaonuo; Chen, Weiping; Cundy, Andrew B; Chang, Andrew C; Jiao, Wentao

    2018-03-15

    Public perception towards contaminated site management, a not readily quantifiable latent parameter, was linked through structural equation modeling in this paper to 22 measurable/observable manifest variables associated with the extent of information dissemination and public knowledge of soil pollution, attitude towards remediation policies, and participation in risk mitigation processes. Data obtained through a survey of 412 community residents at four remediation sites in China were employed in the model validation. The outcomes showed that public perception towards contaminated site management might be explained through selected measurable parameters in five categories, namely information disclosure, knowledge of soil pollution, expectations of remediation and redevelopment outcomes, public participation, and site policy, along with their interactions. Among these, information dissemination and attitude towards management policies exhibited significant influence in promoting positive public perception. Based on these examples, responsible agencies therefore should focus on public accessibility to reliable information, and encourage public inputs into policies for contaminated site management, in order to gain public confidence during remediation and regeneration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Identification of Anisotropic Criteria for Stratified Soil Based on Triaxial Tests Results

    NASA Astrophysics Data System (ADS)

    Tankiewicz, Matylda; Kawa, Marek

    2017-09-01

    The paper presents the identification methodology of anisotropic criteria based on triaxial test results. The considered material is varved clay - a sedimentary soil occurring in central Poland which is characterized by the so-called "layered microstructure". The strength examination outcomes were identified by standard triaxial tests. The results include the estimated peak strength obtained for a wide range of orientations and confining pressures. Two models were chosen as potentially adequate for the description of the tested material, namely Pariseau and its conjunction with the Jaeger weakness plane. Material constants were obtained by fitting the model to the experimental results. The identification procedure is based on the least squares method. The optimal values of parameters are searched for between specified bounds by sequentially decreasing the distance between points and reducing the length of the searched range. For both considered models the optimal parameters have been obtained. The comparison of theoretical and experimental results as well as the assessment of the suitability of selected criteria for the specified range of confining pressures are presented.

  2. A single-degree-of-freedom model for non-linear soil amplification

    USGS Publications Warehouse

    Erdik, Mustafa Ozder

    1979-01-01

    For proper understanding of soil behavior during earthquakes and assessment of a realistic surface motion, studies of the large-strain dynamic response of non-linear hysteretic soil systems are indispensable. Most of the presently available studies are based on the assumption that the response of a soil deposit is mainly due to the upward propagation of horizontally polarized shear waves from the underlying bedrock. Equivalent-linear procedures, currently in common use in non-linear soil response analysis, provide a simple approach and have been favorably compared with the actual recorded motions in some particular cases. Strain compatibility in these equivalent-linear approaches is maintained by selecting values of shear moduli and damping ratios in accordance with the average soil strains, in an iterative manner. Truly non-linear constitutive models with complete strain compatibility have also been employed. The equivalent-linear approaches often raise some doubt as to the reliability of their results concerning the system response in high frequency regions. In these frequency regions the equivalent-linear methods may underestimate the surface motion by as much as a factor of two or more. Although studies are complete in their methods of analysis, they inevitably provide applications pertaining only to a few specific soil systems, and do not lead to general conclusions about soil behavior. This report attempts to provide a general picture of the soil response through the use of a single-degree-of-freedom non-linear-hysteretic model. Although the investigation is based on a specific type of nonlinearity and a set of dynamic soil properties, the method described does not limit itself to these assumptions and is equally applicable to other types of nonlinearity and soil parameters.

  3. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology

    PubMed Central

    Heil, Kurt

    2017-01-01

    Fast and accurate assessment of within-field variation is essential for detecting field-wide heterogeneity and contributing to improvements in the management of agricultural lands. The goal of this paper is to provide an overview of field scale characterization by electromagnetic induction, firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. Furthermore, results concerning special applications in agriculture, horticulture and archaeology are included. In addition to these investigations, this survey also presents a wide range of practical methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific locality is determined by the intensity at which soil factors influence these values in relationship to the desired information. The interpretation and utility of apparent electrical conductivity (ECa) readings are highly location- and soil-specific, so soil properties influencing the measurement of ECa must be clearly understood. From the various calibration results, it appears that regression constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe), texture, yield, etc., are not necessarily transferable from one region to another. The modelling of ECa, soil properties, climate and yield are important for identifying the location to which specific utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied. In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be quite a robust method to detect relative differences, both spatially and temporally. Often, the use of ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather than as absolute terms. PMID:29113048

  4. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    NASA Astrophysics Data System (ADS)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters were examined based on R2 and RMSE values. The outcomes indicate that RBF performance in predicting lime, organic matter and boron put forth better results than LPI. However, LPI shows better results for predicting phosphorus.

  5. Comparing simple and complex approaches to simulate the impacts of soil water repellency on runoff and erosion in burnt Mediterranean forest slopes

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Catarina Simões Vieira, Diana; Keizer, Jan Jacob

    2017-04-01

    Fires impact soil hydrological properties, enhancing soil water repellency and therefore increasing the potential for surface runoff generation and soil erosion. In consequence, the successful application of hydrological models to post-fire conditions requires the appropriate simulation of the effects of soil water repellency on soil hydrology. This work compared three approaches to model soil water repellency impacts on soil hydrology in burnt eucalypt and pine forest slopes in central Portugal: 1) Daily approach, simulating repellency as a function of soil moisture, and influencing the maximum soil available water holding capacity. It is based on the Thornthwaite-Mather soil water modelling approach, and is parameterized with the soil's wilting point and field capacity, and a parameter relating soil water repellency with water holding capacity. It was tested with soil moisture data from burnt and unburnt hillslopes. This approach was able to simulate post-fire soil moisture patterns, which the model without repellency was unable to do. However, model parameters were different between the burnt and unburnt slopes, indicating that more research is needed to derive standardized parameters from commonly measured soil and vegetation properties. 2) Seasonal approach, pre-determining repellency at the seasonal scale (3 months) in four classes (from none to extreme). It is based on the Morgan-Morgan-Finney (MMF) runoff and erosion model, applied at the seasonal scale and is parameterized with a parameter relating repellency class with field capacity. It was tested with runoff and erosion data from several experimental plots, and led to important improvements on runoff prediction over an approach with constant field capacity for all seasons (calibrated for repellency effects), but only slight improvements in erosion predictions. In contrast with the daily approach, the parameters could be reproduced between different sites 3) Constant approach, specifying values for soil water repellency for the three years after the fire, and keeping them constant throughout the year. It is based on a daily Curve Number (CN) approach, and was incorporated directly in the Soil and Water Assessment Tool (SWAT) model and tested with erosion data from a burnt hillslope. This approach was able to successfully reproduce soil erosion. The results indicate that simplified approaches can be used to adapt existing models for post-fire simulation, taking repellency into account. Taking into account the seasonality of repellency seems more important to simulate surface runoff than erosion, possibly since simulating the larger runoff rates correctly is sufficient for erosion simulation. The constant approach can be applied directly in the parameterization of existing runoff and erosion models for soil loss and sediment yield prediction, while the seasonal approach can readily be developed as a next step, with further work being needed to assess if the approach and associated parameters can be applied in multiple post-fire environments.

  6. GEOTHERMAL ENVIRONMENTAL ASSESSMENT: BEHAVIOR OF SELECTED GEOTHERMAL BRINE CONTAMINANTS IN PLANTS AND SOILS

    EPA Science Inventory

    The behavior of selected elements found in the Roosevelt Hot Springs KGRA geothermal fluids was investigated in both plant and soil systems. The kinetics of these potential environmental containments were studied by using soil columns and selected cultivated and native plant spec...

  7. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  8. Selection of olive varieties for tolerance to iron chlorosis.

    PubMed

    Alcántara, Esteban; Cordeiro, Antonio Manuel; Barranco, Diego

    2003-12-01

    Under certain conditions, olive trees grown on calcareous soils suffer from iron chlorosis. In the present study several olive varieties and scion-rootstock combinations were evaluated for their tolerance to iron chlorosis. Plants were grown over several months in pots with a calcareous soil, under two fertilization treatments. These consisted of periodic applications of nutrient solutions containing either, 30 micromol/L FeEDDHA or not Fe. Tolerance was assessed by the chlorosis and growth parameters of plants grown without Fe, compared to those plants grown with Fe. Results show that there are differences in tolerance among olive varieties and that tolerance is mainly determined by the genotype of the rootstock. These results open the way to use tolerant varieties for those conditions where iron chlorosis could become a problem.

  9. Vanadium sorption by mineral soils: Development of a predictive model.

    PubMed

    Larsson, Maja A; Hadialhejazi, Golshid; Gustafsson, Jon Petter

    2017-02-01

    The toxicity of vanadium in soils depends on its sorption to soil components. Here we studied the vanadate(V) sorption properties of 26 mineral soils. The data were used to optimise parameters for a Freundlich equation with a pH term. Vanadium K-edge XANES spectroscopy for three selected soils confirmed that the added vanadate(V) had accumulated mostly as adsorbed vanadate(V) on Fe and Al hydrous oxides, with only minor contributions from organically complexed vanadium(IV). Data on pH-dependent V solubility for seven soils showed that on average 0.36 H + accompanied each V during adsorption and desorption. The resulting model provided reasonable fits to the V sorption data, with r 2  > 0.99 for 20 of 26 soils. The observed K dS value, i.e. the ratio of total to dissolved V, was strongly dependent on V addition and soil; it varied between 3 and 4 orders of magnitude. The model was used to calculate the Freundlich sorption strength (FSS), i.e. the amount of V sorbed at [V] = 2.5 mg L -1 , in the concentration range of observed plant toxicities. A close relationship between FSS and oxalate-extractable Fe and Al was found (r 2  = 0.85) when one acidic soil was removed from the regression. The FSS varied between 27 and 8718 mg V kg -1 , showing that the current environmental guidelines can be both under- and overprotective for vanadium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    PubMed

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  11. Installation Restoration General Environmental Technology Development. Task 2. Incineration Test of Explosives Contaminated Soils at Savanna Army Depot Activity, Savanna, Illinois.

    DTIC Science & Technology

    1984-04-01

    800OF and afterburner temperatures below 112000F. Explosives were detected in the combustion gases leaving the primary chamber for one test burn (i.e... combustion chamber. (c) Temperature in the secondary combustion chamber. l These key parameters were selected since they directly re- late to the...4523A 5.4 Heat exchanger (waste heat boiler) . The f lue gases discharged from the secondary combustion chamber were directed, via refractory-lined duct

  12. The impact of wildland fires on calcareous Mediterranean pedosystems (Sardinia, Italy) - An integrated multiple approach.

    PubMed

    Capra, Gian Franco; Tidu, Simona; Lovreglio, Raffaella; Certini, Giacomo; Salis, Michele; Bacciu, Valentina; Ganga, Antonio; Filzmoser, Peter

    2018-05-15

    Sardinia (Italy), the second largest island of the Mediterranean Sea, is a fire-prone land. Most Sardinian environments over time were shaped by fire, but some of them are too intrinsically fragile to withstand the currently increasing fire frequency. Calcareous pedoenvironments represent a significant part of Mediterranean areas, and require important efforts to prevent long-lasting degradation from fire. The aim of this study was to assess through an integrated multiple approach the impact of a single and highly severe wildland fire on limestone-derived soils. For this purpose, we selected two recently burned sites, Sant'Antioco and Laconi. Soil was sampled from 80 points on a 100×100m grid - 40 in the burned area and 40 in unburned one - and analyzed for particle size fractions, pH, electrical conductivity, organic carbon, total N, total P, and water repellency (WR). Fire behavior (surface rate of spread (ROS), fireline intensity (FLI), flame length (FL)) was simulated by BehavePlus 5.0.5 software. Comparisons between burned and unburned areas were done through ANOVA as well as deterministic and stochastic interpolation techniques; multiple correlations among parameters were evaluated by principal factor analysis (PFA) and differences/similarities between areas by principal component analysis (PCA). In both sites, fires were characterized by high severity and determined significant changes to some soil properties. The PFA confirmed the key ecological role played by fire in both sites, with the variability of a four-modeled components mainly explained by fire parameters, although the induced changes on soils were mainly site-specific. The PCA revealed the presence of two main "driving factors": slope (in Sant'Antioco), which increased the magnitude of ROS and FLI; and soil properties (in Laconi), which mostly affected FL. In both sites, such factors played a direct role in differentiating fire behavior and sites, while they played an indirect role in determining some effects on soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China

    NASA Astrophysics Data System (ADS)

    Ye, Chao; Guo, Zhonglu; Li, Zhaoxia; Cai, Chongfa

    2017-05-01

    Herbaceous species, especially their roots, are believed to have an important role in enhancing soil strength and protecting soil against erosion. This study evaluated the effects of root distribution characteristics on soil shear resistance and soil detachment rates, correlations among root mechanical properties, root chemical composition and root parameters, and whether the Wu-Waldron model can accurately estimate soil reinforcement by roots. Bahiagrass (Paspalum notatum) was planted in planter boxes by overlapping four rectangle frames (0.4 × 0.1 × 0.1 m). A series of laboratory tests of direct shear strength and soil detachment were conducted on two soils that were derived from granite and shale with different soil depths and sowing densities. The results indicated that soil aggregate stability was positively correlated with root characteristics. Over 70% of the total measured root parameters were distributed in the upper 20 cm of the soil, and they decreased with increasing soil depth and decreasing sowing density. The tensile properties (root tensile strength and root tensile force) were significantly correlated with root diameter. The contents of root main chemical compositions were significantly correlated with root diameter while hemicellulose showed no obvious trend with root diameter (P = 0.12). Root tensile strength and root tensile force were also significantly correlated with the contents of these four compositions, except hemicellulose. The relative soil detachment demonstrated a significant negative correlation with root parameters with sowing densities from 5 to 30 g m- 2, and it remained at a relatively low value when the sowing density was > 20 g m- 2. The soil detachment rate, erodibility factor and critical flow shear stress were well correlated with the root area ratio, sowing density, and soil depth. The Wu-Waldron model was found to be inappropriate for these soils, as it overestimated additional soil shear strength due to roots by 152-366% in the upper 20 cm, and 11-48% in deeper soil layers. This study demonstrated that the root area ratio was a more suitable root characteristic parameter that contributes to soil reinforcement.

  14. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  15. Curve Number Application in Continuous Runoff Models: An Exercise in Futility?

    NASA Astrophysics Data System (ADS)

    Lamont, S. J.; Eli, R. N.

    2006-12-01

    The suitability of applying the NRCS (Natural Resource Conservation Service) Curve Number (CN) to continuous runoff prediction is examined by studying the dependence of CN on several hydrologic variables in the context of a complex nonlinear hydrologic model. The continuous watershed model Hydrologic Simulation Program-FORTRAN (HSPF) was employed using a simple theoretical watershed in two numerical procedures designed to investigate the influence of soil type, soil depth, storm depth, storm distribution, and initial abstraction ratio value on the calculated CN value. This study stems from a concurrent project involving the design of a hydrologic modeling system to support the Cumulative Hydrologic Impact Assessments (CHIA) of over 230 coal-mined watersheds throughout West Virginia. Because of the large number of watersheds and limited availability of data necessary for HSPF calibration, it was initially proposed that predetermined CN values be used as a surrogate for those HSPF parameters controlling direct runoff. A soil physics model was developed to relate CN values to those HSPF parameters governing soil moisture content and infiltration behavior, with the remaining HSPF parameters being adopted from previous calibrations on real watersheds. A numerical procedure was then adopted to back-calculate CN values from the theoretical watershed using antecedent moisture conditions equivalent to the NRCS Antecedent Runoff Condition (ARC) II. This procedure used the direct runoff produced from a cyclic synthetic storm event time series input to HSPF. A second numerical method of CN determination, using real time series rainfall data, was used to provide a comparison to those CN values determined using the synthetic storm event time series. It was determined that the calculated CN values resulting from both numerical methods demonstrated a nonlinear dependence on all of the computational variables listed above. It was concluded that the use of the Curve Number as a surrogate for the selected subset of HPSF parameters could not be justified. These results suggest that use of the Curve Number in other complex continuous time series hydrologic models may not be appropriate, given the limitations inherent in the definition of the NRCS CN method.

  16. Evaluating the Community Land Model in a pine stand with shading manipulations and 13CO 2 labeling

    DOE PAGES

    Mao, Jiafu; Ricciuto, Daniel M.; Thornton, Peter E.; ...

    2016-02-03

    Carbon partitioning and flow through ecosystems regulates land surface atmosphere CO 2 exchange and thus is a key, albeit uncertain component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked C partitioning through a young Pinus taeda stand following pulse-labeling with 13CO 2 and two levels of shading. The field component of this project provided process-oriented data that was used to evaluate and improve terrestrial biosphere model simulations of rapid shifts in carbon partitioning and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturingmore » short-term carbon and water dynamics in relation to manipulative shading treatments, and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. To constrain CLM4 to closely simulate pretreatment conditions, we calibrated select model parameters with the pretreatment observational data. Compared to CLM4 simulations with default parameters, CLM4 with calibrated model parameters was better able to simulate pretreatment vegetation carbon pools, light response curves, and other initial states and fluxes of carbon and water. Over a 3-week treatment period, the calibrated CLM4 generally reproduced the impacts of shading on average soil moisture at 15-95 cm depth, transpiration, relative change in stem carbon, and soil CO 2 efflux rate, although some discrepancies in the estimation of magnitudes and temporal evolutions existed. CLM4, however, was not able to track the progression of the 13CO 2 label from the atmosphere through foliage, phloem, roots or surface soil CO 2 efflux, even when optimized model parameters were used. This model bias arises, in part, from the lack of a short-term non-structural carbohydrate storage pool and progressive timing of within-plant transport, thus indicating a need for future work to improve the allocation routines in CLM4. Overall, these types of detailed evaluations of CLM4, paired with intensive field manipulations, can help to identify model strengths and weaknesses, model uncertainties, and additional observations necessary for future model development.« less

  17. Small scale variability of soil parameters in different land uses on the southern slopes of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd

    2016-04-01

    The Kilimanjaro region in Tanzania constitutes a particularity compared to other areas in the country. Because enough water is available the population grows rapidly and large areas are converted from natural ecosystems to agricultural areas. Therefore, the southern slopes of Mt. Kilimanjaro encompass a complex mosaic of different land uses like coffee plantations, maize, agroforestry or natural savannah. Coffee is an important cash crop in the region and is owned mostly by large companies. In contrast, the agroforestry is a traditional way of agriculture and has been sustained by the Chagga tribe for centuries. These so called homegardens are organised as multi-level systems and contain a mixture of different crops. Correlations in soil and vegetation data may serve as indicators for crop and management impacts associated to different types of land use. We hypothesize that Chagga homegardens, for example, show a more pronounced spatial autocorrelation compared to coffee plantations due to manifold above and belowground crop structures, whereas the degree of anisotropy is assumed to be higher in the coffee sites due to linear elements in management. Furthermore, we hypothesize that the overall diversity of soil parameters in homegardens on a larger scale is higher, as individual owners manage their field differently, whereas coffee plantation management often follows general rules. From these general hypotheses we derive two specific research questions: a) Are there characteristic differences in the spatial organisation of soil physical parameters of different land uses? b) Is there a recognizable relationship between vegetation structure and soil physical parameters of topsoils? We measured soil physical parameters in the topsoil (bulk density, stone content, texture, soil moisture and penetration resistance). Additionally, we took spectra of soil samples with a portable VIS-NIR spectrometer to determine C and N and measured leaf area index and troughfall as an indicator of vegetation patterns. First results support our general hypotheses. In the coffee plantation anisotropic variation of soil parameters clearly showed the anthropogenic influence like compaction due to agricultural machinery. However, soil bulk density and penetration resistance in the homegarden were also quite variable at the sites. The larger variability of throughfall in the homegarden is reflected in the patterns of soil moisture. Regarding the larger scale, where we compared different homegardens and coffee plantations along the southern slope of the mountain, soil parameters of the coffee plots were less diverse than those of the homegardens.

  18. Terahertz Spectroscopy for Proximal Soil Sensing: An Approach to Particle Size Analysis

    PubMed Central

    Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Weltzien, Cornelia

    2017-01-01

    Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range. PMID:29048392

  19. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem.

    PubMed

    Bai, Gegenbaoleer; Bao, Yuying; Du, Guoxin; Qi, Yunlong

    2013-05-01

    The impact of rest grazing on arbuscular mycorrhizal fungi (AMF) and the interactions of AMF with vegetation and soil parameters under rest grazing condition were investigated between spring and late summer in a desert steppe ecosystem with different grazing managements (rest grazing with different lengths of resting period, banned or continuous grazing) in Inner Mongolia, China. AMF diversity and colonization, vegetation biomass, soil properties and soil phosphatase activity were examined. In rest grazing areas of 60 days, AMF spore number and diversity index at a 0-10 cm soil depth as well as vesicular and hyphal colonization rates were higher compared with other grazing treatments. In addition, soil organic matter and total N contents were highest and soil alkaline phosphatase was most active under 60-day rest grazing. In August and September, these areas also had the highest amount of aboveground vegetation. The results indicated that resting grazing for an appropriate period of time in spring has a positive effect on AMF sporulation, colonization and diversity, and that under rest grazing conditions, AMF parameters are positively correlated with some soil characteristics.

  20. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  1. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    NASA Astrophysics Data System (ADS)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., < 2 ha) under different forest fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality parameters due to land abandonment and the lack of terraced management. In addition, forest fire recurrence exacerbates soil degradation processes due to the direct effects on vegetation and soil properties.

  2. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were better explained using both soil physicochemical test values and bacterial community structure data than using soil tests alone. Pursuing a better understanding of bacterial community composition and how it is affected by farming practices is a promising avenue for increasing our ability to predict the impact of management practices on important soil functions. Copyright © 2016. Published by Elsevier B.V.

  3. Estimating soil hydraulic properties from soil moisture time series by inversion of a dual-permeability model

    NASA Astrophysics Data System (ADS)

    Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate

    2017-04-01

    Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials. The diffusivity function predicted values of a similar range as shown in other studies. Overall, the model was able to emulate soil moisture time series for low measurement depths, but deviated increasingly at larger depths. This indicates that some of the model parameters are not constant throughout the profile. However, overall seepage fluxes were still predicted correctly. In the near future we will apply the inversion method to lower frequency soil moisture data from different sites to evaluate the model's ability to predict preferential flow seepage fluxes at the field scale.

  4. Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias

    2015-04-01

    Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.

  5. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil.

    PubMed

    Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui

    2016-01-01

    Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.

  6. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil

    PubMed Central

    Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui

    2016-01-01

    Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678

  7. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    USGS Publications Warehouse

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  8. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to be 36% higher than those predicted during the second period. The climate projections of the PCM model had more positive impact on soil C sequestration than those predicted with the HadCM3 model.

  9. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape.

    PubMed

    Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2015-06-01

    Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  11. The effect on performance and biochemical parameters when soil was added to aflatoxin-contaminated poultry rations.

    PubMed

    Madden, U A; Stahr, H M; Stino, F K

    1999-08-01

    The effects of silty clay loam soil on the performance and biochemical parameters of chicks were investigated when the soil was added to aflatoxin B1 (AFB1)-contaminated diets. One hundred 14-d-old White Leghorn chicks were fed a control ration (clean corn), a low aflatoxin-contaminated ration (120 ng AFB1/g), a high aflatoxin-contaminated ration (700 ng AFB1/g), or high aflatoxin-contaminated rations (700 ng AFB1/g) +10% or 25% soil. Body weight, feed consumption and blood samples were monitored weekly. Decreased feed consumption, body weight gain and efficiency of feed utilization, increased SGOT and LDH activities, and cholesterol and triglyceride concentrations, and decreased uric acid concentrations and ALP activity were observed in the chicks fed the high aflatoxin-contaminated ration without soil. Hepatomegaly was prominent in chicks fed the high aflatoxin-contaminated ration without soil, and some livers had extensive hepatocyte vacuolation, hepatocellular swelling, fatty change and hydropic degeneration, and stained positive for fat accumulation. Addition of soil reduced the detrimental effects of AFB1 for some parameters, although the reduction was less when 10% soil was fed compared with the 25% soil feeding.

  12. Use of multi-temporal SPOT-5 satellite images for land degradation assessment in Cameron Highlands, Malaysia using Geospatial techniques

    NASA Astrophysics Data System (ADS)

    Nampak, Haleh; Pradhan, Biswajeet

    2016-07-01

    Soil erosion is the common land degradation problem worldwide because of its economic and environmental impacts. Therefore, land-use change detection has become one of the major concern to geomorphologists, environmentalists, and land use planners due to its impact on natural ecosystems. The objective of this paper is to evaluate the relationship between land use/cover changes and land degradation in the Cameron highlands (Malaysia) through multi-temporal remotely sensed satellite images and ancillary data. Land clearing in the study area has resulted increased soil erosion due to rainfall events. Also unsustainable development and agriculture, mismanagement and lacking policies contribute to increasing soil erosion rates. The LULC distribution of the study area was mapped for 2005, 2010, and 2015 through SPOT-5 satellite imagery data which were classified based on object-based classification. A soil erosion model was also used within a GIS in order to study the susceptibility of the areas affected by changes to overland flow and rain splash erosion. The model consists of four parameters, namely soil erodibility, slope, vegetation cover and overland flow. The results of this research will be used in the selection of the areas that require mitigation processes which will reduce their degrading potential. Key words: Land degradation, Geospatial, LULC change, Soil erosion modelling, Cameron highlands.

  13. Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Quets, Jan; De Lannoy, Gabrielle; Reichle, Rolf; Cosh, Michael; van der Schalie, Robin; Wigneron, Jean-Pierre

    2017-01-01

    The uncertainty associated with passive soil moisture retrieval is hard to quantify, and known to be underlain by various, diverse, and complex causes. Factors affecting space-borne retrieved soil moisture estimation include: (i) the optimization or inversion method applied to the radiative transfer model (RTM), such as e.g. the Single Channel Algorithm (SCA), or the Land Parameter Retrieval Model (LPRM), (ii) the selection of the observed brightness temperatures (Tbs), e.g. polarization and incidence angle, (iii) the definition of the cost function and the impact of prior information in it, and (iv) the RTM parameterization (e.g. parameterizations officially used by the SMOS L2 and SMAP L2 retrieval products, ECMWF-based SMOS assimilation product, SMAP L4 assimilation product, and perturbations from those configurations). This study aims at disentangling the relative importance of the above-mentioned sources of uncertainty, by carrying out soil moisture retrieval experiments, using SMOS Tb observations in different settings, of which some are mentioned above. The ensemble uncertainties are evaluated at 11 reference CalVal sites, over a time period of more than 5 years. These experimental retrievals were inter-compared, and further confronted with in situ soil moisture measurements and operational SMOS L2 retrievals, using commonly used skill metrics to quantify the temporal uncertainty in the retrievals.

  14. Fingerprints for main varieties of argentinean wines: terroir differentiation by inorganic, organic, and stable isotopic analyses coupled to chemometrics.

    PubMed

    Di Paola-Naranjo, Romina D; Baroni, Maria V; Podio, Natalia S; Rubinstein, Hector R; Fabani, Maria P; Badini, Raul G; Inga, Marcela; Ostera, Hector A; Cagnoni, Mariana; Gallegos, Ernesto; Gautier, Eduardo; Peral-Garcia, Pilar; Hoogewerff, Jurian; Wunderlin, Daniel A

    2011-07-27

    Our main goal was to investigate if robust chemical fingerprints could be developed for three Argentinean red wines based on organic, inorganic, and isotopic patterns, in relation to the regional soil composition. Soils and wines from three regions (Mendoza, San Juan, and Córdoba) and three varieties (Cabernet Sauvignon, Malbec, and Syrah) were collected. The phenolic profile was determined by HPLC-MS/MS and multielemental composition by ICP-MS; (87)Sr/(86)Sr and δ(13)C were determined by TIMS and IRMS, respectively. Chemometrics allowed robust differentiation between regions, wine varieties, and the same variety from different regions. Among phenolic compounds, resveratrol concentration was the most useful marker for wine differentiation, whereas Mg, K/Rb, Ca/Sr, and (87)Sr/(86)Sr were the main inorganic and isotopic parameters selected. Generalized Procrustes analysis (GPA) using two studied matrices (wine and soil) shows consensus between them and clear differences between studied areas. Finally, we applied a canonical correlation analysis, demonstrating significant correlation (r = 0.99; p < 0.001) between soil and wine composition. To our knowledge this is the first report combining independent variables, constructing a fingerprint including elemental composition, isotopic, and polyphenol patterns to differentiate wines, matching part of this fingerprint with the soil provenance.

  15. Cancer risk of polycyclic aromatic hydrocarbons (PAHs) in the soils from Jiaozhou Bay wetland.

    PubMed

    Yang, Wei; Lang, Yinhai; Li, Guoliang

    2014-10-01

    To estimate the cancer risk exposed to the PAHs in Jiaozhou Bay wetland soils, a probabilistic health risk assessment was conducted based on Monte Carlo simulations. A sensitivity analysis was performed to determine the input variables that contribute most to the cancer risk assessment. Three age groups were selected to estimate the cancer risk via four exposure pathways (soil ingestion, food ingestion, dermal contact and inhalation). The results revealed that the 95th percentiles cancer risks for children, teens and adults were 9.11×10(-6), 1.04×10(-5) and 7.08×10(-5), respectively. The cancer risks for three age groups were at acceptable range (10(-6)-10(-4)), indicating no potential cancer risk. For different exposure pathways, food ingestion was the major exposure pathway. For 7 carcinogenic PAHs, the cancer risk caused by BaP was the highest. Sensitivity analysis demonstrated that the parameters of exposure duration (ED) and sum of converted 7 carcinogenic PAHs concentrations in soil based on BaPeq (CSsoil) contribute most to the total uncertainty. This study provides a comprehensive risk assessment on carcinogenic PAHs in Jiaozhou Bay wetland soils, and might be useful in providing potential strategies of cancer risk prevention and controlling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.

    PubMed

    Ullah, Sami; Bano, Asghari

    2015-04-01

    The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected from high-saline fields (electrical conductivity 4.3-5.5) of District Mardan, Pakistan. Five PGPR strains were identified using 16S rRNA amplification and sequence analysis. Bacillus sp., isolated from rhizospheric soil of Atriplex leucoclada, and Arthrobacter pascens, isolated from rhizospheric soil of Suaeda fruticosa, are active phosphate solubilizers and bacteriocin and siderophore producers; hence, their inoculation and co-inoculation on maize ('Rakaposhi') under induced salinity stress enhanced shoot and root length and shoot and root fresh and dry mass. The accumulation of osmolytes, including sugar and proline, and the elevation of antioxidant enzymes activity, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, were enhanced in the maize variety when inoculated and co-inoculated with Bacillus sp. and Arthrobacter pascens. The PGPR (Bacillus sp. and A. pascens) isolated from the rhizosphere of the mentioned halophytes species showed reliability in growth promotion of maize crop in all the physiological parameters; hence, they can be used as bio-inoculants for the plants growing under salt stress.

  17. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    PubMed

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters.

  18. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    PubMed Central

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters. PMID:24748683

  19. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and composition in determining wettability rather than quantity, as evidenced both by the high variation observed in the field and the strong presence of aliphatic functional groups in the absence of WR; and (ii) commonly proposed mechanisms affecting soil aggregate properties - albeit with differing temperature thresholds and longer exposure times employed in this study. Namely, these mechanisms tend to involve: (i) soil OM and WR reduction at low to moderate temperatures, and (ii) thermal fusion of particles within moderate to high temperatures. Overall, results suggest a positive influence of management on soil properties as well as high soil resilience to moderate severity fire disturbance in the studied areas. However, the specific changes in soil OM and mineral composition that are responsible for destruction of WR and subsequent changes in AS remain poorly understood. Based on these results, a key next step within this study will entail a closer examination of OC ratios and their potential links with certain mineral species known to influence soil aggregation and soil WR. Noting the importance of soil OM-mineralogical interactions on run-off and erosion processes, results may contribute to better prediction of post-fire responses in the future and improve the ability to fine-tune site specific management approaches accordingly.

  20. The estimation of parameter compaction values for pavement subgrade stabilized with lime

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.

    2018-02-01

    The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.

  1. Effect of organic waste compost on the crop productivity and soil quality

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (<2%). Compost was produced from source separated food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase compared to the unfertilized control plot. In the case lowest compost rate (200 kg N ha-1) yield increase was 19% (Figure 1). Second year residual effect of compost use to spring wheat grain yield was already smaller (8-17%) and statistically non-significant (F=3.2; p=0.07). Residual effect of compost is decreasing year-by-year as expected. In third growing season after application the effect is not significant but it still important to consider, especially if we take in account cumulative yield increase trough all crop rotation. Additionally changes in selected soil parameters (SOC %, pH, PK concentration) will be presented.

  2. Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain.

    PubMed

    Pardini, Giovanni; Gispert, Maria; Dunjó, Gemma

    2004-07-26

    Abandonment of terraced soils and increased brushland cover has increased wildfire occurrence to almost an annual rate in the Cap de Creus Peninsula, NE Pyrenees Range, Province of Girona, Spain. A wildfire occurred in August 2000 and affected an area of 6760 ha of shrubs and cork trees, whereas still cultivated plots were only slightly affected. Five stations of erosion measurements, corresponding to five different environments (from present cultivation to late abandonment) were destroyed by the passage of fire, and were promptly replaced to allow to monitoring post-fire effects on soil erosion. Selected soil properties were determined monthly before the fire and during 6 months after the fire at a monthly rate. Runoff and sediment yield together with dissolved organic carbon (DOC) in runoff water and organic carbon losses in eroded sediments (EOC) were evaluated throughout 2000. The last stage of abandonment, stands of cork trees, had the highest soil stability. Nevertheless, evidence of unfavourable soil conditions was detected at the shrub stage, when Cistus monspeliensis cover was the dominant opportunistic plant. This stage was considered to be a critical threshold leading either to degradation or regeneration processes according to fire frequency. A drastic change in soil properties, erosion and nutrient depletion occurred after the fire in all the environments. Statistics enabled to state that environments differed significantly in main soil properties. By statistically comparing the measured variables between the environments before and after the fire, DOC was found to be the soil parameter showing the highest significance between environments. Absolute values of erosion were low with respect to other Mediterranean environments although the shallow nature of these soils might deserve special attention because of a comparatively higher risk of degradation. Copyright 2004 Elsevier B.V.

  3. Frozen soil parameterization in a distributed biosphere hydrological model

    NASA Astrophysics Data System (ADS)

    Wang, L.; Koike, T.; Yang, K.; Jin, R.; Li, H.

    2010-03-01

    In this study, a frozen soil parameterization has been modified and incorporated into a distributed biosphere hydrological model (WEB-DHM). The WEB-DHM with the frozen scheme was then rigorously evaluated in a small cold area, the Binngou watershed, against the in-situ observations from the WATER (Watershed Allied Telemetry Experimental Research). First, by using the original WEB-DHM without the frozen scheme, the land surface parameters and two van Genuchten parameters were optimized using the observed surface radiation fluxes and the soil moistures at upper layers (5, 10 and 20 cm depths) at the DY station in July. Second, by using the WEB-DHM with the frozen scheme, two frozen soil parameters were calibrated using the observed soil temperature at 5 cm depth at the DY station from 21 November 2007 to 20 April 2008; while the other soil hydraulic parameters were optimized by the calibration of the discharges at the basin outlet in July and August that covers the annual largest flood peak in 2008. With these calibrated parameters, the WEB-DHM with the frozen scheme was then used for a yearlong validation from 21 November 2007 to 20 November 2008. Results showed that the WEB-DHM with the frozen scheme has given much better performance than the WEB-DHM without the frozen scheme, in the simulations of soil moisture profile at the cold regions catchment and the discharges at the basin outlet in the yearlong simulation.

  4. Effects of Pulp and Na-Bentonite Amendments on the Mobility of Trace Elements, Soil Enzymes Activity and Microbial Parameters under Ex Situ Aided Phytostabilization

    PubMed Central

    Wasilkowski, Daniel; Mrozik, Agnieszka

    2017-01-01

    The objective of this study was to explore the potential use of pulp (by-product) from coffee processing and Na-bentonite (commercial product) for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix) and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial), untreated soil (without additives) with grass cultivation and soils treated (with additives) with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0), after 2 months of chemical stabilization (t2) and at the end of the aided phytostabilization process (t14). The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87–91%) and Cd (70–83%) at t14; however, they were characterized by a lower ability to bind Pb (33–50%). Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively) at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold) than for the Na-bentonite treatment (1.3–2.2-fold) as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional diversity of the microorganisms in the treated soils mainly resulted from plant cultivation. Meanwhile, the highest biomass of plants at t14 was collected from the soil with Na-bentonite (6.7 g dw-1), while it was much lower in a case of pulp treatment (1.43–1.57 g dw-1). Moreover, the measurements of the heavy metal concentrations in the plant roots and shoots clearly indicated that the plants mainly accumulated metals in the roots but that the accumulation of individual metals depended on the soil additives. The efficiency of the accumulation of Pb, Cd and Zn by the roots was determined to be 124, 100 and 26% higher in the soil that was enriched with Na-bentonite in comparison with the soil that was amended with pulp, respectively. The values of the soil indices (soil fertility, soil quality and soil alteration) confirmed the better improvement of soil functioning after its enrichment with the pulp than in the presence of Na-bentonite. PMID:28068396

  5. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology.

    PubMed

    Elsgaard, L; Petersen, S O; Debosz, K

    2001-08-01

    Linear alkylbenzene sulfonates (LAS) may occur in sewage sludge that is applied to agricultural soil, in which LAS can be inhibitory to biological activity. As a part of a broader risk assessment of LAS in the terrestrial environment, we tested the short-term effects of aqueous LAS on microbial parameters in a sandy agricultural soil that was incubated for up to 11 d. The assays included 10 microbial soil parameters; ethylene degradation; potential ammonium oxidation; potential dehydrogenase activity; beta-glucosidase activity; iron reduction; the populations of cellulolytic bacteria, fungi and actinomycetes; the basal soil respiration; and the phospholipid fatty acid (PLFA) content. Except for beta-glucosidase activity, basal respiration, and total PLFA content, all soil parameters were sensitive to LAS, with EC10 values in the range of less than 8 to 22 mg/kg dry weight. This probably reflected a similar mode of LAS toxicity, ascribed to cell membrane interactions, and showed that sensitivity to LAS was common for various soil microorganisms. The extracellular beta-glucosidase activity was rather insensitive to LAS (ECI10, 47 mg/kg dry wt), whereas the basal soil respiration was not inhibited even at 793 mg/kg dry weight. This was interpreted as a combined response of inhibited and stimulated compartments of the microbial community. The PLFA content, surprisingly, showed no decrease even at 488 mg/kg. In conclusion, LAS inhibited specific microbial activities, although this could not be deduced from the basal respiration or the total PLFA content. The lowest EC10 values for microbial soil parameters were slightly higher than the predicted no-effect concentrations recently derived for plants and soil fauna (approximately 5 mg/kg dry wt).

  6. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 2. Inverse modeling for eff ective properties

    USGS Publications Warehouse

    Mirus, B.B.; Perkins, K.S.; Nimmo, J.R.; Singha, K.

    2009-01-01

    To understand their relation to pedogenic development, soil hydraulic properties in the Mojave Desert were investi- gated for three deposit types: (i) recently deposited sediments in an active wash, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. Eff ective parameter values were estimated for a simplifi ed model based on Richards' equation using a fl ow simulator (VS2D), an inverse algorithm (UCODE-2005), and matric pressure and water content data from three ponded infi ltration experiments. The inverse problem framework was designed to account for the eff ects of subsurface lateral spreading of infi ltrated water. Although none of the inverse problems converged on a unique, best-fi t parameter set, a minimum standard error of regression was reached for each deposit type. Parameter sets from the numerous inversions that reached the minimum error were used to develop probability distribu tions for each parameter and deposit type. Electrical resistance imaging obtained for two of the three infi ltration experiments was used to independently test fl ow model performance. Simulations for the active wash and Holocene soil successfully depicted the lateral and vertical fl uxes. Simulations of the more pedogenically developed Pleistocene soil did not adequately replicate the observed fl ow processes, which would require a more complex conceptual model to include smaller scale heterogeneities. The inverse-modeling results, however, indicate that with increasing age, the steep slope of the soil water retention curve shitis toward more negative matric pressures. Assigning eff ective soil hydraulic properties based on soil age provides a promising framework for future development of regional-scale models of soil moisture dynamics in arid environments for land-management applications. ?? Soil Science Society of America.

  7. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure.

    PubMed

    Klimkowicz-Pawlas, Agnieszka; Smreczak, Bozena; Ukalska-Jaruga, Aleksandra

    2017-04-01

    The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 μg kg -1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (C org ) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg -1 ), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/C org or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.

  8. Effect of a water-based drilling waste on receiving soil properties and plants growth.

    PubMed

    Saint-Fort, Roger; Ashtani, Sahar

    2014-01-01

    This investigation was undertaken to determine the relative effects of recommended land spraying while drilling (LWD) loading rate application for a source of water-based drilling waste material on selected soil properties and phytotoxicity. Drilling waste material was obtained from a well where a nitrate gypsum water based product was used to formulate the drilling fluid. The fluid and associated drill cuttings were used as the drilling waste source to conduct the experiment. The study was carried out in triplicate and involved five plant species, four drilling waste loading rates and a representative agricultural soil type in Alberta. Plant growth was monitored for a period of ten days. Drilling waste applied at 10 times above the recommended loading rate improved the growth and germination rate of all plants excluding radish. Loading rates in excess of 40 and 50 times had a deleterious effect on radish, corn and oat but not on alfalfa and barley. Germination rate decreased as waste loading rate increased. Effects on soil physical and chemical properties were more pronounced at the 40 and 50 times exceeding recommended loading rate. Significant changes in soil parameters occurred at the higher rates in terms of increase in soil porosity, pH, EC, hydraulic conductivity, SAR and textural classification. This study indicates that the applications of this type of water based drill cutting if executed at an optimal loading rate, may improve soil quality and results in better plant growth.

  9. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  10. Sugarcane Genotype Selection for Sand Soils in Florida

    USDA-ARS?s Scientific Manuscript database

    Selection of high yielding sugarcane (Saccharum spp.) genotypes for organic (muck) soils in Florida has been more successful than for sand soils. The purpose of this study was to compare the performance of 31 sugarcane genotypes on sand soils with and without mill mud added at the rate of 1510 cubic...

  11. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China.

    PubMed

    Gao, Zeyong; Niu, Fujun; Wang, Yibo; Luo, Jing; Lin, Zhanju

    2017-01-01

    The formation of thermokarst lakes can degrade alpine meadow ecosystems through changes in soil water and heat properties, which might have an effect on the regional surface water and groundwater processes. In this study, a typical thermokarst lake was selected in the Qinghai-Tibet Plateau (QTP), and the ecological index (S L ) was used to divide the affected areas into extremely affected, severely affected, medium-affected, lightly affected, and non-affected areas, and soil hydrological properties, including saturated hydraulic conductivity and soil water-holding capacity, were investigated. The results showed that the formation of a thermokarst lake can lead to the degradation of alpine meadows, accompanied by a change in the soil physiochemical and hydrological properties. Specifically, the soil structure turned towards loose soil and the soil nutrients decreased from non-affected areas to severely affected areas, but the soil organic matter and available potassium increased slightly in the extremely affected areas. Soil saturated hydraulic conductivity showed a 1.7- to 4.1-fold increase in the lake-surrounding areas, and the highest value (401.9cmd -1 ) was detected in the severely affected area. Soil water-holding capacity decreased gradually during the transition from the non-affected areas to the severely affected areas, but it increased slightly in the extremely affected areas. The principal component analysis showed that the plant biomass was vital to the changes in soil hydrological properties. Thus, the vegetation might serve as a link between the thermokarst lake and soil hydrological properties. In this particular case, it was concluded that the thermokarst lake adversely affected the regional hydrological services in the alpine ecosystem. These results would be useful for describing appropriate hydraulic parameters with the purpose of modeling soil water transportation more accurately in the Qinghai-Tibet Plateau. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Assessment of the levels of potentially toxic substances around a transect of anthrosols in Aqaba shoreline, Jordan

    NASA Astrophysics Data System (ADS)

    Wahsha, Mohammad; Al-Rousan, Saber; Al-Jawasreh, Raid

    2016-04-01

    Soils are the major sink for potentially toxic substances (PTSs) such as heavy metals released into the environment by emissions from the quickly increasing of human impact including industrial mine tailings, disposal of high metal wastes, land misuse, wastewater irrigation, spillage of petrochemicals, and atmospheric deposition. The present study concerns the properties variability and soil biological health status in abandoned salt transportation port site in the Jordanian coast of the Gulf of Aqaba, Red Sea. Seven sites were selected according to different morphological and pedological conditions, anthropogenic impact and the same climate conditions. Successively, all locations were sampled for topsoil in the period between spring-summer 2014. Field observations as well as laboratory analysis including heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn); soil chemo-physical parameters (pH, soil dry mass, carbonate, water holding, organic carbon content, soil particle size distribution), and quality of soil's biological community were determined. The anthropogenic influence related to former port activity on soils of the studied area is evident. Soils in the studied area site are highly contaminated by PTSs, mainly Cu and Zn, by 648, 298.6 mgKg-1respectively. Former activities proved to affect the microarthropods community altering both quantity and quality of soil and the chemo-physical structure of the microhabitats. The evaluation of soil biological quality index (QBS-ar) of the surface horizons from the study area is demonstrated that the area is "sufferings" since it is affected by PTSs contamination resulting in a failure in the ecological success of secondary recolonization after abandonment. However, there is an increasing need for further research in the soils of Aqaba focusing on soil health management , combining QBS-ar index with soil chemo-physical properties. Key words: Potentially Toxic Substances, Heavy Metals, Soil Quality.

  13. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  14. Towards a methodology for removing and reconstructing soil protists with intact soil microbial communities

    NASA Astrophysics Data System (ADS)

    Hu, Junwei; Tsegaye Gebremikael, Mesfin; Salehi Hosseini, Pezhman; De Neve, Stefaan

    2017-04-01

    Soil ecological theories on the role of soil fauna groups in soil functions are often tested in highly artificial conditions, i.e. on completely sterilized soils or pure quartz sand re-inoculated with a small selection of these fauna groups. Due to the variable sensitivity of different soil biota groups to gamma irradiation, the precise doses that can be administered, and the relatively small disturbance of soil physical and chemical properties (relative to e.g. autoclaving, freezing-thawing and chemical agents), gamma irradiation has been employed to selectively eliminate soil organisms. In recent research we managed to realistically estimate on the contribution of the entire nematode communities to C and N mineralization in soil, by selective removal of nematodes at 5 kGy gamma irradiation doses followed by reinoculation. However, we did not assess the population dynamics of protozoa in response to this irradiation, i.e. we could not assess the potential contribution of protists to the mineralization process. Selective removal of protists from soils with minimal disturbance of the soil microflora has never been attempted and constitutes a highly challenging but potentially groundbreaking technique in soil ecology. Accordingly, the objective of this research is to modify the successful methodology of selective elimination of nematodes, to selectively eliminate soil fauna including nematodes and protists with minimal effects on the soil microbial community and reconstruct soil protists and microbial communities in completely sterilized soil. To this end, we here compared two different approaches: 1) remove nematodes and protists while keeping the microbial community intact (through optimizing gamma irradiation doses); 2) reconstruct protists and microbial communities in sterilized soil (through adding multicellular fauna free pulverized soil). The experiment consists of 7 treatments with soil collected from 0 to 15 cm layer of an organically managed agricultural field: 1) non-irradiated (control); 2-6) irradiated with doses of 5, 7.5, 10, 12.5 and 15 kGy; 7) irradiated with 25 kGy followed by inoculation with multicellular fauna free soil powder. All treatments were incubated using Magenta™ vessels GA-7 which allow air exchange but exclude microbial infection, and we monitor nematode and protist populations after 0, 2, 4 and 8 weeks of incubation by destructive sampling. We also measure the degree of disturbance to the microbial community composition in all treatments as compared to the control soil at the end of incubation. The experiment is ongoing and the data will be presented at the conference.

  15. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  16. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  17. Development of a model to predict ash transport and water pollution risk in fire-affected environments

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Elliot, William J.; Doerr, Stefan H.; Robichaud, Peter R.

    2017-04-01

    An estimated that 15% of the world's population lives in volcanic areas. Recent catastrophic erosion events following wildfires in volcanic terrain have highlighted the geomorphological instability of this soil type under disturbed conditions and steep slopes. Predicting the hydrological and erosional response of this soils in the post-fire period is the first step to design and develop adequate actions to minimize risks in the post-fire period. In this work we apply, for the first time, the Water Erosion Prediction Project model for predicting erosion and runoff events in fire-affected volcanic soils in Europe. Two areas affected by wildfires in 2015 were selected in Tenerife (Spain) representative of different fire behaviour (downhill surface fire with long residence time vs uphill crown fire with short residence time), severity (moderate soil burn severity vs light soil burn severity) and climatic conditions (average annual precipitation of 750 and 210 mm respectively). The actual erosion processes were monitored in the field using silt fences. Rainfall and rill simulations were conducted to determine hydrologic, interrill and rill erosion parameters. The soils were sampled and key properties used as model input, evaluated. During the first 18 months after the fire 7 storms produced runoff and erosion in the selected areas. Sediment delivery reached 5.4 and 2.5 Mg ha-1 respectively in the first rainfall event monitored after the fire, figures comparable to those reported for fire-affected areas of the western USA with similar climatic conditions but lower than those showed by wetter environments. The validation of the WEPP model using field data showed reasonable estimates of hillslope sediment delivery in the post-fire period and, therefore, it is suggested that this model can support land managers in volcanic areas in Europe in predicting post-fire hydrological and erosional risks and designing suitable mitigation treatments.

  18. First application of the WEPP model to predict runoff and erosion risk in fire-affected volcanic areas in Europe

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Robichaud, Peter R.; Elliot, William J.; Doerr, Stefan H.; Notario del Pino, Jesús S.; Lado, Marcos

    2017-04-01

    An estimated that 15% of the world's population lives in volcanic areas. Recent catastrophic erosion events following wildfires in volcanic terrain have highlighted the geomorphological instability of this soil type under disturbed conditions and steep slopes. Predicting the hydrological and erosional response of this soils in the post-fire period is the first step to design and develop adequate actions to minimize risks in the post-fire period. In this work we apply, for the first time, the Water Erosion Prediction Project model for predicting erosion and runoff events in fire-affected volcanic soils in Europe. Two areas affected by wildfires in 2015 were selected in Tenerife (Spain) representative of different fire behaviour (downhill surface fire with long residence time vs uphill crown fire with short residence time), severity (moderate soil burn severity vs light soil burn severity) and climatic conditions (average annual precipitation of 750 and 210 mm respectively). The actual erosion processes were monitored in the field using silt fences. Rainfall and rill simulations were conducted to determine hydrologic, interrill and rill erosion parameters. The soils were sampled and key properties used as model input, evaluated. During the first 18 months after the fire 7 storms produced runoff and erosion in the selected areas. Sediment delivery reached 5.4 and 2.5 Mg ha-1 respectively in the first rainfall event monitored after the fire, figures comparable to those reported for fire-affected areas of the western USA with similar climatic conditions but lower than those showed by wetter environments. The validation of the WEPP model using field data showed reasonable estimates of hillslope sediment delivery in the post-fire period and, therefore, it is suggested that this model can support land managers in volcanic areas in Europe in predicting post-fire hydrological and erosional risks and designing suitable mitigation treatments.

  19. Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico

    USGS Publications Warehouse

    Knutilla, R.L.; Veenhuis, J.E.

    1994-01-01

    Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.

  20. Obtaining soil hydraulic parameters from data assimilation under different climatic/soil conditions

    USDA-ARS?s Scientific Manuscript database

    Obtaining reliable soil hydraulic properties is essential to correctly simulating soil water content (SWC), which is a key component of countless applications such as agricultural management, soil remediation, aquifer protection, etc. Soil hydraulic properties can be measured in the laboratory; howe...

  1. Development of a predictive model for lead, cadmium and fluorine soil-water partition coefficients using sparse multiple linear regression analysis.

    PubMed

    Nakamura, Kengo; Yasutaka, Tetsuo; Kuwatani, Tatsu; Komai, Takeshi

    2017-11-01

    In this study, we applied sparse multiple linear regression (SMLR) analysis to clarify the relationships between soil properties and adsorption characteristics for a range of soils across Japan and identify easily-obtained physical and chemical soil properties that could be used to predict K and n values of cadmium, lead and fluorine. A model was first constructed that can easily predict the K and n values from nine soil parameters (pH, cation exchange capacity, specific surface area, total carbon, soil organic matter from loss on ignition and water holding capacity, the ratio of sand, silt and clay). The K and n values of cadmium, lead and fluorine of 17 soil samples were used to verify the SMLR models by the root mean square error values obtained from 512 combinations of soil parameters. The SMLR analysis indicated that fluorine adsorption to soil may be associated with organic matter, whereas cadmium or lead adsorption to soil is more likely to be influenced by soil pH, IL. We found that an accurate K value can be predicted from more than three soil parameters for most soils. Approximately 65% of the predicted values were between 33 and 300% of their measured values for the K value; 76% of the predicted values were within ±30% of their measured values for the n value. Our findings suggest that adsorption properties of lead, cadmium and fluorine to soil can be predicted from the soil physical and chemical properties using the presented models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.

  3. Comparison of two methods for calculating the P sorption capacity parameter in soils

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) cycling in soils is an important process affecting P movement through the landscape. The P cycling routines in many computer models are based on the relationships developed for the EPIC model. An important parameter required for this model is the P sorption capacity parameter (PSP). I...

  4. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  5. Using DRASTIC'' to improve the accuracy of a geographical information system used for solid waste disposal facility siting: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, D.A.

    Beginning in 1989, the citizens and commissioners of Alachua County, Florida began to develop a siting plan for a new solid waste disposal facility (SWDF). Through a cooperative effort with a private consulting firm, several evaluative criteria were selected and then translated into parameters for a geographical information system (GIS). Despite efforts to avoid vulnerable hydrogeology, the preferred site selected was in close proximity to the well field supplying Gainesville, Florida, home to approximately 75 percent of the county's population. The results brought forth a wave of protests from local residents claiming that leachate from the proposed SWDF would contaminatemore » their drinking water. In this study, DRASTIC'' was applied in order to improve the accuracy and defensibility of the aquifer protection-based GIS parameters. DRASTIC'', a method for evaluating ground water contamination potential, is an acronym which stands for Depth to Water, Net Recharge, Aquifer Media, Soil Media, Topography, Impact of Vadose Zone Media, and Conductivity (Hydraulic)''.« less

  6. Fine and coarse root parameters from mature black spruce displaying genetic x soil moisture interaction in growth

    Treesearch

    John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell

    2012-01-01

    Fine and coarse root biomass, C, and N mass parameters were assessed by root size and soil depths from soil cores in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and wet...

  7. Inventory of File ndas.t12z.awip3d00.tm03.grib2

    Science.gov Websites

    parameter in canopy conductance [Fraction] 529 surface RCSOL analysis Soil moisture parameter in canopy -0.1 m below ground TSOIL analysis Soil Temperature Validation to deprecate [K] 532 0-0.1 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 533 0.1-0.4 m below ground TSOIL

  8. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.

    PubMed

    Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui

    2018-01-01

    Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.

  9. Towards soil property retrieval from space: Proof of concept using in situ observations

    NASA Astrophysics Data System (ADS)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  10. Coccidioides niches and habitat parameters in the southwestern United States: A matter of scale

    USGS Publications Warehouse

    Fisher, F.S.; Bultman, M.W.; Johnson, S.M.; Pappagianis, D.; Zaborsky, E.; ,

    2007-01-01

    To determine habitat attributes and processes suitable for the growth of Coccidioides, soils were collected from sites in Arizona, California, and Utah where Coccidioides is known to have been present. Humans or animals or both have been infected by Coccidioides at all of the sites. Soil variables considered in the upper 20 cm of the soil profile included pH, electrical conductivity, salinity, selected anions, texture, mineralogy, vegetation types and density, and the overall geomorphologic and ecological settings. Thermometerswere buried to determine the temperature range in the upper part of the soil where Coccidioides is often found. With the exception of temperature regimes and soil textures, it is striking that none of the other variables or group of variables that might be definitive are indicative of the presence of Coccidioides. Vegetation ranges from sparse to relatively thick cover in lower Sonoran deserts, Chaparral-upper Sonoran brush and grasslands, and Mediterranean savannas and forested foothills. No particular grass, shrub, or forb is definitive. Material classified as very fine sand and silt is abundant in all of the Coccidioides-bearing soils and may be their most common shared feature. Clays are not abundant (less than 10%). All of the examined soil locations are noteworthy as generally 50% of the individuals who were exposed to the dust or were excavating dirt at the sites were infected. Coccidioides has persisted in the soil at a site in Dinosaur National Monument, Utah for 37 years and at a Tucson, Arizona site for 41 years. ?? 2007 New York Academy of Sciences.

  11. Multi-criteria Decision Support System (DSS) for optimal locations of Soil Aquifer Treatment (SAT) facilities.

    PubMed

    Tsangaratos, P; Kallioras, A; Pizpikis, Th; Vasileiou, E; Ilia, I; Pliakas, F

    2017-12-15

    Managed Aquifer Recharge is a wide-spread well-established groundwater engineering method which is largely seen as sound and sustainable solution to water scarcity hydrologically sensitive areas, such as the Circum Mediterranean. The process of site selection for the installation of a MAR facility is of paramount importance for the feasibility and effectiveness of the project itself, especially when the facility will include the use of waters of impaired quality as a recharge source, as in the case of Soil-Aquifer-Treatment systems. The main objective of this study is to present the developed framework of a multi-criteria Decision Support System (DSS) that integrates within a dynamic platform the main groundwater engineering parameters associated with MAR applications together with the general geographical features which determine the effectiveness of such a project. The proposed system will provide an advanced coupled DSS-GIS tool capable of handling local MAR-related issues -such as hydrogeology, topography, soil, climate etc., and spatially distributed variables -such as societal, economic, administrative, legislative etc., with special reference to Soil-Aquifer-Treatment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The evolution of concepts for soil erosion modelling

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2013-04-01

    From the earliest models for soil erosion, based on power laws relating sediment discharge or yield to slope length and gradient, the development of the Universal Soil Loss Equation was a natural step, although one that has long continued to hinder the development of better perceptual models for erosion processes. Key stumbling blocks have been: 1. The failure to go through runoff generation as a key intermediary 2. The failure to separate hydrological and strength parameters of the soil 3. The failure to treat sediment transport along a slope as a routing problem 4. The failure to analyse the nature of the dependence on vegetation Key advances have been in these directions (among others) 1. Improved understanding of the hydrological processes (e.g. infiltration and runoff, sediment entrainment) leading to KINEROS, LISEM,WEPP, PESERA 2. Recognition of selective sediment transport (e.g. transport- or supply-limited removal, grain travel distances) leading e.g. to MAHLERAN 3. Development of models adapted to particular time/space scales Some major remaining problems 1. Failure to integrate geomorphological and agronomic approaches 2. Tillage erosion - Is erosion loss of sediment or lowering of centre of mass? 3. Dynamic change during an event, as rills etc form.

  13. Stabilization of heavy metals in soil using two organo-bentonites.

    PubMed

    Yu, Kai; Xu, Jian; Jiang, Xiaohong; Liu, Cun; McCall, Wesley; Lu, Jinlong

    2017-10-01

    Stabilization of Cu, Zn, Cd, Hg, Cr and As in soil using tetramethylammonium (TMA) and dodecyltrimethylammonium (DTMA) modified bentonites (T-Bents and D-Bents) as amendments was investigated. Toxicity characteristic leaching procedure (TCLP) was used to quantify the metal mobility after soil treatment. The structural parameters of modified bentonites, including the BET surface area, basal spacing and zeta potential were obtained as a function of the TMA and DTMA loading at 40, 80, 120, 160 and 200% of the bentonite's cation exchange capacity, respectively. The results indicated that the characteristics of the organo-bentonites fundamentally varied depending on the species and concentration of modifiers loaded on bentonite. T-Bents and D-Bents manifested distinct immobilization effectiveness towards various metals. In association with the organo-bentonite characteristics, the main interactive mechanisms for Cu, Zn and Cd proceeded via cation exchange, Hg proceeded via physical adsorption and partitioning, Cr and As proceeded via specific adsorption and electrostatic attraction, respectively. This study provided operational and mechanistic basis for optimizing the organic clay synthesis and selecting as the appropriate amendment for remediation of heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of different management systems on soil CO2 emission and plant growth in a maize field

    NASA Astrophysics Data System (ADS)

    Dencso, Marton; Gelybó, Györgyi; Kása, Ilona; Pokovai, Klára; Potyó, Imre; Horel, Ágota; Birkás, Márta; Takács, Tünde; Tóth, Eszter

    2017-04-01

    In this study soil CO2 emission was examined in a long-term tillage experiment along with observations of plant morphological parameters, arbuscular mycorrhizal fungal (AMF) root colonization, soil properties and soil hydrothermal regime on loamy clay soil (Józsefmajor, Hungary) sown with maize. The tillage experiment was set up in 2002 and we focused on measurements performed in 2016. Based on soil disturbance depths, we selected three different tillage types such as ploughing (26-32 cm), shallow cultivation (12-16 cm), and no tillage (0 cm) for the present study. We examined CO2 emissions in rows compared to between rows within the same treatment in order to estimate the CO2 emission pattern in case of the different treatments. The measurements were carried out using the static chamber method in seven spatial replicates per treatment. For investigating plant morphological parameters of the maize we measured height of plants, leaf number and area, girth area of stem...etc. The CO2 data showed that the difference between ploughing and no tillage treatments was higher in the vegetation period of 2016 than during the dormant season. There were higher CO2 emissions in case of chambers inserted in rows than between rows on average, moreover there were significant differences between certain chambers installed in rows and between rows according to statistical data. This phenomenom can be explained by the enhanced root repiration in the rows. Based on plant morphology measurements we observed that plant developement was slower in no tillage treatment than in ploughing. Depending on sampling date, height of plants data showed 1.1 to 1.5 higher values, while leaf area data showed 1.2 to 2.5 times higher areas in case of ploughing compared to no tillage treatment. This can be due to the different soil conditions and textures of the treatments. The AMF root colonization data showed minor differences between ploughing and no tillage treatments, the highest colonization rates were found in case of shallow cultivation.

  15. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems.

    PubMed

    Pöthig, Rosemarie; Behrendt, Horst; Opitz, Dieter; Furrer, Gerhard

    2010-02-01

    Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries. Soils from areas which varied highly in land use and soil type were investigated regarding the degree of P saturation (DPS) as well as the equilibrium P concentration (EPC(0)) and water-soluble P (WSP) as indicators for the potential of P loss. The parameters DPS and EPC(0) were determined from P sorption isotherms. Our investigation of more than 400 soil samples revealed coherent relationships between DPS and EPC(0) as well as WSP. The complex parameter DPS, characterizing the actual P status of soil, is accessible from a simple standard measurement of WSP based on the equation [Formula: see text]. The parameter WSP in this equation is a function of remaining phosphorous sorption capacity/total accumulated phosphorous (SP/TP). This quotient is independent of soil type due to the mutual compensation of the factors SP and TP. Thus, the relationship between DPS and WSP is also independent of soil type. The degree of P saturation, which reflects the actual state of P fertilization of soil, can be calculated from the easily accessible parameter WSP. Due to the independence from soil type and land use, the relation is valid for all soils. Values of WSP, which exceed 5 mg P/kg soil, signalize a P saturation between 70% and 80% and thus a high risk of P loss from soil. These results reveal a new approach of risk assessment for P loss from soils to surface and ground waters. The consequent application of this method may globally help to save the vital resources of our terrestrial and aquatic ecosystems.

  16. Isolation and Screening of Bacteria for Their Diazotrophic Potential and Their Influence on Growth Promotion of Maize Seedlings in Greenhouses

    PubMed Central

    Kifle, Medhin H.; Laing, Mark D.

    2016-01-01

    Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety-two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4) production was quantified and ranged from 4 to 73 nmoles of C2H4h−1 culture−1. The top 20 isolates were re-screened on maize seedlings, and eight isolates significantly (P = 0.001) enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers. PMID:26779245

  17. Isolation and Screening of Bacteria for Their Diazotrophic Potential and Their Influence on Growth Promotion of Maize Seedlings in Greenhouses.

    PubMed

    Kifle, Medhin H; Laing, Mark D

    2015-01-01

    Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety-two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4) production was quantified and ranged from 4 to 73 nmoles of C2H4h(-1) culture(-1). The top 20 isolates were re-screened on maize seedlings, and eight isolates significantly (P = 0.001) enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers.

  18. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    PubMed

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio < 15; (b) NH4+-N < 400 mg/kg; (c) CO2-C < 2000 mg CO2-C/kg; (d) dehydrogenase activity < 1 mg TPF/g dry matter; (e) germination index (GI) > 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  19. Microbial community assembly patterns under incipient conditions in a basaltic soil system

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Stegen, J.; Alves Meira Neto, A.; Wang, Y.; Chorover, J.; Troch, P. A. A.; Maier, R. M.

    2017-12-01

    In sub-surface environments, the biotic components are critically linked to the abiotic processes. However, there is limited understanding of community establishment, functional associations, and community assembly processes of such microbes in sub-surface environments. This study presents the first analysis of microbial signatures in an incipient terrestrial basalt soil system conducted under controlled conditions. A sub-meter scale sampling of a soil mesocosm revealed the contrasting distribution patterns of simple soil parameters such as bulk density and electrical conductivity. Phylogenetic analysis of 16S rRNA gene indicated the presence of a total 40 bacterial and archaeal phyla, with high relative abundance of Actinobacteria on the surface and highest abundance of Proteobacteria throughout the system. Community diversity patterns were inferred to be dependent on depth profile and average water content in the system. Predicted functional gene analysis suggested mixotrophy lifestyles with both autotrophic and heterotrophic metabolisms, likelihood of a unique salt tolerant methanogenic pathway with links to novel Euryarchea, signatures of an incomplete nitrogen cycle, and predicted enzymes of extracellular iron (II) to iron (III) conversion followed by intracellular uptake, transport and regulation. Null modeling revealed microbial community assembly was predominantly governed by variable selection, but the influence of the variable selection did not show systematic spatial structure. The presence of significant heterogeneity in predicted functions and ecologically deterministic shifts in community composition in a homogeneous incipient basalt highlights the complexity exhibited by microorganisms even in the simplest of environmental systems. This presents an opportunity to further develop our understanding of how microbial communities establish, evolve, impact, and respond in sub-surface environments.

  20. Ecosystem health in mineralized terrane; data from podiform chromite (Chinese Camp mining district, California), quartz alunite (Castle Peak and Masonic mining districts, Nevada/California), and Mo/Cu porphyry (Battle Mountain mining district, Nevada) deposits

    USGS Publications Warehouse

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    The myriad definitions of soil/ecosystem quality or health are often driven by ecosystem and management concerns, and they typically focus on the ability of the soil to provide functions relating to biological productivity and/or environmental quality. A variety of attempts have been made to create indices that quantify the complexities of soil quality and provide a means of evaluating the impact of various natural and anthropogenic disturbances. Though not without their limitations, indices can improve our understanding of the controls behind ecosystem processes and allow for the distillation of information to help link scientific and management communities. In terrestrial systems, indices were initially developed and modified for agroecosystems; however, the number of studies implementing such indices in nonagricultural systems is growing. Soil quality indices (SQIs) are typically composed of biological (and sometimes physical and chemical) parameters that attempt to reduce the complexity of a system into a metric of a soil’s ability to carry out one or more functions.The indicators utilized in SQIs can be as varied as the studies themselves, reflecting the complexity of the soil and ecosystems in which they function. Regardless, effective soil quality indicators should correlate well with soil or ecosystem processes, integrate those properties and processes, and be relevant to management practices. Commonly applied biological indicators include measures associated with soil microbial activity or function (for example, carbon and nitrogen mineralization, respiration, microbial biomass, enzyme activity. Cost, accessibility, ease of interpretation, and presence of existing data often dictate indicator selection given the number of available measures. We employed a large number of soil biological, chemical, and physical measures, along with measures of vegetation cover, density, and productivity, in order to test the utility and sensitivity of these measures within various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts.The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  1. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.

    PubMed

    Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi

    2015-06-01

    Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.

  2. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters.

    PubMed

    Bousbih, Safa; Zribi, Mehrez; Lili-Chabaane, Zohra; Baghdadi, Nicolas; El Hajj, Mohammad; Gao, Qi; Mougenot, Bernard

    2017-11-14

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects.

  3. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters

    PubMed Central

    Bousbih, Safa; Lili-Chabaane, Zohra; El Hajj, Mohammad; Gao, Qi

    2017-01-01

    The main objective of this study is to analyze the potential use of Sentinel-1 (S1) radar data for the estimation of soil characteristics (roughness and water content) and cereal vegetation parameters (leaf area index (LAI), and vegetation height (H)) in agricultural areas. Simultaneously to several radar acquisitions made between 2015 and 2017, using S1 sensors over the Kairouan Plain (Tunisia, North Africa), ground measurements of soil roughness, soil water content, LAI and H were recorded. The NDVI (normalized difference vegetation index) index computed from Landsat optical images revealed a strong correlation with in situ measurements of LAI. The sensitivity of the S1 measurements to variations in soil moisture, which has been reported in several scientific publications, is confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is stronger in the VV (vertical) polarization than in the VH cross-polarization. The results also reveal a similar increase in the dynamic range of radar signals observed in the VV and VH polarizations as a function of soil roughness. The sensitivity of S1 measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is observed in the VH polarization, probably as a consequence of volume scattering effects. PMID:29135929

  4. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    NASA Astrophysics Data System (ADS)

    Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun

    2015-06-01

    In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  5. SUGARCANE GENOTYPE SELECTION ON A SAND SOIL WITH AND WITHOUT ADDED MILL MUD

    USDA-ARS?s Scientific Manuscript database

    Long-term results for identifying high yielding sugarcane Saccharum spp.) cultivars have been better for Histosols (muck soils) than sand soils in Florida. We examined whether genotype selection could be improved by comparing genotypes on a sand soil with and without added mill mud (in Florida, mill...

  6. Informing soil models using pedotransfer functions: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov; Romano, Nunzio

    2015-04-01

    Pedotransfer functions (PTFs) are empirical relationships between parameters of soil models and more easily obtainable data on soil properties. PTFs have become an indispensable tool in modeling soil processes. As alternative methods to direct measurements, they bridge the data we have and data we need by using soil survey and monitoring data to enable modeling for real-world applications. Pedotransfer is extensively used in soil models addressing the most pressing environmental issues. The following is an attempt to provoke a discussion by listing current issues that are faced by PTF development. 1. As more intricate biogeochemical processes are being modeled, development of PTFs for parameters of those processes becomes essential. 2. Since the equations to express PTF relationships are essentially unknown, there has been a trend to employ highly nonlinear equations, e.g. neural networks, which in theory are flexible enough to simulate any dependence. This, however, comes with the penalty of large number of coefficients that are difficult to estimate reliably. A preliminary classification applied to PTF inputs and PTF development for each of the resulting groups may provide simple, transparent, and more reliable pedotransfer equations. 3. The multiplicity of models, i.e. presence of several models producing the same output variables, is commonly found in soil modeling, and is a typical feature in the PTF research field. However, PTF intercomparisons are lagging behind PTF development. This is aggravated by the fact that coefficients of PTF based on machine-learning methods are usually not reported. 4. The existence of PTFs is the result of some soil processes. Using models of those processes to generate PTFs, and more general, developing physics-based PTFs remains to be explored. 5. Estimating the variability of soil model parameters becomes increasingly important, as the newer modeling technologies such as data assimilation, ensemble modeling, and model abstraction, become progressively more popular. The variability PTFs rely on the spatio-temporal dynamics of soil variables, and that opens new sources of PTF inputs stemming from technology advances such as monitoring networks, remote and proximal sensing, and omics. 6. Burgeoning PTF development has not so far affected several persisting regional knowledge gaps. Remarkably little effort was put so far into PTF development for saline soils, calcareous and gypsiferous soils, peat soils, paddy soils, soils with well expressed shrink-swell behavior, and soils affected by freeze-thaw cycles. 7. Soils from tropical regions are quite often considered as a pseudo-entity for which a single PTF can be applied. This assumption will not be needed as more regional data will be accumulated and analyzed. 8. Other advances in regional PTFs will be possible due to presence of large databases on region-specific useful PTF inputs such as moisture equivalent, laser diffractometry data, or soil specific surface. 9. Most of flux models in soils, be it water, solutes, gas, or heat, involve parameters that are scale-dependent. Including scale dependencies in PTFs will be critical to improve PTF usability. 10. Another scale-related matter is pedotransfer for coarse-scale soil modeling, for example, in weather or climate models. Soil hydraulic parameters in these models cannot be measured and the efficiency of the pedotransfer can be evaluated only in terms of its utility. There is a pressing need to determine combinations of pedotransfer and upscaling procedures that can lead to the derivation of suitable coarse-scale soil model parameters. 11. The spatial coarse scale often assumes a coarse temporal support, and that may lead to including in PTFs other environmental variables such as topographic, weather, and management attributes. 12. Some PTF inputs are time- or space-dependent, and yet little is known whether the spatial or temporal structure of PTF outputs is properly predicted from such inputs 13. Further exploration is needed to use PTF as a source of hypotheses on and insights into relationships between soil processes and soil composition as well as between soil structure and soil functioning. PTFs are empirical relationships and their accuracy outside the database used for the PTF development is essentially unknown. Therefore they should never be considered as an ultimate source of parameters in soil modeling. Rather they strive to provide a balance between accuracy and availability. The primary role of PTF is to assist in modeling for screening and comparative purposes, establishing ranges and/or probability distributions of model parameters, and creating realistic synthetic soil datasets and scenarios. Developing and improving PTFs will remain the mainstream way of packaging data and knowledge for applications of soil modeling.

  7. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.

    PubMed

    Chen, Jun; Wang, Hao; Yao, Yangping

    2016-07-01

    In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results

    NASA Astrophysics Data System (ADS)

    Banwart, Steven; Menon, Manoj; Bernasconi, Stefano M.; Bloem, Jaap; Blum, Winfried E. H.; Souza, Danielle Maia de; Davidsdotir, Brynhildur; Duffy, Christopher; Lair, Georg J.; Kram, Pavel; Lamacova, Anna; Lundin, Lars; Nikolaidis, Nikolaos P.; Novak, Martin; Panagos, Panos; Ragnarsdottir, Kristin Vala; Reynolds, Brian; Robinson, David; Rousseva, Svetla; de Ruiter, Peter; van Gaans, Pauline; Weng, Liping; White, Tim; Zhang, Bin

    2012-11-01

    Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to protect soil and reverse degradation. New research on soil processes is being driven by the scientific hypothesis that soil processes can be described along a life cycle of soil development. This begins with formation of new soil from parent material, development of the soil profile, and potential loss of the developed soil functions and the soil itself under overly intensive anthropogenic land use, thus closing the cycle. Four Critical Zone Observatories in Europe have been selected focusing research at sites that represent key stages along the hypothetical soil life cycle; incipient soil formation, productive use of soil for farming and forestry, and decline of soil due to longstanding intensive agriculture. Initial results from the research show that soil develops important biogeochemical properties on the time scale of decades and that soil carbon and the development of favourable soil structure takes place over similar time scales. A new mathematical model of soil aggregate formation and degradation predicts that set-aside land at the most degraded site studied can develop substantially improved soil structure with the accumulation of soil carbon over a period of several years. Further results demonstrate the rapid dynamics of soil carbon; how quickly it can be lost, and also demonstrate how data from the CZOs can be used to determine parameter values for models at catchment scale. A structure for a new integrated Critical Zone model is proposed that combines process descriptions of carbon and nutrient flows, a simplified description of the soil food web, and reactive transport; all coupled with a dynamic model for soil structure and soil aggregation. This approach is proposed as a methodology to analyse data along the soil life cycle and test how soil processes and rates vary within, and between, the CZOs representing different life cycle stages. In addition, frameworks are discussed that will help to communicate the results of this science into a more policy relevant format using ecosystem service approaches.

  9. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado.

    PubMed

    Anache, Jamil A A; Flanagan, Dennis C; Srivastava, Anurag; Wendland, Edson C

    2018-05-01

    Land use and climate change can influence runoff and soil erosion, threatening soil and water conservation in the Cerrado biome in Brazil. The adoption of a process-based model was necessary due to the lack of long-term observed data. Our goals were to calibrate the WEPP (Water Erosion Prediction Project) model for different land uses under subtropical conditions in the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change. We performed the model calibration using a 5-year dataset (2012-2016) of observed runoff and soil loss in four different land uses (wooded Cerrado, tilled fallow without plant cover, pasture, and sugarcane) in experimental plots. Selected soil and management parameters were optimized for each land use during the WEPP model calibration with the existing field data. The simulations were conducted using the calibrated WEPP model components with a 100-year climate dataset created with CLIGEN (weather generator) based on regional climate statistics. We obtained downscaled General Circulation Model (GCM) projections, and runoff and soil loss were predicted with WEPP using future climate scenarios for 2030, 2060, and 2090 considering different Representative Concentration Pathways (RCPs). The WEPP model had an acceptable performance for the subtropical conditions. Land use can influence runoff and soil loss rates in a significant way. Potential climate changes, which indicate the increase of rainfall intensities and depths, may increase the variability and rates of runoff and soil erosion. However, projected climate changes did not significantly affect the runoff and soil erosion for the four analyzed land uses at our location. Finally, the runoff behavior was distinct for each land use, but for soil loss we found similarities between pasture and wooded Cerrado, suggesting that the soil may attain a sustainable level when the land management follows conservation principles. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    PubMed

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  11. Preliminary study of soil permeability properties using principal component analysis

    NASA Astrophysics Data System (ADS)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  12. Linear Regression between CIE-Lab Color Parameters and Organic Matter in Soils of Tea Plantations

    NASA Astrophysics Data System (ADS)

    Chen, Yonggen; Zhang, Min; Fan, Dongmei; Fan, Kai; Wang, Xiaochang

    2018-02-01

    To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0-10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) ( r = -0.84 and -0.80, respectively), a* value (correlation coefficient r = -0.51 and -0.46, respectively) and b* value ( r = -0.76 and -0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.

  13. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and demethylation was not implemented, because it could be neglected in an oxidising environment. However, if the model is to be tested in more reducing conditions (e.g. shallow groundwater table), methyl- and dimethylmercury formation can be non negligible. Using 50 year time series of daily weather observations in Dessel (Belgium) and a typical sandy soil with deep groundwater (free drainage, oxic conditions), a sensitivity analysis was performed to assess the relative importance of processes and parameters within the model. We used the elementary effects method (Morris, 1991; Campolongo et al., 2007), which draws trajectories across the parameter space to derive information on the global sensitivity of the selected input parameters. The impact of different initial contamination phases (solid, NAPL, aqueous and combinations of these) was also tested. Simulation results are presented in terms of (i) Hg volatilized to the atmosphere; (ii) Hg leached out of the soil profile; (iii) Hg still present in the soil horizon originally polluted; and (iv) Hg still present in the soil profile but below the original contaminated horizon. Processes and parameters identified as critical based on the sensitivity analysis differ from one scenario to the other ; depending on pollution type (cinnabar, NAPL, aqueous Hg), on the indicator assessed and on time (after 5, 25 or 50 years). However, in general DOM in soil water was the most critical parameter. Other important parameters were those related to Hg sorption on SOM (thiols, and humic and fulvic acids), and to Hg complexation with DOM. Initial Hg concentration was also often identified as a sensitive parameter. Interactions between factors and non linear effects as measured by the elementary effect method were generally important, but also dependent on the type of contamination and on time. No model calibration was performed until now. The numerical tool could greatly benefit from partial model calibration and/or validation. Ideally, detailed speciation data on a contaminated sites would be required, together with a good characterization of the pollution source. References : Blanc, P., Lassin, A. and Piantone, P. (2012), THERMODDEM a database devoted to waste minerals, BRGM, Orléans, France. http://thermoddem.brgm.fr Campolongo, F., Cariboni, J. and Saltelli, A. (2007), An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software 22(10): 1509-1518. Jacques, D. and Šimůnek, J. (2010), Notes on HP1 - a software package for simulating variably-saturated water flow, heat transport, solute transport and biogeochemistry in porous media, HP1 Version 2.2 SCK•CEN-BLG-1068, Waste & Disposal Department, SCK•CEN, Mol, Belgium: 113 p. Morris, M. D. (1991), Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics 33(2): 161-174. Skyllberg, U. (2012), Chemical Speciation of Mercury in Soil and Sediment. Environmental Chemistry and Toxicology of Mercury, John Wiley & Sons, Inc.: 219-258.

  14. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  15. A novel multiple batch extraction test to assess contaminant mobilization from porous waste materials

    NASA Astrophysics Data System (ADS)

    Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.

    2009-04-01

    Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.

  16. Application of Terahertz Radiation to Soil Measurements: Initial Results

    PubMed Central

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  17. An improved Rosetta pedotransfer function and evaluation in earth system models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2017-12-01

    Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.

  18. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, L.L.; DeCrappeo, N.M.; Ippolito, J.A.

    2014-01-01

    Soils developed on relict hydrothermally altered soils throughout the Western USA present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally altered (acid-sulfate) sites located in and around Lassen VolcanicNational Park in northeastern California. In addition, three different types of disturbed areas (clearcut, thinned, and pipeline) were sampled in acid-sulfate altered sites. Soils were sampled (0–15 cm) in mid-summer 2010 from both under-canopy and between-canopy areas within each of the sites. Soils were analyzed for numerous physical and chemical properties along with soil enzyme assays, C and N mineralization potential, microbial biomass-C and C-substrate utilization. Field vegetation measurements consisted of canopy cover by life form (tree, shrub, forb, and grass), tree and shrub density, and above-ground net primary productivity of the understory. Overall, parameters at the clearcut sites were more similar to the unaltered sites, while parameters at the thinned and pipeline sites were more similar to the altered sites. We employed principal components analysis (PCA) to develop two soil quality indices (SQI) to help quantify the differences among the sites: one based on the correlation between soil parameters and canopy cover, and the second based on six sub-indices. Soil quality indices developed in these systems could provide a means for monitoring and identifying key relations between the vegetation, soils, and microorganisms.

  19. Selected trace metals and organic compounds and bioavailability of selected organic compounds in soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    USGS Publications Warehouse

    Becker, M.F.

    1997-01-01

    In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above the analytical detection levels and, if present, in the soil samples are at concentrations below the detection level of the analytical method used. Organochlorine pesticides, total polychlorinated biphenyls, and polyaromatic hydrocarbons were not detected in any of the semipermeable membrane devices at the analytical detection levels.

  20. Expanding soil health assessment methods for agricultural systems of the southern great plains

    USDA-ARS?s Scientific Manuscript database

    In agricultural systems, soil health (also referred as soil quality) is critical for sustainable production and ecosystem services. Soil health analyses dependent upon singular parameters fail to account for the host of interactions occurring within the soil ecosystem. Soil health is in flux with m...

  1. Assessing quality of citizen scientists’ soil texture estimates to evaluate land potential

    USDA-ARS?s Scientific Manuscript database

    Texture influences nearly all soil processes and is often the most measured parameter in soil science. Estimating soil texture is a universal and fundamental practice applied by resource scientists to classify and understand the behavior and management of soil systems. While trained soil scientist c...

  2. Natural recovery of biological soil crusts after disturbance

    USGS Publications Warehouse

    Weber, Bettina; Bowker, Matthew A.; Zhang, Yuanming; Belnap, Jayne

    2016-01-01

    Natural recovery of biological soil crusts (biocrusts) is influenced by a number of different parameters, such as climate, soil conditions, the severity of disturbance, and the timing of disturbance relative to the climatic conditions. In recent studies, it has been shown that recovery is often not linear, but a highly dynamic process directly influenced by non-linear external parameters as extraordinary climatic conditions (e.g., particularly dry or wet year). Natural recovery often follows a general succession pattern, starting out with cyanobacteria and algae, which is then followed by lichens and bryophytes at a later stage. However, this general sequence can be altered by parameters like dust deposition, fire effects, and special climatic conditions as in fog deserts and under mesic climates. Recent studies have proposed that under favorable, stable soil conditions, the initial soil-stabilizing cyanobacteria-dominated succession stages may be omitted and moss-dominated biocrusts can develop in the initial phases of biocrust development. During natural recovery of biocrusts, soil properties change, e.g., soil nutrient and organic matter contents increase. Also, silt and clay contents of encrusted soils increase with biocrust maturity, which may be caused by two mechanisms, i.e. entrapment of fine soil particles by biocrusts and the new formation of smaller particles by weathering of the existing substrate.

  3. Mechanical and deformation analyses of pile foundation for supporting structure of off-shore wind turbine at Changhua coast in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Lin, D. G.

    2015-12-01

    This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chang-Hua coast of western Taiwan for the supporting structure of offshore wind turbine. A series of three-dimensional (3-D) numerical modeling of pile foundation subjected to various types of combined loading were carried out using Plaix-3D finite element program to investigate the interactive behaviors between soil and pile. In the numerical modeling, pile diameter, pile length and pile spacing were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of the pile foundation. For a specific design parameter combination, one can obtain the corresponding loading-displacement curve, various ultimate bearing capacities, V-H (Vertical-Horizontal combined loading) ultimate bearing capacity envelope, and p-ycurve of pile foundation. Numerical results indicate that: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance on the soil-pile interface is ascending with the increases of depth, pile diameter and pile length. (3) The vertical and horizontal bearing capacities of pile group increase significantly with the increase of pile diameter. (4) The vertical and bending moment capacities of pile group increase greatly with the increase of pile length whereas the horizontal capacity is almost insensitive to pile length. (5) The bending moment of pile is highly influenced by the pile spacing. (6) For different design parameters, the shape of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the design parameters increase. For different loading levels of bending moment, the envelopes on V-H plane will contract gradually as the bending moment loading increasing.

  4. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    PubMed

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  5. Evaluation of Two Soil Water Redistribution Models (Finite Difference and Hourly Cascade Approach) Through The Comparison of Continuous field Sensor-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ferreyra, R.; Stockle, C. O.; Huggins, D. R.

    2014-12-01

    Soil water storage and dynamics are of critical importance for a variety of processes in terrestrial ecosystems, including agriculture. Many of those systems are under significant pressure in terms of water availability and use. Therefore, assessing alternative scenarios through hydrological models is an increasingly valuable exercise. Soil water holding capacity is defined by the concepts of soil field capacity and plant available water, which are directly related to soil physical properties. Both concepts define the energy status of water in the root system and closely interact with plant physiological processes. Furthermore, these concepts play a key role in the environmental transport of nutrients and pollutants. Soil physical parameters (e.g. saturated hydraulic conductivity, total porosity and water release curve) are required as input for field-scale soil water redistribution models. These parameters are normally not easy to measure or monitor, and estimation through pedotransfer functions is often inadequate. Our objectives are to improve field-scale hydrological modeling by: (1) assessing new undisturbed methodologies for determining important soil physical parameters necessary for model inputs; and (2) evaluating model outputs, making a detailed specification of soil parameters and the particular boundary condition that are driving water movement under two contrasting environments. Soil physical properties (saturated hydraulic conductivity and determination of water release curves) were quantified using undisturbed laboratory methodologies for two different soil textural classes (silt loam and sandy loam) and used to evaluate two soil water redistribution models (finite difference solution and hourly cascade approach). We will report on model corroboration results performed using in situ, continuous, field measurements with soil water content capacitance probes and digital tensiometers. Here, natural drainage and water redistribution were monitored following a controlled water application where the study areas were isolated from other water inputs and outputs. We will also report on the assessment of two soil water sensors (Decagon Devices 5TM capacitance probe and UMS T4 tensiometers) for the two soil textural classes in terms of consistency and replicability.

  6. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.

  7. Influence of redox fluctuations and rainfall on pedogenic iron alteration and soil magnetic properties (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Rancourt, D.; Chadwick, O.; Chorover, J. D.

    2009-12-01

    Soil iron mineral composition emerges from a dynamic interplay between processes causing selective mineral addition/removal (both physically and chemically-driven) and processes affecting in situ mineral transformation. Discerning the influence of these pedogenic processes in a temporally integrated manner is fundamentally relevant to many biogeochemical questions. Among them is to what extent the Fe-mineral system can be used to constrain paleo-interpretations of oceanic sediments and geological deposits. Here we describe results from field and laboratory experiments designed to explore the effects of variable redox conditions on soil iron mineral transformation. Our experimental systems include: (1) a climate gradient of basaltic soils from the island of Maui, HI (MCG) with a documented decrease in Eh. and (2) laboratory incubations where we subjected soil slurries to a series of bacterially-driven reduction-oxidation cycles. Our prior work in these systems examining the iron isotopic and mineral composition will be combined with in-progress analysis of magnetic susceptibility. Current results indicate that across the field gradient (MCG) we find average increases of 0.56‰±0.09‰ δ56Fe for the surface and subsurface soils that correlate very well (R2=0.88) with 57Fe Mössbauer-determined Fe-oxyhydroxide fraction. Such a correlation is difficult to explain on the basis of strict parameter co-variation with rainfall, and suggests isotopic and mineral composition may be coupled through in situ mineral transformation processes in these soils. In our soil slurry incubation experiments we reported previously that repeated redox oscillations generate a cumulative increase in Fe mineral crystallinity. Integration of these results with magnetic susceptibility measurements will provide the context for discussing how dynamic redox processes alter soil magnetic properties most often drawn on for paleoclimate interpretations.

  8. [Effect of environmental factors on bacterial community structure in petroleum contaminated soil of Karamay oil field].

    PubMed

    Liang, Jianfang; Yang, Jiangke; Yang, Yang; Chao, Qunfang; Yin, Yalan; Zhao, Yaguan

    2016-08-04

    This study aimed to study the phylogenetic diversity and community structure of bacteria in petroleum contaminated soils from Karamay oil field, and to analyze the relationship between the community variation and the environment parameters, to provide a reference for bioremediation of petroleum contaminated soils. We collected samples from petroleum contaminated soils in 5 cm, 20 cm and 50 cm depth layers, and measured the environment parameters subsequently. We constructed three 16S rRNA gene clone libraries of these soil samples, and then determined the operation taxonomy units (OTUs) restriction fragment length polymorphism method, and finally sequenced the representative clones of every OUT. The diversity, richness and evenness index of the bacteria communities were calculated by using Biodap software. Neighbor-Joining phylogenetic tree was constructed based on 16S rRNA gene sequences of bacteria from Karamay oil field and the references from related environments. Canonial correspondence analysis (CCA) was used to analyze the relationship between environment parameters and species by using CANOCO 4.5 software. Environment parameters showed that 50 cm deep soil contained the highest amount of total nitrogen (TN) and total phosphorus (TP), whereas the 20 cm depth soil contained the lowest amount. The 5 cm depth soil contained the highest amount of total organic carbon (TOC), whereas the 50 cm depth soil contained the lowest amount. Among the 3 layers, 20 cm depth had the highest diversity and richness of bacteria, whereas the bacteria in 50 cm depth was the lowest. Phylogenic analyses suggested that the bacteria in Karamay oil field could be distributed into five groups at the level of phylum, Cluster I to V, respectively belong to Proteobacteria, Actinobacteria, Firmicute, Bacteroidetes, Planctomycetes. Cluster I accounts for 78.57% of all tested communities. CCA results showed that TN, TP, TOC significantly affected the bacteria community structure. Especially, TOC content is significantly related to the distribution of Pseudomonas. The petroleum-contaminated soil inhabited abundant of bacteria. The diversity index and spatial distribution of these communities were affected by the environment parameters in the soil.

  9. The Impact of Carrot Enriched in Iodine through Soil Fertilization on Iodine Concentration and Selected Biochemical Parameters in Wistar Rats.

    PubMed

    Piątkowska, Ewa; Kopeć, Aneta; Bieżanowska-Kopeć, Renata; Pysz, Mirosław; Kapusta-Duch, Joanna; Koronowicz, Aneta Agnieszka; Smoleń, Sylwester; Skoczylas, Łukasz; Ledwożyw-Smoleń, Iwona; Rakoczy, Roksana; Maślak, Edyta

    2016-01-01

    Iodine is one of the trace elements which are essential for mammalian life. The major objective of iodine biofortification of plants is to obtain food rich in this trace element, which may increase its consumption by various populations. Additionally, it may reduce the risk of iodine deficiency diseases. In this research for the first time we have assessed the bioavailability of iodine from raw or cooked carrot biofortified with this trace element on iodine concentration in selected tissues and various biochemical parameters as well as mRNA expression of some genes involved in iodine metabolism in Wistar rats. Statistically, a significantly higher iodine level was determined in urine, faeces and selected tissues of rats fed a diet containing biofortified raw carrot as compared to a diet without iodine and a diet containing control cooked carrot. Biofortified raw carrot significantly increased triiodothyronine concentration as compared to animals from other experimental groups. The highest thyroid stimulating hormone level was determined in rats fed control cooked carrots. mRNA expression of selected genes was affected by different dietary treatment in rats' hearts. Biofortified raw and cooked carrot could be taken into account as a potential source of iodine in daily diets to prevent iodine deficiency in various populations.

  10. The Impact of Carrot Enriched in Iodine through Soil Fertilization on Iodine Concentration and Selected Biochemical Parameters in Wistar Rats

    PubMed Central

    Piątkowska, Ewa; Kopeć, Aneta; Bieżanowska-Kopeć, Renata; Pysz, Mirosław; Kapusta-Duch, Joanna; Koronowicz, Aneta Agnieszka; Smoleń, Sylwester; Skoczylas, Łukasz; Ledwożyw-Smoleń, Iwona; Rakoczy, Roksana; Maślak, Edyta

    2016-01-01

    Iodine is one of the trace elements which are essential for mammalian life. The major objective of iodine biofortification of plants is to obtain food rich in this trace element, which may increase its consumption by various populations. Additionally, it may reduce the risk of iodine deficiency diseases. In this research for the first time we have assessed the bioavailability of iodine from raw or cooked carrot biofortified with this trace element on iodine concentration in selected tissues and various biochemical parameters as well as mRNA expression of some genes involved in iodine metabolism in Wistar rats. Statistically, a significantly higher iodine level was determined in urine, faeces and selected tissues of rats fed a diet containing biofortified raw carrot as compared to a diet without iodine and a diet containing control cooked carrot. Biofortified raw carrot significantly increased triiodothyronine concentration as compared to animals from other experimental groups. The highest thyroid stimulating hormone level was determined in rats fed control cooked carrots. mRNA expression of selected genes was affected by different dietary treatment in rats’ hearts. Biofortified raw and cooked carrot could be taken into account as a potential source of iodine in daily diets to prevent iodine deficiency in various populations. PMID:27043135

  11. Mineral Control of Soil Carbon Dynamics in Forest Soils: A Lithosequence Under Ponderosa Pine

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Welty-Bernard, A.; Rasmussen, C.; Schwartz, E.; Chorover, J.

    2008-12-01

    The role of soil organic carbon in regulating atmospheric CO2 concentration has spurred interest in both quantifying existing soil C stocks and modeling the behavior of soil C under climate change scenarios. Soil parent material exerts direct control over soil organic carbon content through its influence on soil pH and mineral composition. Soil acidity and mineral composition also influence soil microbial community composition and activity, thereby controlling soil respiration rates and microbial biomass size. We sampled a lithosequence of four parent materials (rhyolite, granite, basalt, limestone) under Pinus ponderosa to examine the effects of soil mineralogy and acidity on soil organic carbon content and soil microbial community. Three soil profiles were examined on each parent material and analyzed by X-ray diffraction, pH, selective dissolution, C and N content, and 13C signature. Soils from each of the four parent materials were incubated for 40 days, and microbial communities were compared on the basis of community composition (as determined through T-RFLP analysis), specific metabolic activity, biomass, δ13C of respired CO2, and cumulative amount of C mineralized over the course of the incubation. Soil C content varied significantly among soils of different parent material, and was strongly and positively associated with the abundance of Al-humus complexes r2 = 0.71; P < 0.0001, Fe-humus complexes r2 = 0.74; P = 0.0003, and crystalline Fe-oxide content r2 = 0.63; P = 0.0023. Microbial community composition varied significantly among soils and showed strong associations with soil pH 1:1 in KCl; r2 = 0.87; P < 0.0001, concentration of exchangeable Al r2 = 0.81; P < 0.0001, amorphous Fe oxide content r2 = 0.59; P < 0.004, and Al-humus content r2 = 0.35; P < 0.04. Mineralization rates, biomass and δ13C of respired CO2 differed among parent materials, and also varied with incubation time as substrate quality and N availability changed. The results demonstrate that within a specific ecosystem type, soil parent material exerts significant control over the lability and bioavailability of soil C and soil microbial community composition. We suggest that soil parent material and mineralogy are critical parameters for predicting soil C dynamics and recalcitrance of soil C stocks.

  12. A quick rhizobacterial selection tests for the remediation of copper contaminated soils.

    PubMed

    Braud, A M; Hubert, M; Gaudin, P; Lebeau, T

    2015-08-01

    The main objective of the study is to develop and improve quick bacterial tests to select the best candidates for the bioaugmentation of metal-contaminated soil, coupled with phytoextraction. Bacteria isolates (181) were selected from a collection originated from a Cu-contaminated sediment, on the basis of several miniaturized biochemical tests adapted to the copper contamination. Amongst them, we used a growth soil based-medium to select metal-tolerant bacteria, and their ability to grow and mobilize metals by mean of metabolites (siderophores, organic acids) was also assessed. The result of the bacterial selection tests showed differences in presence or absence of copper, especially for phosphate-solubilizing strains which ability decreased by 53% in the presence of copper hydroxide phosphate as compared to the standard tricalcium phosphate test. A promising Pseudomonas putida was selected from the collection. The study underlined the importance of choosing significant selection tests regarding the nature of the metal occurring in the soil to be cleaned-up to assess the real potential of each bacterial strain for subsequent soil bioaugmentation purposes. © 2015 The Society for Applied Microbiology.

  13. Dielectric properties of soils as a function of moisture content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1974-01-01

    Soil dielectric constant measurements are reviewed and the dependence of the dielectric constant on various soil parameters is determined. Moisture content is given special attention because of its practical significance in remote sensing and because it represents the single most influential parameter as far as soil dielectric properties are concerned. Relative complex dielectric constant curves are derived as a function of volumetric soil water content at three frequencies (1.3 GHz, 4.0 GHz, and 10.0 GHz) for each of three soil textures (sand, loam, and clay). These curves, presented in both tabular and graphical form, were chosen as representative of the reported experimental data. Calculations based on these curves showed that the power reflection coefficient and emissivity, unlike skin depth, vary only slightly as a function of frequency and soil texture.

  14. Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach.

    PubMed

    Wang, Yuxin; Lai, Adelene; Latino, Diogo; Fenner, Kathrin; Helbling, Damian E

    2018-06-14

    Aerobic biodegradation half-lives (half-lives) are key parameters used to evaluate pesticide persistence in soil. However, half-life estimates for individual pesticides often span several orders of magnitude, reflecting the impact that various environmental or experimental parameters have on half-lives in soil. In this work, we collected literature-reported half-lives for eleven pesticides along with associated metadata describing the environmental or experimental conditions under which they were derived. We then developed a multivariable framework to discover relationships between the half-lives and associated metadata. We first compared data for the herbicide atrazine collected from 95 laboratory and 65 field studies. We discovered that atrazine application history and soil texture were the parameters that have the largest influence on the observed half-lives in both types of studies. We then extended the analysis to include ten additional pesticides with data collected exclusively from laboratory studies. We found that, when data were available, pesticide application history and biomass concentrations were always positively associated with half-lives. The relevance of other parameters varied among the pesticides, but in some cases the variability could be explained by the physicochemical properties of the pesticides. For example, we found that the relative significance of the organic carbon content of soil for determining half-lives depends on the relative solubility of the pesticide. Altogether, our analyses highlight the reciprocal influence of both environmental parameters and intrinsic physicochemical properties for determining half-lives in soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Kinetics of trichloroethylene cometabolism and toluene biodegradation: Model application to soil batch experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Farhan, Y.H.; Scow, K.M.; Fan, S.

    Trichloroethylene (TCE) biodegradation in soil under aerobic conditions requires the presence of another compound, such as toluene, to support growth of microbial populations and enzyme induction. The biodegradation kinetics of TCE and toluene were examined by conducting three groups of experiments in soil: toluene only, toluene combined with low TCE concentrations, and toluene with TCE concentrations similar to or higher than toluene. The biodegradation of TCE and toluene and their interrelationships were modeled using a combination of several biodegradation functions. In the model, the pollutants were described as existing in the solid, liquid, and gas phases of soil, with biodegradationmore » occurring only in the liquid phase. The distribution of the chemicals between the solid and liquid phase was described by a linear sorption isotherm, whereas liquid-vapor partitioning was described by Henry's law. Results from 12 experiments with toluene only could be described by a single set of kinetic parameters. The same set of parameters could describe toluene degradation in 10 experiments where low TCE concentrations were present. From these 10 experiments a set of parameters describing TCE cometabolism induced by toluene also was obtained. The complete set of parameters was used to describe the biodegradation of both compounds in 15 additional experiments, where significant TCE toxicity and inhibition effects were expected. Toluene parameters were similar to values reported for pure culture systems. Parameters describing the interaction of TCE with toluene and biomass were different from reported values for pure cultures, suggesting that the presence of soil may have affected the cometabolic ability of the indigenous soil microbial populations.« less

  16. Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.

  17. An investigation of the key parameters for predicting PV soiling losses

    DOE PAGES

    Micheli, Leonardo; Muller, Matthew

    2017-01-25

    One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less

  18. Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Tellers, T. E.

    1982-01-01

    The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.

  19. Atlas of soil reflectance properties

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Biehl, L. L.; Robinson, B. F.

    1979-01-01

    A compendium of soil spectral reflectance curves together with soil test results and site information is presented in an abbreviated manner listing those soil properties most important in influencing soil reflectance. Results are presented for 251 soils from 39 states and Brazil. A narrative key describes relationships between soil parameters and reflectance curves. All soils are classified according to the U.S. soil taxonomy and soil series name for ease of identification.

  20. Identifying mechanical property parameters of planetary soil using in-situ data obtained from exploration rovers

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun

    2015-12-01

    Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.

  1. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.

    PubMed

    Alisi, Chiara; Musella, Rosario; Tasso, Flavia; Ubaldi, Carla; Manzo, Sonia; Cremisini, Carlo; Sprocati, Anna Rosa

    2009-04-01

    The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.

  2. Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Mäkelä, Jarmo; Susiluoto, Jouni; Markkanen, Tiina; Aurela, Mika; Järvinen, Heikki; Mammarella, Ivan; Hagemann, Stefan; Aalto, Tuula

    2016-12-01

    We examined parameter optimisation in the JSBACH (Kaminski et al., 2013; Knorr and Kattge, 2005; Reick et al., 2013) ecosystem model, applied to two boreal forest sites (Hyytiälä and Sodankylä) in Finland. We identified and tested key parameters in soil hydrology and forest water and carbon-exchange-related formulations, and optimised them using the adaptive Metropolis (AM) algorithm for Hyytiälä with a 5-year calibration period (2000-2004) followed by a 4-year validation period (2005-2008). Sodankylä acted as an independent validation site, where optimisations were not made. The tuning provided estimates for full distribution of possible parameters, along with information about correlation, sensitivity and identifiability. Some parameters were correlated with each other due to a phenomenological connection between carbon uptake and water stress or other connections due to the set-up of the model formulations. The latter holds especially for vegetation phenology parameters. The least identifiable parameters include phenology parameters, parameters connecting relative humidity and soil dryness, and the field capacity of the skin reservoir. These soil parameters were masked by the large contribution from vegetation transpiration. In addition to leaf area index and the maximum carboxylation rate, the most effective parameters adjusting the gross primary production (GPP) and evapotranspiration (ET) fluxes in seasonal tuning were related to soil wilting point, drainage and moisture stress imposed on vegetation. For daily and half-hourly tunings the most important parameters were the ratio of leaf internal CO2 concentration to external CO2 and the parameter connecting relative humidity and soil dryness. Effectively the seasonal tuning transferred water from soil moisture into ET, and daily and half-hourly tunings reversed this process. The seasonal tuning improved the month-to-month development of GPP and ET, and produced the most stable estimates of water use efficiency. When compared to the seasonal tuning, the daily tuning is worse on the seasonal scale. However, daily parametrisation reproduced the observations for average diurnal cycle best, except for the GPP for Sodankylä validation period, where half-hourly tuned parameters were better. In general, the daily tuning provided the largest reduction in model-data mismatch. The models response to drought was unaffected by our parametrisations and further studies are needed into enhancing the dry response in JSBACH.

  3. A combined use of proximal sensors can magnify the terroir effect of every vintage

    NASA Astrophysics Data System (ADS)

    Priori, Simone; Bianconi, Nadia; Valboa, Giuseppe; Barbetti, Roberto; Fantappiè, Maria; L'Abate, Giovanni; Lorenzetti, Romina; Mocali, Stefano; Pellegrini, Sergio; Leprini, Marco; Perria, Rita; Storchi, Paolo; Costantini, Edoardo

    2014-05-01

    Grape composition, which affects the wine sensory qualities, depends on vine features (rootstock, scion, vine health) and vineyard management as much as environmental factors. Mapping soil at the vineyard scale, in particular, helps in optimizing the terroir expression of the wine. The terroir effect however varies every year, in dependence of the interaction between climate and soil. Aim of this research work was to set a methodology to dimension homogeneous harvest zones (HZ) in the vineyard and to test the vintage effect on them. Four terroir macro-units were selected within a wide farm in the Chianti Classico D.O.C.G. district (Siena, Central Italy). The selected macro-units represented the most common viticultural environments of the Chianti Classico D.O.C.G. and they were: 1) hills of high altitude (450-500 m a.s.l.) on feldspathic sandstones, with shallow sandy soils; 2) hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils; 3) hills of moderate altitude (250-350 m a.s.l.) on Pliocene sandy marine deposits; 4) hills and fluvial terraces of moderate altitude (200-300 m a.s.l., 50-100 m above the present river valley) on ancient fluvial deposits. Selected vineyards of each terroir macro-unit was surveyed by soil proximal sensing, to define two homogeneous zones (HZ) in terms of soil features in each macro-unit. The sensors used were: i) γ-ray spectrometer, to map the variability of soil surface in terms of parent material, texture and stoniness; ii) electromagnetic induction sensor (EMI) to determine the spatial variability of texture and soil moisture in the sub-surface horizons; iii) time domain reflectometry (TDR), to measure soil moisture content in the sub-surface soil horizon (30-50 cm). TDR measurements were performed in fixed points (about 1 each 1,000 m2) three times a year, during spring shoot growth (beginning of April), berries veraison (end of July-beginning of August) and final ripening phase before harvest (September). The moisture content was interpolated on the total surface of the experimental vineyards by regression kriging using the γ-ray and EMI proximal data. HZ were mapped according to several parameters, mainly moisture content homogeneity and soil features, but also farm requirements, like size and simplified geometry for hand-made grape harvesting. Each area should have been about 15,000 m2 in size, so to allow an harvest of about 9 tons of grape and a wine-making in an ordinary vat of the winery. After a six-months aging, the wines were analyzed and tasted by a panel of 10 experts to characterize their quality and peculiarities. To determine grape homogeneity within HZ, three experimental sites for each HZ were selected to determine plant water stress, grape production and wine quality obtained by micro wine-making. After two vintages (2012 and 2013) the main results were: i) terroir macro-units influenced the wine quality and peculiarities in both vintages; ii) HZ strongly magnified wine peculiarities in three-fourths of macro-units in 2012 vintage. In the 2013 vintage instead, characterized by a rainy early summer, the differences between the HZ in each macro-area were less evident. Concluding, the preliminary results of the work seemed to indicate a fruitful use of the HZ within macro-areas, but not every vintage.

  4. Distinct taxonomic and functional composition of soil microbiomes along the gradient forest-restinga-mangrove in southeastern Brazil.

    PubMed

    Mendes, Lucas William; Tsai, Siu Mui

    2018-01-01

    Soil microorganisms play crucial roles in ecosystem functioning, and the central goal in microbial ecology studies is to elucidate which factors shape community structure. A better understanding of the relationship between microbial diversity, functions and environmental parameters would increase our ability to set conservation priorities. Here, the bacterial and archaeal community structure in Atlantic Forest, restinga and mangrove soils was described and compared based on shotgun metagenomics. We hypothesized that each distinct site would harbor a distinct taxonomic and functional soil community, which is influenced by environmental parameters. Our data showed that the microbiome is shaped by soil properties, with pH, base saturation, boron and iron content significantly correlated to overall community structure. When data of specific phyla were correlated to specific soil properties, we demonstrated that parameters such as boron, copper, sulfur, potassium and aluminum presented significant correlation with the most number of bacterial groups. Mangrove soil was the most distinct site and presented the highest taxonomic and functional diversity in comparison with forest and restinga soils. From the total 34 microbial phyla identified, 14 were overrepresented in mangrove soils, including several archaeal groups. Mangrove soils hosted a high abundance of sequences related to replication, survival and adaptation; forest soils included high numbers of sequences related to the metabolism of nutrients and other composts; while restinga soils included abundant genes related to the metabolism of carbohydrates. Overall, our finds show that the microbial community structure and functional potential were clearly different across the environmental gradient, followed by functional adaptation and both were related to the soil properties.

  5. Soil biodiversity in artificial black pine stands one year after selective silvicultural treatments

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Landi, Silvia; Bianchetto, Elisa; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2017-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wild fires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this silvicultural treatment was to re-establish the pine as a first cover and pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil and flora biodiversity and under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera) and flora. The microbial (bacteria and fungi) diversity was assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (microbiota) approaches whereas QBS (Soil Biological Quality) index and diversity indexes were determined for mesofauna and other organisms, respectively, including flora. The overall results highlighted different a composition and activity of microbial communities within the two areas before thinning, and revealed a significant difference between the overall biodiversity of the two areas. Even though silvicultural treatments provided no significant differences at floristic level, microbial and mesofaunal parameters revealed to be differently affected by treatments. In particular, little but significant differences were observed for mesofauna and nematode community diversity which displayed a higher diversity after thinning in both Amiata and Pratomagno. Nevertheless, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis subcontracta specie dominated, compared to Amiata. In conclusion, a general increase of soil biodiversity occurred in the plots after thinning compared to untreated control within the two areas, but such results are still heterogeneous and poorly statistically significant. As expected, one year is not enough time to appreciate significant enhance of the overall biodiversity after such silvicultural treatments. Thus, more evident and significant results are expected on the next two years.

  6. Response of Partially Saturated Non-cohesive Soils

    NASA Astrophysics Data System (ADS)

    Świdziński, Waldemar; Mierczyński, Jacek; Mikos, Agata

    2017-12-01

    This paper analyses and discusses experimental results of undrained triaxial tests. The tests were performed on non-cohesive partially saturated soil samples subjected to monotonic and cyclic loading. The tests were aimed at determining the influence of saturation degree on soil's undrained response (shear strength, excess pore pressure generation). The saturation of samples was monitored by checking Skempton's parameter B. Additionally, seismic P-wave velocity measurements were carried out on samples characterized by various degrees of saturation. The tests clearly showed that liquefaction may also take place in non-cohesive soils that are not fully saturated and that the liquefaction potential of such soils strongly depends on the B parameter.

  7. Spatial prediction of Soil Organic Carbon contents in croplands, grasslands and forests using environmental covariates and Generalized Additive Models (Southern Belgium)

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Stevens, Antoine; van Wesemael, Bas

    2015-04-01

    Providing spatially continuous Soil Organic Carbon data (SOC) is needed to support decisions regarding soil management, and inform the political debate with quantified estimates of the status and change of the soil resource. Digital Soil Mapping techniques are based on relations existing between a soil parameter (measured at different locations in space at a defined period) and relevant covariates (spatially continuous data) that are factors controlling soil formation and explaining the spatial variability of the target variable. This study aimed at apply DSM techniques to recent SOC content measurements (2005-2013) in three different landuses, i.e. cropland, grassland, and forest, in the Walloon region (Southern Belgium). For this purpose, SOC databases of two regional Soil Monitoring Networks (CARBOSOL for croplands and grasslands, and IPRFW for forests) were first harmonized, totalising about 1,220 observations. Median values of SOC content for croplands, grasslands, and forests, are respectively of 12.8, 29.0, and 43.1 g C kg-1. Then, a set of spatial layers were prepared with a resolution of 40 meters and with the same grid topology, containing environmental covariates such as, landuses, Digital Elevation Model and its derivatives, soil texture, C factor, carbon inputs by manure, and climate. Here, in addition to the three classical texture classes (clays, silt, and sand), we tested the use of clays + fine silt content (particles < 20 µm and related to stable carbon fraction) as soil covariate explaining SOC variations. For each of the three land uses (cropland, grassland and forest), a Generalized Additive Model (GAM) was calibrated on two thirds of respective dataset. The remaining samples were assigned to a test set to assess model performance. A backward stepwise procedure was followed to select the relevant environmental covariates using their approximate p-values (the level of significance was set at p < 0.05). Standard errors were estimated for each of the three models. The backward stepwise procedure selected coordinates, elevation and clays + fine silt content as environment covariates to model SOC variation in cropland soils; latitude, precipitation, and clays + fine silt content (< 20 µm) for grassland soils; and latitude, elevation, topographic position index and clays + fine silt content (< 20 µm) for forest soils. The validation of the models gave a R² of 0.62 for croplands, 0.38 for grasslands, and 0.35 for forests. These results will be developed and discussed based on implications of natural against anthropogenic drivers on SOC distribution for these three landuses. To finish, a map combining detailed information of SOC content for agricultural soils and forests was for the first time computed for the Walloon region.

  8. Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff

    NASA Astrophysics Data System (ADS)

    Herkes, D. M. G.; Gori, A.; Juan, A.

    2017-12-01

    Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared: 1) infiltration capacity from soil only and 2) the augmented infiltration capacity of soil due to vegetation. Modeled results show a notable decrease in both total runoff volume and peak flows under the augmented infiltration scenario. This decrease demonstrates the benefit of native Texas prairie land in reducing flood risks.

  9. Factors influencing the contents of metals and as in soils around the watershed of Guanting Reservoir, China.

    PubMed

    Xu, Li; Wang, Tieyu; Luo, Wei; Ni, Kun; Liu, Shijie; Wang, Lin; Li, Qiushuang; Lu, Yonglong

    2013-03-01

    Topsoil samples from 61 sites around the Guanting Reservoir, China, were measured for Cu, Zn, Cr, Ni, Cd, Pb and As concentrations. The mean concentrations of Cu, Zn, Cr, Ni, Cd, Pb and As were 16.8, 59.4, 37.8, 18.3, 0.32, 20.1 and 8.67 mg/kg dry weight, respectively. Factors that influence the dynamics of these metals in soils around the watersheds of Beijing reservoirs were examined. The influence of atmospheric deposition, land use, soil texture, soil type and soil chemical parameters on metal contents in soils was investigated. Atmospheric deposition, land use and soil texture were the important factors affecting heavy metal residues. Soil type and soil chemical parameters were also involved in heavy metal retention in soils. The data provided in this study are considered crucial for reservoir remediation, especially since the Guanting Reservoir will serve as one of the main drinking water sources for Beijing in the foreseeable future.

  10. Calculation of Excavation Force for ISRU on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Zeng, Xiangwu (David); Burnoski, Louis; Agui, Juan H.; Wilkinson, Allen

    2007-01-01

    Accurately predicting the excavation force that will be encountered by digging tools on the lunar surface is a crucial element of in-situ resource utilization (ISRU). Based on principles of soil mechanics, this paper develops an analytical model that is relatively simple to apply and uses soil parameters that can be determined by traditional soil strength tests. The influence of important parameters on the excavation force is investigated. The results are compared with that predicted by other available theories. Results of preliminary soil tests on lunar stimulant are also reported.

  11. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    NASA Astrophysics Data System (ADS)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited different NH3 oxidation rates. In addition, the enrichment cultures provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota-AOA lineage. Our results indicate that AOA are functionally heterogeneous, and that the selection of distinct AOA populations by the environment can be determinant for nitrification activity and N availability in soils. Furthermore, our observations emphasize the fact that, disturbances in populations of specific microbial functional groups, such as nitrifiers, constitute potential response mechanisms to environmental changes. These findings are not only relevant for Arctic environments, but have implications for the role of AOA in nitrification in all soils.

  12. Soil biota and agriculture production in conventional and organic farming

    NASA Astrophysics Data System (ADS)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with pronounced shifts in soil fauna composition (nematodes, earthworms) and an increase in earthworm activity. Hence, more buffered conditions and shifts in soil fauna composition under organic farming may underlie the observed reduction in spatial variation of soil chemical and biological parameters, which in turn correlates positively with a long-term increase in yield. Our study highlights the need for both policymakers and farmers alike to support spatial stability-increasing farming.

  13. Integration of Satellite, Global Reanalysis Data and Macroscale Hydrological Model for Drought Assessment in Sub-Tropical Region of India

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Srivastava, P. K.

    2018-04-01

    Change in soil moisture regime is highly relevant for agricultural drought, which can be best analyzed in terms of Soil Moisture Deficit Index (SMDI). A macroscale hydrological model Variable Infiltration Capacity (VIC) was used to simulate the hydro-climatological fluxes including evapotranspiration, runoff, and soil moisture storage to reconstruct the severity and duration of agricultural drought over semi-arid region of India. The simulations in VIC were performed at 0.25° spatial resolution by using a set of meteorological forcing data, soil parameters and Land Use Land Cover (LULC) and vegetation parameters. For calibration and validation, soil parameters obtained from National Bureau of Soil Survey and Land Use Planning (NBSSLUP) and ESA's Climate Change Initiative soil moisture (CCI-SM) data respectively. The analysis of results demonstrates that most of the study regions (> 80 %) especially for central northern part are affected by drought condition. The year 2001, 2002, 2007, 2008 and 2009 was highly affected by agricultural drought. Due to high average and maximum temperature, we observed higher soil evaporation that reduces the surface soil moisture significantly as well as the high topographic variations; coarse soil texture and moderate to high wind speed enhanced the drying upper soil moisture layer that incorporate higher negative SMDI over the study area. These findings can also facilitate the archetype in terms of daily time step data, lengths of the simulation period, various hydro-climatological outputs and use of reasonable hydrological model.

  14. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    NASA Astrophysics Data System (ADS)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The relationships of the K-factor with the relative content of particle size from 0.1 to 0.002 mm and the class of aggregation are linear, directly proportional. When the content of particles sized from 0.1 to 0.002 mm increases with one relative unit, the K-factor increases with 0.0091 t ha h / ha MJ mm, while the same relative increase of the class of aggregation, results to an increase of the K-factor by 0.0034 t ha h / ha MJ mm. On the other side, the relationships between the K-factor values and the contents of clay and organic matter, and the class of profile water permeability, are linear, inversely proportional. When the clay content increases with one relative unit, the K-factor value decreases by 0.0099 t ha h / ha MJ mm. The same relative increases in the content of soil organic matter and the class of soil profile water permeability, result to a decrease of the values of K-factor respectively by 0.0042 and 0.0045 t ha h / ha MJ mm.

  15. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.

  16. Prediction of SOC content by Vis-NIR spectroscopy at European scale using a modified local PLS algorithm

    NASA Astrophysics Data System (ADS)

    Nocita, M.; Stevens, A.; Toth, G.; van Wesemael, B.; Montanarella, L.

    2012-12-01

    In the context of global environmental change, the estimation of carbon fluxes between soils and the atmosphere has been the object of a growing number of studies. This has been motivated notably by the possibility to sequester CO2 into soils by increasing the soil organic carbon (SOC) stocks and by the role of SOC in maintaining soil quality. Spatial variability of SOC masks its slow accumulation or depletion, and the sampling density required to detect a change in SOC content is often very high and thus very expensive and labour intensive. Visible near infrared diffuse reflectance spectroscopy (Vis-NIR DRS) has been shown to be a fast, cheap and efficient tool for the prediction of SOC at fine scales. However, when applied to regional or country scales, Vis-NIR DRS did not provide sufficient accuracy as an alternative to standard laboratory soil analysis for SOC monitoring. Under the framework of Land Use/Cover Area Frame Statistical Survey (LUCAS) project of the European Commission's Joint Research Centre (JRC), about 20,000 samples were collected all over European Union. Soil samples were analyzed for several physical and chemical parameters, and scanned with a Vis-NIR spectrometer in the same laboratory. The scope of our research was to predict SOC content at European scale using LUCAS spectral library. We implemented a modified local partial least square regression (l-PLS) including, in addition to spectral distance, other potentially useful covariates (geography, texture, etc.) to select for each unknown sample a group of predicting neighbours. The dataset was split in mineral soils under cropland, mineral soils under grassland, mineral soils under woodland, and organic soils due to the extremely diverse spectral response of the four classes. Four every class training (70%) and test (30%) sets were created to calibrate and validate the SOC prediction models. The results showed very good prediction ability for mineral soils under cropland and mineral soils under grassland, with a root mean square error (RMSE) of 3.6 and 7.2 g C kg-1 respectively, while mineral soils under woodland and organic soils predictions were less accurate (RMSE of 11.9 and 51.1 g C kg-1). The RMSE was lower (except for organic soils) when sand content was used as covariate in the selection of the l-PLS predicting neighbours. The obtained results proved that: (i) Although the enormous spatial variability of European soils, the developed modified l-PLS algorithm was able to produce stable calibrations and accurate predictions. (ii) It is essential to invest in spectral libraries built according to sampling strategies, based on soil types, and a standardized laboratory protocol. (iii) Vis-NIR DRS spectroscopy is a powerful and cost effective tool to predict SOC content at regional/continental scales, and should be converted from a pure research discipline into a reference operational method decreasing the uncertainties of SOC monitoring and terrestrial ecosystems carbon fluxes at all scales.

  17. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). Solid Earth, 5, 299-311 (2014). http://dx.doi.org/10.5194/se-5-299-2014. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015a. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219-228. http://dx.doi.org/10.1016/j.jenvman.2015.03.039. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdà, A., 2015b. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections. Geophysical Research Abstracts. Vol. 17, 986. EGU General Assembly 2015.

  18. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.

  19. Fungal-bacterial ratio as an indicator of forest soil health in single-tree selection and clearcut harvests

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study are to examine the effect of clearcut and single-selection tree harvest on soil microbial communities and to determine the value of bacterial:fungal ratio as an indicator of forest soil health. Soil samples (0 – 5 cm) were collected at the Missouri Forest Ecosystem Proje...

  20. Smsynth: AN Imagery Synthesis System for Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Xu, L.; Peng, J.

    2018-04-01

    Soil moisture (SM) is a important variable in various research areas, such as weather and climate forecasting, agriculture, drought and flood monitoring and prediction, and human health. An ongoing challenge in estimating SM via synthetic aperture radar (SAR) is the development of the retrieval SM methods, especially the empirical models needs as training samples a lot of measurements of SM and soil roughness parameters which are very difficult to acquire. As such, it is difficult to develop empirical models using realistic SAR imagery and it is necessary to develop methods to synthesis SAR imagery. To tackle this issue, a SAR imagery synthesis system based on the SM named SMSynth is presented, which can simulate radar signals that are realistic as far as possible to the real SAR imagery. In SMSynth, SAR backscatter coefficients for each soil type are simulated via the Oh model under the Bayesian framework, where the spatial correlation is modeled by the Markov random field (MRF) model. The backscattering coefficients simulated based on the designed soil parameters and sensor parameters are added into the Bayesian framework through the data likelihood where the soil parameters and sensor parameters are set as realistic as possible to the circumstances on the ground and in the validity range of the Oh model. In this way, a complete and coherent Bayesian probabilistic framework is established. Experimental results show that SMSynth is capable of generating realistic SAR images that suit the needs of a large amount of training samples of empirical models.

Top