Sample records for selection candidate loci

  1. AFLPs and Mitochondrial Haplotypes Reveal Local Adaptation to Extreme Thermal Environments in a Freshwater Gastropod

    PubMed Central

    Quintela, María; Johansson, Magnus P.; Kristjánsson, Bjarni K.; Barreiro, Rodolfo; Laurila, Anssi

    2014-01-01

    The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher FST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Mývatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Mývatn and highlight the utility of genome scans in detecting adaptive divergence. PMID:25007329

  2. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy.

    PubMed

    Byars, Sean G; Huang, Qin Qin; Gray, Lesley-Ann; Bakshi, Andrew; Ripatti, Samuli; Abraham, Gad; Stearns, Stephen C; Inouye, Michael

    2017-06-01

    Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.

  3. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less

  4. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    DOE PAGES

    Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...

    2016-11-28

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less

  5. A genome scan for selection signatures comparing farmed Atlantic salmon with two wild populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait loci for production traits.

    PubMed

    Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace

    2017-03-01

    Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.

  6. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy

    PubMed Central

    Byars, Sean G.; Gray, Lesley-Ann; Ripatti, Samuli; Stearns, Stephen C.; Inouye, Michael

    2017-01-01

    Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD. PMID:28640878

  7. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus).

    PubMed

    Chapman, Mark A; Pashley, Catherine H; Wenzler, Jessica; Hvala, John; Tang, Shunxue; Knapp, Steven J; Burke, John M

    2008-11-01

    Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.

  8. Patterns of genetic diversity and candidate genes for ecological divergence in a homoploid hybrid sunflower, Helianthus anomalus

    PubMed Central

    SAPIR, YUVAL; MOODY, MICHAEL L.; BROUILLETTE, LARRY C.; DONOVAN, LISA A.; RIESEBERG, LOREN H.

    2008-01-01

    Natural hybridization accompanied by a shift in niche preference by hybrid genotypes can lead to hybrid speciation. Natural selection may cause the fixation of advantageous alleles in the ecologically diverged hybrids, and the loci experiencing selection should exhibit a reduction in allelic diversity relative to neutral loci. Here, we analyzed patterns of genetic diversity at 59 microsatellite loci associated with expressed sequence tags (ESTs) in a homoploid hybrid sunflower species, Helianthus anomalus. We used two indices, ln RV and ln RH, to compare variation and heterozygosity (respectively) at each locus between the hybrid species and its two parental species, H. annuus and H. petiolaris. Mean values of ln RV and ln RH were significantly lower than zero, which implies that H. anomalus experienced a population bottleneck during its recent evolutionary history. After correcting for the apparent bottleneck, we found six loci with a significant reduction in variation or with heterozygosity in the hybrid species, compared to one or both of the parental species. These loci should be viewed as a ranked list of candidate loci, pending further sequencing and functional analyses. Sequence data were generated for two of the candidate loci, but population genetics tests failed to detect deviations from neutral evolution at either locus. Nonetheless, a greater than eight-fold excess of nonsynonymous substitutions was found near a putative N-myristoylation motif at the second locus (HT998), and likelihood-based models indicated that the protein has been under selection in H. anomalus in the past and, perhaps, in one or both parental species. Finally, our data suggest that selective sweeps may have united populations of H. anomalus isolated by a mountain range, indicating that even low gene-flow species may be held together by the spread of advantageous alleles. PMID:17944850

  9. Bulk development and stringent selection of microsatellite markers in the western flower thrips Frankliniella occidentalis

    PubMed Central

    Cao, Li-Jun; Li, Ze-Min; Wang, Ze-Hua; Zhu, Liang; Gong, Ya-Jun; Chen, Min; Wei, Shu-Jun

    2016-01-01

    Recent improvements in next-generation sequencing technologies have enabled investigation of microsatellites on a genome-wide scale. Faced with a huge amount of candidates, the use of appropriate marker selection criteria is crucial. Here, we used the western flower thrips Frankliniella occidentalis for an empirical microsatellite survey and validation; 132,251 candidate microsatellites were identified, 92,102 of which were perfect. Dinucleotides were the most abundant category, while (AG)n was the most abundant motif. Sixty primer pairs were designed and validated in two natural populations, of which 30 loci were polymorphic, stable, and repeatable, but not all in Hardy–Weinberg equilibrium (HWE) and linkage equilibrium. Four marker panels were constructed to understand effect of marker selection on population genetic analyses: (i) only accept loci with single nucleotide insertions (SNI); (ii) only accept the most polymorphic loci (MP); (iii) only accept loci that did not deviate from HWE, did not show SNIs, and had unambiguous peaks (SS) and (iv) all developed markers (ALL). Although the MP panel resulted in microsatellites of highest genetic diversity followed by the SNI, the SS performed best in individual assignment. Our study proposes stringent criteria for selection of microsatellites from a large-scale number of genomic candidates for population genetic studies. PMID:27197749

  10. Bulk development and stringent selection of microsatellite markers in the western flower thrips Frankliniella occidentalis.

    PubMed

    Cao, Li-Jun; Li, Ze-Min; Wang, Ze-Hua; Zhu, Liang; Gong, Ya-Jun; Chen, Min; Wei, Shu-Jun

    2016-05-20

    Recent improvements in next-generation sequencing technologies have enabled investigation of microsatellites on a genome-wide scale. Faced with a huge amount of candidates, the use of appropriate marker selection criteria is crucial. Here, we used the western flower thrips Frankliniella occidentalis for an empirical microsatellite survey and validation; 132,251 candidate microsatellites were identified, 92,102 of which were perfect. Dinucleotides were the most abundant category, while (AG)n was the most abundant motif. Sixty primer pairs were designed and validated in two natural populations, of which 30 loci were polymorphic, stable, and repeatable, but not all in Hardy-Weinberg equilibrium (HWE) and linkage equilibrium. Four marker panels were constructed to understand effect of marker selection on population genetic analyses: (i) only accept loci with single nucleotide insertions (SNI); (ii) only accept the most polymorphic loci (MP); (iii) only accept loci that did not deviate from HWE, did not show SNIs, and had unambiguous peaks (SS) and (iv) all developed markers (ALL). Although the MP panel resulted in microsatellites of highest genetic diversity followed by the SNI, the SS performed best in individual assignment. Our study proposes stringent criteria for selection of microsatellites from a large-scale number of genomic candidates for population genetic studies.

  11. Candidate loci involved in domestication and improvement detected by a published 90K wheat SNP array

    PubMed Central

    Gao, Lifeng; Zhao, Guangyao; Huang, Dawei; Jia, Jizeng

    2017-01-01

    Selection is one of the most important forces in crop evolution. Common wheat is a major world food crop and a typical allopolyploid with a huge and complex genome. We applied four approaches to detect loci selected in wheat during domestication and improvement. A total of 7,984 candidate loci were detected, accounting for 23.3% of all 34,317 SNPs analysed, a much higher proportion than estimated in previous reports. We constructed a first generation wheat selection map which revealed the following new insights on genome-wide selection: (1) diversifying selection acted by increasing, decreasing or not affecting gene frequencies; (2) the number of loci under selection during domestication was much higher than that during improvement; (3) the contribution to wheat improvement by the D sub-genome was relatively small due to the bottleneck of hexaploidisation and diversity can be expanded by using synthetic wheat and introgression lines; and (4) clustered selection regions occur throughout the wheat genome, including the centromere regions. This study will not only help future wheat breeding and evolutionary studies, but will also accelerate study of other crops, especially polyploids. PMID:28327671

  12. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.

    PubMed

    Mattila, Tiina M; Aalto, Esa A; Toivainen, Tuomas; Niittyvuopio, Anne; Piltonen, Susanna; Kuittinen, Helmi; Savolainen, Outi

    2016-01-01

    Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species. © 2015 John Wiley & Sons Ltd.

  13. Genetic Mapping of Fixed Phenotypes: Disease Frequency as a Breed Characteristic

    PubMed Central

    Jones, Paul; Martin, Alan; Ostrander, Elaine A.; Lark, Karl G.

    2009-01-01

    Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pacreatitis. PMID:19321632

  14. Integrating evolutionary and functional approaches to infer adaptation at specific loci.

    PubMed

    Storz, Jay F; Wheat, Christopher W

    2010-09-01

    Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.

  15. Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic.

    PubMed

    Chase, Kevin; Jones, Paul; Martin, Alan; Ostrander, Elaine A; Lark, Karl G

    2009-01-01

    Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.

  16. Using Association Mapping in Teosinte (Zea Mays ssp Parviglumis) to Investigate the Function of Selection-Candidate Genes

    USDA-ARS?s Scientific Manuscript database

    Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its proge...

  17. A genome-wide scan for signatures of directional selection in domesticated pigs.

    PubMed

    Moon, Sunjin; Kim, Tae-Hun; Lee, Kyung-Tai; Kwak, Woori; Lee, Taeheon; Lee, Si-Woo; Kim, Myung-Jick; Cho, Kyuho; Kim, Namshin; Chung, Won-Hyong; Sung, Samsun; Park, Taesung; Cho, Seoae; Groenen, Martien Am; Nielsen, Rasmus; Kim, Yuseob; Kim, Heebal

    2015-02-25

    Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication. Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an F ST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness. We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.

  18. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics.

    PubMed

    Guerrero, Jimena; Andrello, Marco; Burgarella, Concetta; Manel, Stephanie

    2018-07-01

    Spatial differences in environmental selective pressures interact with the genomes of organisms, ultimately leading to local adaptation. Landscape genomics is an emergent research area that uncovers genome-environment associations, thus allowing researchers to identify candidate loci for adaptation to specific environmental variables. In the present study, we used latent factor mixed models (LFMMs) and Moran spectral outlier detection/randomization (MSOD-MSR) to identify candidate loci for adaptation to 10 environmental variables (climatic, soil and atmospheric) among 43 515 single nucleotide polymorphisms (SNPs) from 202 accessions of the model legume Medicago truncatula. Soil variables were associated with a large number of candidate loci identified through both LFMMs and MSOD-MSR. Genes tagged by candidate loci associated with drought and salinity are involved in the response to biotic and abiotic stresses, while those tagged by candidates associated with soil nitrogen and atmospheric nitrogen, participate in the legume-rhizobia symbiosis. Candidate SNPs identified through both LFMMs and MSOD-MSR explained up to 56% of variance in flowering traits. Our findings highlight the importance of soil in driving adaptation in the system and elucidate the basis of evolutionary potential of M. truncatula to respond to global climate change and anthropogenic disruption of the nitrogen cycle. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  19. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count

    PubMed Central

    Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama

    2014-01-01

    Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for future large scale association studies in naturally exposed sheep populations. PMID:24533078

  20. Convergence of GWA and candidate gene studies for alcoholism

    PubMed Central

    Olfson, Emily; Bierut, Laura Jean

    2012-01-01

    Background Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. Methods Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported SNPs in candidate genes were examined in the Study of Alcohol Addiction: Genetics and Addiction (SAGE), a GWA study comparing alcohol dependent and non-dependent subjects. Results Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1 and rs4680 in COMT, are not replicated in SAGE (p> .05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p=0.0052, OR=1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls and the lowest p value of any SNP was .0006. Discussion We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African Ancestry populations. Due to lack of coverage, we were unable to rule out the contribution of other variants and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases. PMID:22978509

  1. A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata.

    PubMed

    Zou, Keshu; Zhang, Dianchang; Guo, Huayang; Zhu, Caiyan; Li, Min; Jiang, Shigui

    2014-05-25

    Pearl oyster Pinctada fucata is widely cultured to produce seawater pearl in South China, and the quality of pearl is significantly affected by its shell color. Thus the Pearl Oyster Selective Breeding Program (POSBP) was carried out for the shell color and growth traits. The black (B), gold (G), red (R) and white (W) shell strains with fast growth trait were achieved after five successive generation selection. In this study, AFLP technique was used to scan genome of four strains with different shell colors to identify the candidate markers under artificial selection. Eight AFLP primer combinations were screened and yielded 688 loci, 676 (98.26%) of which were polymorphic. In black, gold, red and white strains, the percentage of polymorphic loci was 90.41%, 87.79%, 93.60% and 93.31%, respectively, Nei's gene diversity was 0.3225, 0.2829, 0.3221 and 0.3292, Shannon's information index was 0.4801, 0.4271, 0.4825 and 0.4923, and the value of FST was 0.1805. These results suggested that the four different shell color strains had high genetic diversity and great genetic differentiation among strains, which had been subjected to the continuous selective pressures during the artificial selective breeding. Furthermore, six outlier loci were considered as the candidate markers under artificial selection for shell color. This study provides a molecular evidence for the inheritance of shell color of P. fucata. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus).

    PubMed

    Harris, Stephen E; Munshi-South, Jason

    2017-11-01

    Urbanization significantly alters natural ecosystems and has accelerated globally. Urban wildlife populations are often highly fragmented by human infrastructure, and isolated populations may adapt in response to local urban pressures. However, relatively few studies have identified genomic signatures of adaptation in urban animals. We used a landscape genomic approach to examine signatures of selection in urban populations of white-footed mice (Peromyscus leucopus) in New York City. We analysed 154,770 SNPs identified from transcriptome data from 48 P. leucopus individuals from three urban and three rural populations and used outlier tests to identify evidence of urban adaptation. We accounted for demography by simulating a neutral SNP data set under an inferred demographic history as a null model for outlier analysis. We also tested whether candidate genes were associated with environmental variables related to urbanization. In total, we detected 381 outlier loci and after stringent filtering, identified and annotated 19 candidate loci. Many of the candidate genes were involved in metabolic processes and have well-established roles in metabolizing lipids and carbohydrates. Our results indicate that white-footed mice in New York City are adapting at the biomolecular level to local selective pressures in urban habitats. Annotation of outlier loci suggests selection is acting on metabolic pathways in urban populations, likely related to novel diets in cities that differ from diets in less disturbed areas. © 2017 John Wiley & Sons Ltd.

  3. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae).

    PubMed

    McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.

  4. Convergence of genome-wide association and candidate gene studies for alcoholism.

    PubMed

    Olfson, Emily; Bierut, Laura Jean

    2012-12-01

    Genome-wide association (GWA) studies have led to a paradigm shift in how researchers study the genetics underlying disease. Many GWA studies are now publicly available and can be used to examine whether or not previously proposed candidate genes are supported by GWA data. This approach is particularly important for the field of alcoholism because the contribution of many candidate genes remains controversial. Using the Human Genome Epidemiology (HuGE) Navigator, we selected candidate genes for alcoholism that have been frequently examined in scientific articles in the past decade. Specific candidate loci as well as all the reported single nucleotide polymorphisms (SNPs) in candidate genes were examined in the Study of Addiction: Genetics and Environment (SAGE), a GWA study comparing alcohol-dependent and nondependent subjects. Several commonly reported candidate loci, including rs1800497 in DRD2, rs698 in ADH1C, rs1799971 in OPRM1, and rs4680 in COMT, are not replicated in SAGE (p > 0.05). Among candidate loci available for analysis, only rs279858 in GABRA2 (p = 0.0052, OR = 1.16) demonstrated a modest association. Examination of all SNPs reported in SAGE in over 50 candidate genes revealed no SNPs with large frequency differences between cases and controls, and the lowest p-value of any SNP was 0.0006. We provide evidence that several extensively studied candidate loci do not have a strong contribution to risk of developing alcohol dependence in European and African ancestry populations. Owing to the lack of coverage, we were unable to rule out the contribution of other variants, and these genes and particular loci warrant further investigation. Our analysis demonstrates that publicly available GWA results can be used to better understand which if any of previously proposed candidate genes contribute to disease. Furthermore, we illustrate how examining the convergence of candidate gene and GWA studies can help elucidate the genetic architecture of alcoholism and more generally complex diseases. Copyright © 2012 by the Research Society on Alcoholism.

  5. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants.

    PubMed

    Dadaev, Tokhir; Saunders, Edward J; Newcombe, Paul J; Anokian, Ezequiel; Leongamornlert, Daniel A; Brook, Mark N; Cieza-Borrella, Clara; Mijuskovic, Martina; Wakerell, Sarah; Olama, Ali Amin Al; Schumacher, Fredrick R; Berndt, Sonja I; Benlloch, Sara; Ahmed, Mahbubl; Goh, Chee; Sheng, Xin; Zhang, Zhuo; Muir, Kenneth; Govindasami, Koveela; Lophatananon, Artitaya; Stevens, Victoria L; Gapstur, Susan M; Carter, Brian D; Tangen, Catherine M; Goodman, Phyllis; Thompson, Ian M; Batra, Jyotsna; Chambers, Suzanne; Moya, Leire; Clements, Judith; Horvath, Lisa; Tilley, Wayne; Risbridger, Gail; Gronberg, Henrik; Aly, Markus; Nordström, Tobias; Pharoah, Paul; Pashayan, Nora; Schleutker, Johanna; Tammela, Teuvo L J; Sipeky, Csilla; Auvinen, Anssi; Albanes, Demetrius; Weinstein, Stephanie; Wolk, Alicja; Hakansson, Niclas; West, Catharine; Dunning, Alison M; Burnet, Neil; Mucci, Lorelei; Giovannucci, Edward; Andriole, Gerald; Cussenot, Olivier; Cancel-Tassin, Géraldine; Koutros, Stella; Freeman, Laura E Beane; Sorensen, Karina Dalsgaard; Orntoft, Torben Falck; Borre, Michael; Maehle, Lovise; Grindedal, Eli Marie; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Martin, Richard M; Travis, Ruth C; Key, Tim J; Hamilton, Robert J; Fleshner, Neil E; Finelli, Antonio; Ingles, Sue Ann; Stern, Mariana C; Rosenstein, Barry; Kerns, Sarah; Ostrer, Harry; Lu, Yong-Jie; Zhang, Hong-Wei; Feng, Ninghan; Mao, Xueying; Guo, Xin; Wang, Guomin; Sun, Zan; Giles, Graham G; Southey, Melissa C; MacInnis, Robert J; FitzGerald, Liesel M; Kibel, Adam S; Drake, Bettina F; Vega, Ana; Gómez-Caamaño, Antonio; Fachal, Laura; Szulkin, Robert; Eklund, Martin; Kogevinas, Manolis; Llorca, Javier; Castaño-Vinyals, Gemma; Penney, Kathryn L; Stampfer, Meir; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Stanford, Janet L; Cybulski, Cezary; Wokolorczyk, Dominika; Lubinski, Jan; Ostrander, Elaine A; Geybels, Milan S; Nordestgaard, Børge G; Nielsen, Sune F; Weisher, Maren; Bisbjerg, Rasmus; Røder, Martin Andreas; Iversen, Peter; Brenner, Hermann; Cuk, Katarina; Holleczek, Bernd; Maier, Christiane; Luedeke, Manuel; Schnoeller, Thomas; Kim, Jeri; Logothetis, Christopher J; John, Esther M; Teixeira, Manuel R; Paulo, Paula; Cardoso, Marta; Neuhausen, Susan L; Steele, Linda; Ding, Yuan Chun; De Ruyck, Kim; De Meerleer, Gert; Ost, Piet; Razack, Azad; Lim, Jasmine; Teo, Soo-Hwang; Lin, Daniel W; Newcomb, Lisa F; Lessel, Davor; Gamulin, Marija; Kulis, Tomislav; Kaneva, Radka; Usmani, Nawaid; Slavov, Chavdar; Mitev, Vanio; Parliament, Matthew; Singhal, Sandeep; Claessens, Frank; Joniau, Steven; Van den Broeck, Thomas; Larkin, Samantha; Townsend, Paul A; Aukim-Hastie, Claire; Gago-Dominguez, Manuela; Castelao, Jose Esteban; Martinez, Maria Elena; Roobol, Monique J; Jenster, Guido; van Schaik, Ron H N; Menegaux, Florence; Truong, Thérèse; Koudou, Yves Akoli; Xu, Jianfeng; Khaw, Kay-Tee; Cannon-Albright, Lisa; Pandha, Hardev; Michael, Agnieszka; Kierzek, Andrzej; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Lindstrom, Sara; Turman, Constance; Ma, Jing; Hunter, David J; Riboli, Elio; Siddiq, Afshan; Canzian, Federico; Kolonel, Laurence N; Le Marchand, Loic; Hoover, Robert N; Machiela, Mitchell J; Kraft, Peter; Freedman, Matthew; Wiklund, Fredrik; Chanock, Stephen; Henderson, Brian E; Easton, Douglas F; Haiman, Christopher A; Eeles, Rosalind A; Conti, David V; Kote-Jarai, Zsofia

    2018-06-11

    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.

  6. Natural Selection and Neutral Evolution Jointly Drive Population Divergence between Alpine and Lowland Ecotypes of the Allopolyploid Plant Anemone multifida (Ranunculaceae)

    PubMed Central

    McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801

  7. Genomic signatures of positive selection in humans and the limits of outlier approaches.

    PubMed

    Kelley, Joanna L; Madeoy, Jennifer; Calhoun, John C; Swanson, Willie; Akey, Joshua M

    2006-08-01

    Identifying regions of the human genome that have been targets of positive selection will provide important insights into recent human evolutionary history and may facilitate the search for complex disease genes. However, the confounding effects of population demographic history and selection on patterns of genetic variation complicate inferences of selection when a small number of loci are studied. To this end, identifying outlier loci from empirical genome-wide distributions of genetic variation is a promising strategy to detect targets of selection. Here, we evaluate the power and efficiency of a simple outlier approach and describe a genome-wide scan for positive selection using a dense catalog of 1.58 million SNPs that were genotyped in three human populations. In total, we analyzed 14,589 genes, 385 of which possess patterns of genetic variation consistent with the hypothesis of positive selection. Furthermore, several extended genomic regions were found, spanning >500 kb, that contained multiple contiguous candidate selection genes. More generally, these data provide important practical insights into the limits of outlier approaches in genome-wide scans for selection, provide strong candidate selection genes to study in greater detail, and may have important implications for disease related research.

  8. Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes

    PubMed Central

    Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.

    2008-01-01

    Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865

  9. Multilocus adaptation associated with heat resistance in reef-building corals.

    PubMed

    Bay, Rachael A; Palumbi, Stephen R

    2014-12-15

    The evolution of tolerance to future climate change depends on the standing stock of genetic variation for resistance to climate-related impacts, but genes contributing to climate tolerance in wild populations are poorly described in number and effect. Physiology and gene expression patterns have shown that corals living in naturally high-temperature microclimates are more resistant to bleaching because of both acclimation and fixed effects, including adaptation. To search for potential genetic correlates of these fixed effects, we genotyped 15,399 single nucleotide polymorphisms (SNPs) in 23 individual tabletop corals, Acropora hyacinthus, within a natural temperature mosaic in backreef lagoons on Ofu Island, American Samoa. Despite overall lack of population substructure, we identified 114 highly divergent SNPs as candidates for environmental selection, via multiple stringent outlier tests, and correlations with temperature. Corals from the warmest reef location had higher minor allele frequencies across these candidate SNPs, a pattern not seen for noncandidate loci. Furthermore, within backreef pools, colonies in the warmest microclimates had a higher number and frequency of alternative alleles at candidate loci. These data suggest mild selection for alternate alleles at many loci in these corals during high heat episodes and possible maintenance of extensive polymorphism through multilocus balancing selection in a heterogeneous environment. In this case, a natural population harbors a reservoir of alleles preadapted to high temperatures, suggesting potential for future evolutionary response to climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Neutral mutation as the source of genetic variation in life history traits.

    PubMed

    Brcić-Kostić, Krunoslav

    2005-08-01

    The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.

  11. Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs

    PubMed Central

    Freedman, Adam H.; Schweizer, Rena M.; Ortega-Del Vecchyo, Diego; Han, Eunjung; Davis, Brian W.; Gronau, Ilan; Silva, Pedro M.; Galaverni, Marco; Fan, Zhenxin; Marx, Peter; Lorente-Galdos, Belen; Ramirez, Oscar; Hormozdiari, Farhad; Alkan, Can; Vilà, Carles; Squire, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Heidi G.; Lee, Clarence; Tadigotla, Vasisht; Siepel, Adam; Bustamante, Carlos D.; Harkins, Timothy T.; Nelson, Stanley F.; Marques-Bonet, Tomas; Ostrander, Elaine A.; Wayne, Robert K.; Novembre, John

    2016-01-01

    Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR) and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers. PMID:26943675

  12. Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica.

    PubMed

    Tsumura, Y; Uchiyama, K; Moriguchi, Y; Ueno, S; Ihara-Ujino, T

    2012-12-01

    Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.

  13. VAV1 and BAFF, via NFκB pathway, are genetic risk factors for myasthenia gravis

    PubMed Central

    Avidan, Nili; Le Panse, Rozen; Harbo, Hanne F; Bernasconi, Pia; Poulas, Konstantinos; Ginzburg, Elizabeta; Cavalcante, Paola; Colleoni, Lara; Baggi, Fulvio; Antozzi, Carlo; Truffault, Frédérique; Horn-Saban, Shirley; Pöschel, Simone; Zagoriti, Zoi; Maniaol, Angelina; Lie, Benedicte A; Bernard, Isabelle; Saoudi, Abdelhadi; Illes, Zsolt; Casasnovas Pons, Carlos; Melms, Arthur; Tzartos, Socrates; Willcox, Nicholas; Kostera-Pruszczyk, Anna; Tallaksen, Chantal; Mantegazza, Renato; Berrih-Aknin, Sonia; Miller, Ariel

    2014-01-01

    Objective To identify novel genetic loci that predispose to early-onset myasthenia gravis (EOMG) applying a two-stage association study, exploration, and replication strategy. Methods Thirty-four loci and one confirmation loci, human leukocyte antigen (HLA)-DRA, were selected as candidate genes by team members of groups involved in different research aspects of MG. In the exploration step, these candidate genes were genotyped in 384 EOMG and 384 matched controls and significant difference in allele frequency were found in eight genes. In the replication step, eight candidate genes and one confirmation loci were genotyped in 1177 EOMG patients and 814 controls, from nine European centres. Results Allele frequency differences were found in four novel loci: CD86, AKAP12, VAV1, B-cell activating factor (BAFF), and tumor necrosis factor-alpha (TNF-α), and these differences were consistent in all nine cohorts. Haplotype trend test supported the differences in allele frequencies between cases and controls. In addition, allele frequency difference in female versus male patients at HLA-DRA and TNF-α loci were observed. Interpretation The genetic associations to EOMG outside the HLA complex are novel and of interest as VAV1 is a key signal transducer essential for T- and B-cell activation, and BAFF is a cytokine that plays important roles in the proliferation and differentiation of B-cells. Moreover, we noted striking epistasis between the predisposing VAV1 and BAFF haplotypes; they conferred a greater risk in combination than alone. These, and CD86, share the same signaling pathway, namely nuclear factor-kappaB (NFκB), thus implicating dysregulation of proinflammatory signaling in predisposition to EOMG. PMID:25356403

  14. Ethnic specificity of lupus-associated loci identified in a genome-wide association study in Korean women.

    PubMed

    Lee, Hye-Soon; Kim, Taehyeung; Bang, So Young; Na, Young Ji; Kim, Il; Kim, Kwangwoo; Kim, Jae-Hoon; Chung, Yeun-Jun; Shin, Hyoung Doo; Kang, Young Mo; Shim, Seung-Cheol; Suh, Chang-Hee; Park, Yong-Beom; Kim, Jong-Sung; Kang, Changwon; Bae, Sang-Cheol

    2014-06-01

    To identify novel genetic candidates for systemic lupus erythematosus (SLE) in the Korean population, and to validate the risk loci for SLE identified in previous genome-wide association studies (GWAS). We performed a GWAS in 400 Korean female SLE patients and 445 controls. Selected single-nucleotide polymorphisms (SNP) were then replicated in an independent cohort of 385 SLE patients and 583 controls (replication cohort 1), and in a further 811 SLE patients and 1502 controls (replication cohort 2). In the GWAS phase, rs9275428 located near HLA-DQB1 showed the strongest association with SLE (OR 0.50, false discovery rate (FDR) p=3.07×10(-6)). Although no loci reached genome-wide significance outside major histocompatibility complex (MHC), C8orf13-BLK, STAT4, CSMD1, DIAPH3, GLDC and TNFSF4 showed FDR p < 0.05. Our results suggest that STAT4, BLK, IRF5, PTTG1-miR-146a, UBE2L3 and TNFAIP3 are shared susceptibility loci among Caucasians and Asians, while ETS1, IKZF1, SLC15A4 are likely to be Asian-specific loci. In a combined analysis of 1596 SLE patients and 2540 controls for selected 22 candidate SNP, STAT4 and BLK as positive controls showed a strong association with SLE (FDR p=9.85×10(-13) and 2.28×10(-8), respectively). Of these, 16 candidates (PEX5L, TRAJ50, MYO18B, SOS1, ARHGAP26, SMURF1, CADPS, HAND1, FAM78B, DIAPH3, TBL1XR1, CSMD1, ZBTB20, C3orf21, HIPK1 and AP001042.1) showed only nominal significance (7.05×10(-4)≤FDR p≤4.38×10(-2)). There are similarities and differences in genetic susceptibility for SLE between Caucasian and Asian ethnic groups. Although 16 putative novel loci for SLE have been suggested in the Korean population, further research on a larger sample is required to discriminate truth from error.

  15. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir

    Treesearch

    Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale

    2005-01-01

    Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...

  16. Genome wide association mapping for grain shape traits in indica rice.

    PubMed

    Feng, Yue; Lu, Qing; Zhai, Rongrong; Zhang, Mengchen; Xu, Qun; Yang, Yaolong; Wang, Shan; Yuan, Xiaoping; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2016-10-01

    Using genome-wide association mapping, 47 SNPs within 27 significant loci were identified for four grain shape traits, and 424 candidate genes were predicted from public database. Grain shape is a key determinant of grain yield and quality in rice (Oryza sativa L.). However, our knowledge of genes controlling rice grain shape remains limited. Genome-wide association mapping based on linkage disequilibrium (LD) has recently emerged as an effective approach for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, association mapping based on 5291 single nucleotide polymorphisms (SNPs) was conducted to identify significant loci associated with grain shape traits in a global collection of 469 diverse rice accessions. A total of 47 SNPs were located in 27 significant loci for four grain traits, and explained ~44.93-65.90 % of the phenotypic variation for each trait. In total, 424 candidate genes within a 200 kb extension region (±100 kb of each locus) of these loci were predicted. Of them, the cloned genes GS3 and qSW5 showed very strong effects on grain length and grain width in our study. Comparing with previously reported QTLs for grain shape traits, we found 11 novel loci, including 3, 3, 2 and 3 loci for grain length, grain width, grain length-width ratio and thousand grain weight, respectively. Validation of these new loci would be performed in the future studies. These results revealed that besides GS3 and qSW5, multiple novel loci and mechanisms were involved in determining rice grain shape. These findings provided valuable information for understanding of the genetic control of grain shape and molecular marker assistant selection (MAS) breeding in rice.

  17. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    USGS Publications Warehouse

    Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.

  18. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Defaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Merilä, Juha

    2013-09-01

    Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes. © 2013 John Wiley & Sons Ltd.

  19. The genetic architecture of Drosophila sensory bristle number.

    PubMed Central

    Dilda, Christy L; Mackay, Trudy F C

    2002-01-01

    We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits. PMID:12524340

  20. Alu expression in human cell lines and their retrotranspositional potential.

    PubMed

    Oler, Andrew J; Traina-Dorge, Stephen; Derbes, Rebecca S; Canella, Donatella; Cairns, Brad R; Roy-Engel, Astrid M

    2012-06-20

    The vast majority of the 1.1 million Alu elements are retrotranspositionally inactive, where only a few loci referred to as 'source elements' can generate new Alu insertions. The first step in identifying the active Alu sources is to determine the loci transcribed by RNA polymerase III (pol III). Previous genome-wide analyses from normal and transformed cell lines identified multiple Alu loci occupied by pol III factors, making them candidate source elements. Analysis of the data from these genome-wide studies determined that the majority of pol III-bound Alus belonged to the older subfamilies Alu S and Alu J, which varied between cell lines from 62.5% to 98.7% of the identified loci. The pol III-bound Alus were further scored for estimated retrotransposition potential (ERP) based on the absence or presence of selected sequence features associated with Alu retrotransposition capability. Our analyses indicate that most of the pol III-bound Alu loci candidates identified lack the sequence characteristics important for retrotransposition. These data suggest that Alu expression likely varies by cell type, growth conditions and transformation state. This variation could extend to where the same cell lines in different laboratories present different Alu expression patterns. The vast majority of Alu loci potentially transcribed by RNA pol III lack important sequence features for retrotransposition and the majority of potentially active Alu loci in the genome (scored high ERP) belong to young Alu subfamilies. Our observations suggest that in an in vivo scenario, the contribution of Alu activity on somatic genetic damage may significantly vary between individuals and tissues.

  1. Discrimination of candidate subgenome-specific loci by linkage map construction with an S1 population of octoploid strawberry (Fragaria × ananassa).

    PubMed

    Nagano, Soichiro; Shirasawa, Kenta; Hirakawa, Hideki; Maeda, Fumi; Ishikawa, Masami; Isobe, Sachiko N

    2017-05-12

    The strawberry, Fragaria × ananassa, is an allo-octoploid (2n = 8x = 56) and outcrossing species. Although it is the most widely consumed berry crop in the world, its complex genome structure has hindered its genetic and genomic analysis, and thus discrimination of subgenome-specific loci among the homoeologous chromosomes is needed. In the present study, we identified candidate subgenome-specific single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) loci, and constructed a linkage map using an S 1 mapping population of the cultivar 'Reikou' with an IStraw90 Axiom® SNP array and previously published SSR markers. The 'Reikou' linkage map consisted of 11,574 loci (11,002 SNPs and 572 SSR loci) spanning 2816.5 cM of 31 linkage groups. The 11,574 loci were located on 4738 unique positions (bin) on the linkage map. Of the mapped loci, 8999 (8588 SNPs and 411 SSR loci) showed a 1:2:1 segregation ratio of AA:AB:BB allele, which suggested the possibility of deriving loci from candidate subgenome-specific sequences. In addition, 2575 loci (2414 SNPs and 161 SSR loci) showed a 3:1 segregation of AB:BB allele, indicating they were derived from homoeologous genomic sequences. Comparative analysis of the homoeologous linkage groups revealed differences in genome structure among the subgenomes. Our results suggest that candidate subgenome-specific loci are randomly located across the genomes, and that there are small- to large-scale structural variations among the subgenomes. The mapped SNPs and SSR loci on the linkage map are expected to be seed points for the construction of pseudomolecules in the octoploid strawberry.

  2. Quantitative trait loci controlling aluminum tolerance in soybean: candidate gene and SNP marker discovery

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity is an important abiotic stress that affects soybean production in acidic soils. Development of Al-tolerant cultivars is an efficient and environmentally friendly solution to the problem. Effective selection of Al-tolerant genotypes in applied breeding requires an understanding...

  3. Genome-wide signals of positive selection in human evolution

    PubMed Central

    Enard, David; Messer, Philipp W.; Petrov, Dmitri A.

    2014-01-01

    The role of positive selection in human evolution remains controversial. On the one hand, scans for positive selection have identified hundreds of candidate loci, and the genome-wide patterns of polymorphism show signatures consistent with frequent positive selection. On the other hand, recent studies have argued that many of the candidate loci are false positives and that most genome-wide signatures of adaptation are in fact due to reduction of neutral diversity by linked deleterious mutations, known as background selection. Here we analyze human polymorphism data from the 1000 Genomes Project and detect signatures of positive selection once we correct for the effects of background selection. We show that levels of neutral polymorphism are lower near amino acid substitutions, with the strongest reduction observed specifically near functionally consequential amino acid substitutions. Furthermore, amino acid substitutions are associated with signatures of recent adaptation that should not be generated by background selection, such as unusually long and frequent haplotypes and specific distortions in the site frequency spectrum. We use forward simulations to argue that the observed signatures require a high rate of strongly adaptive substitutions near amino acid changes. We further demonstrate that the observed signatures of positive selection correlate better with the presence of regulatory sequences, as predicted by the ENCODE Project Consortium, than with the positions of amino acid substitutions. Our results suggest that adaptation was frequent in human evolution and provide support for the hypothesis of King and Wilson that adaptive divergence is primarily driven by regulatory changes. PMID:24619126

  4. How immunogenetically different are domestic pigs from wild boars: a perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes.

    PubMed

    Chen, Shanyuan; Gomes, Rui; Costa, Vânia; Santos, Pedro; Charneca, Rui; Zhang, Ya-ping; Liu, Xue-hong; Wang, Shao-qing; Bento, Pedro; Nunes, Jose-Luis; Buzgó, József; Varga, Gyula; Anton, István; Zsolnai, Attila; Beja-Pereira, Albano

    2013-10-01

    The coexistence of wild boars and domestic pigs across Eurasia makes it feasible to conduct comparative genetic or genomic analyses for addressing how genetically different a domestic species is from its wild ancestor. To test whether there are differences in patterns of genetic variability between wild and domestic pigs at immunity-related genes and to detect outlier loci putatively under selection that may underlie differences in immune responses, here we analyzed 54 single-nucleotide polymorphisms (SNPs) of 19 immunity-related candidate genes on 11 autosomes in three pairs of wild boar and domestic pig populations from China, Iberian Peninsula, and Hungary. Our results showed no statistically significant differences in allele frequency and heterozygosity across SNPs between three pairs of wild and domestic populations. This observation was more likely due to the widespread and long-lasting gene flow between wild boars and domestic pigs across Eurasia. In addition, we detected eight coding SNPs from six genes as outliers being under selection consistently by three outlier tests (BayeScan2.1, FDIST2, and Arlequin3.5). Among four non-synonymous outlier SNPs, one from TLR4 gene was identified as being subject to positive (diversifying) selection and three each from CD36, IFNW1, and IL1B genes were suggested as under balancing selection. All of these four non-synonymous variants were predicted as being benign by PolyPhen-2. Our results were supported by other independent lines of evidence for positive selection or balancing selection acting on these four immune genes (CD36, IFNW1, IL1B, and TLR4). Our study showed an example applying a candidate gene approach to identify functionally important mutations (i.e., outlier loci) in wild and domestic pigs for subsequent functional experiments.

  5. Mapping the Rust Resistant Loci MXC3 and MER in P. trichocarpa and Assessing the Intermarker Linkage Disequilibrium in MXC3 Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Tongming; Difazio, Stephen P.; Gunter, Lee E

    In an attempt to elucidate the molecular mechanisms of Melampsora rust resistance in Populus trichocarpa, we have mapped two resistance loci, MXC3 and MER, and intensively characterized the flanking genomic sequence for the MXC3 locus and the level of linkage disequilibrium (LD) in natural populations. We used an interspecific backcross pedigree and a genetic map that was highly saturated with AFLP and SSR markers, and assembled shotgun-sequence data in the region containing markers linked to MXC3. The two loci were mapped to different linkage groups. Linkage disequilibrium for MXC3 was confined to two closely linked regions spanning 34 and 16more » kb, respectively. The MXC3 region also contained six disease-resistance candidate genes. The MER and MXC3 loci are clearly distinct, and may have different mechanisms of resistance, as different classes of putative resistance genes were present near each locus. The suppressed recombination previously observed in the MXC3 region was possibly caused by extensive hemizygous rearrangements confined to the original parent tree. The relatively low observed LD may facilitate association studies using candidate genes for rust resistance, but will probably inhibit marker-aided selection.« less

  6. Identification of Quantitative Trait Loci for Resistance to RSIVD in Red Sea Bream (Pagrus major).

    PubMed

    Sawayama, Eitaro; Tanizawa, Shiho; Kitamura, Shin-Ichi; Nakayama, Kei; Ohta, Kohei; Ozaki, Akiyuki; Takagi, Motohiro

    2017-12-01

    Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.

  7. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection

    PubMed Central

    Pardiñas, Antonio F.; Holmans, Peter; Pocklington, Andrew J.; Escott-Price, Valentina; Ripke, Stephan; Carrera, Noa; Legge, Sophie E.; Bishop, Sophie; Cameron, Darren; Hamshere, Marian L.; Han, Jun; Hubbard, Leon; Lynham, Amy; Mantripragada, Kiran; Rees, Elliott; MacCabe, James H.; McCarroll, Steven A.; Baune, Bernhard T.; Breen, Gerome; Byrne, Enda M.; Dannlowski, Udo; Eley, Thalia C.; Hayward, Caroline; Martin, Nicholas G.; McIntosh, Andrew M.; Plomin, Robert; Porteous, David J.; Wray, Naomi R.; Caballero, Armando; Geschwind, Daniel H.; Huckins, Laura M.; Ruderfer, Douglas M.; Santiago, Enrique; Sklar, Pamela; Stahl, Eli A.; Won, Hyejung; Agerbo, Esben; Als, Thomas D.; Andreassen, Ole A.; Bækvad-Hansen, Marie; Mortensen, Preben Bo; Pedersen, Carsten Bøcker; Børglum, Anders D.; Bybjerg-Grauholm, Jonas; Djurovic, Srdjan; Durmishi, Naser; Pedersen, Marianne Giørtz; Golimbet, Vera; Grove, Jakob; Hougaard, David M.; Mattheisen, Manuel; Molden, Espen; Mors, Ole; Nordentoft, Merete; Pejovic-Milovancevic, Milica; Sigurdsson, Engilbert; Silagadze, Teimuraz; Hansen, Christine Søholm; Stefansson, Kari; Stefansson, Hreinn; Steinberg, Stacy; Tosato, Sarah; Werge, Thomas; Collier, David A.; Rujescu, Dan; Kirov, George; Owen, Michael J.; O’Donovan, Michael C.; Walters, James T. R.

    2018-01-01

    Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide insights. We report a new genome-wide association study of schizophrenia (11,260 cases and 24,542 controls), and through meta-analysis with existing data we identify 50 novel associated loci and 145 loci in total. Through integrating genomic fine-mapping with brain expression and chromosome conformation data, we identify candidate causal genes within 33 loci. We also show for the first time that the common variant association signal is highly enriched among genes that are under strong selective pressures. These findings provide new insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation-intolerant genes and suggest a mechanism by which common risk variants persist in the population. PMID:29483656

  8. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes.

    PubMed

    Pritchard, Victoria L; Mäkinen, Hannu; Vähä, Juha-Pekka; Erkinaro, Jaakko; Orell, Panu; Primmer, Craig R

    2018-06-01

    Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine-scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene-environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large-effect age-at-maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research. © 2018 John Wiley & Sons Ltd.

  9. Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in Arabidopsis thaliana.

    PubMed

    Lovell, John T; Mullen, Jack L; Lowry, David B; Awole, Kedija; Richards, James H; Sen, Saunak; Verslues, Paul E; Juenger, Thomas E; McKay, John K

    2015-04-01

    Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex. © 2015 American Society of Plant Biologists. All rights reserved.

  10. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci

    PubMed Central

    Glubb, Dylan M.; Johnatty, Sharon E.; Quinn, Michael C.J.; O’Mara, Tracy A.; Tyrer, Jonathan P.; Gao, Bo; Fasching, Peter A.; Beckmann, Matthias W.; Lambrechts, Diether; Vergote, Ignace; Velez Edwards, Digna R.; Beeghly-Fadiel, Alicia; Benitez, Javier; Garcia, Maria J.; Goodman, Marc T.; Thompson, Pamela J.; Dörk, Thilo; Dürst, Matthias; Modungo, Francesmary; Moysich, Kirsten; Heitz, Florian; du Bois, Andreas; Pfisterer, Jacobus; Hillemanns, Peter; Karlan, Beth Y.; Lester, Jenny; Goode, Ellen L.; Cunningham, Julie M.; Winham, Stacey J.; Larson, Melissa C.; McCauley, Bryan M.; Kjær, Susanne Krüger; Jensen, Allan; Schildkraut, Joellen M.; Berchuck, Andrew; Cramer, Daniel W.; Terry, Kathryn L.; Salvesen, Helga B.; Bjorge, Line; Webb, Penny M.; Grant, Peter; Pejovic, Tanja; Moffitt, Melissa; Hogdall, Claus K.; Hogdall, Estrid; Paul, James; Glasspool, Rosalind; Bernardini, Marcus; Tone, Alicia; Huntsman, David; Woo, Michelle; Group, AOCS; deFazio, Anna; Kennedy, Catherine J.; Pharoah, Paul D.P.; MacGregor, Stuart; Chenevix-Trench, Georgia

    2017-01-01

    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci. PMID:29029385

  11. Development of a 63K SNP array for Gossypium and high-density mapping of intra- and inter-specific populations of cotton (G. hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    High-throughput genotyping arrays provide a standardized resource for crop research communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), candidate marker and quantitative trait loci (QTL) ide...

  12. A screen to identify Drosophila genes required for integrin-mediated adhesion.

    PubMed Central

    Walsh, E P; Brown, N H

    1998-01-01

    Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209

  13. Genetic signatures of natural selection in a model invasive ascidian

    NASA Astrophysics Data System (ADS)

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-03-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.

  14. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations.

    PubMed

    Lamontagne, Maxime; Bérubé, Jean-Christophe; Obeidat, Ma'en; Cho, Michael H; Hobbs, Brian D; Sakornsakolpat, Phuwanat; de Jong, Kim; Boezen, H Marike; Nickle, David; Hao, Ke; Timens, Wim; van den Berge, Maarten; Joubert, Philippe; Laviolette, Michel; Sin, Don D; Paré, Peter D; Bossé, Yohan

    2018-05-15

    Causal genes of chronic obstructive pulmonary disease (COPD) remain elusive. The current study aims at integrating genome-wide association studies (GWAS) and lung expression quantitative trait loci (eQTL) data to map COPD candidate causal genes and gain biological insights into the recently discovered COPD susceptibility loci. Two complementary genomic datasets on COPD were studied. First, the lung eQTL dataset which included whole-genome gene expression and genotyping data from 1038 individuals. Second, the largest COPD GWAS to date from the International COPD Genetics Consortium (ICGC) with 13 710 cases and 38 062 controls. Methods that integrated GWAS with eQTL signals including transcriptome-wide association study (TWAS), colocalization and Mendelian randomization-based (SMR) approaches were used to map causality genes, i.e. genes with the strongest evidence of being the functional effector at specific loci. These methods were applied at the genome-wide level and at COPD risk loci derived from the GWAS literature. Replication was performed using lung data from GTEx. We collated 129 non-overlapping risk loci for COPD from the GWAS literature. At the genome-wide scale, 12 new COPD candidate genes/loci were revealed and six replicated in GTEx including CAMK2A, DMPK, MYO15A, TNFRSF10A, BTN3A2 and TRBV30. In addition, we mapped candidate causal genes for 60 out of the 129 GWAS-nominated loci and 23 of them were replicated in GTEx. Mapping candidate causal genes in lung tissue represents an important contribution to the genetics of COPD, enriches our biological interpretation of GWAS findings, and brings us closer to clinical translation of genetic associations.

  15. Discovery of novel heart rate-associated loci using the Exome Chip

    PubMed Central

    van den Berg, Marten E.; Warren, Helen R.; Cabrera, Claudia P.; Verweij, Niek; Mifsud, Borbala; Haessler, Jeffrey; Bihlmeyer, Nathan A.; Fu, Yi-Ping; Weiss, Stefan; Lin, Henry J.; Grarup, Niels; Li-Gao, Ruifang; Pistis, Giorgio; Shah, Nabi; Brody, Jennifer A.; Müller-Nurasyid, Martina; Lin, Honghuang; Mei, Hao; Smith, Albert V.; Lyytikäinen, Leo-Pekka; Hall, Leanne M.; van Setten, Jessica; Trompet, Stella; Prins, Bram P.; Isaacs, Aaron; Radmanesh, Farid; Marten, Jonathan; Entwistle, Aiman; Kors, Jan A.; Silva, Claudia T.; Alonso, Alvaro; Bis, Joshua C.; de Boer, Rudolf; de Haan, Hugoline G.; de Mutsert, Renée; Dedoussis, George; Dominiczak, Anna F.; Doney, Alex S. F.; Ellinor, Patrick T.; Eppinga, Ruben N.; Felix, Stephan B.; Guo, Xiuqing; Hagemeijer, Yanick; Hansen, Torben; Harris, Tamara B.; Heckbert, Susan R.; Huang, Paul L.; Hwang, Shih-Jen; Kähönen, Mika; Kanters, Jørgen K.; Kolcic, Ivana; Launer, Lenore J.; Li, Man; Yao, Jie; Linneberg, Allan; Liu, Simin; Macfarlane, Peter W.; Mangino, Massimo; Morris, Andrew D.; Mulas, Antonella; Murray, Alison D.; Nelson, Christopher P.; Orrú, Marco; Padmanabhan, Sandosh; Peters, Annette; Porteous, David J.; Poulter, Neil; Psaty, Bruce M.; Qi, Lihong; Raitakari, Olli T.; Rivadeneira, Fernando; Roselli, Carolina; Rudan, Igor; Sattar, Naveed; Sever, Peter; Sinner, Moritz F.; Soliman, Elsayed Z.; Spector, Timothy D.; Stanton, Alice V.; Stirrups, Kathleen E.; Taylor, Kent D.; Tobin, Martin D.; Uitterlinden, André; Vaartjes, Ilonca; Hoes, Arno W.; van der Meer, Peter; Völker, Uwe; Waldenberger, Melanie; Xie, Zhijun; Zoledziewska, Magdalena; Tinker, Andrew; Polasek, Ozren; Rosand, Jonathan; Jamshidi, Yalda; van Duijn, Cornelia M.; Zeggini, Eleftheria; Jukema, J. Wouter; Asselbergs, Folkert W.; Samani, Nilesh J.; Lehtimäki, Terho; Gudnason, Vilmundur; Wilson, James; Lubitz, Steven A.; Kääb, Stefan; Sotoodehnia, Nona; Caulfield, Mark J.; Palmer, Colin N. A.; Sanna, Serena; Mook-Kanamori, Dennis O.; Deloukas, Panos; Pedersen, Oluf; Rotter, Jerome I.; Dörr, Marcus; O'Donnell, Chris J.; Hayward, Caroline; Arking, Dan E.; Kooperberg, Charles; van der Harst, Pim; Eijgelsheim, Mark; Stricker, Bruno H.; Munroe, Patricia B.

    2017-01-01

    Abstract Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses. Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods. We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants. Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies. PMID:28379579

  16. Discovery of novel heart rate-associated loci using the Exome Chip.

    PubMed

    van den Berg, Marten E; Warren, Helen R; Cabrera, Claudia P; Verweij, Niek; Mifsud, Borbala; Haessler, Jeffrey; Bihlmeyer, Nathan A; Fu, Yi-Ping; Weiss, Stefan; Lin, Henry J; Grarup, Niels; Li-Gao, Ruifang; Pistis, Giorgio; Shah, Nabi; Brody, Jennifer A; Müller-Nurasyid, Martina; Lin, Honghuang; Mei, Hao; Smith, Albert V; Lyytikäinen, Leo-Pekka; Hall, Leanne M; van Setten, Jessica; Trompet, Stella; Prins, Bram P; Isaacs, Aaron; Radmanesh, Farid; Marten, Jonathan; Entwistle, Aiman; Kors, Jan A; Silva, Claudia T; Alonso, Alvaro; Bis, Joshua C; de Boer, Rudolf; de Haan, Hugoline G; de Mutsert, Renée; Dedoussis, George; Dominiczak, Anna F; Doney, Alex S F; Ellinor, Patrick T; Eppinga, Ruben N; Felix, Stephan B; Guo, Xiuqing; Hagemeijer, Yanick; Hansen, Torben; Harris, Tamara B; Heckbert, Susan R; Huang, Paul L; Hwang, Shih-Jen; Kähönen, Mika; Kanters, Jørgen K; Kolcic, Ivana; Launer, Lenore J; Li, Man; Yao, Jie; Linneberg, Allan; Liu, Simin; Macfarlane, Peter W; Mangino, Massimo; Morris, Andrew D; Mulas, Antonella; Murray, Alison D; Nelson, Christopher P; Orrú, Marco; Padmanabhan, Sandosh; Peters, Annette; Porteous, David J; Poulter, Neil; Psaty, Bruce M; Qi, Lihong; Raitakari, Olli T; Rivadeneira, Fernando; Roselli, Carolina; Rudan, Igor; Sattar, Naveed; Sever, Peter; Sinner, Moritz F; Soliman, Elsayed Z; Spector, Timothy D; Stanton, Alice V; Stirrups, Kathleen E; Taylor, Kent D; Tobin, Martin D; Uitterlinden, André; Vaartjes, Ilonca; Hoes, Arno W; van der Meer, Peter; Völker, Uwe; Waldenberger, Melanie; Xie, Zhijun; Zoledziewska, Magdalena; Tinker, Andrew; Polasek, Ozren; Rosand, Jonathan; Jamshidi, Yalda; van Duijn, Cornelia M; Zeggini, Eleftheria; Jukema, J Wouter; Asselbergs, Folkert W; Samani, Nilesh J; Lehtimäki, Terho; Gudnason, Vilmundur; Wilson, James; Lubitz, Steven A; Kääb, Stefan; Sotoodehnia, Nona; Caulfield, Mark J; Palmer, Colin N A; Sanna, Serena; Mook-Kanamori, Dennis O; Deloukas, Panos; Pedersen, Oluf; Rotter, Jerome I; Dörr, Marcus; O'Donnell, Chris J; Hayward, Caroline; Arking, Dan E; Kooperberg, Charles; van der Harst, Pim; Eijgelsheim, Mark; Stricker, Bruno H; Munroe, Patricia B

    2017-06-15

    Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies. © The Author 2017. Published by Oxford University Press.

  17. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    PubMed

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  18. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq

    PubMed Central

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2018-01-01

    Flax (Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits. PMID:29375606

  19. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq.

    PubMed

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2017-01-01

    Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  20. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics.

    PubMed

    Kidd, Kenneth K; Pakstis, Andrew J; Speed, William C; Lagacé, Robert; Chang, Joseph; Wootton, Sharon; Haigh, Eva; Kidd, Judith R

    2014-09-01

    SNPs that are molecularly very close (<10kb) will generally have extremely low recombination rates, much less than 10(-4). Multiple haplotypes will often exist because of the history of the origins of the variants at the different sites, rare recombinants, and the vagaries of random genetic drift and/or selection. Such multiallelic haplotype loci are potentially important in forensic work for individual identification, for defining ancestry, and for identifying familial relationships. The new DNA sequencing capabilities currently available make possible continuous runs of a few hundred base pairs so that we can now determine the allelic combination of multiple SNPs on each chromosome of an individual, i.e., the phase, for multiple SNPs within a small segment of DNA. Therefore, we have begun to identify regions, encompassing two to four SNPs with an extent of <200bp that define multiallelic haplotype loci. We have identified candidate regions and have collected pilot data on many candidate microhaplotype loci. Here we present 31 microhaplotype loci that have at least three alleles, have high heterozygosity, are globally informative, and are statistically independent at the population level. This study of microhaplotype loci (microhaps) provides proof of principle that such markers exist and validates their usefulness for ancestry inference, lineage-clan-family inference, and individual identification. The true value of microhaplotypes will come with sequencing methods that can establish alleles unambiguously, including disentangling of mixtures, because a single sequencing run on a single strand of DNA will encompass all of the SNPs. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach.

    PubMed

    Silva, C; Garcia-Mas, J; Sánchez, A M; Arús, P; Oliveira, M M

    2005-03-01

    Blooming time is one of the most important agronomic traits in almond. Biochemical and molecular events underlying flowering regulation must be understood before methods to stimulate late flowering can be developed. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (Lb) and quantitative trait loci (QTLs) linked to observed phenotypic differences, but although this gene and these QTLs have been placed on the Prunus reference genetic map, their sequences and specific functions remain unknown. The aim of our investigation was to associate these loci with known genes using a candidate gene approach. Two almond cDNAs and eight Prunus expressed sequence tags were selected as candidate genes (CGs) since their sequences were highly identical to those of flowering regulatory genes characterized in other species. The CGs were amplified from both parental lines of the mapping population using specific primers. Sequence comparison revealed DNA polymorphisms between the parental lines, mainly of the single nucleotide type. Polymorphisms were used to develop co-dominant cleaved amplified polymorphic sequence markers or length polymorphisms based on insertion/deletion events for mapping the candidate genes on the Prunus reference map. Ten candidate genes were assigned to six linkage groups in the Prunus genome. The positions of two of these were compatible with the regions where two QTLs for blooming time were detected. One additional candidate was localized close to the position of the Evergrowing gene, which determines a non-deciduous behaviour in peach.

  2. Current and future developments in patents for quantitative trait loci in dairy cattle.

    PubMed

    Weller, Joel I

    2007-01-01

    Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.

  3. Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.

    PubMed

    Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D

    2007-06-01

    Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.

  4. Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient.

    PubMed

    Nunes, Vera L; Beaumont, Mark A; Butlin, Roger K; Paulo, Octávio S

    2011-01-01

    Identification of loci with adaptive importance is a key step to understand the speciation process in natural populations, because those loci are responsible for phenotypic variation that affects fitness in different environments. We conducted an AFLP genome scan in populations of ocellated lizards (Lacerta lepida) to search for candidate loci influenced by selection along an environmental gradient in the Iberian Peninsula. This gradient is strongly influenced by climatic variables, and two subspecies can be recognized at the opposite extremes: L. lepida iberica in the northwest and L. lepida nevadensis in the southeast. Both subspecies show substantial morphological differences that may be involved in their local adaptation to the climatic extremes. To investigate how the use of a particular outlier detection method can influence the results, a frequentist method, DFDIST, and a Bayesian method, BayeScan, were used to search for outliers influenced by selection. Additionally, the spatial analysis method was used to test for associations of AFLP marker band frequencies with 54 climatic variables by logistic regression. Results obtained with each method highlight differences in their sensitivity. DFDIST and BayeScan detected a similar proportion of outliers (3-4%), but only a few loci were simultaneously detected by both methods. Several loci detected as outliers were also associated with temperature, insolation or precipitation according to spatial analysis method. These results are in accordance with reported data in the literature about morphological and life-history variation of L. lepida subspecies along the environmental gradient. © 2010 Blackwell Publishing Ltd.

  5. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown. PMID:16685651

  6. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  7. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep

    PubMed Central

    2014-01-01

    Background Discerning the traits evolving under neutral conditions from those traits evolving rapidly because of various selection pressures is a great challenge. We propose a new method, composite selection signals (CSS), which unifies the multiple pieces of selection evidence from the rank distribution of its diverse constituent tests. The extreme CSS scores capture highly differentiated loci and underlying common variants hauling excess haplotype homozygosity in the samples of a target population. Results The data on high-density genotypes were analyzed for evidence of an association with either polledness or double muscling in various cohorts of cattle and sheep. In cattle, extreme CSS scores were found in the candidate regions on autosome BTA-1 and BTA-2, flanking the POLL locus and MSTN gene, for polledness and double muscling, respectively. In sheep, the regions with extreme scores were localized on autosome OAR-2 harbouring the MSTN gene for double muscling and on OAR-10 harbouring the RXFP2 gene for polledness. In comparison to the constituent tests, there was a partial agreement between the signals at the four candidate loci; however, they consistently identified additional genomic regions harbouring no known genes. Persuasively, our list of all the additional significant CSS regions contains genes that have been successfully implicated to secondary phenotypic diversity among several subpopulations in our data. For example, the method identified a strong selection signature for stature in cattle capturing selective sweeps harbouring UQCC-GDF5 and PLAG1-CHCHD7 gene regions on BTA-13 and BTA-14, respectively. Both gene pairs have been previously associated with height in humans, while PLAG1-CHCHD7 has also been reported for stature in cattle. In the additional analysis, CSS identified significant regions harbouring multiple genes for various traits under selection in European cattle including polledness, adaptation, metabolism, growth rate, stature, immunity, reproduction traits and some other candidate genes for dairy and beef production. Conclusions CSS successfully localized the candidate regions in validation datasets as well as identified previously known and novel regions for various traits experiencing selection pressure. Together, the results demonstrate the utility of CSS by its improved power, reduced false positives and high-resolution of selection signals as compared to individual constituent tests. PMID:24636660

  8. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)

    PubMed Central

    Abebe, Tiegist D.; Naz, Ali A.; Léon, Jens

    2015-01-01

    Land plants are sessile organisms that cannot escape the adverse climatic conditions of a given environment. Hence, adaptation is one of the solutions to surviving in a challenging environment. This study was aimed at detecting adaptive loci in barley landraces that are affected by selection. To that end, a diverse population of barley landraces was analyzed using the genotyping by sequencing approach. Climatic data for altitude, rainfall and temperature were collected from 61 weather sites near the origin of selected landraces across Ethiopia. Population structure analysis revealed three groups whereas spatial analysis accounted significant similarities at shorter geographic distances (< 40 Km) among barley landraces. Partitioning the variance between climate variables and geographic distances indicated that climate variables accounted for most of the explainable genetic variation. Markers by climatic variables association analysis resulted in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model (LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative candidate genes for plant adaptation. This study highlights the presence of putative adaptive loci among barley landraces representing original gene pool of the farming communities. PMID:26483825

  9. The role of protozoa-driven selection in shaping human genetic variability.

    PubMed

    Pozzoli, Uberto; Fumagalli, Matteo; Cagliani, Rachele; Comi, Giacomo P; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2010-03-01

    Protozoa exert a strong selective pressure in humans. The selection signatures left by these pathogens can be exploited to identify genetic modulators of infection susceptibility. We show that protozoa diversity in different geographic locations is a good measure of protozoa-driven selective pressure; protozoa diversity captured selection signatures at known malaria resistance loci and identified several selected single nucleotide polymorphisms in immune and hemolytic anemia genes. A genome-wide search enabled us to identify 5180 variants mapping to 1145 genes that are subjected to protozoa-driven selective pressure. We provide a genome-wide estimate of protozoa-driven selective pressure and identify candidate susceptibility genes for protozoa-borne diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow

    PubMed Central

    De La Torre, Amanda R; Roberts, David R; Aitken, Sally N

    2014-01-01

    The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridizing spruce species Picea glauca and P. engelmannii in western North America. Genome-wide estimates of admixture based on a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes were used to assess levels of admixture and introgression and to identify loci putatively involved in adaptive differences or reproductive barriers between species. Our palaeoclimatic modelling suggests that these two closely related species have a long history of hybridization and introgression, dating to at least 21 000 years ago, yet species integrity is maintained by a combination of strong environmental selection and reduced current interspecific gene flow. Twenty loci showed evidence of divergent selection, including six loci that were both Fst outliers and associated with climatic gradients, and fourteen loci that were either outliers or showed associations with climate. These included genes responsible for carbohydrate metabolism, signal transduction and transcription factors. PMID:24597663

  11. Database of cattle candidate genes and genetic markers for milk production and mastitis

    PubMed Central

    Ogorevc, J; Kunej, T; Razpet, A; Dovc, P

    2009-01-01

    A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3′UTRs of candidate genes. PMID:19508288

  12. Genetic signatures of natural selection in a model invasive ascidian

    PubMed Central

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-01-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616

  13. Signature of genetic associations in oral cancer.

    PubMed

    Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi

    2017-10-01

    Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene-environment interaction studies is needed to confirm their involvement in modifying oral cancer.

  14. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    PubMed Central

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  15. Navigating the Interface Between Landscape Genetics and Landscape Genomics.

    PubMed

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used.

  16. Navigating the Interface Between Landscape Genetics and Landscape Genomics

    PubMed Central

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K.

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used. PMID:29593776

  17. Copy number variations of obesity relevant loci associated with body mass index in young Chinese.

    PubMed

    Sun, Chen; Cao, Min; Shi, Juan; Li, Lijuan; Miao, Lin; Hong, Jie; Cui, Bin; Ning, Guang

    2013-03-10

    Obesity is one of the most complex human diseases that are widely concerned and studied. More recently, copy number variations (CNVs) emerge as another important genetic marker to influence various human diseases. To elucidate the relationship between obesity and CNVs, this current study selected obesity-related candidate CNVs and analyzed their association with body mass index (BMI). Results showed that a CNV locus, 8q24.3, was significantly different (P=0.0070) in CNV frequency between the obese and healthy controls in a young eastern Chinese cohort, while no statistical significance was observed in other seven candidate loci including well reported 10q11.22 and 16p11.2 loci. The association of 8q24.3 CNVs with BMI of the subjects only showed marginal significance, while the copy number (CN) of 5p15.33 had a significant correlation with the BMI of the subject. These results suggested that 8q24.3 CN gains was associated with obesity, and 5p15.33 might also contribute to obesity pathogenesis, highlighting the importance of these CNVs for obesity risks, as well as providing new evidence for CNVs in the pathology of common diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Genome-wide association study of rice grain width variation.

    PubMed

    Zheng, Xiao-Ming; Gong, Tingting; Ou, Hong-Ling; Xue, Dayuan; Qiao, Weihua; Wang, Junrui; Liu, Sha; Yang, Qingwen; Olsen, Kenneth M

    2018-04-01

    Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.

  19. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    PubMed

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids. © 2013 Blackwell Publishing Ltd.

  20. Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences.

    PubMed

    Colonna, Vincenza; Ayub, Qasim; Chen, Yuan; Pagani, Luca; Luisi, Pierre; Pybus, Marc; Garrison, Erik; Xue, Yali; Tyler-Smith, Chris; Abecasis, Goncalo R; Auton, Adam; Brooks, Lisa D; DePristo, Mark A; Durbin, Richard M; Handsaker, Robert E; Kang, Hyun Min; Marth, Gabor T; McVean, Gil A

    2014-06-30

    Population differentiation has proved to be effective for identifying loci under geographically localized positive selection, and has the potential to identify loci subject to balancing selection. We have previously investigated the pattern of genetic differentiation among human populations at 36.8 million genomic variants to identify sites in the genome showing high frequency differences. Here, we extend this dataset to include additional variants, survey sites with low levels of differentiation, and evaluate the extent to which highly differentiated sites are likely to result from selective or other processes. We demonstrate that while sites with low differentiation represent sampling effects rather than balancing selection, sites showing extremely high population differentiation are enriched for positive selection events and that one half may be the result of classic selective sweeps. Among these, we rediscover known examples, where we actually identify the established functional SNP, and discover novel examples including the genes ABCA12, CALD1 and ZNF804, which we speculate may be linked to adaptations in skin, calcium metabolism and defense, respectively. We identify known and many novel candidate regions for geographically restricted positive selection, and suggest several directions for further research.

  1. A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease

    PubMed Central

    2011-01-01

    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5×10−10, PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci. PMID:21738488

  2. A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data

    PubMed Central

    DeGiorgio, Michael; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates. PMID:25144706

  3. A model-based approach for identifying signatures of ancient balancing selection in genetic data.

    PubMed

    DeGiorgio, Michael; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-08-01

    While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.

  4. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons

    PubMed Central

    2010-01-01

    Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

  5. Association of Genetic Loci with Sleep Apnea in European Americans and African-Americans: The Candidate Gene Association Resource (CARe)

    PubMed Central

    Patel, Sanjay R.; Goodloe, Robert; De, Gourab; Kowgier, Matthew; Weng, Jia; Buxbaum, Sarah G.; Cade, Brian; Fulop, Tibor; Gharib, Sina A.; Gottlieb, Daniel J.; Hillman, David; Larkin, Emma K.; Lauderdale, Diane S.; Li, Li; Mukherjee, Sutapa; Palmer, Lyle; Zee, Phyllis; Zhu, Xiaofeng; Redline, Susan

    2012-01-01

    Although obstructive sleep apnea (OSA) is known to have a strong familial basis, no genetic polymorphisms influencing apnea risk have been identified in cross-cohort analyses. We utilized the National Heart, Lung, and Blood Institute (NHLBI) Candidate Gene Association Resource (CARe) to identify sleep apnea susceptibility loci. Using a panel of 46,449 polymorphisms from roughly 2,100 candidate genes on a customized Illumina iSelect chip, we tested for association with the apnea hypopnea index (AHI) as well as moderate to severe OSA (AHI≥15) in 3,551 participants of the Cleveland Family Study and two cohorts participating in the Sleep Heart Health Study. Among 647 African-Americans, rs11126184 in the pleckstrin (PLEK) gene was associated with OSA while rs7030789 in the lysophosphatidic acid receptor 1 (LPAR1) gene was associated with AHI using a chip-wide significance threshold of p-value<2×10−6. Among 2,904 individuals of European ancestry, rs1409986 in the prostaglandin E2 receptor (PTGER3) gene was significantly associated with OSA. Consistency of effects between rs7030789 and rs1409986 in LPAR1 and PTGER3 and apnea phenotypes were observed in independent clinic-based cohorts. Novel genetic loci for apnea phenotypes were identified through the use of customized gene chips and meta-analyses of cohort data with replication in clinic-based samples. The identified SNPs all lie in genes associated with inflammation suggesting inflammation may play a role in OSA pathogenesis. PMID:23155414

  6. Computational RNomics of Drosophilids

    PubMed Central

    Rose, Dominic; Hackermüller, Jörg; Washietl, Stefan; Reiche, Kristin; Hertel, Jana; Findeiß, Sven; Stadler, Peter F; Prohaska, Sonja J

    2007-01-01

    Background Recent experimental and computational studies have provided overwhelming evidence for a plethora of diverse transcripts that are unrelated to protein-coding genes. One subclass consists of those RNAs that require distinctive secondary structure motifs to exert their biological function and hence exhibit distinctive patterns of sequence conservation characteristic for positive selection on RNA secondary structure. The deep-sequencing of 12 drosophilid species coordinated by the NHGRI provides an ideal data set of comparative computational approaches to determine those genomic loci that code for evolutionarily conserved RNA motifs. This class of loci includes the majority of the known small ncRNAs as well as structured RNA motifs in mRNAs. We report here on a genome-wide survey using RNAz. Results We obtain 16 000 high quality predictions among which we recover the majority of the known ncRNAs. Taking a pessimistically estimated false discovery rate of 40% into account, this implies that at least some ten thousand loci in the Drosophila genome show the hallmarks of stabilizing selection action of RNA structure, and hence are most likely functional at the RNA level. A subset of RNAz predictions overlapping with TRF1 and BRF binding sites [Isogai et al., EMBO J. 26: 79–89 (2007)], which are plausible candidates of Pol III transcripts, have been studied in more detail. Among these sequences we identify several "clusters" of ncRNA candidates with striking structural similarities. Conclusion The statistical evaluation of the RNAz predictions in comparison with a similar analysis of vertebrate genomes [Washietl et al., Nat. Biotech. 23: 1383–1390 (2005)] shows that qualitatively similar fractions of structured RNAs are found in introns, UTRs, and intergenic regions. The intergenic RNA structures, however, are concentrated much more closely around known protein-coding loci, suggesting that flies have significantly smaller complement of independent structured ncRNAs compared to mammals. PMID:17996037

  7. Response of Two Heat Shock Genes to Selection for Knockdown Heat Resistance in Drosophila Melanogaster

    PubMed Central

    McColl, G.; Hoffmann, A. A.; McKechnie, S. W.

    1996-01-01

    To identify genes involved in stress resistance and heat hardening, replicate lines of Drosophila melanogaster were selected for increased resistance to knockdown by a 39° heat stress. Two selective regimes were used, one with and one without prior hardening. Mean knockdown times were increased from ~5 min to >20 min after 18 generations. Initial realized heritabilities were as high as 10% for lines selected without hardening, and crosses between lines indicated simple additive gene effects for the selected phenotypes. To survey allelic variation and correlated selection responses in two candidate stress genes, hsr-omega and hsp68, we applied denaturing gradient gel electrophoresis to amplified DNA sequences from small regions of these genes. After eight generations of selection, allele frequencies at both loci showed correlated responses for selection following hardening, but not without hardening. The hardening process itself was associated with a hsp68 frequency change in the opposite direction to that associated with selection that followed hardening. These stress loci are closely linked on chromosome III, and the hardening selection established a disequilibrium, suggesting an epistatic effect on resistance. The data indicate that molecular variation in both hsr-omega and hsp68 contribute to natural heritable variation for hardened heat resistance. PMID:8844150

  8. Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei.

    PubMed

    Cutter, Asher D

    2008-03-01

    Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.

  9. Evidence for adaptation from standing genetic variation on an antimicrobial peptide gene in the mussel Mytilus edulis.

    PubMed

    Gosset, Célia C; Do Nascimento, Joana; Augé, Marie-Thérèse; Bierne, Nicolas

    2014-06-01

    Genome scans of population differentiation identify candidate loci for adaptation but provide little information on how selection has influenced the genetic structure of these loci. Following a genome scan, we investigated the nature of the selection responsible for the outlying differentiation observed between populations of the marine mussel Mytilus edulis at a leucine/arginine polymorphism (L31R) in the antimicrobial peptide MGD2. We analysed DNA sequence polymorphisms, allele frequencies and population differentiation of polymorphisms closely linked to L31R, and pairwise and third-order linkage disequilibria. An outlying level of population differentiation was observed at L31R only, while no departure from panmixia was observed at linked loci surrounding L31R, as in most of the genome. Selection therefore seems to affect L31R directly. Three hypotheses can explain the lack of differentiation in the chromosomal region close to L31R: (i) hitchhiking has occurred but migration and recombination subsequently erased the signal, (ii) selection was weak enough and recombination strong enough to limit the hitchhiking effect to a very small chromosomal region or (iii) selection acted on a pre-existing polymorphism (i.e. standing variation) at linkage equilibrium with its background. Linkage equilibrium was observed between L31R and linked polymorphisms in every population analysed, as expected under the three hypotheses. However, linkage disequilibrium was observed in some populations between pairs of loci located upstream and downstream to L31R, generating a complex pattern of third-order linkage disequilibria which is best explained by the hypothesis of selection on a pre-existing polymorphism. We hypothesise that selection could be either balanced, maintaining alleles at different frequencies depending on the pathogen community encountered locally by mussels, or intermittent, resulting in sporadic fluctuations in allele frequency. © 2014 John Wiley & Sons Ltd.

  10. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47.

    PubMed

    Anderson, Carl A; Boucher, Gabrielle; Lees, Charlie W; Franke, Andre; D'Amato, Mauro; Taylor, Kent D; Lee, James C; Goyette, Philippe; Imielinski, Marcin; Latiano, Anna; Lagacé, Caroline; Scott, Regan; Amininejad, Leila; Bumpstead, Suzannah; Baidoo, Leonard; Baldassano, Robert N; Barclay, Murray; Bayless, Theodore M; Brand, Stephan; Büning, Carsten; Colombel, Jean-Frédéric; Denson, Lee A; De Vos, Martine; Dubinsky, Marla; Edwards, Cathryn; Ellinghaus, David; Fehrmann, Rudolf S N; Floyd, James A B; Florin, Timothy; Franchimont, Denis; Franke, Lude; Georges, Michel; Glas, Jürgen; Glazer, Nicole L; Guthery, Stephen L; Haritunians, Talin; Hayward, Nicholas K; Hugot, Jean-Pierre; Jobin, Gilles; Laukens, Debby; Lawrance, Ian; Lémann, Marc; Levine, Arie; Libioulle, Cecile; Louis, Edouard; McGovern, Dermot P; Milla, Monica; Montgomery, Grant W; Morley, Katherine I; Mowat, Craig; Ng, Aylwin; Newman, William; Ophoff, Roel A; Papi, Laura; Palmieri, Orazio; Peyrin-Biroulet, Laurent; Panés, Julián; Phillips, Anne; Prescott, Natalie J; Proctor, Deborah D; Roberts, Rebecca; Russell, Richard; Rutgeerts, Paul; Sanderson, Jeremy; Sans, Miquel; Schumm, Philip; Seibold, Frank; Sharma, Yashoda; Simms, Lisa A; Seielstad, Mark; Steinhart, A Hillary; Targan, Stephan R; van den Berg, Leonard H; Vatn, Morten; Verspaget, Hein; Walters, Thomas; Wijmenga, Cisca; Wilson, David C; Westra, Harm-Jan; Xavier, Ramnik J; Zhao, Zhen Z; Ponsioen, Cyriel Y; Andersen, Vibeke; Torkvist, Leif; Gazouli, Maria; Anagnou, Nicholas P; Karlsen, Tom H; Kupcinskas, Limas; Sventoraityte, Jurgita; Mansfield, John C; Kugathasan, Subra; Silverberg, Mark S; Halfvarson, Jonas; Rotter, Jerome I; Mathew, Christopher G; Griffiths, Anne M; Gearry, Richard; Ahmad, Tariq; Brant, Steven R; Chamaillard, Mathias; Satsangi, Jack; Cho, Judy H; Schreiber, Stefan; Daly, Mark J; Barrett, Jeffrey C; Parkes, Miles; Annese, Vito; Hakonarson, Hakon; Radford-Smith, Graham; Duerr, Richard H; Vermeire, Séverine; Weersma, Rinse K; Rioux, John D

    2011-03-01

    Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P < 5 × 10(-8)), increasing the number of ulcerative colitis-associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association signals between Crohn's disease and ulcerative colitis.

  11. Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci

    PubMed Central

    Brorsson, Caroline A.; Pociot, Flemming

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376

  12. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize.

    PubMed

    Warburton, Marilyn L; Williams, William Paul; Hawkins, Leigh; Bridges, Susan; Gresham, Cathy; Harper, Jonathan; Ozkan, Seval; Mylroie, J Erik; Shan, Xueyan

    2011-07-01

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.

  13. Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz).

    PubMed

    Thanyasiriwat, T; Sraphet, S; Whankaew, S; Boonseng, O; Bao, J; Lightfoot, D A; Tangphatsornruang, S; Triwitayakorn, K

    2014-01-01

    Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77-13.01 and phenotype variations explained (PVE) from10.0-48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55-8.68 and explained 6.6-43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co-localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraldes, Armando; Hannemann, Jan; Grassa, Chris

    2013-01-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. Despite the declining costs of genotyping by sequencing, for most studies, the use of large SNP genotyping arrays still offers the most cost-effective solution for large-scale targeted genotyping. Here we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species range. Due to the rapid decay of linkage disequilibrium in P. trichocarpa we adopted a candidate gene approach to the arraymore » design that resulted in the selection of 34,131 SNPs, the majority of which are located in, or within 2 kb, of 3,543 candidate genes. A subset of the SNPs (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%, indicating that high-quality data are generated with this array. We demonstrate that even among small numbers of samples (n=10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that due to ascertainment bias the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca (P. balsamifera and P. angustifolia). Finally, we provide evidence for the utility of the array for intraspecific studies of genetic differentiation and for species assignment and the detection of natural hybrids.« less

  15. Candidate Loci for Yield-Related Traits in Maize Revealed by a Combination of MetaQTL Analysis and Regional Association Mapping

    PubMed Central

    Chen, Lin; An, Yixin; Li, Yong-xiang; Li, Chunhui; Shi, Yunsu; Song, Yanchun; Zhang, Dengfeng; Wang, Tianyu; Li, Yu

    2017-01-01

    Maize grain yield and related traits are complex and are controlled by a large number of genes of small effect or quantitative trait loci (QTL). Over the years, a large number of yield-related QTLs have been identified in maize and deposited in public databases. However, integrating and re-analyzing these data and mining candidate loci for yield-related traits has become a major issue in maize. In this study, we collected information on QTLs conferring maize yield-related traits from 33 published studies. Then, 999 of these QTLs were iteratively projected and subjected to meta-analysis to obtain metaQTLs (MQTLs). A total of 76 MQTLs were found across the maize genome. Based on a comparative genomics strategy, several maize orthologs of rice yield-related genes were identified in these MQTL regions. Furthermore, three potential candidate genes (Gene ID: GRMZM2G359974, GRMZM2G301884, and GRMZM2G083894) associated with kernel size and weight within three MQTL regions were identified using regional association mapping, based on the results of the meta-analysis. This strategy, combining MQTL analysis and regional association mapping, is helpful for functional marker development and rapid identification of candidate genes or loci. PMID:29312420

  16. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    PubMed

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dissection of complex adult traits in a mouse synthetic population.

    PubMed

    Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T

    2012-08-01

    Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.

  18. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    PubMed Central

    2009-01-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude. PMID:20038496

  19. Network-based Analysis of Genome Wide Association Data Provides Novel Candidate Genes for Lipid and Lipoprotein Traits*

    PubMed Central

    Sharma, Amitabh; Gulbahce, Natali; Pevzner, Samuel J.; Menche, Jörg; Ladenvall, Claes; Folkersen, Lasse; Eriksson, Per; Orho-Melander, Marju; Barabási, Albert-László

    2013-01-01

    Genome wide association studies (GWAS) identify susceptibility loci for complex traits, but do not identify particular genes of interest. Integration of functional and network information may help in overcoming this limitation and identifying new susceptibility loci. Using GWAS and comorbidity data, we present a network-based approach to predict candidate genes for lipid and lipoprotein traits. We apply a prediction pipeline incorporating interactome, co-expression, and comorbidity data to Global Lipids Genetics Consortium (GLGC) GWAS for four traits of interest, identifying phenotypically coherent modules. These modules provide insights regarding gene involvement in complex phenotypes with multiple susceptibility alleles and low effect sizes. To experimentally test our predictions, we selected four candidate genes and genotyped representative SNPs in the Malmö Diet and Cancer Cardiovascular Cohort. We found significant associations with LDL-C and total-cholesterol levels for a synonymous SNP (rs234706) in the cystathionine beta-synthase (CBS) gene (p = 1 × 10−5 and adjusted-p = 0.013, respectively). Further, liver samples taken from 206 patients revealed that patients with the minor allele of rs234706 had significant dysregulation of CBS (p = 0.04). Despite the known biological role of CBS in lipid metabolism, SNPs within the locus have not yet been identified in GWAS of lipoprotein traits. Thus, the GWAS-based Comorbidity Module (GCM) approach identifies candidate genes missed by GWAS studies, serving as a broadly applicable tool for the investigation of other complex disease phenotypes. PMID:23882023

  20. Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea

    PubMed Central

    De La Torre, A; Ingvarsson, P K; Aitken, S N

    2015-01-01

    Hybrid zones provide an opportunity to study the effects of selection and gene flow in natural settings. We employed nuclear microsatellites (single sequence repeat (SSR)) and candidate gene single-nucleotide polymorphism markers (SNPs) to characterize the genetic architecture and patterns of interspecific gene flow in the Picea glauca × P. engelmannii hybrid zone across a broad latitudinal (40–60 degrees) and elevational (350–3500 m) range in western North America. Our results revealed a wide and complex hybrid zone with broad ancestry levels and low interspecific heterozygosity, shaped by asymmetric advanced-generation introgression, and low reproductive barriers between parental species. The clinal variation based on geographic variables, lack of concordance in clines among loci and the width of the hybrid zone points towards the maintenance of species integrity through environmental selection. Congruency between geographic and genomic clines suggests that loci with narrow clines are under strong selection, favoring either one parental species (directional selection) or their hybrids (overdominance) as a result of strong associations with climatic variables such as precipitation as snow and mean annual temperature. Cline movement due to past demographic events (evidenced by allelic richness and heterozygosity shifts from the average cline center) may explain the asymmetry in introgression and predominance of P. engelmannii found in this study. These results provide insights into the genetic architecture and fine-scale patterns of admixture, and identify loci that may be involved in reproductive barriers between the species. PMID:25806545

  1. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata

    PubMed Central

    2017-01-01

    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species. PMID:29181279

  2. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.

    PubMed

    Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W

    2011-02-18

    Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.

  3. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic. PMID:21332997

  4. Experimental Evolution and Heart Function in Drosophila.

    PubMed

    Shahrestani, Parvin; Burke, Molly K; Birse, Ryan; Kezos, James N; Ocorr, Karen; Mueller, Laurence D; Rose, Michael R; Bodmer, Rolf

    Drosophila melanogaster is a good model species for the study of heart function. However, most previous work on D. melanogaster heart function has focused on the effects of large-effect genetic variants. We compare heart function among 18 D. melanogaster populations that have been selected for altered development time, aging, or stress resistance. We find that populations with faster development and faster aging have increased heart dysfunction, measured as percentage heart failure after electrical pacing. Experimental evolution of different triglyceride levels, by contrast, has little effect on heart function. Evolved differences in heart function correlate with allele frequency changes at many loci of small effect. Genomic analysis of these populations produces a list of candidate loci that might affect cardiac function at the intersection of development, aging, and metabolic control mechanisms.

  5. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  6. Identification and characterization of the highly polymorphic locus D14S739 in the Han Chinese population

    PubMed Central

    Shao, Chengchen; Zhang, Yaqi; Zhou, Yueqin; Zhu, Wei; Xu, Hongmei; Liu, Zhiping; Tang, Qiqun; Shen, Yiwen; Xie, Jianhui

    2015-01-01

    Aim To systemically select and evaluate short tandem repeats (STRs) on the chromosome 14 and obtain new STR loci as expanded genotyping markers for forensic application. Methods STRs on the chromosome 14 were filtered from Tandem Repeats Database and further selected based on their positions on the chromosome, repeat patterns of the core sequences, sequence homology of the flanking regions, and suitability of flanking regions in primer design. The STR locus with the highest heterozygosity and polymorphism information content (PIC) was selected for further analysis of genetic polymorphism, forensic parameters, and the core sequence. Results Among 26 STR loci selected as candidates, D14S739 had the highest heterozygosity (0.8691) and PIC (0.8432), and showed no deviation from the Hardy-Weinberg equilibrium. 14 alleles were observed, ranging in size from 21 to 34 tetranucleotide units in the core region of (GATA)9-18 (GACA)7-12 GACG (GACA)2 GATA. Paternity testing showed no mutations. Conclusion D14S739 is a highly informative STR locus and could be a suitable genetic marker for forensic applications in the Han Chinese population. PMID:26526885

  7. Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies

    PubMed Central

    Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah

    2018-01-01

    HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620

  8. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake

    USGS Publications Warehouse

    Castoe, Todd A.; Poole, Alexander W.; de Koning, A. P. Jason; Jones, Kenneth L.; Tomback, Diana F.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Lance, Stacey L.; Streicher, Jeffrey W.; Smith, Eric N.; Pollock, David D.

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR" approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample – a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.

  9. Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake

    USGS Publications Warehouse

    Castoe, T.A.; Poole, A.W.; de Koning, A. P. J.; Jones, K.L.; Tomback, D.F.; Oyler-McCance, S.J.; Fike, J.A.; Lance, S.L.; Streicher, J.W.; Smith, E.N.; Pollock, D.D.

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR" approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample - a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable. ?? 2012 Castoe et al.

  10. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake.

    PubMed

    Castoe, Todd A; Poole, Alexander W; de Koning, A P Jason; Jones, Kenneth L; Tomback, Diana F; Oyler-McCance, Sara J; Fike, Jennifer A; Lance, Stacey L; Streicher, Jeffrey W; Smith, Eric N; Pollock, David D

    2012-01-01

    Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct "Seq-to-SSR" approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clark's Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as $10 per sample--a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.

  11. Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.

    PubMed

    Adriaens, M E; Bezzina, C R

    2018-06-22

    Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.

  12. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas Fir (Pseudotsuga menziesii var. menziesii).

    PubMed

    Eckert, Andrew J; Wegrzyn, Jill L; Pande, Barnaly; Jermstad, Kathleen D; Lee, Jennifer M; Liechty, John D; Tearse, Brandon R; Krutovsky, Konstantin V; Neale, David B

    2009-09-01

    Forest trees exhibit remarkable adaptations to their environments. The genetic basis for phenotypic adaptation to climatic gradients has been established through a long history of common garden, provenance, and genecological studies. The identities of genes underlying these traits, however, have remained elusive and thus so have the patterns of adaptive molecular diversity in forest tree genomes. Here, we report an analysis of diversity and divergence for a set of 121 cold-hardiness candidate genes in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Application of several different tests for neutrality, including those that incorporated demographic models, revealed signatures of selection consistent with selective sweeps at three to eight loci, depending upon the severity of a bottleneck event and the method used to detect selection. Given the high levels of recombination, these candidate genes are likely to be closely linked to the target of selection if not the genes themselves. Putative homologs in Arabidopsis act primarily to stabilize the plasma membrane and protect against denaturation of proteins at freezing temperatures. These results indicate that surveys of nucleotide diversity and divergence, when framed within the context of further association mapping experiments, will come full circle with respect to their utility in the dissection of complex phenotypic traits into their genetic components.

  13. Micro-ribonucleic acid-binding site variants of type 2 diabetes candidate loci predispose to gestational diabetes mellitus in Chinese Han women.

    PubMed

    Wang, Xiaojing; Li, Wei; Ma, Liangkun; Ping, Fan; Liu, Juntao; Wu, Xueyan; Mao, Jiangfeng; Wang, Xi; Nie, Min

    2018-01-20

    Emerging evidence has suggested that the genetic background of gestational diabetes mellitus (GDM) was analogous to type 2 diabetes mellitus. In contrast to type 2 diabetes mellitus, the genetic studies for GDM were limited. Accordingly, the aim of the present study was to extensively explore the influence of micro-ribonucleic acid-binding single-nucleotide polymorphisms (SNPs) in type 2 diabetes mellitus candidate loci on GDM susceptibility in Chinese. A total of 839 GDM patients and 900 controls were enrolled. Six micro-ribonucleic acid-binding SNPs were selected from 30 type 2 diabetes mellitus susceptibility loci and genotyped using TaqMan allelic discrimination assays. The minor allele of three SNPs, PAX4 rs712699 (OR 1.366, 95% confidence interval 1.021-1.828, P = 0.036), KCNB1 rs1051295 (OR 1.579, 95% confidence interval 1.172-2.128, P = 0.003) and MFN2 rs1042842 (OR 1.398, 95% confidence interval 1.050-1.862, P = 0.022) were identified to significantly confer higher a risk of GDM in the additive model. The association between rs1051295 and increased fasting plasma glucose (b = 0.006, P = 0.008), 3-h oral glucose tolerance test plasma glucose (b = 0.058, P = 0.025) and homeostatic model assessment of insulin resistance (b = 0.065, P = 0.017) was also shown. Rs1042842 was correlated with higher 3-h oral glucose tolerance test plasma glucose (b = 0.056, P = 0.028). However, no significant correlation between the other included SNPs (LPIN1 rs1050800, VPS26A rs1802295 and NLRP3 rs10802502) and GDM susceptibility were observed. The present findings showed that micro-ribonucleic acid-binding SNPs in type 2 diabetes mellitus candidate loci were also associated with GDM susceptibility, which further highlighted the similar genetic basis underlying GDM and type 2 diabetes mellitus. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  14. Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility.

    PubMed

    Lanaud, Claire; Fouet, Olivier; Legavre, Thierry; Lopes, Uilson; Sounigo, Olivier; Eyango, Marie Claire; Mermaz, Benoit; Da Silva, Marcos Ramos; Loor Solorzano, Rey Gaston; Argout, Xavier; Gyapay, Gabor; Ebaiarrey, Herman Ebai; Colonges, Kelly; Sanier, Christine; Rivallan, Ronan; Mastin, Géraldine; Cryer, Nicholas; Boccara, Michel; Verdeil, Jean-Luc; Efombagn Mousseni, Ives Bruno; Peres Gramacho, Karina; Clément, Didier

    2017-10-13

    Cocoa self-compatibility is an important yield factor and has been described as being controlled by a late gameto-sporophytic system expressed only at the level of the embryo sac. It results in gametic non-fusion and involves several loci. In this work, we identified two loci, located on chromosomes 1 and 4 (CH1 and CH4), involved in cocoa self-incompatibility by two different processes. Both loci are responsible for gametic selection, but only one (the CH4 locus) is involved in the main fruit drop. The CH1 locus acts prior to the gamete fusion step and independently of the CH4 locus. Using fine-mapping and genome-wide association studies, we focused analyses on restricted regions and identified candidate genes. Some of them showed a differential expression between incompatible and compatible reactions. Immunolocalization experiments provided evidence of CH1 candidate genes expressed in ovule and style tissues. Highly polymorphic simple sequence repeat (SSR) diagnostic markers were designed in the CH4 region that had been identified by fine-mapping. They are characterized by a strong linkage disequilibrium with incompatibility alleles, thus allowing the development of efficient diagnostic markers predicting self-compatibility and fruit setting according to the presence of specific alleles or genotypes. SSR alleles specific to self-compatible Amelonado and Criollo varieties were also identified, thus allowing screening for self-compatible plants in cocoa populations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Integrative Bioinformatics and Functional Analyses of GEO, ENCODE, and TCGA Reveal FADD as a Direct Target of the Tumor Suppressor BRCA1.

    PubMed

    Nguyen, Dinh-Duc; Lee, Dong Gyu; Kim, Sinae; Kang, Keunsoo; Rhee, Je-Keun; Chang, Suhwan

    2018-05-14

    BRCA1 is a multifunctional tumor suppressor involved in several essential cellular processes. Although many of these functions are driven by or related to its transcriptional/epigenetic regulator activity, there has been no genome-wide study to reveal the transcriptional/epigenetic targets of BRCA1. Therefore, we conducted a comprehensive analysis of genomics/transcriptomics data to identify novel BRCA1 target genes. We first analyzed ENCODE data with BRCA1 chromatin immunoprecipitation (ChIP)-sequencing results and identified a set of genes with a promoter occupied by BRCA1. We collected 3085 loci with a BRCA1 ChIP signal from four cell lines and calculated the distance between the loci and the nearest gene transcription start site (TSS). Overall, 66.5% of the BRCA1-bound loci fell into a 2-kb region around the TSS, suggesting a role in transcriptional regulation. We selected 45 candidate genes based on gene expression correlation data, obtained from two GEO (Gene Expression Omnibus) datasets and TCGA data of human breast cancer, compared to BRCA1 expression levels. Among them, we further tested three genes ( MEIS2 , CKS1B and FADD ) and verified FADD as a novel direct target of BRCA1 by ChIP, RT-PCR, and a luciferase reporter assay. Collectively, our data demonstrate genome-wide transcriptional regulation by BRCA1 and suggest target genes as biomarker candidates for BRCA1-associated breast cancer.

  16. Locus category based analysis of a large genome-wide association study of rheumatoid arthritis

    PubMed Central

    Freudenberg, Jan; Lee, Annette T.; Siminovitch, Katherine A.; Amos, Christopher I.; Ballard, David; Li, Wentian; Gregersen, Peter K.

    2010-01-01

    To pinpoint true positive single-nucleotide polymorphism (SNP) associations in a genome-wide association study (GWAS) of rheumatoid arthritis (RA), we categorize genetic loci by external knowledge. We test both the ‘enrichment of associated loci’ in a locus category and the ‘combined association’ of a locus category. The former is quantified by the odds ratio for the presence of SNP associations at the loci of a category, whereas the latter is quantified by the number of loci in a category that have SNP associations. These measures are compared with their expected values as obtained from the permutation of the affection status. To account for linkage disequilibrium (LD) among SNPs, we view each LD block as a genetic locus. Positional candidates were defined as loci implicated by earlier GWAS results, whereas functional candidates were defined by annotations regarding the molecular roles of genes, such as gene ontology categories. As expected, immune-related categories show the largest enrichment signal, although it is not very strong. The intersection of positional and functional candidate information predicts novel RA loci near the genes TEC/TXK, MBL2 and PIK3R1/CD180. Notably, a combined association signal is not only produced by immune-related categories, but also by most other categories and even randomly defined categories. The unspecific quality of these signals limits the possible conclusions from combined association tests. It also reduces the magnitude of enrichment test results. These unspecific signals might result from common variants of small effect and hardly concentrated in candidate categories, or an inflated size of associated regions from weak LD with infrequent mutations. PMID:20639398

  17. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca).

    PubMed

    Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique

    2016-01-01

    In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm. © 2015 INRA, UMR 1332 BFP New Phytologist © 2015 New Phytologist Trust.

  18. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    PubMed

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  19. Cracking the genomic piggy bank: identifying secrets of the pig genome.

    PubMed

    Mote, B E; Rothschild, M F

    2006-01-01

    Though researchers are uncovering valuable information about the pig genome at unprecedented speed, the porcine genome community is barely scratching the surface as to understanding interactions of the biological code. The pig genetic linkage map has nearly 5,000 loci comprised of genes, microsatellites, and amplified fragment length polymorphism markers. Likewise, the physical map is becoming denser with nearly 6,000 markers. The long awaited sequencing efforts are providing multidimensional benefits with sequence available for comparative genomics and identifying single nucleotide polymorphisms for use in linkage and trait association studies. Scientists are using exotic and commercial breeds for quantitative trait loci scans. Additionally, candidate gene studies continue to identify chromosomal regions or genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve said traits. Researchers are utilizing novel tools including pig microarrays along with advanced bioinformatics to identify new candidate genes, understand gene function, and piece together gene networks involved in important biological processes. Advances in pig genomics and implications to the pork industry as well as human health are reviewed.

  20. A robust set of black walnut microsatellites for parentage and clonal identification

    Treesearch

    Rodney L. Robichaud; Jeffrey C. Glaubitz; Olin E. Rhodes; Keith Woeste

    2006-01-01

    We describe the development of a robust and powerful suite of 12 microsatellite marker loci for use in genetic investigations of black walnut and related species. These 12 loci were chosen from a set of 17 candidate loci used to genotype 222 trees sampled from a 38-year-old black walnut progeny test. The 222 genotypes represent a sampling from the broad geographic...

  1. Recent Coselection in Human Populations Revealed by Protein–Protein Interaction Network

    PubMed Central

    Qian, Wei; Zhou, Hang; Tang, Kun

    2015-01-01

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein–protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. PMID:25532814

  2. Identification of Genetic Differentiation between Waxy and Common Maize by SNP Genotyping

    PubMed Central

    Hao, Derong; Zhang, Zhenliang; Cheng, Yujing; Chen, Guoqing; Lu, Huhua; Mao, Yuxiang; Shi, Mingliang; Huang, Xiaolan; Zhou, Guangfei; Xue, Lin

    2015-01-01

    Waxy maize (Zea mays L. var. ceratina) is an important vegetable and economic crop that is thought to have originated from cultivated flint maize and most recently underwent divergence from common maize. In this study, a total of 110 waxy and 110 common maize inbred lines were genotyped with 3072 SNPs to evaluate the genetic diversity, population structure, and linkage disequilibrium decay as well as identify putative loci that are under positive selection. The results revealed abundant genetic diversity in the studied panel and that genetic diversity was much higher in common than in waxy maize germplasms. Principal coordinate analysis and neighbor-joining cluster analysis consistently classified the 220 accessions into two major groups and a mixed group with mixed ancestry. Subpopulation structure in both waxy and common maize sets were associated with the germplasm origin and corresponding heterotic groups. The LD decay distance (1500–2000 kb) in waxy maize was lower than that in common maize. Fourteen candidate loci were identified as under positive selection between waxy and common maize at the 99% confidence level. The information from this study can assist waxy maize breeders by enhancing parental line selection and breeding program design. PMID:26566240

  3. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations.

    PubMed Central

    Kohn, Michael H; Pelz, Hans-Joachim; Wayne, Robert K

    2003-01-01

    Populations may diverge at fitness-related genes as a result of adaptation to local conditions. The ability to detect this divergence by marker-based genomic scans depends on the relative magnitudes of selection, recombination, and migration. We survey rat (Rattus norvegicus) populations to assess the effect that local selection with anticoagulant rodenticides has had on microsatellite marker variation and differentiation at the warfarin resistance gene (Rw) relative to the effect on the genomic background. Initially, using a small sample of 16 rats, we demonstrate tight linkage of microsatellite D1Rat219 to Rw by association mapping of genotypes expressing an anticoagulant-rodenticide-insensitive vitamin K 2,3-epoxide reductase (VKOR). Then, using allele frequencies at D1Rat219, we show that predicted and observed resistance levels in 27 populations correspond, suggesting intense and recent selection for resistance. A contrast of F(ST) values between D1Rat219 and the genomic background revealed that rodenticide selection has overwhelmed drift-mediated population structure only at Rw. A case-controlled design distinguished these locus-specific effects of selection at Rw from background levels of differentiation more effectively than a population-controlled approach. Our results support the notion that an analysis of locus-specific population genetic structure may assist the discovery and mapping of novel candidate loci that are the object of selection or may provide supporting evidence for previously identified loci. PMID:12871915

  4. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia

    PubMed Central

    Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan

    2017-01-01

    Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE—petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations. PMID:28399170

  5. Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia.

    PubMed

    Wang, Aisuo; Gopurenko, David; Wu, Hanwen; Lepschi, Brendan

    2017-01-01

    Invasive grass weeds reduce farm productivity, threaten biodiversity, and increase weed control costs. Identification of invasive grasses from native grasses has generally relied on the morphological examination of grass floral material. DNA barcoding may provide an alternative means to identify co-occurring native and invasive grasses, particularly during early growth stages when floral characters are unavailable for analysis. However, there are no universal loci available for grass barcoding. We herein evaluated the utility of six candidate loci (atpF intron, matK, ndhK-ndhC, psbE-petL, ETS and ITS) for barcode identification of several economically important invasive grass species frequently found among native grasses in eastern Australia. We evaluated these loci in 66 specimens representing five invasive grass species (Chloris gayana, Eragrostis curvula, Hyparrhenia hirta, Nassella neesiana, Nassella trichotoma) and seven native grass species. Our results indicated that, while no single locus can be universally used as a DNA barcode for distinguishing the grass species examined in this study, two plastid loci (atpF and matK) showed good distinguishing power to separate most of the taxa examined, and could be used as a dual locus to distinguish several of the invasive from the native species. Low PCR success rates were evidenced among two nuclear loci (ETS and ITS), and few species were amplified at these loci, however ETS was able to genetically distinguish the two important invasive Nassella species. Multiple loci analyses also suggested that ETS played a crucial role in allowing identification of the two Nassella species in the multiple loci combinations.

  6. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition.

    PubMed

    Shakoor, Nadia; Ziegler, Greg; Dilkes, Brian P; Brenton, Zachary; Boyles, Richard; Connolly, Erin L; Kresovich, Stephen; Baxter, Ivan

    2016-04-01

    Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. Transcriptome characterization and SSR discovery in large-scale loach Paramisgurnus dabryanus (Cobitidae, Cypriniformes).

    PubMed

    Li, Caijuan; Ling, Qufei; Ge, Chen; Ye, Zhuqing; Han, Xiaofei

    2015-02-25

    The large-scale loach (Paramisgurnus dabryanus, Cypriniformes) is a bottom-dwelling freshwater species of fish found mainly in eastern Asia. The natural germplasm resources of this important aquaculture species has been recently threatened due to overfishing and artificial propagation. The objective of this study is to obtain the first functional genomic resource and candidate molecular markers for future conservation and breeding research. Illumina paired-end sequencing generated over one hundred million reads that resulted in 71,887 assembled transcripts, with an average length of 1465bp. 42,093 (58.56%) protein-coding sequences were predicted; and 43,837 transcripts had significant matches to NCBI nonredundant protein (Nr) database. 29,389 and 14,419 transcripts were assigned into gene ontology (GO) categories and Eukaryotic Orthologous Groups (KOG), respectively. 22,102 (31.14%) transcripts were mapped to 302 KEGG pathways. In addition, 15,106 candidate SSR markers were identified, with 11,037 pairs of PCR primers designed. 400 primers pairs of SSR selected randomly were validated, of which 364 (91%) pairs of primers were able to produce PCR products. Further test with 41 loci and 20 large-scale loach specimens collected from the four largest lakes in China showed that 36 (87.8%) loci were polymorphic. The transcriptomic profile and SSR repertoire obtained in this study will facilitate population genetic studies and selective breeding of large-scale loach in the future. Copyright © 2015. Published by Elsevier B.V.

  8. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress.

    PubMed

    Wang, Haibo; Zhao, Shuang; Mao, Ke; Dong, Qinglong; Liang, Bowen; Li, Chao; Wei, Zhiwei; Li, Mingjun; Ma, Fengwang

    2018-06-26

    Improvement of water-use efficiency (WUE) can effectively reduce production losses caused by drought stress. A better understanding of the genetic determination of WUE in crops under drought stress has great potential value for developing cultivars adapted to arid regions. To identify the genetic loci associated with WUE and reveal genes responsible for the trait in apple, we aim to map the quantitative trait loci (QTLs) for carbon isotope composition, the proxy for WUE, applying two contrasting irrigating regimes over the two-year experiment and search for the candidate genes encompassed in the mapped QTLs. We constructed a high-density genetic linkage map with 10,172 markers of apple, using single nucleotide polymorphism (SNP) markers obtained through restriction site-associated DNA sequencing (RADseq) and a final segregating population of 350 seedlings from the cross of Honeycrisp and Qinguan. In total, 33 QTLs were identified for carbon isotope composition in apple under both well-watered and drought-stressed conditions. Three QTLs were stable over 2 years under drought stress on linkage groups LG8, LG15 and LG16, as validated by Kompetitive Allele-Specific PCR (KASP) assays. In those validated QTLs, 258 genes were screened according to their Gene Ontology functional annotations. Among them, 28 genes were identified, which exhibited significant responses to drought stress in 'Honeycrisp' and/or 'Qinguan'. These genes are involved in signaling, photosynthesis, response to stresses, carbohydrate metabolism, protein metabolism and modification, hormone metabolism and transport, transport, respiration, transcriptional regulation, and development regulation. They, especially those for photoprotection and relevant signal transduction, are potential candidate genes connected with WUE regulation in drought-stressed apple. We detected three stable QTLs for carbon isotope composition in apple under drought stress over 2 years, and validated them by KASP assay. Twenty-eight candidate genes encompassed in these QTLs were identified. These stable genetic loci and series of genes provided here serve as a foundation for further studies on marker-assisted selection of high WUE and regulatory mechanism of WUE in apple exposed to drought conditions, respectively.

  9. Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.).

    PubMed

    Sun, Chengming; Wang, Benqi; Yan, Lei; Hu, Kaining; Liu, Sheng; Zhou, Yongming; Guan, Chunyun; Zhang, Zhenqian; Li, Jiana; Zhang, Jiefu; Chen, Song; Wen, Jing; Ma, Chaozhi; Tu, Jinxing; Shen, Jinxiong; Fu, Tingdong; Yi, Bin

    2016-01-01

    Plant height is a key morphological trait of rapeseed. In this study, we measured plant height of a rapeseed population across six environments. This population contains 476 inbred lines representing the major Chinese rapeseed genepool and 44 lines from other countries. The 60K Brassica Infinium® SNP array was utilized to genotype the association panel. A genome-wide association study (GWAS) was performed via three methods, including a robust, novel, nonparametric Anderson-Darling (A-D) test. Consequently, 68 loci were identified as significantly associated with plant height (P < 5.22 × 10(-5)), and more than 70% of the loci (48) overlapped the confidence intervals of reported QTLs from nine mapping populations. Moreover, 24 GWAS loci were detected with selective sweep signals, which reflected the signatures of historical semi-dwarf breeding. In the linkage disequilibrium (LD) decay range up-and downstream of 65 loci (r (2) > 0.1), we found plausible candidates orthologous to the documented Arabidopsis genes involved in height regulation. One significant association found by GWAS colocalized with the established height locus BnRGA in rapeseed. Our results provide insights into the genetic basis of plant height in rapeseed and may facilitate marker-based breeding.

  10. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.

    PubMed

    Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I

    2018-05-01

    Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.

  11. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci

    PubMed Central

    Zhao, Yuqi; Chen, Jing; Freudenberg, Johannes M.; Meng, Qingying; Rajpal, Deepak K.; Yang, Xia

    2017-01-01

    Objective Recent genome-wide association studies of coronary artery disease (CAD) have revealed 58 genome-wide significant and 148 suggestive genetic loci. However, the molecular mechanisms through which they contribute to CAD and the clinical implications of these findings remain largely unknown. We aim to retrieve gene subnetworks of the 206 CAD loci and identify and prioritize candidate regulators to better understand the biological mechanisms underlying the genetic associations. Approach and Results We devised a new integrative genomics approach that incorporated (1) candidate genes from the top CAD loci, (2) the complete genetic association results from the 1000 genomes-based CAD genome-wide association studies from the Coronary Artery Disease Genome Wide Replication and Meta-Analysis Plus the Coronary Artery Disease consortium, (3) tissue-specific gene regulatory networks that depict the potential relationship and interactions between genes, and (4) tissue-specific gene expression patterns between CAD patients and controls. The networks and top-ranked regulators according to these data-driven criteria were further queried against literature, experimental evidence, and drug information to evaluate their disease relevance and potential as drug targets. Our analysis uncovered several potential novel regulators of CAD such as LUM and STAT3, which possess properties suitable as drug targets. We also revealed molecular relations and potential mechanisms through which the top CAD loci operate. Furthermore, we found that multiple CAD-relevant biological processes such as extracellular matrix, inflammatory and immune pathways, complement and coagulation cascades, and lipid metabolism interact in the CAD networks. Conclusions Our data-driven integrative genomics framework unraveled tissue-specific relations among the candidate genes of the CAD genome-wide association studies loci and prioritized novel network regulatory genes orchestrating biological processes relevant to CAD. PMID:26966275

  12. Fishing in troubled waters: Revealing genomic signatures of local adaptation in response to freshwater pollutants in two macroinvertebrates.

    PubMed

    Weigand, Hannah; Weiss, Martina; Cai, Huimin; Li, Yongping; Yu, Lili; Zhang, Christine; Leese, Florian

    2018-08-15

    Local adaptation is of fundamental importance for populations to cope with fast, human-mediated environmental changes. In the past, analyses of local adaptation were restricted to few model species. Nowadays, due to the increased affordability of high-throughput sequencing, local adaptation can be studied much easier by searching for patterns of positive selection using genomic data. In the present study, we analysed effects of wastewater treatment plant and ore mining effluents on stream invertebrate populations. The two different anthropogenic stressors have impacted on stream ecosystems over different time scales and with different potencies. As target organisms we selected two macroinvertebrate species with different life histories and dispersal capacities: the caddisfly Glossosoma conformis and the flatworm Dugesia gonocephala. We applied a genome-wide genetic marker technique, termed ddRAD (double digest restriction site associated DNA) sequencing, to identify local adaptation. Ten and 18% of all loci were identified as candidate loci for local adaptation in D. gonocephala and G. conformis, respectively. However, after stringent re-evaluation of the genomic data, strong evidence for local adaptation remained only for one population of the flatworm D. gonocephala affected by high copper concentration from ore mining. One of the corresponding candidate loci is arnt, a gene associated with the response to xenobiotics and potentially involved in metal detoxification. Our results support the hypotheses that local adaptation is more likely to play a central role in environments impacted by a stronger stressor for a longer time and that it is more likely to occur in species with lower migration rates. However, these findings have to be interpreted cautiously, as several confounding factors may have limited the possibility to detect local adaptation. Our study highlights how genomic tools can be used to study the adaptability and thus resistance of natural populations to changing environments and we discuss prospects and limitations of the methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Mapping Genetic Variants Associated with Beta-Adrenergic Responses in Inbred Mice

    PubMed Central

    Hersch, Micha; Peter, Bastian; Kang, Hyun Min; Schüpfer, Fanny; Abriel, Hugues; Pedrazzini, Thierry; Eskin, Eleazar; Beckmann, Jacques S.

    2012-01-01

    β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β 1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied. PMID:22859963

  14. Fine mapping of the Darier's disease locus on chromosome 12q.

    PubMed

    Richard, G; Wright, A R; Harris, S; Doyle, S Z; Korge, B; Mazzanti, C; Tanaka, T; Harth, W; McBride, O W; Compton, J G; Bale, S J; DiGiovanna, J J

    1994-11-01

    Darier's disease (DD) is an autosomal dominant genodermatosis characterized by epidermal acantholysis and dyskeratosis. We have performed genetic linkage studies in 10 families with DD (34 affected) by analyzing 14 polymorphic microsatellite markers. Our results confirm recent reports mapping the DD gene to chromosome 12q23-q24.1. Haplotype analysis of recombinant chromosomes in our families, along with previously reported data, narrow the location of the DD gene to a 5 cM interval flanked by the loci D12S354 and D12S84/D12S105. This localization allowed exclusion of two known genes, PLA2A and PAH, as candidate loci for DD. Three other gene loci (PPP1C, PMCH, PMCA1), mapping in 12q21-q24, remain potential candidates.

  15. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.

    PubMed

    Lachowiec, Jennifer; Shen, Xia; Queitsch, Christine; Carlborg, Örjan

    2015-01-01

    Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.

  16. Genetic Convergence in the Adaptation of Dogs and Humans to the High-Altitude Environment of the Tibetan Plateau

    PubMed Central

    Wang, Guo-Dong; Fan, Ruo-Xi; Zhai, Weiwei; Liu, Fei; Wang, Lu; Zhong, Li; Wu, Hong; Yang, He-Chuan; Wu, Shi-Fang; Zhu, Chun-Ling; Li, Yan; Gao, Yun; Ge, Ri-Li; Wu, Chung-I; Zhang, Ya-Ping

    2014-01-01

    The high-altitude hypoxic environment represents one of the most extreme challenges for mammals. Previous studies of humans on the Tibetan plateau and in the Andes Mountains have identified statistical signatures of selection in different sets of loci. Here, we first measured the hemoglobin levels in village dogs from Tibet and those from Chinese lowlands. We found that the hemoglobin levels are very similar between the two groups, suggesting that Tibetan dogs might share similar adaptive strategies as the Tibetan people. Through a whole-genome sequencing approach, we have identified EPAS1 and HBB as candidate genes for the hypoxic adaptation on the Tibetan plateau. The population genetic analysis shows a significant convergence between humans and dogs in Tibet. The similarities in the sets of loci that exhibit putative signatures of selection and the hemoglobin levels between humans and dogs of the same environment, but not between human populations in different regions, suggests an extraordinary landscape of convergent evolution between human beings and their best friend on the Tibetan plateau. PMID:25091388

  17. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice.

    PubMed

    Liu, Fengxia; Xu, Wenying; Song, Qian; Tan, Lubin; Liu, Jiayong; Zhu, Zuofeng; Fu, Yongcai; Su, Zhen; Sun, Chuanqing

    2013-05-01

    Many important agronomic traits, including cold stress resistance, are complex and controlled by quantitative trait loci (QTLs). Isolation of these QTLs will greatly benefit the agricultural industry but it is a challenging task. This study explored an integrated strategy by combining microarray with QTL-mapping in order to identify cold-tolerant QTLs from a cold-tolerant variety IL112 at early-seedling stage. All the early seedlings of IL112 survived normally for 9 d at 4-5°C, while Guichao2 (GC2), an indica cultivar, died after 4 d under the same conditions. Using the F2:3 population derived from the progeny of GC2 and IL112, we identified seven QTLs for cold tolerance. Furthermore, we performed Affymetrix rice whole-genome array hybridization and obtained the expression profiles of IL112 and GC2 under both low-temperature and normal conditions. Four genes were selected as cold QTL-related candidates, based on microarray data mining and QTL-mapping. One candidate gene, LOC_Os07g22494, was shown to be highly associated with cold tolerance in a number of rice varieties and in the F2:3 population, and its overexpression transgenic rice plants displayed strong tolerance to low temperature at early-seedling stage. The results indicated that overexpression of this gene (LOC_Os07g22494) could increase cold tolerance in rice seedlings. Therefore, this study provides a promising strategy for identifying candidate genes in defined QTL regions.

  18. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies.

    PubMed

    Cannistraci, Carlo V; Ogorevc, Jernej; Zorc, Minja; Ravasi, Timothy; Dovc, Peter; Kunej, Tanja

    2013-02-14

    Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways. Joint pathway analysis of the collected and predicted candidate genes revealed the pivotal importance of the muscle-contraction pathway in cryptorchidism and evidence for genomic associations with cardiomyopathy pathways in RASopathies. The developed gene atlas represents an important resource for the scientific community researching genetics of cryptorchidism. The collected data will further facilitate development of novel genetic markers and could be of interest for functional studies in animals and human. The proposed network-based systems biology approach elucidates molecular mechanisms underlying co-presence of cryptorchidism and cardiomyopathy in RASopathies. Such approach could also aid in molecular explanation of co-presence of diverse and apparently unrelated clinical manifestations in other syndromes.

  19. Limited Evidence for Classic Selective Sweeps in African Populations

    PubMed Central

    Granka, Julie M.; Henn, Brenna M.; Gignoux, Christopher R.; Kidd, Jeffrey M.; Bustamante, Carlos D.; Feldman, Marcus W.

    2012-01-01

    While hundreds of loci have been identified as reflecting strong-positive selection in human populations, connections between candidate loci and specific selective pressures often remain obscure. This study investigates broader patterns of selection in African populations, which are underrepresented despite their potential to offer key insights into human adaptation. We scan for hard selective sweeps using several haplotype and allele-frequency statistics with a data set of nearly 500,000 genome-wide single-nucleotide polymorphisms in 12 highly diverged African populations that span a range of environments and subsistence strategies. We find that positive selection does not appear to be a strong determinant of allele-frequency differentiation among these African populations. Haplotype statistics do identify putatively selected regions that are shared across African populations. However, as assessed by extensive simulations, patterns of haplotype sharing between African populations follow neutral expectations and suggest that tails of the empirical distributions contain false-positive signals. After highlighting several genomic regions where positive selection can be inferred with higher confidence, we use a novel method to identify biological functions enriched among populations’ empirical tail genomic windows, such as immune response in agricultural groups. In general, however, it seems that current methods for selection scans are poorly suited to populations that, like the African populations in this study, are affected by ascertainment bias and have low levels of linkage disequilibrium, possibly old selective sweeps, and potentially reduced phasing accuracy. Additionally, population history can confound the interpretation of selection statistics, suggesting that greater care is needed in attributing broad genetic patterns to human adaptation. PMID:22960214

  20. Selective sweeps in the homoploid hybrid species Helianthus deserticola: evolution in concert across populations and across origins

    PubMed Central

    GROSS, BRIANA L.; TURNER, KATHRYN G.; RIESEBERG, LOREN H.

    2008-01-01

    The evolution of different populations within a species in response to selective pressures can potentially happen in three different ways. It can occur in parallel, where similar changes occur independently in each population in response to selection; in concert, where the spread of an adaptive mutation across a species’ range results in a single allele fixing in each population; or populations can diverge in response to local selective pressures. We explored these possibilities in populations of the homoploid hybrid species Helianthus deserticola relative to its parental species Helianthus annuus and Helianthus petiolaris using an analysis of variation in 96 expressed sequence tag-based microsatellites. A total of nine loci showed evidence consistent with recent selection at either the species or population level, although two of these genes were discarded because the apparent sweep did not occur relative to the parent from which the locus was derived. Between one and five loci showed a putative sweep across the entire species range with the same microsatellite allele fixed in each population. This pattern is consistent with evolution in concert despite geographical isolation and potential independent origins of the populations. Only one population of H. deserticola showed candidate sweeps that were unique compared to the rest of the species, and this population has also potentially experienced recent admixture with the parental species. PMID:18092993

  1. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Induri, Brahma R; Ellis, Danielle R; Slavov, Goncho T.

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on themore » two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.« less

  2. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis.

    PubMed

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick Ma; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent Wv; Pasmans, Suzanne Gma; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe Mr; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla Mt; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, Wh Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan

    2015-12-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.

  3. Exome Sequence Analysis of 14 Families With High Myopia.

    PubMed

    Kloss, Bethany A; Tompson, Stuart W; Whisenhunt, Kristina N; Quow, Krystina L; Huang, Samuel J; Pavelec, Derek M; Rosenberg, Thomas; Young, Terri L

    2017-04-01

    To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sanger sequencing was used to confirm variants in original DNA, and to test for disease cosegregation in additional family members. Candidate genes and chromosomal loci previously associated with myopic refractive error and its endophenotypes were comprehensively screened. In 14 high myopia families, we identified 73 rare and 31 novel gene variants as candidates for pathogenicity. In seven of these families, two of the novel and eight of the rare variants were within known myopia loci. A total of 104 heterozygous nonsynonymous rare variants in 104 genes were identified in 10 out of 14 probands. Each variant cosegregated with affection status. No rare variants were identified in genes known to cause myopia or in genes closest to published genome-wide association study association signals for refractive error or its endophenotypes. Whole exome sequencing was performed to determine gene variants implicated in the pathogenesis of AD high myopia. This study provides new genes for consideration in the pathogenesis of high myopia, and may aid in the development of genetic profiling of those at greatest risk for attendant ocular morbidities of this disorder.

  4. Sunflower domestication alleles support single domestication center in eastern North America

    PubMed Central

    Blackman, Benjamin K.; Scascitelli, Moira; Kane, Nolan C.; Luton, Harry H.; Rasmussen, David A.; Bye, Robert A.; Lentz, David L.; Rieseberg, Loren H.

    2011-01-01

    Phylogenetic analyses of genes with demonstrated involvement in evolutionary transitions can be an important means of resolving conflicting hypotheses about evolutionary history or process. In sunflower, two genes have previously been shown to have experienced selective sweeps during its early domestication. In the present study, we identified a third candidate early domestication gene and conducted haplotype analyses of all three genes to address a recent, controversial hypothesis about the origin of cultivated sunflower. Although the scientific consensus had long been that sunflower was domesticated once in eastern North America, the discovery of pre-Columbian sunflower remains at archaeological sites in Mexico led to the proposal of a second domestication center in southern Mexico. Previous molecular studies with neutral markers were consistent with the former hypothesis. However, only two indigenous Mexican cultivars were included in these studies, and their provenance and genetic purity have been questioned. Therefore, we sequenced regions of the three candidate domestication genes containing SNPs diagnostic for domestication from large, newly collected samples of Mexican sunflower landraces and Mexican wild populations from a broad geographic range. The new germplasm also was genotyped for 12 microsatellite loci. Our evidence from multiple evolutionarily important loci and from neutral markers supports a single domestication event for extant cultivated sunflower in eastern North America. PMID:21844335

  5. Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes.

    PubMed

    Talbot, Benoit; Chen, Ting-Wen; Zimmerman, Shawna; Joost, Stéphane; Eckert, Andrew J; Crow, Taylor M; Semizer-Cuming, Devrim; Seshadri, Chitra; Manel, Stéphanie

    2017-03-01

    Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Patterns of selection and allele diversity of class I and class II major histocompatibility loci across the species range of sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M

    2013-09-01

    The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.

  7. Genetic rescue of an endangered domestic animal through outcrossing with closely related breeds: A case study of the Norwegian Lundehund.

    PubMed

    Stronen, Astrid V; Salmela, Elina; Baldursdóttir, Birna K; Berg, Peer; Espelien, Ingvild S; Järvi, Kirsi; Jensen, Henrik; Kristensen, Torsten N; Melis, Claudia; Manenti, Tommaso; Lohi, Hannes; Pertoldi, Cino

    2017-01-01

    Genetic rescue, outcrossing with individuals from a related population, is used to augment genetic diversity in populations threatened by severe inbreeding and extinction. The endangered Norwegian Lundehund dog underwent at least two severe bottlenecks in the 1940s and 1960s that each left only five inbred dogs, and the approximately 1500 dogs remaining world-wide today appear to descend from only two individuals. The Lundehund has a high prevalence of a gastrointestinal disease, to which all remaining dogs may be predisposed. Outcrossing is currently performed with three Nordic Spitz breeds: Norwegian Buhund, Icelandic Sheepdog, and Norrbottenspets. Examination of single nucleotide polymorphism (SNP) genotypes based on 165K loci in 48 dogs from the four breeds revealed substantially lower genetic diversity for the Lundehund (HE 0.035) than for other breeds (HE 0.209-0.284). Analyses of genetic structure with > 15K linkage disequilibrium-pruned SNPs showed four distinct genetic clusters. Pairwise FST values between Lundehund and the candidate breeds were highest for Icelandic Sheepdog, followed by Buhund and Norrbottenspets. We assessed the presence of outlier loci among candidate breeds and examined flanking genome regions (1 megabase) for genes under possible selection to identify potential adaptive differences among breeds; outliers were observed in flanking regions of genes associated with key functions including the immune system, metabolism, cognition and physical development. We suggest crossbreeding with multiple breeds as the best strategy to increase genetic diversity for the Lundehund and to reduce the incidence of health problems. For this project, the three candidate breeds were first selected based on phenotypes and then subjected to genetic investigation. Because phenotypes are often paramount for domestic breed owners, such a strategy could provide a helpful approach for genetic rescue and restoration of other domestic populations at risk, by ensuring the involvement of owners, breeders and managers at the start of the project.

  8. Characterization of the Gray Whale Eschrichtius robustus Genome and a Genotyping Array Based on Single-Nucleotide Polymorphisms in Candidate Genes.

    PubMed

    DeWoody, J Andrew; Fernandez, Nadia B; Brüniche-Olsen, Anna; Antonides, Jennifer D; Doyle, Jacqueline M; San Miguel, Phillip; Westerman, Rick; Vertyankin, Vladimir V; Godard-Codding, Céline A J; Bickham, John W

    2017-06-01

    Genetic and genomic approaches have much to offer in terms of ecology, evolution, and conservation. To better understand the biology of the gray whale Eschrichtius robustus (Lilljeborg, 1861), we sequenced the genome and produced an assembly that contains ∼95% of the genes known to be highly conserved among eukaryotes. From this assembly, we annotated 22,711 genes and identified 2,057,254 single-nucleotide polymorphisms (SNPs). Using this assembly, we generated a curated list of candidate genes potentially subject to strong natural selection, including genes associated with osmoregulation, oxygen binding and delivery, and other aspects of marine life. From these candidate genes, we queried 92 autosomal protein-coding markers with a panel of 96 SNPs that also included 2 sexing and 2 mitochondrial markers. Genotyping error rates, calculated across loci and across 69 intentional replicate samples, were low (0.021%), and observed heterozygosity was 0.33 averaged over all autosomal markers. This level of variability provides substantial discriminatory power across loci (mean probability of identity of 1.6 × 10 -25 and mean probability of exclusion >0.999 with neither parent known), indicating that these markers provide a powerful means to assess parentage and relatedness in gray whales. We found 29 unique multilocus genotypes represented among our 36 biopsies (indicating that we inadvertently sampled 7 whales twice). In total, we compiled an individual data set of 28 western gray whales (WGSs) and 1 presumptive eastern gray whale (EGW). The lone EGW we sampled was no more or less related to the WGWs than expected by chance alone. The gray whale genomes reported here will enable comparative studies of natural selection in cetaceans, and the SNP markers should be highly informative for future studies of gray whale evolution, population structure, demography, and relatedness.

  9. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

    PubMed Central

    Kaur, Parwinder; Appels, Rudi; Bayer, Philipp E.; Keeble-Gagnere, Gabriel; Wang, Jiankang; Hirakawa, Hideki; Shirasawa, Kenta; Vercoe, Philip; Stefanova, Katia; Durmic, Zoey; Nichols, Phillip; Revell, Clinton; Isobe, Sachiko N.; Edwards, David; Erskine, William

    2017-01-01

    Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production. PMID:28928752

  10. Evolution of disease response genes in loblolly pine: insights from candidate genes.

    PubMed

    Ersoz, Elhan S; Wright, Mark H; González-Martínez, Santiago C; Langley, Charles H; Neale, David B

    2010-12-06

    Host-pathogen interactions that may lead to a competitive co-evolution of virulence and resistance mechanisms present an attractive system to study molecular evolution because strong, recent (or even current) selective pressure is expected at many genomic loci. However, it is unclear whether these selective forces would act to preserve existing diversity, promote novel diversity, or reduce linked neutral diversity during rapid fixation of advantageous alleles. In plants, the lack of adaptive immunity places a larger burden on genetic diversity to ensure survival of plant populations. This burden is even greater if the generation time of the plant is much longer than the generation time of the pathogen. Here, we present nucleotide polymorphism and substitution data for 41 candidate genes from the long-lived forest tree loblolly pine, selected primarily for their prospective influences on host-pathogen interactions. This dataset is analyzed together with 15 drought-tolerance and 13 wood-quality genes from previous studies. A wide range of neutrality tests were performed and tested against expectations from realistic demographic models. Collectively, our analyses found that axr (auxin response factor), caf1 (chromatin assembly factor) and gatabp1 (gata binding protein 1) candidate genes carry patterns consistent with directional selection and erd3 (early response to drought 3) displays patterns suggestive of a selective sweep, both of which are consistent with the arm-race model of disease response evolution. Furthermore, we have identified patterns consistent with diversifying selection at erf1-like (ethylene responsive factor 1), ccoaoemt (caffeoyl-CoA-O-methyltransferase), cyp450-like (cytochrome p450-like) and pr4.3 (pathogen response 4.3), expected under the trench-warfare evolution model. Finally, a drought-tolerance candidate related to the plant cell wall, lp5, displayed patterns consistent with balancing selection. In conclusion, both arms-race and trench-warfare models seem compatible with patterns of polymorphism found in different disease-response candidate genes, indicating a mixed strategy of disease tolerance evolution for loblolly pine, a major tree crop in southeastern United States.

  11. Identification and confirmation of greenbug resistance loci in an advanced mapping population of sorghum

    USDA-ARS?s Scientific Manuscript database

    Greenbug infestations to sorghum can cause severe and above economic threshold damage in the Great Plains of the United States. This study was to identify quantitative trait loci (QTL) and potential candidate genes residing within the QTL region responsible for greenbug resistance in an advanced ma...

  12. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    PubMed Central

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  13. Signatures of positive selection in African Butana and Kenana dairy zebu cattle.

    PubMed

    Bahbahani, Hussain; Salim, Bashir; Almathen, Faisal; Al Enezi, Fahad; Mwacharo, Joram M; Hanotte, Olivier

    2018-01-01

    Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds.

  14. Time scale matters: genetic analysis does not support adaptation-by-time as the mechanism for adaptive seasonal declines in kokanee reproductive life span

    PubMed Central

    Morbey, Yolanda E; Jensen, Evelyn L; Russello, Michael A

    2014-01-01

    Seasonal declines of fitness-related traits are often attributed to environmental effects or individual-level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation-by-time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian-linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation-by-time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time-dependent, adaptive adjustment of reproductive effort. PMID:25478160

  15. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  16. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.

  17. Patterns of Ancestry, Signatures of Natural Selection, and Genetic Association with Stature in Western African Pygmies

    PubMed Central

    Jarvis, Joseph P.; Ferwerda, Bart; Froment, Alain; Bodo, Jean-Marie; Beggs, William; Hoffman, Gabriel; Mezey, Jason; Tishkoff, Sarah A.

    2012-01-01

    African Pygmy groups show a distinctive pattern of phenotypic variation, including short stature, which is thought to reflect past adaptation to a tropical environment. Here, we analyze Illumina 1M SNP array data in three Western Pygmy populations from Cameroon and three neighboring Bantu-speaking agricultural populations with whom they have admixed. We infer genome-wide ancestry, scan for signals of positive selection, and perform targeted genetic association with measured height variation. We identify multiple regions throughout the genome that may have played a role in adaptive evolution, many of which contain loci with roles in growth hormone, insulin, and insulin-like growth factor signaling pathways, as well as immunity and neuroendocrine signaling involved in reproduction and metabolism. The most striking results are found on chromosome 3, which harbors a cluster of selection and association signals between approximately 45 and 60 Mb. This region also includes the positional candidate genes DOCK3, which is known to be associated with height variation in Europeans, and CISH, a negative regulator of cytokine signaling known to inhibit growth hormone-stimulated STAT5 signaling. Finally, pathway analysis for genes near the strongest signals of association with height indicates enrichment for loci involved in insulin and insulin-like growth factor signaling. PMID:22570615

  18. Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era

    PubMed Central

    2014-01-01

    Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci. PMID:24885462

  19. The impact of low-frequency and rare variants on lipid levels

    PubMed Central

    Surakka, Ida; Horikoshi, Momoko; Mägi, Reedik; Sarin, Antti-Pekka; Mahajan, Anubha; Lagou, Vasiliki; Marullo, Letizia; Ferreira, Teresa; Miraglio, Benjamin; Timonen, Sanna; Kettunen, Johannes; Pirinen, Matti; Karjalainen, Juha; Thorleifsson, Gudmar; Hägg, Sara; Hottenga, Jouke-Jan; Isaacs, Aaron; Ladenvall, Claes; Beekman, Marian; Esko, Tõnu; Ried, Janina S; Nelson, Christopher P; Willenborg, Christina; Gustafsson, Stefan; Westra, Harm-Jan; Blades, Matthew; de Craen, Anton JM; de Geus, Eco J; Deelen, Joris; Grallert, Harald; Hamsten, Anders; Havulinna, Aki S.; Hengstenberg, Christian; Houwing-Duistermaat, Jeanine J; Hyppönen, Elina; Karssen, Lennart C; Lehtimäki, Terho; Lyssenko, Valeriya; Magnusson, Patrik KE; Mihailov, Evelin; Müller-Nurasyid, Martina; Mpindi, John-Patrick; Pedersen, Nancy L; Penninx, Brenda WJH; Perola, Markus; Pers, Tune H; Peters, Annette; Rung, Johan; Smit, Johannes H; Steinthorsdottir, Valgerdur; Tobin, Martin D; Tsernikova, Natalia; van Leeuwen, Elisabeth M; Viikari, Jorma S; Willems, Sara M; Willemsen, Gonneke; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J; Kaprio, Jaakko; Lind, Lars; Gieger, Christian; Metspalu, Andres; Slagboom, P Eline; Groop, Leif; van Duijn, Cornelia M; Eriksson, Johan G; Jula, Antti; Salomaa, Veikko; Boomsma, Dorret I; Power, Christine; Raitakari, Olli T; Ingelsson, Erik; Järvelin, Marjo-Riitta; Stefansson, Kari; Franke, Lude; Ikonen, Elina; Kallioniemi, Olli; Pietiäinen, Vilja; Lindgren, Cecilia M; Thorsteinsdottir, Unnur; Palotie, Aarno; McCarthy, Mark I; Morris, Andrew P; Prokopenko, Inga; Ripatti, Samuli

    2016-01-01

    Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes imputation in 62,166 samples, we identify association to lipids in 93 loci including 79 previously identified loci with new lead-SNPs, 10 new loci, 15 loci with a low-frequency and 10 loci with missense lead-SNPs, and, 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC, and APOE), or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2), explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for LDL-C and TC. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to re-sequencing. PMID:25961943

  20. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9.

    PubMed

    Janse, Marcel; Lamberts, Laetitia E; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J M; Fehrmann, Rudolf S N; Smolonska, Joanna; van den Berg, Leonard H; Ophoff, Roel A; Porte, Robert J; Weismüller, Tobias J; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y; Schreiber, Stefan; Karlsen, Tom H; Franke, Andre; Weersma, Rinse K

    2011-06-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently identified for ulcerative colitis (UC) in a large cohort of 1,186 PSC patients and 1,748 controls. Single nucleotide polymorphisms (SNPs) tagging 13 UC susceptibility loci were initially genotyped in 854 PSC patients and 1,491 controls from Benelux (331 cases, 735 controls), Germany (265 cases, 368 controls), and Scandinavia (258 cases, 388 controls). Subsequently, a joint analysis was performed with an independent second Scandinavian cohort (332 cases, 257 controls). SNPs at chromosomes 2p16 (P-value 4.12 × 10(-4) ), 4q27 (P-value 4.10 × 10(-5) ), and 9q34 (P-value 8.41 × 10(-4) ) were associated with PSC in the joint analysis after correcting for multiple testing. In PSC patients without inflammatory bowel disease (IBD), SNPs at 4q27 and 9q34 were nominally associated (P < 0.05). We applied additional in silico analyses to identify likely candidate genes at PSC susceptibility loci. To identify nonrandom, evidence-based links we used GRAIL (Gene Relationships Across Implicated Loci) analysis showing interconnectivity between genes in six out of in total nine PSC-associated regions. Expression quantitative trait analysis from 1,469 Dutch and UK individuals demonstrated that five out of nine SNPs had an effect on cis-gene expression. These analyses prioritized IL2, CARD9, and REL as novel candidates. We have identified three UC susceptibility loci to be associated with PSC, harboring the putative candidate genes REL, IL2, and CARD9. These results add to the scarce knowledge on the genetic background of PSC and imply an important role for both innate and adaptive immunological factors. Copyright © 2011 American Association for the Study of Liver Diseases.

  1. Initiative for standardization of reporting genetics of male infertility.

    PubMed

    Traven, Eva; Ogrinc, Ana; Kunej, Tanja

    2017-02-01

    The number of publications on research of male infertility is increasing. Technologies used in research of male infertility generate complex results and various types of data that need to be appropriately managed, arranged, and made available to other researchers for further use. In our previous study, we collected over 800 candidate loci for male fertility in seven mammalian species. However, the continuation of the work towards a comprehensive database of candidate genes associated with different types of idiopathic human male infertility is challenging due to fragmented information, obtained from a variety of technologies and various omics approaches. Results are published in different forms and usually need to be excavated from the text, which hinders the gathering of information. Standardized reporting of genetic anomalies as well as causative and risk factors of male infertility therefore presents an important issue. The aim of the study was to collect examples of diverse genomic loci published in association with human male infertility and to propose a standardized format for reporting genetic causes of male infertility. From the currently available data we have selected 75 studies reporting 186 representative genomic loci which have been proposed as genetic risk factors for male infertility. Based on collected and formatted data, we suggested a first step towards unification of reporting the genetics of male infertility in original and review studies. The proposed initiative consists of five relevant data types: 1) genetic locus, 2) race/ethnicity, number of participants (infertile/controls), 3) methodology, 4) phenotype (clinical data, disease ontology, and disease comorbidity), and 5) reference. The proposed form for standardized reporting presents a baseline for further optimization with additional genetic and clinical information. This data standardization initiative will enable faster multi-omics data integration, database development and sharing, establishing more targeted hypotheses, and facilitating biomarker discovery.

  2. A Comprehensive Analysis of Common Genetic Variation Around Six Candidate Loci for Intrahepatic Cholestasis of Pregnancy

    PubMed Central

    Dixon, Peter H; Wadsworth, Christopher A; Chambers, Jennifer; Donnelly, Jennifer; Cooley, Sharon; Buckley, Rebecca; Mannino, Ramona; Jarvis, Sheba; Syngelaki, Argyro; Geenes, Victoria; Paul, Priyadarshini; Sothinathan, Meera; Kubitz, Ralf; Lammert, Frank; Tribe, Rachel M; Ch'ng, Chin Lye; Marschall, Hanns-Ulrich; Glantz, Anna; Khan, Shahid A; Nicolaides, Kypros; Whittaker, John; Geary, Michael; Williamson, Catherine

    2014-01-01

    OBJECTIVES: Intrahepatic cholestasis of pregnancy (ICP) has a complex etiology with a significant genetic component. Heterozygous mutations of canalicular transporters occur in a subset of ICP cases and a population susceptibility allele (p.444A) has been identified in ABCB11. We sought to expand our knowledge of the detailed genetic contribution to ICP by investigation of common variation around candidate loci with biological plausibility for a role in ICP (ABCB4, ABCB11, ABCC2, ATP8B1, NR1H4, and FGF19). METHODS: ICP patients (n=563) of white western European origin and controls (n=642) were analyzed in a case–control design. Single-nucleotide polymorphism (SNP) markers (n=83) were selected from the HapMap data set (Tagger, Haploview 4.1 (build 22)). Genotyping was performed by allelic discrimination assay on a robotic platform. Following quality control, SNP data were analyzed by Armitage's trend test. RESULTS: Cochran–Armitage trend testing identified six SNPs in ABCB11 together with six SNPs in ABCB4 that showed significant evidence of association. The minimum Bonferroni corrected P value for trend testing ABCB11 was 5.81×10−4 (rs3815676) and for ABCB4 it was 4.6×10−7(rs2109505). Conditional analysis of the two clusters of association signals suggested a single signal in ABCB4 but evidence for two independent signals in ABCB11. To confirm these findings, a second study was performed in a further 227 cases, which confirmed and strengthened the original findings. CONCLUSIONS: Our analysis of a large cohort of ICP cases has identified a key role for common variation around the ABCB4 and ABCB11 loci, identified the core associations, and expanded our knowledge of ICP susceptibility. PMID:24366234

  3. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dębniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.

  4. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  5. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  6. From genome-wide to candidate gene: an investigation of variation at the major histocompatibility complex in common bottlenose dolphins exposed to harmful algal blooms.

    PubMed

    Cammen, Kristina M; Wilcox, Lynsey A; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2015-02-01

    The role the major histocompatibility complex (MHC) plays in response to exposure to environmental toxins is relatively poorly understood, particularly in comparison to its well-described role in pathogen immunity. We investigated associations between MHC diversity and resistance to brevetoxins in common bottlenose dolphins (Tursiops truncatus). A previous genome-wide association study investigating an apparent difference in harmful algal bloom (HAB) resistance among dolphin populations in the Gulf of Mexico identified genetic variation associated with survival in close genomic proximity to multiple MHC class II loci. Here, we characterized genetic variation at DQA, DQB, DRA, and DRB loci in dolphins from central-west Florida and the Florida Panhandle, including dolphins that died during HABs and dolphins presumed to have survived HAB exposure. We found that DRB and DQB exhibited patterns of genetic differentiation among geographic regions that differed from neutral microsatellite loci. In addition, genetic differentiation at DRB across multiple pairwise comparisons of live and dead dolphins was greater than differentiation observed at neutral loci. Our findings at these MHC loci did not approach the strength of association with survival previously described for a nearby genetic variant. However, the results provide evidence that selective pressures at the MHC vary among dolphin populations that differ in the frequency of HAB exposure and that the overall composition of DRB variants differs between dolphin survivors and non-survivors of HABs. These results may suggest a potential role of MHC diversity in variable survival of bottlenose dolphins exposed to HABs.

  7. Multi-ethnic genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    PubMed Central

    Waage, Johannes; Baurecht, Hansjörg; Hotze, Melanie; Strachan, David P; Curtin, John A; Bønnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P; den Dekker, Herman T; Ferreira, Manuel A; Altmaier, Elisabeth; Sleiman, Patrick MA; Xiao, Feng Li; Gonzalez, Juan R; Marenholz, Ingo; Kalb, Birgit; Yanes, Maria Pino; Xu, Cheng-Jian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M; Venturini, Cristina; Pennell, Craig E; Barton, Sheila J; Levin, Albert M; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Møller, Eskil; Lockett, Gabrielle A; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L; Henderson, A J; Kemp, John P; Zheng, Jie; Smith, George Davey; Rüschendorf, Franz; Bauerfeind, Anja; Lee-Kirsch, Min Ae; Arnold, Andreas; Homuth, Georg; Schmidt, Carsten O; Mangold, Elisabeth; Cichon, Sven; Keil, Thomas; Rodríguez, Elke; Peters, Annette; Franke, Andre; Lieb, Wolfgang; Novak, Natalija; Fölster-Holst, Regina; Horikoshi, Momoko; Pekkanen, Juha; Sebert, Sylvain; Husemoen, Lise L; Grarup, Niels; de Jongste, Johan C; Rivadeneira, Fernando; Hofman, Albert; Jaddoe, Vincent WV; Pasmans, Suzanne GMA; Elbert, Niels J; Uitterlinden, André G; Marks, Guy B; Thompson, Philip J; Matheson, Melanie C; Robertson, Colin F; Ried, Janina S; Li, Jin; Zuo, Xian Bo; Zheng, Xiao Dong; Yin, Xian Yong; Sun, Liang Dan; McAleer, Maeve A; O'Regan, Grainne M; Fahy, Caoimhe MR; Campbell, Linda E; Macek, Milan; Kurek, Michael; Hu, Donglei; Eng, Celeste; Postma, Dirkje S; Feenstra, Bjarke; Geller, Frank; Hottenga, Jouke Jan; Middeldorp, Christel M; Hysi, Pirro; Bataille, Veronique; Spector, Tim; Tiesler, Carla MT; Thiering, Elisabeth; Pahukasahasram, Badri; Yang, James J; Imboden, Medea; Huntsman, Scott; Vilor-Tejedor, Natàlia; Relton, Caroline L; Myhre, Ronny; Nystad, Wenche; Custovic, Adnan; Weiss, Scott T; Meyers, Deborah A; Söderhäll, Cilla; Melén, Erik; Ober, Carole; Raby, Benjamin A; Simpson, Angela; Jacobsson, Bo; Holloway, John W; Bisgaard, Hans; Sunyer, Jordi; Hensch, Nicole M Probst; Williams, L Keoki; Godfrey, Keith M; Wang, Carol A; Boomsma, Dorret I; Melbye, Mads; Koppelman, Gerard H; Jarvis, Deborah; McLean, WH Irwin; Irvine, Alan D; Zhang, Xue Jun; Hakonarson, Hakon; Gieger, Christian; Burchard, Esteban G; Martin, Nicholas G; Duijts, Liesbeth; Linneberg, Allan; Jarvelin, Marjo-Riitta; Noethen, Markus M; Lau, Susanne; Hübner, Norbert; Lee, Young-Ae; Tamari, Mayumi; Hinds, David A; Glass, Daniel; Brown, Sara J; Heinrich, Joachim; Evans, David M; Weidinger, Stephan

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis. PMID:26482879

  8. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    PubMed Central

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  9. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau.

    PubMed

    Wang, Guo-Dong; Fan, Ruo-Xi; Zhai, Weiwei; Liu, Fei; Wang, Lu; Zhong, Li; Wu, Hong; Yang, He-Chuan; Wu, Shi-Fang; Zhu, Chun-Ling; Li, Yan; Gao, Yun; Ge, Ri-Li; Wu, Chung-I; Zhang, Ya-Ping

    2014-08-01

    The high-altitude hypoxic environment represents one of the most extreme challenges for mammals. Previous studies of humans on the Tibetan plateau and in the Andes Mountains have identified statistical signatures of selection in different sets of loci. Here, we first measured the hemoglobin levels in village dogs from Tibet and those from Chinese lowlands. We found that the hemoglobin levels are very similar between the two groups, suggesting that Tibetan dogs might share similar adaptive strategies as the Tibetan people. Through a whole-genome sequencing approach, we have identified EPAS1 and HBB as candidate genes for the hypoxic adaptation on the Tibetan plateau. The population genetic analysis shows a significant convergence between humans and dogs in Tibet. The similarities in the sets of loci that exhibit putative signatures of selection and the hemoglobin levels between humans and dogs of the same environment, but not between human populations in different regions, suggests an extraordinary landscape of convergent evolution between human beings and their best friend on the Tibetan plateau. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure

    PubMed Central

    Diez Benavente, Ernest; Ward, Zoe; Chan, Wilson; Mohareb, Fady R.; Sutherland, Colin J.; Roper, Cally; Campino, Susana

    2017-01-01

    Background Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. Results We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. Conclusions This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications. PMID:28493919

  11. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure.

    PubMed

    Diez Benavente, Ernest; Ward, Zoe; Chan, Wilson; Mohareb, Fady R; Sutherland, Colin J; Roper, Cally; Campino, Susana; Clark, Taane G

    2017-01-01

    Although Plasmodium vivax contributes to almost half of all malaria cases outside Africa, it has been relatively neglected compared to the more deadly P. falciparum. It is known that P. vivax populations possess high genetic diversity, differing geographically potentially due to different vector species, host genetics and environmental factors. We analysed the high-quality genomic data for 46 P. vivax isolates spanning 10 countries across 4 continents. Using population genetic methods we identified hotspots of selection pressure, including the previously reported MRP1 and DHPS genes, both putative drug resistance loci. Extra copies and deletions in the promoter region of another drug resistance candidate, MDR1 gene, and duplications in the Duffy binding protein gene (PvDBP) potentially involved in erythrocyte invasion, were also identified. For surveillance applications, continental-informative markers were found in putative drug resistance loci, and we show that organellar polymorphisms could classify P. vivax populations across continents and differentiate between Plasmodia spp. This study has shown that genomic diversity that lies within and between P. vivax populations can be used to elucidate potential drug resistance and invasion mechanisms, as well as facilitate the molecular barcoding of the parasite for surveillance applications.

  12. Replication of Caucasian loci associated with bone mineral density in Koreans.

    PubMed

    Kim, Y A; Choi, H J; Lee, J Y; Han, B G; Shin, C S; Cho, N H

    2013-10-01

    Most bone mineral density (BMD) loci were reported in Caucasian genome-wide association studies (GWAS). This study investigated the association between 59 known BMD loci (+200 suggestive SNPs) and DXA-derived BMD in East Asian population with respect to sex and site specificity. We also identified four novel BMD candidate loci from the suggestive SNPs. Most GWAS have reported BMD-related variations in Caucasian populations. This study investigates whether the BMD loci discovered in Caucasian GWAS are also associated with BMD in East Asian ethnic samples. A total of 2,729 unrelated Korean individuals from a population-based cohort were analyzed. We selected 747 single-nucleotide polymorphisms (SNPs). These markers included 547 SNPs from 59 loci with genome-wide significance (GWS, p value less than 5 × 10(-8)) levels and 200 suggestive SNPs that showed weaker BMD association with p value less than 5 × 10(-5). After quality control, 535 GWS SNPs and 182 suggestive SNPs were included in the replication analysis. Of the 535 GWS SNPs, 276 from 25 loci were replicated (p < 0.05) in the Korean population with 51.6 % replication rate. Of the 182 suggestive variants, 16 were replicated (p < 0.05, 8.8 % of replication rate), and five reached a significant combined p value (less than 7.0 × 10(-5), 0.05/717 SNPs, corrected for multiple testing). Two markers (rs11711157, rs3732477) are for the same signal near the gene CPN2 (carboxypeptidase N, polypeptide 2). The other variants, rs6436440 and rs2291296, were located in the genes AP1S3 (adaptor-related protein complex 1, sigma 3 subunit) and RARB (retinoic acid receptor, beta). Our results illustrate ethnic differences in BMD susceptibility genes and underscore the need for further genetic studies in each ethnic group. We were also able to replicate some SNPs with suggestive associations. These SNPs may be BMD-related genetic markers and should be further investigated.

  13. Genetic basis of interindividual susceptibility to cancer cachexia: selection of potential candidate gene polymorphisms for association studies.

    PubMed

    Johns, N; Tan, B H; MacMillan, M; Solheim, T S; Ross, J A; Baracos, V E; Damaraju, S; Fearon, K C H

    2014-12-01

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological targets continue to evolve, there is a need for reappraisal of the literature for future candidate association studies. This review summarizes genes identified or implicated as well as putative candidate genes contributing to cachexia, identified through diverse technology platforms and model systems to further guide association studies. A systematic search covering 1986-2012 was performed for potential candidate genes / genetic polymorphisms relating to cancer cachexia. All candidate genes were reviewed for functional polymorphisms or clinically significant polymorphisms associated with cachexia using the OMIM and GeneRIF databases. Pathway analysis software was used to reveal possible network associations between genes. Functionality of SNPs/genes was explored based on published literature, algorithms for detecting putative deleterious SNPs and interrogating the database for expression of quantitative trait loci (eQTLs). A total of 154 genes associated with cancer cachexia were identified and explored for functional polymorphisms. Of these 154 genes, 119 had a combined total of 281 polymorphisms with functional and/or clinical significance in terms of cachexia associated with them. Of these, 80 polymorphisms (in 51 genes) were replicated in more than one study with 24 polymorphisms found to influence two or more hallmarks of cachexia (i.e., inflammation, loss of fat mass and/or lean mass and reduced survival). Selection of candidate genes and polymorphisms is a key element of multigene study design. The present study provides a contemporary basis to select genes and/or polymorphisms for further association studies in cancer cachexia, and to develop their potential as susceptibility biomarkers of cachexia.

  14. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry.

    PubMed

    Sun, Celi; Molineros, Julio E; Looger, Loren L; Zhou, Xu-Jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-Yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M; Wren, Jonathan D; Harley, John B; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K

    2016-03-01

    Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.

  15. Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds

    PubMed Central

    Petersen, Jessica L.; Mickelson, James R.; Rendahl, Aaron K.; Valberg, Stephanie J.; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Capomaccio, Stefano; Cappelli, Katia; Cothran, E. Gus; Distl, Ottmar; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T.; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; Wade, Claire M.; McCue, Molly E.

    2013-01-01

    Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse. PMID:23349635

  16. Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases

    PubMed Central

    Ruau, David; Dudley, Joel T.; Chen, Rong; Phillips, Nicholas G.; Swan, Gary E.; Lazzeroni, Laura C.; Clark, J. David

    2012-01-01

    Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10−10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10−4, 1.8×10−4, and 2.2×10−4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. PMID:22685391

  17. Pool-based genome-wide association study identified novel candidate regions on BTA9 and 14 for oleic acid percentage in Japanese Black cattle.

    PubMed

    Kawaguchi, Fuki; Kigoshi, Hiroto; Nakajima, Ayaka; Matsumoto, Yuta; Uemoto, Yoshinobu; Fukushima, Moriyuki; Yoshida, Emi; Iwamoto, Eiji; Akiyama, Takayuki; Kohama, Namiko; Kobayashi, Eiji; Honda, Takeshi; Oyama, Kenji; Mannen, Hideyuki; Sasazaki, Shinji

    2018-05-17

    Fatty acid composition is an important indicator of beef quality. The objective of this study was to search the potential candidate region for fatty acid composition. We performed pool-based genome-wide association studies (GWAS) for oleic acid percentage (C18:1) in a Japanese Black cattle population from the Hyogo prefecture. GWAS analysis revealed two novel candidate regions on BTA9 and BTA14. The most significant single nucleotide polymorphisms (SNPs) in each region were genotyped in a population (n = 899) to verify their effect on C18:1. Statistical analysis revealed that both SNPs were significantly associated with C18:1 (p = .0080 and .0003), validating the quantitative trait loci (QTLs) detected in GWAS. We subsequently selected VNN1 and LYPLA1 genes as candidate genes from each region on BTA9 and BTA14, respectively. We sequenced full-length coding sequence (CDS) of these genes in eight individuals and identified a nonsynonymous SNP T66M on VNN1 gene as a putative candidate polymorphism. The polymorphism was also significantly associated with C18:1, but the p value (p = .0162) was higher than the most significant SNP on BTA9, suggesting that it would not be responsible for the QTL. Although further investigation will be needed to determine the responsible gene and polymorphism, our findings would contribute to development of selective markers for fatty acid composition in the Japanese Black cattle of Hyogo. © 2018 Japanese Society of Animal Science.

  18. Genetic variation and expression changes associated with molybdate resistance from a glutathione producing wine strain of Saccharomyces cerevisiae

    PubMed Central

    Mezzetti, Francesco; Fay, Justin C.; Giudici, Paolo

    2017-01-01

    Glutathione (GSH) production during wine fermentation is a desirable trait as it can limit must and wine oxidation and protect various aromatic compounds. UMCC 2581 is a Saccharomyces cerevisiae wine strain with enhanced GSH content at the end of wine fermentation. This strain was previously derived by selection for molybdate resistance following a sexual cycle of UMCC 855 using an evolution-based strategy. In this study, we examined genetic and gene expression changes associated with the derivation of UMCC 2581. For genetic analysis we sporulated the diploid UMCC 855 parental strain and found four phenotype classes of segregants related to molybdate resistance, demonstrating the presence of segregating variation from the parental strain. Using bulk segregant analysis we mapped molybdate traits to two loci. By sequencing both the parental and evolved strain genomes we identified candidate mutations within the two regions as well as an extra copy of chromosome 1 in UMCC 2581. Combining the mapped loci with gene expression profiles of the evolved and parental strains we identified a number of candidate genes with genetic and/or gene expression changes that could underlie molybdate resistance and increased GSH levels. Our results provide insight into the genetic basis of GSH production relevant to winemaking and highlight the value of enhancing wine strains using existing variation present in wine strains. PMID:28683117

  19. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  20. Quantitative Trait Loci for Light Sensitivity, Body Weight, Body Size, and Morphological Eye Parameters in the Bumblebee, Bombus terrestris.

    PubMed

    Maebe, Kevin; Meeus, Ivan; De Riek, Jan; Smagghe, Guy

    2015-01-01

    Bumblebees such as Bombus terrestris are essential pollinators in natural and managed ecosystems. In addition, this species is intensively used in agriculture for its pollination services, for instance in tomato and pepper greenhouses. Here we performed a quantitative trait loci (QTL) analysis on B. terrestris using 136 microsatellite DNA markers to identify genes linked with 20 traits including light sensitivity, body size and mass, and eye and hind leg measures. By composite interval mapping (IM), we found 83 and 34 suggestive QTLs for 19 of the 20 traits at the linkage group wide significance levels of p = 0.05 and 0.01, respectively. Furthermore, we also found five significant QTLs at the genome wide significant level of p = 0.05. Individual QTLs accounted for 7.5-53.3% of the phenotypic variation. For 15 traits, at least one QTL was confirmed with multiple QTL model mapping. Multivariate principal components analysis confirmed 11 univariate suggestive QTLs but revealed three suggestive QTLs not identified by the individual traits. We also identified several candidate genes linked with light sensitivity, in particular the Phosrestin-1-like gene is a primary candidate for its phototransduction function. In conclusion, we believe that the suggestive and significant QTLs, and markers identified here, can be of use in marker-assisted breeding to improve selection towards light sensitive bumblebees, and thus also the pollination service of bumblebees.

  1. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    PubMed Central

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  2. Signatures of positive selection in African Butana and Kenana dairy zebu cattle

    PubMed Central

    Salim, Bashir; Almathen, Faisal; Al Enezi, Fahad; Mwacharo, Joram M.; Hanotte, Olivier

    2018-01-01

    Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds. PMID:29300786

  3. Recent coselection in human populations revealed by protein-protein interaction network.

    PubMed

    Qian, Wei; Zhou, Hang; Tang, Kun

    2014-12-21

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein-protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24.

    PubMed

    Schüle, R; Bonin, M; Dürr, A; Forlani, S; Sperfeld, A D; Klimpe, S; Mueller, J C; Seibel, A; van de Warrenburg, B P; Bauer, P; Schöls, L

    2009-06-02

    Hereditary spastic paraplegias (HSP) are genetically exceedingly heterogeneous. To date, 37 genetic loci for HSP have been described (SPG1-41), among them 16 loci for autosomal dominant disease. Notwithstanding, further genetic heterogeneity is to be expected in HSP, as various HSP families do not link to any of the known HSP loci. In this study, we aimed to map the disease locus in a German family segregating autosomal dominant complicated HSP. A genome-wide linkage analysis was performed using the GeneChip Mapping 10Kv2.0 Xba Array containing 10,204 SNP markers. Suggestive loci were further analyzed by mapping of microsatellite markers. One locus on chromosome 12q23-24, termed SPG36, was confirmed by high density microsatellite fine mapping with a significant LOD score of 3.2. SPG36 is flanked by markers D12S318 and D12S79. Linkage to SPG36 was excluded in >20 additional autosomal dominant HSP families. Candidate genes were selected and sequenced. No disease-causing mutations were identified in the coding regions of ATXN2, HSPB8, IFT81, Myo1H, UBE3B, and VPS29. SPG36 is complicated by a sensory and motor neuropathy; it is therefore the eighth autosomal dominant subtype of complicated HSP. We report mapping of a new locus for autosomal dominant hereditary spastic paraplegia (HSP) (SPG36) on chromosome 12q23-24 in a German family with autosomal dominant HSP complicated by peripheral neuropathy.

  5. Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex.

    PubMed

    Portis, Ezio; Scaglione, Davide; Acquadro, Alberto; Mauromicale, Giovanni; Mauro, Rosario; Knapp, Steven J; Lanteri, Sergio

    2012-05-23

    The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species' haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.

  6. New Multilocus Variable-Number Tandem-Repeat Analysis Tool for Surveillance and Local Epidemiology of Bacterial Leaf Blight and Bacterial Leaf Streak of Rice Caused by Xanthomonas oryzae

    PubMed Central

    Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.

    2014-01-01

    Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857

  7. Association of polymorphisms in growth hormone and leptin candidate genes with live weight traits of Brahman cattle.

    PubMed

    Hernández, N; Martínez-González, J C; Parra-Bracamonte, G M; Sifuentes-Rincón, A M; López-Villalobos, N; Morris, S T; Briones-Encinia, F; Ortega-Rivas, E; Pacheco-Contreras, V I; L A Meza-García, And

    2016-09-02

    Polymorphisms in candidate genes can produce significant and favorable changes in the phenotype, and therefore are useful for the identification of the best combination of favorable variants for marker-assisted selection. In the present study, an assessment to evaluate the effect of 11 single nucleotide polymorphisms (SNPs) in candidate genes on live weight traits of registered Brahman cattle was performed. Data from purebred bulls were used in this assessment. The dataset included birth (BW), weaning (WW), and yearling (YW) weights. A panel of 11 SNP markers, selected by their formerly reported or apparent direct and indirect association with live weight traits, was included in an assessment previously confirming their minimum allele frequency (<0.05). Live weights were adjusted BW (aBW), WW (aWW), and YW (aYW) using a generalized linear model, which included the fixed effects of herd and season of birth and the random effect of the sire and year of birth. An SNP in a growth hormone gene (GH4.1) was significantly related to aWW (P = 0.035) with an estimate substitution effect of 3.97 kg (P = 0.0210). In addition, a leptin SNP (LEPg.978) was significantly associated with aYW (P = 0.003) with an estimate substitution effect of 9.57 kg (P = 0.0007). The results suggest that markers GH4.1 and LEPg.978 can be considered as candidate loci for assisted genetic improvement programs in Mexican Brahman cattle.

  8. Parallel Selection Revealed by Population Sequencing in Chicken.

    PubMed

    Qanbari, Saber; Seidel, Michael; Strom, Tim-Mathias; Mayer, Klaus F X; Preisinger, Ruedi; Simianer, Henner

    2015-11-13

    Human-driven selection during domestication and subsequent breed formation has likely left detectable signatures within the genome of modern chicken. The elucidation of these signatures of selection is of interest from the perspective of evolutionary biology, and for identifying genes relevant to domestication and improvement that ultimately may help to further genetically improve this economically important animal. We used whole genome sequence data from 50 hens of commercial white (WL) and brown (BL) egg-laying chicken along with pool sequences of three meat-type chicken to perform a systematic screening of past selection in modern chicken. Evidence of positive selection was investigated in two steps. First, we explored evidence of parallel fixation in regions with overlapping elevated allele frequencies in replicated populations of layers and broilers, suggestive of selection during domestication or preimprovement ages. We confirmed parallel fixation in BCDO2 and TSHR genes and found four candidates including AGTR2, a gene heavily involved in "Ascites" in commercial birds. Next, we explored differentiated loci between layers and broilers suggestive of selection during improvement in chicken. This analysis revealed evidence of parallel differentiation in genes relevant to appearance and production traits exemplified with the candidate gene OPG, implicated in Osteoporosis, a disorder related to overconsumption of calcium in egg-laying hens. Our results illustrate the potential for population genetic techniques to identify genomic regions relevant to the phenotypes of importance to breeders. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Evolution of recombination in a constant environment

    PubMed Central

    Feldman, Marcus W.; Christiansen, Freddy B.; Brooks, Lisa D.

    1980-01-01

    The theory of evolution at a selectively neutral locus that controls the recombination between two major loci that are under selection is studied. If the major loci are at a stable equilibrium in linkage disequilibrium under selection and recombination, then a mutation at the modifier locus will increase in frequency when rare if and only if it decreases the recombination fraction. If the major loci are in disequilibrium at a balance between selection against deleterious alleles and mutation towards them, then two new phenomena are observed. First, a recombination increasing mutation will succeed if the disequilibrium is negative and the modifier is sufficiently tightly linked to the major loci. Second, depending on the strength of selection, even if the disequilibrium is negative, recombination reduction may occur for looser linkage between the major and modifier loci. PMID:16592864

  10. Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis

    PubMed Central

    Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando

    2008-01-01

    Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433

  11. Global patterns of diversity and selection in human tyrosinase gene.

    PubMed

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  12. Meta-analysis of loci associated with age at natural menopause in African-American women

    PubMed Central

    Chen, Christina T.L.; Liu, Ching-Ti; Chen, Gary K.; Andrews, Jeanette S.; Arnold, Alice M.; Dreyfus, Jill; Franceschini, Nora; Garcia, Melissa E.; Kerr, Kathleen F.; Li, Guo; Lohman, Kurt K.; Musani, Solomon K.; Nalls, Michael A.; Raffel, Leslie J.; Smith, Jennifer; Ambrosone, Christine B.; Bandera, Elisa V.; Bernstein, Leslie; Britton, Angela; Brzyski, Robert G.; Cappola, Anne; Carlson, Christopher S.; Couper, David; Deming, Sandra L.; Goodarzi, Mark O.; Heiss, Gerardo; John, Esther M.; Lu, Xiaoning; Le Marchand, Loic; Marciante, Kristin; Mcknight, Barbara; Millikan, Robert; Nock, Nora L.; Olshan, Andrew F.; Press, Michael F.; Vaiyda, Dhananjay; Woods, Nancy F.; Taylor, Herman A.; Zhao, Wei; Zheng, Wei; Evans, Michele K.; Harris, Tamara B.; Henderson, Brian E.; Kardia, Sharon L.R.; Kooperberg, Charles; Liu, Yongmei; Mosley, Thomas H.; Psaty, Bruce; Wellons, Melissa; Windham, Beverly G.; Zonderman, Alan B.; Cupples, L. Adrienne; Demerath, Ellen W.; Haiman, Christopher; Murabito, Joanne M.; Rajkovic, Aleksandar

    2014-01-01

    Age at menopause marks the end of a woman's reproductive life and its timing associates with risks for cancer, cardiovascular and bone disorders. GWAS and candidate gene studies conducted in women of European ancestry have identified 27 loci associated with age at menopause. The relevance of these loci to women of African ancestry has not been previously studied. We therefore sought to uncover additional menopause loci and investigate the relevance of European menopause loci by performing a GWAS meta-analysis in 6510 women with African ancestry derived from 11 studies across the USA. We did not identify any additional loci significantly associated with age at menopause in African Americans. We replicated the associations between six loci and age at menopause (P-value < 0.05): AMHR2, RHBLD2, PRIM1, HK3/UMC1, BRSK1/TMEM150B and MCM8. In addition, associations of 14 loci are directionally consistent with previous reports. We provide evidence that genetic variants influencing reproductive traits identified in European populations are also important in women of African ancestry residing in USA. PMID:24493794

  13. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    PubMed

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  14. Genetic Mapping and QTL Analysis of Growth-Related Traits in Pinctada fucata Using Restriction-Site Associated DNA Sequencing

    PubMed Central

    Li, Yaoguo; He, Maoxian

    2014-01-01

    The pearl oyster, Pinctada fucata (P. fucata), is one of the marine bivalves that is predominantly cultured for pearl production. To obtain more genetic information for breeding purposes, we constructed a high-density linkage map of P. fucata and identified quantitative trait loci (QTL) for growth-related traits. One F1 family, which included the two parents, 48 largest progeny and 50 smallest progeny, was sampled to construct a linkage map using restriction site-associated DNA sequencing (RAD-Seq). With low coverage data, 1956.53 million clean reads and 86,342 candidate RAD loci were generated. A total of 1373 segregating SNPs were used to construct a sex-average linkage map. This spanned 1091.81 centimorgans (cM), with 14 linkage groups and an average marker interval of 1.41 cM. The genetic linkage map coverage, Coa, was 97.24%. Thirty-nine QTL-peak loci, for seven growth-related traits, were identified using the single-marker analysis, nonparametric mapping Kruskal-Wallis (KW) test. Parameters included three for shell height, six for shell length, five for shell width, four for hinge length, 11 for total weight, eight for soft tissue weight and two for shell weight. The QTL peak loci for shell height, shell length and shell weight were all located in linkage group 6. The genotype frequencies of most QTL peak loci showed significant differences between the large subpopulation and the small subpopulation (P<0.05). These results highlight the effectiveness of RAD-Seq as a tool for generation of QTL-targeted and genome-wide marker data in the non-model animal, P. fucata, and its possible utility in marker-assisted selection (MAS). PMID:25369421

  15. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha)

    PubMed Central

    Larson, Wesley A; Seeb, Lisa W; Everett, Meredith V; Waples, Ryan K; Templin, William D; Seeb, James E

    2014-01-01

    Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure. PMID:24665338

  16. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    PubMed Central

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  17. Morphological variability in leaves and molecular characterization of novel table grape candidate cultivars (Vitis vinifera L.).

    PubMed

    Alba, Vittorio; Bergamini, Carlo; Cardone, Maria Francesca; Gasparro, Marica; Perniola, Rocco; Genghi, Rosalinda; Antonacci, Donato

    2014-06-01

    The present work report the characterization of twenty-one table grapes candidate cultivars plus five registered ones included as reference, by means of 47 ampelographic traits, 23 ampelometric measurements and six microsatellite loci. The final goal of the research was to analyse the possibility of reducing the number of morphological and molecular tools required for a precise and effective description of a grape genotype or cultivar. This would be of great help for future biodiversity description on a larger sample of more than 300 table grapes accessions today grown at the 'Consiglio per la Ricerca e la sperimentazione in Agricoltura (C.R.A.)-Unità di ricerca per l'uva da tavola e la vitivinicoltura in ambiente mediterraneo (Bari-Italy)'. OIV ampelographic traits showed a clear distinction among all twenty-six genotypes analysed, suggesting the relevant morphological variability investigated. Principal component analysis based on ampelometric traits revealed main veins ON(3), ON(4) and O(3)N(4); ratios between main veins; angles between main veins and of petiolar sinus, to be the most effective records in differentiating cultivars, for a total variation of 69.9 % described by the first three components. Molecular analysis based on six microsatellite loci was performed on all genotypes, providing a detailed molecular profile and a dendrogram of genetic similarity, in which all genotypes were clearly distinguishable. Finally, with the goal of using the minimum possible number of markers to differentiate genotypes, microsatellites VVMD5 and VVMD27 were selected to be sufficient to distinguish among all the candidate cultivars included in the analysis, representing a possible 'step by step' approach when a molecular characterization has to be undertaken on a large number of genotypes, by first testing few markers and increasing their number only if necessary.

  18. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium.

    PubMed

    Amin, Shivam V; Roberts, Justin T; Patterson, Dillon G; Coley, Alexander B; Allred, Jonathan A; Denner, Jason M; Johnson, Justin P; Mullen, Genevieve E; O'Neal, Trenton K; Smith, Jason T; Cardin, Sara E; Carr, Hank T; Carr, Stacie L; Cowart, Holly E; DaCosta, David H; Herring, Brendon R; King, Valeria M; Polska, Caroline J; Ward, Erin E; Wise, Alice A; McAllister, Kathleen N; Chevalier, David; Spector, Michael P; Borchert, Glen M

    2016-01-01

    Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.

  19. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium

    PubMed Central

    Amin, Shivam V.; Roberts, Justin T.; Patterson, Dillon G.; Coley, Alexander B.; Allred, Jonathan A.; Denner, Jason M.; Johnson, Justin P.; Mullen, Genevieve E.; O'Neal, Trenton K.; Smith, Jason T.; Cardin, Sara E.; Carr, Hank T.; Carr, Stacie L.; Cowart, Holly E.; DaCosta, David H.; Herring, Brendon R.; King, Valeria M.; Polska, Caroline J.; Ward, Erin E.; Wise, Alice A.; McAllister, Kathleen N.; Chevalier, David; Spector, Michael P.; Borchert, Glen M.

    2016-01-01

    ABSTRACT Small RNAs (sRNAs) are short (∼50–200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from “gene-empty” regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands. PMID:26853797

  20. Estimation of selection intensity under overdominance by Bayesian methods.

    PubMed

    Buzbas, Erkan Ozge; Joyce, Paul; Abdo, Zaid

    2009-01-01

    A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection, particularly of overdominance. Although this type of selection is of some interest in population genetics, there exists no likelihood based approaches specifically tailored to make inference on selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity under k-allele models with overdominance. Our model allows for an arbitrary number of loci and alleles within a locus. The neutral and selected variability within each locus are modeled with corresponding k-allele models. To estimate the posterior distribution of the mean selection intensity in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated with data at the Human Leukocyte Antigen loci from world-wide populations.

  1. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus.

    PubMed

    Muchero, Wellington; Guo, Jianjun; DiFazio, Stephen P; Chen, Jin-Gui; Ranjan, Priya; Slavov, Gancho T; Gunter, Lee E; Jawdy, Sara; Bryan, Anthony C; Sykes, Robert; Ziebell, Angela; Klápště, Jaroslav; Porth, Ilga; Skyba, Oleksandr; Unda, Faride; El-Kassaby, Yousry A; Douglas, Carl J; Mansfield, Shawn D; Martin, Joel; Schackwitz, Wendy; Evans, Luke M; Czarnecki, Olaf; Tuskan, Gerald A

    2015-01-23

    QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.

  2. Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel

    PubMed Central

    Schmidt, Joshua M.; Battlay, Paul; Gledhill-Smith, Rebecca S.; Good, Robert T.; Lumb, Chris; Fournier-Level, Alexandre; Robin, Charles

    2017-01-01

    Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection. PMID:28935691

  3. Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models

    PubMed Central

    Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody

    2013-01-01

    When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232

  4. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    PubMed

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  5. An evolutionary reduction principle for mutation rates at multiple Loci.

    PubMed

    Altenberg, Lee

    2011-06-01

    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (Evolutionary Biology, vol. 14, pp. 61-204, 1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models.A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface-a generalization of the hyperplane found by Zhivotovsky et al. (Proc. Natl. Acad. Sci. USA 91, 1079-1083, 1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance.Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.

  6. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life

    PubMed Central

    Figueras, Antonio; Robledo, Diego; Corvelo, André; Hermida, Miguel; Pereiro, Patricia; Rubiolo, Juan A.; Gómez-Garrido, Jèssica; Carreté, Laia; Bello, Xabier; Gut, Marta; Gut, Ivo Glynne; Marcet-Houben, Marina; Forn-Cuní, Gabriel; Galán, Beatriz; García, José Luis; Abal-Fabeiro, José Luis; Pardo, Belen G.; Taboada, Xoana; Fernández, Carlos; Vlasova, Anna; Hermoso-Pulido, Antonio; Guigó, Roderic; Álvarez-Dios, José Antonio; Gómez-Tato, Antonio; Viñas, Ana; Maside, Xulio; Gabaldón, Toni; Novoa, Beatriz; Bouza, Carmen; Alioto, Tyler; Martínez, Paulino

    2016-01-01

    The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot. PMID:26951068

  7. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life.

    PubMed

    Figueras, Antonio; Robledo, Diego; Corvelo, André; Hermida, Miguel; Pereiro, Patricia; Rubiolo, Juan A; Gómez-Garrido, Jèssica; Carreté, Laia; Bello, Xabier; Gut, Marta; Gut, Ivo Glynne; Marcet-Houben, Marina; Forn-Cuní, Gabriel; Galán, Beatriz; García, José Luis; Abal-Fabeiro, José Luis; Pardo, Belen G; Taboada, Xoana; Fernández, Carlos; Vlasova, Anna; Hermoso-Pulido, Antonio; Guigó, Roderic; Álvarez-Dios, José Antonio; Gómez-Tato, Antonio; Viñas, Ana; Maside, Xulio; Gabaldón, Toni; Novoa, Beatriz; Bouza, Carmen; Alioto, Tyler; Martínez, Paulino

    2016-06-01

    The turbot is a flatfish (Pleuronectiformes) with increasing commercial value, which has prompted active genomic research aimed at more efficient selection. Here we present the sequence and annotation of the turbot genome, which represents a milestone for both boosting breeding programmes and ascertaining the origin and diversification of flatfish. We compare the turbot genome with model fish genomes to investigate teleost chromosome evolution. We observe a conserved macrosyntenic pattern within Percomorpha and identify large syntenic blocks within the turbot genome related to the teleost genome duplication. We identify gene family expansions and positive selection of genes associated with vision and metabolism of membrane lipids, which suggests adaptation to demersal lifestyle and to cold temperatures, respectively. Our data indicate a quick evolution and diversification of flatfish to adapt to benthic life and provide clues for understanding their controversial origin. Moreover, we investigate the genomic architecture of growth, sex determination and disease resistance, key traits for understanding local adaptation and boosting turbot production, by mapping candidate genes and previously reported quantitative trait loci. The genomic architecture of these productive traits has allowed the identification of candidate genes and enriched pathways that may represent useful information for future marker-assisted selection in turbot. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Candidate Gene/Loci Studies in Cleft Lip/Palate and Dental Anomalies Finds Novel Susceptibility Genes for Clefts

    PubMed Central

    Vieira, Alexandre R.; McHenry, Toby G.; Daack-Hirsch, Sandra; Murray, Jeffrey C.; Marazita, Mary L.

    2009-01-01

    We revisited 42 families with two or more cleft affected siblings that participated in previous studies and collected complete dental information. Genotypes from 1489 single nucleotide polymorphism (SNP) markers located in 150 candidate genes/loci were reanalyzed. Two sets of association analyses were carried out. First we ran the analysis solely on the cleft status. Second we assigned affection to any cleft or dental anomaly (tooth agenesis, supernumerary teeth, and microdontia), and repeated the analysis. Significant over-transmission was seen for a SNP in ANKS6 (rs4742741, 9q22.33; p=0.0004) when a dental anomaly phenotype was included in the analysis. Significant over-transmission was also seen for a SNP in ERBB2 (rs1810132, 17q21.1; p=0.0006). In the clefts only data, the most significant result was also for ERBB2 (p=0.0006). Other markers with suggestive p-values included IRF6 and 6q21-q23 loci. In contrast to the above results, suggestive over-transmission of markers in GART, DPF3, and NRXN3 were seen only when the dental anomaly phenotype was included in the analysis. These findings support the hypothesis that some loci may contribute to both clefts and congenital dental anomalies. Thus, including dental anomalies information in the genetics analysis of cleft lip and palate will provide new opportunities to map susceptibility loci for clefts. PMID:18978678

  9. Candidate Sequence Variants and Fetal Hemoglobin in Children with Sickle Cell Disease Treated with Hydroxyurea

    PubMed Central

    Green, Nancy S.; Ender, Katherine L.; Pashankar, Farzana; Driscoll, Catherine; Giardina, Patricia J.; Mullen, Craig A.; Clark, Lorraine N.; Manwani, Deepa; Crotty, Jennifer; Kisselev, Sergey; Neville, Kathleen A.; Hoppe, Carolyn; Barral, Sandra

    2013-01-01

    Background Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. Methodology/Principal Findings In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. Conclusions/Significance These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. PMID:23409025

  10. Hidden diversity within the lizard genus Liolaemus: Genetic vs morphological divergence in the L. rothi complex (Squamata:Liolaeminae).

    PubMed

    Olave, Melisa; Avila, Luciano J; Sites, Jack W; Morando, Mariana

    2017-02-01

    Currently, Liolaemus is the second most species-rich reptile genus in the world (257 species), and predictions of its real diversity suggest that it may be the most diverse genus. Originally, Liolaemus species were described as widely distributed and morphologically variable taxa, but extensive sampling in previously unexplored geographic areas, coupled with molecular and more extensive morphological studies, have discovered an unexpectedly high number of previously undetected species. Here, we study the level of molecular vs. morphological divergence within the L. rothi complex, combining a total of 14 loci (2 mitochondrial and 12 nuclear loci) for 97 individuals, as well as morphological data (nine morphometric and 15 color pattern variables), that represent all six described species of the L. rothi complex, plus two candidate species. We use the multi-coalescent species delimitation program iBPP and resolve strong differences in molecular divergence; and each species is inferred as an independent lineage supported by high posterior probabilities. However, morphological differences are not that clear, and our modeling of morphological characters suggests differential selection pressures implying some level of morphological stasis. We discuss the role of natural selection on phenotypic traits, which may be an important factor in "hiding" the real diversity of the genus. Copyright © 2016. Published by Elsevier Inc.

  11. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia.

    PubMed

    Li, Zhiqiang; Chen, Jianhua; Yu, Hao; He, Lin; Xu, Yifeng; Zhang, Dai; Yi, Qizhong; Li, Changgui; Li, Xingwang; Shen, Jiawei; Song, Zhijian; Ji, Weidong; Wang, Meng; Zhou, Juan; Chen, Boyu; Liu, Yahui; Wang, Jiqiang; Wang, Peng; Yang, Ping; Wang, Qingzhong; Feng, Guoyin; Liu, Benxiu; Sun, Wensheng; Li, Baojie; He, Guang; Li, Weidong; Wan, Chunling; Xu, Qi; Li, Wenjin; Wen, Zujia; Liu, Ke; Huang, Fang; Ji, Jue; Ripke, Stephan; Yue, Weihua; Sullivan, Patrick F; O'Donovan, Michael C; Shi, Yongyong

    2017-11-01

    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.

  12. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection.

    PubMed

    Diepeveen, Eveline T; Kim, Fabienne D; Salzburger, Walter

    2013-07-17

    Gen(om)e duplication events are hypothesized as key mechanisms underlying the origin of phenotypic diversity and evolutionary innovation. The diverse and species-rich lineage of teleost fishes is a renowned example of this scenario, because of the fish-specific genome duplication. Gene families, generated by this and other gene duplication events, have been previously found to play a role in the evolution and development of innovations in cichlid fishes - a prime model system to study the genetic basis of rapid speciation, adaptation and evolutionary innovation. The distal-less homeobox genes are particularly interesting candidate genes for evolutionary novelties, such as the pharyngeal jaw apparatus and the anal fin egg-spots. Here we study the dlx repertoire in 23 East African cichlid fishes to determine the rate of evolution and the signatures of selection pressure. Four intact dlx clusters were retrieved from cichlid draft genomes. Phylogenetic analyses of these eight dlx loci in ten teleost species, followed by an in-depth analysis of 23 East African cichlid species, show that there is disparity in the rates of evolution of the dlx paralogs. Dlx3a and dlx4b are the fastest evolving dlx genes, while dlx1a and dlx6a evolved more slowly. Subsequent analyses of the nonsynonymous-synonymous substitution rate ratios indicate that dlx3b, dlx4a and dlx5a evolved under purifying selection, while signs of positive selection were found for dlx1a, dlx2a, dlx3a and dlx4b. Our results indicate that the dlx repertoire of teleost fishes and cichlid fishes in particular, is shaped by differential selection pressures and rates of evolution after gene duplication. Although the divergence of the dlx paralogs are putative signs of new or altered functions, comparisons with available expression patterns indicate that the three dlx loci under strong purifying selection, dlx3b, dlx4a and dlx5a, are transcribed at high levels in the cichlids' pharyngeal jaw and anal fin. The dlx paralogs emerge as excellent candidate genes for the development of evolutionary innovations in cichlids, although further functional analyses are necessary to elucidate their respective contribution.

  13. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    PubMed

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  14. Quantitative Trait Loci for BMD in an SM/J by NZB/BlNJ Intercross Population and Identification of Trps1 as a Probable Candidate Gene

    PubMed Central

    Ishimori, Naoki; Stylianou, Ioannis M; Korstanje, Ron; Marion, Michael A; Li, Renhua; Donahue, Leah Rae; Rosen, Clifford J; Beamer, Wesley G; Paigen, Beverly; Churchill, Gary A

    2008-01-01

    Identification of genes that regulate BMD will enhance our understanding of osteoporosis and could provide novel molecular targets for treatment or prevention. We generated a mouse intercross population and carried out a quantitative trait locus (QTL) analysis of 143 female and 124 male F2 progeny from progenitor strains SM/J and NZB/BlNJ using whole body and vertebral areal BMD (aBMD) as measured by DXA. We found that both whole body and vertebral aBMD was affected by two loci on chromosome 9: one with a significant epistatic interaction on distal chromosome 8 and the other with a sex-specific effect. Two additional significant QTLs were identified on chromosome 12, and several suggestive ones were identified on chromosomes 5, 8, 15, and 19. The chromosome 9, 12, and 15 loci have been previously identified in other crosses. SNP-based haplotype analysis of the progenitor strains identified blocks within the QTL region that distinguish the low allele strains from the high allele strains, significantly narrowing the QTL region and reducing the possible candidate genes to 98 for chromosome 9, 31 for chromosome 12, and only 2 for chromosome 15. Trps1 is the most probable candidate gene for the chromosome 15 QTL. The sex-specific effects may help to elucidate the BMD differences between males and females. This study shows the power of statistical modeling to resolve linked QTLs and the use of haplotype analysis in narrowing the list of candidates. PMID:18442308

  15. Quantitative trait locus linkage analysis in a large Amish pedigree identifies novel candidate loci for erythrocyte traits

    PubMed Central

    Hinckley, Jesse D; Abbott, Diana; Burns, Trudy L; Heiman, Meadow; Shapiro, Amy D; Wang, Kai; Di Paola, Jorge

    2013-01-01

    We characterized a large Amish pedigree and, in 384 pedigree members, analyzed the genetic variance components with covariate screen as well as genome-wide quantitative trait locus (QTL) linkage analysis of red blood cell count (RBC), hemoglobin (HB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet count (PLT), and white blood cell count (WBC) using SOLAR. Age and gender were found to be significant covariates in many CBC traits. We obtained significant heritability estimates for RBC, MCV, MCH, MCHC, RDW, PLT, and WBC. We report four candidate loci with Logarithm of the odds (LOD) scores above 2.0: 6q25 (MCH), 9q33 (WBC), 10p12 (RDW), and 20q13 (MCV). We also report eleven candidate loci with LOD scores between 1.5 and <2.0. Bivariate linkage analysis of MCV and MCH on chromosome 20 resulted in a higher maximum LOD score of 3.14. Linkage signals on chromosomes 4q28, 6p22, 6q25, and 20q13 are concomitant with previously reported QTL. All other linkage signals reported herein represent novel evidence of candidate QTL. Interestingly rs1800562, the most common causal variant of hereditary hemochromatosis in HFE (6p22) was associated with MCH and MCHC in this family. Linkage studies like the one presented here will allow investigators to focus the search for rare variants amidst the noise encountered in the large amounts of data generated by whole-genome sequencing. PMID:24058921

  16. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems.

    PubMed

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-05-01

    Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.

  17. Meta-analysis of loci associated with age at natural menopause in African-American women.

    PubMed

    Chen, Christina T L; Liu, Ching-Ti; Chen, Gary K; Andrews, Jeanette S; Arnold, Alice M; Dreyfus, Jill; Franceschini, Nora; Garcia, Melissa E; Kerr, Kathleen F; Li, Guo; Lohman, Kurt K; Musani, Solomon K; Nalls, Michael A; Raffel, Leslie J; Smith, Jennifer; Ambrosone, Christine B; Bandera, Elisa V; Bernstein, Leslie; Britton, Angela; Brzyski, Robert G; Cappola, Anne; Carlson, Christopher S; Couper, David; Deming, Sandra L; Goodarzi, Mark O; Heiss, Gerardo; John, Esther M; Lu, Xiaoning; Le Marchand, Loic; Marciante, Kristin; Mcknight, Barbara; Millikan, Robert; Nock, Nora L; Olshan, Andrew F; Press, Michael F; Vaiyda, Dhananjay; Woods, Nancy F; Taylor, Herman A; Zhao, Wei; Zheng, Wei; Evans, Michele K; Harris, Tamara B; Henderson, Brian E; Kardia, Sharon L R; Kooperberg, Charles; Liu, Yongmei; Mosley, Thomas H; Psaty, Bruce; Wellons, Melissa; Windham, Beverly G; Zonderman, Alan B; Cupples, L Adrienne; Demerath, Ellen W; Haiman, Christopher; Murabito, Joanne M; Rajkovic, Aleksandar

    2014-06-15

    Age at menopause marks the end of a woman's reproductive life and its timing associates with risks for cancer, cardiovascular and bone disorders. GWAS and candidate gene studies conducted in women of European ancestry have identified 27 loci associated with age at menopause. The relevance of these loci to women of African ancestry has not been previously studied. We therefore sought to uncover additional menopause loci and investigate the relevance of European menopause loci by performing a GWAS meta-analysis in 6510 women with African ancestry derived from 11 studies across the USA. We did not identify any additional loci significantly associated with age at menopause in African Americans. We replicated the associations between six loci and age at menopause (P-value < 0.05): AMHR2, RHBLD2, PRIM1, HK3/UMC1, BRSK1/TMEM150B and MCM8. In addition, associations of 14 loci are directionally consistent with previous reports. We provide evidence that genetic variants influencing reproductive traits identified in European populations are also important in women of African ancestry residing in USA. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    PubMed Central

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga; Saxena, Richa; Soranzo, Nicole; Jackson, Anne U; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Gloyn, Anna L; Lindgren, Cecilia M; Mägi, Reedik; Morris, Andrew P; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Thorleifsson, Gudmar; Steinthorsdottir, Valgerdur; Henneman, Peter; Grallert, Harald; Dehghan, Abbas; Hottenga, Jouke Jan; Franklin, Christopher S; Navarro, Pau; Song, Kijoung; Goel, Anuj; Perry, John R B; Egan, Josephine M; Lajunen, Taina; Grarup, Niels; Sparsø, Thomas; Doney, Alex; Voight, Benjamin F; Stringham, Heather M; Li, Man; Kanoni, Stavroula; Shrader, Peter; Cavalcanti-Proença, Christine; Kumari, Meena; Qi, Lu; Timpson, Nicholas J; Gieger, Christian; Zabena, Carina; Rocheleau, Ghislain; Ingelsson, Erik; An, Ping; O’Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Payne, Felicity; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ardlie, Kristin; Ariyurek, Yavuz; Balkau, Beverley; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Benediktsson, Rafn; Bennett, Amanda J; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bonnefond, Amélie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Cornelis, Marilyn; Crawford, Gabe; Crisponi, Laura; Day, Ian N M; de Geus, Eco; Delplanque, Jerome; Dina, Christian; Erdos, Michael R; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Fox, Caroline S; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Groves, Christopher J; Grundy, Scott; Gwilliam, Rhian; Gyllensten, Ulf; Hadjadj, Samy; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Herder, Christian; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hofman, Albert; Hui, Jennie; Hung, Joe; Isomaa, Bo; Johnson, Paul R V; Jørgensen, Torben; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Lyssenko, Valeriya; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McCulloch, Laura J; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Morken, Mario A; Mukherjee, Sutapa; Naitza, Silvia; Narisu, Narisu; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Palmer, Colin N A; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L.; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rathmann, Wolfgang; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Roden, Michael; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Scott, Laura J; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sigurðsson, Gunnar; Sijbrands, Erik J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Thorand, Barbara; Tichet, Jean; Tönjes, Anke; Tuomi, Tiinamaija; Uitterlinden, André G; van Dijk, Ko Willems; van Hoek, Mandy; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Walters, G Bragi; Ward, Kim L; Watkins, Hugh; Weedon, Michael N; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zeggini, Eleftheria; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Hattersley, Andrew T; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Morris, Andrew D; Lind, Lars; Palmer, Lyle J; Hu, Frank B.; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pankow, James S; Sampson, Michael J; Kuusisto, Johanna; Laakso, Markku; Hansen, Torben; Pedersen, Oluf; Pramstaller, Peter Paul; Wichmann, H Erich; Illig, Thomas; Rudan, Igor; Wright, Alan F; Stumvoll, Michael; Campbell, Harry; Wilson, James F; Hamsten, Anders; Bergman, Richard N; Buchanan, Thomas A; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Valle, Timo T; Altshuler, David; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret; Deloukas, Panos; Spector, Timothy D; Frayling, Timothy M; Ferrucci, Luigi; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; van Duijn, Cornelia M; Aulchenko, Yurii S; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Abecasis, Goncalo R; Wareham, Nicholas J; Sladek, Robert; Froguel, Philippe; Watanabe, Richard M; Meigs, James B; Groop, Leif; Boehnke, Michael; McCarthy, Mark I; Florez, Jose C; Barroso, Inês

    2010-01-01

    Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes. PMID:20081858

  19. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content.

    PubMed

    Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter

    2017-11-01

    Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.

  20. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations1[OPEN

    PubMed Central

    Pan, Qingchun; Xu, Yuancheng; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin

    2017-01-01

    Plant architecture is a key factor affecting planting density and grain yield in maize (Zea mays). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3, has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. PMID:28838954

  1. Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex

    PubMed Central

    2012-01-01

    Background The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. Results A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. Conclusion The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection. PMID:22621324

  2. Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice[S

    PubMed Central

    Leduc, Magalie S.; Hageman, Rachael S.; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly

    2011-01-01

    To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL. We then narrowed the list of candidate genes under significant QTL using a “toolbox” of bioinformatic resources, including haplotype analysis; parental strain comparison for gene expression differences and nonsynonymous coding single nucleotide polymorphisms (SNP); cis-regulated eQTL in livers of F2 mice; correlation between gene expression and phenotype; and conditioning of expression on the phenotype. We suggest Slc25a7 as a candidate gene for the Chr 7 QTL and, based on expression differences, five genes (Polr3 h, Cyp2d22, Cyp2d26, Tspo, and Ttll12) as candidate genes for Chr 15 QTL. This study shows how bioinformatics can be used effectively to reduce candidate gene lists for QTL related to complex traits. PMID:21622629

  3. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).

    PubMed

    Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang

    2016-09-13

    Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.

  4. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method

    DOE PAGES

    Axen, Seth D.; Erbilgin, Onur; Kerfeld, Cheryl A.; ...

    2014-10-23

    Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found inmore » seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications.« less

  5. A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method

    PubMed Central

    Kerfeld, Cheryl A.

    2014-01-01

    Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications. PMID:25340524

  6. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  7. Meta-analysis identifies six new susceptibility loci for atrial fibrillation

    PubMed Central

    Ellinor, Patrick T; Lunetta, Kathryn L; Albert, Christine M; Glazer, Nicole L; Ritchie, Marylyn D; Smith, Albert V; Arking, Dan E; Müller-Nurasyid, Martina; Krijthe, Bouwe P; Lubitz, Steven A; Bis, Joshua C; Chung, Mina K; Dörr, Marcus; Ozaki, Kouichi; Roberts, Jason D; Smith, J Gustav; Pfeufer, Arne; Sinner, Moritz F; Lohman, Kurt; Ding, Jingzhong; Smith, Nicholas L; Smith, Jonathan D; Rienstra, Michiel; Rice, Kenneth M; Van Wagoner, David R; Magnani, Jared W; Wakili, Reza; Clauss, Sebastian; Rotter, Jerome I; Steinbeck, Gerhard; Launer, Lenore J; Davies, Robert W; Borkovich, Matthew; Harris, Tamara B; Lin, Honghuang; Völker, Uwe; Völzke, Henry; Milan, David J; Hofman, Albert; Boerwinkle, Eric; Chen, Lin Y; Soliman, Elsayed Z; Voight, Benjamin F; Li, Guo; Chakravarti, Aravinda; Kubo, Michiaki; Tedrow, Usha B; Rose, Lynda M; Ridker, Paul M; Conen, David; Tsunoda, Tatsuhiko; Furukawa, Tetsushi; Sotoodehnia, Nona; Xu, Siyan; Kamatani, Naoyuki; Levy, Daniel; Nakamura, Yusuke; Parvez, Babar; Mahida, Saagar; Furie, Karen L; Rosand, Jonathan; Muhammad, Raafia; Psaty, Bruce M; Meitinger, Thomas; Perz, Siegfried; Wichmann, H-Erich; Witteman, Jacqueline C M; Kao, W H Linda; Kathiresan, Sekar; Roden, Dan M; Uitterlinden, Andre G; Rivadeneira, Fernando; McKnight, Barbara; Sjögren, Marketa; Newman, Anne B; Liu, Yongmei; Gollob, Michael H; Melander, Olle; Tanaka, Toshihiro; Ch Stricker, Bruno H; Felix, Stephan B; Alonso, Alvaro; Darbar, Dawood; Barnard, John; Chasman, Daniel I; Heckbert, Susan R; Benjamin, Emelia J; Gudnason, Vilmundur; Kääb, Stefan

    2012-01-01

    Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death1. We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 1 0,030 subjects without atrial fibrillation (P < 5 × 10−8). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules. PMID:22544366

  8. Strong signatures of selection in the domestic pig genome.

    PubMed

    Rubin, Carl-Johan; Megens, Hendrik-Jan; Martinez Barrio, Alvaro; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B; Archibald, Alan L; Fredholm, Merete; Groenen, Martien A M; Andersson, Leif

    2012-11-27

    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig--the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.

  9. Strong signatures of selection in the domestic pig genome

    PubMed Central

    Rubin, Carl-Johan; Megens, Hendrik-Jan; Barrio, Alvaro Martinez; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B.; Archibald, Alan L.; Fredholm, Merete; Groenen, Martien A. M.; Andersson, Leif

    2012-01-01

    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection. PMID:23151514

  10. Contribution of Selected Gene Mutations to Resistance in Clinical Isolates of Vancomycin-Intermediate Staphylococcus aureus

    PubMed Central

    Hafer, Cory; Lin, Ying; Kornblum, John; Lowy, Franklin D.

    2012-01-01

    Infections with vancomycin-intermediate Staphylococcus aureus (VISA) have been associated with vancomycin treatment failures and poor clinical outcomes. Routine identification of clinical isolates with increased vancomycin MICs remains challenging, and no molecular marker exists to aid in diagnosis of VISA strains. We tested vancomycin susceptibilities by using microscan, Etest, and population analyses in a collection of putative VISA, methicillin-resistant S. aureus, and methicillin-sensitive S. aureus (VSSA) infectious isolates from community- or hospital-associated S. aureus infections (n = 77) and identified 22 VISA and 9 heterogeneous VISA (hVISA) isolates. Sequencing of VISA candidate loci vraS, vraR, yvqF, graR, graS, walR, walK, and rpoB revealed a high diversity of nonsynonymous single-nucleotide polymorphisms (SNPs). For vraS, vraR, yvqF, walK, and rpoB, SNPs were more frequently present in VISA and hVISA than in VSSA isolates, whereas mutations in graR, graS, and walR were exclusively detected in VISA isolates. For each of the individual loci, SNPs were only detected in about half of the VISA isolates. All but one VISA isolate had at least one SNP in any of the genes sequenced, and isolates with an MIC of 6 or 8 μg/ml harbored at least 2 SNPs. Overall, increasing vancomycin MICs were paralleled by a higher proportion of isolates with SNPs. Depending on the clonal background, SNPs appeared to preferentially accumulate in vraS and vraR for sequence type 8 (ST8) and in walK and walR for ST5 isolates. Taken together, by comparing VISA, hVISA, and VSSA controls, we observed preferential clustering of SNPs in VISA candidate genes, with an unexpectedly high diversity across these loci. Our results support a polygenetic etiology of VISA. PMID:22948864

  11. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    PubMed

    Phelan, Catherine M; Kuchenbaecker, Karoline B; Tyrer, Jonathan P; Kar, Siddhartha P; Lawrenson, Kate; Winham, Stacey J; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie J; Chornokur, Ganna; Earp, Madalene A; Lyra, Paulo C; Lee, Janet M; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M; Aben, Katja K H; Adams, Marcia; Adlard, Julian; Andrulis, Irene L; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N; Barjhoux, Laure; Barkardottir, Rosa B; Bean, Yukie; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q; Birrer, Michael J; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R; Brenton, James D; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Cannioto, Rikki; Carney, Michael E; Cescon, Terence; Chan, Salina B; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Conner, Thomas; Cook, Linda S; Cook, Jackie; Cramer, Daniel W; Cunningham, Julie M; D'Aloisio, Aimee A; Daly, Mary B; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; DeFazio, Anna; Delnatte, Capucine; Doheny, Kimberly F; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M; Dorfling, Cecilia M; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H; Engel, Christoph; Evans, D Gareth; Fasching, Peter A; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M; Fogarty, Zachary C; Fortner, Renée T; Fostira, Florentia; Foulkes, William D; Fountzilas, George; Fridley, Brooke L; Friebel, Tara M; Friedman, Eitan; Frost, Debra; Ganz, Patricia A; Garber, Judy; García, María J; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K; Goldgar, David E; Goranova, Teodora; Gore, Martin; Greene, Mark H; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V O; Harrington, Patricia A; Harris, Holly R; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A T; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K; Høgdall, Estrid; Hogervorst, Frans B L; Holland, Helene; Hooning, Maartje J; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J; Hung, Jillian; Hunter, David J; Huntsman, David G; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Iversen, Edwin S; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M; Johnatty, Sharon; Jones, Michael E; Kannisto, Päivi; Karlan, Beth Y; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J; Khusnutdinova, Elza; Kiemeney, Lambertus A; Kiiski, Johanna I; Kim, Sung-Won; Kjaer, Susanne K; Köbel, Martin; Kopperud, Reidun K; Kruse, Torben A; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C; Lazaro, Conxi; Le, Nhu D; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H; Lubinński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F A G; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R; Merritt, Melissa A; Milne, Roger L; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L; Nedergaard, Lotte; Ness, Roberta B; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I; Olsson, Håkan; Olswold, Curtis; O'Malley, David M; Ong, Kai-Ren; Onland-Moret, N Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L; Pedersen, Inge Søkilde; Peeters, Petra H M; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M; Permuth, Jennifer B; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C; Piskorz, Anna M; Poblete, Samantha R; Pocza, Timea; Poole, Elizabeth M; Poppe, Bruce; Porteous, Mary E; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Salvesen, Helga B; Sandler, Dale P; Schoemaker, Minouk J; Senter, Leigha; Setiawan, V Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E; Sieh, Weiva; Singer, Christian F; Sobol, Hagay; Song, Honglin; Southey, Melissa C; Spurdle, Amanda B; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J; Szabo, Csilla I; Szafron, Lukasz; Tan, Yen Y; Taylor, Jack A; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L; Tihomirova, Laima; Tinker, Anna V; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S; van Altena, Anne M; Van Den Berg, David; van der Hout, Annemarie H; van der Luijt, Rob B; Van Heetvelde, Mattias; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Vega, Ana; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M; Weinberg, Clarice R; Weitzel, Jeffrey N; Wentzensen, Nicolas; Whittemore, Alice S; Wijnen, Juul T; Wilkens, Lynne R; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K; Narod, Steven A; Easton, Douglas F; Amos, Christopher I; Schildkraut, Joellen M; Ramus, Susan J; Ottini, Laura; Goodman, Marc T; Park, Sue K; Kelemen, Linda E; Risch, Harvey A; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N; Couch, Fergus J; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L; Sellers, Thomas A; Gayther, Simon A; Antoniou, Antonis C; Pharoah, Paul D P

    2017-05-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.

  12. Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease.

    PubMed

    Xu, Yuejuan; Li, Tingting; Pu, Tian; Cao, Ruixue; Long, Fei; Chen, Sun; Sun, Kun; Xu, Rang

    2017-12-01

    Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.

  13. Identification of Multiple Loci Associated with Social Parasitism in Honeybees

    PubMed Central

    Pirk, Christian W.; Allsopp, Mike H.

    2016-01-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  14. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    PubMed

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  15. Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing

    USGS Publications Warehouse

    Hohenlohe, Paul A.; Day, Mitch D.; Amish, Stephen J.; Miller, Michael R.; Kamps-Hughes, Nick; Boyer, Matthew C.; Muhlfeld, Clint C.; Allendorf, Fred W.; Johnson, Eric A.; Luikart, Gordon

    2013-01-01

    Rapid and inexpensive methods for genomewide single nucleotide polymorphism (SNP) discovery and genotyping are urgently needed for population management and conservation. In hybridized populations, genomic techniques that can identify and genotype thousands of species-diagnostic markers would allow precise estimates of population- and individual-level admixture as well as identification of 'super invasive' alleles, which show elevated rates of introgression above the genomewide background (likely due to natural selection). Techniques like restriction-site-associated DNA (RAD) sequencing can discover and genotype large numbers of SNPs, but they have been limited by the length of continuous sequence data they produce with Illumina short-read sequencing. We present a novel approach, overlapping paired-end RAD sequencing, to generate RAD contigs of >300–400 bp. These contigs provide sufficient flanking sequence for design of high-throughput SNP genotyping arrays and strict filtering to identify duplicate paralogous loci. We applied this approach in five populations of native westslope cutthroat trout that previously showed varying (low) levels of admixture from introduced rainbow trout (RBT). We produced 77 141 RAD contigs and used these data to filter and genotype 3180 previously identified species-diagnostic SNP loci. Our population-level and individual-level estimates of admixture were generally consistent with previous microsatellite-based estimates from the same individuals. However, we observed slightly lower admixture estimates from genomewide markers, which might result from natural selection against certain genome regions, different genomic locations for microsatellites vs. RAD-derived SNPs and/or sampling error from the small number of microsatellite loci (n = 7). We also identified candidate adaptive super invasive alleles from RBT that had excessively high admixture proportions in hybridized cutthroat trout populations.

  16. Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations.

    PubMed

    Mäkinen, H S; Cano, J M; Merilä, J

    2008-08-01

    Natural selection is expected to leave an imprint on the neutral polymorphisms at the adjacent genomic regions of a selected gene. While directional selection tends to reduce within-population genetic diversity and increase among-population differentiation, the reverse is expected under balancing selection. To identify targets of natural selection in the three-spined stickleback (Gasterosteus aculeatus) genome, 103 microsatellite and two indel markers including expressed sequence tags (EST) and quantitative trait loci (QTL)-associated loci, were genotyped in four freshwater and three marine populations. The results indicated that a high proportion of loci (14.7%) might be affected by balancing selection and a lower proportion (2.8%) by directional selection. The strongest signatures of directional selection were detected in a microsatellite locus and two indel markers located in the intronic regions of the Eda-gene coding for the number of lateral plates. Yet, other microsatellite loci previously found to be informative in QTL-mapping studies revealed no signatures of selection. Two novel microsatellite loci (Stn12 and Stn90) located in chromosomes I and VIII, respectively, showed signals of directional selection and might be linked to genomic regions containing gene(s) important for adaptive divergence. Although the coverage of the total genomic content was relatively low, the predominance of balancing selection signals is in agreement with the contention that balancing, rather than directional selection is the predominant mode of selection in the wild.

  17. Selection for sex in finite populations.

    PubMed

    Roze, D

    2014-07-01

    Finite population size generates interference between selected loci, which has been shown to favour increased rates of recombination. In this article, I present different analytical models exploring selection acting on a 'sex modifier locus' (that affects the relative investment into asexual and sexual reproduction) in a finite population. Two forms of selective forces act on the modifier: direct selection due to intrinsic costs associated with sexual reproduction and indirect selection generated by one or two other loci affecting fitness. The results show that indirect selective forces differ from those acting on a recombination modifier even in the case of a haploid population: in particular, a single selected locus generates indirect selection for sex, while two loci are required in the case of a recombination modifier. This effect stems from the fact that modifier alleles increasing sex escape more easily from low-fitness genetic backgrounds than alleles coding for lower rates of sex. Extrapolating the results from three-locus models to a large number of loci at mutation-selection balance indicates that in the parameter range where indirect selection is strong enough to outweigh a substantial cost of sex, interactions between selected loci have a stronger effect than the sum of individual effects of each selected locus. Comparisons with multilocus simulation results show that such extrapolations may provide correct predictions for the evolutionarily stable rate of sex, unless the cost of sex is high. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Discovering genetic variants in Crohn's disease by exploring genomic regions enriched of weak association signals.

    PubMed

    D'Addabbo, Annarita; Palmieri, Orazio; Maglietta, Rosalia; Latiano, Anna; Mukherjee, Sayan; Annese, Vito; Ancona, Nicola

    2011-08-01

    A meta-analysis has re-analysed previous genome-wide association scanning definitively confirming eleven genes and further identifying 21 new loci. However, the identified genes/loci still explain only the minority of genetic predisposition of Crohn's disease. To identify genes weakly involved in disease predisposition by analysing chromosomal regions enriched of single nucleotide polymorphisms with modest statistical association. We utilized the WTCCC data set evaluating 1748 CD and 2938 controls. The identification of candidate genes/loci was performed by a two-step procedure: first of all chromosomal regions enriched of weak association signals were localized; subsequently, weak signals clustered in gene regions were identified. The statistical significance was assessed by non parametric permutation tests. The cytoband enrichment analysis highlighted 44 regions (P≤0.05) enriched with single nucleotide polymorphisms significantly associated with the trait including 23 out of 31 previously confirmed and replicated genes. Importantly, we highlight further 20 novel chromosomal regions carrying approximately one hundred genes/loci with modest association. Amongst these we find compelling functional candidate genes such as MAPT, GRB2 and CREM, LCT, and IL12RB2. Our study suggests a different statistical perspective to discover genes weakly associated with a given trait, although further confirmatory functional studies are needed. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. All rights reserved.

  19. Population-scale whole genome sequencing identifies 271 highly polymorphic short tandem repeats from Japanese population.

    PubMed

    Hirata, Satoshi; Kojima, Kaname; Misawa, Kazuharu; Gervais, Olivier; Kawai, Yosuke; Nagasaki, Masao

    2018-05-01

    Forensic DNA typing is widely used to identify missing persons and plays a central role in forensic profiling. DNA typing usually uses capillary electrophoresis fragment analysis of PCR amplification products to detect the length of short tandem repeat (STR) markers. Here, we analyzed whole genome data from 1,070 Japanese individuals generated using massively parallel short-read sequencing of 162 paired-end bases. We have analyzed 843,473 STR loci with two to six basepair repeat units and cataloged highly polymorphic STR loci in the Japanese population. To evaluate the performance of the cataloged STR loci, we compared 23 STR loci, widely used in forensic DNA typing, with capillary electrophoresis based STR genotyping results in the Japanese population. Seventeen loci had high correlations and high call rates. The other six loci had low call rates or low correlations due to either the limitations of short-read sequencing technology, the bioinformatics tool used, or the complexity of repeat patterns. With these analyses, we have also purified the suitable 218 STR loci with four basepair repeat units and 53 loci with five basepair repeat units both for short read sequencing and PCR based technologies, which would be candidates to the actual forensic DNA typing in Japanese population.

  20. Genome-wide scan for visceral leishmaniasis in mixed-breed dogs identifies candidate genes involved in T helper cells and macrophage signaling

    USDA-ARS?s Scientific Manuscript database

    We conducted a genome-wide scan for visceral leishmaniasis in mixed-breed dogs from a highly endemic area in Brazil using 149,648 single nucleotide polymorphism (SNP) markers genotyped in 20 cases and 28 controls. Using a mixed model approach, we found two candidate loci on canine autosomes 1 and 2....

  1. Stabilizing selection on microsatellite allele length at arginine vasopressin 1a receptor and oxytocin receptor loci

    PubMed Central

    Kallio, Eva R.; Koskela, Esa; Lonn, Eija

    2017-01-01

    The loci arginine vasopressin receptor 1a (avpr1a) and oxytocin receptor (oxtr) have evolutionarily conserved roles in vertebrate social and sexual behaviour. Allelic variation at a microsatellite locus in the 5′ regulatory region of these genes is associated with fitness in the bank vole Myodes glareolus. Given the low frequency of long and short alleles at these microsatellite loci in wild bank voles, we used breeding trials to determine whether selection acts against long and short alleles. Female bank voles with intermediate length avpr1a alleles had the highest probability of breeding, while male voles whose avpr1a alleles were very different in length had reduced probability of breeding. Moreover, there was a significant interaction between male and female oxtr genotypes, where potential breeding pairs with dissimilar length alleles had reduced probability of breeding. These data show how genetic variation at microsatellite loci associated with avpr1a and oxtr is associated with fitness, and highlight complex patterns of selection at these loci. More widely, these data show how stabilizing selection might act on allele length frequency distributions at gene-associated microsatellite loci. PMID:29237850

  2. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  3. A genome-wide association study identifies candidate loci associated to syringomyelia secondary to Chiari-like malformation in Cavalier King Charles Spaniels.

    PubMed

    Ancot, Frédéric; Lemay, Philippe; Knowler, Susan P; Kennedy, Karen; Griffiths, Sandra; Cherubini, Giunio Bruto; Sykes, Jane; Mandigers, Paul J J; Rouleau, Guy A; Rusbridge, Clare; Kibar, Zoha

    2018-03-22

    Syringomyelia (SM) is a common condition affecting brachycephalic toy breed dogs and is characterized by the development of fluid-filled cavities within the spinal cord. It is often concurrent with a complex developmental malformation of the skull and craniocervical vertebrae called Chiari-like malformation (CM) characterized by a conformational change and overcrowding of the brain and cervical spinal cord particularly at the craniocervical junction. CM and SM have a polygenic mode of inheritance with variable penetrance. We identified six cranial T1-weighted sagittal MRI measurements that were associated to maximum transverse diameter of the syrinx cavity. Increased syrinx transverse diameter has been correlated previously with increased likelihood of behavioral signs of pain. We next conducted a whole genome association study of these traits in 65 Cavalier King Charles Spaniel (CKCS) dogs (33 controls, 32 with extreme phenotypes). Two loci on CFA22 and CFA26 were found to be significantly associated to two traits associated with a reduced volume and altered orientation of the caudal cranial fossa. Their reconstructed haplotypes defined two associated regions that harbor only two genes: PCDH17 on CFA22 and ZWINT on CFA26. PCDH17 codes for a cell adhesion molecule expressed specifically in the brain and spinal cord. ZWINT plays a role in chromosome segregation and its expression is increased with the onset of neuropathic pain. Targeted genomic sequencing of these regions identified respectively 37 and 339 SNPs with significantly associated P values. Genotyping of tagSNPs selected from these 2 candidate loci in an extended cohort of 461 CKCS (187 unaffected, 274 SM affected) identified 2 SNPs on CFA22 that were significantly associated to SM strengthening the candidacy of this locus in SM development. We identified 2 loci on CFA22 and CFA26 that contained only 2 genes, PCDH17 and ZWINT, significantly associated to two traits associated with syrinx transverse diameter. The locus on CFA22 was significantly associated to SM secondary to CM in the CKCS dog breed strengthening its candidacy for this disease. This study will provide an entry point for identification of the genetic factors predisposing to this condition and its underlying pathogenic mechanisms.

  4. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches . This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.

  5. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties. PMID:29354146

  6. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G x E interactions.

    PubMed Central

    Turelli, Michael; Barton, N H

    2004-01-01

    We investigate three alternative selection-based scenarios proposed to maintain polygenic variation: pleiotropic balancing selection, G x E interactions (with spatial or temporal variation in allelic effects), and sex-dependent allelic effects. Each analysis assumes an additive polygenic trait with n diallelic loci under stabilizing selection. We allow loci to have different effects and consider equilibria at which the population mean departs from the stabilizing-selection optimum. Under weak selection, each model produces essentially identical, approximate allele-frequency dynamics. Variation is maintained under pleiotropic balancing selection only at loci for which the strength of balancing selection exceeds the effective strength of stabilizing selection. In addition, for all models, polymorphism requires that the population mean be close enough to the optimum that directional selection does not overwhelm balancing selection. This balance allows many simultaneously stable equilibria, and we explore their properties numerically. Both spatial and temporal G x E can maintain variation at loci for which the coefficient of variation (across environments) of the effect of a substitution exceeds a critical value greater than one. The critical value depends on the correlation between substitution effects at different loci. For large positive correlations (e.g., rho(ij)2>3/4), even extreme fluctuations in allelic effects cannot maintain variation. Surprisingly, this constraint on correlations implies that sex-dependent allelic effects cannot maintain polygenic variation. We present numerical results that support our analytical approximations and discuss our results in connection to relevant data and alternative variance-maintaining mechanisms. PMID:15020487

  7. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  8. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  9. Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel.

    PubMed

    Schmidt, Joshua M; Battlay, Paul; Gledhill-Smith, Rebecca S; Good, Robert T; Lumb, Chris; Fournier-Level, Alexandre; Robin, Charles

    2017-11-01

    Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster ; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737 , has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1 , shows compelling evidence of positive selection. Copyright © 2017 by the Genetics Society of America.

  10. Trans-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus

    PubMed Central

    Cannon, Maren E.; Duan, Qing; Wu, Ying; Zeynalzadeh, Monica; Xu, Zheng; Kangas, Antti J.; Soininen, Pasi; Ala-Korpela, Mika; Civelek, Mete; Lusis, Aldons J.; Kuusisto, Johanna; Collins, Francis S.; Boehnke, Michael; Tang, Hua; Laakso, Markku; Li, Yun; Mohlke, Karen L.

    2017-01-01

    Recent genome-wide association studies (GWAS) have identified variants associated with high-density lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C–associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant. PMID:28754724

  11. Gene-Centric Meta-Analysis of Lipid Traits in African, East Asian and Hispanic Populations

    PubMed Central

    Tragante, Vinicius; van Iperen, Erik P. A.; Lanktree, Matthew B.; Castillo, Berta Almoguera; Chen, Fang; Yanek, Lisa R.; Wojczynski, Mary K.; Li, Yun R.; Ferwerda, Bart; Ballantyne, Christie M.; Buxbaum, Sarah G.; Chen, Yii-Der Ida; Chen, Wei-Min; Cupples, L. Adrienne; Cushman, Mary; Duan, Yanan; Duggan, David; Evans, Michele K.; Fernandes, Jyotika K.; Fornage, Myriam; Garcia, Melissa; Garvey, W. Timothy; Glazer, Nicole; Gomez, Felicia; Harris, Tamara B.; Halder, Indrani; Howard, Virginia J.; Keller, Margaux F.; Kamboh, M. Ilyas; Kooperberg, Charles; Kritchevsky, Stephen B.; LaCroix, Andrea; Liu, Kiang; Liu, Yongmei; Musunuru, Kiran; Newman, Anne B.; Onland-Moret, N. Charlotte; Ordovas, Jose; Peter, Inga; Post, Wendy; Redline, Susan; Reis, Steven E.; Saxena, Richa; Schreiner, Pamela J.; Volcik, Kelly A.; Wang, Xingbin; Yusuf, Salim; Zonderland, Alan B.; Anand, Sonia S.; Becker, Diane M.; Psaty, Bruce; Rader, Daniel J.; Reiner, Alex P.; Rich, Stephen S.; Rotter, Jerome I.; Sale, Michèle M.; Tsai, Michael Y.; Borecki, Ingrid B.; Hegele, Robert A.; Kathiresan, Sekar; Nalls, Michael A.; Taylor, Herman A.; Hakonarson, Hakon; Sivapalaratnam, Suthesh; Asselbergs, Folkert W.; Drenos, Fotios; Wilson, James G.; Keating, Brendan J.

    2012-01-01

    Meta-analyses of European populations has successfully identified genetic variants in over 100 loci associated with lipid levels, but our knowledge in other ethnicities remains limited. To address this, we performed dense genotyping of ∼2,000 candidate genes in 7,657 African Americans, 1,315 Hispanics and 841 East Asians, using the IBC array, a custom ∼50,000 SNP genotyping array. Meta-analyses confirmed 16 lipid loci previously established in European populations at genome-wide significance level, and found multiple independent association signals within these lipid loci. Initial discovery and in silico follow-up in 7,000 additional African American samples, confirmed two novel loci: rs5030359 within ICAM1 is associated with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (p = 8.8×10−7 and p = 1.5×10−6 respectively) and a nonsense mutation rs3211938 within CD36 is associated with high-density lipoprotein cholesterol (HDL-C) levels (p = 13.5×10−12). The rs3211938-G allele, which is nearly absent in European and Asian populations, has been previously found to be associated with CD36 deficiency and shows a signature of selection in Africans and African Americans. Finally, we have evaluated the effect of SNPs established in European populations on lipid levels in multi-ethnic populations and show that most known lipid association signals span across ethnicities. However, differences between populations, especially differences in allele frequency, can be leveraged to identify novel signals, as shown by the discovery of ICAM1 and CD36 in the current report. PMID:23236364

  12. A hot topic: the genetics of adaptation to geothermal vents in Mimulus guttatus.

    PubMed

    Ferris, Kathleen G

    2016-11-01

    Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods. In this issue of Molecular Ecology, Hendrick et al. (2016) overcome these difficulties and determine the genetic basis of microgeographic adaptation between geothermal vent and nonthermal populations of Mimulus guttatus in Yellowstone National Park. The authors accomplish this by combining population and quantitative genetic techniques, a powerful, but labour-intensive, strategy for identifying individual causative adaptive loci that few studies have used (Stinchcombe & Hoekstra ). In a previous common garden experiment (Lekberg et al. 2012), thermal M. guttatus populations were found to differ from their closely related nonthermal neighbours in various adaptive phenotypes including trichome density. Hendrick et al. (2016) combine quantitative trait loci (QTL) mapping, population genomic scans for selection and admixture mapping to identify a single genetic locus underlying differences in trichome density between thermal and nonthermal M. guttatus. The candidate gene, R2R3 MYB, is homologous to genes involved in trichome development across flowering plants. The major trichome QTL, Tr14, is also involved in trichome density differences in an independent M. guttatus population comparison (Holeski et al. 2010) making this an example of parallel genetic evolution. © 2016 John Wiley & Sons Ltd.

  13. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.

    PubMed

    Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing

    2017-10-01

    Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Identification of Metabolic Modifiers That Underlie Phenotypic Variations in Energy-Balance Regulation

    PubMed Central

    Chang, Chia Lin; Cai, James J.; Cheng, Po Jen; Chueh, Ho Yen; Hsu, Sheau Yu Teddy

    2011-01-01

    OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experiment-based evidence and population genetics-based statistical judgments would be needed to reveal important metabolic modifiers in humans. RESEARCH DESIGN AND METHODS To identify common metabolic modifiers that underlie phenotypic variation in diabetes-associated or obesity-associated traits in humans, or both, we screened 207 candidate loci for regulatory single nucleotide polymorphisms (SNPs) that exhibited evidence of gene–environmental interactions. RESULTS Three SNPs (rs3895874, rs3848460, and rs937301) at the 5′ gene region of human GIP were identified as prime metabolic-modifier candidates at the enteroinsular axis. Functional studies have shown that GIP promoter reporters carrying derived alleles of these three SNPs (haplotype GIP−1920A) have significantly lower transcriptional activities than those with ancestral alleles at corresponding positions (haplotype GIP−1920G). Consistently, studies of pregnant women who have undergone a screening test for gestational diabetes have shown that patients with a homozygous GIP−1920A/A genotype have significantly lower serum concentrations of glucose-dependent insulinotropic polypeptide (GIP) than those carrying an ancestral GIP−1920G haplotype. After controlling for a GIPR variation, we showed that serum glucose concentrations of patients carrying GIP−1920A/A homozygotes are significantly higher than that of those carrying an ancestral GIP−1920G haplotype (odds ratio 3.53). CONCLUSIONS Our proof-of-concept study indicates that common regulatory GIP variants impart a difference in GIP and glucose metabolism. The study also provides a rare example that identified the common variant-common phenotypic variation pattern based on evidence of moderate gene–environmental interactions. PMID:21300845

  15. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, J.D.; Nelson, L.D.; Conner, B.J.

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B,more » twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.« less

  16. Mosaic microecological differential stress causes adaptive microsatellite divergence in wild barley, Hordeum spontaneum, at Neve Yaar, Israel.

    PubMed

    Huang, Qingyang; Beharav, Alex; Li, Youchun; Kirzhner, Valery; Nevo, Eviatar

    2002-12-01

    Genetic diversity at 38 microsatellite (short sequence repeats (SSRs)) loci was studied in a sample of 54 plants representing a natural population of wild barley, Hordeum spontaneum, at the Neve Yaar microsite in Israel. Wild barley at the microsite was organized in a mosaic pattern over an area of 3180 m2 in the open Tabor oak forest, which was subdivided into four microniches: (i) sun-rock (11 genotypes), (ii) sun-soil (18 genotypes), (iii) shade-soil (11 genotypes), and (iv) shade-rock (14 genotypes). Fifty-four genotypes were tested for ecological-genetic microniche correlates. Analysis of 36 loci showed that allele distributions at SSR loci were nonrandom but structured by ecological stresses (climatic and edaphic). Sixteen (45.7%) of 35 polymorphic loci varied significantly (p < 0.05) in allele frequencies among the microniches. Significant genetic divergence and diversity were found among the four subpopulations. The soil and shade subpopulations showed higher genetic diversities at SSR loci than the rock and sun subpopulations, and the lowest genetic diversity was observed in the sun-rock subpopulation, in contrast with the previous allozyme and RAPD studies. On average, of 36 loci, 88.75% of the total genetic diversity exists within the four microniches, while 11.25% exists between the microniches. In a permutation test, G(ST) was lower for 4999 out of 5000 randomized data sets (p < 0.001) when compared with real data (0.1125). The highest genetic distance was between shade-soil and sun-rock (D = 0.222). Our results suggest that diversifying natural selection may act upon some regulatory regions, resulting in adaptive SSR divergence. Fixation of some loci (GMS61, GMS1, and EBMAC824) at a specific microniche seems to suggest directional selection. The pattern of other SSR loci suggests the operation of balancing selection. SSRs may be either direct targets of selection or markers of selected haplotypes (selective sweep).

  17. Polygenic signal for symptom dimensions and cognitive performance in patients with chronic schizophrenia.

    PubMed

    Xavier, Rose Mary; Dungan, Jennifer R; Keefe, Richard S E; Vorderstrasse, Allison

    2018-06-01

    Genetic etiology of psychopathology symptoms and cognitive performance in schizophrenia is supported by candidate gene and polygenic risk score (PRS) association studies. Such associations are reported to be dependent on several factors - sample characteristics, illness phase, illness severity etc. We aimed to examine if schizophrenia PRS predicted psychopathology symptoms and cognitive performance in patients with chronic schizophrenia. We also examined if schizophrenia associated autosomal loci were associated with specific symptoms or cognitive domains. Case-only analysis using data from the Clinical Antipsychotics Trials of Intervention Effectiveness-Schizophrenia trials ( n  = 730). PRS was constructed using Psychiatric Genomics Consortium (PGC) leave one out genome wide association analysis as the discovery data set. For candidate region analysis, we selected 105-schizophrenia associated autosomal loci from the PGC study. We found a significant effect of PRS on positive symptoms at p -threshold ( P T ) of 0.5 ( R 2  = 0.007, p  = 0.029, empirical p  = 0.029) and negative symptoms at P T of 1e-07 ( R 2  = 0.005, p  = 0.047, empirical p  = 0.048). For models that additionally controlled for neurocognition, best fit PRS predicted positive ( p- threshold 0.01, R 2   =  0.007, p =  0.013, empirical p  = 0.167) and negative symptoms ( p- threshold 0.1, R 2   =  0.012, p =  0.004, empirical p  = 0.329). No associations were seen for overall neurocognitive and social cognitive performance tests. Post-hoc analyses revealed that PRS predicted working memory and vigilance performance but did not survive correction. No candidate regions that survived multiple testing corrections were associated with either symptoms or cognitive performance. Our findings point to potentially distinct pathogenic mechanisms for schizophrenia symptoms.

  18. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases

    PubMed Central

    Li, Yun R; Li, Jin; Zhao, Sihai D; Bradfield, Jonathan P; Mentch, Frank D; Maggadottir, S Melkorka; Hou, Cuiping; Abrams, Debra J; Chang, Diana; Gao, Feng; Guo, Yiran; Wei, Zhi; Connolly, John J; Cardinale, Christopher J; Bakay, Marina; Glessner, Joseph T; Li, Dong; Kao, Charlly; Thomas, Kelly A; Qiu, Haijun; Chiavacci, Rosetta M; Kim, Cecilia E; Wang, Fengxiang; Snyder, James; Richie, Marylyn D; Flatø, Berit; Førre, Øystein; Denson, Lee A; Thompson, Susan D; Becker, Mara L; Guthery, Stephen L; Latiano, Anna; Perez, Elena; Resnick, Elena; Russell, Richard K; Wilson, David C; Silverberg, Mark S; Annese, Vito; Lie, Benedicte A; Punaro, Marilynn; Dubinsky, Marla C; Monos, Dimitri S; Strisciuglio, Caterina; Staiano, Annamaria; Miele, Erasmo; Kugathasan, Subra; Ellis, Justine A; Munro, Jane E; Sullivan, Kathleen E; Wise, Carol A; Chapel, Helen; Cunningham-Rundles, Charlotte; Grant, Struan F A; Orange, Jordan S; Sleiman, Patrick M A; Behrens, Edward M; Griffiths, Anne M; Satsangi, Jack; Finkel, Terri H; Keinan, Alon; Prak, Eline T Luning; Polychronakos, Constantin; Baldassano, Robert N; Li, Hongzhe; Keating, Brendan J; Hakonarson, Hakon

    2016-01-01

    Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ2 meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases. PMID:26301688

  19. Derived variants at six genes explain nearly half of size reduction in dog breeds.

    PubMed

    Rimbault, Maud; Beale, Holly C; Schoenebeck, Jeffrey J; Hoopes, Barbara C; Allen, Jeremy J; Kilroy-Glynn, Paul; Wayne, Robert K; Sutter, Nathan B; Ostrander, Elaine A

    2013-12-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%-52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.

  20. Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea?

    PubMed

    Chen, Jun; Tsuda, Yoshiaki; Stocks, Michael; Källman, Thomas; Xu, Nannan; Kärkkäinen, Katri; Huotari, Tea; Semerikov, Vladimir L; Vendramin, Giovanni G; Lascoux, Martin

    2014-07-01

    Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species. Copyright © 2014 by the Genetics Society of America.

  1. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  2. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  3. Mapping genetic variants for cranial vault shape in humans.

    PubMed

    Roosenboom, Jasmien; Lee, Myoung Keun; Hecht, Jacqueline T; Heike, Carrie L; Wehby, George L; Christensen, Kaare; Feingold, Eleanor; Marazita, Mary L; Maga, A Murat; Shaffer, John R; Weinberg, Seth M

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10-8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10-9) for MCL. Additionally, 32 suggestive loci (p < 5x10-6) were observed. Several candidate genes were located in these loci, such as NLK, MEF2A, SOX9 and SOX11. Genome-wide linkage analysis of cranial vault shape in mice (N = 433) was performed to follow-up the associated candidate loci identified in the human GWAS. Two loci, 17q11.2 (c11.loc44 in mice) and 17q25.1 (c11.loc74 in mice), associated with cranial vault size in humans, were also linked with cranial vault size in mice (LOD scores: 3.37 and 3.79 respectively). These results provide further insight into genetic pathways and mechanisms underlying normal variation in human craniofacial morphology.

  4. Mapping genetic variants for cranial vault shape in humans

    PubMed Central

    Lee, Myoung Keun; Hecht, Jacqueline T.; Heike, Carrie L.; Wehby, George L.; Christensen, Kaare; Feingold, Eleanor; Marazita, Mary L.; Weinberg, Seth M.

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10−8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10−9) for MCL. Additionally, 32 suggestive loci (p < 5x10-6) were observed. Several candidate genes were located in these loci, such as NLK, MEF2A, SOX9 and SOX11. Genome-wide linkage analysis of cranial vault shape in mice (N = 433) was performed to follow-up the associated candidate loci identified in the human GWAS. Two loci, 17q11.2 (c11.loc44 in mice) and 17q25.1 (c11.loc74 in mice), associated with cranial vault size in humans, were also linked with cranial vault size in mice (LOD scores: 3.37 and 3.79 respectively). These results provide further insight into genetic pathways and mechanisms underlying normal variation in human craniofacial morphology. PMID:29698431

  5. Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice.

    PubMed

    Dow, H C; Kreibich, A S; Kaercher, K A; Sankoorikal, G M V; Pauley, E D; Lohoff, F W; Ferraro, T N; Li, H; Brodkin, E S

    2011-02-01

    Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  6. Selective Sweep Analysis in the Genomes of the 91-R and 91-C Drosophila melanogaster Strains Reveals Few of the ‘Usual Suspects’ in Dichlorodiphenyltrichloroethane (DDT) Resistance

    PubMed Central

    Steele, Laura D.; Coates, Brad; Valero, M. Carmen; Sun, Weilin; Seong, Keon Mook; Muir, William M.; Clark, John M.; Pittendrigh, Barry R.

    2015-01-01

    Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. To the authors’ knowledge, no selective sweep analysis has been performed to identify such loci in highly dichlorodiphenyltrichloroethane (DDT) resistant insects. Here we compared a highly DDT resistant phenotype in the Drosophila melanogaster (Drosophila) 91-R strain to the DDT susceptible 91-C strain, both of common origin. Whole genome re-sequencing data from pools of individuals was generated separately for 91-R and 91-C, and mapped to the reference Drosophila genome assembly (v. 5.72). Thirteen major and three minor effect chromosome intervals with reduced nucleotide diversity (π) were identified only in the 91-R population. Estimates of Tajima's D (D) showed corresponding evidence of directional selection in these same genome regions of 91-R, however, no similar reductions in π or D estimates were detected in 91-C. An overabundance of non-synonymous proteins coding to synonymous changes were identified in putative open reading frames associated with 91-R. Except for NinaC and Cyp4g1, none of the identified genes were the ‘usual suspects’ previously observed to be associated with DDT resistance. Additionally, up-regulated ATP-binding cassette transporters have been previously associated with DDT resistance; however, here we identified a structurally altered MDR49 candidate resistance gene. The remaining fourteen genes have not previously been shown to be associated with DDT resistance. These results suggest hitherto unknown mechanisms of DDT resistance, most of which have been overlooked in previous transcriptional studies, with some genes having orthologs in mammals. PMID:25826265

  7. Fine-mapping and initial characterization of QT interval loci in African Americans.

    PubMed

    Avery, Christy L; Sethupathy, Praveen; Buyske, Steven; He, Qianchuan; Lin, Dan-Yu; Arking, Dan E; Carty, Cara L; Duggan, David; Fesinmeyer, Megan D; Hindorff, Lucia A; Jeff, Janina M; Klein, Liviu; Patton, Kristen K; Peters, Ulrike; Shohet, Ralph V; Sotoodehnia, Nona; Young, Alicia M; Kooperberg, Charles; Haiman, Christopher A; Mohlke, Karen L; Whitsel, Eric A; North, Kari E

    2012-01-01

    The QT interval (QT) is heritable and its prolongation is a risk factor for ventricular tachyarrhythmias and sudden death. Most genetic studies of QT have examined European ancestral populations; however, the increased genetic diversity in African Americans provides opportunities to narrow association signals and identify population-specific variants. We therefore evaluated 6,670 SNPs spanning eleven previously identified QT loci in 8,644 African American participants from two Population Architecture using Genomics and Epidemiology (PAGE) studies: the Atherosclerosis Risk in Communities study and Women's Health Initiative Clinical Trial. Of the fifteen known independent QT variants at the eleven previously identified loci, six were significantly associated with QT in African American populations (P≤1.20×10(-4)): ATP1B1, PLN1, KCNQ1, NDRG4, and two NOS1AP independent signals. We also identified three population-specific signals significantly associated with QT in African Americans (P≤1.37×10(-5)): one at NOS1AP and two at ATP1B1. Linkage disequilibrium (LD) patterns in African Americans assisted in narrowing the region likely to contain the functional variants for several loci. For example, African American LD patterns showed that 0 SNPs were in LD with NOS1AP signal rs12143842, compared with European LD patterns that indicated 87 SNPs, which spanned 114.2 Kb, were in LD with rs12143842. Finally, bioinformatic-based characterization of the nine African American signals pointed to functional candidates located exclusively within non-coding regions, including predicted binding sites for transcription factors such as TBX5, which has been implicated in cardiac structure and conductance. In this detailed evaluation of QT loci, we identified several African Americans SNPs that better define the association with QT and successfully narrowed intervals surrounding established loci. These results demonstrate that the same loci influence variation in QT across multiple populations, that novel signals exist in African Americans, and that the SNPs identified as strong candidates for functional evaluation implicate gene regulatory dysfunction in QT prolongation.

  8. Fine-Mapping and Initial Characterization of QT Interval Loci in African Americans

    PubMed Central

    Avery, Christy L.; Sethupathy, Praveen; Buyske, Steven; He, Qianchuan; Lin, Dan-Yu; Arking, Dan E.; Carty, Cara L.; Duggan, David; Fesinmeyer, Megan D.; Hindorff, Lucia A.; Jeff, Janina M.; Klein, Liviu; Patton, Kristen K.; Peters, Ulrike; Shohet, Ralph V.; Sotoodehnia, Nona; Young, Alicia M.; Kooperberg, Charles; Haiman, Christopher A.; Mohlke, Karen L.; Whitsel, Eric A.; North, Kari E.

    2012-01-01

    The QT interval (QT) is heritable and its prolongation is a risk factor for ventricular tachyarrhythmias and sudden death. Most genetic studies of QT have examined European ancestral populations; however, the increased genetic diversity in African Americans provides opportunities to narrow association signals and identify population-specific variants. We therefore evaluated 6,670 SNPs spanning eleven previously identified QT loci in 8,644 African American participants from two Population Architecture using Genomics and Epidemiology (PAGE) studies: the Atherosclerosis Risk in Communities study and Women's Health Initiative Clinical Trial. Of the fifteen known independent QT variants at the eleven previously identified loci, six were significantly associated with QT in African American populations (P≤1.20×10−4): ATP1B1, PLN1, KCNQ1, NDRG4, and two NOS1AP independent signals. We also identified three population-specific signals significantly associated with QT in African Americans (P≤1.37×10−5): one at NOS1AP and two at ATP1B1. Linkage disequilibrium (LD) patterns in African Americans assisted in narrowing the region likely to contain the functional variants for several loci. For example, African American LD patterns showed that 0 SNPs were in LD with NOS1AP signal rs12143842, compared with European LD patterns that indicated 87 SNPs, which spanned 114.2 Kb, were in LD with rs12143842. Finally, bioinformatic-based characterization of the nine African American signals pointed to functional candidates located exclusively within non-coding regions, including predicted binding sites for transcription factors such as TBX5, which has been implicated in cardiac structure and conductance. In this detailed evaluation of QT loci, we identified several African Americans SNPs that better define the association with QT and successfully narrowed intervals surrounding established loci. These results demonstrate that the same loci influence variation in QT across multiple populations, that novel signals exist in African Americans, and that the SNPs identified as strong candidates for functional evaluation implicate gene regulatory dysfunction in QT prolongation. PMID:22912591

  9. Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease

    PubMed Central

    Brüniche-Olsen, Anna; Austin, Jeremy J.; Jones, Menna E.; Holland, Barbara R.; Burridge, Christopher P.

    2016-01-01

    Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer—devil facial tumor disease (DFTD)—that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series ‘restriction site associated DNA’ (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results. PMID:26930198

  10. A search for imprinted quantitative trait loci (QTLs) for birth weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, A.; Llewellyn, B.; Schieken, R.

    1994-09-01

    Previous studies have generally provided strong evidence that maternal effects are a much more important determinant of birth weight than the genes of the fetus. In the past, these findings have been interpreted as reflecting a genetically determined maternal constraint on fetal growth. However, the recognition that the expression of a gene can be influenced by its parental origin has provided an alternative explanation for apparent maternal effects. In the mouse, a growing number of imprinted genes have been identified which can profoundly influence birth weight or body size including IGF-1, IGF-2, and their respective receptor loci. To determine whethermore » any of the loci are QTLs for body size in man, we have used parental typing data to classify dizygotic twins according to their identity by descent (IBD) for polymorphic markers at or near the candidate loci. The contrast between the correlations of DZ pairs sharing both alleles IBD and no alleles IBD can provide evidence for a candidate gene effect while the contrast between twins sharing one maternal or one paternal allele IBD can provide evidence for any effect of imprinting that may exist at the locus. Finally, the inclusion of data on MZ twins in an overall analysis permits the resolution of the imprinting and marker gene effects from other sources of genetic and environmental variation. We have applied this model to birth weight data on 181 pairs of twins who were classified according to their allele sharing at the IGF-1 locus. In keeping with other observations, the data show no evidence that the IGF-1 locus is imprinted in man. Although our results are consistent with the possibility that this locus may account for 15-20% of the genetic variation, the apparent effect is not statistically significant. Partitioned twin analysis appears to be a useful method for detecting the effects of specific candidate gene on continuously distributed traits.« less

  11. Rapid discovery of SNPs differentiating hatchery steelhead trout from ESA-listed natural-origin steelhead trout using a 57K SNP array

    USGS Publications Warehouse

    Larson, Wesley; Palti, Yniv; Gao, G.; Warheit, Kenneth I.; Seeb, James E.

    2017-01-01

    Natural-origin steelhead trout (Oncorhynchus mykiss (Walbaum, 1792)) in the Pacific Northwest, USA, are threatened by a number of factors including habitat destruction, disease, decline in marine survival, and a potential erosion of genetic viability due to introgression from hatchery strains. Our major goal was to use a recently developed SNP array containing ∼57 000 SNPs to identify a subset of SNPs that differentiate hatchery and natural-origin populations. We analyzed 35 765 polymorphic SNPs in nine populations of steelhead trout sampled from Puget Sound, Washington, USA. We then conducted two outlier tests and found 360 loci that were candidates for divergent selection between hatchery and natural-origin populations (mean FCT = 0.29, maximum = 0.65) and 595 SNPs that were candidates for selection among natural-origin populations (mean FST = 0.25, maximum = 0.51). Comparisons with a linkage map revealed that two chromosomes (Omy05 and Omy25) contained significantly more outliers than other chromosomes, suggesting that regions on Omy05 and Omy25 may be of adaptive significance. Our results highlight several advantages of the 57 000 SNP array as a tool for population and conservation genomics studies.

  12. Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease.

    PubMed

    Schott, Jonathan M; Crutch, Sebastian J; Carrasquillo, Minerva M; Uphill, James; Shakespeare, Tim J; Ryan, Natalie S; Yong, Keir X; Lehmann, Manja; Ertekin-Taner, Nilufer; Graff-Radford, Neill R; Boeve, Bradley F; Murray, Melissa E; Khan, Qurat Ul Ain; Petersen, Ronald C; Dickson, Dennis W; Knopman, David S; Rabinovici, Gil D; Miller, Bruce L; González, Aida Suárez; Gil-Néciga, Eulogio; Snowden, Julie S; Harris, Jenny; Pickering-Brown, Stuart M; Louwersheimer, Eva; van der Flier, Wiesje M; Scheltens, Philip; Pijnenburg, Yolande A; Galasko, Douglas; Sarazin, Marie; Dubois, Bruno; Magnin, Eloi; Galimberti, Daniela; Scarpini, Elio; Cappa, Stefano F; Hodges, John R; Halliday, Glenda M; Bartley, Lauren; Carrillo, Maria C; Bras, Jose T; Hardy, John; Rossor, Martin N; Collinge, John; Fox, Nick C; Mead, Simon

    2016-08-01

    The genetics underlying posterior cortical atrophy (PCA), typically a rare variant of Alzheimer's disease (AD), remain uncertain. We genotyped 302 PCA patients from 11 centers, calculated risk at 24 loci for AD/DLB and performed an exploratory genome-wide association study. We confirm that variation in/near APOE/TOMM40 (P = 6 × 10(-14)) alters PCA risk, but with smaller effect than for typical AD (PCA: odds ratio [OR] = 2.03, typical AD: OR = 2.83, P = .0007). We found evidence for risk in/near CR1 (P = 7 × 10(-4)), ABCA7 (P = .02) and BIN1 (P = .04). ORs at variants near INPP5D and NME8 did not overlap between PCA and typical AD. Exploratory genome-wide association studies confirmed APOE and identified three novel loci: rs76854344 near CNTNAP5 (P = 8 × 10(-10) OR = 1.9 [1.5-2.3]); rs72907046 near FAM46A (P = 1 × 10(-9) OR = 3.2 [2.1-4.9]); and rs2525776 near SEMA3C (P = 1 × 10(-8), OR = 3.3 [2.1-5.1]). We provide evidence for genetic risk factors specifically related to PCA. We identify three candidate loci that, if replicated, may provide insights into selective vulnerability and phenotypic diversity in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity. PMID:21915269

  14. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    PubMed

    Morton, Nicholas M; Nelson, Yvonne B; Michailidou, Zoi; Di Rollo, Emma M; Ramage, Lynne; Hadoke, Patrick W F; Seckl, Jonathan R; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J; Dunbar, Donald R

    2011-01-01

    Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  15. Genetics Home Reference: obstructive sleep apnea

    MedlinePlus

    ... Association of genetic loci with sleep apnea in European Americans and African-Americans: the Candidate Gene Association Resource (CARe). PLoS One. 2012;7(11):e48836. doi: 10.1371/journal.pone.0048836. Epub 2012 Nov 14. Citation on ...

  16. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta

    PubMed Central

    Santos, Maria CLG; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio RP

    2007-01-01

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI. PMID:17266769

  17. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    PubMed

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  18. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift.

    PubMed

    Johnson, Norman A; Porter, Adam H

    2007-01-01

    Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.

  19. Mapping of four distinct BCR-related loci to chromosome region 22q11: order of BCR loci relative to chronic myelogenous leukemia and acute lymphoblastic leukemia breakpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, C.M.; Huebner, K.; Isobe, M.

    1987-10-01

    A probe derived from the 3' region of the BCR gene (breakpoint cluster region gene) detects four distinct loci in the human genome. One of the loci corresponds to the complete BCR gene, whereas the other contain a 3' segment of the gene. After HindIII cleavage of human DNA, these four loci are detected as 23-, 19-, 13-, and 9-kikobase-pair fragments, designated BCR4, BCR3, BCR2, and BCR1, respectively, with BCR1 deriving from the original complete BCR gene. All four BCR loci segregate 100% concordantly with human chromosome 22 in a rodent-human somatic cell hybrid panel and are located at chromosomemore » region 22q11.2 by chromosomal in situ hybridization. The BCR2 and BCR4 loci are amplified in leukemia cell line K562 cells, indicating that they fall within the amplification unit that includes immunoglobulin lambda light chain locus (IGL) and ABL locus on the K562 Philadelphia chromosome (Ph/sup 1/). Similarly, in mouse-human hybrids retaining a Ph/sup 1/ chromosome derived from an acute lymphoblastic leukemia-in the absence of the 9q/sup +/ and 22, only BCR2 and BCR4 loci are retained. Thus, the order of loci on chromosome 22 is centromere ..-->.. BCR2, BCR4, and IGL ..-->.. BCR1 ..-->.. BCR3 ..-->.. SIS, possibly eliminating BCR2 and BCR4 loci as candidate targets for juxtaposition to the ABL gene in the acute lymphoblastic leukemia Ph/sup 1/ chromosome.« less

  20. A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster.

    PubMed

    Lilja, Heidi E; Soro, Aino; Ylitalo, Kati; Nuotio, Ilpo; Viikari, Jorma S A; Salomaa, Veikko; Vartiainen, Erkki; Taskinen, Marja-Riitta; Peltonen, Leena; Pajukanta, Päivi

    2002-09-01

    In patients with premature coronary heart disease, the most common lipoprotein abnormality is high-density lipoprotein (HDL) deficiency. To assess the genetic background of the low HDL-cholesterol trait, we performed a candidate gene study in 25 families with low HDL, collected from the genetically isolated population of Finland. We studied 21 genes encoding essential proteins involved in the HDL metabolism by genotyping intragenic and flanking markers for these genes. We found suggestive evidence for linkage in two candidate regions: Marker D1S2844, in the apolipoprotein A-II (APOA2) region, yielded a LOD score of 2.14 and marker D11S939 flanking the apolipoprotein A-I/C-III/A-IV gene cluster (APOA1C3A4) produced a LOD score of 1.69. Interestingly, we identified potential shared haplotypes in these two regions in a subset of low HDL families. These families also contributed to the obtained positive LOD scores, whereas the rest of the families produced negative LOD scores. None of the remaining candidate regions provided any evidence for linkage. Since only a limited number of loci were tested in this candidate gene study, these LOD scores suggest significant involvement of the APOA2 gene and the APOA1C3A4 gene cluster, or loci in their immediate vicinity, in the pathogenesis of low HDL.

  1. Defining the proximal border of the Huntington disease candidate region by multipoint recombination analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skraastad, M.I.; De Rooij, K.E.; De Koning Gans, P.A.M.

    1993-06-01

    The candidate region for the Huntington disease (HD) gene has been narrowed down to a 2.2-Mb region between D4S10 and D4S98 on the short arm of chromosome 4. To map the HD gene within this candidate region 65 Dutch HD families were studied. In total 338 informative meioses were analyzed and 11 multiple informative crossovers were detected. Assuming a minimum number of recombinations and no double recombinations, the multiple informative crossovers are consistent with one specific genetic order for 12 loci: D4S10-(D4S81,D4S126)-D4S125-(D4S127,D4S95)-D4S43-(D4S115, D4S96, D4S111, D4S90, D4S141).This is in agreement with the known data derived from similar and other methods. Themore » loci between brackets could not be mapped relative to each other. In the family material, two informative three-point marker recombination events were detected in the proximal HD candidate region, which are also informative for HD. Both recombination events map the HD gene distal to D4S81 and most likely distal to D4S125, narrowing down the HD candidate region to a 1.7-Mb region between D4S125 and D4S98. 39 refs., 3 figs., 2 tabs.« less

  2. Polymorphism patterns in two tightly linked developmental genes, Idgf1 and Idgf3, of Drosophila melanogaster.

    PubMed Central

    Zurovcová, Martina; Ayala, Francisco J

    2002-01-01

    A new developmental gene family, recently identified in D. melanogaster, has been called imaginal disc growth factors (IDGF) because the proteins promote growth of cell lineages derived from imaginal discs. These are the first genes reported that encode polypeptide factors with mitotic activity in invertebrates. Characteristics such as similar arrangement of introns and exons, small size, and different cytological localization make this family an excellent candidate for evolutionary studies. We focus on the loci Idgf1 and Idgf3, two genes that possess the most distinctive features. We examine the pattern of intra- and interspecific nucleotide variation in the sequences from 20 isogenic lines of D. melanogaster and sequences from D. simulans and D. yakuba. While MK, HKA, and Tajima's tests of neutrality fail to reject a neutral model of molecular evolution, Fu and Li's test with outgroup and McDonald's test suggest that balancing selection is modulating the evolution of the Idgf1 locus. The rate of recombination between the two loci is high enough to uncouple any linkage disequilibrium arising between Idgf1 and Idgf3, despite their close physical proximity. PMID:12242232

  3. Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster

    PubMed Central

    Turner, Thomas L.; Stewart, Andrew D.; Fields, Andrew T.; Rice, William R.; Tarone, Aaron M.

    2011-01-01

    Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. PMID:21437274

  4. The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations.

    PubMed

    Betrán, E; Quezada-Díaz, J E; Ruiz, A; Santos, M; Fontdevila, A

    1995-02-01

    Chromosome polymorphism in Drosophila buzzatii is under selection but the genes responsible for the effect of the inversions of fitness are unknown. On the other hand, there is evidence for selection on several allozyme loci but the presence of paracentric inversions on the second chromosome, where most of the polymorphic loci are located, complicates the interpretation. Studies of the associations between allozymes and inversions are thus necessary to help understand the effect of selection at both the chromosomal and allozymic level. Until now this kind of information has only been available in D. buzzatii for two loci, Est-1 and Est-2, in Australian populations. Here we describe the genetic constitution of two Old World populations, Carboneras and Colera. Emphasis has been placed on the analysis of the linkage disequilibria between the second chromosome arrangements and three allozyme loci, Est-2, Pept-2 and Aldox, located on this chromosome. In addition, the recombination frequencies between the loci, and between the loci and the inversion breakpoints, have been estimated and a genetic map of the three loci has been produced. The two populations differ in allele and arrangement frequencies, as well as in the pattern of one-locus disequilibria. Est-2 and Aldox are associated with the second chromosome arrangements in both populations. On the other hand, Pept-2 is associated with the inversions in Colera but not in Carboneras. The gametic associations among the three loci are discussed taking into account the position of these loci on the chromosome map and the lack of recombination in the heterokaryotypes.

  5. Population genetics of mouse lemur vomeronasal receptors: current versus past selection and demographic inference.

    PubMed

    Hohenbrink, Philipp; Mundy, Nicholas I; Radespiel, Ute

    2017-01-21

    A major effort is underway to use population genetic approaches to identify loci involved in adaptation. One issue that has so far received limited attention is whether loci that show a phylogenetic signal of positive selection in the past also show evidence of ongoing positive selection at the population level. We address this issue using vomeronasal receptors (VRs), a diverse gene family in mammals involved in intraspecific communication and predator detection. In mouse lemurs, we previously demonstrated that both subfamilies of VRs (V1Rs and V2Rs) show a strong signal of directional selection in interspecific analyses. We predicted that ongoing sexual selection and/or co-evolution with predators may lead to current directional or balancing selection on VRs. Here, we re-sequence 17 VRs and perform a suite of selection and demographic analyses in sympatric populations of two species of mouse lemurs (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. M. ravelobensis had consistently higher genetic diversity at VRs than M. murinus. In general, we find little evidence for positive selection, with most loci evolving under purifying selection and one locus even showing evidence of functional loss in M. ravelobensis. However, a few loci in M. ravelobensis show potential evidence of positive selection. Using mismatch distributions and expansion models, we infer a more recent colonisation of the habitat by M. murinus than by M. ravelobensis, which most likely speciated in this region earlier on. These findings suggest that the analysis of VR variation is useful in inferring demographic and phylogeographic history of mouse lemurs. In conclusion, this study reveals a substantial heterogeneity over time in selection on VR loci, suggesting that VR evolution is episodic.

  6. Immune-Related Functions of the Hivep Gene Family in East African Cichlid Fishes

    PubMed Central

    Diepeveen, Eveline T.; Roth, Olivia; Salzburger, Walter

    2013-01-01

    Immune-related genes are often characterized by adaptive protein evolution. Selection on immune genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene family, tested their involvement in the immune defense, and related our results to explosive speciation and adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between immune response parameters and expression levels of three Hivep loci. This work provides the first evidence for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host–pathogen interactions within an adaptive radiation. PMID:24142922

  7. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata.

    PubMed

    Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J

    2016-01-01

    The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.

  8. An Integrative Genetics Approach to Identify Candidate Genes Regulating BMD: Combining Linkage, Gene Expression, and Association

    PubMed Central

    Farber, Charles R; van Nas, Atila; Ghazalpour, Anatole; Aten, Jason E; Doss, Sudheer; Sos, Brandon; Schadt, Eric E; Ingram-Drake, Leslie; Davis, Richard C; Horvath, Steve; Smith, Desmond J; Drake, Thomas A; Lusis, Aldons J

    2009-01-01

    Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J × C3H/HeJ (BXH) F2 mice, nine QTLs regulating femoral BMD were identified. To select candidate genes from within each QTL region, microarray gene expression profiles from individual F2 mice were used to identify 148 genes whose expression was correlated with BMD and regulated by local eQTLs. Many of the genes that were the most highly correlated with BMD have been previously shown to modulate bone mass or skeletal development. Candidates were further prioritized by determining whether their expression was predicted to underlie variation in BMD. Using network edge orienting (NEO), a causality modeling algorithm, 18 of the 148 candidates were predicted to be causally related to differences in BMD. To fine-map QTLs, markers in outbred MF1 mice were tested for association with BMD. Three chromosome 11 SNPs were identified that were associated with BMD within the Bmd11 QTL. Finally, our approach provides strong support for Wnt9a, Rasd1, or both underlying Bmd11. Integration of multiple genetic and genomic data sets can substantially improve the efficiency of QTL fine-mapping and candidate gene identification. PMID:18767929

  9. Genome-Wide Identification of CBX2 Targets: Insights in the Human Sex Development Network

    PubMed Central

    Eid, Wassim; Opitz, Lennart

    2015-01-01

    Chromobox homolog 2 (CBX2) is a chromatin modifier that plays an important role in sexual development and its disorders (disorders of sex development [DSD]), yet the exact rank and function of human CBX2 in this pathway remains unclear. Here, we performed large-scale mapping and analysis of in vivo target loci of the protein CBX2 in Sertoli-like NT-2D1 cells, using the DNA adenine methyltransferase identification technique. We identified close to 1600 direct targets for CBX2. Intriguingly, validation of selected candidate genes using qRT-PCR in cells overexpressing CBX2 or in which CBX2 has been knocked down indicated that several CBX2-responsive genes encode proteins that are involved in DSD. We further validated these effects on the candidate genes using a mutated CBX2 causing DSD in human patient. Overall, our findings suggest that CBX2 role in the sex development cascade is to stimulate the male pathway and concurrently inhibit the female pathway. These data provide fundamental insights into potential etiology of DSD. PMID:25569159

  10. Advances in QTL Mapping in Pigs

    PubMed Central

    Rothschild, Max F.; Hu, Zhi-liang; Jiang, Zhihua

    2007-01-01

    Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally, these studies continue to identify genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. A well developed QTL database called PigQTLdb is now as a valuable tool for summarizing and pinpointing in silico regions of interest to researchers. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve traits of economic performance. The long awaited sequencing efforts are also now beginning to provide sequence available for both comparative genomics and large scale single nucleotide polymorphism (SNP) association studies. While these advances are all positive, development of useful new trait families and measurement of new or underlying traits still limits future discoveries. A review of these developments is presented. PMID:17384738

  11. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs

    PubMed Central

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R.; Messer, Philipp W.

    2015-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analyzed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used, and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks. PMID:26589239

  12. Evaluating the performance of selection scans to detect selective sweeps in domestic dogs.

    PubMed

    Schlamp, Florencia; van der Made, Julian; Stambler, Rebecca; Chesebrough, Lewis; Boyko, Adam R; Messer, Philipp W

    2016-01-01

    Selective breeding of dogs has resulted in repeated artificial selection on breed-specific morphological phenotypes. A number of quantitative trait loci associated with these phenotypes have been identified in genetic mapping studies. We analysed the population genomic signatures observed around the causal mutations for 12 of these loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By measuring the population frequencies of the causal mutations in each breed, we identified those breeds in which specific mutations most likely experienced positive selection. These instances were then used as positive controls for assessing the performance of popular statistics to detect selection from population genomic data. We found that artificial selection during dog domestication has left characteristic signatures in the haplotype and nucleotide polymorphism patterns around selected loci that can be detected in the genotype data from a single population sample. However, the sensitivity and accuracy at which such signatures were detected varied widely between loci, the particular statistic used and the choice of analysis parameters. We observed examples of both hard and soft selective sweeps and detected strong selective events that removed genetic diversity almost entirely over regions >10 Mbp. Our study demonstrates the power and limitations of selection scans in populations with high levels of linkage disequilibrium due to severe founder effects and recent population bottlenecks. © 2015 John Wiley & Sons Ltd.

  13. Patterns of population differentiation and natural selection on the celiac disease background risk network.

    PubMed

    Sams, Aaron; Hawks, John

    2013-01-01

    Celiac disease is a common small intestinal inflammatory condition induced by wheat gluten and related proteins from rye and barley. Left untreated, the clinical presentation of CD can include failure to thrive, malnutrition, and distension in juveniles. The disease can additionally lead to vitamin deficiencies, anemia, and osteoporosis. Therefore, CD potentially negatively affected fitness in past populations utilizing wheat, barley, and rye. Previous analyses of CD risk variants have uncovered evidence for positive selection on some of these loci. These studies also suggest the possibility that risk for common autoimmune conditions such as CD may be the result of positive selection on immune related loci in the genome to fight infection. Under this evolutionary scenario, disease phenotypes may be a trade-off from positive selection on immunity. If this hypothesis is generally true, we can expect to find a signal of natural selection when we survey across the network of loci known to influence CD risk. This study examines the non-HLA autosomal network of gene loci associated with CD risk in Europe. We reject the null hypothesis of neutrality on this network of CD risk loci. Additionally, we can localize evidence of selection in time and space by adding information from the genome of the Tyrolean Iceman. While we can show significant differentiation between continental regions across the CD network, the pattern of evidence is not consistent with primarily recent (Holocene) selection across this network in Europe. Further localization of ancient selection on this network may illuminate the ecological pressures acting on the immune system during this critically interesting phase of our evolution.

  14. Linkage analysis of candidate genes as susceptibility loci for osteoarthritis-suggestive linkage of COL9A1 to female hip osteoarthritis.

    PubMed

    Mustafa, Z; Chapman, K; Irven, C; Carr, A J; Clipsham, K; Chitnavis, J; Sinsheimer, J S; Bloomfield, V A; McCartney, M; Cox, O; Sykes, B; Loughlin, J

    2000-03-01

    To examine 11 candidate genes as susceptibility loci for osteoarthritis (OA). A total of 481 families have been ascertained in which at least two siblings have had joint replacement surgery of the hip, or knee, or hip and knee for idiopathic OA. Each candidate gene was targeted using one or more intragenic or closely linked microsatellite marker. The linkage data were analysed unstratified and following stratification by sex and by joint replaced (hip or knee). The analyses revealed suggestive linkage of the type IX collagen gene COL9A1 (6q12-q13) to a subset of 132 families that contained affected females who were concordant for hip OA (female-hip) with a P-value of 0.00053 and logarithm of the odds (LOD) score of 2.33 [corrected P-value of 0. 0016, corrected LOD score of 1.85]. COL9A1 may therefore be a susceptibility locus for female hip OA. In addition, there was weak evidence of linkage to HLA/COL11A2 (6p21.3) in female hip OA with a corrected P-value of 0.016.

  15. A map of local adaptation in Arabidopsis thaliana.

    PubMed

    Fournier-Level, A; Korte, A; Cooper, M D; Nordborg, M; Schmitt, J; Wilczek, A M

    2011-10-07

    Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.

  16. Identification of Methylated Genes Associated with Aggressive Bladder Cancer

    PubMed Central

    Marsit, Carmen J.; Houseman, E. Andres; Christensen, Brock C.; Gagne, Luc; Wrensch, Margaret R.; Nelson, Heather H.; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K.; Andrew, Angeline S.; Schned, Alan R.; Karagas, Margaret R.; Kelsey, Karl T.

    2010-01-01

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment. PMID:20808801

  17. Identification of methylated genes associated with aggressive bladder cancer.

    PubMed

    Marsit, Carmen J; Houseman, E Andres; Christensen, Brock C; Gagne, Luc; Wrensch, Margaret R; Nelson, Heather H; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K; Andrew, Angeline S; Schned, Alan R; Karagas, Margaret R; Kelsey, Karl T

    2010-08-23

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

  18. A powerful approach reveals numerous expression quantitative trait haplotypes in multiple tissues.

    PubMed

    Ying, Dingge; Li, Mulin Jun; Sham, Pak Chung; Li, Miaoxin

    2018-04-26

    Recently many studies showed single nucleotide polymorphisms (SNPs) affect gene expression and contribute to development of complex traits/diseases in a tissue context-dependent manner. However, little is known about haplotype's influence on gene expression and complex traits, which reflects the interaction effect between SNPs. In the present study, we firstly proposed a regulatory region guided eQTL haplotype association analysis approach, and then systematically investigate the expression quantitative trait loci (eQTL) haplotypes in 20 different tissues by the approach. The approach has a powerful design of reducing computational burden by the utilization of regulatory predictions for candidate SNP selection and multiple testing corrections on non-independent haplotypes. The application results in multiple tissues showed that haplotype-based eQTLs not only increased the number of eQTL genes in a tissue specific manner, but were also enriched in loci that associated with complex traits in a tissue-matched manner. In addition, we found that tag SNPs of eQTL haplotypes from whole blood were selectively enriched in certain combination of regulatory elements (e.g. promoters and enhancers) according to predicted chromatin states. In summary, this eQTL haplotype detection approach, together with the application results, shed insights into synergistic effect of sequence variants on gene expression and their susceptibility to complex diseases. The executable application "eHaplo" is implemented in Java and is publicly available at http://grass.cgs.hku.hk/limx/ehaplo/. jonsonfox@gmail.com, limiaoxin@mail.sysu.edu.cn. Supplementary data are available at Bioinformatics online.

  19. Maternal inheritance of mitochondria: multipolarity, multiallelism and hierarchical transmission of mitochondrial DNA in the true slime mold Physarum polycephalum.

    PubMed

    Moriyama, Yohsuke; Kawano, Shigeyuki

    2010-03-01

    Direct evidence of digestion of paternal mitochondrial DNA (mtDNA) has been found in the true slime mold Physarum polycephalum. This is the first report on the selective digestion of mtDNA inside the zygote, and is striking evidence for the mechanism of maternal inheritance of mitochondria. Moreover, two mitochondrial nuclease activities were detected in this organism as-candidates for the nucleases responsible for selective digestion of mtDNA. In the true slime mold, there is an additional-feature of the uniparental inheritance of mitochondria.Although mitochondria are believed to be inherited from the maternal lineage in nearly all eukaryotes, the mating types of the true slime mold P. polycephalum is not restricted to two: there are three mating loci--matA, matB,and matC--and these loci have 16, 15, and 3 alleles,-respectively. Interestingly, the transmission patterns of mtDNA are determined by the matA locus, in a hierarchical-fashion (matA hierarchy) as follows: matA7[matA2[matA11[matA12[matA15/matA16[matA1[matA6.The strain possessing the higher status of matA would be the mtDNA donor in crosses. Furthermore, we have found that some crosses showed biparental inheritance of mitochondria.This review describes the phenomenon of hierarchical transmission of mtDNA in true slime molds, and discusses the presumed molecular mechanism of maternal and biparental inheritance.

  20. The evolution of sex ratio differences and inflorescence architectures in Begonia (Begoniaceae).

    PubMed

    Twyford, Alex D; Ennos, Richard A; White, Chris D; Ali, Mobina Shaukat; Kidner, Catherine A

    2014-02-01

    A major benefit conferred by monoecy is the ability to alter floral sex ratio in response to selection. In monoecious species that produce flowers of a given sex at set positions on the inflorescence, floral sex ratio may be related to inflorescence architecture. We studied the loci underlying differences in inflorescence architecture between two monoecious Begonia species and related this to floral sex ratios. We performed trait comparisons and quantitative trait locus (QTL) mapping in a segregating backcross population between Central American Begonia plebeja and B. conchifolia. We focused on traits related to inflorescence architecture, sex ratios, and other reproductive traits. The inflorescence branching pattern of B. conchifolia was more asymmetric than B. plebeja, which in turn affects the floral sex ratio. Colocalizing QTLs of moderate effect influenced both the number of male flowers and the fate decisions of axillary meristems, demonstrating the close link between inflorescence architecture and sex ratio. Additional QTLs were found for stamen number (30% variance explained, VE) and pollen sterility (12.3% VE). One way in which Begonia species develop different floral sex ratios is through modifications of their inflorescence architecture. The potential pleiotropic action of QTL on inflorescence branching and floral sex ratios may have major implications for trait evolution and responses to selection. The presence of a single QTL of large effect on stamen number may allow rapid divergence for this key floral trait. We propose candidate loci for stamen number and inflorescence branching for future characterization.

  1. Genome-wide association study of acute post-surgical pain in humans

    PubMed Central

    Kim, Hyungsuk; Ramsay, Edward; Lee, Hyewon; Wahl, Sharon; Dionne, Raymond A

    2009-01-01

    Aims Testing a relatively small genomic region with a few hundred SNPs provides limited information. Genome-wide association studies (GWAS) provide an opportunity to overcome the limitation of candidate gene association studies. Here, we report the results of a GWAS for the responses to an NSAID analgesic. Materials & methods European Americans (60 females and 52 males) undergoing oral surgery were genotyped with Affymetrix 500K SNP assay. Additional SNP genotyping was performed from the gene in linkage disequilibrium with the candidate SNP revealed by the GWAS. Results GWAS revealed a candidate SNP (rs2562456) associated with analgesic onset, which is in linkage disequilibrium with a gene encoding a zinc finger protein. Additional SNP genotyping of ZNF429 confirmed the association with analgesic onset in humans (p = 1.8 × 10−10, degrees of freedom = 103, F = 28.3). We also found candidate loci for the maximum post-operative pain rating (rs17122021, p = 6.9 × 10−7) and post-operative pain onset time (rs6693882, p = 2.1 × 10−6), however, correcting for multiple comparisons did not sustain these genetic associations. Conclusion GWAS for acute clinical pain followed by additional SNP genotyping of a neighboring gene suggests that genetic variations in or near the loci encoding DNA binding proteins play a role in the individual variations in responses to analgesic drugs. PMID:19207018

  2. Inference on the Strength of Balancing Selection for Epistatically Interacting Loci

    PubMed Central

    Buzbas, Erkan Ozge; Joyce, Paul; Rosenberg, Noah A.

    2011-01-01

    Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes rely on the assumption that there are no epistatic interactions between loci. Complex systems in which balancing selection is prevalent, such as sets of human immune system genes, are known to contain components that interact epistatically. Therefore, current methods may not produce reliable inference on the strength of selection at these loci. In this paper, we address this problem by presenting statistical methods that can account for epistatic interactions in making inference about balancing selection. A theoretical result due to Fearnhead (2006) is used to build a multi-locus Wright-Fisher model of balancing selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions are examined. The joint posterior distribution of the selection and mutation parameters is sampled by Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As a component of the inference process, an algorithm to generate multi-locus allele frequencies under balancing selection models with epistasis is also presented. Recent evidence on interactions among a set of human immune system genes is introduced as a motivating biological system for the epistatic model, and data on these genes are used to demonstrate the methods. PMID:21277883

  3. Pleiotropic Stabilizing Selection Limits the Number of Polymorphic Loci to at Most the Number of Characters

    PubMed Central

    Hastings, A.; Hom, C. L.

    1989-01-01

    We demonstrate that, in a model incorporating weak Gaussian stabilizing selection on n additively determined characters, at most n loci are polymorphic at a stable equilibrium. The number of characters is defined to be the number of independent components in the Gaussian selection scheme. We also assume linkage equilibrium, and that either the number of loci is large enough that the phenotypic distribution in the population can be approximated as multivariate Gaussian or that selection is weak enough that the mean fitness of the population can be approximated using only the mean and the variance of the characters in the population. Our results appear to rule out antagonistic pleiotropy without epistasis as a major force in maintaining additive genetic variation in a uniform environment. However, they are consistent with the maintenance of variability by genotype-environment interaction if a trait in different environments corresponds to different characters and the number of different environments exceeds the number of polymorphic loci that affect the trait. PMID:2767424

  4. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii.

    PubMed

    Im, Chak Han; Park, Young-Hoon; Hammel, Kenneth E; Park, Bokyung; Kwon, Soon Wook; Ryu, Hojin; Ryu, Jae-San

    2016-07-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua) - Conserved synteny between fish monolobal and tetrapod bilobal transferrin loci

    PubMed Central

    2011-01-01

    Background The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. Results The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. Conclusions The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in trans-Atlantic cod populations. PMID:21612617

  6. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua)--conserved synteny between fish monolobal and tetrapod bilobal transferrin loci.

    PubMed

    Andersen, Øivind; De Rosa, Maria Cristina; Pirolli, Davide; Tooming-Klunderud, Ave; Petersen, Petra E; André, Carl

    2011-05-25

    The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in trans-Atlantic cod populations.

  7. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    PubMed

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Singh, Yoginder Pal; Kaul, Nabodita; Behura, Anita; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K; Chainy, Gagan B N; Bhanwer, Amarjit S; Sharma, Swarkar; Bamezai, Rameshwar N K

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E-04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  8. Replication of Type 2 Diabetes Candidate Genes Variations in Three Geographically Unrelated Indian Population Groups

    PubMed Central

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K.; Chainy, Gagan B. N.; Bhanwer, Amarjit S.; Sharma, Swarkar; Bamezai, Rameshwar N. K.

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D. PMID:23527042

  9. Derived variants at six genes explain nearly half of size reduction in dog breeds

    PubMed Central

    Rimbault, Maud; Beale, Holly C.; Schoenebeck, Jeffrey J.; Hoopes, Barbara C.; Allen, Jeremy J.; Kilroy-Glynn, Paul; Wayne, Robert K.; Sutter, Nathan B.; Ostrander, Elaine A.

    2013-01-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%–52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds. PMID:24026177

  10. High performance computation of landscape genomic models including local indicators of spatial association.

    PubMed

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  11. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.).

    PubMed

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F(2) (RC-F(2)) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2) populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition.

  12. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market

    PubMed Central

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication. PMID:27128309

  13. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    PubMed

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  14. Identification of contemporary selection signatures using composite log likelihood and their associations with marbling score in Korean cattle.

    PubMed

    Ryu, Jihye; Lee, Chaeyoung

    2014-12-01

    Positive selection not only increases beneficial allele frequency but also causes augmentation of allele frequencies of sequence variants in close proximity. Signals for positive selection were detected by the statistical differences in subsequent allele frequencies. To identify selection signatures in Korean cattle, we applied a composite log-likelihood (CLL)-based method, which calculates a composite likelihood of the allelic frequencies observed across sliding windows of five adjacent loci and compares the value with the critical statistic estimated by 50,000 permutations. Data for a total of 11,799 nucleotide polymorphisms were used with 71 Korean cattle and 209 foreign beef cattle. As a result, 147 signals were identified for Korean cattle based on CLL estimates (P < 0.01). The signals might be candidate genetic factors for meat quality by which the Korean cattle have been selected. Further genetic association analysis with 41 intragenic variants in the selection signatures with the greatest CLL for each chromosome revealed that marbling score was associated with five variants. Intensive association studies with all the selection signatures identified in this study are required to exclude signals associated with other phenotypes or signals falsely detected and thus to identify genetic markers for meat quality. © 2014 Stichting International Foundation for Animal Genetics.

  15. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean.

    PubMed

    Zhong, Chao; Sun, Suli; Li, Yinping; Duan, Canxing; Zhu, Zhendong

    2018-03-01

    A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F 2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

  16. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat.

    PubMed

    Bertin, Angeline; Gouin, Nicolas; Baumel, Alex; Gianoli, Ernesto; Serratosa, Juan; Osorio, Rodomiro; Manel, Stephanie

    2017-01-01

    Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships. © 2016 John Wiley & Sons Ltd.

  17. Resolving the Conflict Between Associative Overdominance and Background Selection

    PubMed Central

    Zhao, Lei; Charlesworth, Brian

    2016-01-01

    In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations, selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection). We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the product of twice the effective population size and the selection coefficient, is of order 1. With S >> 1, background selection always causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability. PMID:27182952

  18. Genome Wide Methylome Alterations in Lung Cancer.

    PubMed

    Mullapudi, Nandita; Ye, Bin; Suzuki, Masako; Fazzari, Melissa; Han, Weiguo; Shi, Miao K; Marquardt, Gaby; Lin, Juan; Wang, Tao; Keller, Steven; Zhu, Changcheng; Locker, Joseph D; Spivack, Simon D

    2015-01-01

    Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.

  19. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.

    PubMed

    Morrissey, Catherine; Grieve, Ian C; Heinig, Matthias; Atanur, Santosh; Petretto, Enrico; Pravenec, Michal; Hubner, Norbert; Aitman, Timothy J

    2011-11-07

    The spontaneously hypertensive rat (SHR) is a widely used rodent model of hypertension and metabolic syndrome. Previously we identified thousands of cis-regulated expression quantitative trait loci (eQTLs) across multiple tissues using a panel of rat recombinant inbred (RI) strains derived from Brown Norway and SHR progenitors. These cis-eQTLs represent potential susceptibility loci underlying physiological and pathophysiological traits manifested in SHR. We have prioritized 60 cis-eQTLs and confirmed differential expression between the parental strains by quantitative PCR in 43 (72%) of the eQTL transcripts. Quantitative trait transcript (QTT) analysis in the RI strains showed highly significant correlation between cis-eQTL transcript abundance and clinically relevant traits such as systolic blood pressure and blood glucose, with the physical location of a subset of the cis-eQTLs colocalizing with "physiological" QTLs (pQTLs) for these same traits. These colocalizing correlated cis-eQTLs (c3-eQTLs) are highly attractive as primary susceptibility loci for the colocalizing pQTLs. Furthermore, sequence analysis of the c3-eQTL genes identified single nucleotide polymorphisms (SNPs) that are predicted to affect transcription factor binding affinity, splicing and protein function. These SNPs, which potentially alter transcript abundance and stability, represent strong candidate factors underlying not just eQTL expression phenotypes, but also the correlated metabolic and physiological traits. In conclusion, by integration of genomic sequence, eQTL and QTT datasets we have identified several genes that are strong positional candidates for pathophysiological traits observed in the SHR strain. These findings provide a basis for the functional testing and ultimate elucidation of the molecular basis of these metabolic and cardiovascular phenotypes.

  20. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice.

    PubMed

    Stewart, Taryn P; Kim, Hyoung Yon; Saxton, Arnold M; Kim, Jung Han

    2010-12-19

    Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in Apoa2 gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs.

  1. Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice

    PubMed Central

    2010-01-01

    Background Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. Results In order to determine the genetic factors that contribute to these T2D related characteristics in TH mice, we interbred TH mice with C57BL/6J (B6) mice. The parental, F1, and F2 mice were phenotyped at 8, 12, 16, 20, and 24 weeks of age for 4-hour fasting plasma triglyceride, cholesterol, insulin, and glucose levels and body, fat pad and carcass weights. The F2 mice were genotyped genome-wide and used for quantitative trait locus (QTL) mapping. We also applied a genetical genomic approach using a subset of the F2 mice to seek candidate genes underlying the QTLs. Major QTLs were detected on chromosomes (Chrs) 1, 11, 4, and 8 for hypertriglyceridemia, 1 and 3 for hypercholesterolemia, 4 for hyperglycemia, 11 and 1 for body weight, 1 for fat pad weight, and 11 and 14 for carcass weight. Most alleles, except for Chr 3 and 14 QTLs, increased phenotypic values when contributed by the TH strain. Fourteen pairs of interacting loci were detected, none of which overlapped the major QTLs. The QTL interval linked to hypercholesterolemia and hypertriglyceridemia on distal Chr 1 contains Apoa2 gene. Sequencing analysis revealed polymorphisms of Apoa2 in TH mice, suggesting Apoa2 as the candidate gene for the hyperlipidemia QTL. Gene expression analysis added novel information and aided in selection of candidates underlying the QTLs. Conclusions We identified several genetic loci that affect the quantitative variations of plasma lipid and glucose levels and obesity traits in a TH × B6 intercross. Polymorphisms in Apoa2 gene are suggested to be responsible for the Chr 1 QTL linked to hypercholesterolemia and hypertriglyceridemia. Further, genetical genomic analysis led to potential candidate genes for the QTLs. PMID:21167066

  2. Contrasting modes and tempos of venom expression evolution in two snake species.

    PubMed

    Margres, Mark J; McGivern, James J; Seavy, Margaret; Wray, Kenneth P; Facente, Jack; Rokyta, Darin R

    2015-01-01

    Selection is predicted to drive diversification within species and lead to local adaptation, but understanding the mechanistic details underlying this process and thus the genetic basis of adaptive evolution requires the mapping of genotype to phenotype. Venom is complex and involves many genes, but the specialization of the venom gland toward toxin production allows specific transcripts to be correlated with specific toxic proteins, establishing a direct link from genotype to phenotype. To determine the extent of expression variation and identify the processes driving patterns of phenotypic diversity, we constructed genotype-phenotype maps and compared range-wide toxin-protein expression variation for two species of snake with nearly identical ranges: the eastern diamondback rattlesnake (Crotalus adamanteus) and the eastern coral snake (Micrurus fulvius). We detected significant expression variation in C. adamanteus, identified the specific loci associated with population differentiation, and found that loci expressed at all levels contributed to this divergence. Contrary to expectations, we found no expression variation in M. fulvius, suggesting that M. fulvius populations are not locally adapted. Our results not only linked expression variation at specific loci to divergence in a polygenic, complex trait but also have extensive conservation and biomedical implications. C. adamanteus is currently a candidate for federal listing under the Endangered Species Act, and the loss of any major population would result in the irrevocable loss of a unique venom phenotype. The lack of variation in M. fulvius has significant biomedical application because our data will assist in the development of effective antivenom for this species. Copyright © 2015 by the Genetics Society of America.

  3. Association Mapping Reveals Genetic Loci Associated with Important Agronomic Traits in Lentinula edodes, Shiitake Mushroom

    PubMed Central

    Li, Chuang; Gong, Wenbing; Zhang, Lin; Yang, Zhiquan; Nong, Wenyan; Bian, Yinbing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2017-01-01

    Association mapping is a robust approach for the detection of quantitative trait loci (QTLs). Here, by genotyping 297 genome-wide molecular markers of 89 Lentinula edodes cultivars in China, the genetic diversity, population structure and genetic loci associated with 11 agronomic traits were examined. A total of 873 alleles were detected in the tested strains with a mean of 2.939 alleles per locus, and the Shannon's information index was 0.734. Population structure analysis revealed two robustly differentiated groups among the Chinese L. edodes cultivars (FST = 0.247). Using the mixed linear model, a total of 43 markers were detected to be significantly associated with four traits. The number of markers associated with traits ranged from 9 to 26, and the phenotypic variations explained by each marker varied from 12.07% to 31.32%. Apart from five previously reported markers, the remaining 38 markers were newly reported here. Twenty-one markers were identified as simultaneously linked to two to four traits, and five markers were associated with the same traits in cultivation tests performed in two consecutive years. The 43 traits-associated markers were related to 97 genes, and 24 of them were related to 10 traits-associated markers detected in both years or identified previously, 13 of which had a >2-fold expression change between the mycelium and primordium stages. Our study has provided candidate markers for marker-assisted selection (MAS) and useful clues for understanding the genetic architecture of agronomic traits in the shiitake mushroom. PMID:28261189

  4. Genomewide investigation of adaptation to harmful algal blooms in common bottlenose dolphins (Tursiops truncatus).

    PubMed

    Cammen, Kristina M; Schultz, Thomas F; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2015-09-01

    Harmful algal blooms (HABs), which can be lethal in marine species and cause illness in humans, are increasing worldwide. In the Gulf of Mexico, HABs of Karenia brevis produce neurotoxic brevetoxins that cause large-scale marine mortality events. The long history of such blooms, combined with the potentially severe effects of exposure, may have produced a strong selective pressure for evolved resistance. Advances in next-generation sequencing, in particular genotyping-by-sequencing, greatly enable the genomic study of such adaptation in natural populations. We used restriction site-associated DNA (RAD) sequencing to investigate brevetoxicosis resistance in common bottlenose dolphins (Tursiops truncatus). To improve our understanding of the epidemiology and aetiology of brevetoxicosis and the potential for evolved resistance in an upper trophic level predator, we sequenced pools of genomic DNA from dolphins sampled from both coastal and estuarine populations in Florida and during multiple HAB-associated mortality events. We sequenced 129 594 RAD loci and analysed 7431 single nucleotide polymorphisms (SNPs). The allele frequencies of many of these polymorphic loci differed significantly between live and dead dolphins. Some loci associated with survival showed patterns suggesting a common genetic-based mechanism of resistance to brevetoxins in bottlenose dolphins along the Gulf coast of Florida, but others suggested regionally specific mechanisms of resistance or reflected differences among HABs. We identified candidate genes that may be the evolutionary target for brevetoxin resistance by searching the dolphin genome for genes adjacent to survival-associated SNPs. © 2015 John Wiley & Sons Ltd.

  5. Population genetic data of the NGM SElect STR loci in Chinese Han population from Zhejiang region, China.

    PubMed

    Zhou, Anju; Wu, Weiwei; Liu, Qiuling; Wu, Yeda; Lu, Dejian

    2013-03-01

    Genetic variations of the 17 NGM SElect STR loci in Chinese Han samples from the Zhejiang region were analyzed. The results show that the NGM SElect is a highly genetic informative system in Zhejiang Han, and this population shows quite different genetic data from other major populations in the world with the exception of the Fujian Han.

  6. Genome-wide association analysis identifies three new breast cancer susceptibility loci.

    PubMed

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; dos Santos Silva, Isabel; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans B L; Fasching, Peter A; Lux, Michael P; Beckmann, Matthias W; Ekici, Arif B; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Alonso, M Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V; Antonenkova, Natalia N; Rogov, Yuri I; Karstens, Johann H; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnaes, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J; Tollenaar, Rob A E M; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J; Hollestelle, Antoinette; Oldenburg, Rogier A; van den Ouweland, Ans M W; Cox, Angela; Reed, Malcolm W R; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A J; Chenevix-Trench, Georgia; Pharoah, Paul D P; Lathrop, Mark; Dunning, Alison M; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2012-01-22

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.

  7. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    PubMed Central

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki; Turnbull, Clare; Schmidt, Marjanka K; Dicks, Ed; Dennis, Joe; Wang, Qin; Humphreys, Manjeet K; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Maranian, Melanie; Ahmed, Shahana; Driver, Kristy; Johnson, Nichola; Orr, Nicholas; Silva, Isabel dos Santos; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Uitterlinden, Andre G.; Rivadeneira, Fernando; Hall, Per; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Nevanlinna, Heli; Aittomäki, Kristiina; Blomqvist, Carl; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Flesch-Janys, Dieter; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Hopper, John L; Apicella, Carmel; Park, Daniel J; Southey, Melissa; Hunter, David J; Chanock, Stephen J; Broeks, Annegien; Verhoef, Senno; Hogervorst, Frans BL; Fasching, Peter A.; Lux, Michael P.; Beckmann, Matthias W.; Ekici, Arif B.; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Cordina-Duverger, Emilie; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L.; Alonso, M. Rosario; González-Neira, Anna; Benítez, Javier; Anton-Culver, Hoda; Ziogas, Argyrios; Bernstein, Leslie; Dur, Christina Clarke; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Justenhoven, Christina; Brauch, Hiltrud; Brüning, Thomas; Wang-Gohrke, Shan; Eilber, Ursula; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Rogov, Yuri I.; Karstens, Johann H.; Bermisheva, Marina; Prokofieva, Darya; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Lambrechts, Diether; Yesilyurt, Betul T.; Floris, Giuseppe; Leunen, Karin; Manoukian, Siranoush; Bonanni, Bernardo; Fortuzzi, Stefano; Peterlongo, Paolo; Couch, Fergus J; Wang, Xianshu; Stevens, Kristen; Lee, Adam; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; McLean, Catriona; Alnæs, Grethe Grenaker; Kristensen, Vessela; Børrensen-Dale, Anne-Lise; John, Esther M.; Miron, Alexander; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; van Asperen, Christie J.; Tollenaar, Rob A.E.M.; Seynaeve, Caroline; Figueroa, Jonine D; Garcia-Closas, Montserrat; Brinton, Louise; Lissowska, Jolanta; Hooning, Maartje J.; Hollestelle, Antoinette; Oldenburg, Rogier A.; van den Ouweland, Ans M.W.; Cox, Angela; Reed, Malcolm WR; Shah, Mitul; Jakubowska, Ania; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Jones, Michael; Schoemaker, Minouk; Ashworth, Alan; Swerdlow, Anthony; Beesley, Jonathan; Chen, Xiaoqing; Muir, Kenneth R; Lophatananon, Artitaya; Rattanamongkongul, Suthee; Chaiwerawattana, Arkom; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Shen, Chen-Yang; Yu, Jyh-Cherng; Wu, Pei-Ei; Hsiung, Chia-Ni; Perkins, Annie; Swann, Ruth; Velentzis, Louiza; Eccles, Diana M; Tapper, Will J; Gerty, Susan M; Graham, Nikki J; Ponder, Bruce A. J.; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Lathrop, Mark; Dunning, Alison M.; Rahman, Nazneen; Peto, Julian; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ~ 8% of the heritability of the disease. We followed up 72 promising associations from two independent Genome Wide Association Studies (GWAS) in ~70,000 cases and ~68,000 controls from 41 case-control studies and nine breast cancer GWAS. We identified three new breast cancer risk loci on 12p11 (rs10771399; P=2.7 × 10−35), 12q24 (rs1292011; P=4.3×10−19) and 21q21 (rs2823093; P=1.1×10−12). SNP rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) plays a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, while NRIP1 (21q21) encodes an ER co-factor and has a role in the regulation of breast cancer cell growth. PMID:22267197

  8. Systematic cloning of human minisatellites from ordered array charomid libraries.

    PubMed

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  9. A set of plastid loci for use in multiplex fragment length genotyping for intraspecific variation in Pinus (Pinaceae)1

    PubMed Central

    Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann

    2014-01-01

    • Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625

  10. Accounting for selection and correlation in the analysis of two-stage genome-wide association studies.

    PubMed

    Robertson, David S; Prevost, A Toby; Bowden, Jack

    2016-10-01

    The problem of selection bias has long been recognized in the analysis of two-stage trials, where promising candidates are selected in stage 1 for confirmatory analysis in stage 2. To efficiently correct for bias, uniformly minimum variance conditionally unbiased estimators (UMVCUEs) have been proposed for a wide variety of trial settings, but where the population parameter estimates are assumed to be independent. We relax this assumption and derive the UMVCUE in the multivariate normal setting with an arbitrary known covariance structure. One area of application is the estimation of odds ratios (ORs) when combining a genome-wide scan with a replication study. Our framework explicitly accounts for correlated single nucleotide polymorphisms, as might occur due to linkage disequilibrium. We illustrate our approach on the measurement of the association between 11 genetic variants and the risk of Crohn's disease, as reported in Parkes and others (2007. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Gen. 39: (7), 830-832.), and show that the estimated ORs can vary substantially if both selection and correlation are taken into account. © The Author 2016. Published by Oxford University Press.

  11. Trans-ethnic fine mapping identifies a novel independent locus at the 3' end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population.

    PubMed

    Kuo, Jane Z; Sheu, Wayne Huey-Herng; Assimes, Themistocles L; Hung, Yi-Jen; Absher, Devin; Chiu, Yen-Feng; Mak, Jordan; Wang, Jun-Sing; Kwon, Soonil; Hsu, Chih-Cheng; Goodarzi, Mark O; Lee, I-Te; Knowles, Joshua W; Miller, Brittany E; Lee, Wen-Jane; Juang, Jyh-Ming J; Wang, Tzung-Dau; Guo, Xiuqing; Taylor, Kent D; Chuang, Lee-Ming; Hsiung, Chao A; Quertermous, Thomas; Rotter, Jerome I; Chen, Yii-Der I

    2013-12-01

    Candidate gene and genome-wide association studies have identified ∼60 susceptibility loci for type 2 diabetes. A majority of these loci have been discovered and tested only in European populations. The aim of this study was to assess the presence and extent of trans-ethnic effects of these loci in an East Asian population. A total of 9,335 unrelated Chinese Han individuals, including 4,535 with type 2 diabetes and 4,800 non-diabetic ethnically matched controls, were genotyped using the Illumina 200K Metabochip. We tested 50 established loci for type 2 diabetes and related traits (fasting glucose, fasting insulin, 2 h glucose). Disease association with the additive model of inheritance was analysed with logistic regression. We found that 14 loci significantly transferred to the Chinese population, with two loci (p = 5.7 × 10(-12) for KCNQ1; p = 5.0 × 10(-8) for CDKN2A/B-CDKN2BAS) reaching independent genome-wide statistical significance. Five of these 14 loci had similar lead single-nucleotide polymorphisms (SNPs) as were found in the European studies while the other nine were different. Further stepwise conditional analysis identified a total of seven secondary signals and an independent novel locus at the 3' end of CDKAL1. These results suggest that many loci associated with type 2 diabetes are commonly shared between European and Chinese populations. Identification of population-specific SNPs may increase our understanding of the genetic architecture underlying type 2 diabetes in different ethnic populations.

  12. A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure.

    PubMed

    Sung, Yun J; Winkler, Thomas W; de Las Fuentes, Lisa; Bentley, Amy R; Brown, Michael R; Kraja, Aldi T; Schwander, Karen; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Lu, Yingchang; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K; Li, Changwei; Feitosa, Mary F; Kilpeläinen, Tuomas O; Richard, Melissa A; Noordam, Raymond; Aslibekyan, Stella; Aschard, Hugues; Bartz, Traci M; Dorajoo, Rajkumar; Liu, Yongmei; Manning, Alisa K; Rankinen, Tuomo; Smith, Albert Vernon; Tajuddin, Salman M; Tayo, Bamidele O; Warren, Helen R; Zhao, Wei; Zhou, Yanhua; Matoba, Nana; Sofer, Tamar; Alver, Maris; Amini, Marzyeh; Boissel, Mathilde; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gandin, Ilaria; Gao, Chuan; Giulianini, Franco; Goel, Anuj; Harris, Sarah E; Hartwig, Fernando Pires; Horimoto, Andrea R V R; Hsu, Fang-Chi; Jackson, Anne U; Kähönen, Mika; Kasturiratne, Anuradhani; Kühnel, Brigitte; Leander, Karin; Lee, Wen-Jane; Lin, Keng-Hung; 'an Luan, Jian; McKenzie, Colin A; Meian, He; Nelson, Christopher P; Rauramaa, Rainer; Schupf, Nicole; Scott, Robert A; Sheu, Wayne H H; Stančáková, Alena; Takeuchi, Fumihiko; van der Most, Peter J; Varga, Tibor V; Wang, Heming; Wang, Yajuan; Ware, Erin B; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Alfred, Tamuno; Amin, Najaf; Arking, Dan; Aung, Tin; Barr, R Graham; Bielak, Lawrence F; Boerwinkle, Eric; Bottinger, Erwin P; Braund, Peter S; Brody, Jennifer A; Broeckel, Ulrich; Cabrera, Claudia P; Cade, Brian; Caizheng, Yu; Campbell, Archie; Canouil, Mickaël; Chakravarti, Aravinda; Chauhan, Ganesh; Christensen, Kaare; Cocca, Massimiliano; Collins, Francis S; Connell, John M; de Mutsert, Renée; de Silva, H Janaka; Debette, Stephanie; Dörr, Marcus; Duan, Qing; Eaton, Charles B; Ehret, Georg; Evangelou, Evangelos; Faul, Jessica D; Fisher, Virginia A; Forouhi, Nita G; Franco, Oscar H; Friedlander, Yechiel; Gao, He; Gigante, Bruna; Graff, Misa; Gu, C Charles; Gu, Dongfeng; Gupta, Preeti; Hagenaars, Saskia P; Harris, Tamara B; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Hofman, Albert; Howard, Barbara V; Hunt, Steven; Irvin, Marguerite R; Jia, Yucheng; Joehanes, Roby; Justice, Anne E; Katsuya, Tomohiro; Kaufman, Joel; Kerrison, Nicola D; Khor, Chiea Chuen; Koh, Woon-Puay; Koistinen, Heikki A; Komulainen, Pirjo; Kooperberg, Charles; Krieger, Jose E; Kubo, Michiaki; Kuusisto, Johanna; Langefeld, Carl D; Langenberg, Claudia; Launer, Lenore J; Lehne, Benjamin; Lewis, Cora E; Li, Yize; Lim, Sing Hui; Lin, Shiow; Liu, Ching-Ti; Liu, Jianjun; Liu, Jingmin; Liu, Kiang; Liu, Yeheng; Loh, Marie; Lohman, Kurt K; Long, Jirong; Louie, Tin; Mägi, Reedik; Mahajan, Anubha; Meitinger, Thomas; Metspalu, Andres; Milani, Lili; Momozawa, Yukihide; Morris, Andrew P; Mosley, Thomas H; Munson, Peter; Murray, Alison D; Nalls, Mike A; Nasri, Ubaydah; Norris, Jill M; North, Kari; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R; Palmer, Nicholette D; Pankow, James S; Pedersen, Nancy L; Peters, Annette; Peyser, Patricia A; Polasek, Ozren; Raitakari, Olli T; Renström, Frida; Rice, Treva K; Ridker, Paul M; Robino, Antonietta; Robinson, Jennifer G; Rose, Lynda M; Rudan, Igor; Sabanayagam, Charumathi; Salako, Babatunde L; Sandow, Kevin; Schmidt, Carsten O; Schreiner, Pamela J; Scott, William R; Seshadri, Sudha; Sever, Peter; Sitlani, Colleen M; Smith, Jennifer A; Snieder, Harold; Starr, John M; Strauch, Konstantin; Tang, Hua; Taylor, Kent D; Teo, Yik Ying; Tham, Yih Chung; Uitterlinden, André G; Waldenberger, Melanie; Wang, Lihua; Wang, Ya X; Wei, Wen Bin; Williams, Christine; Wilson, Gregory; Wojczynski, Mary K; Yao, Jie; Yuan, Jian-Min; Zonderman, Alan B; Becker, Diane M; Boehnke, Michael; Bowden, Donald W; Chambers, John C; Chen, Yii-Der Ida; de Faire, Ulf; Deary, Ian J; Esko, Tõnu; Farrall, Martin; Forrester, Terrence; Franks, Paul W; Freedman, Barry I; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Horta, Bernardo Lessa; Hung, Yi-Jen; Jonas, Jost B; Kato, Norihiro; Kooner, Jaspal S; Laakso, Markku; Lehtimäki, Terho; Liang, Kae-Woei; Magnusson, Patrik K E; Newman, Anne B; Oldehinkel, Albertine J; Pereira, Alexandre C; Redline, Susan; Rettig, Rainer; Samani, Nilesh J; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E; Wareham, Nicholas J; Watkins, Hugh; Weir, David R; Wickremasinghe, Ananda R; Wu, Tangchun; Zheng, Wei; Kamatani, Yoichiro; Laurie, Cathy C; Bouchard, Claude; Cooper, Richard S; Evans, Michele K; Gudnason, Vilmundur; Kardia, Sharon L R; Kritchevsky, Stephen B; Levy, Daniel; O'Connell, Jeff R; Psaty, Bruce M; van Dam, Rob M; Sims, Mario; Arnett, Donna K; Mook-Kanamori, Dennis O; Kelly, Tanika N; Fox, Ervin R; Hayward, Caroline; Fornage, Myriam; Rotimi, Charles N; Province, Michael A; van Duijn, Cornelia M; Tai, E Shyong; Wong, Tien Yin; Loos, Ruth J F; Reiner, Alex P; Rotter, Jerome I; Zhu, Xiaofeng; Bierut, Laura J; Gauderman, W James; Caulfield, Mark J; Elliott, Paul; Rice, Kenneth; Munroe, Patricia B; Morrison, Alanna C; Cupples, L Adrienne; Rao, Dabeeru C; Chasman, Daniel I

    2018-03-01

    Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10 -8 ) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10 -8 ). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2). Copyright © 2018 American Society of Human Genetics. All rights reserved.

  13. The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences

    PubMed Central

    Zhao, Yong Mei; Golden, Aaron; Mar, Jessica C.; Einstein, Francine H.; Greally, John M.

    2014-01-01

    The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure. PMID:25327398

  14. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  15. The Usher syndrome in the Lebanese population and further refinement of the USH2A candidate region.

    PubMed

    Saouda, M; Mansour, A; Bou Moglabey, Y; El Zir, E; Mustapha, M; Chaib, H; Nehmé, A; Mégarbané, A; Loiselet, J; Petit, C; Slim, R

    1998-08-01

    Usher syndrome (USH) is an autosomal-recessive disease characterized by neurosensory deafness and progressive retinitis pigmentosa. So far, three clinical types of Usher syndrome have been defined, and are caused by defects at more than eight loci. We report the linkage analysis of seven Lebanese families with Usher syndrome, two with type I (USH1) and five with type II (USH2). We demonstrate that one family is linked to the USH1C locus, a rare form of USH1 only reported in the French Acadian population. Linkage analysis of the five USH2 families with recently mapped loci allowed us to reduce the USH2A candidate region to a very small interval flanked by D1S2646/D1S2629 and D1S2827. Furthermore, haplotype comparison between the different families suggests a founder effect for the USH2A mutation among the different Lebanese ethnic groups, while a genetic heterogeneity is noted for Usher syndrome type I.

  16. Genetic Structure, Linkage Disequilibrium and Association Mapping of Verticillium Wilt Resistance in Elite Cotton (Gossypium hirsutum L.) Germplasm Population

    PubMed Central

    Zhao, Yunlei; Wang, Hongmei; Chen, Wei; Li, Yunhai

    2014-01-01

    Understanding the population structure and linkage disequilibrium in an association panel can effectively avoid spurious associations and improve the accuracy in association mapping. In this study, one hundred and fifty eight elite cotton (Gossypium hirsutum L.) germplasm from all over the world, which were genotyped with 212 whole genome-wide marker loci and phenotyped with an disease nursery and greenhouse screening method, were assayed for population structure, linkage disequilibrium, and association mapping of Verticillium wilt resistance. A total of 480 alleles ranging from 2 to 4 per locus were identified from all collections. Model-based analysis identified two groups (G1 and G2) and seven subgroups (G1a–c, G2a–d), and differentiation analysis showed that subgroup having a single origin or pedigree was apt to differentiate with those having a mixed origin. Only 8.12% linked marker pairs showed significant LD (P<0.001) in this association panel. The LD level for linked markers is significantly higher than that for unlinked markers, suggesting that physical linkage strongly influences LD in this panel, and LD level was elevated when the panel was classified into groups and subgroups. The LD decay analysis for several chromosomes showed that different chromosomes showed a notable change in LD decay distances for the same gene pool. Based on the disease nursery and greenhouse environment, 42 marker loci associated with Verticillium wilt resistance were identified through association mapping, which widely were distributed among 15 chromosomes. Among which 10 marker loci were found to be consistent with previously identified QTLs and 32 were new unreported marker loci, and QTL clusters for Verticillium wilt resistanc on Chr.16 were also proved in our study, which was consistent with the strong linkage in this chromosome. Our results would contribute to association mapping and supply the marker candidates for marker-assisted selection of Verticillium wilt resistance in cotton. PMID:24466016

  17. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal

    PubMed Central

    Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.

    2004-01-01

    The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802

  18. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    PubMed Central

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012

  19. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development.

    PubMed

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-09-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

  20. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.

    PubMed

    van der Harst, Pim; Verweij, Niek

    2018-02-02

    Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic architecture of CAD. To expand the number of genome-wide significant loci, catalog functional insights, and enhance our understanding of the genetic architecture of CAD. We performed a genome-wide association study in 34 541 CAD cases and 261 984 controls of UK Biobank resource followed by replication in 88 192 cases and 162 544 controls from CARDIoGRAMplusC4D. We identified 75 loci that replicated and were genome-wide significant ( P <5×10 -8 ) in meta-analysis, 13 of which had not been reported previously. Next, to further identify novel loci, we identified all promising ( P <0.0001) loci in the CARDIoGRAMplusC4D data and performed reciprocal replication and meta-analyses with UK Biobank. This led to the identification of 21 additional novel loci reaching genome-wide significance ( P <5×10 -8 ) in meta-analysis. Finally, we performed a genome-wide meta-analysis of all available data revealing 30 additional novel loci ( P <5×10 -8 ) without further replication. The increase in sample size by UK Biobank raised the number of reconstituted gene sets from 4.2% to 13.9% of all gene sets to be involved in CAD. For the 64 novel loci, 155 candidate causal genes were prioritized, many without an obvious connection to CAD. Fine mapping of the 161 CAD loci generated lists of credible sets of single causal variants and genes for functional follow-up. Genetic risk variants of CAD were linked to development of atrial fibrillation, heart failure, and death. We identified 64 novel genetic risk loci for CAD and performed fine mapping of all 161 risk loci to obtain a credible set of causal variants. The large expansion of reconstituted gene sets argues in favor of an expanded omnigenic model view on the genetic architecture of CAD. © 2017 The Authors.

  1. A radiation hybrid map of the proximal long arm of human chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.

    PubMed Central

    Richard, C W; Withers, D A; Meeker, T C; Maurer, S; Evans, G A; Myers, R M; Cox, D R

    1991-01-01

    We describe a high-resolution radiation hybrid map of the proximal long arm of human chromosome 11 containing the bcl-1 and multiple endocrine neoplasia type 1 (MEN-1) disease gene loci. We used X-ray irradiation and cell fusion to generate a panel of 102 hamster-human somatic cell hybrids containing fragments of human chromosome 11. Sixteen human loci in the 11q12-13 region were mapped by statistical analysis of the cosegregation of markers in these radiation hybrids. The most likely order for these loci is C1NH-OSBP-(CD5/CD20)-PGA-FTH1-COX8-PYGM -SEA-KRN1-(MTC/P11EH/HSTF1/INT2)-GST3- PPP1A. Our localization of the human protooncogene SEA between PYGM and INT2, two markers that flank MEN-1, suggests SEA as a potential candidate for the MEN-1 locus. We map two mitogenic fibroblast growth factor genes, HSTF1 and INT2, close to bcl-1, a mapping that is consistent with previously published data. Our map places the human leukocyte antigen genes CD5 and CD20 far from the bcl-1 locus, indicating that CD5 and CD20 expression is unlikely to be altered by bcl-1 rearrangements. PPP1A, which has been postulated as a MEN-1 candidate tumor suppressor gene, and GST3, a gene transcriptionally active in many human cancers, both map distal to the bcl-1 translocation cluster and the region containing MEN-1, and therefore are unlikely to be directly involved in bcl-1 or MEN-1. PMID:1684084

  2. Characterization of candidate genes in inflammatory bowel disease–associated risk loci

    PubMed Central

    Peloquin, Joanna M.; Sartor, R. Balfour; Newberry, Rodney D.; McGovern, Dermot P.; Yajnik, Vijay; Lira, Sergio A.

    2016-01-01

    GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis. PMID:27668286

  3. Genetic basis of delay discounting in frequent gamblers: examination of a priori candidates and exploration of a panel of dopamine-related loci

    PubMed Central

    Gray, Joshua C; MacKillop, James

    2014-01-01

    Introduction Delay discounting is a behavioral economic index of impulsivity that reflects preferences for small immediate rewards relative to larger delayed rewards. It has been consistently linked to pathological gambling and other forms of addictive behavior, and has been proposed to be a behavioral characteristic that may link genetic variation and risk of developing addictive disorders (i.e., an endophenotype). Studies to date have revealed significant associations with polymorphisms associated with dopamine neurotransmission. The current study examined associations between delay discounting and both previously linked variants and a novel panel of dopamine-related variants in a sample of frequent gamblers. Methods Participants were 175 weekly gamblers of European ancestry who completed the Monetary Choice Questionnaire to assess delay discounting preferences and provided a DNA via saliva. Results In a priori tests, two loci previously associated with delayed reward discounting (rs1800497 and rs4680) were not replicated, however, the long form of DRD4 VNTR was significantly associated with lower discounting of delayed rewards. Exploratory analysis of the dopamine-related panel revealed 11 additional significant associations in genes associated with dopamine synthesis, breakdown, reuptake, and receptor function (DRD3, SLC6A3, DDC, DBH, and SLC18A2). An aggregate genetic risk score from the nominally significant loci accounted for 17% of the variance in discounting. Mediational analyses largely supported the presence of indirect effects between the associated loci, delay discounting, and pathological gambling severity. Conclusions These findings do not replicate previously reported associations but identify several novel candidates and provide preliminary support for a systems biology approach to understand the genetic basis of delay discounting. PMID:25365808

  4. A radiation hybrid map of the proximal long arm of human chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.

    PubMed

    Richard, C W; Withers, D A; Meeker, T C; Maurer, S; Evans, G A; Myers, R M; Cox, D R

    1991-12-01

    We describe a high-resolution radiation hybrid map of the proximal long arm of human chromosome 11 containing the bcl-1 and multiple endocrine neoplasia type 1 (MEN-1) disease gene loci. We used X-ray irradiation and cell fusion to generate a panel of 102 hamster-human somatic cell hybrids containing fragments of human chromosome 11. Sixteen human loci in the 11q12-13 region were mapped by statistical analysis of the cosegregation of markers in these radiation hybrids. The most likely order for these loci is C1NH-OSBP-(CD5/CD20)-PGA-FTH1-COX8-PYGM -SEA-KRN1-(MTC/P11EH/HSTF1/INT2)-GST3- PPP1A. Our localization of the human protooncogene SEA between PYGM and INT2, two markers that flank MEN-1, suggests SEA as a potential candidate for the MEN-1 locus. We map two mitogenic fibroblast growth factor genes, HSTF1 and INT2, close to bcl-1, a mapping that is consistent with previously published data. Our map places the human leukocyte antigen genes CD5 and CD20 far from the bcl-1 locus, indicating that CD5 and CD20 expression is unlikely to be altered by bcl-1 rearrangements. PPP1A, which has been postulated as a MEN-1 candidate tumor suppressor gene, and GST3, a gene transcriptionally active in many human cancers, both map distal to the bcl-1 translocation cluster and the region containing MEN-1, and therefore are unlikely to be directly involved in bcl-1 or MEN-1.

  5. Pleiotropic Models of Polygenic Variation, Stabilizing Selection, and Epistasis

    PubMed Central

    Gavrilets, S.; de-Jong, G.

    1993-01-01

    We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection'' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype. PMID:8325491

  6. [Linkage analysis of a family with familial hypertriglyceridemia].

    PubMed

    Tang, Xin; Lin, Ying; Liu, Bing; Ma, Shi; Yang, Yang; Yang, Zheng-lin

    2009-10-01

    To perform linkage analysis and mutation screening in a Chinese family with familial hpertriglyceridemia (FHTG). Thirty-two family members including 12 hypertriglyceridemia patients participated in the study. Genotyping and haplotype analysis for 22 subjects were performed using short tandem repeat (STR) microsatellite polymorphism markers on 16 candidate genes and/or loci related to lipid metabolism. Two of the sixteen known candidate genes, APOA2 and USF1 were screened for mutation by direct DNA sequencing. No linkage was found between the candidate genes/loci of APOA5, LIPI, RP1, APOC2, ABC1, LMF1, APOA1-APOC3-APOA4, LPL, APOB, CETP, LCAT, LDLR, APOE and the phenotype in this family. The two-point Lod scores (theta =0) were all less than-1.0 for all the markers tested. Linkage analysis suggested linkage to chromosome 1q23.3-24.2 between the disease phenotype and STR marker D1S194 with a two-point maximum Lod score of 2.44 at theta =0. Fine mapping indicated that the disease gene was localized to a 5.87 cM interval between D1S104 and D1S196. No disease-causing mutation was detected in the APOA2 and USF1 genes. The above mentioned candidate genes were excluded as the disease causing genes for this family. The results implied that there might be a novel gene/locus for FHTG on chromosome 1q23.3-1q24.2.

  7. Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep

    PubMed Central

    2017-01-01

    Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways—EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive. PMID:29240764

  8. Selection for long and short sleep duration in Drosophila melanogaster reveals the complex genetic network underlying natural variation in sleep.

    PubMed

    Harbison, Susan T; Serrano Negron, Yazmin L; Hansen, Nancy F; Lobell, Amanda S

    2017-12-01

    Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways-EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive.

  9. Multilocus Patterns of Nucleotide Diversity, Linkage Disequilibrium and Demographic History of Norway Spruce [Picea abies (L.) Karst

    PubMed Central

    Heuertz, Myriam; De Paoli, Emanuele; Källman, Thomas; Larsson, Hanna; Jurman, Irena; Morgante, Michele; Lascoux, Martin; Gyllenstrand, Niclas

    2006-01-01

    DNA polymorphism at 22 loci was studied in an average of 47 Norway spruce [Picea abies (L.) Karst.] haplotypes sampled in seven populations representative of the natural range. The overall nucleotide variation was limited, being lower than that observed in most plant species so far studied. Linkage disequilibrium was also restricted and did not extend beyond a few hundred base pairs. All populations, with the exception of the Romanian population, could be divided into two main domains, a Baltico–Nordic and an Alpine one. Mean Tajima's D and Fay and Wu's H across loci were both negative, indicating the presence of an excess of both rare and high-frequency-derived variants compared to the expected frequency spectrum in a standard neutral model. Multilocus neutrality tests based on D and H led to the rejection of the standard neutral model and exponential growth in the whole population as well as in the two main domains. On the other hand, in all three cases the data are compatible with a severe bottleneck occurring some hundreds of thousands of years ago. Hence, demographic departures from equilibrium expectations and population structure will have to be accounted for when detecting selection at candidate genes and in association mapping studies, respectively. PMID:17057229

  10. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq.

    PubMed

    Wang, Jun; Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet.

  11. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq

    PubMed Central

    Wang, Zhilan; Du, Xiaofen; Yang, Huiqing; Han, Fang; Han, Yuanhuai; Yuan, Feng; Zhang, Linyi; Peng, Shuzhong; Guo, Erhu

    2017-01-01

    Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model plant for cereal crops and biofuel grasses. Although its reference genome sequence was released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains limited. The development of massively parallel genotyping methods and next-generation sequencing technologies provides an excellent opportunity for developing single-nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantitative traits. In this study, a high-throughput and cost-effective RAD-seq approach was employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP markers were used to genotype 124 F2 progenies derived from the cross between Hongmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for eight agronomic traits were identified; five co-dominant DNA markers were developed. These findings will be of value for the identification of candidate genes and marker-assisted selection in foxtail millet. PMID:28644843

  12. Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.

    PubMed

    Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid

    2017-02-02

    Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.

  13. Targeted resequencing of candidate genes reveals novel variants associated with severe Behçet's uveitis.

    PubMed

    Kim, Sang Jin; Lee, Seungbok; Park, Changho; Seo, Jeong-Sun; Kim, Jong-Il; Yu, Hyeong Gon

    2013-10-18

    Behçet's disease (BD) is a chronic systemic inflammatory disorder characterized by four major manifestations: recurrent uveitis, oral and genital ulcers and skin lesions. To identify some pathogenic variants associated with severe Behçet's uveitis, we used targeted and massively parallel sequencing methods to explore the genetic diversity of target regions. A solution-based target enrichment kit was designed to capture whole-exonic regions of 132 candidate genes. Using a multiplexing strategy, 32 samples from patients with a severe type of Behçet's uveitis were sequenced with a Genome Analyzer IIx. We compared the frequency of each variant with that of 59 normal Korean controls, and selected five rare and eight common single-nucleotide variants as the candidates for a replication study. The selected variants were genotyped in 61 cases and 320 controls and, as a result, two rare and seven common variants showed significant associations with severe Behçet's uveitis (P<0.05). Some of these, including rs199955684 in KIR3DL3, rs1801133 in MTHFR, rs1051790 in MICA and rs1051456 in KIR2DL4, were predicted to be damaging by either the PolyPhen-2 or SIFT prediction program. Variants on FCGR3A (rs396991) and ICAM1 (rs5498) have been previously reported as susceptibility loci of this disease, and those on IFNAR1, MTFHR and MICA also replicated the previous reports at the gene level. The KIR3DL3 and KIR2DL4 genes are novel susceptibility genes that have not been reported in association with BD. In conclusion, this study showed that target enrichment and next-generation sequencing technologies can provide valuable information on the genetic predisposition for Behçet's uveitis.

  14. Candidate Loci for Insulin Sensitivity and Disposition Index from a Genome Wide Association Analysis of Hispanics in the IRAS Family Study

    PubMed Central

    Palmer, N. D.; Langefeld, C. D.; Ziegler, J. T.; Hsu, F.; Haffner, S. M.; Fingerlin, T.; Norris, J. M.; Chen, Y. I.; Rich, S. S.; Haritunians, T.; Taylor, K. D.; Bergman, R. N.; Rotter, J. I.; Bowden, D. W.

    2009-01-01

    Aims/Hypothesis —The majority of type 2 diabetes Genome Wide Association Studies (GWAS) to date have been performed in European-derived populations and have identified few variants that mediate their effect through insulin resistance. The aim of this study was to evaluate two quantitative, directly assessed measures of insulin resistance (SI and DI) in Hispanic Americans using an agnostic, high-density SNP scan and validate these findings in additional samples. Methods —A two-stage GWAS was performed in IRAS-FS Hispanic-American samples. In Stage 1, 317K single nucleotide polymorphisms (SNPs) were assessed 229 DNA samples. SNPs with evidence of association with glucose homeostasis and adiposity traits were then genotyped on the entire set of Hispanic-American samples (n=1190). This report focuses on the glucose homeostasis traits: insulin sensitivity index (SI) and disposition index (DI). Results —Although evidence of association did not reach genome-wide significance (P=5×10−7), in the combined analysis SNPs had admixture-adjusted PADD=0.00010–0.0020 with 8–41% differences in genotypic means for SI and DI. Conclusions/Interpretation —Several candidate loci have been identified which are nominally associated with SI and/or DI in Hispanic Americans. Replication of these findings in independent cohorts and additional focused analysis of these loci is warranted. PMID:19902172

  15. The DNA methylation profile of activated human natural killer cells.

    PubMed

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-03

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states.

  16. Pooled Genome-Wide Analysis to Identify Novel Risk Loci for Pediatric Allergic Asthma

    PubMed Central

    Ricci, Giampaolo; Astolfi, Annalisa; Remondini, Daniel; Cipriani, Francesca; Formica, Serena; Dondi, Arianna; Pession, Andrea

    2011-01-01

    Background Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach. Methodology/Principal Findings We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models. Conclusion/Significance Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population. PMID:21359210

  17. Using Zebrafish to Test the Genetic Basis of Human Craniofacial Diseases.

    PubMed

    Machado, R Grecco; Eames, B Frank

    2017-10-01

    Genome-wide association studies (GWASs) opened an innovative and productive avenue to investigate the molecular basis of human craniofacial disease. However, GWASs identify candidate genes only; they do not prove that any particular one is the functional villain underlying disease or just an unlucky genomic bystander. Genetic manipulation of animal models is the best approach to reveal which genetic loci identified from human GWASs are functionally related to specific diseases. The purpose of this review is to discuss the potential of zebrafish to resolve which candidate genetic loci are mechanistic drivers of craniofacial diseases. Many anatomic, embryonic, and genetic features of craniofacial development are conserved among zebrafish and mammals, making zebrafish a good model of craniofacial diseases. Also, the ability to manipulate gene function in zebrafish was greatly expanded over the past 20 y, enabling systems such as Gateway Tol2 and CRISPR-Cas9 to test gain- and loss-of-function alleles identified from human GWASs in coding and noncoding regions of DNA. With the optimization of genetic editing methods, large numbers of candidate genes can be efficiently interrogated. Finding the functional villains that underlie diseases will permit new treatments and prevention strategies and will increase understanding of how gene pathways operate during normal development.

  18. Multiethnic GWAS Reveals Polygenic Architecture of Earlobe Attachment.

    PubMed

    Shaffer, John R; Li, Jinxi; Lee, Myoung Keun; Roosenboom, Jasmien; Orlova, Ekaterina; Adhikari, Kaustabh; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; González-José, Rolando; Pfeffer, Paige E; Wollenschlaeger, Christopher A; Hecht, Jacqueline T; Wehby, George L; Moreno, Lina M; Ding, Anan; Jin, Li; Yang, Yajun; Carlson, Jenna C; Leslie, Elizabeth J; Feingold, Eleanor; Marazita, Mary L; Hinds, David A; Cox, Timothy C; Wang, Sijia; Ruiz-Linares, Andrés; Weinberg, Seth M

    2017-12-07

    The genetic basis of earlobe attachment has been a matter of debate since the early 20 th century, such that geneticists argue both for and against polygenic inheritance. Recent genetic studies have identified a few loci associated with the trait, but large-scale analyses are still lacking. Here, we performed a genome-wide association study of lobe attachment in a multiethnic sample of 74,660 individuals from four cohorts (three with the trait scored by an expert rater and one with the trait self-reported). Meta-analysis of the three expert-rater-scored cohorts revealed six associated loci harboring numerous candidate genes, including EDAR, SP5, MRPS22, ADGRG6 (GPR126), KIAA1217, and PAX9. The large self-reported 23andMe cohort recapitulated each of these six loci. Moreover, meta-analysis across all four cohorts revealed a total of 49 significant (p < 5 × 10 -8 ) loci. Annotation and enrichment analyses of these 49 loci showed strong evidence of genes involved in ear development and syndromes with auricular phenotypes. RNA sequencing data from both human fetal ear and mouse second branchial arch tissue confirmed that genes located among associated loci showed evidence of expression. These results provide strong evidence for the polygenic nature of earlobe attachment and offer insights into the biological basis of normal and abnormal ear development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Evolutionary Genomics of Peach and Almond Domestication

    PubMed Central

    Velasco, Dianne; Hough, Josh; Aradhya, Mallikarjuna; Ross-Ibarra, Jeffrey

    2016-01-01

    The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here, we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has around seven times the genetic diversity of peach, and high genome-wide FST values support their status as separate species. We estimated a divergence time of ∼8 MYA (million years ago), coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of a bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together, this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application, and further the understanding of evolution in these species. PMID:27707802

  20. AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection.

    PubMed

    Tollenaere, C; Duplantier, J-M; Rahalison, L; Ranjalahy, M; Brouat, C

    2011-03-01

    The black rat (Rattus rattus) is the main reservoir of plague (Yersinia pestis infection) in Madagascar's rural zones. Black rats are highly resistant to plague within the plague focus (central highland), whereas they are susceptible where the disease is absent (low altitude zone). To better understand plague wildlife circulation and host evolution in response to a highly virulent pathogen, we attempted to determine genetic markers associated with plague resistance in this species. To this purpose, we combined a population genomics approach and an association study, both performed on 249 AFLP markers, in Malagasy R. rattus. Simulated distributions of genetic differentiation were compared to observed data in four independent pairs, each consisting of one population from the plague focus and one from the plague-free zone. We found 22 loci (9% of 249) with higher differentiation in at least two independent population pairs or with combining P-values over the four pairs significant. Among the 22 outlier loci, 16 presented significant association with plague zone (plague focus vs. plague-free zone). Population genetic structure inferred from outlier loci was structured by plague zone, whereas the neutral loci dataset revealed structure by geography (eastern vs. western populations). A phenotype association study revealed that two of the 22 loci were significantly associated with differentiation between dying and surviving rats following experimental plague challenge. The 22 outlier loci identified in this study may undergo plague selective pressure either directly or more probably indirectly due to hitchhiking with selected loci. © 2010 Blackwell Publishing Ltd.

  1. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    PubMed

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  2. Analysis of shared homozygosity regions in Saudi siblings with attention deficit hyperactivity disorder

    PubMed Central

    Al Yemni, Eman A.A.; Alnaemi, Faten M.; Abebe, Dejene; Al-Abdulaziz, Basma S.; Al Mubarak, Bashayer R.; Ghaziuddin, Mohammad; Al Tassan, Nada A.

    2017-01-01

    Aim Genetic and clinical complexities are common features of most psychiatric illnesses that pose a major obstacle in risk-gene identification. Attention deficit hyperactivity disorder (ADHD) is the most prevalent child-onset psychiatric illness, with high heritability. Over the past decade, numerous genetic studies utilizing various approaches, such as genome-wide association, candidate-gene association, and linkage analysis, have identified a multitude of candidate loci/genes. However, such studies have yielded diverse findings that are rarely reproduced, indicating that other genetic determinants have not been discovered yet. In this study, we carried out sib-pair analysis on seven multiplex families with ADHD from Saudi Arabia. We aimed to identify the candidate chromosomal regions and genes linked to the disease. Patients and methods A total of 41 individuals from multiplex families were analyzed for shared regions of homozygosity. Genes within these regions were prioritized according to their potential relevance to ADHD. Results We identified multiple genomic regions spanning different chromosomes to be shared among affected members of each family; these included chromosomes 3, 5, 6, 7, 8, 9, 10, 13, 17, and 18. We also found specific regions on chromosomes 8 and 17 to be shared between affected individuals from more than one family. Among the genes present in the regions reported here were involved in neurotransmission (GRM3, SIGMAR1, CHAT, and SLC18A3) and members of the HLA gene family (HLA-A, HLA-DPA1, and MICC). Conclusion The candidate regions identified in this study highlight the genetic diversity of ADHD. Upon further investigation, these loci may reveal candidate genes that enclose variants associated with ADHD. Although most ADHD studies were conducted in other populations, our study provides insight from an understudied, ethnically interesting population. PMID:28452824

  3. Analysis of shared homozygosity regions in Saudi siblings with attention deficit hyperactivity disorder.

    PubMed

    Shinwari, Jameela M A; Al Yemni, Eman A A; Alnaemi, Faten M; Abebe, Dejene; Al-Abdulaziz, Basma S; Al Mubarak, Bashayer R; Ghaziuddin, Mohammad; Al Tassan, Nada A

    2017-08-01

    Genetic and clinical complexities are common features of most psychiatric illnesses that pose a major obstacle in risk-gene identification. Attention deficit hyperactivity disorder (ADHD) is the most prevalent child-onset psychiatric illness, with high heritability. Over the past decade, numerous genetic studies utilizing various approaches, such as genome-wide association, candidate-gene association, and linkage analysis, have identified a multitude of candidate loci/genes. However, such studies have yielded diverse findings that are rarely reproduced, indicating that other genetic determinants have not been discovered yet. In this study, we carried out sib-pair analysis on seven multiplex families with ADHD from Saudi Arabia. We aimed to identify the candidate chromosomal regions and genes linked to the disease. A total of 41 individuals from multiplex families were analyzed for shared regions of homozygosity. Genes within these regions were prioritized according to their potential relevance to ADHD. We identified multiple genomic regions spanning different chromosomes to be shared among affected members of each family; these included chromosomes 3, 5, 6, 7, 8, 9, 10, 13, 17, and 18. We also found specific regions on chromosomes 8 and 17 to be shared between affected individuals from more than one family. Among the genes present in the regions reported here were involved in neurotransmission (GRM3, SIGMAR1, CHAT, and SLC18A3) and members of the HLA gene family (HLA-A, HLA-DPA1, and MICC). The candidate regions identified in this study highlight the genetic diversity of ADHD. Upon further investigation, these loci may reveal candidate genes that enclose variants associated with ADHD. Although most ADHD studies were conducted in other populations, our study provides insight from an understudied, ethnically interesting population.

  4. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea

    PubMed Central

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822

  5. Genetic Markers of Human Evolution Are Enriched in Schizophrenia.

    PubMed

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten; Wang, Yunpeng; Witoelar, Aree; Schork, Andrew J; Thompson, Wesley K; Zuber, Verena; Winsvold, Bendik S; Zwart, John-Anker; Collier, David A; Desikan, Rahul S; Melle, Ingrid; Werge, Thomas; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A

    2016-08-15

    Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking, and cognitive abilities. We analyzed recent large genome-wide association studies of schizophrenia and a range of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, immune-mediated diseases) using a statistical framework that draws on polygenic architecture and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone recent positive selection in humans (i.e., with a low NSS score). Variants in brain-related genes with a low NSS score confer significantly higher susceptibility than variants in other brain-related genes. The enrichment is strongest for schizophrenia, but we cannot rule out enrichment for other phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. Our results suggest that there is a polygenic overlap between schizophrenia and NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence of schizophrenia is related to the evolutionary process of becoming human. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese

    PubMed Central

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-01-01

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10−13, BCAS3), 9p24.2 (rs12236871, P=1.48 × 10−10, RFX3) and 11p15.5 (rs179785, P=1.28 × 10−8, KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis. PMID:25967671

  7. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese.

    PubMed

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-05-13

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10(-13), BCAS3), 9p24.2 (rs12236871, P=1.48 × 10(-10), RFX3) and 11p15.5 (rs179785, P=1.28 × 10(-8), KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis.

  8. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia.

    PubMed

    Verhoeven, Virginie J M; Hysi, Pirro G; Wojciechowski, Robert; Fan, Qiao; Guggenheim, Jeremy A; Höhn, René; MacGregor, Stuart; Hewitt, Alex W; Nag, Abhishek; Cheng, Ching-Yu; Yonova-Doing, Ekaterina; Zhou, Xin; Ikram, M Kamran; Buitendijk, Gabriëlle H S; McMahon, George; Kemp, John P; Pourcain, Beate St; Simpson, Claire L; Mäkelä, Kari-Matti; Lehtimäki, Terho; Kähönen, Mika; Paterson, Andrew D; Hosseini, S Mohsen; Wong, Hoi Suen; Xu, Liang; Jonas, Jost B; Pärssinen, Olavi; Wedenoja, Juho; Yip, Shea Ping; Ho, Daniel W H; Pang, Chi Pui; Chen, Li Jia; Burdon, Kathryn P; Craig, Jamie E; Klein, Barbara E K; Klein, Ronald; Haller, Toomas; Metspalu, Andres; Khor, Chiea-Chuen; Tai, E-Shyong; Aung, Tin; Vithana, Eranga; Tay, Wan-Ting; Barathi, Veluchamy A; Chen, Peng; Li, Ruoying; Liao, Jiemin; Zheng, Yingfeng; Ong, Rick T; Döring, Angela; Evans, David M; Timpson, Nicholas J; Verkerk, Annemieke J M H; Meitinger, Thomas; Raitakari, Olli; Hawthorne, Felicia; Spector, Tim D; Karssen, Lennart C; Pirastu, Mario; Murgia, Federico; Ang, Wei; Mishra, Aniket; Montgomery, Grant W; Pennell, Craig E; Cumberland, Phillippa M; Cotlarciuc, Ioana; Mitchell, Paul; Wang, Jie Jin; Schache, Maria; Janmahasatian, Sarayut; Janmahasathian, Sarayut; Igo, Robert P; Lass, Jonathan H; Chew, Emily; Iyengar, Sudha K; Gorgels, Theo G M F; Rudan, Igor; Hayward, Caroline; Wright, Alan F; Polasek, Ozren; Vatavuk, Zoran; Wilson, James F; Fleck, Brian; Zeller, Tanja; Mirshahi, Alireza; Müller, Christian; Uitterlinden, André G; Rivadeneira, Fernando; Vingerling, Johannes R; Hofman, Albert; Oostra, Ben A; Amin, Najaf; Bergen, Arthur A B; Teo, Yik-Ying; Rahi, Jugnoo S; Vitart, Veronique; Williams, Cathy; Baird, Paul N; Wong, Tien-Yin; Oexle, Konrad; Pfeiffer, Norbert; Mackey, David A; Young, Terri L; van Duijn, Cornelia M; Saw, Seang-Mei; Bailey-Wilson, Joan E; Stambolian, Dwight; Klaver, Caroline C; Hammond, Christopher J

    2013-03-01

    Refractive error is the most common eye disorder worldwide and is a prominent cause of blindness. Myopia affects over 30% of Western populations and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses, including 37,382 individuals from 27 studies of European ancestry and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in individuals of European ancestry, of which 8 were shared with Asians. Combined analysis identified 8 additional associated loci. The new loci include candidate genes with functions in neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2) and eye development (SIX6 and PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for individuals carrying the highest genetic load. Our results, based on a large meta-analysis across independent multiancestry studies, considerably advance understanding of the mechanisms involved in refractive error and myopia.

  9. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    PubMed Central

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O’Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Wild, Sarah H; Bakker, Stephan J L; Peden, John F; Dehghan, Abbas; Steri, Maristella; Tenesa, Albert; Lagou, Vasiliki; Salo, Perttu; Mangino, Massimo; Rose, Lynda M; Lehtimäki, Terho; Woodward, Owen M; Okada, Yukinori; Tin, Adrienne; Müller, Christian; Oldmeadow, Christopher; Putku, Margus; Czamara, Darina; Kraft, Peter; Frogheri, Laura; Thun, Gian Andri; Grotevendt, Anne; Gislason, Gauti Kjartan; Harris, Tamara B; Launer, Lenore J; McArdle, Patrick; Shuldiner, Alan R; Boerwinkle, Eric; Coresh, Josef; Schmidt, Helena; Schallert, Michael; Martin, Nicholas G; Montgomery, Grant W; Kubo, Michiaki; Nakamura, Yusuke; Tanaka, Toshihiro; Munroe, Patricia B; Samani, Nilesh J; Jacobs, David R; Liu, Kiang; D’Adamo, Pio; Ulivi, Sheila; Rotter, Jerome I; Psaty, Bruce M; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Devuyst, Olivier; Navarro, Pau; Kolcic, Ivana; Hastie, Nicholas; Balkau, Beverley; Froguel, Philippe; Esko, Tõnu; Salumets, Andres; Khaw, Kay Tee; Langenberg, Claudia; Wareham, Nicholas J; Isaacs, Aaron; Kraja, Aldi; Zhang, Qunyuan; Wild, Philipp S; Scott, Rodney J; Holliday, Elizabeth G; Org, Elin; Viigimaa, Margus; Bandinelli, Stefania; Metter, Jeffrey E; Lupo, Antonio; Trabetti, Elisabetta; Sorice, Rossella; Döring, Angela; Lattka, Eva; Strauch, Konstantin; Theis, Fabian; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Bruinenberg, Marcel; Study, LifeLines Cohort; Stolk, Ronald P; Kooner, Jaspal S; Zhang, Weihua; Winkelmann, Bernhard R; Boehm, Bernhard O; Lucae, Susanne; Penninx, Brenda W; Smit, Johannes H; Curhan, Gary; Mudgal, Poorva; Plenge, Robert M; Portas, Laura; Persico, Ivana; Kirin, Mirna; Wilson, James F; Leach, Irene Mateo; van Gilst, Wiek H; Goel, Anuj; Ongen, Halit; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G; Imboden, Medea; von Eckardstein, Arnold; Cucca, Francesco; Nagaraja, Ramaiah; Piras, Maria Grazia; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Ernst, Florian; Farrington, Susan M; Theodoratou, Evropi; Prokopenko, Inga; Stumvoll, Michael; Jula, Antti; Perola, Markus; Salomaa, Veikko; Shin, So-Youn; Spector, Tim D; Sala, Cinzia; Ridker, Paul M; Kähönen, Mika; Viikari, Jorma; Hengstenberg, Christian; Nelson, Christopher P; Consortium, CARDIoGRAM; Consortium, DIAGRAM; Consortium, ICBP; Consortium, MAGIC; Meschia, James F; Nalls, Michael A; Sharma, Pankaj; Singleton, Andrew B; Kamatani, Naoyuki; Zeller, Tanja; Burnier, Michel; Attia, John; Laan, Maris; Klopp, Norman; Hillege, Hans L; Kloiber, Stefan; Choi, Hyon; Pirastu, Mario; Tore, Silvia; Probst-Hensch, Nicole M; Völzke, Henry; Gudnason, Vilmundur; Parsa, Afshin; Schmidt, Reinhold; Whitfield, John B; Fornage, Myriam; Gasparini, Paolo; Siscovick, David S; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Bouatia-Naji, Nabila; Metspalu, Andres; Loos, Ruth J F; van Duijn, Cornelia M; Borecki, Ingrid B; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Wolffenbuttel, Bruce H R; Chambers, John C; März, Winfried; Pramstaller, Peter P; Snieder, Harold; Gyllensten, Ulf; Wright, Alan F; Navis, Gerjan; Watkins, Hugh; Witteman, Jacqueline C M; Sanna, Serena; Schipf, Sabine; Dunlop, Malcolm G; Tönjes, Anke; Ripatti, Samuli; Soranzo, Nicole; Toniolo, Daniela; Chasman, Daniel I; Raitakari, Olli; Kao, W H Linda; Ciullo, Marina; Fox, Caroline S; Caulfield, Mark; Bochud, Murielle; Gieger, Christian

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout. PMID:23263486

  10. Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using repeat expansion detection and a PCR screening set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, T.; Guy, C.; Speight, G.

    Studies of the transmission of schizophrenia in families with affected members in several generations have suggested that an expanded trinucleotide repeat mechanism may contribute to the genetic inheritance of this disorder. Using repeat expansion detection (RED), we and others have previously found that the distribution of CAG/CTG repeat size is larger in patients with schizophrenia than in controls. In an attempt to identify the specific expanded CAG/CTG locus or loci associated with schizophrenia, we have now used an approach based on a CAG/CTG PCR screening set combined with RED data. This has allowed us to minimize genotyping while excluding 43more » polymorphic autosomal loci and 7 X-chromosomal loci from the screening set as candidates for expansion in schizophrenia with a very high degree of confidence. 18 refs., 1 tab.« less

  11. High-resolution mapping of the x-linked hypohidrotic ectodermal dysplasia (EDA) locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zonana, J.; Jones, M.; Litt, M.

    1992-11-01

    The X-linked hypohidrotic ectodermal dysplasia (EDA) locus has been previously localized to the subchromosomal region Xq11-q21.1. The authors have extended previous linkage studies and analyzed linkage between the EDA locus and 10 marker loci, including five new loci, in 41 families. Four of the marker loci showed no recombination with the EDA locus, and six other loci were also linked to the EDA locus with recombination fractions of .009-.075. Multipoint analysis gave support to the placement of the PGK1P1 locus proximal to the EDA locus and the DXS453 and PGK1 loci distal to EDA. Further ordering of the loci couldmore » be inferred from a human-rodent somatic cell hybrid derived from an affected female with EDA and an X;9 translocation and from studies of an affected male with EDA and a submicroscopic deletion. Three of the proximal marker loci, which showed no recombination with the EDA locus, when used in combination, were informative in 92% of females. The closely linked flanking polymorphic loci DXS339 and DXS453 had heterozygosites of 72% and 76%, respectively, and when used jointly, they were doubly informative in 52% of females. The human DXS732 locus was defined by a conserved mouse probe pcos169E/4 (DXCrc169 locus) that consegregates with the mouse tabby (Ta) locus, a potential homologue to the EDA locus. The absence of recombination between EDA and the DXSA732 locus lends support to the hypothesis that the DXCrc169 locus in the mouse and the DXS732 locus in humans may contain candidate sequences for the Ta and EDA genes, respectively. 36 refs., 1 fig., 5 tabs.« less

  12. Comprehensive annotated STR physical map of the human Y chromosome: Forensic implications.

    PubMed

    Hanson, Erin K; Ballantyne, Jack

    2006-03-01

    A plethora of Y-STR markers from diverse sources have been deposited in public databases and represent potential candidates for incorporation into the next generation of Y-STR multiplexes for forensic use. Here, based upon all of the Y-STR loci that have been deposited in the human genome database (>400), we have sequentially positioned each one along the Y chromosome using the most current human genome sequencing data (NCBI Build 35). The information derived from this work defines the number and relative position of all potentially forensically relevant Y-STR loci, their location within the physical linkage map of the Y chromosome and their relationship to structural genes. We conclude that there exists at present at least 417 separate Y-STR markers available for potential forensic use, although many of these will be found to be unsuitable for other reasons. However, from this data, we were able to identify 28 pairs of duplicated loci that were given separate DYS designations and four pairs of loci with overlapping flanking regions. Removing one locus from each set of duplicates reduced the number of potentially useful loci from 417 to 389. The derived information should be useful for workers who are designing novel Y-STR multiplexes to ensure the presence of non-synonymous loci and, if so desired, to avoid loci that lie within structural genes. It may also be useful for forensic casework practitioners (or molecular anthropologists) to aid in distinguishing between chromosomal rearrangements (such as duplications and deletions) and bona fide DNA admixtures or null alleles caused by primer binding site mutations. We illustrate the practical usefulness of the chromosomal positioning data in the design of eight multiplex systems using 94 Y-STR loci.

  13. Investigation of Crohn’s Disease Risk Loci in Ulcerative Colitis Further Defines Their Molecular Relationship

    PubMed Central

    ANDERSON, CARL A.; MASSEY, DUNECAN C. O.; BARRETT, JEFFREY C.; PRESCOTT, NATALIE J.; TREMELLING, MARK; FISHER, SHEILA A.; GWILLIAM, RHIAN; JACOB, JEMIMA; NIMMO, ELAINE R.; DRUMMOND, HAZEL; LEES, CHARLIE W.; ONNIE, CLIVE M.; HANSON, CATHERINE; BLASZCZYK, KATARZYNA; RAVINDRARAJAH, RADHI; HUNT, SARAH; VARMA, DHIRAJ; HAMMOND, NAOMI; LEWIS, GREGORY; ATTLESEY, HEATHER; WATKINS, NICK; OUWEHAND, WILLEM; STRACHAN, DAVID; MCARDLE, WENDY; LEWIS, CATHRYN M.; LOBO, ALAN; SANDERSON, JEREMY; JEWELL, DEREK P.; DELOUKAS, PANOS; MANSFIELD, JOHN C.; MATHEW, CHRISTOPHER G.; SATSANGI, JACK; PARKES, MILES

    2009-01-01

    Background & Aims Identifying shared and disease-specific susceptibility loci for Crohn’s disease (CD) and ulcerative colitis (UC) would help define the biologic relationship between the inflammatory bowel diseases. More than 30 CD susceptibility loci have been identified. These represent important candidate susceptibility loci for UC. Loci discovered by the index genome scans in CD have previously been tested for association with UC, but those identified in the recent meta-analysis await such investigation. Furthermore, the recently identified UC locus at ECM1 requires formal testing for association with CD. Methods We analyzed 45 single nucleotide polymorphisms, tagging 29 of the loci recently associated with CD in 2527 UC cases and 4070 population controls. We also genotyped the UC-associated ECM1 variant rs11205387 in 1560 CD patients and 3028 controls. Results Nine regions showed association with UC at a threshold corrected for the 29 loci tested (P < .0017). The strongest association (P = 4.13 × 10-8; odds ratio = 1.27) was identified with a 170-kilobase region on chromosome 1q32 that contains 3 genes. We also found association with JAK2 and replicated a recently reported association with STAT3, further implicating the role of this signaling pathway in inflammatory bowel disease. Additional novel UC susceptibility genes were LYRM4 and CDKAL1. Twenty of the loci were not associated with UC, and several appear to be specific to CD. ECM1 variation was not associated with CD. Conclusions Collectively, these data help define the genetic relationship between CD and UC and characterize common, as well as disease-specific mechanisms of pathogenesis. PMID:19068216

  14. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    PubMed Central

    2013-01-01

    Background Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re-sequencing accessions, which represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed. Results A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were identified. Among the SNPs detected, 25.5% were not described previously. We found that artificial selection during domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by artificial selection for preferred agricultural traits. The selection regions were not distributed randomly or uniformly throughout the genome. Instead, clusters of selection hotspots in certain genomic regions were observed. Moreover, a set of candidate genes (4.38% of the total annotated genes) significantly affected by selection underlying soybean domestication and genetic improvement were identified. Conclusions Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes/loci underlying agronomically important traits. PMID:23984715

  15. Association studies on the bovine lipoprotein lipase gene polymorphism with growth and carcass quality traits in Qinchuan cattle.

    PubMed

    Gui, Linsheng; Jia, Cuiling; Zhang, Yaran; Zhao, Chunping; Zan, Linsen

    2016-04-01

    Lipoprotein lipase (LPL) is considered as an essential enzyme in lipid deposition and tissue metabolism. It has been proposed to be a lead candidate gene for genetic markers of lipid deposition and energy balance. In this paper, polymorphisms in the LPL gene were investigated in 554 Chinese Qinchuan cattle by PCR-RFLP and DNA sequencing. Seven single nucleotide polymorphisms (SNPs) were identified, which included one mutation (g.91C > T) in the 5'untranslated region (UTR), four synonymous mutations (g.17015A > G, g.18362G > A, g.18377T > C and g.19873T > C) and two mutations (g.25225A > G and g.25316T > G) in the 3'UTR. The frequencies of SNP g.18377T > C and g.25316T > G were skewed from Hardy-Weinberg equilibrium in all the samples (chi-square test, P < 0.05). An association analysis showed that five loci (except for g.91C > T and g.18377T > C) were significantly correlated with some growth and carcass quality traits. These results demonstrate that LPL might be a potential candidate gene for marker-assisted selection (MAS). Copyright © 2016. Published by Elsevier Ltd.

  16. Association study of IL10, IL1beta, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1beta.

    PubMed

    Shirts, Brian H; Wood, Joel; Yolken, Robert H; Nimgaonkar, Vishwajit L

    2006-12-01

    Genetic association studies of several candidate cytokine genes have been motivated by evidence of immune dysfunction among patients with schizophrenia. Intriguing but inconsistent associations have been reported with polymorphisms of three positional candidate genes, namely IL1beta, IL1RN, and IL10. We used comprehensive sequencing data from the Seattle SNPs database to select tag SNPs that represent all common polymorphisms in the Caucasian population at these loci. Associations with 28 tag SNPs were evaluated in 478 cases and 501 unscreened control individuals, while accounting for population sub-structure using the genomic control method. The samples were also stratified by gender, diagnostic category, and exposure to infectious agents. Significant association was not detected after correcting for multiple comparisons. However, meta-analysis of our data combined with previously published association studies of rs16944 (IL1beta -511) suggests that the C allele confers modest risk for schizophrenia among individuals reporting Caucasian ancestry, but not Asians (Caucasians, n=819 cases, 1292 controls; p=0.0013, OR=1.24, 95% CI 1.09, 1.41).

  17. [Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula].

    PubMed

    Khrustaleva, A M; Gritsenko, O F; Klovach, N V

    2013-11-01

    The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.

  18. Genome-Wide Interaction Study of Omega-3 PUFAs and Other Fatty Acids on Inflammatory Biomarkers of Cardiovascular Health in the Framingham Heart Study.

    PubMed

    Veenstra, Jenna; Kalsbeek, Anya; Westra, Jason; Disselkoen, Craig; Smith, Caren; Tintle, Nathan

    2017-08-18

    Numerous genetic loci have been identified as being associated with circulating fatty acid (FA) levels and/or inflammatory biomarkers of cardiovascular health (e.g., C-reactive protein). Recently, using red blood cell (RBC) FA data from the Framingham Offspring Study, we conducted a genome-wide association study of over 2.5 million single nucleotide polymorphisms (SNPs) and 22 RBC FAs (and associated ratios), including the four Omega-3 FAs (ALA, DHA, DPA, and EPA). Our analyses identified numerous causal loci. In this manuscript, we investigate the extent to which polyunsaturated fatty acid (PUFA) levels moderate the relationship of genetics to cardiovascular health biomarkers using a genome-wide interaction study approach. In particular, we test for possible gene-FA interactions on 9 inflammatory biomarkers, with 2.5 million SNPs and 12 FAs, including all Omega-3 PUFAs. We identified eighteen novel loci, including loci which demonstrate strong evidence of modifying the impact of heritable genetics on biomarker levels, and subsequently cardiovascular health. The identified genes provide increased clarity on the biological functioning and role of Omega-3 PUFAs, as well as other common fatty acids, in cardiovascular health, and suggest numerous candidate loci for future replication and biological characterization.

  19. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study

    PubMed Central

    Li, Xiaokai; Guo, Zilong; Lv, Yan; Cen, Xiang; Ding, Xipeng; Wu, Hua; Li, Xianghua; Huang, Jianping

    2017-01-01

    A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance. PMID:28686596

  20. Association Mapping of Main Tomato Fruit Sugars and Organic Acids

    PubMed Central

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding. PMID:27617019

  1. Association Mapping of Main Tomato Fruit Sugars and Organic Acids.

    PubMed

    Zhao, Jiantao; Xu, Yao; Ding, Qin; Huang, Xinli; Zhang, Yating; Zou, Zhirong; Li, Mingjun; Cui, Lu; Zhang, Jing

    2016-01-01

    Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of Solanum lycopersicum (123 accessions) and S. lycopersicum var cerasiforme (51 accessions) to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS) over 2 years using the mixed linear model (MLM). We detected a total of 58 significantly associated loci (P < 0.001) for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV, and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.

  2. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  3. Quantitative trait loci detection of Edwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Xu, Wenteng; Liu, Yang; Wang, Lei; Sun, Hejun; Wang, Lei; Chen, Songlin

    2016-11-01

    In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese flounder ( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. olivaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis (BSA) and quantitative trait loci (QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333 (♀: F0768 ×♂: F0915) (Nomenclature rule: F+year+family number) were used to detect simple sequence repeats (SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers (Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group (LG)-1 exhibited a significant difference between DNA, pooled/bulked from the resistant and susceptible groups (P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of significance in LG1, where 17 and 18 SSR markers were identified, respectively. Each model found three resistance-related QTLs by composite interval mapping (CIM). These six QTLs, designated qE1-6, explained 16.0%-89.5% of the phenotypic variance. Two of the QTLs, qE-2 and qE-4, were located at the 66.7 cM region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese flounder in the future.

  4. A fruit quality gene map of Prunus

    PubMed Central

    2009-01-01

    Background Prunus fruit development, growth, ripening, and senescence includes major biochemical and sensory changes in texture, color, and flavor. The genetic dissection of these complex processes has important applications in crop improvement, to facilitate maximizing and maintaining stone fruit quality from production and processing through to marketing and consumption. Here we present an integrated fruit quality gene map of Prunus containing 133 genes putatively involved in the determination of fruit texture, pigmentation, flavor, and chilling injury resistance. Results A genetic linkage map of 211 markers was constructed for an intraspecific peach (Prunus persica) progeny population, Pop-DG, derived from a canning peach cultivar 'Dr. Davis' and a fresh market cultivar 'Georgia Belle'. The Pop-DG map covered 818 cM of the peach genome and included three morphological markers, 11 ripening candidate genes, 13 cold-responsive genes, 21 novel EST-SSRs from the ChillPeach database, 58 previously reported SSRs, 40 RAFs, 23 SRAPs, 14 IMAs, and 28 accessory markers from candidate gene amplification. The Pop-DG map was co-linear with the Prunus reference T × E map, with 39 SSR markers in common to align the maps. A further 158 markers were bin-mapped to the reference map: 59 ripening candidate genes, 50 cold-responsive genes, and 50 novel EST-SSRs from ChillPeach, with deduced locations in Pop-DG via comparative mapping. Several candidate genes and EST-SSRs co-located with previously reported major trait loci and quantitative trait loci for chilling injury symptoms in Pop-DG. Conclusion The candidate gene approach combined with bin-mapping and availability of a community-recognized reference genetic map provides an efficient means of locating genes of interest in a target genome. We highlight the co-localization of fruit quality candidate genes with previously reported fruit quality QTLs. The fruit quality gene map developed here is a valuable tool for dissecting the genetic architecture of fruit quality traits in Prunus crops. PMID:19995417

  5. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana)

    PubMed Central

    2012-01-01

    Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species. PMID:23083308

  6. Genetic insights into age-related macular degeneration: Controversies addressing Risk, Causality, and Therapeutics

    PubMed Central

    Gorin, Michael B.

    2012-01-01

    Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews.(Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011) Large meta analysis of AMD GWAS has added new loci and variants to this collection.(Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011) This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years. PMID:22561651

  7. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System.

    PubMed

    Sato, Masahiro; Miyoshi, Kazuchika; Nakamura, Shingo; Ohtsuka, Masato; Sakurai, Takayuki; Watanabe, Satoshi; Kawaguchi, Hiroaki; Tanimoto, Akihide

    2017-12-04

    The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT) has been frequently employed as one of the efficient tools for the production of genetically modified (GM) animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg) RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen), is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B₄ isolectin for 2 h at 37 C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.

  8. Outlier Loci and Selection Signatures of Simple Sequence Repeats (SSRs) in Flax (Linum usitatissimum L.).

    PubMed

    Soto-Cerda, Braulio J; Cloutier, Sylvie

    2013-01-01

    Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations ( F ST  = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically ( P  > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.

  9. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    PubMed Central

    2012-01-01

    Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite-mediated and sexual selection shape and maintain host genetic variation in nature. We believe that study systems like ours can make important contributions to the field of evolutionary biology and emphasize the necessity of integrating long-term field-based studies with detailed genetic analysis to unravel complex evolutionary processes. PMID:22587557

  10. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction

    PubMed Central

    Hughes, Colin E; Eastwood, Ruth J; Donovan Bailey, C

    2005-01-01

    Phylogenetic analyses of DNA sequences have prompted spectacular progress in assembling the Tree of Life. However, progress in constructing phylogenies among closely related species, at least for plants, has been less encouraging. We show that for plants, the rapid accumulation of DNA characters at higher taxonomic levels has not been matched by conventional sequence loci at the species level, leaving a lack of well-resolved gene trees that is hindering investigations of many fundamental questions in plant evolutionary biology. The most popular approach to address this problem has been to use low-copy nuclear genes as a source of DNA sequence data. However, this has had limited success because levels of variation among nuclear intron sequences across groups of closely related species are extremely variable and generally lower than conventionally used loci, and because no universally useful low-copy nuclear DNA sequence loci have been developed. This suggests that solutions will, for the most part, be lineage-specific, prompting a move away from ‘universal’ gene thinking for species-level phylogenetics. The benefits and limitations of alternative approaches to locate more variable nuclear loci are discussed and the potential of anonymous non-genic nuclear loci is highlighted. Given the virtually unlimited number of loci that can be generated using these new approaches, it is clear that effective screening will be critical for efficient selection of the most informative loci. Strategies for screening are outlined. PMID:16553318

  11. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals

    PubMed Central

    2014-01-01

    Background Genes associated with the neurodevelopmental disorder microcephaly display a strong signature of adaptive evolution in primates. Comparative data suggest a link between selection on some of these loci and the evolution of primate brain size. Whether or not either positive selection or this phenotypic association are unique to primates is unclear, but recent studies in cetaceans suggest at least two microcephaly genes evolved adaptively in other large brained mammalian clades. Results Here we analyse the evolution of seven microcephaly loci, including three recently identified loci, across 33 eutherian mammals. We find extensive evidence for positive selection having acted on the majority of these loci not just in primates but also across non-primate mammals. Furthermore, the patterns of selection in major mammalian clades are not significantly different. Using phylogenetically corrected comparative analyses, we find that the evolution of two microcephaly loci, ASPM and CDK5RAP2, are correlated with neonatal brain size in Glires and Euungulata, the two most densely sampled non-primate clades. Conclusions Together with previous results, this suggests that ASPM and CDK5RAP2 may have had a consistent role in the evolution of brain size in mammals. Nevertheless, several limitations of currently available data and gene-phenotype tests are discussed, including sparse sampling across large evolutionary distances, averaging gene-wide rates of evolution, potential phenotypic variation and evolutionary reversals. We discuss the implications of our results for studies of the genetic basis of brain evolution, and explicit tests of gene-phenotype hypotheses. PMID:24898820

  12. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    PubMed

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  13. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment.

    PubMed

    Sheng, Zheya; Pettersson, Mats E; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan

    2015-10-01

    Artificial selection provides a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions where allele-frequencies have diverged during selection. To avoid false positive signatures of selection, it is necessary to show that a sweep affects a selected trait before it can be considered adaptive. Here, we confirm candidate, genome-wide distributed selective sweeps originating from the standing genetic variation in a long-term selection experiment on high and low body weight of chickens. Using an intercross between the two divergent chicken lines, 16 adaptive selective sweeps were confirmed based on their association with the body weight at 56 days of age. Although individual additive effects were small, the fixation for alternative alleles across the loci contributed at least 40 % of the phenotypic difference for the selected trait between these lines. The sweeps contributed about half of the additive genetic variance present within and between the lines after 40 generations of selection, corresponding to a considerable portion of the additive genetic variance of the base population. Long-term, single-trait, bi-directional selection in the Virginia chicken lines has resulted in a gradual response to selection for extreme phenotypes without a drastic reduction in the genetic variation. We find that fixation of several standing genetic variants across a highly polygenic genetic architecture made a considerable contribution to long-term selection response. This provides new fundamental insights into the dynamics of standing genetic variation during long-term selection and adaptation.

  14. Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).

    PubMed

    Tang, Xinxin; Gong, Rong; Sun, Wenqiang; Zhang, Chaopu; Yu, Sibin

    2018-04-01

    Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.

  15. Gene-centric meta-analysis of lipid traits in African, East Asian and Hispanic populations

    USDA-ARS?s Scientific Manuscript database

    Meta-analyses of European populations has successfully identified genetic variants in over 100 loci associated with lipid levels, but our knowledge in other ethnicities remains limited. To address this, we performed dense genotyping of circa 2,000 candidate genes in 7,657 African Americans, 1,315 Hi...

  16. Genome-wide associations for water-soluble carbohydrate concentration and relative maturity in wheat using SNP and DArT marker arrays

    USDA-ARS?s Scientific Manuscript database

    Improving water-use efficiency by incorporating drought avoidance traits into new wheat varieties is an important objective for wheat breeding in water-limited environments. This study uses genome wide association studies (GWAS) to identify candidate loci for water-soluble carbohydrate accumulation,...

  17. Using Single-nucleotide Polymorphisms and Genetic Mapping to find Candidate Genes that Influence Varroa-Specific Hygiene

    USDA-ARS?s Scientific Manuscript database

    Varroa-sensitive hygienic (VSH) behavior is one of two behaviors identified that are most important for controlling the growth of Varroa mite populations in bee hives. A study was conducted to map quantitative trait loci (QTL) that influence VSH so that resistance genes could be identified. Crosses ...

  18. Preliminary evidence for linkage to chromosome 1q31-32, 10q23.3, and 16p13.3 in a South African cohort with bipolar disorder.

    PubMed

    Savitz, Jonathan; Cupido, Cinda-Lee; Ramesar, Raj Kumar

    2007-04-05

    Although the genetic variants predisposing to the development of bipolar disorder (BPD) have yet to be conclusively identified, replicated reports of linkage to particular chromosomal regions have been encouraging. Here we carried out a non-parametric linkage analysis of nine of these candidate loci in a unique South African sample of 47 BPD pedigrees (N = 350). Three polymorphic markers per region of interest (3 x 9) were typed in a Caucasian cohort of Afrikaner and British origin. Statistically significant evidence for linkage was obtained at 1q31-32, 10q23.3, and 16p13.3 with maximum NPL scores of 2.52, 2.01, and 1.84, respectively. Our results add to the growing evidence that these chromosomal regions harbor genetic variants that play a role in the development of bipolar spectrum illness. Negative results were obtained for the remaining six candidate loci, possibly due to limited statistical power. (c) 2006 Wiley-Liss, Inc.

  19. Quantitative trait loci controlling leaf venation in Arabidopsis.

    PubMed

    Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten

    2017-08-01

    Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.

  20. Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae)

    Treesearch

    Roswitha Schmickl; Aaron Liston; Vojtěch Zeisek; Kenneth Oberlander; Kevin Weitemier; Shannon C. K. Straub; Richard C. Cronn; Léanne L. Dreyer; Jan Suda

    2016-01-01

    Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to select hundreds...

  1. Genome comparison of two Magnaporthe oryzae field isolates reveals genome variations and potential virulence effectors

    PubMed Central

    2013-01-01

    Background Rice blast caused by the fungus Magnaporthe oryzae is an important disease in virtually every rice growing region of the world, which leads to significant annual decreases of grain quality and yield. To prevent disease, resistance genes in rice have been cloned and introduced into susceptible cultivars. However, introduced resistance can often be broken within few years of release, often due to mutation of cognate avirulence genes in fungal field populations. Results To better understand the pattern of mutation of M. oryzae field isolates under natural selection forces, we used a next generation sequencing approach to analyze the genomes of two field isolates FJ81278 and HN19311, as well as the transcriptome of FJ81278. By comparing the de novo genome assemblies of the two isolates against the finished reference strain 70–15, we identified extensive polymorphisms including unique genes, SNPs (single nucleotide polymorphism) and indels, structural variations, copy number variations, and loci under strong positive selection. The 1.75 MB of isolate-specific genome content carrying 118 novel genes from FJ81278, and 0.83 MB from HN19311 were also identified. By analyzing secreted proteins carrying polymorphisms, in total 256 candidate virulence effectors were found and 6 were chosen for functional characterization. Conclusions We provide results from genome comparison analysis showing extensive genome variation, and generated a list of M. oryzae candidate virulence effectors for functional characterization. PMID:24341723

  2. Identification of genetic loci that modulate cell proliferation in the adult rostral migratory stream using the expanded panel of BXD mice.

    PubMed

    Poon, Anna; Goldowitz, Daniel

    2014-03-19

    Adult neurogenesis, which is the continual production of new neurons in the mature brain, demonstrates the strikingly plastic nature of the nervous system. Adult neural stem cells and their neural precursors, collectively referred to as neural progenitor cells (NPCs), are present in the subgranular zone (SGZ) of the dentate gyrus, the subventricular zone (SVZ), and rostral migratory stream (RMS). In order to harness the potential of NPCs to treat neurodegenerative diseases and brain injuries, it will be important to understand the molecules that regulate NPCs in the adult brain. The genetic basis underlying NPC proliferation is still not fully understood. From our previous quantitative trait locus (QTL) analysis, we had success in using a relatively small reference population of recombinant inbred strains of mice (AXBXA) to identify a genetic region that is significantly correlated with NPC proliferation in the RMS. In this study, we expanded our initial QTL mapping of RMS proliferation to a far richer genetic resource, the BXD RI mouse strains. A 3-fold difference in the number of proliferative, bromodeoxyuridine (BrdU)-labeled cells was quantified in the adult RMS of 61 BXD RI strains. RMS cell proliferation is highly dependent on the genetic background of the mice with an estimated heritability of 0.58. Genome-wide mapping revealed a significant QTL on chromosome (Chr) 6 and a suggestive QTL on Chr 11 regulating the number of NPCs in the RMS. Composite interval analysis further revealed secondary QTLs on Chr 14 and Chr 18. The loci regulating RMS cell proliferation did not overlap with the suggestive loci modulating cell proliferation in the SGZ. These mapped loci serve as starting points to identify genes important for this process. A subset of candidate genes in this region is associated with cell proliferation and neurogenesis. Interconnectivity of these candidate genes was demonstrated using pathway and transcriptional covariance analyses. Differences in RMS cell proliferation across the BXD RI strains identifies genetic loci that serve to provide insights into the interplay of underlying genes that may be important for regulating NPC proliferation in the adult mouse brain.

  3. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export.

    PubMed

    Karijolich, John; Zhao, Yang; Alla, Ravi; Glaunsinger, Britt

    2017-06-02

    Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA-RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Preferential Mating in Symmetric Multilocus Systems: Limits for Multiallelism and for Many Loci

    PubMed Central

    Raper, J.

    1982-01-01

    Models in which general forms of preferential mating have been superimposed on the framework of the symmetric heterozygosity selection regime have been examined previously with respect to the existence and local stability of a central polymorphic equilibrium. The results are now extended to produce the limiting form of the stability conditions in two cases: First, where the number of alleles per locus is assumed to be very large; second, where the number of loci affecting the character is very large. It is argued that some type of frequency dependence in the mating pattern must be included, and a particular case is examined in detail. It is shown that multiallelism is ambiguous in its effect on stability, while an increasing number of loci, at least under zero linkage, leads to a simple stability condition which is analogous to the one-locus heterosis principle. Assortative mating appears to be more likely to produce a stable central polymorphism under high levels of allelism than is sexual selection, but is relatively very much weaker than sexual or viability selection if the number of loci involved is large. PMID:17246061

  5. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export

    PubMed Central

    Zhao, Yang; Alla, Ravi

    2017-01-01

    Abstract Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. PMID:28334904

  6. Loss of Mhc and Neutral Variation in Peary Caribou: Genetic Drift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions

    PubMed Central

    Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029

  7. Identification of Metabolic QTLs and Candidate Genes for Glucosinolate Synthesis in Brassica oleracea Leaves, Seeds and Flower Buds

    PubMed Central

    Sotelo, Tamara; Soengas, Pilar; Velasco, Pablo; Rodríguez, Víctor M.; Cartea, María Elena

    2014-01-01

    Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect. PMID:24614913

  8. Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach.

    PubMed

    Králová-Hromadová, Ivica; Minárik, Gabriel; Bazsalovicsová, Eva; Mikulíček, Peter; Oravcová, Alexandra; Pálková, Lenka; Hanzelová, Vladimíra

    2015-02-01

    Caryophyllaeus laticeps (Pallas 1781) (Cestoda: Caryophyllidea) is a monozoic tapeworm of cyprinid fishes with a distribution area that includes Europe, most of the Palaearctic Asia and northern Africa. Broad geographic distribution, wide range of definitive fish hosts and recently revealed high morphological plasticity of the parasite, which is not in an agreement with molecular findings, make this species to be an interesting model for population biology studies. Microsatellites (short tandem repeat (STR) markers), as predominant markers for population genetics, were designed for C. laticeps using a next-generation sequencing (NGS) approach. Out of 165 marker candidates, 61 yielded PCR products of the expected size and in 25 of the candidates a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for heterozygosity, Hardy-Weinberg equilibrium and the presence of null alleles on 59 individuals coming from three geographically widely separated populations (Slovakia, Russia and UK). The number of alleles in particular loci and populations ranged from two to five. Significant deficit of heterozygotes and the presence of null alleles were found in one locus in all three populations. Other loci showed deviations from Hardy-Weinberg equilibrium and the presence of null alleles only in some populations. In spite of relatively low polymorphism and the potential presence of null alleles, newly developed microsatellites may be applied as suitable markers in population genetic studies of C. laticeps.

  9. Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza sativa L.) Grown at Four International Field Sites

    PubMed Central

    Norton, Gareth J.; Douglas, Alex; Lahner, Brett; Yakubova, Elena; Guerinot, Mary Lou; Pinson, Shannon R. M.; Tarpley, Lee; Eizenga, Georgia C.; McGrath, Steve P.; Zhao, Fang-Jie; Islam, M. Rafiqul; Islam, Shofiqul; Duan, Guilan; Zhu, Yongguan; Salt, David E.; Meharg, Andrew A.; Price, Adam H.

    2014-01-01

    The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel. PMID:24586963

  10. Genome-Wide Association Study for Muscle Fat Content and Abdominal Fat Traits in Common Carp (Cyprinus carpio)

    PubMed Central

    Zheng, Xianhu; Kuang, Youyi; Lv, Weihua; Cao, Dingchen; Sun, Zhipeng; Sun, Xiaowen

    2016-01-01

    Muscle fat content is an important phenotypic trait in fish, as it affects the nutritional, technical and sensory qualities of flesh. To identify loci and candidate genes associated with muscle fat content and abdominal fat traits, we performed a genome-wide association study (GWAS) using the common carp 250 K SNP assay in a common carp F2 resource population. A total of 18 loci surpassing the genome-wide suggestive significance level were detected for 4 traits: fat content in dorsal muscle (MFdo), fat content in abdominal muscle (MFab), abdominal fat weight (AbFW), and AbFW as a percentage of eviscerated weight (AbFP). Among them, one SNP (carp089419) affecting both AbFW and AbFP reached the genome-wide significance level. Ten of those loci were harbored in or near known genes. Furthermore, relative expressions of 5 genes related to MFdo were compared using dorsal muscle samples with high and low phenotypic values. The results showed that 4 genes were differentially expressed between the high and low phenotypic groups. These genes are, therefore, prospective candidate genes for muscle fat content: ankyrin repeat domain 10a (ankrd10a), tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (tanc2), and four jointed box 1 (fjx1) and choline kinase alpha (chka). These results offer valuable insights into the complex genetic basis of fat metabolism and deposition. PMID:28030623

  11. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs.

    PubMed

    Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod

    2016-04-01

    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia.

    PubMed

    Ayhan, Özgecan; Balkan, Mahmut; Guven, Ayse; Hazan, Renin; Atar, Murat; Tok, Atalay; Tolun, Aslıhan

    2014-04-01

    Azoospermia is the absence of a measurable level of spermatozoa in the semen. It affects approximately 1% of all men, and the genetic basis of the majority of idiopathic cases is unknown. We investigated two unrelated consanguineous families with idiopathic azoospermia. In family 1, there were three azoospermic brothers and one oligozoospermic brother; and in family 2, there were three azoospermic brothers. Testis biopsy in the brothers in family 2 had led to the diagnosis of maturation arrest in the spermatid stage. Candidate disease loci were found via linkage mapping using data from single nucleotide polymorphism genome scans. Exome sequencing was applied to find the variants at the loci. We identified two candidate loci in each family and homozygous truncating mutations p.R611X in TAF4B in family 1 and p.K507Sfs*3 in ZMYND15 in family 2. We did not detect any mutations in these genes in a cohort of 45 azoospermic and 15 oligozoospermic men. Expression studies for ZMYND15 showed that the highest expression was in the testis. Both genes are known to have roles in spermatogenesis in mice but neither has been studied in humans. To our knowledge, they are the first genes identified for recessive idiopathic spermatogenic failure in men. Assuming that recessive genes for isolated azoospermia are as numerous in men as in mice, each gene is possibly responsible for only a small fraction of all cases.

  13. Sequence-Based Typing of Legionella pneumophila Serogroup 1 Offers the Potential for True Portability in Legionellosis Outbreak Investigation

    PubMed Central

    Gaia, Valeria; Fry, Norman K.; Harrison, Timothy G.; Peduzzi, Raffaele

    2003-01-01

    Seven gene loci of Legionella pneumophila serogroup 1 were analyzed as potential epidemiological typing markers to aid in the investigation of legionella outbreaks. The genes chosen included four likely to be selectively neutral (acn, groES, groEL, and recA) and three likely to be under selective pressure (flaA, mompS, and proA). Oligonucleotide primers were designed to amplify 279- to 763-bp fragments from each gene. Initial sequence analysis of the seven loci from 10 well-characterized isolates of L. pneumophila serogroup 1 gave excellent reproducibility (R) and epidemiological concordance (E) values (R = 1.00; E = 1.00). The three loci showing greatest discrimination and nucleotide variation, flaA, mompS, and proA, were chosen for further study. Indices of discrimination (D) were calculated using a panel of 79 unrelated isolates. Single loci gave D values ranging from 0.767 to 0.857, and a combination of all three loci resulted in a D value of 0.924. When all three loci were combined with monoclonal antibody subgrouping, the D value was 0.971. Sequence-based typing of L. pneumophila serogroup 1 using only three loci is epidemiologically concordant and highly discriminatory and has the potential to become the new “gold standard” for the epidemiological typing of L. pneumophila. PMID:12843023

  14. Panel of polymorphic heterologous microsatellite loci to genotype critically endangered Bengal tiger: a pilot study.

    PubMed

    Mishra, Sudhanshu; Singh, Sujeet Kumar; Munjal, Ashok Kumar; Aspi, Jouni; Goyal, Surendra Prakash

    2014-01-03

    In India, six landscapes and source populations that are important for long-term conservation of Bengal tigers (Panthera tigris tigris) have been identified. Except for a few studies, nothing is known regarding the genetic structure and extent of gene flow among most of the tiger populations across India as the majority of them are small, fragmented and isolated. Thus, individual-based relationships are required to understand the species ecology and biology for planning effective conservation and genetics-based individual identification has been widely used. But this needs screening and describing characteristics of microsatellite loci from DNA from good-quality sources so that the required number of loci can be selected and the genotyping error rate minimized. In the studies so far conducted on the Bengal tiger, a very small number of loci (n = 35) have been tested with high-quality source of DNA, and information on locus-specific characteristics is lacking. The use of such characteristics has been strongly recommended in the literature to minimize the error rate and by the International Society for Forensic Genetics (ISFG) for forensic purposes. Therefore, we describe for the first time locus-specific genetic and genotyping profile characteristics, crucial for population genetic studies, using high-quality source of DNA of the Bengal tiger. We screened 39 heterologous microsatellite loci (Sumatran tiger, domestic cat, Asiatic lion and snow leopard) in captive individuals (n = 8), of which 21 loci are being reported for the first time in the Bengal tiger, providing an additional choice for selection. The mean relatedness coefficient (R = -0.143) indicates that the selected tigers were unrelated. Thirty-four loci were polymorphic, with the number of alleles ranging from 2 to 7 per locus, and the remaining five loci were monomorphic. Based on the PIC values (> 0.500), and other characteristics, we suggest that 16 loci (3 to 7 alleles) be used for genetic and forensic study purposes. The probabilities of matching genotypes of unrelated individuals (3.692 × 10(-19)) and siblings (4.003 × 10(-6)) are within the values needed for undertaking studies in population genetics, relatedness, sociobiology and forensics.

  15. Detecting gene subnetworks under selection in biological pathways.

    PubMed

    Gouy, Alexandre; Daub, Joséphine T; Excoffier, Laurent

    2017-09-19

    Advances in high throughput sequencing technologies have created a gap between data production and functional data analysis. Indeed, phenotypes result from interactions between numerous genes, but traditional methods treat loci independently, missing important knowledge brought by network-level emerging properties. Therefore, detecting selection acting on multiple genes affecting the evolution of complex traits remains challenging. In this context, gene network analysis provides a powerful framework to study the evolution of adaptive traits and facilitates the interpretation of genome-wide data. We developed a method to analyse gene networks that is suitable to evidence polygenic selection. The general idea is to search biological pathways for subnetworks of genes that directly interact with each other and that present unusual evolutionary features. Subnetwork search is a typical combinatorial optimization problem that we solve using a simulated annealing approach. We have applied our methodology to find signals of adaptation to high-altitude in human populations. We show that this adaptation has a clear polygenic basis and is influenced by many genetic components. Our approach, implemented in the R package signet, improves on gene-level classical tests for selection by identifying both new candidate genes and new biological processes involved in adaptation to altitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    PubMed

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  17. New candidate loci identified by array-CGH in a cohort of 100 children presenting with syndromic obesity.

    PubMed

    Vuillaume, Marie-Laure; Naudion, Sophie; Banneau, Guillaume; Diene, Gwenaelle; Cartault, Audrey; Cailley, Dorothée; Bouron, Julie; Toutain, Jérôme; Bourrouillou, Georges; Vigouroux, Adeline; Bouneau, Laurence; Nacka, Fabienne; Kieffer, Isabelle; Arveiler, Benoit; Knoll-Gellida, Anja; Babin, Patrick J; Bieth, Eric; Jouret, Béatrice; Julia, Sophie; Sarda, Pierre; Geneviève, David; Faivre, Laurence; Lacombe, Didier; Barat, Pascal; Tauber, Maithé; Delrue, Marie-Ange; Rooryck, Caroline

    2014-08-01

    Syndromic obesity is defined by the association of obesity with one or more feature(s) including developmental delay, dysmorphic traits, and/or congenital malformations. Over 25 syndromic forms of obesity have been identified. However, most cases remain of unknown etiology. The aim of this study was to identify new candidate loci associated with syndromic obesity to find new candidate genes and to better understand molecular mechanisms involved in this pathology. We performed oligonucleotide microarray-based comparative genomic hybridization in a cohort of 100 children presenting with syndromic obesity of unknown etiology, after exhaustive clinical, biological, and molecular studies. Chromosomal copy number variations were detected in 42% of the children in our cohort, with 23% of patients with potentially pathogenic copy number variants. Our results support that chromosomal rearrangements are frequently associated with syndromic obesity with a variety of contributory genes having relevance to either obesity or developmental delay. A list of inherited or apparently de novo duplications and deletions including their enclosed genes and not previously linked to syndromic obesity was established. Proteins encoded by several of these genes are involved in lipid metabolism (ACOXL, MSMO1, MVD, and PDZK1) linked with nervous system function (BDH1 and LINGO2), neutral lipid storage (PLIN2), energy homeostasis and metabolic processes (CDH13, CNTNAP2, CPPED1, NDUFA4, PTGS2, and SOCS6). © 2014 Wiley Periodicals, Inc.

  18. Linkage analyses in Darier disease (DD) and Halley-Halley disease (HHD): Fine mapping of the DD locus on chromosome 12q and rejection of the hypothesis that HHD is allelic to DD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, G.; Wright, A.R.; Compton, J.G.

    1994-09-01

    DD and HHD are rare autosomal dominant genodermatoses. These disorders of cornification share some clinical and histologic features and for many years were thought to be variants of the same disease. DD presents as hyperkeratotic papules and plaques, usually in a seborrheic distribution; rarely, blisters can occur. Mucous membranes and nails may also be involved. Skin involvement in HHD includes erythematous and scaly plaques, and vesicular or crusted lesions, often in intertriginous areas. Both diseases have age-dependent penetrance and are characterized histologically by a focal loss of cell adhesion in the suprabasal epidermis leading to lacunaes (acantholysis) and premature keratinizationmore » (dyskeratosis). We analyzed linkage of DD in ten families with markers in 12q23-q24.1, the region to which it has been mapped. Detailed genotype analysis of recombinant chromosomes in our families, along with previously reported data, refine the location of the DD gene to about a 4 cM interval flanked by the loci D12S129 and D12S105. We have excluded two genes in 12q22-q24, PLA2A and PAH, as candidate loci for DD. Three other gene loci (PPP1C, PMCH and PMCA1) mapping in 12q21-q24, remain potential candidates. The region containing the DD gene is an obvious candidate location to test for HHD. We investigated four multigeneration families with HHD for linkage to the DD gene locus using several tightly linked microsatellite markers. Obligate recombination with each marker tested was observed, and the HHD locus was excluded from about 37 cM around the DD locus, proving that DD and HHD are not allelic disorders.« less

  19. Deep Sequencing of 71 Candidate Genes to Characterize Variation Associated with Alcohol Dependence.

    PubMed

    Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Kumar, Gaurav; Aberg, Karolina A; Nerella, Srilaxmi; Xie, Linying; Collins, Ann L; Crowley, James J; Quackenbush, Corey R; Hilliard, Christopher E; Shabalin, Andrey A; Vrieze, Scott I; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; McGue, Matt; Maes, Hermine; Iacono, William G; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J

    2017-04-01

    Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10 -5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10 -5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD. Copyright © 2017 by the Research Society on Alcoholism.

  20. Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems.

    PubMed

    Zvinorova, P I; Halimani, T E; Muchadeyi, F C; Matika, O; Riggio, V; Dzama, K

    2016-07-30

    The control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium in grazing systems by implementation of various strategies, in which improvement of genetic resistance of small ruminant should be included. Therefore, selection for resistant hosts can be considered as one of the sustainable control strategy, although it will be most effective when used to complement other control strategies such as grazing management and improving efficiency of anthelmintics currently. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus)

    PubMed Central

    Lai, Fang-Nong; Zhai, Hong-Li; Cheng, Ming; Ma, Jun-Yu; Cheng, Shun-Feng; Ge, Wei; Zhang, Guo-Liang; Wang, Jun-Jie; Zhang, Rui-Qian; Wang, Xue; Min, Ling-Jiang; Song, Jiu-Zhou; Shen, Wei

    2016-01-01

    Dairy goats are one of the most utilized domesticated animals in China. Here, we selected extreme populations based on differential fecundity in two Laoshan dairy goat populations. Utilizing deep sequencing we have generated 68.7 and 57.8 giga base of sequencing data, and identified 12,458,711 and 12,423,128 SNPs in the low fecundity and high fecundity groups, respectively. Following selective sweep analyses, a number of loci and candidate genes in the two populations were scanned independently. The reproduction related genes CCNB2, AR, ADCY1, DNMT3B, SMAD2, AMHR2, ERBB2, FGFR1, MAP3K12 and THEM4 were specifically selected in the high fecundity group whereas KDM6A, TENM1, SWI5 and CYM were specifically selected in the low fecundity group. A sub-set of genes including SYCP2, SOX5 and POU3F4 were localized both in the high and low fecundity selection windows, suggesting that these particular genes experienced strong selection with lower genetic diversity. From the genome data, the rare nonsense mutations may not contribute to fecundity, whereas nonsynonymous SNPs likely play a predominant role. The nonsynonymous exonic SNPs in SETDB2 and CDH26 which were co-localized in the selected region may take part in fecundity traits. These observations bring us a new insights into the genetic variation influencing fecundity traits within dairy goats. PMID:27905513

  2. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak

    PubMed Central

    Wu, Xiaoyun; Wang, Kun; Ding, Xuezhi; Wang, Mingcheng; Chu, Min; Xie, Xiuyue; Qiu, Qiang; Yan, Ping

    2016-01-01

    The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species. PMID:27389700

  3. Trans-Ethnic Fine-Mapping of Lipid Loci Identifies Population-Specific Signals and Allelic Heterogeneity That Increases the Trait Variance Explained

    PubMed Central

    Wu, Ying; Waite, Lindsay L.; Jackson, Anne U.; Sheu, Wayne H-H.; Buyske, Steven; Absher, Devin; Arnett, Donna K.; Boerwinkle, Eric; Bonnycastle, Lori L.; Carty, Cara L.; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C.; Dumitrescu, Logan; Eaton, Charles B.; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E.; Hindorff, Lucia A.; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L.; Narisu, Narisu; Robinson, Jennifer G.; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J.; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M.; Adair, Linda S.; Ballantyne, Christie M.; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S.; Duggan, David; Feranil, Alan B.; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C.; Hveem, Kristian; Juang, Jyh-Ming J.; Kesäniemi, Antero Y.; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lee, I-Te; Leppert, Mark F.; Matise, Tara C.; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I.; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Mohlke, Karen L.

    2013-01-01

    Genome-wide association studies (GWAS) have identified ∼100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10−4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291

  4. Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    PubMed Central

    Becker, Kerstin; Siegert, Sabine; Toliat, Mohammad Reza; Du, Juanjiangmeng; Casper, Ramona; Dolmans, Guido H.; Werker, Paul M.; Tinschert, Sigrid; Franke, Andre; Gieger, Christian; Strauch, Konstantin; Nothnagel, Michael; Nürnberg, Peter; Hennies, Hans Christian

    2016-01-01

    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease. PMID:27467239

  5. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    PubMed

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-09-14

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. Copyright © 2015 Massa et al.

  6. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)

    PubMed Central

    Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.

    2015-01-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  7. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps.

    PubMed

    Roschanski, Anna M; Csilléry, Katalin; Liepelt, Sascha; Oddou-Muratorio, Sylvie; Ziegenhagen, Birgit; Huard, Frédéric; Ullrich, Kristian K; Postolache, Dragos; Vendramin, Giovanni G; Fady, Bruno

    2016-02-01

    Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean Alps, along the margin of its distribution range, from pairs of high- and low-elevation plots on four different mountains situated along a 170-km east-west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east-west isolation by distance among mountain sites. F(ST) outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using F(ST) outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. Q(ST)-F(ST) tests for fitness-related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the southern French Alps where, during the east-to-west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales. © 2015 John Wiley & Sons Ltd.

  8. Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies

    PubMed Central

    Arafa, Ramadan A.; Rakha, Mohamed T.; Kamel, Said M.

    2017-01-01

    Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site–associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits. PMID:29253902

  9. Genetic and Phenotypic Characterization of Manufacturing Seeds for a Tetravalent Dengue Vaccine (DENVax)

    PubMed Central

    Huang, Claire Y.-H.; Kinney, Richard M.; Livengood, Jill A.; Bolling, Bethany; Arguello, John J.; Luy, Betty E.; Silengo, Shawn J.; Boroughs, Karen L.; Stovall, Janae L.; Kalanidhi, Akundi P.; Brault, Aaron C.; Osorio, Jorge E.; Stinchcomb, Dan T.

    2013-01-01

    Background We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1–4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. Methodology/Principal Findings After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors. Conclusion/Significance All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia. PMID:23738026

  10. Development and application of microsatellites in candidate genes related to wood properties in the Chinese white poplar (Populus tomentosa Carr.).

    PubMed

    Du, Qingzhang; Gong, Chenrui; Pan, Wei; Zhang, Deqiang

    2013-02-01

    Gene-derived simple sequence repeats (genic SSRs), also known as functional markers, are often preferred over random genomic markers because they represent variation in gene coding and/or regulatory regions. We characterized 544 genic SSR loci derived from 138 candidate genes involved in wood formation, distributed throughout the genome of Populus tomentosa, a key ecological and cultivated wood production species. Of these SSRs, three-quarters were located in the promoter or intron regions, and dinucleotide (59.7%) and trinucleotide repeat motifs (26.5%) predominated. By screening 15 wild P. tomentosa ecotypes, we identified 188 polymorphic genic SSRs with 861 alleles, 2-7 alleles for each marker. Transferability analysis of 30 random genic SSRs, testing whether these SSRs work in 26 genotypes of five genus Populus sections (outgroup, Salix matsudana), showed that 72% of the SSRs could be amplified in Turanga and 100% could be amplified in Leuce. Based on genotyping of these 26 genotypes, a neighbour-joining analysis showed the expected six phylogenetic groupings. In silico analysis of SSR variation in 220 sequences that are homologous between P. tomentosa and Populus trichocarpa suggested that genic SSR variations between relatives were predominantly affected by repeat motif variations or flanking sequence mutations. Inheritance tests and single-marker associations demonstrated the power of genic SSRs in family-based linkage mapping and candidate gene-based association studies, as well as marker-assisted selection and comparative genomic studies of P. tomentosa and related species.

  11. Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci.

    PubMed

    Raelson, John V; Little, Randall D; Ruether, Andreas; Fournier, Hélène; Paquin, Bruno; Van Eerdewegh, Paul; Bradley, W E C; Croteau, Pascal; Nguyen-Huu, Quynh; Segal, Jonathan; Debrus, Sophie; Allard, René; Rosenstiel, Philip; Franke, Andre; Jacobs, Gunnar; Nikolaus, Susanna; Vidal, Jean-Michel; Szego, Peter; Laplante, Nathalie; Clark, Hilary F; Paulussen, René J; Hooper, John W; Keith, Tim P; Belouchi, Abdelmajid; Schreiber, Stefan

    2007-09-11

    Genome-wide association (GWA) studies offer a powerful unbiased method for the identification of multiple susceptibility genes for complex diseases. Here we report the results of a GWA study for Crohn's disease (CD) using family trios from the Quebec Founder Population (QFP). Haplotype-based association analyses identified multiple regions associated with the disease that met the criteria for genome-wide significance, with many containing a gene whose function appears relevant to CD. A proportion of these were replicated in two independent German Caucasian samples, including the established CD loci NOD2 and IBD5. The recently described IL23R locus was also identified and replicated. For this region, multiple individuals with all major haplotypes in the QFP were sequenced and extensive fine mapping performed to identify risk and protective alleles. Several additional loci, including a region on 3p21 containing several plausible candidate genes, a region near JAKMIP1 on 4p16.1, and two larger regions on chromosome 17 were replicated. Together with previously published loci, the spectrum of CD genes identified to date involves biochemical networks that affect epithelial defense mechanisms, innate and adaptive immune response, and the repair or remodeling of tissue.

  12. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum.

    PubMed

    Vandenbrink, Joshua P; Goff, Valorie; Jin, Huizhe; Kong, Wenqian; Paterson, Andrew H; Feltus, F Alex

    2013-09-01

    For lignocellulosic bioenergy to be economically viable, genetic improvements must be made in feedstock quality including both biomass total yield and conversion efficiency. Toward this goal, multiple studies have considered candidate genes and discovered quantitative trait loci (QTL) associated with total biomass accumulation and/or grain production in bioenergy grass species including maize and sorghum. However, very little research has been focused on genes associated with increased biomass conversion efficiency. In this study, Trichoderma viride fungal cellulase hydrolysis activity was measured for lignocellulosic biomass (leaf and stem tissue) obtained from individuals in a F5 recombinant inbred Sorghum bicolor × Sorghum propinquum mapping population. A total of 49 QTLs (20 leaf, 29 stem) were associated with enzymatic conversion efficiency. Interestingly, six high-density QTL regions were identified in which four or more QTLs overlapped. In addition to enzymatic conversion efficiency QTLs, two QTLs were identified for biomass crystallinity index, a trait which has been shown to be inversely correlated with conversion efficiency in bioenergy grasses. The identification of these QTLs provides an important step toward identifying specific genes relevant to increasing conversion efficiency of bioenergy feedstocks. DNA markers linked to these QTLs could be useful in marker-assisted breeding programs aimed at increasing overall bioenergy yields concomitant with selection of high total biomass genotypes.

  13. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    PubMed Central

    Itoh, Takeshi; Tanaka, Tsuyoshi; Barrero, Roberto A.; Yamasaki, Chisato; Fujii, Yasuyuki; Hilton, Phillip B.; Antonio, Baltazar A.; Aono, Hideo; Apweiler, Rolf; Bruskiewich, Richard; Bureau, Thomas; Burr, Frances; Costa de Oliveira, Antonio; Fuks, Galina; Habara, Takuya; Haberer, Georg; Han, Bin; Harada, Erimi; Hiraki, Aiko T.; Hirochika, Hirohiko; Hoen, Douglas; Hokari, Hiroki; Hosokawa, Satomi; Hsing, Yue; Ikawa, Hiroshi; Ikeo, Kazuho; Imanishi, Tadashi; Ito, Yukiyo; Jaiswal, Pankaj; Kanno, Masako; Kawahara, Yoshihiro; Kawamura, Toshiyuki; Kawashima, Hiroaki; Khurana, Jitendra P.; Kikuchi, Shoshi; Komatsu, Setsuko; Koyanagi, Kanako O.; Kubooka, Hiromi; Lieberherr, Damien; Lin, Yao-Cheng; Lonsdale, David; Matsumoto, Takashi; Matsuya, Akihiro; McCombie, W. Richard; Messing, Joachim; Miyao, Akio; Mulder, Nicola; Nagamura, Yoshiaki; Nam, Jongmin; Namiki, Nobukazu; Numa, Hisataka; Nurimoto, Shin; O’Donovan, Claire; Ohyanagi, Hajime; Okido, Toshihisa; OOta, Satoshi; Osato, Naoki; Palmer, Lance E.; Quetier, Francis; Raghuvanshi, Saurabh; Saichi, Naomi; Sakai, Hiroaki; Sakai, Yasumichi; Sakata, Katsumi; Sakurai, Tetsuya; Sato, Fumihiko; Sato, Yoshiharu; Schoof, Heiko; Seki, Motoaki; Shibata, Michie; Shimizu, Yuji; Shinozaki, Kazuo; Shinso, Yuji; Singh, Nagendra K.; Smith-White, Brian; Takeda, Jun-ichi; Tanino, Motohiko; Tatusova, Tatiana; Thongjuea, Supat; Todokoro, Fusano; Tsugane, Mika; Tyagi, Akhilesh K.; Vanavichit, Apichart; Wang, Aihui; Wing, Rod A.; Yamaguchi, Kaori; Yamamoto, Mayu; Yamamoto, Naoyuki; Yu, Yeisoo; Zhang, Hao; Zhao, Qiang; Higo, Kenichi; Burr, Benjamin; Gojobori, Takashi; Sasaki, Takuji

    2007-01-01

    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ∼32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene. PMID:17210932

  14. Analysis of four neuroligin genes as candidates for autism.

    PubMed

    Ylisaukko-oja, Tero; Rehnström, Karola; Auranen, Mari; Vanhala, Raija; Alen, Reija; Kempas, Elli; Ellonen, Pekka; Turunen, Joni A; Makkonen, Ismo; Riikonen, Raili; Nieminen-von Wendt, Taina; von Wendt, Lennart; Peltonen, Leena; Järvelä, Irma

    2005-12-01

    Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism. The neuroligin gene family consists of five members (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, and NLGN4Y at Yq11), of which NLGN1 and NLGN3 are located within the best loci observed in our previous genome-wide scan for autism in the Finnish sample. Here, we report a detailed molecular genetic analysis of NLGN1, NLGN3, NLGN4, and NLNG4Y in the Finnish autism sample. Mutation analysis of 30 probands selected from families producing linkage evidence for Xq13 and/or 3q26 loci revealed several polymorphisms, but none of these seemed to be functional. Family-based association analysis in 100 families with autism spectrum disorders yielded only modest associations at NLGN1 (rs1488545, P=0.002), NLGN3 (DXS7132, P=0.014), and NLGN4 (DXS996, P=0.031). We conclude that neuroligin mutations most probably represent rare causes of autism and that it is unlikely that the allelic variants in these genes would be major risk factors for autism.

  15. Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle

    PubMed Central

    Utsunomiya, Yuri T.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Matos, Márcia C.; Zavarez, Ludmilla B.; Ito, Pier K. R. K.; Pérez O'Brien, Ana M.; Sölkner, Johann; Porto-Neto, Laercio R.; Schenkel, Flávio S.; McEwan, John; Cole, John B.; da Silva, Marcos V. G. B.; Van Tassell, Curtis P.; Sonstegard, Tad S.; Garcia, José Fernando

    2014-01-01

    The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility. PMID:24558400

  16. Short hypervariable microhaplotypes: A novel set of very short high discriminating power loci without stutter artefacts.

    PubMed

    van der Gaag, Kristiaan J; de Leeuw, Rick H; Laros, Jeroen F J; den Dunnen, Johan T; de Knijff, Peter

    2018-07-01

    Since two decades, short tandem repeats (STRs) are the preferred markers for human identification, routinely analysed by fragment length analysis. Here we present a novel set of short hypervariable autosomal microhaplotypes (MH) that have four or more SNPs in a span of less than 70 nucleotides (nt). These MHs display a discriminating power approaching that of STRs and provide a powerful alternative for the analysis;1;is of forensic samples that are problematic when the STR fragment size range exceeds the integrity range of severely degraded DNA or when multiple donors contribute to an evidentiary stain and STR stutter artefacts complicate profile interpretation. MH typing was developed using the power of massively parallel sequencing (MPS) enabling new powerful, fast and efficient SNP-based approaches. MH candidates were obtained from queries in data of the 1000 Genomes, and Genome of the Netherlands (GoNL) projects. Wet-lab analysis of 276 globally dispersed samples and 97 samples of nine large CEPH families assisted locus selection and corroboration of informative value. We infer that MHs represent an alternative marker type with good discriminating power per locus (allowing the use of a limited number of loci), small amplicon sizes and absence of stutter artefacts that can be especially helpful when unbalanced mixed samples are submitted for human identification. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Unraveling the Genetic Basis of Seed Tocopherol Content and Composition in Rapeseed (Brassica napus L.)

    PubMed Central

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Background Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. Methodology/Principal Findings We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F2 (RC-F2) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. Conclusions/Significance This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition. PMID:23185526

  18. Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines

    PubMed Central

    Wang, Jianjun; Liu, Changlin; Li, Mingshun; Zhang, Degui; Bai, Li; Zhang, Shihuang; Li, Xinhai

    2011-01-01

    Background The harvest index for many crops can be improved through introduction of dwarf stature to increase lodging resistance, combined with early maturity. The inbred line Shen5003 has been widely used in maize breeding in China as a key donor line for the dwarf trait. Also, one major quantitative trait locus (QTL) controlling plant height has been identified in bin 5.05–5.06, across several maize bi-parental populations. With the progress of publicly available maize genome sequence, the objective of this work was to identify the candidate genes that affect plant height among Chinese maize inbred lines with genome wide association studies (GWAS). Methods and Findings A total of 284 maize inbred lines were genotyped using over 55,000 evenly spaced SNPs, from which a set of 41,101 SNPs were filtered with stringent quality control for further data analysis. With the population structure controlled in a mixed linear model (MLM) implemented with the software TASSEL, we carried out a genome-wide association study (GWAS) for plant height. A total of 204 SNPs (P≤0.0001) and 105 genomic loci harboring coding regions were identified. Four loci containing genes associated with gibberellin (GA), auxin, and epigenetic pathways may be involved in natural variation that led to a dwarf phenotype in elite maize inbred lines. Among them, a favorable allele for dwarfing on chromosome 5 (SNP PZE-105115518) was also identified in six Shen5003 derivatives. Conclusions The fact that a large number of previously identified dwarf genes are missing from our study highlights the discovery of the consistently significant association of the gene harboring the SNP PZE-105115518 with plant height (P = 8.91e-10) and its confirmation in the Shen5003 introgression lines. Results from this study suggest that, in the maize breeding schema in China, specific alleles were selected, that have played important roles in maize production. PMID:22216221

  19. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  20. Integrative strategies to identify candidate genes in rodent models of human alcoholism.

    PubMed

    Treadwell, Julie A

    2006-01-01

    The search for genes underlying alcohol-related behaviours in rodent models of human alcoholism has been ongoing for many years with only limited success. Recently, new strategies that integrate several of the traditional approaches have provided new insights into the molecular mechanisms underlying ethanol's actions in the brain. We have used alcohol-preferring C57BL/6J (B6) and alcohol-avoiding DBA/2J (D2) genetic strains of mice in an integrative strategy combining high-throughput gene expression screening, genetic segregation analysis, and mapping to previously published quantitative trait loci to uncover candidate genes for the ethanol-preference phenotype. In our study, 2 genes, retinaldehyde binding protein 1 (Rlbp1) and syntaxin 12 (Stx12), were found to be strong candidates for ethanol preference. Such experimental approaches have the power and the potential to greatly speed up the laborious process of identifying candidate genes for the animal models of human alcoholism.

  1. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae).

    PubMed

    Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.

  2. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae)

    PubMed Central

    Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608

  3. Effects of SNPs at newly identified lipids loci on blood lipid levels and risk of coronary heart disease in Chinese Han population: a case control study.

    PubMed

    Zhuang, Ke; Zhang, Wencai; Zhang, Xiaobo; Wu, Fangqin; Cheng, Longxian

    2011-08-01

    Associations between "lipid-related" candidate genes, blood lipid concentrations and coronary artery disease (CHD) risk are not clear. We aimed to investigate the effect of three newly identified lipids loci from genome-wide association studies on CHD and blood lipid levels in Chinese Han population. The genotypes of SNPs at three newly identified lipid loci and blood lipids concentrations were examined in 1360 CHD patients and 1360 age- and sex-frequency matched controls from an unrelated Chinese Han population. Allele T of rs16996148 occurred less frequently in CHD patients with the odds ratio (OR) being 0.64 (95% CI 0.50 to 0.81), after adjusting for conventional risk factors and was associated with a 33% decreased CHD risk (P<0.01) comparing with the major allele G. Individuals with GT genotype had the lowest CHD risk. No associations were found between the polymorphisms of other two loci with CHD risk and all three SNPs had no effect on lipid profile in this population. SNP rs16996148 on chromosome 19p13 is significantly associated with lower risk for CHD in Chinese Han population. However, it remains unresolved why these lipid-related loci had significantly less effects than the correspondingly expected effects on blood lipids levels in this population.

  4. The coupling hypothesis: why genome scans may fail to map local adaptation genes.

    PubMed

    Bierne, Nicolas; Welch, John; Loire, Etienne; Bonhomme, François; David, Patrice

    2011-05-01

    Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables. © 2011 Blackwell Publishing Ltd.

  5. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates.

    PubMed

    García-Verdugo, C; Sajeva, M; La Mantia, T; Harrouni, C; Msanda, F; Caujapé-Castells, J

    2015-02-01

    Ecological and evolutionary studies largely assume that island populations display low levels of neutral genetic variation. However, this notion has only been formally tested in a few cases involving plant taxa, and the confounding effect of selection on genetic diversity (GD) estimates based on putatively neutral markers has typically been overlooked. Here, we generated nuclear microsatellite and plastid DNA sequence data in Periploca laevigata, a plant taxon with an island-mainland distribution area, to (i) investigate whether selection affects GD estimates of populations across contrasting habitats; and (ii) test the long-standing idea that island populations have lower GD than their mainland counterparts. Plastid data showed that colonization of the Canary Islands promoted strong lineage divergence within P. laevigata, which was accompanied by selective sweeps at several nuclear microsatellite loci. Inclusion of loci affected by strong divergent selection produced a significant downward bias in the GD estimates of the mainland lineage, but such underestimates were substantial (>14%) only when more than one loci under selection were included in the computations. When loci affected by selection were removed, we did not find evidence that insular Periploca populations have less GD than their mainland counterparts. The analysis of data obtained from a comprehensive literature survey reinforced this result, as overall comparisons of GD estimates between island and mainland populations were not significant across plant taxa (N = 66), with the only exception of island endemics with narrow distributions. This study suggests that identification and removal of markers potentially affected by selection should be routinely implemented in estimates of GD, particularly if different lineages are compared. Furthermore, it provides compelling evidence that the expectation of low GD cannot be generalized to island plant populations. © 2015 John Wiley & Sons Ltd.

  6. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.].

    PubMed

    Muchero, Wellington; Ehlers, Jeffrey D; Roberts, Philip A

    2010-02-01

    Quantitative trait loci (QTL) studies provide insight into the complexity of drought tolerance mechanisms. Molecular markers used in these studies also allow for marker-assisted selection (MAS) in breeding programs, enabling transfer of genetic factors between breeding lines without complete knowledge of their exact nature. However, potential for recombination between markers and target genes limit the utility of MAS-based strategies. Candidate gene mapping offers an alternative solution to identify trait determinants underlying QTL of interest. Here, we used restriction site polymorphisms to investigate co-location of candidate genes with QTL for seedling drought stress-induced premature senescence identified previously in cowpea. Genomic DNA isolated from 113 F(2:8) RILs of drought-tolerant IT93K503-1 and drought susceptible CB46 genotypes was digested with combinations of EcoR1 and HpaII, Mse1, or Msp1 restriction enzymes and amplified with primers designed from 13 drought-responsive cDNAs. JoinMap 3.0 and MapQTL 4.0 software were used to incorporate polymorphic markers onto the AFLP map and to analyze their association with the drought response QTL. Seven markers co-located with peaks of previously identified QTL. Isolation, sequencing, and blast analysis of these markers confirmed their significant homology with drought or other abiotic stress-induced expressed sequence tags (EST) from cowpea and other plant systems. Further, homology with coding sequences for a multidrug resistance protein 3 and a photosystem I assembly protein ycf3 was revealed in two of these candidates. These results provide a platform for the identification and characterization of genetic trait determinants underlying seedling drought tolerance in cowpea.

  7. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava

    PubMed Central

    Turyagyenda, Laban F.; Kizito, Elizabeth B.; Ferguson, Morag; Baguma, Yona; Agaba, Morris; Harvey, Jagger J. W.; Osiru, David S. O.

    2013-01-01

    Cassava is an important root crop to resource-poor farmers in marginal areas, where its production faces drought stress constraints. Given the difficulties associated with cassava breeding, a molecular understanding of drought tolerance in cassava will help in the identification of markers for use in marker-assisted selection and genes for transgenic improvement of drought tolerance. This study was carried out to identify candidate drought-tolerance genes and expression-based markers of drought stress in cassava. One drought-tolerant (improved variety) and one drought-susceptible (farmer-preferred) cassava landrace were grown in the glasshouse under well-watered and water-stressed conditions. Their morphological, physiological and molecular responses to drought were characterized. Morphological and physiological measurements indicate that the tolerance of the improved variety is based on drought avoidance, through reduction of water loss via partial stomatal closure. Ten genes that have previously been biologically validated as conferring or being associated with drought tolerance in other plant species were confirmed as being drought responsive in cassava. Four genes (MeALDH, MeZFP, MeMSD and MeRD28) were identified as candidate cassava drought-tolerance genes, as they were exclusively up-regulated in the drought-tolerant genotype to comparable levels known to confer drought tolerance in other species. Based on these genes, we hypothesize that the basis of the tolerance at the cellular level is probably through mitigation of the oxidative burst and osmotic adjustment. This study provides an initial characterization of the molecular response of cassava to drought stress resembling field conditions. The drought-responsive genes can now be used as expression-based markers of drought stress tolerance in cassava, and the candidate tolerance genes tested in the context of breeding (as possible quantitative trait loci) and engineering drought tolerance in transgenics. PMID:23519782

  8. Genetic neuropathology of obsessive psychiatric syndromes

    PubMed Central

    Jaffe, A E; Deep-Soboslay, A; Tao, R; Hauptman, D T; Kaye, W H; Arango, V; Weinberger, D R; Hyde, T M; Kleinman, J E

    2014-01-01

    Anorexia nervosa (AN), bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. In addition, few, if any, studies have interrogated postmortem brain tissue for evidence of expression quantitative trait loci (eQTLs) associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single-nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a nonpsychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, for example, ED (N=15) and OCD/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and nonpsychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared with controls and OCD cases compared with controls, respectively (false discovery rate (FDR) <5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain data sets. PMID:25180571

  9. Genetic neuropathology of obsessive psychiatric syndromes.

    PubMed

    Jaffe, A E; Deep-Soboslay, A; Tao, R; Hauptman, D T; Kaye, W H; Arango, V; Weinberger, D R; Hyde, T M; Kleinman, J E

    2014-09-02

    Anorexia nervosa (AN), bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. In addition, few, if any, studies have interrogated postmortem brain tissue for evidence of expression quantitative trait loci (eQTLs) associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single-nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a nonpsychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, for example, ED (N=15) and OCD/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and nonpsychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared with controls and OCD cases compared with controls, respectively (false discovery rate (FDR) <5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain data sets.

  10. Revisiting genome wide association studies (GWAS) in coeliac disease: replication study in Spanish population and expression analysis of candidate genes.

    PubMed

    Plaza-Izurieta, Leticia; Castellanos-Rubio, Ainara; Irastorza, Iñaki; Fernández-Jimenez, Nora; Gutierrez, Galder; Bilbao, Jose Ramon

    2011-07-01

    Recent genome wide association studies (GWAS) on coeliac disease (CD) have identified risk loci harbouring genes that fit the accepted pathogenic model and are considered aetiological candidates. Using Taqman single nucleotide polymorphism (SNP) and expression assays, the study genotyped 11 SNPs tagging eight GWAS regions (1q31, 2q11-2q12, 3p21, 3q25-3q26, 3q28, 4q27, 6q25 and 12q24) in a Spanish cohort of 1094 CD patients and 540 controls, and performed expression analyses of candidate genes (RGS1, IL18R1/IL18RAP, CCR3, IL12A/SCHIP1, LPP, IL2/IL21-KIAA1109, TAGAP, and SH2B3) in intestinal mucosa from 29 CD children and eight controls. Polymorphisms in 1q31, 2q11-2q12, and 3q25 showed association in our cohort, and also 3q28 and 4q27 when combined with a previous study. Expression levels of IL12A, IL18RAP, IL21, KIAA1109, LPP, SCHIP1, and SH2B3 were affected by disease status, but the correlation between genotype and mRNA levels was observed only in IL12A, LPP, SCHIP1, and SH2B3. Expression differences between treated CD patients and controls along with SNP expression associations suggest a possible primary role for these four genes and their variants in pathogenesis. The lack of SNP effect in the remaining genes is probably a consequence of arbitrary candidate gene selection within association signals that are not based on functional studies.

  11. Dissecting Vancomycin-Intermediate Resistance in Staphylococcus aureus Using Genome-Wide Association

    PubMed Central

    Alam, Md Tauqeer; Petit, Robert A.; Crispell, Emily K.; Thornton, Timothy A.; Conneely, Karen N.; Jiang, Yunxuan; Satola, Sarah W.; Read, Timothy D.

    2014-01-01

    Vancomycin-intermediate Staphylococcus aureus (VISA) is currently defined as having minimal inhibitory concentration (MIC) of 4–8 µg/ml. VISA evolves through changes in multiple genetic loci with at least 16 candidate genes identified in clinical and in vitro-selected VISA strains. We report a whole-genome comparative analysis of 49 vancomycin-sensitive S. aureus and 26 VISA strains. Resistance to vancomycin was determined by broth microdilution, Etest, and population analysis profile-area under the curve (PAP-AUC). Genome-wide association studies (GWAS) of 55,977 single-nucleotide polymorphisms identified in one or more strains found one highly significant association (P = 8.78E-08) between a nonsynonymous mutation at codon 481 (H481) of the rpoB gene and increased vancomycin MIC. Additionally, we used a database of public S. aureus genome sequences to identify rare mutations in candidate genes associated with VISA. On the basis of these data, we proposed a preliminary model called ECM+RMCG for the VISA phenotype as a benchmark for future efforts. The model predicted VISA based on the presence of a rare mutation in a set of candidate genes (walKR, vraSR, graSR, and agrA) and/or three previously experimentally verified mutations (including the rpoB H481 locus) with an accuracy of 81% and a sensitivity of 73%. Further, the level of resistance measured by both Etest and PAP-AUC regressed positively with the number of mutations present in a strain. This study demonstrated 1) the power of GWAS for identifying common genetic variants associated with antibiotic resistance in bacteria and 2) that rare mutations in candidate gene, identified using large genomic data sets, can also be associated with resistance phenotypes. PMID:24787619

  12. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    PubMed Central

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  13. The signature of positive selection at randomly chosen loci.

    PubMed

    Przeworski, Molly

    2002-03-01

    In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.

  14. Quantitative trait loci for energy balance traits in an advanced intercross line derived from mice divergently selected for heat loss

    PubMed Central

    Nielsen, Merlyn K.; Thorn, Stephanie R.; Valdar, William; Pomp, Daniel

    2014-01-01

    Obesity in human populations, currently a serious health concern, is considered to be the consequence of an energy imbalance in which more energy in calories is consumed than is expended. We used interval mapping techniques to investigate the genetic basis of a number of energy balance traits in an F11 advanced intercross population of mice created from an original intercross of lines selected for increased and decreased heat loss. We uncovered a total of 137 quantitative trait loci (QTLs) for these traits at 41 unique sites on 18 of the 20 chromosomes in the mouse genome, with X-linked QTLs being most prevalent. Two QTLs were found for the selection target of heat loss, one on distal chromosome 1 and another on proximal chromosome 2. The number of QTLs affecting the various traits generally was consistent with previous estimates of heritabilities in the same population, with the most found for two bone mineral traits and the least for feed intake and several body composition traits. QTLs were generally additive in their effects, and some, especially those affecting the body weight traits, were sex-specific. Pleiotropy was extensive within trait groups (body weights, adiposity and organ weight traits, bone traits) and especially between body composition traits adjusted and not adjusted for body weight at sacrifice. Nine QTLs were found for one or more of the adiposity traits, five of which appeared to be unique. The confidence intervals among all QTLs averaged 13.3 Mb, much smaller than usually observed in an F2 cross, and in some cases this allowed us to make reasonable inferences about candidate genes underlying these QTLs. This study combined QTL mapping with genetic parameter analysis in a large segregating population, and has advanced our understanding of the genetic architecture of complex traits related to obesity. PMID:24918027

  15. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height.

    PubMed

    Guo, Michael; Liu, Zun; Willen, Jessie; Shaw, Cameron P; Richard, Daniel; Jagoda, Evelyn; Doxey, Andrew C; Hirschhorn, Joel; Capellini, Terence D

    2017-12-05

    GWAS have identified hundreds of height-associated loci. However, determining causal mechanisms is challenging, especially since height-relevant tissues (e.g. growth plates) are difficult to study. To uncover mechanisms by which height GWAS variants function, we performed epigenetic profiling of murine femoral growth plates. The profiled open chromatin regions recapitulate known chondrocyte and skeletal biology, are enriched at height GWAS loci, particularly near differentially expressed growth plate genes, and enriched for binding motifs of transcription factors with roles in chondrocyte biology. At specific loci, our analyses identified compelling mechanisms for GWAS variants. For example, at CHSY1 , we identified a candidate causal variant (rs9920291) overlapping an open chromatin region. Reporter assays demonstrated that rs9920291 shows allelic regulatory activity, and CRISPR/Cas9 targeting of human chondrocytes demonstrates that the region regulates CHSY1 expression. Thus, integrating biologically relevant epigenetic information (here, from growth plates) with genetic association results can identify biological mechanisms important for human growth.

  16. Identification of a DNA Segment Exhibiting Rearrangement Modifying Effects upon Transgenic δ-deleting Elements

    PubMed Central

    Janowski, Karen M.; Ledbetter, Stephanie; Mayo, Matthew S.; Hockett, Richard D.

    1997-01-01

    Control of the rearrangement and expression of the T cell receptor α and δ chains is critical for determining T cell type. The process of δ deletion is a candidate mechanism for maintaining separation of the α and δ loci. Mice harboring a transgenic reporter δ deletion construct show α/β T cell lineage–specific use of the transgenic elements. A 48-basepair segment of DNA, termed HPS1A, when deleted from this reporter construct, loses tight lineage-specific rearrangement control of transgenic elements, with abundant rearrangements of transgenic δ-deleting elements now in γ/δ T cells. Furthermore, HPS1A augments recombination frequency of extrachromosomal substrates in an in vitro recombination assay. DNA binding proteins recognizing HPS1A have been identified and are restricted to early B and T cells, during the time of active rearrangement of endogenous TCR and immunoglobulin loci. These data are consistent with δ deletion playing an important role in maintaining separate TCR α and δ loci. PMID:9207011

  17. Genome-Wide Association Study of Cardiac Structure and Systolic Function in African Americans: The Candidate Gene Association Resource (CARe) Study

    PubMed Central

    Fox, Ervin R.; Musani, Solomon K.; Barbalic, Maja; Lin, Honghuang; Yu, Bing; Ogunyankin, Kofo O.; Smith, Nicholas L.; Kutlar, Abdullah; Glazer, Nicole L.; Post, Wendy S.; Paltoo, Dina N.; Dries, Daniel L.; Farlow, Deborah N.; Duarte, Christine W.; Kardia, Sharon L.; Meyers, Kristin J.; Sun, Yan V.; Arnett, Donna K.; Patki, Amit A.; Sha, Jin; Cui, Xiangqui; Samdarshi, Tandaw E.; Penman, Alan D.; Bibbins-Domingo, Kirsten; Bůžková, Petra; Benjamin, Emelia J.; Bluemke, David A.; Morrison, Alanna C.; Heiss, Gerardo; Carr, J. Jeffrey; Tracy, Russell P.; Mosley, Thomas H.; Taylor, Herman A.; Psaty, Bruce M.; Heckbert, Susan R.; Cappola, Thomas P.; Vasan, Ramachandran S.

    2013-01-01

    Background Using data from four community-based cohorts of African Americans (AA), we tested the association between genome-wide markers (SNPs) and cardiac phenotypes in the Candidate-gene Association REsource (CARe) study. Methods and Results Among 6,765 AA, we related age, sex, height and weight-adjusted residuals for nine cardiac phenotypes (assessed by echocardiogram or MRI) to 2.5 million SNPs genotyped using Genome-Wide Affymetrix Human SNP Array 6.0 (Affy6.0) and the remainder imputed. Within cohort genome-wide association analysis was conducted followed by meta-analysis across cohorts using inverse variance weights (genome-wide significance threshold=4.0 ×10−07). Supplementary pathway analysis was performed. We attempted replication in 3 smaller cohorts of African ancestry and tested look-ups in one consortium of European ancestry (EchoGEN). Across the 9 phenotypes, variants in 4 genetic loci reached genome-wide significance: rs4552931 in UBE2V2 (p=1.43 × 10−07) for left ventricular mass (LVM); rs7213314 in WIPI1 (p=1.68 × 10−07) for LV internal diastolic diameter (LVIDD); rs1571099 in PPAPDC1A (p= 2.57 × 10−08) for interventricular septal wall thickness (IVST); and rs9530176 in KLF5 (p=4.02 × 10−07) for ejection fraction (EF). Associated variants were enriched in three signaling pathways involved in cardiac remodeling. None of the 4 loci replicated in cohorts of African ancestry were confirmed in look-ups in EchoGEN. Conclusions In the largest GWAS of cardiac structure and function to date in AA, we identified 4 genetic loci related to LVM, IVST, LVIDD and EF that reached genome-wide significance. Replication results suggest that these loci may represent unique to individuals of African ancestry. Additional large-scale studies are warranted for these complex phenotypes. PMID:23275298

  18. Nonsyndromic cleft palate: An association study at GWAS candidate loci in a multiethnic sample.

    PubMed

    Ishorst, Nina; Francheschelli, Paola; Böhmer, Anne C; Khan, Mohammad Faisal J; Heilmann-Heimbach, Stefanie; Fricker, Nadine; Little, Julian; Steegers-Theunissen, Regine P M; Peterlin, Borut; Nowak, Stefanie; Martini, Markus; Kruse, Teresa; Dunsche, Anton; Kreusch, Thomas; Gölz, Lina; Aldhorae, Khalid; Halboub, Esam; Reutter, Heiko; Mossey, Peter; Nöthen, Markus M; Rubini, Michele; Ludwig, Kerstin U; Knapp, Michael; Mangold, Elisabeth

    2018-06-01

    Nonsyndromic cleft palate only (nsCPO) is a common and multifactorial form of orofacial clefting. In contrast to successes achieved for the other common form of orofacial clefting, that is, nonsyndromic cleft lip with/without cleft palate (nsCL/P), genome wide association studies (GWAS) of nsCPO have identified only one genome wide significant locus. Aim of the present study was to investigate whether common variants contribute to nsCPO and, if so, to identify novel risk loci. We genotyped 33 SNPs at 27 candidate loci from 2 previously published nsCPO GWAS in an independent multiethnic sample. It included: (i) a family-based sample of European ancestry (n = 212); and (ii) two case/control samples of Central European (n = 94/339) and Arabian ancestry (n = 38/231), respectively. A separate association analysis was performed for each genotyped dataset, and meta-analyses were performed. After association analysis and meta-analyses, none of the 33 SNPs showed genome-wide significance. Two variants showed nominally significant association in the imputed GWAS dataset and exhibited a further decrease in p-value in a European and an overall meta-analysis including imputed GWAS data, respectively (rs395572: P MetaEU  = 3.16 × 10 -4 ; rs6809420: P MetaAll  = 2.80 × 10 -4 ). Our findings suggest that there is a limited contribution of common variants to nsCPO. However, the individual effect sizes might be too small for detection of further associations in the present sample sizes. Rare variants may play a more substantial role in nsCPO than in nsCL/P, for which GWAS of smaller sample sizes have identified genome-wide significant loci. Whole-exome/genome sequencing studies of nsCPO are now warranted. © 2018 Wiley Periodicals, Inc.

  19. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this population. PMID:20066049

  20. Variable-Number Tandem Repeats That Are Useful in Genotyping Isolates of Salmonella enterica subsp. enterica Serovars Typhimurium and Newport▿

    PubMed Central

    Witonski, D. ; Stefanova, R.; Ranganathan, A.; Schutze, G. E.; Eisenach, K. D.; Cave, M. D.

    2006-01-01

    The genome of Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 was analyzed for direct repeats, and 54 sequences containing variable-number tandem repeat loci were identified. Ten primer pairs that anneal upstream and downstream of each selected locus were designed and used to amplify PCR targets in isolates of S. enterica serovars Typhimurium and Newport. Four of the 10 loci did not show polymorphism in the length of products. Six loci were selected for analysis. Isolates of S. enterica serovars Typhimurium and Newport that were related to specific outbreaks and showed identical pulsed-field gel electrophoresis patterns were indistinguishable by the length of the six variable-number tandem repeats. Isolates that differed in their pulsed-field gel electrophoresis patterns showed polymorphism in variable-number tandem repeat profiles. Length of the products was confirmed by DNA sequence analysis. Only 2 of the 10 loci contained exact integers of the direct repeat. Eight loci contained partial copies. The partial copies were maintained at the ends of the variable-number tandem repeat loci in all isolates. In spite of having partial copies that were maintained in all isolates, the number of direct repeats at a locus was polymorphic. Six variable-number tandem repeat loci were useful in distinguishing isolates of S. enterica serovars Typhimurium and Newport that had different pulsed-field gel electrophoresis patterns and in identifying outbreak-associated cases that shared a common pulsed-field gel pattern. PMID:16943354

  1. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L.

    PubMed

    Kafkas, Salih; Khodaeiaminjan, Mortaza; Güney, Murat; Kafkas, Ebru

    2015-02-18

    Pistachio (Pistacia vera L.) is a dioecious species that has a long juvenility period. Therefore, development of marker-assisted selection (MAS) techniques would greatly facilitate pistachio cultivar-breeding programs. The sex determination mechanism is presently unknown in pistachio. The generation of sex-linked markers is likely to reduce time, labor, and costs associated with breeding programs, and will help to clarify the sex determination system in pistachio. Restriction site-associated DNA (RAD) markers were used to identify sex-linked markers and to elucidate the sex determination system in pistachio. Eight male and eight female F1 progenies from a Pistacia vera L. Siirt × Bağyolu cross, along with the parents, were subjected to RAD sequencing in two lanes of a Hi-Seq 2000 sequencing platform. This generated 449 million reads, comprising approximately 37.7 Gb of sequences. There were 33,757 polymorphic single nucleotide polymorphism (SNP) loci between the parents. Thirty-eight of these, from 28 RAD reads, were detected as putative sex-associated loci in pistachio. Validation was performed by SNaPshot analysis in 42 mature F1 progenies and in 124 cultivars and genotypes in a germplasm collection. Eight loci could distinguish sex with 100% accuracy in pistachio. To ascertain cost-effective application of markers in a breeding program, high-resolution melting (HRM) analysis was performed; four markers were found to perfectly separate sexes in pistachio. Because of the female heterogamety in all candidate SNP loci, we report for the first time that pistachio has a ZZ/ZW sex determination system. As the reported female-to-male segregation ratio is 1:1 in all known segregating populations and there is no previous report of super-female genotypes or female heteromorphic chromosomes in pistachio, it appears that the WW genotype is not viable. Sex-linked SNP markers were identified and validated in a large germplasm and proved their suitability for MAS in pistachio. HRM analysis successfully validated the sex-linked markers for MAS. For the first time in dioecious pistachio, a female heterogamety ZW/ZZ sex determination system is suggested.

  2. Selection of high heterozygosity popcorn varieties in Brazil based on SSR markers.

    PubMed

    Eloi, I B O; Mangolin, C A; Scapim, C A; Gonçalves, C S; Machado, M F P S

    2012-07-19

    We analyzed genetic structure and diversity among eight populations of popcorn, using SSR loci as genetic markers. Our objectives were to select SSR loci that could be used to estimate genetic diversity within popcorn populations, and to analyze the genetic structure of promising populations with high levels of heterozygosity that could be used in breeding programs. Fifty-seven alleles (3.7 alleles per locus) were detected; the highest effective number of alleles (4.21) and the highest gene diversity (0.763) were found for the Umc2226 locus. A very high level of population differentiation was found (F(ST) = 0.3664), with F(ST) for each locus ranging from 0.1029 (Umc1664) to 0.6010 (Umc2350). This analysis allowed us to identify SSR loci with high levels of heterozygosity and heterozygous varieties, which could be selected for production of inbred lines and for developing new cultivars.

  3. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georges, M.; Nielsen, D.; Mackinnon, M.

    1995-02-01

    We have exploited {open_quotes}progeny testing{close_quotes} to map quantitative trait loci (QTL) underlying the genetic variation of milk production in a selected dairy cattle population. A total of 1,518 sires, with progeny tests based on the milking performances of >150,000 daughters jointly, was genotyped for 159 autosomal microsatellites bracketing 1645 centimorgan or approximately two thirds of the bovine genome. Using a maximum likelihood multilocus linkage analysis accounting for variance heterogeneity of the phenotypes, we identified five chromosomes giving very strong evidence (LOD score {ge} 3) for the presence of a QTL controlling milk production: chromosomes 1, 6, 9, 10 and 20.more » These findings demonstrate that loci with considerable effects on milk production are still segregating in highly selected populations and pave the way toward marker-assisted selection in dairy cattle breeding. 44 refs., 4 figs., 3 tabs.« less

  4. Sexual selection and genetic colour polymorphisms in animals.

    PubMed

    Wellenreuther, Maren; Svensson, Erik I; Hansson, Bengt

    2014-11-01

    Genetic colour polymorphisms are widespread across animals and often subjected to complex selection regimes. Traditionally, colour morphs were used as simple visual markers to measure allele frequency changes in nature, selection, population divergence and speciation. With advances in sequencing technology and analysis methods, several model systems are emerging where the molecular targets of selection are being described. Here, we discuss recent studies on the genetics of sexually selected colour polymorphisms, aiming at (i) reviewing the evidence of sexual selection on colour polymorphisms, (ii) highlighting the genetic architecture, molecular and developmental basis underlying phenotypic colour diversification and (iii) discuss how the maintenance of such polymorphisms might be facilitated or constrained by these. Studies of the genetic architecture of colour polymorphism point towards the importance of tight clustering of colour loci with other trait loci, such as in the case of inversions and supergene structures. Other interesting findings include linkage between colour loci and mate preferences or sex determination, and the role of introgression and regulatory variation in fuelling polymorphisms. We highlight that more studies are needed that explicitly integrate fitness consequences of sexual selection on colour with the underlying molecular targets of colour to gain insights into the evolutionary consequences of sexual selection on polymorphism maintenance. © 2014 John Wiley & Sons Ltd.

  5. Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Goto, Akira; Merilä, Juha

    2011-06-01

    Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  6. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  7. Low Major Histocompatibility Complex Class II Variation in the Endangered Indo-Pacific Humpback Dolphin (Sousa chinensis): Inferences About the Role of Balancing Selection.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping

    2016-03-01

    It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes.

    PubMed

    Marone, Daniela; Russo, Maria A; Laidò, Giovanni; De Vita, Pasquale; Papa, Roberto; Blanco, Antonio; Gadaleta, Agata; Rubiales, Diego; Mastrangelo, Anna M

    2013-08-19

    Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2-6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.

  9. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes

    PubMed Central

    2013-01-01

    Background Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Results Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2–6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. Conclusions The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat. PMID:23957646

  10. Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus.

    PubMed

    Raboanatahiry, Nadia; Chao, Hongbo; Guo, Liangxing; Gan, Jianping; Xiang, Jun; Yan, Mingli; Zhang, Libin; Yu, Longjiang; Li, Maoteng

    2017-10-12

    Deciphering the genetic architecture of a species is a good way to understand its evolutionary history, but also to tailor its profile for breeding elite cultivars with desirable traits. Aligning QTLs from diverse population in one map and utilizing it for comparison, but also as a basis for multiple analyses assure a stronger evidence to understand the genetic system related to a given phenotype. In this study, 439 genes involved in fatty acid (FA) and triacylglycerol (TAG) biosyntheses were identified in Brassica napus. B. napus genome showed mixed gene loss and insertion compared to B. rapa and B. oleracea, and C genome had more inserted genes. Identified QTLs for oil (OC-QTLs) and fatty acids (FA-QTLs) from nine reported populations were projected on the physical map of the reference genome "Darmor-bzh" to generate a map. Thus, 335 FA-QTLs and OC-QTLs could be highlighted and 82 QTLs were overlapping. Chromosome C3 contained 22 overlapping QTLs with all trait studied except for C18:3. In total, 218 candidate genes which were potentially involved in FA and TAG were identified in 162 QTLs confidence intervals and some of them might affect many traits. Also, 76 among these candidate genes were found inside 57 overlapping QTLs, and candidate genes for oil content were in majority (61/76 genes). Then, sixteen genes were found in overlapping QTLs involving three populations, and the remaining 60 genes were found in overlapping QTLs of two populations. Interaction network and pathway analysis of these candidate genes indicated ten genes that might have strong influence over the other genes that control fatty acids and oil formation. The present results provided new information for genetic basis of FA and TAG formation in B. napus. A map including QTLs from numerous populations was built, which could serve as reference to study the genome profile of B. napus, and new potential genes emerged which might affect seed oil. New useful tracks were showed for the selection of population or/and selection of interesting genes for breeding improvement purpose.

  11. Similar Efficacies of Selection Shape Mitochondrial and Nuclear Genes in Both Drosophila melanogaster and Homo sapiens.

    PubMed

    Cooper, Brandon S; Burrus, Chad R; Ji, Chao; Hahn, Matthew W; Montooth, Kristi L

    2015-08-21

    Deleterious mutations contribute to polymorphism even when selection effectively prevents their fixation. The efficacy of selection in removing deleterious mitochondrial mutations from populations depends on the effective population size (Ne) of the mitochondrial DNA and the degree to which a lack of recombination magnifies the effects of linked selection. Using complete mitochondrial genomes from Drosophila melanogaster and nuclear data available from the same samples, we reexamine the hypothesis that nonrecombining animal mitochondrial DNA harbor an excess of deleterious polymorphisms relative to the nuclear genome. We find no evidence of recombination in the mitochondrial genome, and the much-reduced level of mitochondrial synonymous polymorphism relative to nuclear genes is consistent with a reduction in Ne. Nevertheless, we find that the neutrality index, a measure of the excess of nonsynonymous polymorphism relative to the neutral expectation, is only weakly significantly different between mitochondrial and nuclear loci. This difference is likely the result of the larger proportion of beneficial mutations in X-linked relative to autosomal loci, and we find little to no difference between mitochondrial and autosomal neutrality indices. Reanalysis of published data from Homo sapiens reveals a similar lack of a difference between the two genomes, although previous studies have suggested a strong difference in both species. Thus, despite a smaller Ne, mitochondrial loci of both flies and humans appear to experience similar efficacies of purifying selection as do loci in the recombining nuclear genome. Copyright © 2015 Cooper et al.

  12. Multilocus approaches for the measurement of selection on correlated genetic loci.

    PubMed

    Gompert, Zachariah; Egan, Scott P; Barrett, Rowan D H; Feder, Jeffrey L; Nosil, Patrik

    2017-01-01

    The study of ecological speciation is inherently linked to the study of selection. Methods for estimating phenotypic selection within a generation based on associations between trait values and fitness (e.g. survival) of individuals are established. These methods attempt to disentangle selection acting directly on a trait from indirect selection caused by correlations with other traits via multivariate statistical approaches (i.e. inference of selection gradients). The estimation of selection on genotypic or genomic variation could also benefit from disentangling direct and indirect selection on genetic loci. However, achieving this goal is difficult with genomic data because the number of potentially correlated genetic loci (p) is very large relative to the number of individuals sampled (n). In other words, the number of model parameters exceeds the number of observations (p ≫ n). We present simulations examining the utility of whole-genome regression approaches (i.e. Bayesian sparse linear mixed models) for quantifying direct selection in cases where p ≫ n. Such models have been used for genome-wide association mapping and are common in artificial breeding. Our results show they hold promise for studies of natural selection in the wild and thus of ecological speciation. But we also demonstrate important limitations to the approach and discuss study designs required for more robust inferences. © 2016 John Wiley & Sons Ltd.

  13. Interactions between Glu-1 and Glu-3 loci and associations of selected molecular markers with quality traits in winter wheat (Triticum aestivum L.) DH lines.

    PubMed

    Krystkowiak, Karolina; Langner, Monika; Adamski, Tadeusz; Salmanowicz, Bolesław P; Kaczmarek, Zygmunt; Krajewski, Paweł; Surma, Maria

    2017-02-01

    The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.

  14. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    PubMed Central

    Minster, Ryan L.; Sanders, Jason L.; Singh, Jatinder; Kammerer, Candace M.; Barmada, M. Michael; Matteini, Amy M.; Zhang, Qunyuan; Wojczynski, Mary K.; Daw, E. Warwick; Brody, Jennifer A.; Arnold, Alice M.; Lunetta, Kathryn L.; Murabito, Joanne M.; Christensen, Kaare; Perls, Thomas T.; Province, Michael A.

    2015-01-01

    Background. The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. Methods. We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. Results. There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10− 6) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24–p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. Conclusions. ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity. PMID:25758594

  15. Genome-wide scan reveals LEMD3 and WIF1 on SSC5 as the candidates for porcine ear size.

    PubMed

    Zhang, Longchao; Liang, Jing; Luo, Weizhen; Liu, Xin; Yan, Hua; Zhao, Kebin; Shi, Huibi; Zhang, Yuebo; Wang, Ligang; Wang, Lixian

    2014-01-01

    The quantitative trait loci (QTL) for porcine ear size was previously reported to mainly focus on SSC5 and SSC7. Recently, a missense mutation, G32E, in PPARD in the QTL interval on SSC7 was identified as the causative mutation for ear size. However, on account of the large interval of QTL, the responsible gene on SSC5 has not been identified. In this study, an intercross population was constructed from the large-eared Minzhu, an indigenous Chinese pig breed, and the Western commercial Large White pig to examine the genetic basis of ear size diversity. A GWAS was performed to detect SNPs significantly associated with ear size. Thirty-five significant SNPs defined a 10.78-Mb (30.14-40.92 Mb) region on SSC5. Further, combining linkage disequilibrium and haplotype sharing analysis, a reduced region of 3.07-Mb was obtained. Finally, by using a selective sweep analysis, a critical region of about 450-kb interval containing two annotated genes LEMD3 and WIF1 was refined in this work. Functional analysis indicated that both represent biological candidates for porcine ear size, with potential application in breeding programs. The two genes could also be used as novel references for further study of the mechanism underlying human microtia.

  16. A case-based evaluation of SRD5A1, SRD5A2, AR, and ADRA1A as candidate genes for severity of BPH.

    PubMed

    Klotsman, M; Weinberg, C R; Davis, K; Binnie, C G; Hartmann, K E

    2004-01-01

    In men with a clinical diagnosis of benign prostatic hyperplasia (BPH), polytomous logistic regression analysis was conducted to evaluate associations between two silent polymorphisms in SRD5A1 (codon positions 30 and 116), two polymorphisms in SRD5A2 (Val89Leu substitution and C to T transition in intron 1), a trinucleotide (CAG)n repeat in androgen receptor (AR), and an Arg492Cys substitution in ADRA1A and clinical parameters that characterize severity of BPH. Candidate gene selection was based on two mechanistic pathways targeted by pharmacotherapy for BPH: (1) androgen metabolic loci contributing to prostate growth (static obstruction); and (2) factors affecting smooth muscle tone (dynamic obstruction). Polymorphisms in SRD5A2 were not associated with severity of BPH; however, SRD5A1 polymorphisms were associated with severity of BPH. The process(es) in which these silent single-nucleotide polymorphisms (SNPs) influence BPH phenotypes is unknown and additional studies will be needed to assess whether these SNPs have direct functional consequences. The characterization of additional molecular factors that contribute to static and dynamic obstruction may help predict response to pharmacotherapy and serve to identify novel drug targets for the clinical management of BPH.

  17. Simple and efficient identification of rare recessive pathologically important sequence variants from next generation exome sequence data.

    PubMed

    Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T

    2013-07-01

    Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.

  18. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    PubMed

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  19. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop.

    PubMed

    Sardos, Julie; Rouard, Mathieu; Hueber, Yann; Cenci, Alberto; Hyma, Katie E; van den Houwe, Ines; Hribova, Eva; Courtois, Brigitte; Roux, Nicolas

    2016-01-01

    Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement.

  20. A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop

    PubMed Central

    Sardos, Julie; Rouard, Mathieu; Hueber, Yann; Cenci, Alberto; Hyma, Katie E.; van den Houwe, Ines; Hribova, Eva; Courtois, Brigitte; Roux, Nicolas

    2016-01-01

    Banana (Musa sp.) is a vegetatively propagated, low fertility, potentially hybrid and polyploid crop. These qualities make the breeding and targeted genetic improvement of this crop a difficult and long process. The Genome-Wide Association Study (GWAS) approach is becoming widely used in crop plants and has proven efficient to detecting candidate genes for traits of interest, especially in cereals. GWAS has not been applied yet to a vegetatively propagated crop. However, successful GWAS in banana would considerably help unravel the genomic basis of traits of interest and therefore speed up this crop improvement. We present here a dedicated panel of 105 accessions of banana, freely available upon request, and their corresponding GBS data. A set of 5,544 highly reliable markers revealed high levels of admixture in most accessions, except for a subset of 33 individuals from Papua. A GWAS on the seedless phenotype was then successfully applied to the panel. By applying the Mixed Linear Model corrected for both kinship and structure as implemented in TASSEL, we detected 13 candidate genomic regions in which we found a number of genes potentially linked with the seedless phenotype (i.e. parthenocarpy combined with female sterility). An additional GWAS performed on the unstructured Papuan subset composed of 33 accessions confirmed six of these regions as candidate. Out of both sets of analyses, one strong candidate gene for female sterility, a putative orthologous gene to Histidine Kinase CKI1, was identified. The results presented here confirmed the feasibility and potential of GWAS when applied to small sets of banana accessions, at least for traits underpinned by a few loci. As phenotyping in banana is extremely space and time-consuming, this latest finding is of particular importance in the context of banana improvement. PMID:27144345

  1. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories.

    PubMed

    Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-10-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.

  2. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories

    PubMed Central

    Borg, Åsa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-01-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance. PMID:22393491

  3. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.

    PubMed

    Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime; Bossé, Yohan; Shrine, Nick; Artigas, María Soler; Wain, Louise V; Hall, Ian P; Jackson, Victoria E; Wyss, Annah B; London, Stephanie J; North, Kari E; Franceschini, Nora; Strachan, David P; Beaty, Terri H; Hokanson, John E; Crapo, James D; Castaldi, Peter J; Chase, Robert P; Bartz, Traci M; Heckbert, Susan R; Psaty, Bruce M; Gharib, Sina A; Zanen, Pieter; Lammers, Jan W; Oudkerk, Matthijs; Groen, H J; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I; Vestbo, Jørgen; Timens, Wim; Paré, Peter D; Latourelle, Jeanne C; Dupuis, Josée; O'Connor, George T; Wilk, Jemma B; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M; de Koning, Harry J; Leng, Shuguang; Belinsky, Steven A; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Barr, R Graham; Sparrow, David; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lahousse, Lies; Brusselle, Guy G; Stricker, Bruno H; Uitterlinden, André G; Ampleford, Elizabeth J; Bleecker, Eugene R; Woodruff, Prescott G; Meyers, Deborah A; Qiao, Dandi; Lomas, David A; Yim, Jae-Joon; Kim, Deog Kyeom; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Hardin, Megan; Fingerlin, Tasha E; Schwartz, David A; Postma, Dirkje S; MacNee, William; Tobin, Martin D; Silverman, Edwin K; Boezen, H Marike; Cho, Michael H

    2017-03-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10 -6 ) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.

  4. A gene (ETM) for essential tremor maps to chromosome 2p22-p25.

    PubMed

    Higgins, J J; Pho, L T; Nee, L E

    1997-11-01

    We report the results of linkage analysis in a large American family of Czech descent with dominantly inherited "pure" essential tremor (ET) and genetic anticipation. Genetic loci on chromosome 2p22-p25 establish linkage to this region with a maximum LOD score (Zmax) = 5.92 for the locus, D2S272. Obligate recombinant events place the ETM gene in a 15-cM candidate interval between the genetic loci D2S168 and D2S224. Repeat expansion detection analysis suggests that expanded CAG trinucleotide sequences are associated with ET. These findings will facilitate the search for an ETM gene and may further our understanding of the human motor system.

  5. Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types

    PubMed Central

    2013-01-01

    Background Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. Results Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (FST = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r2) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. Conclusions Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a true dual purpose crop. Our genomic scans provide the first insights into candidate regions affected by divergent selection in flax. In combination with AM, genomic scans have the ability to increase the power to detect loci influencing complex traits. PMID:23647851

  6. Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types.

    PubMed

    Soto-Cerda, Braulio J; Diederichsen, Axel; Ragupathy, Raja; Cloutier, Sylvie

    2013-05-06

    Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (F(ST) = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r²) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at the improvement of flax as a true dual purpose crop. Our genomic scans provide the first insights into candidate regions affected by divergent selection in flax. In combination with AM, genomic scans have the ability to increase the power to detect loci influencing complex traits.

  7. Large-scale genotyping identifies 41 new loci associated with breast cancer risk.

    PubMed

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Dos Santos Silva, Isabel; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Veer, Laura J Van't; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-04-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10(-8)). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility.

  8. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    PubMed Central

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Silva, Isabel dos Santos; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Van’t Veer, Laura J; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P < 5 × 10−8). Further analyses suggest that more than 1,000 additional loci are involved in breast cancer susceptibility. PMID:23535729

  9. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments

    PubMed Central

    Lonn, Eija; Mappes, Tapio; Mokkonen, Mikael; Sims, Angela M.; Watts, Phillip C.

    2017-01-01

    Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5′ regulatory region (the regulatory region-associated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin–oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations. PMID:28325880

  10. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    PubMed Central

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  11. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  12. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice

    PubMed Central

    Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby

    2018-01-01

    Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits. PMID:29425206

  13. Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice.

    PubMed

    Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby; Frei, Michael

    2018-01-01

    Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.

  14. Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis.

    PubMed

    Grahame, John W; Wilding, Craig S; Butlin, Roger K

    2006-02-01

    Steep environmental gradients offer important opportunities to study the interaction between natural selection and gene flow. Allele frequency clines are expected to form at loci under selection, but unlinked neutral alleles may pass easily across these clines unless a generalized barrier evolves. Here we consider the distribution of forms of the intertidal gastropod Littorina saxatilis, analyzing shell shape and amplified fragment length polymorphism (AFLP) loci on two rocky shores in Britain. On the basis of previous work, the AFLP loci were divided into differentiated and undifferentiated groups. On both shores, we have shown a sharp cline in allele frequencies between the two morphs for differentiated AFLP loci. This is coincident with a habitat transition on the shore where the two habitats (cliff and boulder field) are immediately contiguous. The allele frequency clines coincide with a cline in shell morphology. In the middle of the cline, linkage disequilibrium for the differentiated loci rises in accordance with expectation. The clines are extremely narrow relative to dispersal, probably as a result of both strong selection and habitat choice. An increase in F(ST) for undifferentiated AFLPs between morphs, relative to within-morph comparisons, is consistent with there being a general barrier to gene flow across the contact zone. These features are consistent either with an episode of allopatric divergence followed by secondary contact or with primary, nonallopatric divergence. Further data will be needed to distinguish between these alternatives.

  15. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    PubMed

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  16. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays

    USDA-ARS?s Scientific Manuscript database

    To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and ...

  17. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes

    USDA-ARS?s Scientific Manuscript database

    Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candi...

  18. Immunogenetic mechanisms leading to thyroid autoimmunity: recent advances in identifying susceptibility genes and regions.

    PubMed

    Brand, Oliver J; Gough, Stephen C L

    2011-12-01

    The autoimmune thyroid diseases (AITD) include Graves' disease (GD) and Hashimoto's thyroiditis (HT), which are characterised by a breakdown in immune tolerance to thyroid antigens. Unravelling the genetic architecture of AITD is vital to better understanding of AITD pathogenesis, required to advance therapeutic options in both disease management and prevention. The early whole-genome linkage and candidate gene association studies provided the first evidence that the HLA region and CTLA-4 represented AITD risk loci. Recent improvements in; high throughput genotyping technologies, collection of larger disease cohorts and cataloguing of genome-scale variation have facilitated genome-wide association studies and more thorough screening of candidate gene regions. This has allowed identification of many novel AITD risk genes and more detailed association mapping. The growing number of confirmed AITD susceptibility loci, implicates a number of putative disease mechanisms most of which are tightly linked with aspects of immune system function. The unprecedented advances in genetic study will allow future studies to identify further novel disease risk genes and to identify aetiological variants within specific gene regions, which will undoubtedly lead to a better understanding of AITD patho-physiology.

  19. Immunogenetic Mechanisms Leading to Thyroid Autoimmunity: Recent Advances in Identifying Susceptibility Genes and Regions

    PubMed Central

    Brand, Oliver J; Gough, Stephen C.L

    2011-01-01

    The autoimmune thyroid diseases (AITD) include Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), which are characterised by a breakdown in immune tolerance to thyroid antigens. Unravelling the genetic architecture of AITD is vital to better understanding of AITD pathogenesis, required to advance therapeutic options in both disease management and prevention. The early whole-genome linkage and candidate gene association studies provided the first evidence that the HLA region and CTLA-4 represented AITD risk loci. Recent improvements in; high throughput genotyping technologies, collection of larger disease cohorts and cataloguing of genome-scale variation have facilitated genome-wide association studies and more thorough screening of candidate gene regions. This has allowed identification of many novel AITD risk genes and more detailed association mapping. The growing number of confirmed AITD susceptibility loci, implicates a number of putative disease mechanisms most of which are tightly linked with aspects of immune system function. The unprecedented advances in genetic study will allow future studies to identify further novel disease risk genes and to identify aetiological variants within specific gene regions, which will undoubtedly lead to a better understanding of AITD patho-physiology. PMID:22654554

  20. Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit1[OPEN

    PubMed Central

    Tamilselvan, Anandhan; Lawas, Lovely M.F.; Quinones, Cherryl; Bahuguna, Rajeev N.; Dingkuhn, Michael

    2017-01-01

    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress. PMID:28600346

Top