Zahoor, Muhammad; Jan, Muhammad Rasul; Naz, Sumaira
2016-11-01
Glucose-6-phosphatase is a key enzyme of glucose metabolic pathways. Deficiency of this enzyme leads to glycogen storage disease. This enzyme also plays a negative role in diabetes mellitus disorder in which the catalytic activity of this enzyme increases. Thus there is need for activators to enhance the activity of glucose-6-phosphatase in glycogen storage disease of type 1b while in diabetes mellitus repressors are needed to reduce its activity. Crude extracts of apricot, fig, mulberry and apple fruits were investigated for their repressive/enhancive effects on glucose-6-phosphatase in vivo. Albino mice were used as experimental animal. All the selected extracts showed depressive effects on glucose-6-phosphatase, which shows that all these extracts can be used as antidiabetic supplement of food. The inhibitory pattern was competitive one, which was evident from the effect of increasing dose from 1g/Kg body weight to 3g/Kg body weight for all the selected fruit extracts. However fig and apple fruit extracts showed high repressive effects for high doses as compared to apricot and mulberry fruit extracts. None of these selected fruit extracts showed enhancive effect on glucose-6-phosphatase activity. All these fruits or their extracts can be used as antidiabetic dietary supplement for diabetes mellitus.
Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.
Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo
2009-12-01
The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.
Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*
Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo
2009-01-01
The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955
A selective liquid pressurized extraction (SPLE) method was developed as a streamlined sample preparation/cleanup procedure for determining Aroclors and coplanar polychlorinated biphenyls (PCBs) in soil and sediment matrices. The SPLE method was coupled with an enzyme-linked imm...
Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S.
2015-01-01
Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids. PMID:26023840
Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S
2015-05-27
Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids.
Delabona, Priscila da Silva; Cota, Júnio; Hoffmam, Zaira Bruna; Paixão, Douglas Antonio Alvaredo; Farinas, Cristiane Sanchez; Cairo, João Paulo Lourenço Franco; Lima, Deise Juliana; Squina, Fábio Marcio; Ruller, Roberto; Pradella, José Geraldo da Cruz
2013-03-01
Supplementation of cellulase cocktails with accessory enzymes can contribute to a higher hydrolytic capacity in releasing fermentable sugars from plant biomass. This study investigated which enzymes were complementary to the enzyme set of Trichoderma harzianum in the degradation of sugarcane bagasse. Specific activities of T. harzianum extract on different substrates were compared with the extracts of Penicillium echinulatum and Trichoderma reesei, and two commercial cellulase preparations. Complementary analysis of the secretome of T. harzianum was also used to identify which enzymes were produced during growth on pretreated sugarcane bagasse. These analyses enabled the selection of the enzymes pectinase and α-L-arabinofuranosidase (AF) to be further investigated as supplements to the T. harzianum extract. The effect of enzyme supplementation on the efficiency of sugarcane bagasse saccharification was evaluated using response surface methodology. The supplementation of T. harzianum enzymatic extract with pectinase and AF increased the efficiency of hydrolysis by up to 116%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela
2015-01-01
Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. Copyright © 2014 Elsevier B.V. All rights reserved.
Singh, Rajbir; Ramakrishna, Rachumallu; Bhateria, Manisha; Bhatta, Rabi Sankar
2014-09-01
Bacopa monniera is a traditional Ayurvedic medicinal plant that has been used worldwide for its nootropic action. Chemically standardized extract of B. monniera is now available as over the counter herbal remedy to enhance memory in children and adults. Considering the nootropic action of B. monniera, we evaluated the effect of clinically available B. monniera extract and six of B. monniera constituents (bacoside A3, bacopaside I, bacopaside II, bacosaponin C, bacosine, and bacoside A mixture) on recombinant human monoamine oxidase (MAO) enzymes. The effect of B. monniera extract and individual constituents on human recombinant MAO-A and MAO-B enzymes was evaluated using MAO-Glo(TM) assay kit (Promega Corporation, USA), following the instruction manual. IC50 and mode of inhibition were measured for MAO enzymes. Bacopaside I and bacoside A mixture inhibited the MAO-A and MAO-B enzymes. Bacopaside I exhibited mixed mode of inhibition with IC50 and Ki values of 17.08 ± 1.64 and 42.5 ± 3.53 µg/mL, respectively, for MAO-A enzyme. Bacopaside I is the major constituent of B. monniera, which inhibited the MAO-A enzyme selectively. Copyright © 2014 John Wiley & Sons, Ltd.
Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey.
Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma
2014-06-01
Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.
Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy.
Gordiienko, Iu A; Babets, Ya V; Kulinich, A O; Shevtsova, A I; Ushakova, G O
2014-01-01
Activity of trypsin-like enzymes (ATLE) and gelatinases A and B were studied in the blood plasma and extracts from cardiac muscle, cerebral cortex and cerebellum of rats with cardiomyopathy caused by anthracycline antibiotic doxorubicin against the background of preventive application of corvitin and α-ketoglutarate. ATLE significantly increased in blood plasma and extracts from cerebral cortex but decreased in extracts from cardiac muscle and cerebellum in doxorubicin cardiomyopathy (DCMP). In addition, a significant increase of activity of both gelatinases in plasma and tissue extracts was observed. Preventive administration of corvitin and α-ketoglutarate resulted in differently directed changes of activity of the above mentioned enzymes in heart and brain tissues. Obtained data confirm the hypothesis about activation of proteolysis under the influence of anthracycline antibiotics and testify to selective effect of corvitin and α-ketoglutarate on ATLE and gelatinases.
Recent advances in enzyme extraction strategies: A comprehensive review.
Nadar, Shamraja S; Pawar, Rohini G; Rathod, Virendra K
2017-08-01
The increasing interest of industrial enzymes demands for development of new downstream strategies for maximizing enzyme recovery. The significant efforts have been focused on the development of newly adapted technologies to purify enzymes in catalytically active form. Recently, an aqueous two phase system (ATPS) is emerged as powerful tools for efficient extraction and purification of enzymes due to their versatility, lower cost, process integration capability and easy scale-up. The present review gives an overview of effect of parameters such as tie line length, pH, neutral salts, properties of polymer and salt involved in traditional polymer/polymer and polymer/salt ATPS for enzyme recovery. Further, advanced ATPS have been developed based on alcohols, surfactants, micellar compounds to avoid tedious recovery steps for getting desired enzyme. In order to improve the selectivity and efficiency of ATPS, recent approaches of conventional ATPS combined with different techniques like affinity ligands, ionic liquids, thermoseparating polymers and microfluidic device based ATPS have been reviewed. Moreover, three phase partitioning is also highlighted for enzymes enrichment as a blooming technology for efficiently integrated bioseparation techniques. At the end, it includes an overview of CLEAs technology and organic-inorganic nanoflowers preparation as novel strategies for simultaneous extraction, purification and immobilization of enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
Macció, Laura; Vallés, Diego; Cantera, Ana Maria
2013-12-01
A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.
Zhao, Luping; Chen, Yeming; Chen, Yajing; Kong, Xiangzhen; Hua, Yufei
2016-06-01
Plant seeds are used to extract oil bodies for diverse applications, but oil bodies extracted at different pH values exhibit different properties. Jicama, sunflower, peanut, castor bean, rapeseed, and sesame were selected to examine the effects of pH (6.5-11.0) on the protein components of oil bodies and the oleosin hydrolysis in pH 6.5-extracted oil bodies. In addition to oleosins, many extrinsic proteins (globulins, 2S albumin, and enzymes) were present in pH 6.5-extracted oil bodies. Globulins were mostly removed at pH 8.0, whereas 2S albumins were removed at pH 11.0. At pH 11.0, highly purified oil bodies were obtained from jicama, sunflower, peanut, and sesame, whereas lipase remained in the castor bean oil bodies and many enzymes in the rapeseed oil bodies. Endogenous protease-induced hydrolysis of oleosins occurred in all selected plant seeds. Oleosins with larger sizes were hydrolysed more quickly than oleosins with smaller sizes in each plant seed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey
Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma
2014-01-01
Objective(s): Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Conclusion: Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes. PMID:25140204
Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin
2015-09-01
Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.
Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J
2016-11-04
There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC 50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension.
Enzyme-assisted extraction of stabilized chlorophyll from spinach.
Özkan, Gülay; Ersus Bilek, Seda
2015-06-01
Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hu, K; Zhu, X L; Mu, H; Ma, Y; Ullah, N; Tao, Y S
2016-02-01
The aim of the work was to evaluate the application potential of a glycosidase extract of one indigenous non-Saccharomyces strain in wine aroma enhancement. The isolate was selected from a local winemaking region in China for its high β-glucosidase level and was identified as Rhodotorula mucilaginosa. The tolerance of the glycosidase extract to the typical winemaking conditions was assessed using the activity of its β-glucosidase. After that, the hydrolysis capacity of R. mucilaginosa glycosidase for liberation of grape aroma glycosides was characterized in comparison to commercial enzyme preparations. Results of this work revealed that glycosidase extract from R. mucilaginosa proved to be active in the presence of 0-20% (w/v) glucose, 0-20% (v/v) ethanol and at pH 3·0-5·0. In the hydrolysis of aroma precursors, enzymes obtained from different origins possessed various levels of specificity and activity, showing high origin dependence (α = 0·05). Compared to commercial enzymes, the indigenous R. mucilaginosa glycosidase extract presented better catalytic preference for the 'fruity and floral' glycosides of benzenic compounds and C13 -norisoprenoids, but less sensitivity to the glycosides of C6 compounds and volatile phenols. This work presents a novel extracellular glycosidase preparation from an indigenous Rhodotorula mucilaginosa strain selected from a local winemaking region in China. This enzyme extract exhibits strong tolerance towards winemaking conditions. It shows hydrolysis specificity for glycosides of benzenic compounds and C13 -norisoprenoids, proving a potential candidate for improving floral and fruity aroma characteristics of wine. © 2015 The Society for Applied Microbiology.
Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea
Mulabagal, Vanisree; Alexander-Lindo, Ruby L.; DeWitt, David L.; Nair, Muraleedharan G.
2011-01-01
Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO) and cyclooxygenase (COX-1 and COX-2) enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 μg/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 μg/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50) at 9.7 μg/mL. The analogs showed only marginal LPO activity at 6.25 μg/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 μg/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 μg/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 μg/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities. PMID:19454555
Ortiz, Gastón E; Ponce-Mora, María C; Noseda, Diego G; Cazabat, Gabriela; Saravalli, Celina; López, María C; Gil, Guillermo P; Blasco, Martín; Albertó, Edgardo O
2017-02-01
The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl 2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min -1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.
Dixon, David P; Edwards, Robert
2010-11-19
The glutathione transferases (GSTs) of plants are a superfamily of abundant enzymes whose roles in endogenous metabolism are largely unknown. For example, the lambda class of GSTs (GSTLs) have members that are selectively induced by chemical stress treatments and based on their enzyme chemistry are predicted to have roles in redox homeostasis. However, using conventional approaches these functions have yet to be determined. To address this, recombinant GSTLs from wheat and Arabidopsis were tagged with a Strep tag and after affinity-immobilization, incubated with extracts from Arabidopsis, tobacco, and wheat. Bound ligands were then recovered by solvent extraction and identified by mass spectrometry (MS). With the wheat enzyme TaGSTL1, the ligand profiles obtained with in vitro extracts from tobacco closely matched those observed after the protein had been expressed in planta, demonstrating that these associations were physiologically representative. The stress-inducible TaGSTL1 was found to selectively recognize flavonols (e.g. taxifolin; K(d) = 25 nM), with this binding being dependent upon S-glutathionylation of an active site cysteine. In the case of the wheat extracts, this selectivity in ligand recognitions lead to the detection of flavonols that had not been previously described in this cereal. Subsequent in vitro assays showed that the co-binding of flavonols, such as quercetin, to the thiolated TaGSTL1 represented an intermediate step in the reduction of the respective S-glutathionylated quinone derivatives to yield free flavonols. These results suggest a novel role for GSTLs in maintaining the flavonoid pool under stress conditions.
Kumpiene, Jurate; Bert, Valérie; Dimitriou, Ioannis; Eriksson, Jan; Friesl-Hanl, Wolfgang; Galazka, Rafal; Herzig, Rolf; Janssen, Jolien; Kidd, Petra; Mench, Michel; Müller, Ingo; Neu, Silke; Oustriere, Nadège; Puschenreiter, Markus; Renella, Giancarlo; Roumier, Pierre-Hervé; Siebielec, Grzegorz; Vangronsveld, Jaco; Manier, Nicolas
2014-10-15
During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities. Copyright © 2014 Elsevier B.V. All rights reserved.
Yuan, Jiao-Jiao; Wang, Cheng-Zhang; Ye, Jian-Zhong; Tao, Ran; Zhang, Yu-Si
2015-02-11
Oleuropein (OE), the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT) and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity) optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE) were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL) was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.
Yang, Xiu-Yan; Xue, Zhi-Yuan; Yang, Ya-Fei; Fang, Yao-Yao; Zhou, Xiang-Lin; Zhao, Liang-Gong; Feng, Shi-Lan
2018-06-01
In this study, complex enzymes combined with ultrasonic extraction technology(MC) were used, to select optimal extraction combinations by single factor and orthogonal test, with Hedysarum polysaccharides yield and content as the comprehensive indexes. The components, physicochemical properties and antioxidant activity of Hedysarum polysaccharides from complex enzyme combined with ultrasonic extraction(HPS-MC)and the Hedysarum polysaccharides from hot water extraction(HPS-R)were analyzed. The results showed that:complex enzymes had significant effect on the yield and content of Hedysarum polysaccharides, and the ultrasonic power could significantly improve the content of Hedysarum polysaccharides. The optimum technological parameters were as follows: complex enzyme ratio 1:1, ultrasonic power 105 W, ultrasonic time 60 min, and enzymatic hydrolysis pH 5, achieving (14.01±0.64)% and (92.45±1.47)% respectively for the yield and content of Polysaccharides. As compared with HPS-R, the molecular weight, absolute viscosity and protein content of HPS-MC were decreased, while the content of uronic acid was increased. In the antioxidant system, the concentration of polysaccharide was within the range of 1-7 g·L⁻¹; the antioxidant activity of HPS-MC was higher than that of HPS-R, and HPS-MC (80%) with the lowest molecular weight showed a significant dose effect relationship with the increase of the experimental concentration. In conclusion, MC is a simple, convenient, economical and environmentally friendly extraction technology, and the Hedysarum polysaccharides extracted by this method have obvious antioxidant activity. Copyright© by the Chinese Pharmaceutical Association.
Isolation and biotransformation of goniothalamin in the production of goniothalamin analogue
NASA Astrophysics Data System (ADS)
Azizan, Izzatul Hidayah; Khalid, Rozida Mohd; Din, Laily; Latip, Jalifah
2016-11-01
Goniothalamin is a pharmacologically active styrylpyrone compound extracted from Goniothalamus species. It was found to be selectively preventing proliferation of several cancer cell lines without being cytotoxic towards normal cells. Further research on this compound and its derivatives revealed that some of the derivatives also possess anti proliferative activity. The purpose of this study is to synthesise goniothalamin derivatives via biotransformation of goniothalamin using an enzyme assay. Goniothalamin which was isolated from Goniothalamus andersonii, was allowed to react with dienelactone hydrolase for 30 minutes. The enzyme reaction's product was extracted and analysed using LC-MS. Based on the pseudomelecular ion, one goniothalamin analogue with dihydro functionality was obtained.
Yerlikaya, Serife; Zengin, Gokhan; Mollica, Adriano; Baloglu, Mehmet C.; Celik Altunoglu, Yasemin; Aktumsek, Abdurrahman
2017-01-01
The genus Ononis has important value as traditional drugs and foods. In the present work, we aimed to assess the chemical profiles and biological effects of Ononis natrix subsp. hispanica extracts (ethyl acetate, methanol, and water). For chemical profile, total and individual phenolic components were detected. For biological effects, antioxidant (DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays), enzyme inhibitory (against cholinesterase, tyrosinase, α-amylase and α-glucosidase), antimicrobial, DNA protection and cytotoxic abilities were tested. The predominant phenolics were apigenin, luteolin, and quercetin in the tested extracts. Generally, the ethyl acetate and methanol extracts were noted as the most active in the antioxidant and enzyme inhibitory assays. Water extract with different concentrations indicated high level of DNA protection activity. Methanol and ethyl acetate extracts showed antibacterial effect against to Staphylococcus aureus and Staphylococcus epidermidis strains. The cytotoxic effects of O. natrix subsp. hispanica extracts on the survival of HeLa and PC3 cells were determined by MTT cell viability assay. Water and methanol extracts caused initiation of apoptosis for PC3 cell line. Furthermore, molecular docking was performed to better understand interactions between dominant phenolic compounds and selected enzymes. Our results clearly indicate that O. natrix subsp. hispanica could be considered a potential candidate for designing novel pharmaceuticals, cosmeceuticals and nutraceuticals. PMID:28919860
Ethnopharmacological study of plants from Pondoland used against diarrhoea.
Madikizela, B; Ndhlala, A R; Finnie, J F; Van Staden, J
2012-05-07
Waterborne diseases such as diarrhoea are common world wide, including in Bizana, South Africa where the majority of rural dwellers depend largely on water from unprotected sources. The people from Bizana use medicinal plants as their first line of health care to cure and prevent diarrhoea. To record and document plants used for the treatment of diarrhoea in Bizana, to evaluate antibacterial and anti-inflammatory activities of selected plant extracts as well as to perform genotoxicity testing of evaluated plants. An ethnobotanical approach was used to select plants used for treating diarrhoea in Bizana for pharmacological assays using questionnaires. Nine plants were selected for bioassays based on their frequency index and the fact that they have never been evaluated against diarrhoea causing-microorganisms. The petroleum ether (PE), dichloromethane (DCM), 70% ethanol (EtOH), and water extracts were evaluated for antibacterial (Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and Shigella flexneri) activity using the microdilution technique, their ability to inhibit COX-1 and COX-2 enzymes. Genotoxicity was evaluated using the Salmonella microsome assay. This study revealed that 34 plant species belonging to 27 families are used for the treatment of diarrhoea in Bizana. The extracts showed good inhibitory activity with MIC values ranging from 0.39 to 12.5mg/ml. The best activity was exhibited by DCM extracts of Rapanea melanophloeos, and EtOH extracts of Ficus craterostoma and Maesa lanceolata with MIC values of 0.098mg/ml. The inhibitory activity against COX-1 enzyme was higher than COX-2, with 19 plant extracts for the former and 7 for the latter. All the tested plant extracts were not mutagenic at all concentrations tested against all tester strains of bacteria. In view of the fact that the plants were selected based on their ethnobotanical usage for treating diarrhoea, the activities reported here goes a long way in validating the plants for traditional use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Doyle, Jason R; Burnell, James N; Haines, Dianne S; Llewellyn, Lyndon E; Motti, Cherie A; Tapiolas, Dianne M
2005-02-01
Plants using the C(4) photosynthetic pathway are highly represented among the world's worst weeds, with only 4 C(4) species being agriculturally productive (maize, sorghum, millet, and sugar cane). With the C(4) acid cycle operating as a biochemical appendage of C(3) photosynthesis, the additional enzymes involved in C(4) photosynthesis represent an attractive target for the development of weed-specific herbicides. The rate-limiting enzyme of this metabolic pathway is pyruvate orthophosphate dikinase (PPDK). PPDK, coupled with phosphoenolpyruvate carboxylase and nicotinamide adenine dinucleotide-malate dehydrogenase, was used to develop a microplate-based assay to detect inhibitors of enzymes of the C(4) acid cycle. The resulting assay had a Z' factor of 0.61, making it a high-quality assay able to reliably identify active test samples. Organic extracts of 6679 marine macroscopic organisms were tested within the assay, and 343 were identified that inhibited the 3 enzyme-coupled reaction. A high confirmation rate was achieved, with 95% of these hit extracts proving active again upon retesting. Sequential addition of phosphoenolpyruvate and oxaloacetate to the assay facilitated identification of 83 extracts that specifically inhibited PPDK.
Gacche, R N; Dhole, N A
2011-04-01
The water, ethanol and chloroform extracts of selected plants such as Adhatoda vasica (L.) (Acanthaceae), Caesalpinia bonduc (L.), Cassia fistula (L.) (Caesalpiniaceae) and Biophytum sensitivum (L.) (Oxalidaceae) were evaluated for rat lens aldose reductase inhibitory (RLAR) potential, anti-cataract and antioxidant activities. All the samples inhibited the aldose reductase considerably and exhibited anti-cataract activity, while C. fistula (IC(50), 0.154 mg mL(-1)) showed significant RLAR inhibitory activity as compared to the other tested samples, and was further found to be more effective in maintaining sugar-induced lens opacity in the rat lens model. The antioxidant potential of plant extracts was determined using DPPH (2,2-diphenyl-1-picryl hydrazine), hydroxyl (OH), nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) scavenging activities, along with determination of reducing power, ferrous ion chelating ability and inhibition of polyphenol oxidase (PPO). The extracts of the tested plant showed significant free radical scavenging activities and inhibited the activity of enzyme PPO, a model oxidising enzyme. The plant samples were found to possess considerable amounts of vitamin C, total polyphenols and flavonoids.
Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.
Bae, Soo-Jung; Park, Young-Hwan; Bae, Hyeun-Jong; Jeon, Junhyun; Bae, Hanhong
2017-06-28
The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti- Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell walldegrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.
Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da
2015-09-01
Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.
Tao, Yi; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu
2013-06-27
A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography-mass spectrometry. Three flavonoids including quercetin-3-O-β-D-arabinopyranosyl-(1→2)-β-D-galactopyranoside, quercetin-3-O-β-D-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources. Copyright © 2013 Elsevier B.V. All rights reserved.
Vanzolini, Kenia Lourenço; Jiang, Zhengjin; Zhang, Xiaoqi; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalvez; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Moaddel, Ruin
2013-01-01
The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer’s disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand. PMID:24148457
Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang
2016-01-15
A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Fadaeinasab, Mehran; Hadi, A Hamid A; Kia, Yalda; Basiri, Alireza; Murugaiyah, Vikneswaran
2013-03-25
Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
Response of the Cutworm Spodoptera litura to Sesame Leaves or Crude Extracts in Diet
Ofosuhene Sintim, Henry; Tashiro, Toru; Motoyama, Naoki
2009-01-01
The effects of extracts of sesame, Sesamum indicum L. (Liamiales: Pedaliaceae), and whole leaves of some selected cultivars of sesame were tested using a natural host Spodoptera litura (F.) (Lepidoptera: Noctuidae). Indices taken using the immature stages include; diet utilization, growth and development and induction of detoxification enzymes. The results indicate that S. litura generally selects its food amongst cultivars within 6 hours after food presentation. Growth and development of the insect is controlled also by plant acceptability and quality. Although all the cultivars tested significantly limit insect growth and development the variety 56S-radiatum did not allow a complete life cycle as pupation from first instar stage was 0%. Generally the crucial period for immature S. litura was the larval period, especially the first two instars where the weight of an insect fed on an experimental diet was three times lower than that of a control diet. The larval developmental period was greater than 40 days as compared to 17 days for insects fed a control diet. S. litura also had lowered efficiency in utilizing ingested food, from a low of 13% in a sesame cultivar to 45% in the control diet. The key detoxification enzyme was a glutathione s-transferase that was confirmed by a 6-fold increase between S. litura fed a plant cultivar vs. a control diet towards the substrate 1,2-dichloro-4-nitrobenzene. First and second instars of S. litura have a relatively reduced detoxification of enzymes in response to plant cultivar diets leading to low survival. A 3% v/w crude extract of the cultivars increased enzyme induction towards all the tested substrates. PMID:20050772
Functional metagenomic selection of RubisCOs from uncultivated bacteria
Varaljay, Vanessa A; Satagopan, Sriram; North, Justin A.; Witteveen, Briana; Dourado, Manuella N.; Anantharaman, Karthik; Arbing, Mark A.; McCann, Shelley; Oremland, Ronald S.; Banfield, Jillian F.; Wrighton, Kelly C.; Tabita, F. Robert
2016-01-01
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2-dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of theGallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possessCO2/O2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2-fixing enzymes not previously characterized.
Enzymes- An Existing and Promising Tool of Food Processing Industry.
Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata
2016-01-01
The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.
Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review.
Nadar, Shamraja S; Rao, Priyanka; Rathod, Virendra K
2018-06-01
An interest in the development of extraction techniques of biomolecules from various natural sources has increased in recent years due to their potential applications particularly for food and nutraceutical purposes. The presence of polysaccharides such as hemicelluloses, starch, pectin inside the cell wall, reduces the extraction efficiency of conventional extraction techniques. Conventional techniques also suffer from low extraction yields, time inefficiency and inferior extract quality due to traces of organic solvents present in them. Hence, there is a need of the green and novel extraction methods to recover biomolecules. The present review provides a holistic insight to various aspects related to enzyme aided extraction. Applications of enzymes in the recovery of various biomolecules such as polyphenols, oils, polysaccharides, flavours and colorants have been highlighted. Additionally, the employment of hyphenated extraction technologies can overcome some of the major drawbacks of enzyme based extraction such as longer extraction time and immoderate use of solvents. This review also includes hyphenated intensification techniques by coupling conventional methods with ultrasound, microwave, high pressure and supercritical carbon dioxide. The last section gives an insight on application of enzyme immobilization as a strategy for large scale extraction. Immobilization of enzymes on magnetic nanoparticles can be employed to enhance the operational performance of the system by multiple use of expensive enzymes making them industrially and economically feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deu, Edgar; Yang, Zhimou; Wang, Flora; Klemba, Michael; Bogyo, Matthew
2010-01-01
Background High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities. Methodology and Principal Findings Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’>0.8) that are suitable for use in screening large collections of small molecules (i.e >300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates. Conclusions We believe that this approach will have value for many enzymatic systems where access to large amounts of active enzyme is problematic. PMID:20700487
Anti-inflammatory and cytotoxic activities of Bursera copallifera
Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica
2015-01-01
Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022
Anti-inflammatory and cytotoxic activities of Bursera copallifera.
Columba-Palomares, M F María C; Villareal, Dra María L; Acevedo Quiroz, M C Macdiel E; Marquina Bahena, M C Silvia; Álvarez Berber, Dra Laura P; Rodríguez-López, Dra Verónica
2015-10-01
The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain. The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera.
Ademiluyi, Adedayo O; Oboh, Ganiyu
2013-03-01
This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.
de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon
2016-12-01
Phenolics in food and agricultural processing by-products exist in the soluble and insoluble-bound forms. The ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics as evaluated by total phenolic content, antioxidant potential as determined by ABTS and DPPH assays, and hydroxyl radical scavenging capacity, reducing power as well as evaluation of inhibition of alpha-glucosidase and lipase activities. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients and/or supplements. Copyright © 2016. Published by Elsevier Ltd.
Albassam, Ahmed A; Frye, Reginald F; Markowitz, John S
2017-06-01
Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC 50 ) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC 50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC 50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Madikizela, B; Ndhlala, A R; Finnie, J F; Van Staden, J
2014-04-28
Emergence of drug-resistant tuberculosis strains and long duration of treatment has established an urgent need to search for new effective agents. The great floral diversity of South Africa has potential for producing new bioactive compounds, therefore pharmacological screening of plant extracts within this region offers much potential. To assess the in vitro antimycobacterial, anti-inflammatory and genotoxicity activity of selected plants that are used for the treatment of TB and related symptoms in South Africa. Ground plant materials from 10 plants were extracted sequentially with four solvents (petroleum ether, dichloromethane, 80% ethanol and water) and a total of 68 extracts were produced. A broth microdilution method was used to screen extracts against Mycobacterium tuberculosis H37Ra. The cyclooxygenase-2 (COX-2) enzyme was used to evaluate the anti-inflammatory activity of the extracts and the Salmonella microsome assay using two Salmonella typhimurium strains (TA98 and TA100) to establish genotoxicity. Six out of 68 extracts showed good antimycobacterial activity. Three extracts showed good inhibition (>70%) of COX-2 enzyme. All the extracts tested were non-genotoxic against the tested Salmonella strains. The results observed in this study indicate that some of the plants such as Abrus precatorius subsp. africanus, Ficus sur, Pentanisia prunelloides and Terminalia phanerophlebia could be investigated further against drug-resistant TB strains. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum
2016-07-01
We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.
Jia, Shaoyi; Li, Feng; Liu, Yong; Ren, Haitao; Gong, Guili; Wang, Yanyan; Wu, Songhai
2013-11-01
Five polysaccharides were obtained from Agaricus blazei Murrill (ABM) through different extraction methods including hot water extraction, single enzyme extraction (pectinase, cellulase or papain) and compound enzymes extraction (cellulase:pectinase:papain). Their characteristics such as the polysaccharide yield, polysaccharide content, protein content, infrared spectra were determined, and antioxidant activities were investigated on the basis of hydroxyl radical, DPPH free radical, ABTS free radical and reducing power. The results showed that five extracts exhibited antioxidant activities in a concentration-dependent manner. Compared with other methods, the compound enzymes extraction method was found to present the highest polysaccharides yield (17.44%). Moreover, compound enzymes extracts exhibited the strongest reducing power and highest scavenging rates on hydroxyl radicals, DPPH radicals and ABTS radicals. On the contrary, hot water extraction method had the lowest polysaccharides yield of 11.95%, whose extracts also exhibited the lowest antioxidant activities. Overall, the available data obtained in vitro models suggested that ABM extracts were natural antioxidants and compound enzymes extraction was an appropriate, mild and effective extracting method for obtaining the polysaccharide extracts from Agaricus blazei Murrill (ABM). Copyright © 2013 Elsevier B.V. All rights reserved.
Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong
2017-01-01
To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Michalak, Izabela; Dmytryk, Agnieszka; Śmieszek, Agnieszka; Marycz, Krzysztof
2017-01-01
The green seaweed Enteromorpha prolifera was used as a feedstock for the production of enzymatic hydrolysate using cellulase. The selection of the conditions for enzymatic hydrolysis of the biomass was carried out for different enzyme doses and incubation periods. The obtained extract was examined in terms of its multielemental composition, content of polyphenols and antibacterial properties (tested against Escherichia coli and Staphylococcus aureus). Additionally, its influence on the metabolic activity of human colon epithelial cells (Caco-2) was analyzed. The tested concentrations of extract using an in vitro model were 62.5, 125, 250, 500, 1000 and 2000 µg/mL. The hydrolysis yield in the most suitable experimental conditions (8-h process and 50 and 100 µL of cellulase) was 36%. Micro- and macroelements were poorly extracted from the algal biomass. Total phenolic content was 55 mg of gallic acid equivalent per 100 g of dry mass of extract. The cytotoxic effect of extracts, related to the inhibition of the metabolic activity of Caco-2, was noted only after 24 h. In turn, cultures of Caco-2 propagated with extracts for 72 h were characterized by significantly elevated metabolism (the concentration of extracts ranged from 62.5 to 1000 µg/mL, p < 0.05). Obtained results indicated the high biological activity of the prepared extracts; however, the observed effects did not occur in a dose-dependent manner. PMID:28241482
Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo
2016-01-01
A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m, and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505
Potential of rare actinomycetes in the production of metabolites against multiple oxidant agents.
Mohammadipanah, Fatemeh; Momenilandi, Mana
2018-12-01
Actinobacteria are a precious source of novel bioactive metabolites with potential pharmaceutical applications. Representatives of 11 genera of rare Actinobacteria were selected for the evaluation of antioxidant activity. Fermentation broths of the Actinobacteria were extracted and dosage of 10 to 2000 µg/mL were applied for in vitro antioxidant-related bioassays. Cytotoxicity was assessed at the concentration of 2.5-20 µg/mL. In the DPPH scavenging activity, 15 out of 52 extracts showed 17.0-26.8% activity in quantitative evaluation. Metabolites of five prominent antioxidant producing strains protected the DNA (pUC19) against UV-induced photolyzed H 2 O 2 -oxidative degradation. The potent antioxidant extracts inhibited two oxidative enzymes of xanthine oxidase in the range of 17.5-45.2% (three extracts had IC 50 less than allopurinol) and lipoxygenase in the range of 36-55% (all five extracts had IC 50 values less than daidzein). All these extracts could also protect eythrocytes from iron-induced hemolysis with ED 50 values in a range of 0.014-1.25 mg/mL. Growth restoration of the yeast cells lacking the sod1 gene was observed by the antioxidant metabolite of Saccharothrix ecbatanensis UTMC 537 at the concentration of 1 mg/mL. The presence of nonidentical metabolites might be responsible for antioxidant and enzyme inhibitory activities of S. ecbatanensis, newly described actinobacterium in family Pseudonocardiaceae. The scavenging of the free electrons, protection of DNA and model yeast cells against oxidative stress, in addition to the inhibition of the oxidating enzymes are the main mechanisms of the antioxidant effect of the introduced resource in this study.
Salgado-Roman, Manuel; Botello-Alvarez, Enrique; Rico-Martínez, Ramiro; Jiménez-Islas, Hugo; Cárdenas-Manríquez, Marcela; Navarrete-Bolaños, José Luis
2008-11-12
Enzymatic treatments using noncommercial enzymes as a means to the improve the extraction of carotenoids and capsaicinoids from chili fruits are explored in this study. The results show that it is possible to obtain chili fruit powder with a higher concentration of both capsaicinoids and carotenoids than previously reported for similar processes. Furthermore, extraction yields above 96% for carotenoids and 85% for capsaicinoids as separate fractions can be achieved using a sequential and selective two-stage extraction. Evidence is presented demonstrating that the content and extraction yield depend directly on the extent of the enzymatic hydrolysis of chili cell walls, and higher yields are obtained when the sample is completely hydrolyzed. The enzymatic treatment described here is a promising alternative to current industrial practices, and it improves the extraction of carotenoids and capsaicinoids from chili fruits.
Use of an enzyme-assisted method to improve protein extraction from olive leaves.
Vergara-Barberán, M; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F
2015-02-15
The improvement of protein extraction from olive leaves using an enzyme-assisted protocol has been investigated. Using a cellulase enzyme (Celluclast® 1.5L), different parameters that affect the extraction process, such as the influence and amount of organic solvent, enzyme amount, pH and extraction temperature and time, were optimised. The influence of these factors was examined using the standard Bradford assay and the extracted proteins were characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum extraction parameters were: 30% acetonitrile, 5% (v/v) Celluclast® 1.5L at pH 5.0 and 55°C for 15min. Under these conditions, several protein extracts from olive leaves of different genetic variety (with a total protein amount comprised between 1.87 and 6.64mgg(-1)) were analysed and compared by SDS-PAGE, showing differences in their electrophoretic protein profiles. The developed enzyme-assisted extraction method has shown a faster extraction, higher recovery and reduced solvent usage with respect to the use of the non-enzymatic methods described in literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S
2008-03-03
A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.
USDA-ARS?s Scientific Manuscript database
Hydrolysis of casein using chymotrypsin results in the formation of polypeptides (casein hydrolyzate, CH) with a hydrophobic aromatic amino acid on one end of the chain because the enzyme selectively cleaves the adjacent peptide-bond. Due to resonance of the aromatic micro-domain, thiols become redo...
Enzymatic added extraction and clarification of fruit juices-A review.
Sharma, Harsh P; Patel, Hiral; Sugandha
2017-04-13
Enzymatic treatment for juice extraction is most commonly used now a days. The enzymatic process is claimed to offer a number of advantages over mechanical-thermal comminution of several fruit pulps. Enzymes are an integral component of modern fruit juice manufacturing and are highly suitable for optimizing processes. Their main purposes are: increase extraction of juice from raw material, increase processing efficiency (pressing, solid settling or removal), and generate a final product that is clear and visually attractive. Juice extraction can be done by using various mechanical processes, which may be achieved through diffusion extraction, decanter centrifuge, screw type juice extractor, fruit pulper and by different types of presses. Enzymatic treatment prior to mechanical extraction significantly improves juice recovery compared to any other extraction process. Enzymatic hydrolysis of the cell walls increases the extraction yield, reducing sugars, soluble dry matter content and galacturonic acid content and titrable acidity of the products. Enzymatic degradation of the biomaterial depends upon the type of enzyme, incubation time, incubation temperature, enzyme concentration, agitation, pH and use of different enzyme combinations. We can conclude from the technical literature that use of the enzymes i.e. cellulases, pectinases, amylases and combination of these enzymes can give better juice yield with superior quality of the fruit juice. Pectinase enzyme can give maximum juice yield i.e. 92.4% at 360 minutes incubation time, 37°C incubation temperature and 5 mg/100 g of enzyme concentration. Whereas the combination of two enzymes i.e. pectin methyl esterase (PME) and polygalacturonase (PG) at 120 minutes of incubation time, 50°C of incubation temperature and 0.05 mg/100 gm of enzymatic concentration can give the maximum yield of 96.8% for plum fruits. This paper discusses the use of enzymes in fruit juice production focusing on the juice recovery, clarity and effect of the particular enzyme on the biochemical properties of the fruit juices.
Variation in levels of some leaf enzymes.
Downton, J; Slatyer, R O
1971-03-01
Several procedures were compared for efficiency in the extraction of certain leaf enzymes (phosphoenolpyruvate carboxylase, ribulose 1,5-diphosphate carboxylase and malate dehydrogenase) in Atriplex hastata (a "C3" species exhibiting conventional photosynthetic metabolism), and in A. spongiosa (a "C4" species in which the initial photosynthetic products are C4 dicarboxylic acids). Glycolate oxidase was also assayed in some cases, and Atriplex nummularia and Sorghum bicolor were also used as test material. A simple procedure, involving a mortar and pestle grind with carborundum added to the grinding mixture, was found to be as effective as glass bead grind procedures. In addition, it was more rapid and showed less variability with different operations.Using the carborundum grind procedure, sources of variability in enzyme activity in apparently uniform leaves were compared, as were effects of time of day, leaf age and storage procedure. In general, if apparently uniform leaves could be selected, variability in levels of enzyme activity appeared to be relatively small, not exceeding about 12%. Time of day also appeared to be relatively unimportant for the enzymes examined. However, the ontogentic status of the plant was found to be an important source of variability. Leaf age was also a major source of variability where the activity was expressed on a fresh weight basis, but specific activity (i.e. activity expressed on a protein basis) was relatively constant, at least with the range of species and leaf ages examined here.Storage of fresh samples in liquid nitrogen for 24 h, prior to extraction and assay, led to only a small reduction in activity, but substantial changes occurred if storage was in dry ice or in ice and also where extracts were stored in a deep freeze.
Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko
2004-01-01
l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574
Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko
2004-02-01
L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.
Camara, Mohamed Amara; Tian, Miaomiao; Liu, Xiaoxia; Liu, Xin; Wang, Yujia; Yang, Jiqing; Yang, Li
2016-08-01
Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low-cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6-phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE-IMERs). The multilayer CE-IMERs were produced with layer-by-layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE-IMERs. The Michaelis constant (Km ) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy-to-operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Chu, Kai On; Wang, Chi Chiu; Chu, Ching Yan; Rogers, Michael Scott; Choy, Kwong Wai; Pang, Chi Pui
2004-10-25
Catechins levels in organ tissues, particularly liver, determined by published methods are unexpectedly low, probably due to the release of oxidative enzymes, metal ions and reactive metabolites from tissue cells during homogenization and to the pro-oxidant effects of ascorbic acid during sample processing in the presence of metal ions. We describe a new method for simultaneous analysis of eight catechins in tissue: (+)-catechin (C), (-)-epicatechin (EC), (-)-gallocatechin (GC), (-)-epigallocatechin (EGC), (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), (-)-gallocatechin gallate (GCG) and (-)-epigallocatechin gallate (EGCG) (Fig. 1). The new extraction procedure utilized a methanol/ethylacetate/dithionite (2:1:3) mixture during homogenization for simultaneous enzyme precipitation and antioxidant protection. Selective solid phase extraction was used to remove most interfering bio-matrices. Reversed phase HPLC with CoulArray detection was used to determine the eight catechins simultaneously within 25 min. Good linearity (>0.9922) was obtained in the range 20-4000 ng/g. The coefficients of variance (CV) were less than 5%. Absolute recovery ranged from 62 to 96%, accuracy 92.5 +/- 4.5 to 104.9 +/- 6%. The detection limit was 5 ng/g. This method is capable for determining catechins in rat tissues of liver, brain, spleen, and kidney. The method is robust, reproducible, with high recovery, and has been validated for both in vitro and in vivo sample analysis.
Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann
2014-11-01
Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.
Jung, S; Maurer, D; Johnson, L A
2009-11-01
The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.
Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I
2015-01-01
Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zingiber officinale acts as a nutraceutical agent against liver fibrosis
2011-01-01
Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:21689445
Screening of Thermophilic Bacteria Produce Xylanase from Sapan Sungai Aro Hot Spring South Solok
NASA Astrophysics Data System (ADS)
Irdawati, I.; Syamsuardi, S.; Agustien, A.; Rilda, Y.
2018-04-01
xylanase is one of the enzymes with great prospects as hemicellulose hydrolyzing enzyme. Global annual market demand for this enzyme reach US 200 million. This enzyme catalyzes the xylan (hemicellulose) reactions breaking into xilooligosakarida and xylose. Xylanase can be applied to various industrial sectors such as bread, sugar xylose, biofuels, especially in bleaching paper (bleaching) pulp. Xylanase Isable to replace conventional chemical bleaching using chlorine that is not friendly for the environment. Currently xylanase production is extracted from the thermophilic bacteria for enzyme stability at high temperatures that are suitable for industrial applications. Thermophilic bacteria can be isolated from a hot spring, one of the which is a source of Sapan Sungai Aro Hot Spring, located in the district South Solok. The aim of this study was to select and identification of thermophilic bacteria can produce xylanase.This roomates is a descriptive study, which was Carried out in the Laboratory of Microbiology, Mathematic and Science Faculty of Padang State University, and Laboratory of Bacteriology, BasoVeterinary Research Center. The research procedure consisted of the preparation and sterilization of materials and tools, medium manufacturing, regeneration, selection and identification. Selection is performed by using a semiquantitative screening plate that contains xylan substrate. Identification is based on microscopic and biochemical characteristics until the genus level.Selection results Showed 12 out of 16 isolates had xilanolitik activity, with the highest activity is SSA2 with xilanolitik index of 0.74. The top five index producehigestxilanolitik isolates that are SSA2, SSA3 and SSA4 identified as Bacillus sp. 1., and SSAS6 and SSA7 is Bacillus sp. 2.
Sanghvi, Gaurav V; Koyani, Rina; Rajput, Kishore S
2011-05-01
A potent fungus for amylase production, Chrysosporium asperatum, was isolated from among 30 different cultures obtained from wood samples collected in the Junagadh forest, India. All of the isolated cultures were screened for their ability to produce amylase by submerged fermentation. Among the selected cultures, C. asperatum (Class Euascomycetes; Onygenales; Onygenaceae) gave maximum amylase production. In all of the different media tested, potato starch was found to be a good substrate for production of amylase enzyme at 30 degrees C and pH 5.0. Production of enzyme reached the maximum when a combination of starch and 2% xylose, and organic nitrogen (1% yeast extract) and ammonium sulfate were used as carbon and nitrogen sources, respectively. There was no significant effect of metal ions on enzyme activity. The enzyme was relatively stable at 50 degrees C for 20 min, and no inhibitory effect of Ca+2 ions on amylase production was observed.
Simmons, Richard J.; Costilow, Ralph N.
1962-01-01
Simmons, R. J. (Michigan State University, East Lansing), and R. N. Costilow. Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J. Bacteriol. 84:1274–1281. 1962.—An investigation was made of the enzymes of vegetative cells, spores, and germinated spores of Clostridium botulinum 62-A to elucidate a pathway of glucose metabolism. Manometric studies were conducted with intact cells, and various enzymes and enzyme systems were assayed in cell-free and spore-free extracts by use of spectrophotometric and colorimetric procedures. Glucose fermentation was found to be inducible; glucokinase was the controlling enzyme. All other enzymes of the Embden-Meyerhof-Parnas (EMP) pathway were found in both induced and non-induced cells, but they were in relatively low concentrations in the latter. This, plus the fact that no glucose-6-phosphate dehydrogenase was detected, led to the conclusion that glucose is catabolized primarily by the EMP system. A number of glycolytic enzymes were also found in extracts of spores and germinated spores of this organism, but the activities were extremely low as compared with activities in cell extracts. A phosphoroclastic-type reaction was readily demonstrated in both glucose-adapted and non-adapted cells, but not in spores and germinated spores. However, both acetokinase and phosphotransacetylase, as well as coenzyme A transphorase, were detected in spores and germinated-spore extracts, although at very low activity levels as compared with cell extracts. The specific activity of diaphorase in spore extracts was about one-half that of corresponding cell extracts, and the activity of reduced diphosphopyridine nucleotide (DPNH) oxidase was actually higher in the spore extracts. In addition, the DPNH oxidase in spore extracts was considerably more heat-stable than that in extracts of cells or germinated spores. PMID:13977433
[Coenzyme-induced slow transitions of NADP-sorbitol dehydrogenase from Gluconobacter oxydans].
Liber, E E; Dorozhko, A I; Pomortseva, N V
1978-06-01
The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.
Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat
2012-09-01
Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Molecular Basis of Dominance
Kacser, Henrik; Burns, James A.
1981-01-01
The best known genes of microbes, mice and men are those that specify enzymes. Wild type, mutant and heterozygote for variants of such genes differ in the catalytic activity at the step in the enzyme network specified by the gene in question. The effect on the respective phenotypes of such changes in catalytic activity, however, is not defined by the enzyme change as estimated by in vitro determination of the activities obtained from the extracts of the three types. In vivo enzymes do not act in isolation, but are kinetically linked to other enzymes via their substrates and products. These interactions modify the effect of enzyme variation on the phenotype, depending on the nature and quantity of the other enzymes present. An output of such a system, say a flux, is therefore a systemic property, and its response to variation at one locus must be measured in the whole system. This response is best described by the sensitivity coefficient, Z, which is defined by the fractional change in flux over the fractional change in enzyme activity.(see PDF)Its magnitude determines the extent to which a particular enzyme "controls" a particular flux or phenotype and, implicitly, determines the values that the three phenotypes will have. There are as many sensitivity coefficients for a given flux as there are enzymes in the system. It can be shown that the sum of all such coefficients equals unity.(see PDF)Since n, the number of enzymes, is large, this summation property results in the individual coefficients being small. The effect of making a large change in enzyme activity therefore usually results in only a negligible change in flux. A reduction to 50% activity in the heterozygote, a common feature for many mutants, is therefore not expected to be detectable in the phenotype. The mutant would therefore be described as "recessive". The widespread occurrence of recessive mutants is thus seen to be the inevitable consequence of the kinetic structure of enzyme networks. The ad hoc hypothesis of "modifiers" selected to maximize the fitness of the heterozygote, as proposed by Fisher, is therefore unnecessary. It is based on the false general expectation of an intermediate phenotype in the heterozygote. Wright's analysis, substantially sound in its approach, proposed selection of a "safety factor" in enzyme activity. The derivation of the summation property explains why such safety factors are automatically present in almost all enzymes without selection. PMID:7297851
Poojary, Mahesha M; Orlien, Vibeke; Passamonti, Paolo; Olsen, Karsten
2017-11-01
In this study, enzyme-assisted extraction was performed to extract umami taste and total free amino acids (FAAs) from the six different mushrooms including shiitake (Lentinus edodes), oyster (Pleurotus ostreatus), tea tree (Agrocybe aegerita) and, white, brown and portobello champignons (Agaricus bisporus). β-Glucanase and Flavourzyme® were used as the enzymes for cell wall and proteins hydrolysis, respectively. It was found that β-glucanase treatment alone did not enhance the extraction efficiency, however in combination, β-glucanase and Flavourzyme® enhanced the extraction efficiency significantly up to 20-fold compared to conventional HCl mediated extraction, depending on the mushroom species. The optimal conditions for the enzyme treatment were: water as extraction solvent (initial pH = 7), enzyme concentration of 5% v/w each of β-glucanase and Flavourzyme®, temperature 50°C and an incubation time of 1h. White and brown champignons were found to be the richest source of umami taste FAAs (26.75±1.07 and 25.6±0.9mg/g DM, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.
Kraehenbuehl, Karin; Page-Zoerkler, Nicole; Mauroux, Olivier; Gartenmann, Karin; Blank, Imre; Bel-Rhlid, Rachid
2017-03-01
Chlorogenic acid lactones have been identified as key contributors to coffee bitterness. These compounds are formed during roasting by dehydration and cyclization of their precursors, the chlorogenic acids (CGAs). In the present study, we investigated an approach to decompose these lactones in a selective way without affecting the positive coffee attributes developed during roasting. A model system composed of (3-caffeoylquinic acid lactone (3-CQAL), 4- caffeoyl quinic acid lactone (4-CQAL), and 4-feruloylquinic acid lactone (4-FQAL)) was used for the screening of enzymes before treatment of the coffee extracts. Hog liver esterase (HLE) hydrolyzed chlorogenic acid lactones (CQALs, FQALs) selectively, while chlorogenate esterase hydrolyzed all chlorogenic acids (CQAs, FQAs) and their corresponding lactones (CQALs, FQALs) in a non-selective way. Enzymatically treated coffee samples were evaluated for their bitterness by a trained sensory panel and were found significantly less bitter than the untreated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Khuda, Fazli; Iqbal, Zafar; Khan, Ayub; Zakiullah; Shah, Yasar; Khan, Abad
2014-05-01
In present study four medicinal plants namely Valeriana wallichii, Xanthium strumarium, Achyranthes aspera and Duchesnea indica belonging to different families were collected in Khyber Pakhtunkhwa province and crude extract and subsequent fractions were analyzed for their inhibitory potential against acetylcholinesterase, butyrylcholinesterase and α-glucosidase enzymes. Valeriana wallichii, Xanthium strumarium and Achyranthes aspera were significantly active against cholinesterases. Chloroform and ethylacetate fractions of Valeriana wallichii exhibited significant activity against acetylcholinesterase (IC50: 61μg/ml) and butyrylcholinesterase enzymes (IC50: 58μg/ml), respectively. Similarly ethylacetate fraction of Achyranthes aspera showed significant activity against acetylcholinesterase (IC50: 61 μg/ml) and butyrylcholinesterase enzymes (IC50: 61 μg/ml), respectively. In case of α-glucosidase enzyme, the chloroform fraction of Xanthium strumarium exhibited significant inhibitory activity (IC50: 72 μg/ml) as compared to the standard compound acarbose (IC50: 483 μg/ml). Duchesnea indica showed no such activities.
Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal
2016-01-01
Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).
Boldizsár, Imre; Füzfai, Zsófia; Molnár-Perl, Ibolya
2013-06-07
The behavior of the flavonoid diglycosides, relevant constituents of parsley (Petroselinum crispum) fruit (PFr) and leaf (PLe) samples was characterized upon their enzymatic hydrolyses applying complementary liquid chromatography-ultraviolet (LC-UV) and gas chromatography mass selective (GC-MS) detections. Analyses were performed in quantitative manner, from the same extracts as a function of hydrolysis times. Both in fruit and leaf tissue extracts, in intact and in enzyme hydrolyzed ones, apigenin, chrysoeriol, their glycosides, sugars, sugar alcohols, carboxylic acids and phytosterols, in total 17 constituents were identified and quantified. Based primarily on the selective mass fragmentation properties of the trimethylsilyl (oxime) ether/ester derivatives of constituents, we confirmed several novelties to the field. (i) It was shown for the first time that in parsley tissues different types of glycosidase enzyme are active. In PFr samples, both the stepwise and disaccharide specific endogenous mechanisms were certified, quantifying simultaneously the continuous release of apigenin, chrysoeriol, 2-O-apiosyl-apiose, apiose and glucose. (ii) 2-O-Apiosyl-glucose was demonstrated as disaccharide due to its formation under derivatization conditions from parsley glycosides. (iii) Both in PFr and in PLe samples even the invertase enzyme activity was attainable: sucrose decomposition in both tissues was going on with the same intensity. Three different types of enzymatic glycosidase processes were followed with their specific hydrolysis products by means of HPLC-UV and GC-MS, simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Linhao; Stanton, Joseph D; Tolson, Antonia H; Luo, Yuan; Wang, Hongbing
2008-01-01
Purpose The objective of the current study is to investigate the hypothesis that bioactive terpenoids and flavonoids of Ginkgo biloba extract (GBE) induce human hepatic drug metabolizing enzymes (DMEs) and transporters through the selective activation of pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR). Methods Human primary hepatocyte (HPH), and HepG2 cells are used as in vitro models for enzyme induction and nuclear receptor activation studies. A combination of real-time RT-PCR, transient transfection, and cell-based reporter assays were employed. Results In human primary hepatocytes, real-time PCR analysis showed induction of CYP2B6, CYP3A4, UGT1A1, MDR1, and MRP2 by EGb 761, ginkgolide A (GA) and ginkgolide B (GB), but not by bilobalide (BB) or the flavonoids (quercetin, kaempferol and tamarixetin) of GBE. Cell-based reporter assays in HepG2 revealed that GA and GB are potent activators of PXR; quercetin and kaempferol activate PXR, CAR, and AhR, whereas BB exerts no effects on these xenobiotic receptors. Notably, the flavonoids induced the expression of UGT1A1 and CYP1A2 in HepG2 cells but not in HPH. Conclusion Our results indicate that terpenoids and flavonoids of GBE exhibit differential induction of DMEs through the selective activation of PXR, CAR, and AhR. PMID:19034627
NASA Astrophysics Data System (ADS)
Paramita, Vita; Yulianto, Mohammad Endy; Yohana, Eflita; Arifan, Fahmi; Hanifah, Amjad, Muhammad Taqiyuddin
2015-12-01
This research aims to develop the enzymatically of bay leaves phytochemical extraction process. The novelty and the main innovations of this research is the development of extraction process by using enzymatic extractor and isolate the enzymes from rumen liquid to shift the equilibrium phase, increase the extraction rate and increase the extraction yield. The activity of rumen liquid enzyme was represented by the activity of cellulase and protease. The analyze of total flavonoid content was performed by using UV-Vis Spectrofometry. The activity of immobilized enzyme of cellulase (0.08±0.00 U/ml) was lower than the un-immobilized one (0.23±0.00 U/ml). However, there was no difference activity of the immobilized (0.75±0.00 U/ml) and un-immobilized (0.76±0.01 U/ml) of protease. The model of mass transfer of un-immobilized enzyme can be fitted on the experimental data, however the model of mass transfer of immobilized enzyme did not match with the experimental data. The mass transfer coefficient of enzymatic extraction flavonoids bay leaf without immobilization was 0.17167 s-1 which greater than the reported value of obtained KLa from extraction by using electric heating.
Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele
2004-07-25
The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.
Bolivar, Juan M; Nidetzky, Bernd
2012-06-01
D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is applied in industry for the synthesis of pharmaceutical intermediates. Because free TvDAO is extremely sensitive to exposure to gas-liquid interfaces, biocatalytic processing is usually performed with enzyme immobilizates that offer enhanced stability under bubble aeration. We herein present an "Immobilization by Design" approach that exploits engineered charge complementarity between enzyme and carrier to optimize key features of the immobilization of TvDAO. A fusion protein between TvDAO and the positively charged module Z(basic2) was generated, and a corresponding oppositely charged carrier was obtained by derivatization of mesoporous glass with 3-(trihydroxysilyl)-1-propane-sulfonic acid. Using 250 mM NaCl for charge screening at pH 7.0, the Z(basic2) fusion of TvDAO was immobilized directly from E. coli cell extract with almost absolute selectivity and full retention of catalytic effectiveness of the isolated enzyme in solution. Attachment of the homodimeric enzyme to the carrier was quasi-permanent in low-salt buffer but fully reversible upon elution with 5 M NaCl. Immobilized TvDAO was not sensitive to bubble aeration and received substantial (≥ tenfold) stabilization of the activity at 45°C as compared to free enzyme, suggesting immobilization via multisubunit oriented interaction of enzyme with the insoluble carrier. The Z(basic2) enzyme immobilizate was demonstrated to serve as re-usable heterogeneous catalyst for D-amino acid oxidation. Z(basic2) -mediated binding on a sulfonic acid group-containing glass carrier constitutes a generally useful strategy of enzyme immobilization that supports transition from case-specific empirical development to rational design. Copyright © 2012 Wiley Periodicals, Inc.
Liu, Yunbao; Nair, Muraleedharan G
2010-07-23
Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.
Freitas, Adriana C.; Castro, Ruann J. S.; Fontenele, Maria A.; Egito, Antonio S.; Farinas, Cristiane S.; Pinto, Gustavo A. S.
2013-01-01
Oil cakes have excellent nutritional value and offer considerable potential for use in biotechnological processes that employ solid-state fermentation (SSF) for the production of high value products. This work evaluates the feasibility of using canola cake as a substrate for protease production by a selected strain of Aspergillus oryzae cultivated under SSF. The influences of the following process parameters were considered: initial substrate moisture content, incubation temperature, inoculum size, and pH of the buffer used for protease extraction and activity analysis. Maximum protease activity was obtained after cultivating Aspergillus oryzae CCBP 001 at 20°C, using an inoculum size of 107 spores/g in canola cake medium moistened with 40 mL of water to 100 g of cake. Cultivation and extraction under selected conditions increased protease activity 5.8-fold, compared to the initial conditions. Zymogram analysis of the enzymatic extract showed that the protease molecular weights varied between 31 and 200 kDa. The concentrated protease extract induced clotting of casein in 5 min. The results demonstrate the potential application of canola cake for protease production under SSF and contribute to the technological advances needed to increase the efficiency of processes designed to add value to agroindustrial wastes. PMID:24455400
Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio
2006-11-10
Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.
Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul
2016-01-01
This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.
Enzyme-assisted extraction of bioactives from plants.
Puri, Munish; Sharma, Deepika; Barrow, Colin J
2012-01-01
Demand for new and novel natural compounds has intensified the development of plant-derived compounds known as bioactives that either promote health or are toxic when ingested. Enhanced release of these bioactives from plant cells by cell disruption and extraction through the cell wall can be optimized using enzyme preparations either alone or in mixtures. However, the biotechnological application of enzymes is not currently exploited to its maximum potential within the food industry. Here, we discuss the use of environmentally friendly enzyme-assisted extraction of bioactive compounds from plant sources, particularly for food and nutraceutical purposes. In particular, we discuss an enzyme-assisted extraction of stevioside from Stevia rebaudiana, as an example of a process of potential value to the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M
2010-10-01
Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.
Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii.
Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong
2018-01-01
Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro . β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. The factors investigated include the enzyme concentration (0.5%-2.5%), ultrasound time (10 min -3 0 min), and extraction temperature (30°C-50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC 50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two-step methodThree factors affecting the efficiency of preparation were analyzed and discussed include the enzyme concentration, ultrasound time, and extraction temperature by central composite designThis new method of preparing arctigenin improved the yield significantly than other methodsArctigenin has remarkable pharmacological activities of inhibiting acetylcholinesterase and scavenging nitrite. Abbreviations used: AChE: Acetylcholinesterase, CCD: Central composite design, TCM: Traditional Chinese medicines, AD.
Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii
Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong
2018-01-01
Background: Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. Objective: A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro. Materials and Methods: β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. Results: The factors investigated include the enzyme concentration (0.5%–2.5%), ultrasound time (10 min−3 0 min), and extraction temperature (30°C–50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. Conclusions: The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. SUMMARY The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two-step methodThree factors affecting the efficiency of preparation were analyzed and discussed include the enzyme concentration, ultrasound time, and extraction temperature by central composite designThis new method of preparing arctigenin improved the yield significantly than other methodsArctigenin has remarkable pharmacological activities of inhibiting acetylcholinesterase and scavenging nitrite. Abbreviations used: AChE: Acetylcholinesterase, CCD: Central composite design, TCM: Traditional Chinese medicines, AD: PMID:29576707
Sengüven, Burcu; Baris, Emre; Oygur, Tulin; Berktas, Mehmet
2014-01-01
Discussing a protocol involving xylene-ethanol deparaffinization on slides followed by a kit-based extraction that allows for the extraction of high quality DNA from FFPE tissues. DNA was extracted from the FFPE tissues of 16 randomly selected blocks. Methods involving deparaffinization on slides or tubes, enzyme digestion overnight or for 72 hours and isolation using phenol chloroform method or a silica-based commercial kit were compared in terms of yields, concentrations and the amplifiability. The highest yield of DNA was produced from the samples that were deparaffinized on slides, digested for 72 hours and isolated with a commercial kit. Samples isolated with the phenol-chloroform method produced DNA of lower purity than the samples that were purified with kit. The samples isolated with the commercial kit resulted in better PCR amplification. Silica-based commercial kits and deparaffinized on slides should be considered for DNA extraction from FFPE.
1989-11-01
cherists because a new parameter; the refractive index of materials is an important in design as the chemistry of the absorbing or reacting layer ...redox electrode surfaces (the Sharp electrodes); use of enzymes in reactive layers to generate from neutral charge substrate species that can be...and natural and synthetic ionophores in monovalent and divalent ion sensors since 1965); use of selective layers to extract or partition species into
Lenucci, Marcello Salvatore; De Caroli, Monica; Marrese, Pier Paolo; Iurlaro, Andrea; Rescio, Leonardo; Böhm, Volker; Dalessandro, Giuseppe; Piro, Gabriella
2015-03-01
This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perera, Ambegoda Liyanage Harini Amalka
2017-01-01
Natural rubber latex (NRL) allergy is caused by the extractable latex proteins in dipped rubber products. It is a major concern for the consumers who are sensitive to the allergenic extractable proteins (EP) in products such as NRL gloves. Objective of this research was to develop an economical method to reduce the EP in finished dipped NRL products. In order to reduce the EP levels, two natural proteases, bromelain from pineapple and papain from papaya, were extracted and partially purified using (NH4)2SO4. According to the newly developed method, different glove samples were treated with a 5% solution of each partially purified enzyme, for 2 hours at 60°C. Residual amounts of in treated samples were quantified using the modified Lowry assay (ASTM D5712-10). Bromelain displayed a 54 (±11)% reduction of the EP from the dipped rubber products, whereas it was 58 (±8)% with papain. These results clearly indicate that the selected natural proteases, bromelain, and papain contribute significantly towards the reduction of the total EP in finished NRL products. Application of bromelain enzyme for the aforementioned purpose has not been reported up to date, whereas papain has been used to treat raw NRL towards reducing the EP. PMID:28706952
Rasmussen, Martin Krøyer; Klausen, Christina Lindgaard; Ekstrand, Bo
2014-03-01
Chicory (Cichorium intybus) has been shown to induce enzymes of pharmacokinetic relevance (cytochrome P450; CYP). The aim of this study was to investigate the effects of selected secondary plant metabolites with a global extract of chicory root, on the expression of hepatic CYP mRNA (1A2, 2A19, 2C33, 2D25, 2E1 and 3A29), using primary porcine hepatocytes. Of the tested secondary plant metabolites, artemisinin, scoparone, lactucin and esculetin all induced increased expression of specific CYPs, while esculin showed no effect. In contrast, a global extract of chicory root decreased the expression of CYP1A2, 2C33, 2D25 and 3A29 at high concentrations. The results suggest that purified secondary metabolites from chicory affect CYP expression and thereby might affect detoxification in general, and that global extracts of plants can have effects different from individual components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Delgado-Povedano, María Del Mar; Priego-Capote, Feliciano; Luque de Castro, María Dolores
2017-04-01
Hydrolysis of oleuropein, the main phenol in olive (Olea europaea L.) leaf extracts, to oleuropein aglycon and other subsequent products in the hydrolytic pathway can be catalyzed by different enzymes. Three of the most used hydrolases were assayed to catalyze the process, and β-glucosidase from Aspergillus niger was selected. Acceleration of the enzymatic hydrolysis by ultrasound (US) was studied using a Box-Behnken design (duty cycle, amplitude, cycle time) and an oleuropein standard, and the optimum US conditions for achieving maximum yield of oleuropein aglycon were 0.5s/s duty cycle, 50% amplitude and 45s cycle. The method was applied to obtain oleuropein aglycon from commercial and laboratory extracts from olive leaves, which may have a pharmacological use as deduced by its healthy properties. The kinetics of the US-assisted enzymatic hydrolysis was monitored by analysis of the target compounds using liquid chromatography-tandem mass spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Akhavan Sepahy, Abbas; Jabalameli, Leila
2011-01-01
Soil samples of Tehran jungle parks were screened for proteolytic Bacilli. Among eighteen protease producers one of the isolates obtained from Lavizan park, in north east of Tehran, was selected for further experimental studies. This isolate was identified as Bacillus sp. strain CR-179 based on partial sequencing of 16S rRNA. Various nutritional and environmental parameters affected protease production by Bacillus sp. strain CR-179. Protease production by this Bacillus cultivated in liquid cultures reached a maximum at 24 h, with levels of 340.908 U/mL. Starch and maltose were the best substrates for enzyme production while some pure sugars such as fructose, glucose, and sucrose could not influence production of protease. Among various organic nitrogen sources corn steep liquor, which is commercial, was found as the best substrate followed by yeast extract, whey protein, and beef extract. The optimal pH and optimal temperature of enzyme production were 8.0 and 45°C, respectively. Studies on enzymatic characterization revealed that crude protease showed maximum activity at pH 9.0 and 60°C, which is indicating the enzyme to be thermoalkaline protease. PMID:22191016
Tan, Zhi-Jian; Yang, Zi-Zhen; Yi, Yong-Jian; Wang, Hong-Ying; Zhou, Wan-Lai; Li, Fen-Fang; Wang, Chao-Yun
2016-08-01
In this study, enzyme-assisted three-phase partitioning (EATPP) was used to extract oil from flaxseed. The whole procedure is composed of two parts: the enzymolysis procedure in which the flaxseed was hydrolyzed using an enzyme solution (the influencing parameters such as the type and concentration of enzyme, temperature, and pH were optimized) and three-phase partitioning (TPP), which was conducted by adding salt and t-butanol to the crude flaxseed slurry, resulting in the extraction of flaxseed oil into alcohol-rich upper phase. The concentration of t-butanol, concentration of salt, and the temperature were optimized to maximize the extraction yield. Under optimized conditions of a 49.29 % t-butanol concentration, 30.43 % ammonium sulfate concentration, and 35 °C extraction temperature, a maximum extraction yield of 71.68 % was obtained. This simple and effective EATPP can be used to achieve high extraction yields and oil quality, and thus, it is potential for large-scale oil production.
Cruz, Roberta; Fonseca, Julyanna Cordoville; de Medeiros, Erika Valente; Maciel, Marília de Holanda Cavalcanti; Moreira, Keila Aparecida; Motta, Cristina Maria de Souza
2014-01-01
Tannase is an enzyme that hydrolyzes esters and lateral bonds of tannins, such as tannic acid, releasing glucose and gallic acid and stands out in the clarification of wines and juices. Fungi of the genera Aspergillus and Penicillium are excellent producers of this enzyme. The search for fungi that produce high levels of tannase as well as new substrates for the enzyme production by the SSF is required. The objectives of this study were to evaluate the production of tannase by Aspergillus and Penicillium species through SSF using leaves and agroindustrial waste barbados cherry and mangaba fruit as substrate, select the best producer, optimize production, characterize the crude enzyme extract, and apply it the clarification of grape juice. Selecting the best producer was performed by planning Placket-Burman and RSM. P. montanense showed highest activity with 41.64 U/mL after 72 h of fermentation residue using barbados cherry, with 3.5% tannic acid and 70% moisture. The enzyme showed the highest activity at pH 9.0 and 50°C. The tannase of P. montanense was stable over a wide pH range and temperature and, when applied to grape juice, showed higher efficiency by reducing 46% of the tannin content after incubation 120 m. PMID:25506607
de Lima, Juliana Silva; Cruz, Roberta; Fonseca, Julyanna Cordoville; de Medeiros, Erika Valente; Maciel, Marília de Holanda Cavalcanti; Moreira, Keila Aparecida; Motta, Cristina Maria de Souza
2014-01-01
Tannase is an enzyme that hydrolyzes esters and lateral bonds of tannins, such as tannic acid, releasing glucose and gallic acid and stands out in the clarification of wines and juices. Fungi of the genera Aspergillus and Penicillium are excellent producers of this enzyme. The search for fungi that produce high levels of tannase as well as new substrates for the enzyme production by the SSF is required. The objectives of this study were to evaluate the production of tannase by Aspergillus and Penicillium species through SSF using leaves and agroindustrial waste barbados cherry and mangaba fruit as substrate, select the best producer, optimize production, characterize the crude enzyme extract, and apply it the clarification of grape juice. Selecting the best producer was performed by planning Placket-Burman and RSM. P. montanense showed highest activity with 41.64 U/mL after 72 h of fermentation residue using barbados cherry, with 3.5% tannic acid and 70% moisture. The enzyme showed the highest activity at pH 9.0 and 50°C. The tannase of P. montanense was stable over a wide pH range and temperature and, when applied to grape juice, showed higher efficiency by reducing 46% of the tannin content after incubation 120 m.
Wang, Haibo; Zhao, Xiaoping; Wang, Shufang; Tao, Shan; Ai, Ni; Wang, Yi
2015-05-01
Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
Etheridge, Amy S; Black, Sherry R; Patel, Purvi R; So, James; Mathews, James M
2007-07-01
Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.
Khattak, Waleed Ahmad; Kang, Minkyung; Ul-Islam, Mazhar; Park, Joong Kon
2013-06-01
A number of hydrolyzing enzymes that are secreted from malt during brewing, including cell wall-hydrolyzing, saccharide-hydrolyzing, protein-degrading, lipid-hydrolyzing, and polyphenol and thiol-hydrolyzing enzymes, are expected to exist in an active form in waste from beer fermentation broth (WBFB). In this study, the existence of these enzymes was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, after which enzyme extract was partially purified through a series of purification steps. The hydrolyzing enzyme activity was then measured under various conditions at each purification step using carboxymethyl cellulose as a substrate. The best hydrolyzing activities of partially purified enzymes were found at pH 4.5 and 50 °C in a citrate buffer system. The enzymes showed highest thermal stability at 30 °C when exposed for prolonged time. As the temperature increased gradually from 25 to 70 °C, yeast cells in the chemically defined medium with enzyme extract lost their cell wall and viability earlier than those without enzyme extract. Cell wall degradation and the release of cell matrix into the culture media at elevated temperature (45-70 °C) in the presence of enzyme extract were monitored through microscopic pictures. Saccharification enzymes from malt were relatively more active in the original WBFB than supernatant and diluted sediments. The presence of hydrolyzing enzymes from malt in WBFB is expected to play a role in bioethanol production using simultaneous saccharification and fermentation without the need for additional enzymes, nutrients, or microbial cells via a cell-free enzyme system.
El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A
2010-01-01
The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These findings are discussed in the light of the potential of A. vera plant extracts for developing efficient, specific and non-toxic anticancer drugs that are affordable for developing countries.
Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara.
de Figueiredo, Vitória Ribeiro Garcia; Yamashita, Fábio; Vanzela, André Luis Laforga; Ida, Elza Iouko; Kurozawa, Louise Emy
2018-04-01
The objective of this study was to optimize the extraction of protein by applying a multi-enzymatic pretreatment to okara, a byproduct from soymilk processing. The multi-enzyme complex Viscozyme, containing a variety of carbohydrases, was used to hydrolyze the okara cell walls and facilitate extraction of proteins. Enzyme-assisted extraction was carried out under different temperatures (37-53 °C), enzyme concentrations (1.5-4%) and pH values (5.5-6.5) according to a central composite rotatable design. After extraction, the protein was concentrated by isoelectric precipitation. The optimal conditions for maximum protein content and recovery in protein concentrate were 53 °C, pH 6.2 and 4% of enzyme concentration. Under these conditions, protein content of 56% (dry weight basis) and a recovery of 28% were obtained, representing an increase of 17 and 86%, respectively, compared to the sample with no enzymatic pretreatment. The multi-enzyme complex Viscozyme hydrolyzed the structural cell wall polysaccharides, improving extraction and obtaining protein concentrate from the okara. An electrophoretic profile of the protein concentrate showed two distinct bands, corresponding to the acidic and basic subunits of the protein glycinin. There were no limiting amino acids in the protein concentrate, which had a greater content of arginine.
Delorme, Vincent; Raux, Brigitt; Puppo, Rémy; Leclaire, Julien; Cavalier, Jean-François; Marc, Sylvain; Kamarajugadda, Pavan-Kumar; Buono, Gérard; Fotiadu, Frédéric; Canaan, Stéphane; Carrière, Frédéric
2014-12-01
A synthetic phosphonate inhibitor designed for lipase inhibition but displaying a broader range of activity was covalently immobilized on a solid support to generate a function-directed tool targeting serine hydrolases. To achieve this goal, straightforward and reliable analytical techniques were developed, allowing the monitoring of the solid support's chemical functionalization, enzyme capture processes and physisorption artifacts. This grafted inhibitor was tested on pure lipases and serine proteases from various origins, and assayed for the selective capture of lipases from several complex biological extracts. The direct identification of captured enzymes by mass spectrometry brought the proof of concept on the efficiency of this supported covalent inhibitor. The features and limitations of this "enzyme-fishing" proteomic tool provide new insight on solid-liquid inhibition process. Copyright © 2014. Published by Elsevier B.V.
Ion-Exchange Chromatography: Basic Principles and Application.
Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F
2017-01-01
Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.
Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S
2010-03-01
This study was performed to purify and quantify quercetin glycosides (QG) and aglycone (free) quercetin (Q) in 6 selected onion cultivars and to compare analytical approaches based on high-performance liquid chromatography (HPLC) and spectrophotometry for the quantification of total quercetin (TQ) concentrations. Individual mono- and di-glycoside Q compounds were purified using a semipreparative HPLC and identified by comparing spectral data and by confirming corresponding peaks of QG and Q after incomplete enzyme-hydrolysis. Purified QG were quantified as Q by enzyme-hydrolysis/HPLC. TQ concentrations obtained from 20 onion bulbs with enzyme-hydrolysis/HPLC, no-hydrolysis/HPLC, and a spectrophotometric method without prior hydrolysis were significantly correlated (r(2)= 0.99) and were about 15% higher, identical, or 10% less than those concentrations by a standard acid-hydrolysis/HPLC method, respectively. During enzyme-hydrolysis of onion extracts, progressive reduction of the QG and formation of the corresponding mono-glycosides and Q were monitored using an analytical HPLC. TQ ranged from 83 to 330 microg/g F.W. in 6 selected cultivars of long-day or short-day onions. Q3,4'G and Q4'G were the 2 major compounds and comprised approximately between 94% and 97% of TQ in onions.
Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai
2015-09-18
The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.
Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai
2015-01-01
The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings. PMID:26393637
Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds
Kalita, Diganta; Holm, David G.; LaBarbera, Daniel V.; Petrash, J. Mark
2018-01-01
Diabetes mellitus is a chronic disease that is becoming a serious global health problem. Diabetes has been considered to be one of the major risks of cataract and retinopathy. Synthetic and natural product inhibitors of carbohydrate degrading enzymes are able to reduce type 2 diabetes and its complications. For a long time, potatoes have been portrayed as unhealthy for diabetic patients by some nutritionist due to their high starch content. However, purple and red potato cultivars have received considerable attention from consumers because they have high levels of polyphenolic compounds that have potent antioxidant activities. In this study, we screened the total phenolics (TP) and total anthocyanins (TA) and analyzed the phenolic and anthocyanin compounds in selected potato cultivars and advanced selections with distinct flesh colors (purple, red, yellow and white). Purple and red potato cultivars had higher levels of TP and TA than tubers with other flesh colors. Chlorogenic acid is the predominant phenolic acid, and major anthocyanin is composed of the derivatives of petunidin, peonidin, malvidin and pelargonidin. We tested the potential inhibitory effect of potato extracts on the activities of α-amylase and α-glucosidase, which were targeted to develop antidiabetic therapeutic agents. We also measured inhibitory effect of potato extracts on aldose reductase (AR) which is a key enzyme that has been a major drug target for the development of therapies to treat diabetic complications. Purple flesh tubers extract showed the most effective inhibition of α-amylase, α-glucosidase, and aldose reductase with IC50 values 25, 42, and 32 μg/ml, respectively. Kinetic studies showed that anthocyanins are noncompetitive inhibitors of these enzymes, whereas phenolic acids behaved as mixed inhibitors for α-amylase and α-glucosidase and noncompetitive inhibitors for AR. This study supports the development of a positive and healthful image of potatoes, which is an important issue for consumers. PMID:29370193
Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds.
Kalita, Diganta; Holm, David G; LaBarbera, Daniel V; Petrash, J Mark; Jayanty, Sastry S
2018-01-01
Diabetes mellitus is a chronic disease that is becoming a serious global health problem. Diabetes has been considered to be one of the major risks of cataract and retinopathy. Synthetic and natural product inhibitors of carbohydrate degrading enzymes are able to reduce type 2 diabetes and its complications. For a long time, potatoes have been portrayed as unhealthy for diabetic patients by some nutritionist due to their high starch content. However, purple and red potato cultivars have received considerable attention from consumers because they have high levels of polyphenolic compounds that have potent antioxidant activities. In this study, we screened the total phenolics (TP) and total anthocyanins (TA) and analyzed the phenolic and anthocyanin compounds in selected potato cultivars and advanced selections with distinct flesh colors (purple, red, yellow and white). Purple and red potato cultivars had higher levels of TP and TA than tubers with other flesh colors. Chlorogenic acid is the predominant phenolic acid, and major anthocyanin is composed of the derivatives of petunidin, peonidin, malvidin and pelargonidin. We tested the potential inhibitory effect of potato extracts on the activities of α-amylase and α-glucosidase, which were targeted to develop antidiabetic therapeutic agents. We also measured inhibitory effect of potato extracts on aldose reductase (AR) which is a key enzyme that has been a major drug target for the development of therapies to treat diabetic complications. Purple flesh tubers extract showed the most effective inhibition of α-amylase, α-glucosidase, and aldose reductase with IC50 values 25, 42, and 32 μg/ml, respectively. Kinetic studies showed that anthocyanins are noncompetitive inhibitors of these enzymes, whereas phenolic acids behaved as mixed inhibitors for α-amylase and α-glucosidase and noncompetitive inhibitors for AR. This study supports the development of a positive and healthful image of potatoes, which is an important issue for consumers.
Anusha, M.; Venkateswarlu, M.; Prabhakaran, V.; Taj, S. Shareen; Kumari, B. Pushpa; Ranganayakulu, D.
2011-01-01
Objective: To investigate the hepatoprotective activity of the aqueous extract of the aerial parts of Portulaca oleracea (P. oleracea) in combination with lycopene against carbon tetrachloride induced hepatotoxicity in rats. Materials and Methods: Hepatotoxicity was induced in male Wistar rats by intraperitoneal injection of carbon tetrachloride (0.1 ml/kg b.w for 14 days). The aqueous extract of P. oleracea in combination with lycopene (50 mg/kg b.w) was administered to the experimental animals at two selected doses for 14 days. The hepatoprotective activity of the combination was evaluated by the liver function marker enzymes in the serum [aspartate transaminases (AST), alanine transaminases (ALT), alkaline phosphatase (Alk.P), total bilirubin (TB), total protein (TP) and total cholesterol (TC)], pentobarbitone induced sleeping time (PST) and histopathological studies of liver. Results: Both the treatment groups showed hepatoprotective effect against carbon tetrachloride induced hepatotoxicity by significantly restoring the levels of serum enzymes to normal which was comparable to that of silymarin group. Besides, the results obtained from PST and histopathological results also support the study. Conclusions: The oral administration of P. oleracea in combination with lycopene significantly ameliorates CCl4 hepatotoxicity in rats. PMID:22022001
Wheeler, K P; Walker, J A; Barker, D M
1975-01-01
The dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) on lipid has been examined in a number of different ways, with the use of various preparations from kidney tissue. The main findings were as follows. (1) The ATPase activities of the preparations examined were closely correlated with their total phospholipid content. (2) Extraction of the ATPase with deoxycholate or Lubrol W, combined with suitable salt-fractionation and washing procedures, removed phospholipid, cholesterol and enzymic activity in parallel; but activity was completely lost before all lipid had been removed. (3) The loss of activity could not be attributed to inhibition by residual detergent. (4) No selective removal of any particular phospholipid class by detergent could be detected. (5) Consistent reactivation of the Lubrol-extracted enzymes was obtained by adding dispersions of exogenous phospholipid, but only some, bearing a net negative charge, such as phosphatidylserine and phosphatidylglycerol, were effective. (6) The degree of reactivation was correlated with the amount of residual activity remaining after lipid depletion. (7) Partial purification of the ATPase, giving a 50-fold increase in specific activity, was not accompanied by selective enhancement of any particular class of phospholipid. We conclude that although the ATPase is dependent on phospholipid, only the reactivation results provide evidence for specificity. PMID:125082
Aga, D.S.; Thurman, E.M.
1993-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were coupled for automated trace analysis of pristine water samples containing 2-chloro-4-ethylamino-6-isopropylamine-s-triazine (atrazine) and 2-chloro-2???,6???-diethyl-N-(methoxymethyl)acetanilide (alachlor). The isolation of the two herbicides on a C18-resin involved the selection of an elution solvent that both removes interfering substances and is compatible with ELISA. Ethyl acetate was selected as the elution solvent followed by a solvent exchange with methanol/water (20/80, % v/v). The SPE-ELISA method has a detection limit of 5.0 ng/L (5 ppt), >90% recovery, and a relative standard deviation of ??10%. The performance of a microtiter plate-based ELISA and a magnetic particle-based ELISA coupled to SPE was also evaluated. Although the sensitivity of the two ELISA methods was comparable, the precision using magnetic particles was improved considerably (??10% versus ??20%) because of the faster reaction kinetics provided by the magnetic particles. Finally, SPE-ELISA and isotope dilution gas chromatography/ mass spectrometry correlated well (correlation coefficient of 0.96) for lake-water samples. The SPE-ELISA method is simple and may have broader applications for the inexpensive automated analysis of other contaminants in water at trace levels.
Gu, Jingsong; Chang, Thomas Ming Swi
2009-01-01
In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion.
Impact of new ingredients obtained from brewer's spent yeast on bread characteristics.
Martins, Z E; Pinho, O; Ferreira, I M P L V O
2018-05-01
The impact of bread fortification with β-glucans and with proteins/proteolytic enzymes from brewers' spent yeast on physical characteristics was evaluated. β-Glucans extraction from spent yeast cell wall was optimized and the extract was incorporated on bread to obtain 2.02 g β-glucans/100 g flour, in order to comply with the European Food Safety Authority guidelines. Protein/proteolytic enzymes extract from spent yeast was added to bread at 60 U proteolytic activity/100 g flour. Both β-glucans rich and proteins/proteolytic enzymes extracts favoured browning of bread crust. However, breads with proteins/proteolytic enzymes addition presented lower specific volume, whereas the incorporation of β-glucans in bread lead to uniform pores that was also noticeble in terms of higher specific volume. Overall, the improvement of nutritional/health promoting properties is highlighted with β-glucan rich extract, not only due to bread β-glucan content but also for total dietary fibre content (39% increase). The improvement was less noticeable for proteins/proteolytic enzymes extract. Only a 6% increase in bread protein content was noted with the addition of this extract and higher protein content would most likely accentuate the negative impact on bread specific volume that in turn could impair consumer acceptance. Therefore, only β-glucan rich extract is a promising bread ingredient.
Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy.
Phitsuwan, Paripok; Laohakunjit, Natta; Kerdchoechuen, Orapin; Kyu, Khin Lay; Ratanakhanokchai, Khanok
2013-03-01
Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications-as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives-their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.
Asaduzzaman, A K M; Chun, Byung-Soo
2015-06-01
The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.
Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît
2014-04-01
In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.
Chronic ethanol feeding modulates the synthesis of digestive enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponnappa, B.C.; Hoek, J.B.; Rubin, E.
1987-05-01
The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of /sup 3/H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding inducedmore » an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas.« less
Sharifi-Rad, M; Tayeboon, G S; Sharifi-Rad, J; Iriti, M; Varoni, E M; Razazi, S
2016-05-30
Veronica genus (Plantaginaceae) is broadly distributed in different habitats. In this study, the inhibitory activity of free soluble and conjugated phenolic extracts of Veronica persica on key enzymes associated to type 2 diabetes (α-glucosidase and α-amylase) and hypertension (angiotensin I converting enzyme, ACE) was assessed, as well as their antioxidant power. Our results showed that both the extracts inhibited α-amylase, α-glucosidase and ACE in a dose-dependent manner. In particular, free phenolic extract significantly (P<0.05) inhibited α-glucosidase (IC50 532.97 µg/mL), whereas conjugated phenolic extract significantly (P<0.05) inhibited α-amylase (IC50 489.73 µg/mL) and ACE (290.06 µg/mL). The enzyme inhibitory activities of the extracts were not associated with their phenolic content. Anyway, the inhibition of α-amylase, α-glucosidase and ACE, along with the antioxidant capacity of the phenolic-rich extracts, could represent a putative mechanism through which V. persica exerts its antidiabetes and antihypertension effects.
Hirano, T; Homma, M; Oka, K
1994-02-01
The effects of organic-solvent extracts of Urtica dioica (Urticaceae) on the Na+,K(+)-ATPase of the tissue of benign prostatic hyperplasia (BPH) were investigated. The membrane Na+,K(+)-ATPase fraction was prepared from a patient with BPH by a differential centrifugation of the tissue homogenate. The enzyme activity was inhibited by 10(-4)-10(-5) M of ouabain. The hexane extract, the ether extract, the ethyl acetate extract, and the butanol extract of the roots caused 27.6-81.5% inhibition of the enzyme activity at 0.1 mg/ml. In addition, a column extraction of stinging nettle roots using benzene as an eluent afforded efficient enzyme inhibiting activity. Steroidal components in stinging nettle roots, such as stigmast-4-en-3-one, stigmasterol, and campesterol inhibited the enzyme activity by 23.0-67.0% at concentrations ranging from 10(-3)-10(-6) M. These results suggest that some hydrophobic constituents such as steroids in the stinging nettle roots inhibited the membrane Na+,K(+)-ATPase activity of the prostate, which may subsequently suppress prostate-cell metabolism and growth.
Dutta, Sayantani; Bhattacharjee, Paramita
2015-07-01
Black pepper (Piper nigrum L.), the King of Spices is the most popular spice globally and its active ingredient, piperine, is reportedly known for its therapeutic potency. In this work, enzyme-assisted supercritical carbon dioxide (SC-CO2) extraction of black pepper oleoresin was investigated using α-amylase (from Bacillus licheniformis) for enhanced yield of piperine-rich extract possessing good combination of phytochemical properties. Optimization of the extraction parameters (without enzyme), mainly temperature and pressure, was conducted in both batch and continuous modes and the optimized conditions that provided the maximum yield of piperine was in the batch mode, with a sample size of 20 g of black pepper powder (particle diameter 0.42 ± 0.02 mm) at 60 °C and 300 bar at 2 L/min of CO2 flow. Studies on activity of α-amylase were conducted under these optimized conditions in both batch and continuous modes, with varying amounts of lyophilized enzyme (2 mg, 5 mg and 10 mg) and time of exposure of the enzyme to SC-CO2 (2.25 h and 4.25 h). The specific activity of the enzyme increased by 2.13 times when treated in the continuous mode than in the batch mode (1.25 times increase). The structural changes of the treated enzymes were studied by (1)H NMR analyses. In case of α-amylase assisted extractions of black pepper, both batch and continuous modes significantly increased the yields and phytochemical properties of piperine-rich extracts; with higher increase in batch mode than in continuous. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Urease inhibition potential of Di-naphthodiospyrol from Diospyros lotus roots.
Rauf, Abdur; Uddin, Ghias; Raza, Muslam; Patel, Seema; Bawazeer, Saud; Ben Hadda, Taibi; Jehan, Noor; Mabkhot, Yahia Nasser; Khan, Ajmal; Mubarak, Mohammad S
2017-05-01
The dimeric napthoquione 5,8,4'-trihydroxy-1'-methoxy-6, 6'-dimethyl-7,3'-binaphtyl-1,4,5',8'-tetraone (1) was isolated from the chloroform fraction of Diospyros lotus extract. Compound 1 was screened for its inhibitory effects against four enzymes: urease, phosphodiesterase-I, carbonic anhydrase-II and α-chymotrypsin, and showed selective activity against urease enzyme with an IC 50 value of 254.1 ± 3.82 μM as compared to the standard thiourea (IC 50 = 21 ± 0.11 μM). Furthermore, in silico docking study was carried out to explain the molecular mechanism of compound 1 against the target receptor.
Castro Braga, F; Wagner, H; Lombardi, J A; de Oliveira, A B
2000-06-01
The evaluation of several antihypertensive activity of Brazilian plant species was performed using in vitro inhibition of the angiotensin I-converting enzyme (ACE). Nineteen species belonging to 13 families were investigated. Plants were selected based on their use as diuretics and on a chemosystematic consideration. Extracts of the following species presented the highest ACE inhibition rate, at concentrations of 0.33 mg/ml: Ouratea semiserrata (Mart. & Nees) Engl. stems (68%), Cuphea cartagenesis (Jacq.) Macbride leaves (50%) and Mansoa hirsuta DC. leaves (54%). Some hypotheses about the nature of the compounds that may be responsible for the activity of these species are discussed in the paper.
Analytical Approaches to Understanding the Role of Non-carbohydrate Components in Wood Biorefinery
NASA Astrophysics Data System (ADS)
Leskinen, Timo Ensio
This dissertation describes the production and analysis of wood subjected to a novel electron beam-steam explosion pretreatment (EB-SE) pretreatment with the aim to evaluate its suitability for the production of bioethanol. The goal of these studies was to: 1) develop analytical methods for the investigation of depolymerization of wood components under pretreatments, 2) analyze the effects of EB-SE pretreatment on the pretreated biomass, 3) define how lignin and extractive components affect the action of enzymes on cellulosic substrates, and 4) examine how changes in lignin structure impact its isolation and potential conversion into value added chemicals. The first section of the work describes the development of a size-exclusion chromatography (SEC) methodology for molecular weight analysis for native and pretreated wood. The selective analysis of carbohydrates and lignin from native wood was made possible by the combination of two selective derivatization methods, ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. This method was then used to examine changes in softwood samples after the EB-SE pretreatment. The methodology was shown to be effective for monitoring changes in the molecular weight profiles of the pretreated wood. The second section of the work investigates synergistic effects of the EB-SE pretreatment on the molecular level structures of wood components and the significance of these alterations in terms of enzymatic digestibility. The two pretreatment steps depolymerized cell wall components in different fashion, while showing synergistic effects. Hardwood and softwood species responded differently to similar treatment conditions, which was attributed to the well-known differences in the structure of their lignin and hemicellulose fractions. The relatively crosslinked lignin in softwood appeared to limit swelling and subsequent depolymerization in comparison to hardwood. Additional studies revealed that an insoluble, likely crosslinked, lignin fraction induced enzyme inhibition, while soluble lower molecular weight fractions were slightly beneficial for the enzymatic hydrolysis of cellulose. The third section of the work addresses the influence of hydrophobic wood extractives and representative model compounds on the cellulolytic hydrolysis of cellulosic substrates. Deposition of specific fractions of isolated wood extractives on cellulose was found either to enhance or inhibit the action of cellulase enzymes, depending on the chemical nature of the fraction. Using model compounds this effect was found to be correlated with the compounds chemical structure, and underlying mechanisms could be rationalized by Hansen solubility parameter considerations. The amphiphilic and hydrophobic nature of the model extractives was found to influence the deposition of extractives on the cellulose surfaces, and the adsorption of cellulolytic enzymes, as measured with Quartz Crystal Microgravimetry. Beneficial effects of the extractives were likely related to reduction in the irreversible binding of the enzymes on the cellulose substrate. The fourth section of the work deals with the recovery of lignin using extraction methods based on aqueous alkali or aqueous ethanol. The objective of this study was to understand how the yield, MW and structure of lignin recovered from the process residue was impacted by the different isolation methods. Mild extraction conditions allowed for recovery of approximately 40 wt.% of the lignin present in the process residues. Base or acid catalyzed hydrolysis of the lignin could increase the recovery lignin yield to about 76 wt.%. The recovered lignins were characterized in terms of their functional groups, molecular weights and thermal properties. The lignins from mild alkali and ethanol extractions showed similarities in their chemical profiles while, as expected, the hydrolyzed lignins were different and depended on the hydrolysis conditions. The molecular weight and thermal properties of the lignin products were affected by the applied isolation process.
Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan; Hopkins, David L
2013-01-15
Two plant enzyme extracts from kiwifruit and asparagus were evaluated for their ability to hydrolyse commercially available substrates and proteins present in both beef connective tissue and topside myofibrillar extracts. The results show significant differences in protease activity depending on the assay used. Protease assays with connective tissue and meat myofibrillar extracts provide a more realistic evaluation of the potential of the enzymes for application in meat tenderization. Overall, the kiwifruit protease extract was found to be more effective at hydrolysing myofibrillar and collagen proteins than the asparagus protease extract. The two protease extracts appeared to target meat myofibrillar and collagen proteins differently, suggesting the potential of a synergistic effect of these proteases in improving the tenderness of specific cuts of meat, based on their intrinsic protein composition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts.
Nastasijević, Branislav; Lazarević-Pašti, Tamara; Dimitrijević-Branković, Suzana; Pašti, Igor; Vujačić, Ana; Joksić, Gordana; Vasić, Vesna
2012-07-01
The aim of this study was to investigate the inhibitory activity of Gentiana lutea extracts on the enzyme myeloperoxidase (MPO), as well as the antioxidant activity of these extracts and their correlation with the total polyphenol content. Extracts were prepared using methanol (100%), water and ethanol aqueous solutions (96, 75, 50 and 25%v/v) as solvents for extraction. Also, isovitexin, amarogentin and gentiopicroside, pharmacologically active constituents of G. lutea were tested as potential inhibitors of MPO. Antioxidant activity of extracts was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test and also using cyclic voltammetry (CV). Among all extracts, the antioxidant capacity of 50% ethanol aqueous extract was the highest, both when measured using the DPPH test, with IC(50)=20.6 μg/ml, and when using CV. Also, 50% ethanol extract, showed the best inhibition of MPO activity in comparison with other extracts. In the group of the selected G. lutea constituents, gentiopicroside has proved to be the strongest inhibitor of MPO, with IC(50)=0.8 μg/ml. Also, the concentration of G. lutea constituents were determined in all extracts, using Ultra Performance Liquid Chromatography (UPLC). Copyright © 2012 Elsevier B.V. All rights reserved.
Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro
NASA Astrophysics Data System (ADS)
Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.
2018-03-01
Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.
Complex Enzyme-Assisted Extraction Releases Antioxidative Phenolic Compositions from Guava Leaves.
Wang, Lu; Wu, Yanan; Liu, Yan; Wu, Zhenqiang
2017-09-30
Phenolics in food and fruit tree leaves exist in free, soluble-conjugate, and insoluble-bound forms. In this study, in order to enhance the bioavailability of insoluble-bound phenolics from guava leaves (GL), the ability of enzyme-assisted extraction in improving the release of insoluble-bound phenolics was investigated. Compared to untreated GL, single xylanase-assisted extraction did not change the composition and yield of soluble phenolics, whereas single cellulase or β -glucosidase-assisted extraction significantly enhanced the soluble phenolics content of PGL. However, complex enzyme-assisted extraction (CEAE) greatly improved the soluble phenolics content, flavonoids content, ABTS, DPPH, and FRAP by 103.2%, 81.6%, 104.4%, 126.5%, and 90.3%, respectively. Interestingly, after CEAE, a major proportion of phenolics existed in the soluble form, and rarely in the insoluble-bound form. Especially, the contents of quercetin and kaempferol with higher bio-activity were enhanced by 3.5- and 2.2-fold, respectively. More importantly, total soluble phenolics extracts of GL following CEAE exhibited the highest antioxidant activity and protective effect against supercoiled DNA damage. This enzyme-assisted extraction technology can be useful for extracting biochemical components from plant matrix, and has good potential for use in the food and pharmaceutical industries.
Miller, Glendon R.; Sarachek, Alvin
1974-01-01
In vitro assays demonstrate photoreactivating enzyme activity in extracts of Candida pseudotropicalis but not in extracts of Candida albicans, Candida stellatoidea, or Candida tropicalis. PMID:4604052
Mogana, R; Teng-Jin, K; Wiart, C
2013-01-01
The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.
Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-09-27
The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. Copyright © 2013 Elsevier B.V. All rights reserved.
Young, Eric M; Zhao, Zheng; Gielesen, Bianca E M; Wu, Liang; Benjamin Gordon, D; Roubos, Johannes A; Voigt, Christopher A
2018-05-09
Metabolic engineering requires multiple rounds of strain construction to evaluate alternative pathways and enzyme concentrations. Optimizing multigene pathways stepwise or by randomly selecting enzymes and expression levels is inefficient. Here, we apply methods from design of experiments (DOE) to guide the construction of strain libraries from which the maximum information can be extracted without sampling every possible combination. We use Saccharomyces cerevisiae as a host for a novel six-gene pathway to itaconic acid, selected by comparing alternative shunt pathways that bypass the mitochondrial TCA cycle. The pathway is distinctive for the use of acetylating acetaldehyde dehydrogenase to increase cytosolic acetyl-CoA pools, a bacterial enzyme to synthesize citrate in the cytosol, and an itaconic acid exporter. Precise control over the expression of each gene is enabled by a set of promoter-terminator pairs that span a 174-fold range. Two large combinatorial libraries (160 variants, 2.4Mb and 32 variants, 0.6Mb) are designed where the expression levels are selected by statistical methods (I-optimal response surface methodology, full factorial, or Plackett-Burman) with the intent of extracting different types of guiding information after the screen. This is applied to the design of a third library (24 variants, 0.5Mb) intended to alleviate a bottleneck in cis-aconitate decarboxylase (CAD) expression. The top strain produces 815mg/l itaconic acid, a 4-fold improvement over the initial strain achieved by iteratively balancing pathway expression. Including a methylated product in the total, the strain produces 1.3g/l combined itaconic acids. Further, a regression analysis of the libraries reveals the optimal expression level of CAD as well as pairwise interdependencies between genes that result in increased titer and purity of itaconic acid. This work demonstrates adapting algorithmic design strategies to guide automated yeast strain construction and learn information after each iteration. Copyright © 2018. Published by Elsevier Inc.
Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir
2017-01-01
Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer. PMID:28103302
Malami, Ibrahim; Abdul, Ahmad Bustamam; Abdullah, Rasedee; Kassim, Nur Kartinee Bt; Rosli, Rozita; Yeap, Swee Keong; Waziri, Peter; Etti, Imaobong Christopher; Bello, Muhammad Bashir
2017-01-01
Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer.
Sengüven, Burcu; Baris, Emre; Oygur, Tulin; Berktas, Mehmet
2014-01-01
Aim: Discussing a protocol involving xylene-ethanol deparaffinization on slides followed by a kit-based extraction that allows for the extraction of high quality DNA from FFPE tissues. Methods: DNA was extracted from the FFPE tissues of 16 randomly selected blocks. Methods involving deparaffinization on slides or tubes, enzyme digestion overnight or for 72 hours and isolation using phenol chloroform method or a silica-based commercial kit were compared in terms of yields, concentrations and the amplifiability. Results: The highest yield of DNA was produced from the samples that were deparaffinized on slides, digested for 72 hours and isolated with a commercial kit. Samples isolated with the phenol-chloroform method produced DNA of lower purity than the samples that were purified with kit. The samples isolated with the commercial kit resulted in better PCR amplification. Conclusion: Silica-based commercial kits and deparaffinized on slides should be considered for DNA extraction from FFPE. PMID:24688314
21 CFR 184.1685 - Rennet (animal-derived) and chymosin preparation (fermentation-derived).
Code of Federal Regulations, 2012 CFR
2012-04-01
... commercial extracts containing the active enzyme rennin (CAS Reg. No. 9001-98-3), also known as chymosin (International Union of Biochemistry Enzyme Commission (E.C.) 3.4.23.4). Rennet is the aqueous extract prepared... clear solution containing the active enzyme chymosin (E.C. 3.4.23.4). It is derived, via fermentation...
21 CFR 184.1685 - Rennet (animal-derived) and chymosin preparation (fermentation-derived).
Code of Federal Regulations, 2013 CFR
2013-04-01
... commercial extracts containing the active enzyme rennin (CAS Reg. No. 9001-98-3), also known as chymosin (International Union of Biochemistry Enzyme Commission (E.C.) 3.4.23.4). Rennet is the aqueous extract prepared... clear solution containing the active enzyme chymosin (E.C. 3.4.23.4). It is derived, via fermentation...
Zohdi, Nor Khanani; Amid, Mehrnoush
2013-11-20
Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.
Yan, Ming-Ming; Chen, Cai-Yun; Zhao, Bao-Shan; Zu, Yuan-Gang; Fu, Yu-Jie; Liu, Wei; Efferth, Thomas
2010-10-01
The optimal conditions for extraction of astragalosides III and IV (AGs III and IV) in Radix Astragali by negative pressure cavitation-accelerated enzyme pretreatment were studied on the basis of a Box-Behnken design and response surface methodology. Experimental results showed that negative pressure, amount of enzyme and incubation temperature were the main factors governing the enzyme pretreatment of Radix Astragali. The optimum parameters were obtained as follows: negative pressure -0.08 Mpa, amount of enzyme 1.48% (w/w of materials) and incubation temperature 45 degrees C. Under the optimal conditions, the maximal extraction yields of AGs III and IV were 0.103 and 0.325 mg/g, which were 41.67% and 65.31% increased as compared to those without enzyme pretreatment, respectively. The effect of negative pressure cavitation and enzyme pretreatment on the structural changes of plant cells was observed by scanning electron microscopy. In conclusion, negative pressure cavitation-accelerated enzyme pretreatment was proved to be environment-friendly and economical, and could be used in secondary metabolites production. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pérez-Castillo, Yunierkis; Froeyen, Matheus; Cabrera-Pérez, Miguel Ángel; Nowé, Ann
2011-04-01
Bacterial β-ketoacyl-acyl carrier protein synthase III (FabH) has become an attractive target for the development of new antibacterial agents which can overcome the increased resistance of these pathogens to antibiotics in clinical use. Despite several efforts have been dedicated to find inhibitors for this enzyme, it is not a straightforward task, mainly due its high flexibility which makes difficult the structure-based design of FabH inhibitors. Here, we present for the first time a Molecular Dynamics (MD) study of the E. colil FabH enzyme to explore its conformational space. We compare the flexibility of this enzyme for the unliganded protein and an enzyme-inhibitor complex and find a correspondence between our modeling results and the experimental evidence previously reported for this enzyme. Furthermore, through a 100 ns MD simulation of the unliganded enzyme we extract useful information related to the concerted motions that take place along the principal components of displacement. We also establish a relation between the presence of water molecules in the oxyanion hole with the conformational stability of structural important loops. Representative conformations of the binding pocket along the whole trajectory of the unliganded protein are selected through cluster analysis and we find that they contain a conformational diversity which is not provided by the X-ray structures of ecFabH. As a proof of this last hypothesis, we use a set of 10 FabH inhibitors and show that they cannot be correctly modeled in any available X-ray structure, while by using our set of conformations extracted from the MD simulations, this task can be accomplish. Finally, we show the ability of short MD simulations for the refinement of the docking binding poses and for MM-PBSA calculations to predict stable protein-inhibitor complexes in this enzyme.
Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival
2016-09-02
Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP(+) to NAD(+). Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD(+), and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP(+) to NAD(+). This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.
Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays
NASA Technical Reports Server (NTRS)
Reinecke, D. M.; Bandurski, R. S.
1988-01-01
Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.
Bhattacharjee, Payel; Bhattacharyya, Debasish
2013-01-09
The aqueous extract of the roots of Aristolochia indica is used as a decoction for the ailment of a number of diseases including snake bite treatment. Though the alcoholic extract of the different parts of the plant are well studied, information on the aqueous extract is limited. We have estimated aristolochic acid, different enzymes, enzyme inhibitors and anti-snake venom potency of its root extract. Reverse phase-HPLC was used to quantify aristolochic acid. Zymography, DQ-gelatin assay and atomic force microscopy were done to demonstrate gelatinase and collagenase activities of the extract. SDS-PAGE followed by MS/MS analysis revealed the identity of major protein components. Toxicity of the extract was estimated on animal model. Interaction of the extract with Russell's viper venom components was followed by Rayleigh scattering and enzyme assay. The aristolochic acid content of the root extract is 3.08 ± 1.88 × 10(-3)mg/ml. The extract possesses strong gelatinolytic, collagenase, peroxidase and nuclease activities together with l-amino acid oxidase and protease inhibitory potencies. Partial proteomic studies indicated presence of starch branching enzymes as major protein constituent of the extract. The extract did not show any acute and sub-chronic toxicity in animals at lower doses, but high dose causes liver and kidney damage. The extract elongated duration of survival of animals after application of Russell's viper venom. Considering the low aristolochic acid content of the extract, its consumption for a short time at moderate dose does not appear to cause serious toxicity. Strong inhibition of l-amino acid oxidase may give partial relief from snake bite after topical application of the extract. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Araújo, Marlyete Chagas de; Assis, Caio Rodrigo Dias; Silva, Luciano Clemente; Machado, Dijanah Cota; Silva, Kaline Catiely Campos; Lima, Ana Vitória Araújo; Carvalho, Luiz Bezerra; Bezerra, Ranilson de Souza; Oliveira, Maria Betânia Melo de
2016-08-01
This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended. Copyright © 2016 Elsevier B.V. All rights reserved.
Iglesias, Jose; Lamontagne, Julien; Erb, Heidi; Gezzar, Sari; Zhao, Shangang; Joly, Erik; Truong, Vouy Linh; Skorey, Kathryn; Crane, Sheldon; Madiraju, S R Murthy; Prentki, Marc
2016-01-01
Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/β-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Iglesias, Jose; Lamontagne, Julien; Erb, Heidi; Gezzar, Sari; Zhao, Shangang; Joly, Erik; Truong, Vouy Linh; Skorey, Kathryn; Crane, Sheldon; Madiraju, S. R. Murthy; Prentki, Marc
2016-01-01
Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/β-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors. PMID:26423520
Asha, Mannanthendil Kumaran; Debraj, Debnath; Dethe, Shekhar; Bhaskar, Anirban; Muruganantham, Nithyanantham; Deepak, Mundkinajeddu
2017-05-04
Flavonoid-rich extract prepared from Glycyrrhiza glabra has been found to be beneficial in patients with functional dyspepsia and was reported to possess some gut health-promoting properties such as antioxidant, anti-inflammatory and anti-Helicobacter pylori activities. In the present study, the flavonoid-rich extract of Glycyrrhiza glabra was evaluated for its compatibility with probiotic strains (Lactobacillus casei, Lactobacillus fermentum, Lactobacillus plantarum, and Streptococcus thermophilus), commercial probiotic drinks, and digestive enzymes (pancreatic α-amylase, α-glucosidase, phytase, xylanase, and pancreatic lipase). Results of this study indicated that the flavonoid-rich extract of Glycyrrhiza glabra is compatible with the tested probiotic strains, probiotic drinks and digestive enzymes.
2016-07-07
To find new, plant based drugs for the treatment of obesity and/or diabetes mellitus type 2 through the inhibition of essential digestive enzymes, in vitro tests were carried out on selected plants or fungi with weight-reducing, blood glucose-reducing or related potential, used in Traditional Chinese Medicine (TCM). Aqueous and methanolic extracts of 32 Chinese herbal medicines were assayed for their in vitro inhibitory activity against pancreatic lipase (PL) and α-amylase (PA). PL activity was measured by using an enzymatic in vitro assay based on the hydrolysis kinetics of an oleate ester of 4-methylumbelliferone. For the determination of α-amylase activity an enzyme assay based on the hydrolytic cleavage of a modified starch derivative was used. Our findings have shown that the methanolic extract of Lycopus lucidus Turcz. var. hirtus Regel (Lamiaceae) was a very effective PL inhibitor (IC50: 88.3±4.1 μg/mL). A high anti-amylase activity showed the methanolic extract of Trichosanthes kirilowii Maxim. (Curcurbitaceae, IC50: 248.8±67.3 μg/mL). This work provides a priority list of interesting plants for further study with respect to the treatment of obesity and associated metabolic diseases.
Composition of the Essential Oil of Aristolochia Manshurientsis Kom
NASA Astrophysics Data System (ADS)
Zhao, Xiuhong; Xin, Guang; Zhao, Lichun; Xiao, Zhigang; Xue, Bai
2018-03-01
This study demonstrated the chemical constituents of the essential oil of Aristolochia manshurientsis Kom and improved the essential oil efficiency by the enzyme-assisted extraction followed by hydrodistillation. The essential oils of Aristolochia manshurientsis Kom acquired by hydrodistillation after the solvent extraction with and without the assistance of cellulase have been investigated by gas chromatography/Mass spectrometry (GC-MS). The predominant constituents of both types of essential oils are camphene, 1,7,7-trimethyl-bicyclo [2.2.1] hept-2-yl acetate, 1,6-dimethyl-4-(1-methylethyl) naphthalene, caryophyllene oxide, borneol, and (-)-Spathulenol. The enzyme-assisted extraction not only increased extracting efficiency of the essential oil from 4.93% to 9.36%, but also facilitated the extraction of additional eight compounds such as 2-methano(-6,6-dimethyl) bicycle [3.1.1] hept-2-ene, (+)--terpineol and 1-propyl-3-(propen-1-yl) adamantane, which were not identified from the non-enzyme extraction sample.
Moon, Sung Sil
2018-02-01
The effects of proteolytic enzymes (bromelain and bromelain+papain) and a ginger extract were assessed on collagen content and solubility, thermal shrinkage temperature of connective tissue, pH, cooking loss, drip loss, and Warner-Bratzler shear force (WBSF) of M. pectoralis profundus isolated from the beef brisket cut. Both proteolytic enzymes and ginger extract led to a significant increase in cooking loss and collagen solubility compared with untreated controls. On the other hand, the peak ( T p ) thermal shrinkage temperature markedly decreased in all treatments compared with those in controls. Samples treated with bromelain, bromelain + papain, and ginger extract showed a significant decrease in WBSF by 36%, 40%, and 37%, respectively, compared with untreated controls. Our findings suggest that ginger extract are useful for postmortem tenderization of meat containing high levels of collagen, compared to control even though, bromelain and bromelain + papain treatments have higher collagen solubility than ginger extract.
Mining lipolytic enzymes in community DNA from high Andean soils using a targeted approach.
Borda-Molina, Daniel; Montaña, José Salvador; Zambrano, María Mercedes; Baena, Sandra
2017-08-01
Microbial enrichments cultures are a useful strategy to speed up the search for enzymes that can be employed in industrial processes. Lipases have gained special attention because they show unique properties such as: broad substrate specificity, enantio- and regio-selectivity and stability in organic solvents. A major goal is to identify novel lipolytic enzymes from microorganisms living in cold extreme environments such as high Andean soils, of relevance to our study being their capability be used in industrial processes. Paramo and glacier soils from the Nevados National Park in Colombia were sampled and microbial communities enriched through a fed-batch fermentation using olive oil as an inductor substrate. After 15 days of enrichment under aerobic conditions, total DNA was extracted. Subsequently, metagenomic libraries were constructed in the cosmid vector pWEB-TNC™. After functional screening, twenty and eighteen lipolytic clones were obtained from Paramo and Glacier soil enrichments, respectively. Based on lipid hydrolysis halo dimensions, the clone (Gla1) from a glacier enrichment was selected. A gene related to lipolytic activity was subcloned to evaluate enzyme properties. Phylogenetic analysis of the identified gene showed that the encoded lipase belongs to the family GDSL from a Ralstonia-like species. Interestingly, the secreted enzyme exhibited stability at high temperature and alkaline conditions, specifically the preferred conditions at 80 °C and pH 9.0. Thus, with the identification of an enzyme with non-expected properties, in this study is shown the potential of extreme cold environments to be explored for new catalytic molecules, using current molecular biology techniques, with applications in industrial processes, which demand stability under harsh conditions.
Tejesvi, Mysore V; Kini, Kukkundoor R; Prakash, Harishchandra S; Subbiah, Ven; Shetty, Hunthrike S
2008-09-01
Pestalotiopsis species were most dominant endophytic species isolated from four medicinal plants including Terminalia arjuna, Terminalia chebula, Azadirachta indica, and Holarrhena antidysenterica. Thirty Pestalotiopsis species isolated from different parts of the medicinal plants were selected for the study. The antioxidant and antihypertensive properties of Pestalotiopsis isolates were determined by measuring 1,1-diphenyl-2-picrylhydrazyl inhibitory activity, lipid peroxidation, and angiotensin-converting enzyme inhibition activity. Pestalotiopsis isolates of T. arjuna origin exhibited maximum radical scavenging activity compared with the others. The IC50 values of Pestalotiopsis extracts for 1,1-diphenyl-2-picrylhydrazyl scavenging activity ranged from 14 to 27 microg/mL compared with 15 and 6 microg/mL for butylated hydroxytoluene and ascorbic acid, respectively. The DNA damage study was also done for three isolates, TC-315, TA-37, and TA-60; TA-37 gave 80% protection. The IC50 values of Pestalotiopsis extracts for lipid peroxidation ranged between 30 and 35.5 microg/mL, while for the positive control butylated hydroxytoluene, it was 26 microg/mL. Out of 32 fungal extracts screened for antihypertensive assay, five (TA-37, TA-60, TA-102, TA-103, and TC-320) showed >60% inhibition of angiotensin-converting enzyme. The IC50 values for five extracts ranged from 21 to 37 microg/mL and was 20 microg/mL for captopril used as a positive control. The antibacterial activity was measured by the microplate-based turbidity measurement method. Four Pestalotiopsis extracts (TA-04, TA-37, TA-60, and TA-102) showed >75% inhibition against five bacterial strains including Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Xanthomonas axonopodis pv. malvacearum, and Staphylococcus aureus. The antioxidant, antibacterial, and antihypertensive activities demonstrated the potential of Pestalotiopsis extracts as therapeutic targets.
EVIDENCE FOR AN EXOCELLULAR SITE FOR THE ACID PHOSPHATASE OF SACCHAROMYCES MELLIS1
Weimberg, Ralph; Orton, William L.
1964-01-01
Weimberg, Ralph (Northern Regional Research Laboratory, Peoria, Ill.), and William L. Orton. Evidence for an exocellular site for the acid phosphatase of Saccharomyces mellis. J. Bacteriol. 88:1743–1754. 1964.—Evidence is presented which demonstrates an exocellular location for acid phosphatase in Saccharomyces mellis. Derepressed intact cells exhibit acid phosphatase activity. The properties of the system are similar to those shown by the enzyme in cell-free extracts. There is no increase in total activity when cell-free extracts are prepared. Enzymatically active cell walls were prepared by leaching acetone-dried cells of this yeast in dilute acetate buffer (pH 6.5) plus β-mercaptoethanol. The insoluble residue, consisting mainly of cell-wall material and containing the phosphatase, was treated with a variety of hydrolytic enzymes and other chemicals. Only papain and crude snail gut extracts dissociated the enzyme from the particulate fraction in nearly quantitative amounts. The mechanism of release by these two enzymes probably differs. Of all enzymes tested, only the snail gut extract digested the cell walls. By dividing the procedure for making protoplasts of S. mellis into two steps, acid phosphatase may be dissociated from resting cells and recovered as an active soluble enzyme. The first step is to pretreat the cells with a thiol reagent. The second step is to digest the cell wall by enzymes present in crude snail gut extracts. Arsenite must be included in the second step to protect the phosphatase from inactivation. The phosphatase is quantitatively released before the cell becomes osmotically fragile. Images PMID:14240965
Huynh, Nguyen Thai; Smagghe, Guy; Gonzales, Gerard Bryan; Van Camp, John; Raes, Katleen
2014-07-30
Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.
Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved baroreflex.
Brasil, Girlandia Alexandre; Ronchi, Silas Nascimento; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Romão, Wanderson; da Costa, Helber Barcellos; Scherer, Rodrigo; Ventura, José Aires; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2014-11-01
The aims of this study were to evaluate the antihypertensive effects of the standardised methanolic extract of Carica papaya, its angiotensin converting enzyme inhibitory effects in vivo, its effect on the baroreflex and serum angiotensin converting enzyme activity, and its chemical composition. The chemical composition of the methanolic extract of C. papaya was evaluated by liquid chromatography-mass/mass and mass/mass spectrometry. The angiotensin converting enzyme inhibitory effect was evaluated in vivo by Ang I administration. The antihypertensive assay was performed in spontaneously hypertensive rats and Wistar rats that were treated with enalapril (10 mg/kg), the methanolic extract of C. papaya (100 mg/kg; twice a day), or vehicle for 30 days. The baroreflex was evaluated through the use of sodium nitroprusside and phenylephrine. Angiotensin converting enzyme activity was measured by ELISA, and cardiac hypertrophy was evaluated by morphometric analysis. The methanolic extract of C. papaya was standardised in ferulic acid (203.41 ± 0.02 µg/g), caffeic acid (172.60 ± 0.02 µg/g), gallic acid (145.70 ± 0.02 µg/g), and quercetin (47.11 ± 0.03 µg/g). The flavonoids quercetin, rutin, nicotiflorin, clitorin, and manghaslin were identified in a fraction of the extract. The methanolic extract of C. papaya elicited angiotensin converting enzyme inhibitory activity. The antihypertensive effects elicited by the methanolic extract of C. papaya were similar to those of enalapril, and the baroreflex sensitivity was normalised in treated spontaneously hypertensive rats. Plasma angiotensin converting enzyme activity and cardiac hypertrophy were also reduced to levels comparable to the enalapril-treated group. These results may be associated with the chemical composition of the methanolic extract of C. papaya, and are the first step into the development of a new phytotherapic product which could be used in the treatment of hypertension. Georg Thieme Verlag KG Stuttgart · New York.
Abdul Manap, Mohd Yazid; Zohdi, Norkhanani
2014-01-01
The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403
Armenta, Roberto E; Burja, Adam; Radianingtyas, Helia; Barrow, Colin J
2006-12-27
A variety of techniques for extracting carotenoids from the marine Thraustochytrium sp. ONC-T18 was compared. Specifically, the organic solvents acetone, ethyl acetate, and petroleum ether were tested, along with direct and indirect ultrasonic assisted extraction (probe vs bath) methods. Techniques that used petroleum ether/acetone/water (15:75:10, v/v/v) with 3 h of agitation, or 5 min in an ultrasonic bath, produced the highest extraction yields of total carotenoids (29-30.5 microg g-1). Concentrations up to 11.5 microg g-1 of canthaxanthin and 17.5 microg g-1 of beta;-carotene were detected in extracts stored for 6 weeks. Astaxanthin and echinenone were also detected as minor compounds. Extracts with and without antioxidants showed similar carotenoid concentration profiles. However, total carotenoid concentrations were approximately 8% higher when antioxidants were used. Finally, an easy-to-perform and inexpensive method to detect co-enzymes in ONC-T18 was also developed using silica gel TLC plates. Five percent methanol in toluene as a mobile phase consistently eluted co-enzyme Q10 standards and could separate the co-enzyme fractions present in ONC-T18.
Burnett, B P; Jia, Q; Zhao, Y; Levy, R M
2007-09-01
A mixed extract containing two naturally occurring flavonoids, baicalin from Scutellaria baicalensis and catechin from Acacia catechu, was tested for cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition via enzyme, cellular, and in vivo models. The 50% inhibitory concentration for inhibition of both ovine COX-1 and COX-2 peroxidase enzyme activities was 15 microg/mL, while the mixed extract showed a value for potato 5-LOX enzyme activity of 25 microg/mL. Prostaglandin E2 generation was inhibited by the mixed extract in human osteosarcoma cells expressing COX-2, while leukotriene production was inhibited in both human cell lines, immortalized THP-1 monocyte and HT-29 colorectal adenocarcinoma. In an arachidonic acid-induced mouse ear swelling model, the extract decreased edema in a dose-dependent manner. When arachidonic acid was injected directly into the intra-articular space of mouse ankle joints, the mixed extract abated the swelling and restored function in a rotary drum walking model. These results suggest that this natural, flavonoid mixture acts via "dual inhibition" of COX and LOX enzymes to reduce production of pro-inflammatory eicosanoids and attenuate edema in an in vivo model of inflammation.
Marcos, J C; Fonseca, L P; Ramalho, M T; Cabral, J M
1999-10-29
Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)-sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.
In vitro antidiabetic activity of various crude extracts of Boletus variipes
NASA Astrophysics Data System (ADS)
Muniandy, Sutha; Fazry, Shazrul; Daud, Fauzi; Senafi, Sahidan
2015-09-01
Diabetes mellitus is a complex metabolic disease that progressively spread worldwide and difficult to treat due to various physical and metabolic complications. Current treatment using synthetic drugs has lead to various undesirable side effects. Here we determined the effect of Boletus variipes extracts on diabetes related enzymes. In this study, hot water, cold water and methanol extracts of B. variipes were utilized in order to assess their in vitro antidiabetic activity by measuring the effect on α-amylase and α-glucosidase enzyme. Hot water extract possessed the highest inhibition activity of α-amylase and α-glucosidase in a concentration dependent manner with the IC50 value 87 mg/mL and 89 mg/mL respectively. The methanol extract also showed inhibition activity of α-amylase and α-glucosidase but significantly lower than the hot water extract. Whereas cold water extract did not show any inhibition activity towards both the enzymes. Therefore, it is hypothesized that the hot water extract of Boletus variipes contains bioactive compound that can inhibit alpha-amylase and alpha-glucosidase enzyme activity. At the request of all authors of the paper an updated version was published on 11 May 2016. The original version identified the species of mushroom as Boletus variipes, but new findings have proved the species of mushroom to be Boletus qriseipurpureus. The species name has been updated throughout the revised version of this paper.
Hirai, Go; Sodeoka, Mikiko
2015-05-19
Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane permeability. Therefore, we next modified the core structure from acidic to neutral by transformation to the enamine derivative and constructed a second-generation focused library (RE derivatives). The resulting compounds showed dramatically improved cell membrane permeability and inhibitory selectivity and included VHR (vaccinia VH1-related)-selective RE12 and CDC25A/B (cell division cycle 25A/B)-selective RE44. These inhibitors act on target enzymes in cellulo and do not generate reactive oxygen species, which is a potential problem with quinoid-type inhibitors of CDC25s. The cellular activity of RE12 was further improved by replacement of the side chain to afford RE176, which showed more potent antiproliferative activity than RE12 against HeLa cells. The dramatic change of inhibitory selectivity obtained by core structure modification from 3-acyltetronic acid to its enamine derivative was associated with a change in the mode of action. Namely, RE derivatives were found to be noncompetitive inhibitors with respect to a small-molecular substrate of CDC25A/B, whereas RK-682 was a competitive inhibitor of VHR. We identified the binding site of RE derivatives on the CDC25A as a pocket adjacent to the active site; this appears to be a promising target site for development of further novel inhibitors of CDC25s.
Enzymatic Removal of Diacetyl from Beer
Tolls, T. N.; Shovers, J.; Sandine, W. E.; Elliker, P. R.
1970-01-01
Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase. PMID:4315861
Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis).
Yuliarti, Oni; Goh, Kelvin K T; Matia-Merino, Lara; Mawson, John; Brennan, Charles
2015-11-15
Gold kiwifruit pomace extracted using citric acid, water and enzyme (Celluclast 1.5L) were studied in terms of pectin yield, protein, ash, non-starch polysaccharide, galacturonic acid (GalA), neutral sugar composition, molar mass (Mw), viscosity and degree of branching. Water-extracted pectin was considered closest to its native form. Enzyme extracted pectin showed the highest yield (∼ 4.5%w/w) as compared with the acid and water extraction methods (∼ 3.6-3.8%w/w). Pectin obtained from different extraction methods showed different degree of branching. The Mw and root mean square (RMS) radius varied with the extraction methods with values of 8.4 × 10(5) g/mol and 92 nm, 8.5 × 10(5)g/mol and 102 nm, 6.7 × 10(5) g/mol and 52 nm for acid, water and enzymatic extraction methods, respectively. Similar trend was observed for pectin viscosity, with water-extracted pectin giving a slightly higher viscosity followed by acid and enzyme-extracted pectin. This study showed that gold kiwifruit pomace pectin has potential application in food products. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Calisir, Umit; Çiçek, Baki
2017-11-01
Macrocyclic benzo-thio crown ethers and benzo-oxo crown ethers were prepared using an esterification-ring closing method. These compounds were synthesised using 2,2‧-dithiodibenzoyl chloride, and various glycols and dithiols, in the presence of pyridine base under a nitrogen atmosphere in chloroform. All reactions were performed under reflux condition with conventional heating and microwave (MW) irradiation. The synthesised macrocycles were characterised by FT-IR, 1H NMR, 13C NMR, LC-MS, and elemental analysis methods. Extraction studies have been performed on these original macrocycles using liquid-liquid ion-pair extraction with Li+, Na+, K+, Ni2+, Ca2+, Mg2+, Zn2+, Fe2+,Fe3+, Co3+, Pb2+, Cr3+, Ag+, and Cd2+.The KD, ext.%, ΔG and log KExt values were also calculated. While (U1-U7) ligands exhibits selectivity for Zn2+, Ag+, Ca2+, Pb2+, Fe3+, Cr3+, Co2+, Mg2+, Cd2+, and Ni2+ metal salts, they showed no selectivity for Li+, K+ and Na+ metal salts. Furthermore, Fe3+is the most selective cation for all ligands for competitive extraction. We also observed that microwave heating can have certain benefits over conventional ovens: reaction rate acceleration, milder reaction conditions, higher chemical yield, and lower energy usage. These ligands could be used as metal sensors, enzyme inhibitors, antimicrobial/antifungal agents, and in biological applications.
Lyu, Qianqian; Jiao, Wenqian; Zhang, Keke; Bao, Zhenmin; Wang, Shi; Liu, Weizhi
2016-12-16
Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancreatic proteins of the Zhikong scallop (Chlamys farreri). We identified 435 proteins, the majority of which were lysosomal enzymes and carbohydrate and protein metabolism enzymes. However, several new enzymes related to polysaccharide metabolism were also identified. Phylogenetic and structural analyses of these enzymes suggest that these polysaccharide-degrading enzymes may have a variety of potential substrate specificities. Taken together, our study characterizes several novel polysaccharide-degrading enzymes in the scallop hepatopancreas and provides an enhanced view of these enzymes and a greater understanding of marine polysaccharide digestion.
Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.
2018-02-01
This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.
Alkaloid extracts from Jimson weed (Datura stramonium L.) modulate purinergic enzymes in rat brain.
Ademiluyi, Adedayo O; Ogunsuyi, Opeyemi B; Oboh, Ganiyu
2016-09-01
Although some findings have reported the medicinal properties of Jimson weed (Datura stramonium L.), there exist some serious neurological effects such as hallucination, loss of memory and anxiety, which has been reported in folklore. Consequently, the modulatory effect of alkaloid extracts from leaf and fruit of Jimson weed on critical enzymes of the purinergic [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-NTDase), alkaline phosphatase (ALP) and Na + /K + ATPase] system of neurotransmission was the focus of this study. Alkaloid extracts were prepared by solvent extraction method and their interaction with the activities of these enzymes were assessed (in vitro) in rat brain tissue homogenate and in vivo in rats administered 100 and 200mg/kg body weight (p.o) of the extracts for thirty days, while administration of single dose (1mg/kg body weight; i.p.) of scopolamine served as the positive control. The extracts were also investigated for their Fe 2+ and Cu 2+ chelating abilities and GC-MS characterization of the extracts was also carried out. The results revealed that the extracts inhibited activates of E-NTPDase, E-NTDase and ALP in a concentration dependent manner, while stimulating the activity of Na + /K + ATPase (in vitro). Both extracts also exhibited Fe 2+ and Cu 2+ chelating abilities. Considering the EC 50 values, the fruit extract had significantly higher (P<0.05) modulatory effect on the enzymes' activity as well as metal chelating abilities, compared to the leaf extract; however, there was no significant difference (P>0.05) in both extracts' inhibitory effects on E-NTDase. The in vivo study revealed reduction in the activities of ENTPDase, E-NTDase, and Na + /K + ATPase in the extract-administered rat groups compared to the control group, while an elevation in ALP activity was observed in the extract-administered rat groups compared to the control group. GC-MS characterization revealed the presence of atropine, scopolamine, amphetamine, 3-methyoxyamphetamine, 3-ethoxyamhetamine cathine, spermine, phenlyephirine and 3-piperidinemethanol, among others in the extracts. Hence, alterations of activities of critical enzymes of purinergic signaling (in vitro and in vivo) by alkaloid extracts from leaf and fruit of Jimson weed suggest one of the mechanisms behind its neurological effects as reported in folklore. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Pinelo, Manuel; Nielsen, Michael K.; Meyer, Anne S.
2011-01-01
In a 4-h laboratory exercise, students accomplish a series of enzymatic macerations of apple mash, assess the viscosity of the mash during the maceration, extract the juice by centrifugation, and measure the levels of antioxidant phenols extracted into the juice after different enzyme treatments. The exercise shows the impact of enzyme-catalyzed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Cheng, J. J.; Himmel, M. E.
2007-01-01
Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed.more » The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.« less
Development of fecal microbial enzyme mix for mutagenicity assay of natural products.
Yeo, Hee Kyung; Hyun, Yang-Jin; Jang, Se-Eun; Han, Myung Joo; Lee, Yong Sup; Kim, Dong-Hyun
2012-06-01
Orally administered herbal glycosides are metabolized to their hydrophobic compounds by intestinal microflora in the intestine of animals and human, not liver enzymes, and absorbed from the intestine to the blood. Of these metabolites, some, such as quercetin and kaempherol, are mutagenic. The fecal bacterial enzyme fraction (fecalase) of human or animals has been used for measuring the mutagenicity of dietary glycosides. However, the fecalase activity between individuals is significantly different and its preparation is laborious and odious. Therefore, we developed a fecal microbial enzyme mix (FM) usable in the Ames test to remediate the fluctuated reaction system activating natural glycosides to mutagens. We selected, cultured, and mixed 4 bacteria highly producing glycosidase activities based on a cell-free extract of feces (fecalase) from 100 healthy Korean volunteers. When the mutagenicities of rutin and methanol extract of the flos of Sophora japonica L. (SFME), of which the major constituent is rutin, towards Salmonella typhimurium strains TA 98, 100, 102, 1,535, and 1,537 were tested using FM and/or S9 mix, these agents were potently mutagenic. These mutagenicities using FM were not significantly different compared with those using Korean fecalase. SFME and rutin were potently mutagenic in the test when these were treated with fecalase or FM in the presence of S9 mix, followed by those treated with S9 mix alone and those with fecalase or FM. Freeze-dried FM was more stable in storage than fecalase. Based on these findings, FM could be usable instead of human fecalase in the Ames test.
Scoglio, Stefano; Benedetti, Yanina; Benvenuti, Francesca; Battistelli, Serafina; Canestrari, Franco; Benedetti, Serena
2014-06-15
Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga that has been traditionally used for over 25 years for its health-enhancing properties. Recent studies have shown the ability of a proprietary AFA extract (Klamin(®)) to improve mood, counteract anxiety, and enhance attention and learning. Aim of this study was to test the monoamine oxidase (MAO) inhibition activity of the same AFA extract and of its constituents phycocyanin (AFA-PC) and mycosporine-like aminoacids (AFA-MAAs). All compounds showed a dose-dependent selective inhibition of MAO-B activity as compared to MAO-A. The IC50 values of the AFA extract (concentration 10 mg/ml), AFA-PC and AFA-MAAs were 6.4 μl/ml, 1.33 μM and 1.98 μM, respectively, evidencing a mixed-type of inhibition for the AFA extract (Ki 0.99 μl/ml), a non-competitive inhibition for AFA-PC (Ki 1.06 μM) and a competitive inhibition for AFA-MAAs (Ki 0.585 μM). These results are important to explain the neuromodulating properties of the AFA extract Klamin(®), which is rich in phenylethylamine, a general neuromodulator, that would nevertheless rapidly destroyed by MAO-B enzymes without the inhibitory activity of the synergic active principles AFA-PC and AFA-MAAs. The present investigation thus proposes the extract as potentially relevant in clinical areas such as mood disorders and neurodegenerative diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.
Patki, Jyoti M; Shah, Priyanka
2017-10-01
Microbial heat shock proteins (Hsps) play an important role in pathogenesis and development of resistance to existing drugs. New compounds that target microbial molecular chaperones have the potential of combating the challenge of anti-microbial resistance. The present study was aimed at assessing the employment of in vitro enzyme refolding assay to detect anti-chaperone activity of Neem ( Azadirachta indica ) extracts. Protein extracts of thermotolerant Escherichia coli cells were used as a source of Hsps or chaperones. Thermotolerance was found to be induced by pre-treating E. coli cells at 47 °C before subjecting them to a lethal temperature of 55 °C. This thermotolerance correlated with over-expression of specific proteins and reduced aggregation as evident from the SDS-PAGE profiles. Refolding assays of denatured enzymes exhibited 45% activity regain in presence of cell protein extracts containing chaperones compared to less than 5% regain in BSA negative controls. The chaperone activity was found to be ATP dependent. Addition of Neem extracts to refolding reaction mixtures distinctly reduced the activity regain (20%) in a dose dependent manner (500 and 1000 ppm). The negative influence of plant extract on refolding of the enzyme in the presence of chaperones gives evidence to its anti-chaperone activity. We propose that the employment of in vitro enzyme refolding assays will help not only to analyze the activity of known and putative chaperones but also to screen natural compounds for anti-microbial-Hsp activity.
Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.
Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan
2015-12-28
The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota
Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek
2015-01-01
The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550
Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David
2007-01-01
Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.
CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes.
White, Clarence; Ismail, Hamid D; Saigo, Hiroto; Kc, Dukka B
2017-12-28
The β-Lactamase (BL) enzyme family is an important class of enzymes that plays a key role in bacterial resistance to antibiotics. As the newly identified number of BL enzymes is increasing daily, it is imperative to develop a computational tool to classify the newly identified BL enzymes into one of its classes. There are two types of classification of BL enzymes: Molecular Classification and Functional Classification. Existing computational methods only address Molecular Classification and the performance of these existing methods is unsatisfactory. We addressed the unsatisfactory performance of the existing methods by implementing a Deep Learning approach called Convolutional Neural Network (CNN). We developed CNN-BLPred, an approach for the classification of BL proteins. The CNN-BLPred uses Gradient Boosted Feature Selection (GBFS) in order to select the ideal feature set for each BL classification. Based on the rigorous benchmarking of CCN-BLPred using both leave-one-out cross-validation and independent test sets, CCN-BLPred performed better than the other existing algorithms. Compared with other architectures of CNN, Recurrent Neural Network, and Random Forest, the simple CNN architecture with only one convolutional layer performs the best. After feature extraction, we were able to remove ~95% of the 10,912 features using Gradient Boosted Trees. During 10-fold cross validation, we increased the accuracy of the classic BL predictions by 7%. We also increased the accuracy of Class A, Class B, Class C, and Class D performance by an average of 25.64%. The independent test results followed a similar trend. We implemented a deep learning algorithm known as Convolutional Neural Network (CNN) to develop a classifier for BL classification. Combined with feature selection on an exhaustive feature set and using balancing method such as Random Oversampling (ROS), Random Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), CNN-BLPred performs significantly better than existing algorithms for BL classification.
Yin, Chaomin; Fan, Xiuzhi; Fan, Zhe; Shi, Defang; Gao, Hong
2018-05-01
Enzymes-microwave-ultrasound assisted extraction (EMUE) method had been used to extract Lentinus edodes polysaccharides (LEPs). The enzymatic temperature, enzymatic pH, microwave power and microwave time were optimized by response surface methodology. The yields, properties and antioxidant activities of LEPs from EMUE and other extraction methods including hot-water extraction, enzymes-assisted extraction, microwave-assisted extraction and ultrasound-assisted extraction were evaluated. The results showed that the highest LEPs yield of 9.38% was achieved with enzymatic temperature of 48°C, enzymatic pH of 5.0, microwave power of 440W and microwave time of 10min, which correlated well with the predicted value of 9.79%. Additionally, LEPs from different extraction methods possessed typical absorption peak of polysaccharides, which meant different extraction methods had no significant effects on type of glycosidic bonds and sugar ring of LEPs. However, SEM images of LEPs from different extraction methods were significantly different. Moreover, the different LEPs all showed antioxidant activities, but LEPs from EMUE showed the highest reducing power when compared to other LEPs. The results indicated LEPs from EMUE can be used as natural antioxidant component in the pharmaceutical and functional food industries. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of enzyme treatment conditions on extraction of anthocyanins from Prunus nepalensis L.
Swer, Tanya L; Chauhan, Komal; Paul, Prodyut K; Mukhim, C
2016-11-01
The study was designed to investigate the effect of enzyme assisted extraction of anthocyanins from Sohiong fruit (Prunus nepalensis) under varied time, temperature and treatment conditions. Highest anthocyanins yield was obtained by coupling enzymatic treatment along with solvent extraction simultaneously. Additionally, effect of enzyme type, enzyme concentration, reaction time and temperature were evaluated subsequently in following experiments. Cellulase treatment (10% E/S) for 180min at 4°C exhibited highest yield of 984.40±3.84mg C3G/100gdm which accounts to 14.61% higher yield when compared to conventional method (858.84±6.88mg C3G/100gdm). The study provides an economical alternative for commercial extraction of anthocyanins from Sohiong fruit which can be used as a colourant for various food and other products and owing to its antioxidizing properties can be effective for the prevention and treatment of diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Silva, Filipa V M; Martins, Alice; Salta, Joana; Neng, Nuno R; Nogueira, José M F; Mira, Delfina; Gaspar, Natália; Justino, Jorge; Grosso, Clara; Urieta, José S; Palavra, António M S; Rauter, Amélia P
2009-12-23
Winter savory Satureja montana is a medicinal herb used in traditional gastronomy for seasoning meats and salads. This study reports a comparison between conventional (hydrodistillation, HD, and Soxhlet extraction, SE) and alternative (supercritical fluid extraction, SFE) extraction methods to assess the best option to obtain bioactive compounds. Two different types of extracts were tested, the volatile (SFE-90 bar, second separator vs HD) and the nonvolatile fractions (SFE-250 bar, first and second separator vs SE). The inhibitory activity over acetyl- and butyrylcholinesterase by S. montana extracts was assessed as a potential indicator for the control of Alzheimer's disease. The supercritical nonvolatile fractions, which showed the highest content of (+)-catechin, chlorogenic, vanillic, and protocatechuic acids, also inhibited selectively and significantly butyrylcholinesterase, whereas the nonvolatile conventional extract did not affect this enzyme. Microbial susceptibility tests revealed the great potential of S. montana volatile supercritical fluid extract for the growth control and inactivation of Bacillus subtilis and Bacillus cereus, showing some activity against Botrytis spp. and Pyricularia oryzae. Although some studies were carried out on S. montana, the phytochemical analysis together with the biological properties, namely, the anticholinesterase and antimicrobial activities of the plant nonvolatile and volatile supercritical fluid extracts, are described herein for the first time.
Anticholinesterases and antioxidant alkamides from Piper nigrum fruits.
Tu, Yanbei; Zhong, Yujiao; Du, Hongjian; Luo, Wei; Wen, Yaya; Li, Qin; Zhu, Chao; Li, Yanfang
2016-09-01
The anticholinesterase and antioxidant effects of five different extracts of Piper nigrum were evaluated. Twenty-one known alkamides were isolated from active ethyl acetate extract and investigated for their cholinesterase inhibitory and antioxidant effects. Among them, piperine (2), piperettine (5) and piperettyline (20) exhibited dual inhibition against AChE and BChE, and feruperine (18) was the most potent selective inhibitor of BChE. Molecular docking simulation was performed to get insight into the binding interactions of the ligands and enzymes. In addition, N-trans-feruloyltyramine (3) contributed to the strongest DPPH radical-scavenging activity. The self-induced Aβ aggregation inhibition of 2, 5 and 18 was further evaluated. Results indicated that some alkamides could be multifunctional lead candidates for Alzheimer's disease therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Rui; Chen, Hui; Zhong, Chao
Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP + to NAD +. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfatemore » (PMS), NAD +, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP + to NAD +. Furthermore, this screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.« less
Huang, Rui; Chen, Hui; Zhong, Chao; ...
2016-09-02
Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP + to NAD +. Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfatemore » (PMS), NAD +, and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP + to NAD +. Furthermore, this screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.« less
Albert, H; Davies, D J; Woodson, L P; Soper, C J
1998-11-01
The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth.
Nwanna, E. E; Ibukun, E. O; Oboh, G.; Ademosun, A. O.; Boligon, A. A.; Athayde, M.
2014-01-01
AIM: Garden egg (Solanum aethiopium) is an edible fruits vegetable with different species.This study investigated characterisation and the effect of the phenolics extracts from S. aethiopium species with enzymes linked with type -2-diabetes (α-amylase and α-glucosidase) and hypertension [Angiotensin-1-converting enzyme (ACE)]. METHODS: Fresh samples of the 5 species of the garden egg namely, [Solanum gilo (PW), Solanum torvum (TWS), Solanum kumba (PGR), Solanum incanum (GSB), and Solanum indicum (WSB)] were oven-dried at 50°C and milled into flour. The aqueous extracts were prepared (1:50 w/v). The phenolic contents (total phenol and total flavonoid), vitamin C and 1,1-diphenyl–2-picrylhydrazyl (DPPH), the antioxidant activities of the extracts were evaluated. The ability of the extracts to inhibit diabetes enzymes in rat pancreas as well as the inhibition of angiotensin-1-converting (ACE) enzyme in lungs homogenates in vitro were investigated. Furthermore, the fruits polyphenols were identified and quantified using HPLC-DAD. RESULTS: The phenolic contents ranged from 2.70-3.76 mgGAE/g, while there were no significant (P>0.05) differences in their flavonoid content and ability to reduce Fe3+ to Fe2+. The vitamin C contents of the species ranged from 4.01-6.52 mg/ml. The extracts scavenged DPPH in a dose dependent manner with the IC50 values ranging from 3.23-4.20 mg/ml. Furthermore, the extracts showed strong inhibition of α-glucosidase, mild inhibition of α-amylase and strong inhibition of ACE activities. CONCLUSION: This study showed that the inhibition of the key enzymes relevant to type-2 diabetes and hypertension could be part of the mechanisms by which garden egg manage/prevent the degenerative conditions. PMID:25598760
Tapp, Edward J; Cummins, Ian; Brassington, David; Edwards, Robert
2008-08-13
Volatile organosulfur compounds (VOSCs) are high impact aroma chemicals characteristic of tropical fruits which are active as both free thiols and the respective thioesters. Using a simple and sensitive colorimetric enzyme assay, a thioesterase activity toward VOSCs has been identified in ripening purple passion fruit ( Passiflora edulis Sims). The assay was based on determining the release of free thiols from 2-methyl-3-furanthiol acetate using Ellman's reagent. The major thioesterase in the fruit was found to be a wall-bound protein in the mesocarp. The extracted enzyme activity was purified 150-fold and shown to be associated with a 43 kDa monomeric serine hydrolase which was selectively labeled with a fluorophosphonate suicide probe. MS-MS sequencing identified the thioesterase as a class 13 glycoside hydrolase, most similar to pectin acetylesterase, an enzyme involved in cell wall modifications in the peel of a number of fruit. Our results suggest that cell wall hydrolases in tropical fruit may have additional useful roles in biotransforming VOSCs.
Marchiaro, Patricia; Ballerini, Viviana; Spalding, Tamara; Cera, Gabriela; Mussi, María A; Morán-Barrio, Jorgelina; Vila, Alejandro J; Viale, Alejandro M; Limansky, Adriana S
2008-08-01
The dissemination of metallo and serine carbapenem-hydrolysing beta-lactamases among Gram-negative nosocomial bacteria represents an acute problem worldwide. Here, we present a rapid and sensitive assay for the characterization of carbapenemase producers to aid in infection control and prevention. The assay involves a rapid disruption of bacterial isolates with silicon dioxide microbeads, followed by the testing in cell-free extracts of hydrolytic activity towards various beta-lactams including two carbapenems (imipenem and meropenem) and a cephalosporin (ceftazidime). A parallel testing of the effects of selective beta-lactamase inhibitors such as EDTA and clavulanic acid allows differentiation of metallo carbapenemases from serine carbapenemases, and also clavulanic-acid-sensitive from -resistant enzymes among the latter. The efficiency of bacterial disruption using silicon dioxide microbeads was identical to that of ultrasonic treatment. The subsequent microbiological assay aimed to evaluate both substrate specificity and inhibitor profile of carbapenem-hydrolysing enzymes present in the extracts and allowed an accurate differentiation of A, B and D types, as judged by the analysis of 24 well-characterized clinical strains that included metallo-beta-lactamase producers (i.e. VIM-, IMP- and SPM-type Pseudomonas producers; an L1 Stenotrophomonas maltophilia producer; and a GOB-18 Elizabethkingia meningoseptica producer) as well as serine carbapenemase producers (i.e. an SME-type Serratia marcescens producer, a GES-2 Pseudomonas aeruginosa producer, Klebsiella pneumoniae and Citrobacter freundii KPC-2 producers and OXA-type Acinetobacter baumannii producers). We have developed a convenient microbiological assay aimed to more accurately and in a short time characterize carbapenem-hydrolysing enzymes produced by Gram-negative bacteria. The assay possesses broad applicability in the clinical setting.
The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.
Li, Yi; Demisie, Walelign; Zhang, Ming-kui
2013-07-01
The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasayco, M.L.; Prestwich, G.D.
1990-02-25
Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor ofmore » this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.« less
Kiss, Anna K; Derwińska, Małgorzata; Dawidowska, Anna; Naruszewicz, Marek
2008-09-10
In this study, for the first time, we used the in vitro metallopeptidase model for the identification of a potential novel activity of defatted evening primrose seed extracts. Prepared extracts of different polarity (aqueous, 60% ethanolic, isopropanolic, and 30% isopropanolic) at concentrations of 1.5-100 microg/mL exhibited a significant and dose dependent inhibition of three tested enzymes. The 50% inhibition of enzymes activity showed that aminopeptidase N (APN) was the enzyme affected to the greatest extent with IC50 at the level of 2.8 microg/mL and 2.9 microg/mL for aqueous and 30% isopropanolic extracts, respectively. The activity of neutral endopeptidase (NEP) was quite strongly inhibited by the extracts as well. The HPLC-DAD analysis and bioguided fractionation led to the identification of four active compounds: (-)-epicatechin gallate, proanthocyanidin B3, oenothein B, and penta-O-galloyl-beta-D-glucose (PGG). Oenothein B has been shown previously to inhibit metallopeptidases. The three other compounds are known to inhibit angiotensin-converting enzyme (ACE), but they have not been previously reported to inhibit the NEP and APN activity. PGG and procyanidins with different degrees of polymerization, as the dominating compounds in O. paradoxa seeds, seemed to play a role in the crude extract activity.
Coetzee, Dirk D; López, Víctor; Smith, Carine
2016-01-11
Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Saarinen, Markku T; Lahtinen, Sampo J; Sørensen, Jens F; Tiihonen, Kirsti; Ouwehand, Arthur C; Rautonen, Nina; Morgan, Andrew
2012-01-01
Different ways of treating bran by baking enzymes prior to dough making and the baking process were used to increase the amount of water-soluble dietary fiber (DF) in wheat bread with added bran. Soluble DF was extracted from the bread with water and separated from the digestible material with gastrointestinal tract enzymes and by solvent precipitation. The baking enzyme mixtures tested (xylanase and glucanase/cellulase, with and without lipase) increased the amounts of soluble arabinoxylan and protein resistant to digestion. The isolated fiber was used as a growth substrate for 11 probiotic and intestinal Bifidobacterium strains, for commensal strains of Bacteroides fragilis and Escherichia coli, and for potential intestinal pathogenic strains of E. coli O157:H7, Salmonella typhimurium, and Clostridium perfringens. Fermentation analyses indicated that the tested strains had varying capacity to grow in the presence of the extracted fiber. Of the tested probiotic strains B. longum species generally showed the highest ability to utilize the fiber extracts, although the potential pathogens tested also showed an ability to grow on these fiber extracts. In sum, the enzymes used to improve the baking process for high-fiber bread can also be used to produce in situ soluble fiber material, which in turn can exert prebiotic effects on certain potentially beneficial microbes.
Ademosun, Ayokunle O.; Ademiluyi, Adedayo O.; Omojokun, Olasunkanmi S.; Nwanna, Esther E.; Longe, Kuburat O.
2014-01-01
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension. PMID:25295218
Oboh, Ganiyu; Ademosun, Ayokunle O; Ademiluyi, Adedayo O; Omojokun, Olasunkanmi S; Nwanna, Esther E; Longe, Kuburat O
2014-01-01
Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.
Cholecystokinin-converting enzymes in brain.
Malesci, A; Straus, E; Yalow, R S
1980-01-01
Crude extracts of porcine cerebral cortical tissue convert cholecystokinin (CCK) to its COOH-terminal fragments, the dodecapeptide (CCK-12) and the octapeptide (CCK-8). The Sephadex G-75 void volume eluate of the crude extract cleaves the arginine-isoleucine bond and effects conversion only to CCK-12; the Sephadex G-50 void volume eluate of the same extract cleaves the arginine-aspartate bond as well, so that both CCK-12 and CCK-8 are end products. Thus, there are at least two enzymes; the one involved in the conversion to CCK-12 is of larger molecular radius than the other. The Km for the cleavage of CCK at the arginine-isoleucine bond by the Sephadex G-75 void volume eluate enzyme is 1.1 X 10(-6) M; the Km for trypsin cleavage of the same bond is 4.7 x 10(-6) M. The lower Vmax for the brain enzyme (1.5 x 10(-11) mol/min per g of extract) compared with trypsin (66 x 10(-11) mol/min per g of trypsin) simply reflects the lesser degree of purify of the brain extract than of the highly purified trypsin. Images PMID:6987659
Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.
1996-01-01
Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in SPMD dialysates.
Cummins, Philip M; Dowling, Oonagh; O'Connor, Brendan F
2011-01-01
Ion-exchange chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80-kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone).
Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B
2014-04-03
A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use.
[Production of marker-free plants expressing the gene of the hepatitis B virus surface antigen].
Rukavtsova, E B; Gaiazova, A R; Chebotareva, E N; Bur'ianova, Ia I
2009-08-01
The pBM plasmid, carrying the gene of hepatitis B virus surface antigen (HBsAg) and free of any selection markers of antibiotic or herbicide resistance, was constructed for genetic transformation of plants. A method for screening transformed plant seedlings on nonselective media was developed. Enzyme immunoassay was used for selecting transgenic plants with HBsAg gene among the produced regenerants; this method provides for a high sensitivity detection of HBsAg in plant extracts. Tobacco and tomato transgenic lines synthesizing this antigen at a level of 0.01-0.05% of the total soluble protein were obtained. The achieved level of HBsAg synthesis is sufficient for preclinical trials of the produced plants as a new generation safe edible vaccine. The developed method for selecting transformants can be used for producing safe plants free of selection markers.
Miles, Christopher O; Kilcoyne, Jane; McCarron, Pearse; Giddings, Sabrina D; Waaler, Thor; Rundberget, Thomas; Samdal, Ingunn A; Løvberg, Kjersti E
2018-03-21
Azaspiracids belong to a family of more than 50 polyether toxins originating from marine dinoflagellates such as Azadinium spinosum. All of the azaspiracids reported thus far contain a 21,22-dihydroxy group. Boric acid gel can bind selectively to compounds containing vic-diols or α-hydroxycarboxylic acids via formation of reversible boronate complexes. Here we report use of the gel to selectively capture and release azaspiracids from extracts of blue mussels. Analysis of the extracts and fractions by liquid chromatography-tandem mass spectrometry (LC-MS) showed that this procedure resulted in an excellent cleanup of the azaspiracids in the extract. Analysis by enzyme-linked immunoasorbent assay (ELISA) and LC-MS indicated that most azaspiracid analogues were recovered in good yield by this procedure. The capacity of boric acid gel for azaspiracids was at least 50 μg/g, making this procedure suitable for use in the early stages of preparative purification of azaspiracids. In addition to its potential for concentration of dilute samples, the extensive cleanup provided by boric acid gel fractionation of azaspiracids in mussel samples almost eliminated matrix effects during subsequent LC-MS and could be expected to reduce matrix effects during ELISA analysis. The method may therefore prove useful for quantitative analysis of azaspiracids as part of monitoring programs. Although LC-MS data showed that okadaic acid analogues also bound to the gel, this was much less efficient than for azaspiracids under the conditions used. The boric acid gel methodology is potentially applicable to other important groups of natural toxins containing diols including ciguatoxins, palytoxins, pectenotoxins, tetrodotoxin, trichothecenes, and toxin glycosides.
Wawrzynczyk, J; Szewczyk, E; Norrlöw, O; Dey, E Szwajcer
2007-06-30
The study describes extraction of extracellular polymeric substances (EPS) from sewage sludge by applying enzymes and enzymes combined with sodium tripolyphosphate (STPP). Additionally, a systematic study of two non-enzymatic extraction agents is described. The assessment of the released products is made by colorimetrical methods and polysaccharides/glycoconjugates identification by the interaction with four immobilized lectins. Bio-sludge from Helsingborg (Sweden) and Damhusåen (Denmark) were used as two case studies for testing enzymatic extractability and thereby to make useful prediction of sludge bio-digestibility. From Helsingborg sludge the enzymes extracted about 40% more of EPS than from Damhusåen. The polysaccharides/glycoconjugates in both sludges maintained the same level, and showed substantial different interaction motifs with lectins panel. Damhusåen enzymatic extracted EPS had an enhanced amount of suspended material that was post-hydrolysed by the use of polygalacturonase and lysozyme resulting in pectin like polymers and petiptidoglycans. Petiptidoglycan is a marker from bacterial cell debris. STPP and cation exchange resin (CER) released different quantities of EPS. The CER released polysaccharides/glycoconjugates had higher molecular weight and stronger affinity towards Concanavalin A than the one released by the action of STPP. Independent of the extraction conditions, STPP released elevated amounts of polyvalent cations and humic substances in contrast to the very low amounts of released by CER.
Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen
2015-05-01
Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.
Guadalupe, Zenaida; Palacios, Antonio; Ayestaran, Belén
2007-06-13
Different strategies were adopted to achieve increases in color stability in Tempranillo wines: (i) addition of maceration enzymes directly to the must, (ii) addition of commercial mannoproteins to the must, and (iii) inoculation of must with yeast overexpressed of mannoproteins. The addition of enzymes favored color extraction, and the wines obtained presented higher values of wine color, color intensity, bisulfite-stable color, and visually enhanced color intensity. The enzyme hydrolytic activity produced an increase in the acid polysaccharide content and polyphenol index and yielded to wines with more astringency, tannin, and length. Added mannoproteins had clearer effects on the analyzed parameters than yeast. Contrary to what may be thought, mannoproteins did not maintain the extracted polyphenols in colloidal dispersion and neither ensured color stability. These compounds clearly modified the gustative structure of the wines, enhancing the sweetness and roundness.
Sunwoo, Hoon H; Kim, Chong-Tai; Kim, Do-Yeon; Maeng, Jin-Soo; Cho, Chang-Won; Lee, Soo-Jeong
2013-07-01
A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.
Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli
2007-05-01
Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0.
NASA Astrophysics Data System (ADS)
Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.
2017-02-01
Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.
Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra.
Ali, Sajid; Khan, Abdul Latif; Ali, Liaqat; Rizvi, Tania Shamim; Khan, Sumera Afzal; Hussain, Javid; Hamayun, Muhammad; Al-Harrasi, Ahmed
2017-07-01
Fungal endophytes establish an important niche within the host plant through the secretion of chemical constituents. Isolation of bioactive metabolites could be a vital source for inhibiting the function of enzymes such as α-glucosidase and urease. The present study aimed to elucidate the potential of endophytes associated with Boswellia sacra through bioassay-guided isolation and identification of secondary metabolites with enzyme inhibitory ability. Endophytic fungal strains viz. Penicillium citrinum, P. spinulosum, Fusarium oxysporum, Alternaria alternata and Aspergillus caespitosus were identified through genomic DNA extraction, PCR amplification, sequencing and phylogenetic analysis. The enzymes inhibition analysis of the ethyl acetate extract from pure cultures suggested that P. citrinum possess significantly higher enzyme inhibitory activities compared to other strains. The active strain was subjected to chromatographic isolation and nuclear magnetic resonance methods to identify bioactive compounds. The bioactive extracts resulted in the isolation of 11-oxoursonic acid benzyl ester (1), n-nonane (2), 3-decene-1-ol (3), 2-Hydroxyphenyl acetic acid (4), and Glochidacuminosides A (5). Among pure compound, 11-oxoursonic acid benzyl ester (1) showed significantly higher enzyme inhibition activity compared to other metabolites. Our results suggest that the endophytic microorganism associated with the arid-land tree can offer a rich source of biologically active chemical constituents that could help discover lead drugs for enzyme inhibition.
CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.
Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram
2016-01-01
The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.
CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.
Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram
2016-01-01
Background: The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum. Materials & Methods: Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. Results: The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC50 values of greater than 500 μmol Conclusion: The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents. PMID:28480379
Laszlo, I.
1963-01-01
Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136
Spir, Lívia Genovez; Ataide, Janaína Artem; De Lencastre Novaes, Letícia Celia; Moriel, Patrícia; Mazzola, Priscila Gava; De Borba Gurpilhares, Daniela; Silveira, Edgar; Pessoa, Adalberto; Tambourgi, Elias Basile
2015-01-01
Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential. © 2015 American Institute of Chemical Engineers.
Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica
NASA Astrophysics Data System (ADS)
Kuspradini, H.; Putri, AS; Mitsunaga, T.
2018-04-01
Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.
Inhibition of human P450 enzymes by natural extracts used in traditional medicine.
Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J
2009-02-01
Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions. Copyright (c) 2008 John Wiley & Sons, Ltd.
Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo
2014-01-01
Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401
Fu, J; Li, L; Yang, X Q; Zhu, M J
2011-01-01
Leucine carboxypeptidase (EC 3.4.16) activity in Actinomucor elegans bran koji was investigated via absorbance at 507 nm after stained by Cd-nihydrin solution, with calibration curve A, which was made by a set of known concentration standard leucine, calibration B, which was made by three sets of known concentration standard leucine solutions with the addition of three concentrations inactive crude enzyme extract, and calibration C, which was made by three sets of known concentration standard leucine solutions with the addition of three concentrations crude enzyme extract. The results indicated that application of pure amino acid standard curve was not a suitable way to determine carboxypeptidase in complicate mixture, and it probably led to overestimated carboxypeptidase activity. It was found that addition of crude exact into pure amino acid standard curve had a significant difference from pure amino acid standard curve method (p < 0.05). There was no significant enzyme activity difference (p > 0.05) between addition of active crude exact and addition of inactive crude kind, when the proper dilute multiple was used. It was concluded that the addition of crude enzyme extract to the calibration was needed to eliminate the interference of free amino acids and related compounds presented in crude enzyme extract.
Production and purification of amylolytic enzymes for saccharification of microalgal biomass.
Rodrigues, Éllen Francine; Ficanha, Aline Matuella Moreira; Dallago, Rogério Marcos; Treichel, Helen; Reinehr, Christian Oliveira; Machado, Tainara Paula; Nunes, Greice Borges; Colla, Luciane Maria
2017-02-01
The aim of this study was the production of amylolytic enzymes by solid state or submerged fermentations (SSF or SF, respectively), followed by purification using chemical process or microfiltration and immobilization of purified enzymes in a polyurethane support. The free and immobilized enzymes obtained were used to evaluate enzymatic hydrolysis of the polysaccharides of Spirulina. Microfiltration of the crude extracts resulted in an increase in their specific activity and thermal stability at 40°C and 50°C for 24h, as compared to extracts obtained by SSF and SF. Immobilization of polyurethane purified enzyme produced yields of 332% and 205% for the enzymes obtained by SF and SSF, respectively. Free or immobilized enzymes favor the generation of fermentable sugar, being the application of the purified and immobilized enzymes in the hydrolysis of microalgal polysaccharides considered a promising alternative towards development of the bioethanol production process from microalgal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
de la Garza, Ana Laura; Etxeberria, Usune; Lostao, María Pilar; San Román, Belén; Barrenetxe, Jaione; Martínez, J Alfredo; Milagro, Fermín I
2013-12-11
Several plant extracts rich in flavonoids have been reported to improve hyperglycemia by inhibiting digestive enzyme activities and SGLT1-mediated glucose uptake. In this study, helichrysum ( Helichrysum italicum ) and grapefruit ( Citrus × paradisi ) extracts inhibited in vitro enzyme activities. The helichrysum extract showed higher inhibitory activity of α-glucosidase (IC50 = 0.19 mg/mL) than α-amylase (IC50 = 0.83 mg/mL), whereas the grapefruit extract presented similar α-amylase and α-glucosidase inhibitory activities (IC50 = 0.42 mg/mL and IC50 = 0.41 mg/mL, respectively). Both extracts reduced maltose digestion in noneverted intestinal sacs (57% with helichrysum and 46% with grapefruit). Likewise, both extracts inhibited SGLT1-mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+) (56% of inhibition with helichrysum and 54% with grapefruit). In vivo studies demonstrated that helichrysum decreased blood glucose levels after an oral maltose tolerance test (OMTT), and both extracts reduced postprandial glucose levels after the oral starch tolerance test (OSTT). Finally, both extracts improved hyperinsulinemia (31% with helichrysum and 50% with grapefruit) and HOMA index (47% with helichrysum and 54% with grapefruit) in a dietary model of insulin resistance in rats. In summary, helichrysum and grapefruit extracts improve postprandial glycemic control in rats, possibly by inhibiting α-glucosidase and α-amylase enzyme activities and decreasing SGLT1-mediated glucose uptake.
Zhang, Ruilin; Chen, Jian; Zhang, Xuewu
2018-01-01
Due to the rigid cell wall of Chlorella species, it is still challenging to effectively extract significant amounts of protein. Mass methods were used for the extraction of intracellular protein from microalgae with biological, mechanical and chemical approaches. In this study, based on comparison of different extraction methods, a new protocol was established to maximize extract amounts of protein, which was involved in ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. Under the optimized conditions, 72.4% of protein was extracted from the microalgae Chlorella pyrenoidosa, which should contribute to the research and development of Chlorella protein in functional food and medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morita, Masakazu; Shimamura, Hiroko; Ishida, Natsuko; Imamura, Koreyoshi; Sakiyama, Takaharu; Nakanishi, Kazuhiro
2004-01-01
alpha-Glucosidase was produced using recombinant Aspergillus oryzae by membrane-surface liquid culture (MSLC), a method previously developed by the authors and the results compared with other methods, including shaking flask culture (SFC), agar-plate culture (APC), culture on urethane sponge supports (USC), and liquid surface culture (LSC) to determine possible reasons for the advantageous features of MSLC. When yeast extract was used as a nitrogen source, the amount of enzyme produced by MSLC was 5 or more times higher than those for SFC and LSC, but similar to that using APC. Enzyme production in USC was slightly lower than in MSLC and APC. Cell growth was similar irrespective of the cultivation method used. When NaNO3, a typical inorganic nitrogen source was used, enzyme production in all the cultures was lower than that using yeast extract. However, even using NaNO3, the amount of the enzyme produced by MSLC was 8 to 20 times higher than those by SFC, APC, USC, and LSC. Although cell growth using NaNO3 was similar to that for yeast extract in MSLC, it was markedly decreased in SFC, APC, and LSC. The reason for the difference in enzyme productivity for various cultivation methods using yeast extract and NaNO3 as a nitrogen source is discussed, on the basis of the experimental findings. The role of the oxygen transfer effect and gene expression levels in enzyme production were also examined.
A New Sucrase Enzyme Inhibitor from Azadirachta indica
Abdelhady, Mohamed I. S.; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A.
2016-01-01
Background: Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Materials and Methods: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. Results: This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-4C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, 1H NMR, 13C NMR, 1H-1H COSY, HSQC, NOESY and HMBC. Conclusion: Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. SUMMARY Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4’-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica. PMID:27563214
A New Sucrase Enzyme Inhibitor from Azadirachta indica.
Abdelhady, Mohamed I S; Shaheen, Usama; Bader, Ammar; Youns, Mahmoud A
2016-05-01
Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4'-methyl Quercetin-7-O-β-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/β)-D-(4)C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, HSQC, NOESY and HMBC. Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4'-methyl Quercetin-7-O-β-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica.
Kowsalya, R.; Kaliaperumal, Jagatheesh; Vaishnavi, M.; Namasivayam, Elangovan
2015-01-01
Background: Hepatocellular carcinoma is one of the most common cancers and a lethal disease. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. Materials and Methods: The methanolic extract of roots of Cynodon dactylon was screened for its hepato-protective activity in diethyl nitrosamine (DEN) induced liver cancer in Swiss albino mice. The plant extract at a dose of 50 mg/kg was administered orally once a week, up to 30 days after DEN administration. The animals were sacrificed; blood sample and liver tissue were collected and used for enzyme assay such as, asparatate amino transferase (AST), alanine aminotransferase (ALT), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST). The liver marker enzymes AST and ALT produced significant results in the protective action. Results: The antioxidant enzyme assay results concerning the improved activity of GPx, GST and CAT. These results concluded that enhanced levels of antioxidant enzyme and reduced amount of serum amino transaminase, which are suggested to be the major mechanisms of C. dactylon root extract in protecting the mice from hepatocarcinoma induced by DEN. These biochemical observations were supplemented by histopathological examination of liver sections. Conclusion: The methanolic extract of C. dactylon possesses significant anticancer properties PMID:25992348
Kowsalya, R; Kaliaperumal, Jagatheesh; Vaishnavi, M; Namasivayam, Elangovan
2015-01-01
Hepatocellular carcinoma is one of the most common cancers and a lethal disease. In view of the limited treatment and a grave prognosis of liver cancer, preventive control has been emphasized. The methanolic extract of roots of Cynodon dactylon was screened for its hepato-protective activity in diethyl nitrosamine (DEN) induced liver cancer in Swiss albino mice. The plant extract at a dose of 50 mg/kg was administered orally once a week, up to 30 days after DEN administration. The animals were sacrificed; blood sample and liver tissue were collected and used for enzyme assay such as, asparatate amino transferase (AST), alanine aminotransferase (ALT), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST). The liver marker enzymes AST and ALT produced significant results in the protective action. The antioxidant enzyme assay results concerning the improved activity of GPx, GST and CAT. These results concluded that enhanced levels of antioxidant enzyme and reduced amount of serum amino transaminase, which are suggested to be the major mechanisms of C. dactylon root extract in protecting the mice from hepatocarcinoma induced by DEN. These biochemical observations were supplemented by histopathological examination of liver sections. The methanolic extract of C. dactylon possesses significant anticancer properties.
Qian, Linbo; Chen, Baoliang
2012-01-01
The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated. A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium. The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation, which was significantly higher than that from regions of T. versicolor or P. chrysosporium alone. The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition. A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated. After a 48 hr incubation period, the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%, while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T. versicolor. The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS). These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil.
The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase
ERIC Educational Resources Information Center
Splittgerber, A. G.; And Others
1975-01-01
Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)
De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava
2015-10-01
Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2'- azinobis (3-ethylbenzothiazoline-6 - sulfonic acid.
De, Baishakhi; Bhandari, Koushik; Singla, Rajeev K.; Katakam, Prakash; Samanta, Tanmoy; Kushwaha, Dilip Kumar; Gundamaraju, Rohit; Mitra, Analava
2015-01-01
Background: Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Objective: Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. Materials and Methods: The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Results: Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Conclusion: Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. SUMMARY The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes. Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2’- azinobis (3-ethylbenzothiazoline-6 – sulfonic acid. PMID:27013789
Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Camila Souza; Brandão, Romero Marcos Pedrosa; de Campos-Takaki, Galba Maria; Teixeira, José Antônio Couto; Porto, Tatiana Souza; Porto, Ana Lúcia Figueiredo; Converti, Attilio
2016-07-01
A fibrinolytic protease from M. subtilissimus UCP 1262 was recovered and partially purified by polyethylene glycol (PEG)/sodium sulfate aqueous two-phase systems (ATPS). The simultaneous influence of PEG molar mass, PEG concentration and sulfate concentration on the enzyme recovery was first investigated using a 2(3) full factorial design, and the Response Surface Methodology used to identify the optimum conditions for enzyme extraction by ATPS. Once the best PEG molar mass for the process had been selected (6000g/mol), a two-factor central composite rotary design was applied to better evaluate the effects of the other two independent variables. The fibrinolytic enzyme was shown to preferentially partition to the bottom phase with a partition coefficient (K) ranging from 0.2 to 0.7. The best results in terms of enzyme purification were obtained with the system formed by 30.0% (w/w) PEG 6000g/mol and 13.2% (w/w) sodium sulfate, which ensured a purification factor of 10.0, K of 0.2 and activity yield of 102.0%. SDS-PAGE and fibrin zymography showed that the purified protease has a molecular mass of 97kDa and an apparent isoelectric point of 5.4. When submitted to assays with different substrates and inhibitors, it showed selectivity for succinyl-l-ala-ala-pro-l-phenylalanine-p-nitroanilide and was almost completely inhibited by phenylmethylsulfonyl fluoride, behaving as a chymotrypsin-like protease. At the optimum temperature of 37°C, the enzyme residual activity was 94 and 68% of the initial one after 120 and 150min of incubation, respectively. This study demonstrated that M. subtilissimus protease has potent fibrinolytic activity compared with similar enzymes produced by solid-state fermentation, therefore it may be used as an agent for the prevention and therapy of thrombosis. Furthermore, it appears to have the advantages of low cost production and simple purification. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a multianalyte enzyme-linked immunosorbent assay (ELISA) for detection of permethrin and aroclors 1248 or 1254, and implementation of the assay for analysis of soil/sediment samples are described. The feasibility of using the multianalyte ELISA to monitor aroclors ...
Enzyme activity in terrestrial soil in relation to exploration of the Martian surface
NASA Technical Reports Server (NTRS)
Ardakani, M. S.; Mclaren, A. D.; Pukite, A. H.
1972-01-01
An exploration was made of enzyme activities in soil, including abundance, persistence and localization of these activities. An attempt was made to develop procedures for the detection and assaying of enzymes in soils suitable for presumptive tests for life in planetary soils. A suitable extraction procedure for soil enzymes was developed and measurements were made of activities in extracts in order to study how urease is complexed in soil organic matter. Mathematical models were developed, based on enzyme action and microbial growth in soil, for rates of oxidation of nitrogen as nitrogen compounds are moved downward in soil by water flow. These biogeochemical models should be applicable to any percolating system, with suitable modification for special features, such as oxygen concetrations, and types of hydrodynamic flow.
Analysis of A Drug Target-based Classification System using Molecular Descriptors.
Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin
2016-01-01
Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.
Chen, Chun-Chieh; Liu, Chin-San; Li, Chien-Chun; Tsai, Chia-Wen; Yao, Hsien-Tsung; Liu, Te-Chung; Chen, Haw-Wen; Chen, Pei-Yin; Wu, Yu-Ling; Lii, Chong-Kuei; Liu, Kai-Li
2013-09-01
Because induction of phase II detoxification enzyme is important for chemoprevention, we study the effects of Indigofera suffruticosa Mill, a medicinal herb, on the expression of π class of glutathione S-transferase (GSTP) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Both water and ethanolic extracts of I. suffruticosa significantly increased the expression and enzyme activities of GSTP and NQO1. I. suffruticosa extracts up-regulated GSTP promoter activity and the binding affinity of nuclear factor erythroid 2-related factor 2 (Nrf2) with the GSTP enhancer I oligonucleotide. Moreover, I. suffruticosa extracts increased nuclear Nrf2 accumulation as well as ARE transcriptional activity. The level of phospho-ERK was augmented by I. suffruticosa extracts, and the ERK inhibitor PD98059 abolished the I. suffruticosa extract-induced ERK activation and GSTP and NQO-1 expression. Moreover, I. suffruticosa extracts, especially the ethanolic extract increased the glutathione level in mouse liver and red blood cells as well as Clone 9 liver cells. The efficacy of I. suffruticosa extracts in induction of phase II detoxification enzymes and glutathione content implies that I. suffruticosa could be considered as a potential chemopreventive agent. Copyright © 2013 Elsevier Ltd. All rights reserved.
ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES
Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...
Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti
2017-05-04
This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P < 0.05) higher inhibitory effects on Fe 2+ and QA-induced lipid peroxidation compared to BPE. FPE (162.61 mg GAE/g) had higher total phenol content than BPE. However, BPE (18.65 mg QE/g) had significantly higher total flavonoid content than FPE (13.32 mg QE/g). Phenolic acids (such as gallic acid, catechin, chlorogenic, caffeic, ellagic, p-Coumaric acids) and flavonoids (catechins, rutin and quercetin) were present in both extracts. This study revealed that the enzymes' inhibitory activities and antioxidant potentials of phenolic-rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.
Koley, Tanmay Kumar; Walia, Shweta; Nath, Prerna; Awasthi, O P; Kaur, Charanjit
2011-05-01
Zizyphus (Indian ber) is an excellent source of several phenolic compounds. The effect of two cell wall degrading enzymes, namely pectinase and viscozyme, on the nutraceutical composition of Zizyphus juice was investigated in the present study. Enzyme assisted processing significantly (P < 0.05) improved the juice yield, total soluble solids, total phenolics and total antioxidant activity (AOX). There was significant increase in recovery of antioxidants, to the tune of 70.51%, 66%, and 45% respectively in ascorbic acid, total phenolics and total flavonoids through viscozyme. The in-vitro total AOX of juice extracted via enzyme-assisted processing was 20.9 and 15.59 μmol Trolox/ml in ferric-reducing antioxidant power and cupric-reducing antioxidant capacity assays, respectively. There was 41% increase in AOX of juice extracted with enzyme over straight pressed juice. Results indicate that enzyme-assisted processing can significantly improve the functional properties of the Zizyphus juice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksoy, Pinar; Escande, Carlos; Seccion Biologia Celular, Facultad de Ciencias, Universidad de la Republica, Igua 4225, Montevideo
2006-10-13
The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1more » enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.« less
Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.
1989-01-01
Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import remains to be determined. PMID:16666942
Towards practical time-of-flight secondary ion mass spectrometry lignocellulolytic enzyme assays
2013-01-01
Background Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a surface sensitive mass spectrometry technique with potential strengths as a method for detecting enzymatic activity on solid materials. In particular, ToF-SIMS has been applied to detect the enzymatic degradation of woody lignocellulose. Proof-of-principle experiments previously demonstrated the detection of both lignin-degrading and cellulose-degrading enzymes on solvent-extracted hardwood and softwood. However, these preliminary experiments suffered from low sample throughput and were restricted to samples which had been solvent-extracted in order to minimize the potential for mass interferences between low molecular weight extractive compounds and polymeric lignocellulose components. Results The present work introduces a new, higher-throughput method for processing powdered wood samples for ToF-SIMS, meanwhile exploring likely sources of sample contamination. Multivariate analysis (MVA) including Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR) was regularly used to check for sample contamination as well as to detect extractives and enzyme activity. New data also demonstrates successful ToF-SIMS analysis of unextracted samples, placing an emphasis on identifying the low-mass secondary ion peaks related to extractives, revealing how extractives change previously established peak ratios used to describe enzyme activity, and elucidating peak intensity patterns for better detection of cellulase activity in the presence of extractives. The sensitivity of ToF-SIMS to a range of cellulase doses is also shown, along with preliminary experiments augmenting the cellulase cocktail with other proteins. Conclusions These new procedures increase the throughput of sample preparation for ToF-SIMS analysis of lignocellulose and expand the applications of the method to include unextracted lignocellulose. These are important steps towards the practical use of ToF-SIMS as a tool to screen for changes in plant composition, whether the transformation of the lignocellulose is achieved through enzyme application, plant mutagenesis, or other treatments. PMID:24034438
Dai, Xin-Xin; Shen, Fei; Su, Shu-Lan; Zhang, Sen; Guo, Sheng; Jiang, Shu; Qian, Da-Wei; Duan, Jin-Ao
2016-09-01
Salviae Miltiorrhizae Radix et Rhizoma residues were pre-treated with acid and alkali, degraded by using cellulose, and the effects of different processing methods on the extraction rate of tanshinones were compared to provide scientific basis for development and utilization of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues. The results showed that in the Salviae Miltiorrhizae Radix et Rhizoma residues without pre-treatment, enzymatic hydrolysis time of 4.5 d could make most of the cellulose degraded when the concentration of substrate enzyme concentration was 6 U•mL-1, and the highest glucose concentration was 59.74 mg•g⁻¹. It was found that the best effect was achieved after alkali pre-treatment-cellulose C degradation among the different pre-treatment methods, and the glucose content reached 119.50 mg•g⁻¹, followed by the same concentration of acid pre-treatment-cellulose C degradation. The extraction amount of tanshinone ⅡA was increased by 82.54% after enzyme degradation, with a mass fraction of 2.451 mg•g⁻¹; extraction amount of tanshinone I was increased by 81.82% after enzyme degradation, with a mass fraction of 2.373 mg•g⁻¹; extraction amount of cryptotanshinone was increased by 64.4% after enzyme degradation, with a mass fraction of 1.080 mg•g⁻¹; extraction amount of dihydrotanshinone I was increased by 61.3% after enzyme degradation, with a mass fraction of 0.601 2 mg•g⁻¹. Acid and alkali pre-treatment combined with cellulose degradation could effectively improve the extraction rate of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues. This method is operable and practical, and it is beneficial for improving the utilization efficiency of tanshinones (resource based chemicals) from Salviae Miltiorrhizae Radix et Rhizoma residues. Copyright© by the Chinese Pharmaceutical Association.
HPLC method for measurement of human salivary α-amylase inhibition by aqueous plant extracts.
Takács, István; Takács, Ákos; Pósa, Anikó; Gyémánt, Gyöngyi
2017-06-01
Control of hyperglycemia is an important treatment in metabolic disorders such as type II diabetes and obesity. α-Amylase, as the first enzyme of glucose release from dietary polysaccharides, is a potential target to identify new sources of novel anti-obesity and anti-diabetic drugs. In this work, different herbal extracts as α-amylase inhibitors were studied by measuring the rate of the cleavage of a maltooligomer substrate 2-chloro-4-nitrophenyl-β-D-maltoheptoside. Measurement of chromophore containing products after reversed phase HPLC separation was used for α-amylase activity measurement. Rates of hydrolysis catalysed by human salivary α-amylase were determined in the presence and absence of lyophilised water extracts of eleven herbs. Remarkable bioactivities were found for extracts of Cinnamomum zeylanicum Blume (bark), Camellia sinensis L. (leaf), Ribes nigrum L. (leaf), Laurus nobilis L. (leaf), Vaccinium macrocarpon Aiton (fruit) and Syzygium aromaticum L. (bud). Determined IC 50 values were in 0.017-41 μg/ml range for these six selected plant extracts. Our results confirm the applicability of this HPLC-based method for the quick and reliable comparison of plants as α-amylase inhibitors.
Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj
2017-07-01
Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.
Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry
2009-01-01
Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870
Velliquette, Rodney A; Grann, Kerry; Missler, Stephen R; Patterson, Jennifer; Hu, Chun; Gellenbeck, Kevin W; Scholten, Jeffrey D; Randolph, R Keith
2015-01-01
Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans. Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of (14)C labeled TG synthesis in cells incubated with (14)C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity. Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model. These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects. This trial was registered with ClinicalTrials.gov NCT02333461.
Oberson, Jean-Marie; Campos-Giménez, Esther; Rivière, Johann; Martin, Frédéric
2018-06-01
In the present manuscript, we describe a fully optimized and validated method suitable to analyse nine compounds (retinyl acetate, retinyl palmitate, retinol, α-tocopherol, α-tocopheryl acetate, cholecalciferol, ergocalciferol, phylloquinone, menaquinone-4) representing the major contributors to the fat-soluble vitamin activity of selected food products (infant formulas, adult nutritionals, infant cereals and mixed meals). Sample preparation involves direct solvent extraction using enzyme-assisted matrix disintegration and methanolic protein precipitation. Direct injection of the extract allows quantification of vitamins A, E and K in only 7 min, while vitamin D is determined after fast derivatization of the extract. Separation is achieved by supercritical fluid chromatography and detection performed by tandem mass spectrometry in positive Atmospheric Pressure Chemical Ionization mode. Results on a Standard Reference Material (SRM 1849a Infant/Adult Nutritional) were not statistically different from reference values. Full validation of the method showed excellent overall performance. Average recovery rate was between 90 and 110% for all vitamins and matrixes. The methodology shows enhanced safety and reduced cost as compared with previously published methods, together with potential for application to more complex matrixes. The full procedure can be easily applied in control laboratories dramatically increasing sample throughput and reducing solvent consumption. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Hao; Zhu, Junxiang; Yang, Long; Wang, Ran; Wang, Chengrong
2015-06-01
An efficient ultrasonic-assisted enzymatic extraction technique was applied to extracting phenolics from broccoli inflorescences without organic solvents. The synergistic model of enzymolysis and ultrasonication simultaneously was selected, and the enzyme combination was optimized by orthogonal test: cellulase 7.5 mg/g FW (fresh weight), pectinase 10 mg/g FW, and papain 1.0 mg/g FW. The operating parameters in ultrasonic-assisted enzymatic extraction were optimized with response surface methodology using Box-Behnken design. The optimal extraction conditions were as follows: ultrasonic power, 440 W; liquid to material ratio, 7.0:1 mL/g; pH value of 6.0 at 54.5 ℃ for 10 min. Under these conditions, the extraction yield of phenolics achieved 1.816 ± 0.0187 mg gallic acid equivalents/gram FW. The free radical scavenging activity of ultrasonic-assisted enzymatic extraction extracts was determined by 1,1-diphenyl-2-picrylhydrazyl·assay with EC50 values of 0.25, and total antioxidant activity was determined by ferric reducing antioxidant power assay with ferric reducing antioxidant power value of 0.998 mmol FeSO4/g compared with the referential ascorbic acid of 1.184 mmol FeSO4/g. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression.
Galuszka, Petr; Frébortová, Jitka; Werner, Tomás; Yamada, Mamoru; Strnad, Miroslav; Schmülling, Thomas; Frébort, Ivo
2004-10-01
The cloning of two novel genes that encode cytokinin oxidase/dehydrogenase (CKX) in barley is described in this work. Transformation of both genes into Arabidopsis and tobacco showed that at least one of the genes codes for a functional enzyme, as its expression caused a cytokinin-deficient phenotype in the heterologous host plants. Additional cloning of two gene fragments, and an in silico search in the public expressed sequence tag clone databases, revealed the presence of at least 13 more members of the CKX gene family in barley and wheat. The expression of three selected barley genes was analyzed by RT-PCR and found to be organ-specific with peak expression in mature kernels. One barley CKX (HvCKX2) was characterized in detail after heterologous expression in tobacco. Interestingly, this enzyme shows a pH optimum at 4.5 and a preference for cytokinin ribosides as substrates, which may indicate its vacuolar targeting. Different substrate specificities, and the pH profiles of cytokinin-degrading enzymes extracted from different barley tissues, are also presented.
Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz
2012-03-01
The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.
α-Glucosidase inhibitory activity of selected Philippine plants.
Lawag, Ivan L; Aguinaldo, Alicia M; Naheed, Suad; Mosihuzzaman, Mohammad
2012-10-31
Antidesma bunius Spreng. (Phyllantaceae), Averrhoa bilimbi L. (Oxalidaceae), Biophytum sensitivum (L.) DC. (Oxalidaceae), Ceriops tagal (Perr.) C.B. Rob. (Rhizophoraceae), Kyllinga monocephala Rottb. (Cyperaceae), and Rhizophora mucronata Lam. (Rhizophoraceae) are used as remedies to control diabetes. In the present study, these plants were screened for their potential α-glucosidase inhibitory activity. The 80% aqueous ethanolic extracts were screened for their α-glucosidase enzyme inhibitory activity using yeast alpha glucosidase enzyme. Except for A. bilimbi with IC(50) at 519.86±3.07, all manifested a significant enzyme inhibitory activity. R. mucronata manifested the highest activity with IC(50) at 0.08±1.82 μg mL(-1), followed by C. tagal with IC(50) at 0.85±1.46 μg mL(-1) and B. sensitivum with IC(50) at 2.24±1.58 μg mL(-1). This is the first report on the α-glucosidase inhibitory effect of the six Philippine plants; thus, partly defining the mechanism on why these medicinal plants possess antidiabetic properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Hydrolytic enzymes from a newly isolated strain of the thermophilic fungus Thermomyces lanuginosus were used to extract rubber from Taraxacum kok-saghyz commonly known as rubber (or Russian or Kazak(h)) dandelion. The fungus was isolated from garden soil and identified as Thermomyces lanuginosus STm...
Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.
Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad
2015-01-01
This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.
Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan
Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad
2015-01-01
Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463
Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang
2015-05-01
A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of Extraction Parameters on the Recovery of Lipolytic Activity from Fermented Babassu Cake
Silva, Jaqueline N.; Godoy, Mateus G.; Gutarra, Melissa L. E.; Freire, Denise M. G.
2014-01-01
Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process. PMID:25090644
Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji
2017-05-04
Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.
Chen, Yan-Jin; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Tan, Hong-Ling; Liang, Qian-De; Tang, Xiang-Lin; Zhao, Yong-Hong; Wang, Dong-Gen; Gao, Yue
2014-10-01
To study the effect of Panax notoginseng saponins (PNS) on liver drug metabolic enzyme activity, mRNA and protein expressions in rats. Male Wistar rats were randomly divided into nine groups. After administration of the test drugs, their liver microsomes, liver total RNA and total protein were extracted to detect the regulating effect of PNS on liver drug metabolic enzyme activity-related subtype enzymatic activity, mRNA and protein expression by substrate probe, quantitative PCR and Western Blot technology. The result of this experiment was that PNS could significantly induce CYP1A2 and CYP2E1 enzyme activity, mRNA expression, CYP2E1 protein expression level. PNS significantly induced CYP3A mRNA expression, but with no significant effect in CYP3A enzyme activity level. PNS had no significant effect CYP1A1 and CYP2B mRNA expressions and enzyme activity levels. PNS had selective regulations on different P450 subtypes, and the major subtypes were CYP1A2 and CYP2E1. In clinical practice, particularly in the combination with CYP1A2 and CYP2E1 metabolism-related drugs, full consideration shall be given to the possible drug interactions in order to avoid potential toxic and side effects. Meanwhile, whether the induction effect of CYP2E1 gets involved in ginsenoside's effect incavenging free radicals deserves further studies.
Pschenitza, Michael; Hackenberg, Rudolf; Niessner, Reinhard; Knopp, Dietmar
2014-01-01
This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ∼32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values. PMID:24887045
Digestive enzymes from workers and soldiers of termite Nasutitermes corniger.
Lima, Thâmarah de Albuquerque; Pontual, Emmanuel Viana; Dornelles, Leonardo Prezzi; Amorim, Poliana Karla; Sá, Roberto Araújo; Coelho, Luana Cassandra Breitenbach Barroso; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes
2014-10-01
The digestive apparatus of termites may have several biotechnological applications, as well as being a target for pest control. This report discusses the detection of cellulases (endoglucanase, exoglucanase, and β-glucosidase), hemicellulases (β-xylosidase, α-l-arabinofuranosidase, and β-d-xylanase), α-amylase, and proteases (trypsin-like, chymotrypsin-like, and keratinase-type) in gut extracts from Nasutitermes corniger workers and soldiers. Additionally, the effects of pH (3.0-11.0) and temperature (30-100°C) on enzyme activities were evaluated. All enzymes investigated were detected in the gut extracts of worker and soldier termites. Endoglucanase and β-xylanase were the main cellulase and hemicellulase, respectively. Zymography for proteases of worker extracts revealed polypeptides of 22, 30, and 43kDa that hydrolyzed casein, and assays using protease inhibitors showed that serine proteases were the main proteases in worker and soldier guts. The determined enzyme activities and their response to different pH and temperature values revealed that workers and soldiers contained a distinct digestive apparatus. The ability of these termites to efficiently digest the main components of lignocellulosic materials stimulates the purification of gut enzymes. Further investigation into their biotechnological potential as well as whether the enzymes detected are produced by the termites or by their symbionts is needed. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluation of hair growth promoting activity of Phyllanthus niruri
Patel, Satish; Sharma, Vikas; S. Chauhan, Nagendra; Thakur, Mayank; Dixit, Vinod Kumar
2015-01-01
Objective: This study was designed to investigate the potential Phyllanthus niruri (P. niruri ) extracts in promotion of hair growth. Materials and Methods: Here, we studied the hair growth promoting activity of petroleum ether extract of P. niruri following its topical administration. Alopecia was induced in albino rats by subcutaneous administration of testosterone for 21 days. Evaluation of hair loss inhibition was done by concurrent administration of extract and monitoring parameters like follicular density, anagen/telogen (A/T) ratio and histological observation of animal skin sections. Finasteride solution was applied topically as standard. In vitro experiments were also performed to study the effect of extract on the activity of 5α-reductase enzyme Results: Groups treated with petroleum ether extract of plant showed hair re-growth as reflected by follicular density, A/T ratio and skin sections. Histopathology and morphologic observations of hair re-growth at shaved sites showed active follicular proliferation. In vitro experiments results showed inhibitory activity of petroleum ether extract on type-2 5α-reductase enzyme and an increase in the amount of testosterone with increasing concentrations. Conclusion: It could be concluded that petroleum ether extracts of P. niruri might be useful in the treatment of testosterone-induced alopecia in the experimental animal by inhibiting 5α-reductase enzyme. PMID:26693408
Abbate, G M; Mangano, A; Sacerdote, P; Amodeo, G; Moschetti, G; Levrini, L
2017-01-01
The aim of this study was to evaluate substance P (SP) levels and the effect of a non-steroidal anti-inflammatory drug (NSAID), ketoprofen, on SP in the pericoronal gingival tissue after extraction of upper third molars. A sample of 20 young non-smoking systemically healthy adults of both sexes, with a healthy upper third molar to extract for orthodontic purposes, was selected. After extraction, a sample of the gingival tissue of the pericoronal region was collected with a sterile scalpel, placed into test tubes and kept frozen at -20°C until the SP determination. SP levels were determined by using a commercially available enzyme immunoassay (ELISA) kit. The subjects were randomly divided into two groups: group 1 received a single dose of ketoprofen 30 minutes prior to the experimental procedure. The subjects of group 2 did not receive any kind of drug administration before extraction. The patients were asked to complete a diary on the postoperative pain. A relevant amount of SP was measured in all the gingival samples. No statistically significant difference could be detected in SP expression between the two groups. In group 1 pain appearance was significantly delayed (6.2±0.13 hours) in comparison with group 2 (3.95±0.2 hours). In this small selected group of subjects and limited study design, preventive administration of ketoprofen did not significantly affect the gingival levels of SP, the clinical recommendation emerging is that of NSAID administration postoperatively but before pain appearance in order to optimize the management of pain of the patient.
Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi
2015-01-01
Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.
Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; Ameddah, Souad; Severino, Lorella
2015-01-01
Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862
Rohini, G; Sabitha, K E; Devi, C S Shyamala
2004-08-01
Antioxidative property and tumor inhibitive property of B. monniera (20mg/kg body wt, sc) was examined in 3-methylcholanthrene induced fibrosarcoma rats. Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of glutathione (GSH) and the rate of lipid peroxidation (LPO) in the liver and kidney tissues were assessed. A significant increase was noted for the rate of LPO with a corresponding decrease in the antioxidant enzyme status in fibrosarcoma bearing rats. In fibrosarcoma bearing rats, the tumor markers like lactate dehydrogenase (LDH), creatine kinase (CK), alanine transaminase (ALT), aspartate transaminase (AST) and sialic acid (SA) were increased in the serum. Treatment with B. monniera extract significantly increased the antioxidant enzyme status, inhibited lipid peroxidation and reduced the tumor markers. It can be concluded that B.monniera extract promotes the antioxidant status, reduces the rate of lipid peroxidation and the markers of tumor progression in the fibrosarcoma bearing rats.
Dhillon, Gurpreet Singh; Brar, Satinder Kaur; Kaur, Surinder; Valero, Jose R; Verma, Mausam
2011-12-01
Enzyme extracts of cellulase [filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase)], chitinase, and chitosanase produced by Aspergillus niger NRRL-567 were evaluated. The interactive effects of initial moisture and different inducers for FP cellulase and CMCase production were optimized using response surface methodology. Higher enzyme activities [FPase 79.24+/- 4.22 IU/gram fermented substrate (gfs) and CMCase 124.04+/-7.78 IU/gfs] were achieved after 48 h fermentation in solid-state medium containing apple pomace supplemented with rice husk [1% (w/w)] under optimized conditions [pH 4.5, moisture 55% (v/w), and inducers veratryl alcohol (2 mM/kg), copper sulfate (1.5 mM/kg), and lactose 2% (w/w)] (p<0.05). Koji fermentation in trays was carried out and higher enzyme activities (FPase 96.67+/-4.18 IU/gfs and CMCase 146.50+/-11.92 IU/gfs) were achieved. The nonspecific chitinase and chitosanase activities of cellulase enzyme extract were analyzed using chitin and chitosan substrates with different physicochemical characteristics, such as degree of deacetylation, molecular weight, and viscosity. Higher chitinase and chitosanase activities of 70.28+/-3.34 IU/gfs and 60.18+/-3.82 to 64.20+/-4.12 IU/gfs, respectively, were achieved. Moreover, the enzyme was stable and retained 92-94% activity even after one month. Cellulase enzyme extract obtained from A. niger with chitinolytic and chitosanolytic activities could be potentially used for making low-molecular-weight chitin and chitosan oligomers, having promising applications in biomedicine, pharmaceuticals, food, and agricultural industries, and in biocontrol formulations.
[Progress in synthetic biology of pinocembrin].
Guo, Lei; Kong, Jianqiang
2015-04-01
Pinocembrin, belonging to flavanons, was isolated from various plants. Pinocembrin has a variety of pharmacological activities, such as neuroprotective effect, antimicrobial activity, and antioxidant efficacy. Pinocembrin was approved as class I drugs to its phase II clinical trial by CFDA in 2009, mainly used for the treatment of ischemic stroke. As a promising compound, the manufacturing technologies of pinocembrin, including chemical synthesis, extraction from plant and synthetic biology, have attracted many attentions. Compared with the first two technologies, synthetic biology has many advantages, such as environment-friendly and low-cost. Construction of biosynthetic pathway in microorganism offers promising results for large scale pinocembrin production by fermentation after taking lots of effective strategies. This article reviews some of recent strategies in microorganisms to improve the yield, with focus on the selection of appropriate the key enzyme sources, the supply of precursors and cofactors by microorganisms, the choice of substance and the level of the key enzyme expression.
Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.
Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I
2011-04-01
The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.
Investigation on flavonoid composition and anti free radical potential of Sida cordata.
Shah, Naseer Ali; Khan, Muhammad Rashid; Ahmad, Bushra; Noureen, Farah; Rashid, Umbreen; Khan, Rahmat Ali
2013-10-22
Sida cordata, a member of Family Malvaceae is used in folk medicine for various ailments including liver diseases. In this study we investigated, its flavonoid constituents, in vitro antioxidant potential against different free radicals and hepatoprotection against carbon tetrachloride (CCl4)-induced liver damage in rat. Dried powder of S. cordata whole plant was extracted with methanol and the resultant (SCME) obtained was fractionated with escalating polarity to obtain n-hexane fraction (SCHE), ethyl acetate fraction (SCEE), n-butanol fraction (SCBE) and the remaining soluble portion as aqueous fraction (SCAE). Diverse in vitro antioxidants assays such as DPPH, H2O2, •OH, ABTS, β-carotene bleaching assay, superoxide radical, lipid peroxidation, reducing power, and total antioxidant capacity were studied to assess scavenging potential of methanol extract and its derived fractions. On account of marked scavenging activity SCEE was selected to investigate the hepatoprotective potential against CCl4 induced toxicity in Sprague-Dawley male rats by assessing the level of serum markers (alkaline phosphatase, alanine transaminase, aspartate transaminase, lactate dehydrogenase, bilirubin, and γ-glutamyltransferase) and of liver antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione-S-transfers (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH) and lipid peroxidation (TBARS). Histology of the liver was performed to study alteration in histoarchitecture. Existence of active flavonoids was established by thin layer chromatographic studies. Considerable amount of flavonoid and phenolic contents were recorded in the methanol extract and its derived fractions. Although the extract and all its derived fractions exhibited good antioxidant activities however, the most distinguished scavenging potential was observed for SCEE. Treatment of SCEE decreased the elevated level of serum marker enzymes induced with CCl4 administration whereas increased the activity of hepatic antioxidant enzymes (CAT, SOD, POD, GST, GSR and GSH-Px). Hepatic concentration of GSH was increased while lipid peroxidation was decreased with SCEE administration in CCl4 intoxicated rats. Presence of apigenin with some unknown compounds was observed in SCEE by using thin layer chromatography. These results revealed the presence of some bioactive compound in the ethyl acetate fraction, confirming the utility of S. cordata against liver diseases in folk medicine.
Piemolini-Barreto, Luciani Tatsch; Antônio, Regina Vasconcellos; Echeverrigaray, Sergio
2015-05-01
This study analyses the effect of the crude enzymatic extract produced by Kluyveromyces marxianus (EEB) in the maceration and clarification of juice produced from Ives (Vitis labrusca) grapes compared to the commercial enzyme preparation Pectinex(®)Ultra Color (PEC). Treatments were conducted with a total pectinolytic activity of 1 U/mL of fruit juice, at 40 °C, for 60 min. After the enzymatic treatment, the juices were evaluated with respect to yield, viscosity, and degree of clarification, as well as the effect of the enzymes on polyphenol concentration, anthocyanins, and juice color. The results showed that both EEB and PEC increase yield, reduce viscosity and contribute to the clarification of grape juice. After enzyme treatment with the EEB preparation, the extraction yield increased 28.02 % and decreased 50.70 % in viscosity during the maceration of the pulp. During the juice production process clarification increased 11.91 %. With PEC, higher values for these parameters: 42.36, 63.20, and 26.81 % respectively, were achieved. The addition of EEB resulted in grape juice with better color intensity and extraction of phenolic compounds and anthocyanins. Considering all comparison criteria, the enzymatic extract of K. marxianus NRRL-Y-7571 can potentially be used in the production of juice.
Sethupathy, A; Sivashanmugam, P
2018-06-04
In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.
Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare
2018-05-01
The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50 = 28.5 µg/mL) than the bound phenolic extract (IC 50 = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50 = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50 = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F
2005-01-01
Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.
Inhibition properties of propolis extracts to some clinically important enzymes.
Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi
2016-01-01
The present study was conducted to envisage inhibition effects of propolis on the crucial enzymes, urease, xanthine oxidase (XO) and acetylcholinesterase (AChE). Some of the antioxidant properties of the propolis samples were determined using the total phenolic content (TPE) and total flavonoids in the eight different ethanolic propolis extracts (EPE) samples. Inhibition values of the enzymes were expressed as inhibition concentration (IC 50 ; mg/mL or μg/mL) causing 50% inhibition of the enzymes with donepezil, acetohydroxamic acid and allopurinol as reference inhibitors. All the propolis extracts exhibited variable inhibition effects on these enzymes, but the higher the phenolic contents the lower the inhibitions values (IC 50 = 0.074 to 1.560 mg/mL). IC 50 values of the P5 propolis sample having the highest TPE, obtained from Zonguldak, for AChE, urease and XO were 0.081 ± 0.009, 0.080 ± 0.006 and 0.074 ± 0.011 μg/mL, respectively. The EPE proved to be a good source of inhibitor agents that can be used as natural inhibitors to serve human health.
2014-01-01
Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use. PMID:24693882
NASA Astrophysics Data System (ADS)
Imansari, Farisa; Sahlan, Muhammad; Arbianti, Rita
2017-07-01
Andrographis paniculata (A.paniculata) contain the main active substances Andrographolide which helps lower glucose levels in diabetics by inhibiting the enzyme α-glucosidase. The ability of the extract A.paniculata in lowering glucose levels will increase with the technique encapsulation with a coating of composition Chitosan-STPP as a drug delivery to the target organ. This study aimed to get an overview of A.paniculata release profile of nanoparticles in a synthetic fluid media with various concentrations of coating and inhibition testing nasty shard extract in inhibiting the enzyme α-glucosidase. This research resulted in nanoparticles by coating efficiency and loading capacity of chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. chitosan greatest variation of 2% and 1% STPP 60% and 46.29%. The ability of A.paniculata extracts as α-glucosidase enzyme inhibitors has been demonstrated in this study, the percent inhibition of 33.17%.
Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru
2017-04-20
Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at the concentration of 10 μg/ml against MMP-9. Additionally, MMP-9 was significantly inhibited by terchebulin with IC 50 value of 6.7 μM. To the best of our knowledge, flavogalonic acid dilactone and terchebulin were isolated from C. hartmannianium bark for the first time in this study. Because of terchebulin and some crude extracts acting on P. gingivalis bacteria and MMP-9 enzyme that would make them promising natural preference for preventing and treating periodontal diseases.
Molander, Marianne; Nielsen, Line; Søgaard, Søren; Staerk, Dan; Rønsted, Nina; Diallo, Drissa; Chifundera, Kusamba Zacharie; van Staden, Johannes; Jäger, Anna K
2014-11-18
Snakebite envenomation, every year, causes estimated 5-10,000 mortalities and results in more than 5-15,000 amputations in sub-Saharan Africa alone. Antiserum is not easily accessible in these regions or doctors are simply not available, thus more than 80% of all patients seek traditional practitioners as first-choice. Therefore it is important to investigate whether the plants used in traditional medicine systems contain compounds against the necrosis-inducing enzymes of snake venom. Extracts from traditionally used plants from DR Congo, Mali and South Africa were tested in hyaluronidase, phospholipase A2 and protease enzyme bioassays using Bitis arietans and Naja nigricollis as enzyme source. A total of 226 extracts from 94 different plant species from the three countries, Mali, Democratic Republic of Congo and South Africa were tested in phospholipase A2, proteases and hyaluronidase enzyme assays. Forty plant species showed more than 90% inhibition in one or more assay. Fabaceae, Anacardiaceae and Malvaceae were the families with the highest number of active species, and the active compounds were distributed in different plant parts depending on plant species. Polyphenols were removed in the search for specific enzyme inhibitors against hyaluronidase, phospholipase A2 or proteases from extracts with IC50 values below 100µg/ml. Water extracts of Pupalia lappacea, Combretum molle, Strychnos innocua and Grewia mollis and ethanol extract of Lannea acida and Bauhinia thonningii still showed IC50 values below 100µg/ml in either the hyaluronidase or protease bioassay after removal of polyphenols. As four of the active plants are widely distributed in the areas where the snake species Bitis arietans and Naja nigricollis occur a potential inhibitor of the necrotic enzymes is accessible for many people in sub-Saharan Africa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Suwannarangsee, Surisa; Arnthong, Jantima; Eurwilaichitr, Lily; Champreda, Verawat
2014-10-01
Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, β-glucosidase, xylanase, and β-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of β-glucosidase and core hemicellulases (xylanase and β-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external β-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.
Doumen, Chris
2010-06-01
Creatine kinase and arginine kinase are the typical representatives of an eight-member phosphagen kinase family, which play important roles in the cellular energy metabolism of animals. The phylum Annelida underwent a series of evolutionary processes that resulted in rapid divergence and radiation of these enzymes, producing the greatest diversity of the phosphagen kinases within this phylum. Lombricine kinase (EC 2.7.3.5) is one of such enzymes and sequence information is rather limited compared to other phosphagen kinases. This study presents data on the cDNA sequences of lombricine kinase from two oligochaete species, the California blackworm (Lumbriculus variegatus) and the sludge worm (Tubifex tubifex). The deduced amino acid sequences are analyzed and compared with other selected phosphagen kinases, including two additional lombricine kinase sequences extracted from DNA databases and provide further insights in the evolution and position of these enzymes within the phosphagen kinase family. The data confirms the presence of a deleted region within the flexible loop (the GS region) of all six examined lombricine kinases. A phylogenetic analysis of these six lombricine kinases clearly positions the enzymes together in a small subcluster within the larger creatine kinase (EC 2.7.3.2) clade. 2010. Published by Elsevier Inc.
Ahangarpour, Akram; Heidari, Hamid; Junghani, Majid Salehizade; Absari, Reza; Khoogar, Mehdi; Ghaedi, Ehsan
2017-10-01
Type 2 diabetes often leads to dislipidemia and abnormal activity of hepatic enzymes. The purpose of this study was to evaluate the antidiabetic and hypolipidemic properties of Rhus coriaria ( R. coriaria ) seed extrac on nicotinamide-streptozotocin induced type 2 diabetic mice. In this experimental study, 56 male Naval Medical Research Institute mice (30-35 g) were randomly separated into seven groups: control, diabetic group, diabetic mice treated with glibenclamide (0.25 mg/kg, as standard antidiabetic drug) or R. coriaria seed extract in doses of 200 and 300 mg/kg, and control groups received these two doses of extract orally for 28 days. Induction of diabetes was done by intraperitoneal injection of nicotinamide and streptozotocin. Ultimately, body weight of mice, blood levels of glucose, insulin, hepatic enzymes, leptin, and lipid profile were assayed. After induction of type 2 diabetes, level of glucose, cholesterol, low density lipoprotein, serum glutamic oxaloacetic transaminase, and serum glutamic pyruvic transaminase increased and level of insulin and high density lipoprotein decreased remarkably. Administration of both doses of extract decreased level of glucose and cholesterol significantly in diabetic mice. LDL level decreased in treated group with dose of 300 mg/kg of the extract. Although usage of the extract improved level of other lipid profiles, insulin and hepatic enzymes, changes weren't significant. This study showed R. coriaria seeds administration has a favorable effect in controlling some blood parameters in type 2 diabetes. Therefore it may be beneficial in the treatment of diabetes.
Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam
2015-07-01
Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.
Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G
2017-05-05
Ethno-botanical information from diabetic patients in Cuba led to the identification of Allophylus cominia as a possible source of new drugs for the treatment of type 2 diabetes mellitus (T2-DM). Chemical characterization of the extracts from A. cominia was carried out using chromatographic and spectroscopic methods. The extracts were tested for their activity on PTP1B, DPPIV, α-glucosidase enzymes and α-amylase. The flavonoid rich fractions from A. cominia inhibited DPPIV enzyme (75.3±2.33%) at 30µg/ml and produced a concentration-dependent inhibition against DPPIV with a Ki value of 2.6µg/ml. At 30µg/ml, flavonoids and pheophytins extracts significantly inhibited PTP1B enzyme (100±2.6% and 68±1% respectively). The flavonoids, pheophytin A and pheophytin B fractions showed significant concentration-dependent inhibition against PTP1B with Ki values of 3µg/ml, 0.64µg/ml and 0.88µg/ml respectively. At 30µg/ml, the flavonoid fraction significantly inhibited α-glucosidase enzyme (86±0.3%) in a concentration-dependent pattern with a Ki value of 2µg/ml. None of the fractions showed significant effects on α-amylase. Fatty acids, tannins, pheophytins A and B, and a mixture of flavonoids were detected in the methanolic extract from A. cominia. The identified flavonoids were mearnsitrin, quercitrin, quercetin-3-alloside, and naringenin-7-glucoside. The pharmacological effects of the extracts from A. cominia earlier observed in experimental diabetic models was confirmed in this study. Thus a new drug or formulation for the treatment of T2-DM could be developed from A. cominia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
CO2 capture by means of an enzyme-based reactor
NASA Technical Reports Server (NTRS)
Cowan, R. M.; Ge, J-J; Qin, Y-J; McGregor, M. L.; Trachtenberg, M. C.
2003-01-01
We report a means for efficient and selective extraction of carbon dioxide (CO(2)) at low to medium concentration from mixed gas streams. CO(2) capture was accomplished by use of a novel enzyme-based, facilitated transport contained liquid membrane (EBCLM) reactor. The parametric studies we report explore both structural and operational parameters of this design. The structural parameters include carbonic anhydrase (CA) concentration, buffer concentration and pH, and liquid membrane thickness. The operational parameters are temperature, humidity of the inlet gas stream, and CO(2) concentration in the feed stream. The data show that this system effectively captures CO(2) over the range 400 ppm to at least 100,000 ppm, at or around ambient temperature and pressure. In a single pass across this homogeneous catalyst design, given a feed of 0.1% CO(2), the selectivity of CO(2) versus N(2) is 1,090 : 1 and CO(2) versus O(2) is 790 :1. CO(2) permeance is 4.71 x 10(-8) molm(-2) Pa(-1) sec(-1). The CLM design results in a system that is very stable even in the presence of dry feed and sweep gases.
Al-Balas, Qosay; Hassan, Mohammad; Al-Oudat, Buthina; Alzoubi, Hassan; Mhaidat, Nizar; Almaaytah, Ammar
2012-11-22
Within this study, a unique 3D structure-based pharmacophore model of the enzyme glyoxalase-1 (Glo-1) has been revealed. Glo-1 is considered a zinc metalloenzyme in which the inhibitor binding with zinc atom at the active site is crucial. To our knowledge, this is the first pharmacophore model that has a selective feature for a "zinc binding group" which has been customized within the structure-based pharmacophore model of Glo-1 to extract ligands that possess functional groups able to bind zinc atom solely from database screening. In addition, an extensive 2D similarity search using three diverse similarity techniques (Tanimoto, Dice, Cosine) has been performed over the commercially available "Zinc Clean Drug-Like Database" that contains around 10 million compounds to help find suitable inhibitors for this enzyme based on known inhibitors from the literature. The resultant hits were mapped over the structure based pharmacophore and the successful hits were further docked using three docking programs with different pose fitting and scoring techniques (GOLD, LibDock, CDOCKER). Nine candidates were suggested to be novel Glo-1 inhibitors containing the "zinc binding group" with the highest consensus scoring from docking.
Park, Hyo Jin; Kim, Hye-Jin; Kim, Sang Ryong; Choi, Myung-Sook; Jung, Un Ju
2017-03-01
This study investigated the biological and molecular mechanisms underlying the antiobesity effect of omija fruit ethanol extract (OFE) in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD (20% fat, w/w) with or without OFE (500 mg/kg body weight) for 16 weeks. Dietary OFE significantly increased brown adipose tissue weight and energy expenditure while concomitantly decreasing white adipose tissue (WAT) weight and adipocyte size by up-regulating the expression of brown fat-selective genes in WAT. OFE also improved hepatic steatosis and dyslipidemia by enhancing hepatic fatty acid oxidation-related enzymes activity and fecal lipid excretion. In addition to steatosis, OFE decreased the expression of pro-inflammatory genes in the liver. Moreover, OFE improved glucose tolerance and lowered plasma glucose, insulin and homeostasis model assessment of insulin resistance, which may be linked to decreases in the activity of hepatic gluconeogenic enzymes and the circulating level of gastric inhibitory polypeptide. These findings suggest that OFE may protect against diet-induced adiposity and related metabolic disturbances by controlling brown-like transformation of WAT, fatty acid oxidation, inflammation in the liver and fecal lipid excretion. Improved insulin resistance may be also associated with its antiobesity effects. Copyright © 2017 Elsevier Inc. All rights reserved.
El Zoeiby, Ahmed; Sanschagrin, François; Darveau, André; Brisson, Jean-Robert; Levesque, Roger C
2003-03-01
The machinery of peptidoglycan biosynthesis is an ideal site at which to look for novel antimicrobial targets. Phage display was used to develop novel peptide inhibitors for MurC, an essential enzyme involved in the early steps of biosynthesis of peptidoglycan monomer. We cloned and overexpressed the murA, -B and -C genes from Pseudomonas aeruginosa in the pET expression vector, adding a His-tag to their C termini. The three proteins were overproduced in Escherichia coli and purified to homogeneity in milligram quantities. MurA and -B were combinatorially used to synthesize the MurC substrate UDP-N-acetylmuramate, the identity of which was confirmed by mass spectrometry and nuclear magnetic resonance analysis. Two phage-display libraries were screened against MurC in order to identify peptide ligands to the enzyme. Three rounds of biopanning were carried out, successively increasing elution specificity from round 1 to 3. The third round was accomplished with both non-specific elution and competitive elution with each of the three MurC substrates, UDP-N-acetylmuramic acid (UNAM), ATP and L-alanine. The DNA of 10 phage, selected randomly from each group, was extracted and sequenced, and consensus peptide sequences were elucidated. Peptides were synthesized and tested for inhibition of the MurC-catalysed reaction, and two peptides were shown to be inhibitors of MurC activity with IC(50)s of 1.5 and 0.9 mM, respectively. The powerful selection technique of phage display allowed us to identify two peptide inhibitors of the essential bacterial enzyme MurC. The peptide sequences represent the basis for the synthesis of inhibitory peptidomimetic molecules.
Kumar, Vishnu; Mahdi, Farzana; Khanna, Ashok Kumar; Singh, Ranjana; Chander, Ramesh; Saxena, Jitendra Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar
2013-01-01
The antidyslipidemic activity of Hibiscus rosa sinensis (Malvaceae) root extract has been studied in alloxan induced diabetic rats. In this model, oral administration of root extract (500 mg/kg bw. p.o.) for 15 days resulted in significant decreased in the levels of blood glucose, plasma lipids and reactivated post heparin lipoprotein lipase activity in alloxan induced diabetic rats. Furthermore, the root extract (50-500 μg) when tested for its antioxidant activity, inhibited the generation of super oxide anions and hydroxyl radicals, in both enzymic and non enzymic systems in vitro. The results of the present study demonstrated antidyslipidemic and antioxidant activities in root extract of H. rosa sinensis which could be used in prevention of diabetic-dyslipidemia and related complications.
Plotnikov, Evgeny V; Glukhova, Lubov B; Sokolyanskaya, Ludmila O; Karnachuk, Olga V; Solioz, Marc
2016-01-01
We compared cold and hot wood extracts of 3 endemic Siberian trees-namely, Prunus padus (bird cherry), Populus tremula (aspen), and Betula sp. (birch)-on biomass production and laccase and peroxidase secretion in submerged cultures by the medicinal mushroom Lentinus edodes. Of the conditions tested, only hot Prunus extracts stimulated biomass production, whereas all extracts stimulated laccase and peroxidase secretion, albeit to different extents. A large, differential stimulation of manganese peroxidase was observed by hot Prunus extracts. The results highlight important differences between tree species in the stimulation of biomass and enzyme production by L. edodes and point to potentially interesting stimulatory factors present in hot Prunus extracts. These findings are of relevance in the use of L. edodes for medicinal or biotechnological applications.
Ganeshpurkar, Aditya; Diwedi, Varsha; Bhardwaj, Yash
2013-01-01
Trigonella foenum-graecum is one of the widely used herbs in food and medicine. The seeds of the plants are investigated for antidiabetic potential; however, no efforts have been done to explore the potential of leaves to modify carbohydrate metabolizing enzymes viz. α-amylase and α-glucosidase. The present work was designed to investigate the inhibitory potential of ethyl acetate and water extract of T. foenum-graecum on enzymes α-amylase and α-glucosidase. Different concentrations of extracts were used to study inhibition of enzymatic activity of α-amylase and α-glucosidase. A dose dependent inhibitory effect on enzymes was observed. The current study, for the first time, revealed α-amylase and α-glucosidase inhibitory potential of T. foenum-graecum and the study could be helpful to isolate and characterize compounds responsible for it. PMID:24049415
Díaz-Rincón, Dennis J.; Duque, Ivonne; Osorio, Erika; Rodríguez-López, Alexander; Espejo-Mojica, Angela; Parra-Giraldo, Claudia M.
2017-01-01
Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile. PMID:28951785
Spínola, Vítor; Castilho, Paula C
2017-11-01
The study was performed to assess, for the first time, the in vitro anti-diabetic potential of ten Asteraceae plant extracts to inhibit the activity of digestive enzymes (α-amylase, α-, β-glucosidases and lipase) responsible for hydrolysis/digestion of sugar and lipids. Prevention of advanced glycation end-products (AGEs) formation was evaluated in bovine serum albumin/ribose glycation reaction model. The phytochemical profiles and caffeoylquinic acids (CQAs) contents were determined for the methanolic extract of each plant. Analyzed plant extracts exhibited significant inhibitory activity against key digestive enzymes linked to type II diabetes and obesity. A strong inhibition was observed for glucosidases and mild activity towards amylase and lipase (compared to reference compounds). Moreover, some extracts exhibited potent ability to prevent formation of AGEs, implicated in some diabetic complications. Caffeoylquinic acids were dominant in all plant extracts and findings demonstrate that these compounds are the most relevant hypoglycemic and anti-glycation agents. From the obtained results, Argyranthemum pinnatifidum, Helichrysum melaleucum, and Phagnalon lowei are good candidates for further development of phyto-pharmaceutical preparations as complementary therapy for diabetes and obesity control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D
2017-01-01
Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.
Purification and characterization of a hexanol-degrading enzyme extracted from apple
USDA-ARS?s Scientific Manuscript database
An enzyme having activity towards n-hexanol was purified from apple and its biochemical characteristics were analyzed. The purification steps consisted of sedimentation with ammonium sulfate, DEAE Sepharose Fast Flow ion exchange chromatography and Sephadex G-100 column. The obtained enzyme had a yi...
de Grazia, Ugo; D'Urso, Annachiara; Ranzato, Federica; De Riva, Valentina; Contarato, Giorgia; Billo, Giuseppe; Perini, Francesco; Galloni, Elisabetta
2018-05-09
Perampanel is a novel non-competitive selective antagonist at the postsynaptic ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) glutamate receptor, approved as an adjunctive agent for the treatment of partial-onset seizure with or without secondary generalization and for primary generalized tonic-clonic seizure in patients with epilepsy who are at least 12 years of age. Limited information is available about the clinical utility of therapeutic drug monitoring of perampanel and therapeutic ranges are so far not established. Therefore, perampanel titration should be performed especially in case of insufficient success of the drug. The authors developed a selective and sensitive LC-MS/MS assay to monitor perampanel concentrations in plasma which was compared to a commercially available HPLC kit with fluorescent detection. Perampanel and the internal standard were extracted from plasma samples by a simple protein precipitation. The method allows the simultaneous quantification of perampanel and several other antiepileptic drugs (AEDs). Data were evaluated according to EMA guidelines for bioanalytical method validation. Extraction recovery of perampanel from human plasma was consistently above 98%. No matrix effect was found. Analytical interferences by other AEDs were not observed. The method was linear in the range from 2.5 to 2800 ng/ml. Intra- and inter-assay reproducibility analyses demonstrated accuracy and precision within acceptance criteria. Data collected from 95 patients, given perampanel as their maintenance antiepileptic therapy, showed a very strong correlation between the two methods. The assay allows for highly sensitive and selective quantification of perampanel and concomitant antiepileptic drugs in patient plasma samples and can be easily implemented in clinical settings. Our findings are in agreement with previously published data in patients comedicated with enzyme inducer AEDs, but seem to indicate a possible interaction in patients treated with the enzyme inhibitor drug valproic acid (VPA).
Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts.
Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza
2014-06-01
One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets.
Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio
2011-01-01
Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species. PMID:22016781
Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O
2018-05-19
Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.
Erdem, Sinem Aslan; Senol, F Sezer; Budakoglu, Esin; Orhan, Ilkay Erdogan; Sener, Bilge
2016-01-01
The hydroalcoholic extracts of the Turkish traditional coffee samples from 18 commercial brands were tested for their neurobiological effects through enzyme inhibition based on enzyme-linked immunosorbance microtiter assays against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, linked to Alzheimer's and Parkinson's diseases. The extracts were also subjected to several antioxidant test systems to define their antiradical, metal-chelation capacity, and reducing power. Total phenol and flavonoid contents in the extracts were delineated by spectrophotometric methods, while chlorogenic acid in the coffee samples was quantified by high-pressure liquid chromatography. The extracts displayed low to moderate inhibition (from 2.13 ± 0.01% to 36.12 ± 1.07% at 200 μg/mL) against the tested enzymes, whereas they had notable 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity up to 56.15 ± 2.03% at 200 μg/mL. The extracts exerted a remarkable ferric-reducing antioxidant power values, while chlorogenic acid was found to range between 0.288 ± 0.005% and 2.335 ± 0.010%. Copyright © 2015. Published by Elsevier B.V.
Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts
Mendz, George; Hazell, Stuart
1998-01-01
The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591
Purification and properties of beta-galactosidase from Aspergillus nidulans.
Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F
1996-12-01
Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).
Franco, Rodrigo Rodrigues; da Silva Carvalho, Danúbia; de Moura, Francyelle Borges Rosa; Justino, Allisson Benatti; Silva, Heitor Cappato Guerra; Peixoto, Leonardo Gomes; Espindola, Foued Salmen
2018-04-06
Plants preparations are used by traditional medicine in the treatment of various diseases, such as type-2 diabetes mellitus. Some medicinal plants are capable of controlling the complications of this metabolic disease at different levels, for example, providing antioxidant compounds that act against oxidative stress and protein glycation and others which are capable of inhibiting the catalysis of digestive enzymes and thus contribute to the reduction of hyperglycemia and hyperlipidemia. Our objective was to investigate the antioxidant and anti-glycation activities of some medicinal plants and their potential inhibitory against α-amylase, α-glucosidase and pancreatic lipase activities. Based on the ethnobotanical researches carried out by academic studies conducted at the Federal University of Uberlandia, ten plants traditionally used in the treatment of type-2 diabetes mellitus were selected. Ethanol (EtOH) and hexane (Hex) extracts of specific parts of these plants were used in enzymatic assays to evaluate their inhibitory potential against α-amylase, α-glucosidase and lipase, as well as their antioxidant (DPPH, ORAC and FRAP) and anti-glycation (BSA/fructose model) capacities. The results indicate that EtOH extract of four of the ten analyzed plants exhibited more than 70% of antioxidant and anti-glycation capacities, and α-amylase and lipase inhibitory activities; no extract was able to inhibit more than 40% the α-glucosidase activity. The EtOH extracts of Bauhinia forficata and Syzygium. cumini inhibited α-amylase (IC 50 8.17 ± 2.24 and 401.8 ± 14.7 μg/mL, respectively), whereas EtOH extracts of B. forficata, Chamomilla recutita and Echinodorus grandiflorus inhibited lipase (IC 50 59.6 ± 10.8, 264.2 ± 87.2 and 115.8 ± 57.1 μg/mL, respectively). In addition, EtOH extracts of B. forficata, S. cumini, C. recutita and E. grandiflorus showed, respectively, higher antioxidant capacity (DPPH IC 50 0.7 ± 0.1, 2.5 ± 0.2, 1.3 ± 0.2 and 35.3 ± 9.0 μg/mL) and anti-glycation activity (IC 50 22.7 ± 4.4, 246.2 ± 81.7, 18.5 ± 2.8 and 339.0 ± 91.0 μg/mL). EtOH extracts of four of the ten species popularly cited for treatment of type 2 diabetes mellitus have shown promising antioxidant and anti-glycation properties, as well as the ability to inhibit the digestive enzymes α-amylase and lipase. Thus, our results open new possibilities for further studies in order to evaluate the antidiabetic potential of these medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Aroma enhancement and enzymolysis regulation of grape wine using β-glycosidase
Zhu, Feng-Mei; Du, Bin; Li, Jun
2014-01-01
Adding β-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(34) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45°C, enzymolysis time of 90 min, and enzyme amount of 58.32 U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072
Ho, Y C; Ho, K J
1988-04-01
Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.
Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T
2006-05-01
A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.
Protective effects of Asian green vegetables against oxidant induced cytotoxicity
Rose, Peter; Ong, Choon Nam; Whiteman, Matt
2005-01-01
AIM: To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage. PMID:16437686
Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto
2014-06-18
Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation.
Adefegha, Stephen A.; Oyeleye, Sunday I.; Oboh, Ganiyu
2015-01-01
Soursop fruit has been used in folklore for the management of type-2 diabetes and hypertension with limited information on the scientific backing. This study investigated the effects of aqueous extracts (1 : 100 w/v) of Soursop fruit part (pericarp, pulp, and seed) on key enzymes linked to type-2 diabetes (α-amylase and α-glucosidase) and hypertension [angiotensin-I converting enzyme (ACE)]. Radicals scavenging and Fe2+ chelation abilities and reducing property as well as phenolic contents of the extracts were also determined. Our data revealed that the extracts inhibited α-amylase and α-glucosidase and ACE activities dose-dependently. The effective concentration of the extract causing 50% antioxidant activity (EC50) revealed that pericarp extract had the highest α-amylase (0.46 mg/mL), α-glucosidase (0.37 mg/mL), and ACE (0.03 mg/mL) inhibitory activities while the seed extract had the least [α-amylase (0.76 mg/mL); α-glucosidase (0.73 mg/mL); and ACE (0.20 mg/mL)]. Furthermore, the extracts scavenged radicals, reduced Fe3+ to Fe2+, and chelated Fe2+. The phenolic contents in the extracts ranged from 85.65 to 560.21 mg/100 g. The enzymes inhibitory and antioxidants potentials of the extracts could be attributed to their phenolic distributions which could be among the scientific basis for their use in the management of diabetes and hypertension. However, the pericarp appeared to be most promising. PMID:26788368
In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon.
Lima, Renata B S; Rocha e Silva, Luiz F; Melo, Marcia R S; Costa, Jaqueline S; Picanço, Neila S; Lima, Emerson S; Vasconcellos, Marne C; Boleti, Ana Paula A; Santos, Jakeline M P; Amorim, Rodrigo C N; Chaves, Francisco C M; Coutinho, Julia P; Tadei, Wanderli P; Krettli, Antoniana U; Pohlit, Adrian M
2015-12-18
The anti-malarials quinine and artemisinin were isolated from traditionally used plants (Cinchona spp. and Artemisia annua, respectively). The synthetic quinoline anti-malarials (e.g. chloroquine) and semi-synthetic artemisinin derivatives (e.g. artesunate) were developed based on these natural products. Malaria is endemic to the Amazon region where Plasmodium falciparum and Plasmodium vivax drug-resistance is of concern. There is an urgent need for new anti-malarials. Traditionally used Amazonian plants may provide new treatments for drug-resistant P. vivax and P. falciparum. Herein, the in vitro and in vivo antiplasmodial activity and cytotoxicity of medicinal plant extracts were investigated. Sixty-nine extracts from 11 plant species were prepared and screened for in vitro activity against P. falciparum K1 strain and for cytotoxicity against human fibroblasts and two melanoma cell lines. Median inhibitory concentrations (IC50) were established against chloroquine-resistant P. falciparum W2 clone using monoclonal anti-HRPII (histidine-rich protein II) antibodies in an enzyme-linked immunosorbent assay. Extracts were evaluated for toxicity against murine macrophages (IC50) and selectivity indices (SI) were determined. Three extracts were also evaluated orally in Plasmodium berghei-infected mice. High in vitro antiplasmodial activity (IC50 = 6.4-9.9 µg/mL) was observed for Andropogon leucostachyus aerial part methanol extracts, Croton cajucara red variety leaf chloroform extracts, Miconia nervosa leaf methanol extracts, and Xylopia amazonica leaf chloroform and branch ethanol extracts. Paullinia cupana branch chloroform extracts and Croton cajucara red variety leaf ethanol extracts were toxic to fibroblasts and or melanoma cells. Xylopia amazonica branch ethanol extracts and Zanthoxylum djalma-batistae branch chloroform extracts were toxic to macrophages (IC50 = 6.9 and 24.7 µg/mL, respectively). Andropogon leucostachyus extracts were the most selective (SI >28.2) and the most active in vivo (at doses of 250 mg/kg, 71% suppression of P. berghei parasitaemia versus untreated controls). Ethnobotanical or ethnopharmacological reports describe the anti-malarial use of these plants or the antiplasmodial activity of congeneric species. No antiplasmodial activity has been demonstrated previously for the extracts of these plants. Seven plants exhibit in vivo and or in vitro anti-malarial potential. Future work should aim to discover the anti-malarial substances present.
21 CFR 184.1034 - Catalase (bovine liver).
Code of Federal Regulations, 2014 CFR
2014-04-01
... enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations in the Food Chemicals Codex, 3d ed. (1981), p...
21 CFR 184.1034 - Catalase (bovine liver).
Code of Federal Regulations, 2013 CFR
2013-04-01
... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...
21 CFR 184.1034 - Catalase (bovine liver).
Code of Federal Regulations, 2012 CFR
2012-04-01
... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...
21 CFR 184.1034 - Catalase (bovine liver).
Code of Federal Regulations, 2010 CFR
2010-04-01
... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...
21 CFR 184.1034 - Catalase (bovine liver).
Code of Federal Regulations, 2011 CFR
2011-04-01
... liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is a partially purified liquid or powder. Its characterizing enzyme activity is catalase (EC 1.11.1.6). (b) The ingredient meets the general requirements and additional requirements for enzyme preparations...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Hanna M.; Dydio, Paweł; Liu, Zhennan
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less
Key, Hanna M.; Dydio, Paweł; Liu, Zhennan; ...
2017-04-01
Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less
Tewari, Shweta; Dubey, Kriti Kumari; Singhal, Rekha S
2018-04-01
Ready-to-drink (RTD) ice tea is a ready prepared tea, produced from green and black tea originating from same plant Camellia sinensis . The objective of this study was to determine the effect of prebiotics [galacto-oligosaccharide (GOS), fructo-oligosaccharide (FOS), and inulin] or synbiotic ingredients (GOS, FOS, inulin, and Lactobacillus acidophilus ) on the sensory properties and consumer acceptability of RTD. The quality of green tea extract (GTE) and black tea extract (BTE) was improved with pretreatment of cellulase and pectinase enzymes. The combined enzymatic extraction amplified total extractives up to 76% in GTE and 72% in BTE. Total polyphenol was found to be enhanced to 24% in GTE and 19% in BTE. GTE was further selected for development of RTD in two different formats; synbiotic RTD and prebiotic RTD premix and analyzed for sensory attributes (colour, aroma, taste, and acceptability). Synbiotic RTD was also evaluated for stability over a period of 28 days at 4 °C. Synbiotic RTD developed an unpleasant flavor and aroma during the shelf life. Premix format of RTD developed using spray drying was reconstituted and found to be functionally and sensorially acceptable.
Macías-Rubalcava, Martha Lydia; Ruiz-Velasco Sobrino, María Emma; Meléndez-González, Claudio; King-Díaz, Beatriz; Lotina-Hennsen, Blas
2014-09-05
In a search for natural herbicides, we investigated the action mechanism of the naphthoquinone spiroketals, isolated from the endophytic fungus Edenia gomezpompae: preussomerins EG1 (1) and EG4 (2), and palmarumycins CP17 (3), and CP2 (4) on the photosynthesis light reactions. The naphthoquinone spiroketals 1-4 inhibited the ATP synthesis in freshly lysed spinach thylakoids from water to MV, and they also inhibited the non-cyclic electron transport in the basal, phosphorylating and uncoupled conditions from water to MV. Therefore, they act as Hill reaction inhibitors. The results suggested that naphthoquinone spiroketals 1-4 have two interactions and inhibition site on the PSII electron transport chain. The first one involves the water splitting enzyme inhibition; and, the second on the acceptor site of PSII in a similar way that herbicide Diuron, studied by polaroghaphy and corroborated by fluorescence of the chlorophyll a of PSII. The culture medium and mycelium organic extracts from four morphological variants of E. gomezpompae were phytotoxic, and the culture medium extracts were more potent than mycelium extracts. They also act as Hill reaction inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.
Kar, Amit; Pandit, Subrata; Mukherjee, Kakali; Bahadur, Shiv; Mukherjee, Pulok K
2017-01-01
Andrographis paniculata, Bacopa monnieri and Centella asiatica are mentioned in Ayurveda for the management of neurodegenerative disorders. These plants and their phytomolecules, such as andrographolide, bacoside A and asiaticoside, were studied for their inhibition potential on pooled CYP450 as well as human CYP3A4, CYP2D6, CYP2C9 and CYP1A2 by CYP-CO complex assay and fluorogenic assay respectively followed by IC 50 determination. Quantification of bioactive compounds present in the extracts was done by RP-HPLC. Heavy metal content in the selected medicinal plants was determined by atomic absorption spectroscopy. CYP-CO complex assay indicated significantly less inhibition potential than standard inhibitor (P < 0.05 and above). A. paniculata showed highest inhibitory activity against CYP3A4 and CYP2D6 (IC 50 = 63.06 ± 1.35 µg mL -1 ; 88.80 ± 3.32 µg mL -1 ), whereas C. asiatica and B. monnieri showed least inhibitory activity against CYP1A2 (IC 50 = 288.83 ± 1.61 µg mL -1 ) and CYP2C9 (184.68 ± 3.79 µg mL -1 ), respectively. In all cases the extract showed higher inhibition than the single bioactive compounds. The heavy metals content in the plant extracts were within the permissible limits. The findings suggested that selected food plants and bioactive compounds contributed negligible interaction potential with CYP isozymes and may not possess any harmful effect with regard to their therapeutic application. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad
2016-01-01
In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.
Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.
Mishra, M R; Mishra, A; Pradhan, D K; Panda, A K; Behera, R K; Jha, S
2013-09-01
The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug.
Inhibition of melanin production by a combination of Siberian larch and pomegranate fruit extracts.
Diwakar, Ganesh; Rana, Jatinder; Scholten, Jeffrey D
2012-09-01
In an effort to find botanicals containing polyphenolic compounds with the capacity to inhibit melanin biosynthesis, we identified a novel combination of Siberian larch (Larix sibirica) extract, standardized to 80% taxifolin, and pomegranate fruit (Punica granatum) extract, containing 20% punicalagins, that demonstrates a synergistic reduction of melanin biosynthesis in Melan-a cells. The combination of Siberian larch and pomegranate extracts (1:1) produced a 2-fold reduction in melanin content compared to Siberian larch or pomegranate extracts alone with no corresponding effect on cell viability. Siberian larch and pomegranate fruit extracts inhibited expression of melanocyte specific genes, tyrosinase (Tyr), microphthalmia transcription factor (Mitf), and melanosome structural proteins (Pmel17 and Mart1) but did not inhibit tyrosinase enzyme activity. These results suggest that the mechanism of inhibition of melanin biosynthesis by Siberian larch and pomegranate extracts, alone and in combination, is through downregulation of melanocyte specific genes and not due to inhibition of tyrosinase enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract
2015-01-01
The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633
Nara, F; Tanaka, M; Hosoya, T; Suzuki-Konagai, K; Ogita, T
1999-06-01
We performed experiments to screen for neutral sphingomyelinase inhibitors using rat brain microsomes as an enzyme source. Among more than 10,000 microbial extracts tested, a mycelial extract of Trichopeziza mollissima SANK 13892 exhibited potent inhibitory activity. The active compound, scyphostatin, was purified by a series of chromatographies. Scyphostatin inhibited the enzyme with an IC50 value of 1.0 microM.
Cyclooxygenase and lipoxygenase-like activity in Drosophila melanogaster.
Pagés, M; Roselló, J; Casas, J; Gelpí, E; Gualde, N; Rigaud, M
1986-11-01
To determine the possible activity of cyclooxygenase and lipoxygenase like enzymes in Drosophila melanogaster, we have investigated whether fly homogenates can biosynthesize prostaglandins and HETEs. Incubation of fly extracts with AA yields a mixture of 15- 12- 9- and 8-HETE as detected by selected ion monitoring GC-MS. Also the combination of HPLC-RIA using a PGE antibody shows the presence of endogenous PGE2 immunoreactivity in the extracts (405 pg/g in males and 165 pg/g in females). We have also detected the presence of lipoxygenase like immunoreactivity in the reproductive male system by using immunocytochemical techniques in whole body sections of the fly as well as reactivity in the digestive system of both males and females. Finally, we have not been able to detect endogenous AA in the fly by GC-MS methods. However, estimates by GC-MS of the total body fatty acids indicate substantial amounts of potential AA precursors.
Vongsak, Boonyadist; Mangmool, Supachoke; Gritsanapan, Wandee
2015-08-01
The leaves of Moringa oleifera, collected in different provinces in Thailand, were determined for the contents of total phenolics, total flavonoids, major components, and antioxidant activity. The extract and its major active components were investigated for the inhibition of H2O2-induced reactive oxygen species production and the effects on antioxidant enzymes mRNA expression. The extract, crypto-chlorogenic acid, isoquercetin and astragalin, significantly reduced the reactive oxygen species production inducing by H2O2 in HEK-293 cells. Treatment with isoquercetin significantly increased the mRNA expression levels of antioxidant enzymes such as superoxide dismutase, catalase and heme oxygenase 1. These results confirm that M. oleifera leaves are good sources of natural antioxidant with isoquercetin as an active compound. Georg Thieme Verlag KG Stuttgart · New York.
Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R
2016-01-01
This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30 min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4 g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the β-glucosidase or β-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65 mg phenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species.
Horta, Maria Augusta Crivelente; Filho, Jaire Alves Ferreira; Murad, Natália Faraj; de Oliveira Santos, Eidy; Dos Santos, Clelton Aparecido; Mendes, Juliano Sales; Brandão, Marcelo Mendes; Azzoni, Sindelia Freitas; de Souza, Anete Pereira
2018-01-22
Understanding relationships between genes responsible for enzymatic hydrolysis of cellulose and synergistic reactions is fundamental for improving biomass biodegradation technologies. To reveal synergistic reactions, the transcriptome, exoproteome, and enzymatic activities of extracts from Trichoderma harzianum, Trichoderma reesei and Trichoderma atroviride under biodegradation conditions were examined. This work revealed co-regulatory networks across carbohydrate-active enzyme (CAZy) genes and secreted proteins in extracts. A set of 80 proteins and respective genes that might correspond to a common system for biodegradation from the studied species were evaluated to elucidate new co-regulated genes. Differences such as one unique base pair between fungal genomes might influence enzyme-substrate binding sites and alter fungal gene expression responses, explaining the enzymatic activities specific to each species observed in the corresponding extracts. These differences are also responsible for the different architectures observed in the co-expression networks.
Ziaebrahimi, L; Khavari-Nejad, R A; Fahimi, H; Nejadsatari, T
2007-10-01
Evaluation of allelopathic effects of this plant on other near cultivations especially wheat is the aim of this study. Effects of water extracts of eucalyptus leaves examined on germination and growth of three wheat cultivar seeds and seedlings. Results showed that: germination percentage strongly decreased, leaf and root lengths also affected and dry and wet weights of both roots and shoots showed similar change patterns. Activities of peroxidase and polyphenoloxidase as antioxidant enzymes in roots and shoots measured. Activity of peroxidases increased in stress conditions and roots showed more increased enzyme activity than leaves. Activity of polyphenoloxidases increased only in one of three cultivars and again roots showed more activity of this enzyme in response to eucalyptus extract. Suggest that detoxification process were conducted mainly in roots of seedlings.
Karakuş, Ali; Değer, Yeter; Yıldırım, Serkan
2017-11-01
The protective effect of the extracts of the plants Silybum marianum and Taraxacum officinale by carbon tetrachloride (CCl 4 ) was researched. Sixty-six female Wistar albino rats were divided into six groups: Control, Silybum marianum, Taraxacum officinale, CCl 4 , Silybum marianum+ CCl 4 , Taraxacum officinale+CCl 4 . The Silybum marianum and Taraxacum officinale extracts were administered as 100 mg/kg/day by gavage. The CCl 4 was administered as 1.5 mL/kg (i.p.). At the end of the trial period, in the serums obtained from the animals, in the CCl 4 group it was found that the MDA level increased in the kidney tissue samples as well as in the ALP and GGT enzyme activities. It was also found that the GSH level and the GST enzyme activities decreased (p<.05). The microscopic evaluations showed that the CCl 4 caused a serious hydropic degeneration, coagulation necrosis, and mono-nuclear cell infiltration in the kidney cell. In the animals where CCl 4 and Silybum marianum and Taraxacum officinale extracts were applied together, it was found that the serum ALP and GGT enzyme activities decreased and that the MDA level decreased in the kidney tissue, and that the GSH level and GST enzyme activities increased. It was observed that the histopathological changes caused by the CCl 4 toxicity were corrected by applying the extracts. Eventually, it was determined that the Silybum marianum was more effective. Silybum marianum and Taraxacum officinale extracts which were used against histopathological changes in the kidney caused by toxication showed a corrective effect, which were supported by biochemical parameters.
Wu, Changzheng; Zhang, Feng; Li, Lijun; Jiang, Zhedong; Ni, Hui; Xiao, Anfeng
2018-01-01
High amounts of insoluble substrates exist in the traditional solid-state fermentation (SSF) system. The presence of these substrates complicates the determination of microbial biomass. Thus, enzyme activity is used as the sole index for the optimization of the traditional SSF system, and the relationship between microbial growth and enzyme synthesis is always ignored. This study was conducted to address this deficiency. All soluble nutrients from tea stalk were extracted using water. The aqueous extract was then mixed with polyurethane sponge to establish a modified SSF system, which was then used to conduct tannase production. With this system, biomass, enzyme activity, and enzyme productivity could be measured rationally and accurately. Thus, the association between biomass and enzyme activity could be easily identified, and the shortcomings of traditional SSF could be addressed. Different carbon and nitrogen sources exerted different effects on microbial growth and enzyme production. Single-factor experiments showed that glucose and yeast extract greatly improved microbial biomass accumulation and that tannin and (NH 4 ) 2 SO 4 efficiently promoted enzyme productivity. Then, these four factors were optimized through response surface methodology. Tannase activity reached 19.22 U/gds when the added amounts of tannin, glucose, (NH 4 ) 2 SO 4 , and yeast extract were 7.49, 8.11, 9.26, and 2.25%, respectively. Tannase activity under the optimized process conditions was 6.36 times higher than that under the initial process conditions. The optimized parameters were directly applied to the traditional tea stalk SSF system. Tannase activity reached 245 U/gds, which is 2.9 times higher than our previously reported value. In this study, a modified SSF system was established to address the shortcomings of the traditional SSF system. Analysis revealed that enzymatic activity and microbial biomass are closely related, and different carbon and nitrogen sources have different effects on microbial growth and enzyme production. The maximal tannase activity was obtained under the optimal combination of nutrient sources that enhances cell growth and tannase accumulation. Moreover, tannase production through the traditional tea stalk SSF was markedly improved when the optimized parameters were applied. This work provides an innovative approach to bioproduction research through SSF.
Glycosomal and mitochondrial malate dehydrogenases in epimastigotes of Trypanosoma cruzi.
Cannata, J J; Cazzulo, J J
1984-04-01
The degradation of glucose by Trypanosoma cruzi leads to the excretion of succinate. Malate dehydrogenase (MDH) participates in this process by reducing to malate the oxaloacetate synthesized by the glycosomal enzyme, phosphoenolpyruvate carboxykinase. The best coupling for these two sequential reactions would be attained if both enzymes were placed in the same subcellular compartment. The intracellular distribution of the MDH activity in epimastigotes of T. cruzi was studied by two methods. Selective disruption of cellular membranes with increasing concentrations of digitonin, indicated that trypanosomal MDH is particulate. Isopycnic centrifugation in a sucrose gradient of a large granule fraction, obtained by grinding the cells with silicon carbide, showed the presence of two MDH activities: one banding together with the glycosomal marker phosphoenolpyruvate carboxykinase, the other with the mitochondrial marker citrate synthase. Isoelectrofocusing of cell-free extracts led to the separation of two enzyme forms, with pI values of about 3.5 (MDHa) and 9.4 (MDHb). These forms had similar molecular weights (approx. 60 000) and apparent Km values, but showed a small but consistent difference in their pH optima (9.23 for MDHa and 9.05 for MDHb), and in their activation by inorganic phosphate (apparent Ka values of 33 mM and 87 mM, for MDHa and MDHb, respectively). Determination of the pH optima of the enzyme forms separated by isopycnic centrifugation suggests that the glycosomal enzyme form is MDHa, and the mitochondrial one is MDHb.
Zahn, J A; Duncan, C; DiSpirito, A A
1994-01-01
An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline. Images PMID:7928947
[Enzymatic degradation of organophosphorus insecticide chlorpyrifos by fungus WZ-I].
Xie, Hui; Zhu, Lu-sheng; Wang, Jun; Wang, Xiu-guo; Liu, Wei; Qian, Bo; Wang, Qian
2005-11-01
Degradation characteristics of chlorpyrifos insecticides was determined by the crude enzyme extracted from the isolated strain WZ-I ( Fusarium LK. ex Fx). The best separating condition and the degrading characteristic of chlorpyrifos were studied. Rate of degradation for chlorpyrifos by its intracellular enzyme, extracellular enzyme and cell fragment was 60.8%, 11.3% and 48%, respectively. The degrading enzyme was extracted after this fungus was incubated for 8 generations in the condition of noninducement, and its enzymic activity lost less, the results show that this enzyme is an intracellular and connatural enzyme. The solubility protein of the crude enzyme was determined with Albumin (bovine serum) as standard protein and the solubility protein of the crude enzyme was 3.36 mg x mL(-1). The pH optimum for crude enzyme was 6.8 for enzymatic degradation of chlorpyrifos, and it had comparatively high activity in the range of pH 6.0 - 9.0. The optimum temperature for enzymatic activity was at 40 degrees C, it still had comparatively high activity in the range of temperature 20-50 degrees C, the activity of enzyme rapidly reduced at 55 degrees C, its activity was 41% of the maximal activity. The crude enzyme showed Km value for chlorpyrifos of 1.049 26 mmol x L(-1), and the maximal enzymatic degradation rate was 0.253 5 micromol x (mg x min)(-1). Additional experimental evidence suggests that the enzyme had the stability of endure for temperature and pH, the crude enzyme of fungus WZ-I could effectively degrade chlorpyrifos.
Assessment of dual life stage antiplasmodial activity of british seaweeds.
Spavieri, Jasmine; Allmendinger, Andrea; Kaiser, Marcel; Itoe, Maurice Ayamba; Blunden, Gerald; Mota, Maria M; Tasdemir, Deniz
2013-10-22
Terrestrial plants have proven to be a prolific producer of clinically effective antimalarial drugs, but the antimalarial potential of seaweeds has been little explored. The main aim of this study was to assess the in vitro chemotherapeutical and prophylactic potential of the extracts of twenty-three seaweeds collected from the south coast of England against blood stage (BS) and liver stage (LS) Plasmodium parasites. The majority (14) of the extracts were active against BS of P. falciparum, with brown seaweeds Cystoseira tamariscifolia, C. baccata and the green seaweed Ulva lactuca being the most active (IC(50)s around 3 μg/mL). The extracts generally had high selectivity indices (>10). Eight seaweed extracts inhibited the growth of LS parasites of P. berghei without any obvious effect on the viability of the human hepatoma (Huh7) cells, and the highest potential was exerted by U. lactuca and red seaweeds Ceramium virgatum and Halopitys incurvus (IC50 values 14.9 to 28.8 μg/mL). The LS-active extracts inhibited one or more key enzymes of the malarial type-II fatty acid biosynthesis (FAS-II) pathway, a drug target specific for LS. Except for the red seaweed Halopitys incurvus, all LS-active extracts showed dual activity versus both malarial intracellular stage parasites. This is the first report of LS antiplasmodial activity and dual stage inhibitory potential of seaweeds.
Assessment of Dual Life Stage Antiplasmodial Activity of British Seaweeds
Spavieri, Jasmine; Allmendinger, Andrea; Kaiser, Marcel; Itoe, Maurice Ayamba; Blunden, Gerald; Mota, Maria M.; Tasdemir, Deniz
2013-01-01
Terrestrial plants have proven to be a prolific producer of clinically effective antimalarial drugs, but the antimalarial potential of seaweeds has been little explored. The main aim of this study was to assess the in vitro chemotherapeutical and prophylactic potential of the extracts of twenty-three seaweeds collected from the south coast of England against blood stage (BS) and liver stage (LS) Plasmodium parasites. The majority (14) of the extracts were active against BS of P. falciparum, with brown seaweeds Cystoseira tamariscifolia, C. baccata and the green seaweed Ulva lactuca being the most active (IC50s around 3 μg/mL). The extracts generally had high selectivity indices (>10). Eight seaweed extracts inhibited the growth of LS parasites of P. berghei without any obvious effect on the viability of the human hepatoma (Huh7) cells, and the highest potential was exerted by U. lactuca and red seaweeds Ceramium virgatum and Halopitys incurvus (IC50 values 14.9 to 28.8 μg/mL). The LS-active extracts inhibited one or more key enzymes of the malarial type-II fatty acid biosynthesis (FAS-II) pathway, a drug target specific for LS. Except for the red seaweed Halopitys incurvus, all LS-active extracts showed dual activity versus both malarial intracellular stage parasites. This is the first report of LS antiplasmodial activity and dual stage inhibitory potential of seaweeds. PMID:24152562
NASA Astrophysics Data System (ADS)
Steinke, M.; Malin, G.; Turner, S. M.; Liss, P. S.
2000-08-01
The osmolyte dimethylsulphoniopropionate (DMSP) can be enzymatically cleaved to dimethylsulphide (DMS), acrylate and a proton. The enzyme involved in this reaction is dimethylpropiothetin dethiomethylase (DMSP lyase; enzyme classification number 4.4.1.3.). Although the importance of this reaction for the global sulphur cycle, the influence of DMS on atmospheric acidity and the possible effect on climate regulation have been widely recognised, our knowledge of DMSP lyases is limited to just a few studies. Activity measurements of DMSP lyases offer an important step towards a better understanding of the conditions under which DMS is produced. In the available published data somewhat similar methods have been used before, but a critical examination of the method limitations has not been reported. To encourage further research on this enzyme, we suggest and detail two protocols for measurements of DMSP lyase activity: An in vitro assay for crude cell extracts or purified enzyme and an in vivo method for whole cells, which we recently started to use. After addition of DMSP, samples incubated in a gas tight vial may produce DMS from enzymatic cleavage under suitable conditions, and a DMS production rate can be estimated from time-series measurements of DMS in the headspace of the vial. Headspace analysis of DMS is a useful and rapid technique to estimate and compare DMSP lyase activities from different sources. The relative rates of DMS production in the liquid and of the gas transfer between liquid and headspace, determine the rate of DMS production measured via headspace analysis. If DMS production in the liquid is higher than the rate of transfer, headspace measurements will not reflect the actual amount of DMS produced in the liquid. In this case, extracts have to be diluted to a level that ensures linearity between dilution factor and reduction of enzyme activity. Additionally, incubation volumes and vials should be selected to provide a high surface-to-volume ratio to ensure maximum flux of DMS from the aqueous phase into the headspace. The methods can be adapted to further investigate species- and strain-specific activities, biogeographical distribution, cellular location and biochemical properties of various DMSP lyases.
Application of enzymes in the production of RTD black tea beverages: a review.
Kumar, Chandini S; Subramanian, R; Rao, L Jaganmohan
2013-01-01
Ready-to-drink (RTD) tea is a popular beverage in many countries. Instability due to development of haze and formation of tea cream is the common problem faced in the production of RTD black tea beverages. Thus decreaming is an important step in the process to meet the cold stability requirements of the product. Enzymatic decreaming approaches overcome some of the disadvantages associated with other conventional decreaming methods such as cold water extraction, chill decreaming, chemical stabilization, and chemical solubilization. Enzyme treatments have been attempted at three stages of black tea processing, namely, enzymatic treatment to green tea and conversion to black tea, enzymatic treatment to black tea followed by extraction, and enzymatic clarification of extract. Tannase is the most commonly employed enzyme (tannin acyl hydrolase EC 3.1.1.20) aiming at improving cold water extractability/solubility and decreasing tea cream formation as well as improving the clarity. The major enzymatic methods proposed for processing black tea having a direct or indirect bearing on RTD tea production, have been discussed along with their relative advantages and limitations.
Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele
2008-06-01
The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.
Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.
Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua
2017-03-15
In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Rollinger, Judith M; Schuster, Daniela; Baier, Elisabeth; Ellmerer, Ernst P; Langer, Thierry; Stuppner, Hermann
2006-09-01
A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE, EC 3.1.1.7) inhibitory agent in a Magnolia x soulangiana extract using a microplate enzyme assay with Ellman's reagent. This permitted the isolation of the alkaloids taspine (1) and (-)-asimilobine (2), which were detected for the first time in this species. Compound 1 showed a significantly higher effect on AChE than the positive control galanthamine and selectively inhibited the enzyme in a long-lasting and concentration-dependent fashion with an IC(50) value of 0.33 +/- 0.07 muM. Extensive molecular docking studies were performed with human and Torpedo californica-AChE employing Gold software to rationalize the binding interaction. The results suggested ligand 1 to bind in an alternative binding orientation when compared to galanthamine. While this is located in close vicinity to the catalytic amino acid triad, the 1-AChE complex was found to be stabilized by (i) sandwich-like pi-stacking interactions between the planar aromatic ligand (1) and the Trp84 and Phe330 of the enzyme, (ii) an esteratic site anchoring with the amino side chain, and (iii) a hydrogen-bonding network.
NASA Astrophysics Data System (ADS)
Jarosch, Klaus; Doolette, Ashlea; Smernik, Ronald; Frossard, Emmanuel; Bünemann, Else K.
2014-05-01
Solution 31P NMR spectroscopy is a powerful tool for the characterisation and quantification of organic P classes in soil. Potential limitations are due to costs, equipment accessibility and the requirement of relatively large amounts of sample. A recent alternative approach for the quantification of specific organic P classes is the use of substrate-specific phosphohydrolase enzymes which cleave the inorganic orthophosphate from the organic moiety. The released orthophosphate is detectable by colorimetry. Conclusions about the hydrolysed class of organic P can be made based on the comparison of inorganic P concentrations in enzymatically treated and untreated samples. The aim of this study was to test the applicability of enzyme addition assays for the characterisation of organic P classes on a) NaOH-EDTA extracts, b) soil:water filtrates (0.2 μm) and c) soil:water suspensions. The organic P classes in NaOH-EDTA extracts were also determined by 31P NMR spectroscopy, enabling a comparison between methods. Ten topsoil samples from four continents (five cambisols, two ferralsols, two luvisols and one lixisol) with varying total P content (83 - 1,1560 mg kg-1), pHH2O (4.2 - 8.0) and land management (grassland or cropped land) were analysed. Four different classes of organic P were determined by the enzyme addition assay: 1) monoester like-P (by an acid phosphatase known to hydrolyse simple monoesters, pyrophosphate and ATP), 2) DNA-like P (by a nuclease in combination with an acid phosphatase), 3) inositol phosphate-like P (by a phytase known to hydrolyse all monoester like-P plus myo-inositol hexakisphosphate and scyllo-inositol hexakisphosphate) and 4) enzyme stable-P (enzymatically not hydrolysed organic P forms). In the ten topsoil samples, NaOH-EDTA-extractable organic P ranged from 6 - 1,115 mg P kg-1 soil. Of this, 33 - 92 % was enzyme labile, with inositol phosphate-like P being the largest organic P class in most soils (15 - 51%), followed by monoester-like P (10 - 47%) and DNA-like P (0 - 15%). The four soil organic P classes detected by either 31P NMR spectroscopy or enzyme addition assays were well correlated with each other (R2 0.93 - 0.99). In soil:water filtrates, 0.1 - 4.1 mg enzyme-labile P kg-1 soil were detected, which consisted mainly of inositol phosphate-like P. In some soils, a low absolute amount of water-soluble organic P hindered a more detailed characterisation. In soil:water suspensions, enzyme-labile organic P ranged from 4.3 - 12.6 mg P kg-1 soil. However, the enzyme addition assay was only applicable on three soils, since in the other soils i) added enzymes were partly inhibited in soil:water suspensions and ii) the hydrolysis of organic P classes by soil intrinsic enzymes could not be accounted for. In conclusion, enzyme addition assays appear to be a promising approach for a rapid determination of four main soil organic P classes in NaOH-EDTA extracts. Especially the small amount of required sample size (< 1ml) and the relatively simple instrumentation facilitate a rapid and cheap analysis on these extracts. Application of this method is also possible on soil:water filtrates, but low amounts of organic P may hinder detailed analysis. Key words: soil organic phosphorus characterisation, enzyme addition assays, 31P NMR spectroscopy, soil suspensions, soil filtrate
NASA Astrophysics Data System (ADS)
Mohiuddin, M.; Arbain, D.; Islam, A. K. M. Shafiqul; Ahmad, M. S.; Ahmad, M. N.
2016-02-01
A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α- d-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau ( Ehretis laevis), Cemumar ( Micromelum pubescens), and Kedondong ( Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.
Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wiesław; Erler, Joachim
2011-01-01
Aronia melanocarpa fruits (Rosaceae) and grape seeds (seeds of Vitis vinifera, Vitaceae) are two of the richest plant sources of phenolic substances, and they have been shown to have various biological activities. The aim of the present study was to investigate and compare the action of phenolic extracts (at concentrations 5-100 µg/mL) of two different plants, berries of A. melanocarpa (chokebbery) and grape seeds, on the activities of various antioxidative enzymes, the amount of glutathione (as an important component of redox status) in control the platelets and platelets treated with H(2)O(2) (the strong physiological oxidant) in vitro. The properties of these two tested extracts were also compared with the action of a well characterized antioxidative and antiplatelet commercial monomeric polyphenol - resveratrol. The extract from berries of A. melanocarpa, like the extract from grape seeds, reduced the changes in activities of different antioxidative enzymes (glutathione peroxidase, superoxide dismutase, and catalase) in platelets treated with H(2)O(2). The action of the two tested plant extracts and H(2)O(2) evoked a significant increase of reduced glutathione in platelets compared with platelets treated with H(2)O(2) only. Comparative studies indicate that the two tested plant extracts had similar antioxidative properties, and were found to be more reactive in blood platelets than the solution of resveratrol.
Kavitha, P; Subramanian, P
2011-12-01
The influence of Tribulus terrestris on the activities of testicular enzyme in Poecilia latipinna was assessed in lieu of reproductive manipulation. Different concentrations of (100, 150, 200, 250, and 300 mg) Tribulus terrestris extract and of a control were tested for testicular activity of enzymes in Poecilia latipinna for 2 months. The testis and liver were homogenized separately in 0.1 mol/l potassium phosphate buffer (0.1 mol/l, pH 7.2). The crude homogenate was centrifuged, and supernatant obtained was used as an enzyme extract for determination of activities. The activities of testicular functional enzyme ALP, ACP, SDH, LDH, and G6PDH levels were changed to different extent in treated groups compared with that of the control. The total body weight and testis weight were increased with the Tribulus terrestris-treated fish (Poecilia latipinna). These results suggest that Tribulus terrestris induced the testicular enzyme activity that may aid in the male reproductive functions. It is discernible from the present study that Tribulus terrestris has the inducing effect on reproductive system of Poecilia latipinna.
Harris, Victoria; Ford, Christopher M; Jiranek, Vladimir; Grbin, Paul R
2009-01-01
Volatile phenols are produced by Dekkera yeasts and are of organoleptic importance in alcoholic beverages. The key compound in this respect is 4-ethylphenol, responsible for the medicinal and phenolic aromas in spoiled wines. The microbial synthesis of volatile phenols is thought to occur in two steps, beginning with naturally occurring hydroxycinnamic acids (HCAs). The enzyme phenolic acid decarboxylase (PAD) converts HCAs to vinyl derivatives, which are the substrates of a second enzyme, postulated to be a vinylphenol reductase (VPR), whose activity results in the formation of ethylphenols. Here, both steps of the pathway are investigated, using cell extracts from a number of Dekkera and Brettanomyces species. Dekkera species catabolise ferulic, caffeic and p-coumaric acids and possess inducible enzymes with similar pH and temperature optima. Brettanomyces does not decarboxylate HCAs but does metabolise vinylphenols. Dekkera species form ethylphenols but the VPR enzyme appears to be highly unstable in cell extracts. A partial protein sequence for PAD was determined from Dekkera anomala and may indicate the presence of a novel enzyme in this genus.
Barrett, Ann; Ndou, Tshinanne; Hughey, Christine A; Straut, Christine; Howell, Amy; Dai, Zifei; Kaletunc, Gonul
2013-02-20
Proanthocyanidins and ellagitannins, referred to as "tannins", exist in many plant sources. These compounds interact with proteins due to their numerous hydroxyl groups, which are suitable for hydrophobic associations. It was hypothesized that tannins could bind to the digestive enzymes α-amylase and glucoamylase, thereby inhibiting starch hydrolysis. Slowed starch digestion can theoretically increase satiety by modulating glucose "spiking" and depletion that occurs after carbohydrate-rich meals. Tannins were isolated from extracts of pomegranate, cranberry, grape, and cocoa and these isolates tested for effectiveness to inhibit the activity of α-amylase and glucoamylase in vitro. The compositions of the isolates were confirmed by NMR and LC/MS analysis, and tannin-protein interactions were investigated using relevant enzyme assays and differential scanning calorimetry (DSC). The results demonstrated inhibition of each enzyme by each tannin, but with variation in magnitude. In general, larger and more complex tannins, such as those in pomegranate and cranberry, more effectively inhibited the enzymes than did less polymerized cocoa tannins. Interaction of the tannins with the enzymes was confirmed through calorimetric measurements of changes in enzyme thermal stability.
Chen, Qingtai; Liu, Dong; Wu, Chongchong; Yao, Kaisheng; Li, Zhiheng; Shi, Nan; Wen, Fushan; Gates, Ian D
2018-05-03
An activity-tunable biocatalyst for Nannochloropsis sp. cell-walls degradation was prepared by co-immobilization of cellulase and lysozyme on the surface of amino-functionalized magnetic nanoparticles (MNPs) employing glutaraldehyde. The competition between cellulase and lysozyme during immobilization was caused by the limited active sites of the MNPs. The maximum recovery of activities (cellulase: 78.9% and lysozyme: 69.6%) were achieved due to synergistic effects during dual-enzyme co-immobilization. The thermal stability in terms of half-life of the co-immobilized enzymes was three times higher than that in free form and had higher catalytic efficiency for hydrolysis of cell walls. Moreover, the co-immobilized enzymes showed greater thermal stability and wider pH tolerance than free enzymes under harsh conditions. Furthermore, the co-immobilized enzymes retained up to 60% of the residual activity after being recycled 6 times. This study provides a feasible approach for the industrialization of enzyme during cell-walls disruption and lipids extraction from Nannochloropsis sp. Copyright © 2018. Published by Elsevier Ltd.
Prakash Vincent, Samuel Gnana
2014-01-01
A potent fibrinolytic enzyme-producing Bacillus cereus IND1 was isolated from the Indian food, rice. Solid-state fermentation was carried out using agroresidues for the production of fibrinolytic enzyme. Among the substrates, wheat bran supported more enzyme production and has been used for the optimized enzyme production by statistical approach. Two-level full-factorial design demonstrated that moisture, supplementation of beef extract, and sodium dihydrogen phosphate have significantly influenced enzyme production (P < 0.05). A central composite design resulted in the production of 3699 U/mL of enzyme in the presence of 0.3% (w/w) beef extract and 0.05% (w/w) sodium dihydrogen phosphate, at 100% (v/w) moisture after 72 h of fermentation. The enzyme production increased fourfold compared to the original medium. This enzyme was purified to homogeneity by ammonium sulfate precipitation, diethylaminoethyl-cellulose ion-exchange chromatography, Sephadex G-75 gel filtration chromatography, and casein-agarose affinity chromatography and had an apparent molecular mass of 29.5 kDa. The optimum pH and temperature for the activity of fibrinolytic enzyme were found to be 8.0 and 60°C, respectively. This enzyme was highly stable at wide pH range (7.0–9.0) and showed 27% ± 6% enzyme activity after initial denaturation at 60°C for 1 h. In vitro assays revealed that the enzyme could activate plasminogen and significantly degraded the fibrin net of blood clot, which suggests its potential as an effective thrombolytic agent. PMID:25003130
Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.
2001-01-01
Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.
Effect of age and breeding season on sperm acrosin activity in the arctic fox (Alopex lagopus L.).
Stasiak, K; Janicki, B
2014-01-01
The objective of this study was to determine the effect of age and reproductive season on selected properties of semen from the arctic fox, Aloper lagopus L. The experiment used 40 ejaculates collected manually from 6 animals (3 foxes aged one year and 3 foxes older than three years). Statistically less semen (0.39 cm3) was collected from the young compared to the older animals, and the ejaculates obtained were characterized by higher concentration of spermatozoa (195.04 x 106/cm3). In turn, sperm acrosomal extracts from the older animals contained statistically more acrosin (6,4 mU/106 spermatozoa). In the sperm acrosomal extracts prepared during the first semen sampling, the mean acrosin activity did not exceed 2.3 mU/million spermatozoa. At subsequent semen sampling dates, the activity of the analysed enzyme increased to reach 7.72 mU/million spermatozoa. In the extracts obtained from the semen collected at the end of the breeding season of arctic foxes, the acrosin activity again reached a value obtained at the beginning of the season.
Mei, Jianfeng; Li, Sha; Jin, Hang; Tang, Lan; Yi, Yu; Wang, Hong; Ying, Guoqing
2016-09-01
Cucurbitacin B (CuB) and its glycoside, cucurbitacin B 2-o-β-D-glucoside (CuBg), abundantly occur in the pedicels of Cucumis melo. Compared with CuB, CuBg is not efficiently extracted from the pedicels. Furthermore, the anticancer activity of CuBg is lower than that of the aglycone. A process for CuBg biotransformation to CuB was developed for the first time. A strain of Streptomyces species that converts CuBg into CuB was isolated from an enrichment culture of C. melo pedicels. After optimization of conditions for enzyme production and biotransformation, a maximum conversion rate of 92.6 % was obtained at a CuBg concentration of 0.25 g/L. When biotransformation was performed on C. melo pedicel extracts, the CuB concentration in the extracts increased from 1.50 to 3.27 g/L. The conversion rate was almost 100 %. The developed process may be an effective biotransformation method for industrial production CuB from C. melo pedicels for pharmaceuticals.
Coupling Binding to Catalysis: Using Yeast Cell Surface Display to Select Enzymatic Activities.
Zhang, Keya; Bhuripanyo, Karan; Wang, Yiyang; Yin, Jun
2015-01-01
We find yeast cell surface display can be used to engineer enzymes by selecting the enzyme library for high affinity binding to reaction intermediates. Here we cover key steps of enzyme engineering on the yeast cell surface including library design, construction, and selection based on magnetic and fluorescence-activated cell sorting.
Adesanoye, Omolola A; Farombi, Ebenezer O
2010-03-01
The possible modulatory effect of methanolic extract of Vernonia amygdalina (MEVA), a plant widely consumed in the tropics and used locally in the treatment of fever, jaundice, stomach disorders and diabetes on the toxicity of CCl(4), was investigated in male rats. Oral administration of CCl(4) at a dose of 1.2g/kg body weight 3 times a week for 3 weeks significantly induced marked hepatic injury as revealed by increased activity of the serum enzymes ALT, AST, SALP and gamma-GT. Methanolic extract of V. amygdalina administered 5 times a week for 2 weeks before CCl(4) treatment at 250 and 500 mg/kg doses of the extract ameliorated the increase in the activities of these enzymes. Likewise the methanolic extract of V. amygdalina reduced the CCl(4)-induced increase in the concentrations of cholesterol, triglyceride and phospholipid by 37.8%, 30.6% and 8.5%, respectively, and a reduction in the cholesterol/phospholipids ratio. These parameters were however increased at 750 mg/kg extract pretreatment. CCl(4)-induced lipid peroxidation was likewise attenuated by 57.2% at 500 mg/kg dose of the methanolic extract of V. amygdalina. Similarly, administration of the extract increased the activities of the antioxidant enzymes: superoxide dismutase, glutathione S-transferase and reduced glutathione concentration significantly at 500 mg/kg (P<0.05) and catalase activity at 500-1000 mg/kg doses. These results suggest that methanolic extract of V. amygdalina leaves posseses protective effect against CCl(4)-induced hepatotoxicity by the antioxidant mechanism of action. Copyright 2009 Elsevier GmbH. All rights reserved.
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan
2014-01-01
To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.
Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar
2014-01-01
ABSTRACT Background To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl2) induced toxicity in Swiss albino mice. Materials and methods Toxicity in mice was induced with HgCl2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. Results and discussion The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p < 0.05) elevation in the liver enzymes (Aspartate amino transferase and Alanine amino transferase) and gradual decline in the cellular radical scavenging enzyme levels (Catalase, Glutathione-s-transferase and Glutathione peroxidase. The combined treatment with EMI and MMI leaf extracts significantly (p < 0.05) reversed these parameters. However, the effects of MMI leaf extract (50 mg/kg) were superior to those of EMI- treated mice possibly due to its potent radical scavenging property. These results suggest that oral supplementation of Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24. PMID:29264314
Soil organic phosphorus characterisation on a glacial chronosequence (Damma, Switzerland)
NASA Astrophysics Data System (ADS)
Jarosch, Klaus A.; Requejo, María I.; Bünemann, Else K.
2015-04-01
Soil organic phosphorus (P) may play a significant role in ecosystem P dynamics, yet, little is known about the development of different organic P classes over time. According to the commonly accepted model, relative proportions of organic P are expected to increase quickly after the commencement of soil development, subsequently remaining relatively stable over time. We tested this hypothesis on a young soil chronosequence in the Damma glacier forefield (Switzerland), where we examined the development of different organic P classes over time. In detail, we hypothesized that organic P compounds resistant against broadly active phosphatase-enzymes would increase with soil age. Soil samples (0-5 cm) were taken on 21 sites with 6 to 136 years of soil development. Using enzyme addition assays to soil extracts (0.25 M NaOH / 0.05 M EDTA), four organic P classes were detected: a) Monoester-like P (organic P hydrolysed by an acid phosphatase), b) DNA-like P (organic P hydrolysed by a nuclease in combination with an acid phosphatase, minus monoester-like P), c) Inositol Phosphate-like P (organic P hydrolysed by a phytase, minus monoester like P) and d) Enzyme stable P (difference between total extracted organic P and the three enzyme labile P classes a, b and c). NaOH-EDTA extractable inorganic and organic P increased with soil age from 4.2 and 5.2 mg kg-1 at the youngest sites to 23.9 and 64.5 mg kg-1 at the oldest sites, respectively. On all sites, more organic than inorganic P was extracted. We observed a strong linear relationship between organic and inorganic P along the chronosequence. Between 60 and 100% of extractable organic P was hydrolysed by the added enzymes, without a clear trend with respect to soil age. On most sites, Inositol phosphate-like P was the most prominent organic P class (1.8-24.3 mg kg-1). However, on some sites higher amounts of monoester-like P were detected (0.4-23.4 mg kg-1). DNA-like P ranged from nil to 12.9 mg kg-1. Thus, we observed a significant increase in all forms of organic P with increasing soil age, except enzyme-stable P which fluctuated across the chronosequence. The results will be interpreted in relation to published data on microbial and plant community composition. Keywords: Soil organic phosphorus, Damma chronosequence, Enzyme addition assays
Raghavendran, Hanumantha Rao Balaji; Sathivel, Arumugam; Devaki, Thiruvengadam
2004-04-01
Effect of pre-treatment with hot water extract of marine brown alga Sargassum polycystum C.Ag. (100 mg/kg body wt, orally for period of 15 days) on HCl-ethanol (150 mM of HCl-ethanol mixture containing 0.15 N HCl in 70% v/v ethanol given orally) induced gastric mucosal injury in rats was examined with respect to lipid peroxides, antioxidant enzyme status, acid/pepsin and glycoproteins in the gastric mucosa. The levels of lipid peroxides of gastric mucosa and volume, acidity of the gastric juice were increased with decreased levels of antioxidant enzymes and glycoproteins were observed in HCl-ethanol induced rats. The rats pre-treated with seaweed extract prior to HCl-ethanol induction reversed the depleted levels of antioxidant enzymes and reduced the elevated levels of lipid peroxides when compared with HCl-ethanol induced rats. The levels of glycoproteins and alterations in the gastric juice were also maintained at near normal levels in rats pre-treated with seaweed extract. The rats given seaweed extract alone did not show any toxicity, which was confirmed by histopathological studies. These results suggest that the seaweed extract contains some anti-ulcer agents, which may maintain the volume/acidity of gastric juice and improve the gastric mucosa antioxidant defense system against HCl-ethanol induced gastric mucosal injury in rats.
Metabolism of Linoleic Acid by Barley Lipoxygenase and Hydroperoxide Isomerase 1
Lulai, Edward C.; Baker, Charles W.; Zimmerman, Don C.
1981-01-01
The oxidation of linoleic acid in incubation mixtures containing extracts of barley lipoxygenase and hydroperoxide isomerase, and the production of these enzymes in quiescent and germinated barley, were investigated. The ratio of 9-hydroperoxylinoleic acid to 13-hydroperoxylinoleic acid was higher for incubation mixtures containing extracts of quiescent barley than for mixtures containing extracts of germinated barley; production of 13-hydroperoxylinoleic acid from germinated barley exceeded that of quiescent barley. Hydroperoxy metabolites of linoleic acid were converted to 9-hydroxy-10-oxo-cis-12-octadecenoic acid, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, and small amounts of 11-hydroxy-12,13-epoxy-cis-9-octadecenoic acid and 11-hydroxy-9,10-epoxy-cis-13-octadecenoic acid whether quiescent or germinated barley was the enzyme source; a fifth product, 13-hydroxy-12-oxo-cis-9-octadecenoic acid was formed only when germinated barley was the enzyme source. Lipoxygenase was readily extracted by buffer, but hydroperoxide isomerase was bound in a catalytically active state to the insoluble barley grist and was efficiently extracted only when Triton X-100 was included in the extraction buffer. Hydroperoxide isomerase was localized in the embryo of quiescent barley, but it was present in the embryo, acrospire, and in small but concentrated amounts in the rootlet of germinating barley. The levels of both lipoxygenase and hydroperoxide isomerase increased through the thirteenth day of germination. Images PMID:16662032
(Bio)degradation of RDX and HMX in Marine/Estuarine Water and Sediments
2006-09-01
and capability to metabolize organic acids and sugar. Both strains HAW-EB2 and HAW-EB5T utilize malate , valerate, peptone and yeast extract as sole...MEDINA) confirming that the nitramines were metabolized by sediment indigenous microorganisms. Both nitramines were also removed in microcosms prepared...Thus far all enzymes or crude enzyme extract examined were found to metabolize RDX or HMX via a le transfer process leading to denitration although 2e
Fragoeiro, Silvia; Magan, Naresh
2005-03-01
In this study we examined the extracellular enzymatic activity of two white rot fungi (Phanerochaete chrysosporium and Trametes versicolor) in a soil extract broth in relation to differential degradation of a mixture of different concentrations (0-30 p.p.m.) of simazine, dieldrin and trifluralin under different osmotic stress (-0.7 and -2.8 MPa) and quantified enzyme production, relevant to P and N release (phosphomonoesterase, protease), carbon cycling (beta-glucosidase, cellulase) and laccase activity, involved in lignin degradation. Our results suggest that T. versicolor and P. chrysosporium have the ability to degrade different groups of pesticides, supported by the capacity for expression of a range of extracellular enzymes at both -0.7 and -2.8 MPa water potential. Phanerochaete chrysosporium was able to degrade this mixture of pesticides independently of laccase activity. In soil extract, T. versicolor was able to produce the same range of enzymes as P. chrysoporium plus laccase, even in the presence of 30 p.p.m. of the pesticide mixture. Complete degradation of dieldrin and trifluralin was observed, while about 80% of the simazine was degraded regardless of osmotic stress treatment in a nutritionally poor soil extract broth. The capacity of tolerance and degradation of high concentrations of mixtures of pesticides and production of a range of enzymes, even under osmotic stress, suggest potential bioremediation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.
2006-05-15
In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K {sub i} values of 2 {+-} 0.3, 5 {+-} 0.5, 16 {+-} 1.4, and 39 {+-} 1.2 {mu}g/ml (mean {+-} SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C,more » and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K {sub i} = 3 {+-} 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K {sub i} 418 {+-} 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1.« less
Afzal, Samina; Chaudhry, Bashir Ahmad; Ahmad, Ashfaq; Uzair, Muhammad; Afzal, Khurram
2017-01-01
Background: Corchorus depressus (Cd) commonly known as Boa-phalee belonging to the family Tiliaceae having 50 genera and 450 species. Cd is not among the studied medicinal agent despite its potential in ethnopharmacology. Objectives: The present study investigated antioxidant, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activities of Cd. The dichloromethane and methanolic extracts of the Cd were evaluated for biological activities such as antioxidant and enzyme inhibitory activities of AChE, BChE, and α-glucosidase. Materials and Methods: Antioxidant activity was evaluated by measuring free radical scavenging potential of Cd using 1,1-diphenyl-2-picrylhydrazyl. Enzyme inhibition activities were done by measuring optical density. Results: The methanol extract of roots of Cd showed potential free radical scavenging activity 99% at concentration 16.1 μg/ml. AChE was inhibited by aerial part of dichloromethane fraction by 46.07% ± 0.45% while dichloromethane extracts of roots of Cd possessed significant activity against BChE with 86% inhibition compared with standard drug Eserine at concentration 0.5 mg/ml. The dichloromethane extract of roots of Cd showed 79% inhibition against α-glucosidase enzyme activity with IC50 62.8 ± 1.5 μg/ml. Conclusion: These findings suggest Cd as useful therapeutic option as antioxidant and inhibition of AChE, BChE, and α-glucosidase activities. SUMMARY The aerial parts and roots of Corchorus depressus (Cd) were extracted in dichloromethane and methanolThe extract of roots of Cd showed free radical scavenging activity 99% at concentration 16.1 mg/ml, Ach inhibition by aerial parts of dichloromethane fraction by 46.07%, and 79% inhibition against a-glucosidase enzyme activity with IC50 62.8 ± 1.5 mg/mlThe dichloromethane and methanolic extracts of Cd exhibited antioxidant inhibition of acetyl cholinesterase, butyrylcholinesterase, and a-glucosidase activities. Abbreviations used: DPPH: 1,1-diphenyl-2-picrylhydrazyl, Cd: Corchorus depressus, AChE: Acetylcholinesterase, BChE: Butyrylcholinesterase, AD: Alzheimer's disease. PMID:29200727
Shafaei, Armaghan; Sultan Khan, Md Shamsuddin; F A Aisha, Abdalrahim; Abdul Majid, Amin Malik Shah; Hamdan, Mohammad Razak; Mordi, Mohd Nizam; Ismail, Zhari
2016-11-09
This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure-activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX : BioSolveIT's LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC 50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC 50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE.
Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun
2016-02-23
We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.
Amar, Natalie; Peretz, Avi; Gerchman, Yoram
2017-02-01
Helicobacter pylori is the most frequent and persistent bacterial infection worldwide, and a risk factor for active gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Although combined antibiotics treatment is effective cases of antibiotic resistance are reported at an alarming rate. The H. pylori urease enzyme is essential for the bacteria establishment in the gastric mucosa, resulting urease inhibitors being sought after as effective and specific anti- H. pylori treatment. To-date, screening assays are based mostly on the analog plant urease enzyme but difference in properties of the plant and bacterial enzymes hamper these efforts. We have developed a screening assay based on recombinant Escherichia coli expressing native H. pylori urease, and validated this assay using thiourea and a methanolic extract of Pistacia atlantica. The assay demonstrated the thiourea and the extract to be potent urease inhibitors, with the extract having strong bacteriostatic activity against clinical isolates of H. pylori, including such with antibiotic resistance. The extract was also found to be neutral toward common probiotic bacteria, supporting its specificity and compatibility with digestive system desired microflora and suggesting it could be a good source for anti-H. pylori compounds. The assay has proven to be cheap, simple and native alternative to the plant enzyme based assay and could allow for high throughput screening for new urease inhibitors and could expedite screening and development of novel, better H. pylori remedies helping us to combat this infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Pingtan; Zhao, Shulin; Lu, Xin; Ye, Fanggui; Wang, Hengshan
2013-08-01
A CE method based on a dual-enzyme co-immobilized capillary microreactor was developed for the simultaneous screening of multiple enzyme inhibitors. The capillary microreactor was prepared by co-immobilizing adenosine deaminase and xanthine oxidase on the inner wall at the inlet end of the separation capillary. The enzymes were first immobilized on gold nanoparticles, and the functionalized gold nanoparticles were then assembled on the inner wall at the inlet end of the separation capillary treated with polyethyleneimine. With the developed CE method, the substrates and products were baseline separated within 3 min. The activity of the immobilized enzyme can be directly detected by measuring the peak height of the products. A statistical parameter Z' factor was recommended for evaluation of the accuracy of a drug screening system. In the present study, it was calculated to be larger than 0.5, implying a good accuracy. Finally, screening a small compound library containing two known enzyme inhibitors and 20 natural extracts by the proposed method was demonstrated. The known inhibitors were identified, and some natural extracts were found to be positive for two-enzyme inhibition by the present method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Egorova, M A; Tsaplina, I A; Zakharchuk, L M; Bogdanova, T I; Krasil'nikova, E N
2004-01-01
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold-arsenic concentrate and elemental sulfur as a source of energy. The growth in the presence of S0 under auto- or mixotrophic conditions was less stable compared with the media containing iron monoxide. The enzymes involved in oxidation of sulfur inorganic compounds--thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodonase, adenylyl sulfate reductase, sulfite oxidase, and sulfur oxygenase--were discovered in the cells of Sulfobacillus grown in the mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle--ribulose bisphosphate carboxylase--and several other enzymes involved in heterotrophic fixation of carbonic acid. Activities of carboxylases depended on the composition of cultivation media.
Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh
2017-08-01
High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ndhlala, A R; Finnie, J F; Van Staden, J
2011-01-27
Imbiza ephuzwato is a traditional herbal tonic made from a mixture of extracts of roots, bulbs, rhizomes and leaves of 21 medicinal plants and is used in traditional medicine as a multipurpose remedy. To compile and investigate the bioactivity and mutagenic effects of extracts of the 21 plant species used in the preparation of Imbiza ephuzwato herbal tonic. The 21 plant species used to make Imbiza ephuzwato herbal mixture were each investigated for their pharmacological properties. Petroleum ether (PE), dichloromethane (DCM), 80% ethanol (EtOH) and water extracts of the 21 plants were evaluated against two gram-positive, two gram-negative bacteria and a fungus Candida albicans. The extracts were also evaluated for their inhibitory effects against cyclooxygenase (COX-1 and -2) and acetylcholinesterase AChE enzymes. Mutagenic effects of the water extracts were evaluated using the Ames test. Gunnera perpensa and Rubia cordifolia were the only plant species used to manufacture Imbiza ephuzwato that had water extracts which showed good antibacterial activity. The extracts of G. perpensa (EtOH), Hypericum aethiopicum (DCM) and Urginea physodes (EtOH) showed the best antifungal activity. The water extracts of H. aethiopicum, G. perpensa, Drimia robusta, Vitellariopsis marginata, Scadoxus puniceus and Momordica balsamina showed percentage inhibition of COX-1 that was over 70%. For COX-2 enzyme, the water extracts of G. perpensa, Cyrtanthus obliquus, M. balsamina and Tetradenia riparia exhibited inhibitory activity above 70%. Water extracts of G. perpensa, C. obliquus, V. marginata, Asclepias fruticosa and Watsonia densiflora showed good AChE inhibitory activity (>80%). The Ames test results revealed that all the water extracts of the 21 plant species used to make Imbiza ephuzwato were non-mutagenic towards the Salmonella typhimurium TA98 strain for the assay with and without S9 metabolic activation. In contrast, Imbiza ephuzwato showed mutagenic effects after exposure to S9 enzyme mixture. The observed activities of some plant extracts, if supported by other confirmatory tests, may justify their inclusion in the makeup of Imbiza ephuzwato herbal mixture as well as their use in traditional medicine. Further studies aimed at investigating possible synergistic effects as a result of mixing plant extracts are necessary. The reported mutagenicity in Imbiza ephuzwato could be as a result of interaction of biomolecules in the heterogeneous mixture, yielding compounds that are converted to mutagenic agents by xenobiotic metabolizing enzymes. It is therefore important to carry out further studies aimed at identifying and eliminating the sources of the mutagenic compounds in the heterogeneous mixture. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Brewery Waste Reuse for Protease Production by Lactic Acid Fermentation
2017-01-01
Summary This study evaluated the use of three solid brewery wastes: brewer’s spent grain, hot trub and residual brewer’s yeast, as alternative media for the cultivation of lactic acid bacteria to evaluate their potential for proteolytic enzyme production. Initially, a mixture experimental design was used to evaluate the effect of each residue, as well as different mixtures (with the protein content set at 4%) in the enzyme production. At predetermined intervals, the solid and liquid fractions were separated and the extracellular proteolytic activity was determined. After selecting the best experimental conditions, a second experiment, factorial experimental design, was developed in order to evaluate the protein content in the media (1 to 7%) and the addition of fermentable sugar (glucose, 1 to 7%). Among the wastes, residual yeast showed the highest potential for the production of extracellular enzymes, generating a proteolytic extract with 2.6 U/mL in 3 h. However, due to the low content of the fermentable sugars in the medium, the addition of glucose also had a positive effect, increasing the proteolytic activity to 4.9 U/mL. The best experimental conditions of each experimental design were reproduced for comparison, and the enzyme content was separated by ethanol precipitation. The best medium produced a precipitated protein with proteolytic activity of 145.5 U/g. PMID:28867951
Mezzar, Serena; de Schryver, Evelyn; Van Veldhoven, Paul P.
2014-01-01
Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates. PMID:24323699
Kong, Fansheng; Yu, Shujuan; Bi, Yongguang; Huang, Xiaojun; Huang, Mengqian
2016-01-01
Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic extraction of polyphenols from honeysuckle and dynamic had not been reported. In this study, using cellulase to extract polyphenols from honeysuckle is first applied. Moreover, uniform design was used to optimize process and kinetic model of extraction was established to analyze the characteristics of enzymatic extraction, in order to improve the yield of polyphenols from honeysuckle and make maximum use of Lonicerae flos, which provide references for industrial production. PMID:27018039
Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys.
Ohtsuka, Tatsuyuki; Yoshikawa, Takahiro; Kozakai, Kazumasa; Tsuneto, Yumi; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki
2010-10-01
Induction of the cytochrome P450 (P450) enzyme is a major concern in the drug discovery processes. To predict the clinical significance of enzyme induction, it is helpful to investigate pharmacokinetic alterations of a coadministered drug in a suitable animal model. In this study, we focus on the induction of CYP3A, which is involved in the metabolism of approximately 50% of marketed drugs and is inducible in both the liver and intestine. As a marker substrate for CYP3A activity, alprazolam (APZ) was selected and characterized using recombinant CYP3A enzymes expressed in Escherichia coli. Both human CYP3A4 and its cynomolgus P450 ortholog predominantly catalyzed APZ 4-hydroxylation with sigmoidal kinetics. When administered intravenously and orally to cynomolgus monkeys, APZ had moderate clearance; its first-pass extraction ratio after oral dosing was estimated to be 0.09 in the liver and 0.45 in the intestine. Pretreatment with multiple doses of rifampicin (20 mg/kg p.o. for 5 days), a known CYP3A inducer, significantly decreased plasma concentrations of APZ after intravenous and oral administrations (0.5 mg/kg), and first-pass extraction ratios were increased to 0.39 in the liver and 0.63 in the intestine. The results were comparable to those obtained in clinical drug-drug interaction (DDI) reports related to CYP3A induction, although the rate of recovery of CYP3A activity seemed to be slower than rates estimated in clinical studies. In conclusion, pharmacokinetic studies using APZ as a probe in monkeys may provide useful information regarding the prediction of clinical DDIs due to CYP3A induction.
Li, Xiaotong; Shi, Liangen; Dai, Xiangping; Chen, Yajie; Xie, Hongqing; Feng, Min; Chen, Yuyin; Wang, Huabing
2018-05-12
During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimise the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-Deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order; whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects, and located around the 1-DNJ binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of non-digestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Enzymatic Removal of Diacetyl from Beer 1
Thompson, Janet W.; Shovers, J.; Sandine, W. E.; Elliker, P. R.
1970-01-01
Use of diacetyl reductase, a reduced nicotinamide adenine dinucleotide (NADH)-requiring enzyme, to eliminate diacetyl off-flavor in beer was studied. The crude enzyme was extracted from Aerobacter aerogenes and partially purified by ammonium sulfate precipitation or Sephadex chromatography. In the semipure state, the enzyme was inactivated by lyophilization; in a crude state, the lyophilized extract remained stable for at least 4 months at — 20 C. A 50% reduction in specific activity within 5 min was observed when crude diacetyl reductase was suspended (5 mg of protein/ml) in phosphate buffer at pH 5.5 or below; a similar inactivation rate was observed when the crude enzyme was dissolved in a 5% aqueous ethyl alcohol solution. Effective crude enzyme activity in beer at a natural pH of 4.1 required protection of the enzyme in 10% gelatin. Incorporation of yeast cells with the gel-protected enzyme provided regeneration of NADH. Combinations of yeast, enzyme, and gelatin were tested to obtain data analyzed by regression analysis to determine the optimal concentration of each component of the system required to reduce the level of diacetyl in spiked (0.5 ppm) beer to less than 0.12 ppm within 48 hr at 5 C. The protected enzyme system was also effective in removing diacetyl from orange juice (pH 3.8) and some distilled liquors. PMID:4318450
Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao
2015-01-01
In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.
Picot, Marie Carene Nancy; Bender, Onur; Atalay, Arzu; Zengin, Gokhan; Loffredo, Loïc; Hadji-Minaglou, Francis; Mahomoodally, Mohamad Fawzi
2017-05-01
Aphloia theiformis (Vahl.) Benn. (AT) is traditionally used in Sub-Saharan African countries including Mauritius as a biomedicine for the management of several diseases. However, there is a dearth of experimental studies to validate these claims. We endeavoured to evaluate the inhibitory effects of crude aqueous extract as traditionally used together with the crude methanol extracts of AT leaves on urease, angiotensin (I) converting enzyme (ACE), acetylcholinesterase (AChE), cholesterol esterase (CEase), glycogen phosphorylase a (GPa), and glycation in vitro. The crude extract showing potent activity against the studied enzymes was further partitioned using different solvents of increasing polarity. The enzyme inhibitory and antiglycation activities of each fraction was assessed. Kinetic of inhibition of the active crude extract/fractions on the aforementioned enzymes was consequently determined using Lineweaver-Burk plots. An ultra-high performance liquid chromatography (UHPLC-UV/MS) system was used to establish the phytochemical profile of AT. The real time cell analysis system (iCELLigence™) was used to monitor any cellular cytotoxicity of AT. Crude methanolextract (CME) was a potent inhibitor of the studied enzymes, with IC 50 ranging from 696.22 to 19.73μg/mL. CME (82.5%) significantly (p<0.05) inhibited glycation and was comparable to aminoguanidine (81.5%). Ethyl acetate and n-butanol fractions of CME showed non-competitive, competitive, and uncompetitive mode of inhibition against ACE, CEase, and AChE respectively. Mangiferin, a xanthone glucoside was present in CME, ethyl acetate, and n-butanol fractions. Active extract/fractions were found to be non-cytotoxic (IC 50 >20μg/mL) according to the U.S National Cancer Institute plant screening program. This study has established baseline data that tend to justify the traditional use of AT and open new avenues for future biomedicine development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Mkandawire, Nyambe L; Kaufman, Rhett C; Bean, Scott R; Weller, Curtis L; Jackson, David S; Rose, Devin J
2013-05-08
The purpose of this study was to investigate the effects of tannins on starch digestion in tannin-containing sorghum extracts and wholegrain flours from 12 sorghum varieties. Extracts reduced amylase activity in a tannin concentration-dependent manner when the extract was mixed with the enzyme before substrate (amylopectin) addition, with higher molecular weight tannins showing greater reduction. Conversely, when the extract and substrate were combined before enzyme addition an enhancement in amylase activity was experienced. In uncooked, cooked, and cooked and stored wholegrain sorghum flours, rapidly digestible, slowly digestible, and resistant starches were not correlated with tannin content or molecular weight distribution. Resistant starch increased from 6.5% to 22-26% when tannins were added to starch up to 50% (starch weight). Tannin extracts both reduced and enhanced amylase activity depending on conditions, and, while these trends were clear in extracts, the effects on starch digestion in wholegrain flours was more complex.
Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah
2017-09-18
The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.
Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts
Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza
2014-01-01
Objective(s): One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Materials and Methods: Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Results: Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Conclusion: Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets. PMID:25140210
Veeramani, V; Sakthivelkumar, S; Tamilarasan, K; Aisha, S O; Janarthanan, S
2014-09-01
The ectoparasitic tick, Rhipicephalus (Boophilus) microplus collected at various cattle farms in and around Chennai was subjected to treatment of different crude solvent extracts of leaves of Ocimum basilicum and Spilanthes acmella for acaricidal activity. Among various solvent extracts of leaves of O. basilicum and S. acmella used, chloroform extract of O. basilicum at concentrations between 6% and 10% exhibited 70% and 100% mortality of ticks when compared to control. The LC50 and LC90 values of the chloroform extract of leaves of O. basilicum treatment on the ticks after 24 h were observed as 5.46% and 7.69%. Quantitative and qualitative analysis of α- and β- carboxylesterase enzymes in the whole gut homogenate of cattle tick, R. microplus treated with chloroform extract of leaves of O. basilicum revealed higher level of activities for the enzymes. This indicated that there was an induced response in the tick, R. microplus against the toxic effects of the extract of O. basilicum.
NASA Astrophysics Data System (ADS)
Sun, Yong; Zhou, Deqing; Zhao, Feng
2011-03-01
The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.
Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang
2014-01-30
The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P
2014-05-01
Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.
Tabor, S; Richardson, C C
1985-01-01
The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376
King, J W; King, L J
1996-01-01
Because of the increase in use of the newer benzodiazepines, we explored the opportunity to develop a gas chromatographic-mass spectrometric (GC-MS) method that encompasses most of the widely prescribed benzodiazepines in use today. The benzodiazepines included in our study are nordiazepam, oxazepam, temazepam, lorazepam, alpha-hydroxyalprazolam, alpha-hydroxytriazolam, desalkylflurazepam, and 2-hydroxyethylflurazepam. Using 1.0 mL of urine as the matrix, we added the enzyme Glusulase and incubated the specimens for 2 h to obtain the free drugs. The hydrolyzed samples were then loaded onto a Toxi-Lab Spec VC MP3 column containing a 15-mg disc. On-disc derivatization was accomplished by adding N-methyl-N-(t-butyldimethylsilyl) trifluroacetamide (MTBSTFA) with 1% TBDMSCI to the disc. The derivatives were then placed in a GC vial and analyzed by GC-MS in the selected ion monitoring mode. These results were then compared to confirmed positives by the traditional acid hydrolysis GC-MS method.
Purification and characterization of Phaseolus vulgaris alpha-D-galactosidase isozymes.
Dhar, M; Mitra, M; Hata, J; Butnariu, O; Smith, D
1994-11-01
A highly purified preparation of alpha-D-galactosidase [E.C. 3.2.1.22] isozymes was obtained from Phaseolus vulgaris (pinto bean) seeds by extraction, salt precipitation, ion exchange, and affinity chromatography. The final preparation was homogeneous by SDS-PAGE but revealed isozymes of relative mass of 38.3 and 39.6 kDa. The N-terminal sequence for both isozymes was identical, LANGLAKT (one letter code for amino acids). Relative native molecular mass was estimated at 149.3 kDa by Sephacryl S-200 chromatography. Activity was unaffected by ionic strength at high enzyme concentrations, and was specific for alpha-D-galactoside conjugates. No protease or hemagglutinin activity was detected, and activity was stable at 4 degrees C. Studies with soluble oligosaccharides demonstrated high activity against the selected straight and branched-chain substrates. The enzyme was active against terminal alpha 1-3 galactosyl residues on human and rabbit erythrocyte membranes. Because of its activity against membrane glycoconjugates, these isozymes may have potential utility for modifying membrane epitopes on native erythrocytes.
Sanna, Cinzia; Rigano, Daniela; Corona, Angela; Piano, Dario; Formisano, Carmen; Farci, Domenica; Franzini, Genni; Ballero, Mauro; Chianese, Giuseppina; Tramontano, Enzo; Taglialatela-Scafati, Orazio; Esposito, Francesca
2018-02-04
During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-β-d-galactopyranoside potently inhibited both enzyme activities with IC 50 values ranging from 0.21 to 10.9 μM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.
21 CFR 184.1685 - Rennet (animal-derived) and chymosin preparation (fermentation-derived).
Code of Federal Regulations, 2014 CFR
2014-04-01
... active enzyme rennin (CAS Reg. No. 9001-98-3), also known as chymosin (International Union of Biochemistry Enzyme Commission (E.C.) 3.4.23.4). Rennet is the aqueous extract prepared from cleaned, frozen... active enzyme chymosin (E.C. 3.4.23.4). It is derived, via fermentation, from a nonpathogenic and...
Paulino, Margot; Alvareda, Elena; Iribarne, Federico; Miranda, Pablo; Espinosa, Victoria; Aguilera, Sara; Pardo, Helena
2016-12-01
Propolis and grape pomace have significant amounts of phenols which can take part in anti-inflammatory mechanisms. As the cyclooxygenases 1 and 2 (COX-1 and COX-2) are involved in said mechanisms, the possibility for a selective inhibition of COX-2 was analyzed in vitro and in silico. Propolis and grape pomace from Uruguayan species were collected, extracted in hydroalcoholic mixture and analyzed. Based on phenols previously identified, and taking as reference the crystallographic structures of COX-1 and COX-2 in complex with the commercial drug Celecoxib, a molecular docking procedure was devised to adjust 123 phenolic molecular models at the enzyme-binding sites. The most important results of this work are that the extracts have an overall inhibition activity very similar in COX-1 and COX-2, i.e. they do not possess selective inhibition activity for COX-2. Nevertheless, 10 compounds of the phenolic database turned out to be more selective and 94 phenols resulted with similar selectivity than Celecoxib, an outcome that accounts for the overall experimental inhibition measures. Binding site environment observations showed increased polarity in COX-2 as compared with COX-1, suggesting that polarity is the key for selectivity. Accordingly, the screening of molecular contacts pointed to the residues: Arg106, Gln178, Leu338, Ser339, Tyr341, Tyr371, Arg499, Ala502, Val509, and Ser516, which would explain, at the atomic level, the anti-inflammatory effect of the phenolic compounds. Among them, Gln178 and Arg499 appear to be essential for the selective inhibition of COX-2.
Properties of lubrol-extracted uridine diphosphate glucuronyltransferase.
Howland, R D; Burkhalter, A; Trevor, A J; Hegeman, S; Shirachi, D Y
1971-12-01
1. A partially purified UDP-glucuronyltransferase was obtained by extracting rat liver microsomal preparations with Lubrol, a non-ionic detergent. 2. The soluble enzyme catalysed conjugation of both o-aminophenol and p-nitrophenol and was extremely stable when compared with untreated microsomal preparations. 3. The characteristics of the conjugation of the two phenols were found to differ with respect to pH optimum, bivalent cation requirement and Michaelis constants, suggesting that more than one enzyme is involved in the conjugation reaction.
Properties of Lubrol-extracted uridine diphosphate glucuronyltransferase
Howland, R. D.; Burkhalter, A.; Trevor, A. J.; Hegeman, S.; Shirachi, D. Y.
1971-01-01
1. A partially purified UDP-glucuronyltransferase was obtained by extracting rat liver microsomal preparations with Lubrol, a non-ionic detergent. 2. The soluble enzyme catalysed conjugation of both o-aminophenol and p-nitrophenol and was extremely stable when compared with untreated microsomal preparations. 3. The characteristics of the conjugation of the two phenols were found to differ with respect to pH optimum, bivalent cation requirement and Michaelis constants, suggesting that more than one enzyme is involved in the conjugation reaction. PMID:5144269
Zhang, Yanjun; Mo, Limei; Chen, Feng; Lu, Minquan; Dong, Wenjiang; Wang, Qinghuang; Xu, Fei; Gu, Fenglin
2014-02-19
Production of vanillin from natural green vanilla pods was carried out by enzyme-assisted extraction combined with pre-freezing and thawing. In the first step the green vanilla pods were pre-frozen and then thawed to destroy cellular compartmentation. In the second step pectinase from Aspergillus niger was used to hydrolyze the pectin between the glucovanillin substrate and β-glucosidase. Four main variables, including enzyme amount, reaction temperature, time and pH, which were of significance for the vanillin content were studied and a central composite design (CCD) based on the results of a single-factor tests was used. Response surface methodology based on CCD was employed to optimize the combination of enzyme amount, reaction temperature, time, and pH for maximum vanillin production. This resulted in the optimal condition in regards of the enzyme amount, reaction temperature, time, and pH at 84.2 mg, 49.5 °C, 7.1 h, and 4.2, respectively. Under the optimal condition, the experimental yield of vanillin was 4.63% ± 0.11% (dwb), which was in good agreement with the value predicted by the model. Compared to the traditional curing process (1.98%) and viscozyme extract (2.36%), the optimized method for the vanillin production significantly increased the yield by 133.85% and 96%, respectively.
Gel filtration applied to the study of lipases and other esterases
Downey, W. K.; Andrews, P.
1965-01-01
1. Sephadex G-100 and G-200 gel-filtration columns were calibrated for molecular-weight estimation with proteins of known molecular weights, and used to study the composition of several lipase or esterase preparations. 2. Enzymes from cow's milk, rat adipose tissue and pig pancreas were detected in the column effluents by their ability to liberate free acid from emulsified tributyrin at pH 8·5. 3. Four tributyrinases were detected in preparations from individual cow's milks. Molecular weights 62000, 75000 and 112000 were estimated for three of them, but although the fourth may be of unusually low molecular weight an estimate was not possible. 4. Extracts of rat adipose tissue apparently contained six tributyrinases (molecular weights 39000, 47000, 55000, 68000, 75000 and 200000) but the relative amounts of these enzymes varied widely from rat to rat. 5. Tributyrinase activity in juice expressed from pig pancreatic tissue was due mainly to one enzyme (molecular weight 42000). On the other hand, activity in extracts of acetone-dried pancreas was confined to material of molecular weight > 106, which may be an aggregated form of the lower-molecular-weight enzyme. 6. Activity in fractionated wheat-germ extracts was assayed with emulsified triacetin substrate, and was evidently due to one enzyme (molecular weight 51000). 7. Some problems arising in the application of gel filtration to the study of lipase–esterase systems were indicated. PMID:14340054
Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui
2017-01-01
Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α-amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60–70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials. PMID:28168200
Simair, Altaf Ahmed; Qureshi, Abdul Sattar; Khushk, Imrana; Ali, Chaudhry Haider; Lashari, Safia; Bhutto, Muhammad Aqeel; Mangrio, Ghulam Sughra; Lu, Changrui
2017-01-01
Amylase is an industrially important enzyme and applied in many industrial processes such as saccharification of starchy materials, food, pharmaceutical, detergent, and textile industries. This research work deals with the optimization of fermentation conditions for α -amylase production from thermophilic bacterial strain Bacillus sp. BCC 01-50 and characterization of crude amylase. The time profile of bacterial growth and amylase production was investigated in synthetic medium and maximum enzyme titer was observed after 60 h. In addition, effects of different carbon sources were tested as a substrate for amylase production and molasses was found to be the best. Various organic and inorganic compounds, potassium nitrate, ammonium chloride, sodium nitrate, urea, yeast extract, tryptone, beef extract, and peptone, were used and beef extract was found to be the best among the nitrogen sources used. Temperature, pH, agitation speed, and size of inoculum were also optimized. Highest enzyme activity was obtained when the strain was cultured in molasses medium for 60 h in shaking incubator (150 rpm) at 50°C and pH 8. Crude amylase showed maximal activity at pH 9 and 65°C. Enzyme remained stable in alkaline pH range 9-10 and 60-70°C. Crude amylase showed great potential for its application in detergent industry and saccharification of starchy materials.
Abdulghader, Kalantar; Nojavan, Majid; Naghshbandi, Nabat
2008-03-15
The aims of this study were to evaluate the allelopathic potential of heliotrope on some biochemical processes of dodder. The preliminary experiments revealed that the effect of aqueous extract of leaves of heliotrope is higher than its seeds and roots. So, the aqueous extract of leaves was used in remaining experiments. Leaf extracts of 5 g powder per 100 mL H2O inhibited the germination of dodder seeds up to 95% and that of radish up to 100%. While, the aqueous extract of vine leaves which is a non-allelopathic plant did not have any inhibitory effect on these seeds. Vine leaf was used as a control to show that the inhibitory effect of heliotrope is due to an inhibitory compound but not due to the concentration. The leaf extract of heliotrope at 0.0, 0.1, 1.0, 2, 3, 4 and 5 g powder per 100 mL H2O reduced the radish seedling growth from 14 cm to about 0.5 cm and that of dodder from 7.5 cm to about 0.25 cm. The effects of heliotrope allelochemicals on some physiological and biochemical processes of radish was also Investigated. The activity of auxin oxidase increased in leaves and roots of radish. Suggesting that the reduced radish growth is due to the decreased active auxin levels in its leaves and roots. The activity of alpha-amylase was reduced, so reduction of starch degradation and lack of respiratory energy is the prime reason of germination inhibition in dodder and radish seeds. The level of soluble sugars increased. This is an indication of reduction of the activity of some respiratory enzymes and reduced consumption of these sugars. Proline levels were also increased, indicating that, the chemical stress is induced by leaf extract. Finally, the activities of GPX and CAT which are antioxidant enzymes were increased, along with increased extract concentration. These finding shows that the chemical stress induced by leaf extract produces super oxide (O2*) and H2O2, which is neutralized to H2O and O2 by these enzymes.
Strugała, Paulina; Cyboran-Mikołajczyk, Sylwia; Dudra, Anna; Mizgier, Paulina; Kucharska, Alicja Z; Olejniczak, Teresa; Gabrielska, Janina
2016-06-01
The aim of the study was to determine in vitro biological activity of fruit ethanol extract from Chaenomeles speciosa (Sweet) Nakai (Japanese quince, JQ) and its important constituents (-)-epicatechin (EC) and chlorogenic acid (CA). The study also investigated the structural changes in phosphatidylcholine (PC) liposomes, dipalmitoylphosphatidylcholine liposomes, and erythrocyte membranes (RBC) induced by the extract. It was found that the extract effectively inhibits oxidation of RBC, induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), and PC liposomes, induced by UVB radiation and AAPH. Furthermore, JQ extract to a significant degree inhibited the activity of the enzymes COX-1 and COX-2, involved in inflammatory reactions. The extract has more than 2 times greater activity in relation to COX-2 than COX-1 (selectivity ratio 0.48). JQ extract stimulated growth of the beneficial intestinal bacteria Lactobacillus casei and Lactobacillus plantarum. In the fluorimetric method by means of the probes Laurdan, DPH and TMA-DPH, and (1)H-NMR, we examined the structural changes induced by JQ and its EC and CA components. The results show that JQ and its components induce a considerable increase of the packing order of the polar heads of lipids with a slight decrease in mobility of the acyl chains. Lipid membrane rigidification could hinder the diffusion of free radicals, resulting in inhibition of oxidative damage induced by physicochemical agents. JQ extract has the ability to quench the intrinsic fluorescence of human serum albumin through static quenching. This report thus could be of huge significance in the food industry, pharmacology, and clinical medicine.
Shukla, Dharmendra; Patel, Bhavesh; Modi, Hasmukh; Vyas, Bharat Rajiv Manuel
2011-11-01
Solid-state fermentation of wheat straw was carried out by a native white rot basidiomycete Daedaleopsis flavida strain 5A. Extract prepared from the 12-day decayed wheat straw contained extracellular ligninolytic enzymes like manganese peroxidase (MnP), manganese-independent peroxidase (MIP), lignin peroxidase (LiP) and laccase along with straw-degraded products and pigments. Sephacryl S-200 size exclusion chromatography in 16/100 column was used for the separation of these ligninolytic enzymes and straw-degraded products and pigments. Recovery of pigment-free ligninolytic enzyme activities as protein was 40% of the total proteins loaded and specific LiP activity increased 34 fold after size exclusion chromatography. Thus accurate estimation of LiP by veratryl alcohol oxidation assay was possible only after the removal of interfering pigments. The reproducibility of size exclusion chromatography is adjudged satisfactory from the consistent results obtained after seven repetitive uses of matrices.
Um, Min Young; Ahn, Jiyun; Ha, Tae Youl
2013-09-01
Black rice is rich in anthocyanins, especially cyanidin-3-glucoside (C3G). This study examined the effects of a C3G-rich extract from black rice on hyperlipidaemia induced by a high fat/cholesterol diet (HFCD) in rats. Male Sprague-Dawley rats were fed either HFCD or HFCD containing 150 mg kg⁻¹ body weight C3G (HFCD+C3G) for 4 weeks. We found that C3G significantly decreased serum levels of total cholesterol, free cholesterol, triglycerides, and free fatty acids in rats fed a HFCD. Similarly, hepatic cholesterol and triglyceride levels and the activities of hepatic lipogenic enzymes (malic enzyme and glucose-6-phosphate dehydrogenase) were significantly reduced by C3G supplementation. These results suggest that C3G can ameliorate HFCD-induced hyperlipidaemia in part by modulating the activities of hepatic lipogenic enzymes. © 2013 Society of Chemical Industry.
Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells.
Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee; Mangmool, Supachoke
2016-01-01
The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla , Averrhoa bilimbi , Malpighia glabra , Mangifera indica, Sandoricum koetjape , Syzygium malaccense, and Ziziphus jujuba inhibited H 2 O 2 -induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress.
Thai Fruits Exhibit Antioxidant Activity and Induction of Antioxidant Enzymes in HEK-293 Cells
Anantachoke, Natthinee; Lomarat, Pattamapan; Praserttirachai, Wasin; Khammanit, Ruksinee
2016-01-01
The cellular antioxidant enzymes play the important role of protecting the cells and organisms from the oxidative damage. Natural antioxidants contained in fruits have attracted considerable interest because of their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals contained in fruits on the induction of antioxidant enzymes in the cells have not been fully defined. In this study, we showed that extracts from Antidesma ghaesembilla, Averrhoa bilimbi, Malpighia glabra, Mangifera indica, Sandoricum koetjape, Syzygium malaccense, and Ziziphus jujuba inhibited H2O2-induced intracellular reactive oxygen species production in HEK-293 cells. Additionally, these Thai fruit extracts increased the mRNA and protein expressions of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase. The consumption of Thai fruits rich in phenolic compounds may reduce the risk of oxidative stress. PMID:28074103
Selective MAO-B inhibitors: a lesson from natural products.
Carradori, Simone; D'Ascenzio, Melissa; Chimenti, Paola; Secci, Daniela; Bolasco, Adriana
2014-02-01
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Ramanathan, Madhumati; Wang, Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.
2012-01-01
In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of Type G Chemical Warfare Agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride-ion-selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethylporphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous co-extraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 µM DFP. PMID:20441875
USDA-ARS?s Scientific Manuscript database
Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration ...
Kaur, Harsimran; Kapoor, Shammi; Kaur, Gaganjyot
2016-10-01
Lindane, a broad-spectrum organochlorine pesticide, has caused a widespread environmental contamination along with other pesticides due to wrong agricultural practices. The high efficiency, sustainability and eco-friendly nature of the bioremediation process provide an edge over traditional physico-chemical remediation for managing pesticide pollution. In the present study, lindane degradation was studied by using a white-rot fungus, Ganoderma lucidum GL-2 strain, grown on rice bran substrate for ligninolytic enzyme induction at 30 °C and pH 5.6 after incorporation of 4 and 40 ppm lindane in liquid as well as solid-state fermentation. The estimation of lindane residue was carried out by gas chromatography coupled to mass spectrometry (GC-MS) in the selected ion monitoring mode. In liquid-state fermentation, 100.13 U/ml laccase, 50.96 U/ml manganese peroxidase and 17.43 U/ml lignin peroxidase enzymes were obtained with a maximum of 75.50 % lindane degradation on the 28th day of incubation period, whereas under the solid-state fermentation system, 156.82 U/g laccase, 80.11 U/g manganese peroxidase and 18.61 U/g lignin peroxidase enzyme activities with 37.50 % lindane degradation were obtained. The lindane incorporation was inhibitory to the production of ligninolytic enzymes and its own degradation but was stimulatory for extracellular protein production. The dialysed crude enzyme extracts of ligninolytic enzymes were though efficient in lindane degradation during in vitro studies, but their efficiencies tend to decrease with an increase in the incubation period. Hence, lindane-degrading capabilities of G. lucidum GL-2 strain make it a potential candidate for managing lindane bioremediation at contaminated sites.
Yilmazer-Musa, Meltem; Griffith, Anneke M; Michels, Alexander J; Schneider, Erik; Frei, Balz
2012-09-12
This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.
Antidiabetic and Antioxidant Activity of Scoparia dulcis Linn.
Mishra, M. R.; Mishra, A.; Pradhan, D. K.; Panda, A. K.; Behera, R. K.; Jha, S.
2013-01-01
The hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on both in vitro and in vivo models along with determination of total extractable polyphenol. Methanol extract of Scoparia dulcis contains 4.9% and water extract contains 3.2% of total extractable polyphenol. The antioxidant activity showed very promising result in both the tested methods that is 2,2-diphenyl-1-picrylhydrazyl and ferric ion reducing capacity. The antioxidant activity is directly correlated to the antidiabetic potential of drug. The two enzymes (amylase and glycosidase) found in intestine are responsible for the increasing postprandial glucose in body. In vitro model was performed on these enzymes and the results showed that methanol extract of Scoparia dulcis was effective to check the postprandial glucose level. The in vivo hypoglycaemic activity of methanol extract of Scoparia dulcis was performed on streptozotocin-induced diabetes mellitus showed significant inhibition of blood glucose level as compared to control and similar to that of standard glibenclamide. The overall data potentiates the traditional value of Scoparia dulcis as an antidiabetic drug. PMID:24403665
Effect of Cuscuta reflexa Roxb on androgen-induced alopecia.
Pandit, Shweta; Chauhan, Nagendra Singh; Dixit, V K
2008-09-01
Alopecia is a psychologically distressing condition. Androgenetic alopecia, which affects millions of men and women, is an androgen-driven disorder. Here, Cuscuta reflexa Roxb is evaluated for hair growth activity in androgen-induced alopecia. Petroleum ether extract of C. reflexa was studied for its hair growth-promoting activity. Alopecia was induced in albino mice by testosterone administration for 20 days. Its inhibition by simultaneous administration of extract was evaluated using follicular density, anagen/telogen ratio, and microscopic observation of skin sections. To investigate the mechanism of observed activity, in vitro experiments were performed to study the effect of extract and its major component on activity of 5alpha-reductase enzyme. Petroleum ether extract of C. reflexa exhibited promising hair growth-promoting activity as reflected from follicular density, anagen/telogen ratio, and skin sections. Inhibition of 5alpha-reductase activity by extract and isolate suggest that the extract reversed androgen-induced alopecia by inhibiting conversion of testosterone to dihydrotestosterone. The petroleum ether extract of C. reflexa and its isolate is useful in treatment of androgen-induced alopecia by inhibiting the enzyme 5alpha-reductase.
A Quantitative Measure of Conformational Changes in Apo, Holo and Ligand-Bound Forms of Enzymes.
Singh, Satendra; Singh, Atul Kumar; Wadhwa, Gulshan; Singh, Dev Bukhsh; Dwivedi, Seema; Gautam, Budhayash; Ramteke, Pramod W
2016-06-01
Determination of the native geometry of the enzymes and ligand complexes is a key step in the process of structure-based drug designing. Enzymes and ligands show flexibility in structural behavior as they come in contact with each other. When ligand binds with active site of the enzyme, in the presence of cofactor some structural changes are expected to occur in the active site. Motivation behind this study is to determine the nature of conformational changes as well as regions where such changes are more pronounced. To measure the structural changes due to cofactor and ligand complex, enzyme in apo, holo and ligand-bound forms is selected. Enzyme data set was retrieved from protein data bank. Fifteen triplet groups were selected for the analysis of structural changes based on selection criteria. Structural features for selected enzymes were compared at the global as well as local region. Accessible surface area for the enzymes in entire triplet set was calculated, which describes the change in accessible surface area upon binding of cofactor and ligand with the enzyme. It was observed that some structural changes take place during binding of ligand in the presence of cofactor. This study will helps in understanding the level of flexibility in protein-ligand interaction for computer-aided drug designing.
The CoFactor database: organic cofactors in enzyme catalysis.
Fischer, Julia D; Holliday, Gemma L; Thornton, Janet M
2010-10-01
Organic enzyme cofactors are involved in many enzyme reactions. Therefore, the analysis of cofactors is crucial to gain a better understanding of enzyme catalysis. To aid this, we have created the CoFactor database. CoFactor provides a web interface to access hand-curated data extracted from the literature on organic enzyme cofactors in biocatalysis, as well as automatically collected information. CoFactor includes information on the conformational and solvent accessibility variation of the enzyme-bound cofactors, as well as mechanistic and structural information about the hosting enzymes. The database is publicly available and can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/CoFactor.
Biochemical Capture and Removal of Carbon Dioxide
NASA Technical Reports Server (NTRS)
Trachtenberg, Michael C.
1998-01-01
We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.
Towards isozyme-selective HDAC inhibitors for interrogating disease.
Gupta, Praveer; Reid, Robert C; Iyer, Abishek; Sweet, Matthew J; Fairlie, David P
2012-01-01
Histone deacetylase (HDAC) enzymes have emerged as promising targets for the treatment of a wide range of human diseases, including cancers, inflammatory and metabolic disorders, immunological, cardiovascular, and infectious diseases. At present, such applications are limited by the lack of selective inhibitors available for each of the eighteen HDAC enzymes, with most currently available HDAC inhibitors having broad-spectrum activity against multiple HDAC enzymes. Such broad-spectrum activity maybe useful in treating some diseases like cancers, but can be detrimental due to cytotoxic side effects that accompany prolonged treatment of chronic diseased states. Here we summarize progress towards the design and discovery of HDAC inhibitors that are selective for some of the eleven zinc-containing classical HDAC enzymes, and identify opportunities to use such isozyme-selective inhibitors as chemical probes for interrogating the biological roles of individual HDAC enzymes in diseases.
Techno-economical evaluation of protein extraction for microalgae biorefinery
NASA Astrophysics Data System (ADS)
Sari, Y. W.; Sanders, J. P. M.; Bruins, M. E.
2016-01-01
Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other components, such as carbohydrates and protein, may lead to the sustainable and economical microalgae-based fuels. This paper discusses two relatively mild conditions for microalgal protein extraction, based on alkali and enzymes. Green microalgae (Chlorella fusca) with and without prior lipid removal were used as feedstocks. Under mild conditions, more protein could be extracted using proteases, with the highest yields for microalgae meal (without lipids). The data on protein extraction yields were used to calculate the costs for producing 1 ton of microalgal protein. The processing cost for the alkaline method was € 2448 /ton protein. Enzymatic method performed better from an economic point of view with € 1367 /ton protein on processing costs. However, this is still far from industrially feasible. For both extraction methods, biomass cost per ton of produced product were high. A higher protein extraction yield can partially solve this problem, lowering processing cost to €620 and 1180 /ton protein product, using alkali and enzyme, respectively. Although alkaline method has lower processing cost, optimization appears to be better achievable using enzymes. If the enzymatic method can be optimized by lowering the amount of alkali added, leading to processing cost of € 633/ton protein product. Higher revenue can be generated when the residue after protein extraction can be sold as fuel, or better as a highly digestible feed for cattle.
Li, D Q; Zhao, J; Xie, J; Li, S P
2014-01-01
Drug discovery from complex mixture like Chinese herbs is a challenge and extensive false positives make the obtainment of specific bioactive compounds difficult. In the present study, a novel sample preparation method was proposed to rapidly reveal the specific bioactive compounds from complex mixtures using α-glucosidase as a case. Firstly, aqueous and methanol extracts of 500 traditional Chinese medicines were carried out with the aim of finding new sources of α-glucosidase inhibitors. As a result, the extracts of fruit of Terminalia chebula (FTC), flowers of Rosa rugosa (FRR) and Eugenia caryophyllata (FEC) as well as husk of Punica granatum (HPG) showed high inhibition on α-glucosidase. On-line liquid chromatography-diode array detection-tandem mass spectrometry and biochemical detection (HPLC-DAD-MS/MS-BCD) was performed to rapidly screen and characterize α-glucosidase inhibitors in these four extracts. After tentative identification, most of compounds with inhibitory activity in the investigated crude extracts were found to be tannins commonly recognized as non-specific enzyme inhibitors in vitro. Subsequently, the four extracts were treated with gelatin to improve specificity of the on-line system. Finally, two compounds with specific α-glucosidase inhibition were identified as corilagin and ellagic acid. The developed method could discover specific α-glucosidase inhibitors in complex mixtures such as plant extracts, which could also be used for discovery of specific inhibitors of other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.
Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O
2016-01-01
Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe(2+)-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*(+)) scavenging activities of the extract were determined using spectrophotometric methods. Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe(2+)-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe(2+)-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*(+). Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases.
Mohiuddin, M; Arbain, D; Islam, A K M Shafiqul; Ahmad, M S; Ahmad, M N
2016-12-01
A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.
Antibacterial and Hypoglycemic Diterpenoids from Salvia chamaedryoides.
Bisio, Angela; De Mieri, Maria; Milella, Luigi; Schito, Anna M; Parricchi, Anita; Russo, Daniela; Alfei, Silvana; Lapillo, Margherita; Tuccinardi, Tiziano; Hamburger, Matthias; De Tommasi, Nunziatina
2017-02-24
A surface extract of the aerial parts of Salvia chamaedryoides afforded 13 diterpenes (1-13), with seven compounds (1, 3, 4, 7-9, 12) described for the first time. The structures of the new compounds were established using 1D and 2D NMR spectroscopic methods, HRESIMS, and ECD data. The potential hypoglycemic effects of the crude extract, fractions, and pure compounds from S. chamaedryoides were investigated by inhibition of α-glucosidase and α-amylase enzymes. The extract and its fractions showed a moderate dose-dependent inhibition; the pure compounds exhibited differential inhibitory activity against these two enzymes. Molecular modeling studies were also performed to suggest the interaction mode of compound 3 in the α-glucosidase enzyme active site. The antimicrobial activity of the purified compounds was investigated against 26 clinical pathogens. No activity was detected for the Gram-negative species tested nor on Candida albicans and C. glabrata, while variable susceptibilities were observed using Gram-positive staphylococcal and enterococcal species.
Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Le, X Chris
2015-08-12
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation μg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 μg kg(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.
Antioxidant and hepatoprotective effects of Crataegus songarica methanol extract.
Ganie, Showkat Ahmad; Dar, Tanveer Ali; Zargar, Bilal; Hamid, Rabia; Zargar, Ovais; Dar, Parvaiz Ahmad; Abeer, Shayaq Ul; Masood, Akbar; Amin, Shajrul; Zargar, Mohammad Afzal
2014-01-01
The protective activity of the methanolic extract of the Crataegus songarica leaves was investigated against CCl4- and paracetamol-induced liver damage. On folklore levels, this plant is popularly used to treat various toxicological diseases. We evaluated both in vitro and ex vivo antioxidant activity of C. songarica. At higher concentration of plant extract (700 µg/ml), 88.106% inhibition on DPPH radical scavenging activity was observed and reducing power of extract was increased in a concentration-dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation on rat liver microsomes in vitro. In addition, C. songarica extract exhibited antioxidant effects on calf thymus DNA damage induced by Fenton reaction. Hepatotoxicity was induced by challenging the animals with CCl4 (1 ml/kg body weight, i.p.) and paracetamol (500 mg/kg body weight) and the extract was administered at three concentrations (100, 200, and 300 mg/kg body weight). Hepatoprotection was evaluated by determining the activities of liver function marker enzymes and antioxidant status of liver. Administration of CCl4 elevated the levels of liver function enzymes, SGOT, SGPT, and LDH. We also observed a dramatic increase in ALT, AST, bilirubin, and alkaline phosphatase levels in rats administered 500 mg/kg body weight of paracetamol. Decreased antioxidant defense system as glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST), and superoxide dismutase (SOD) were observed in rats treated with CCl4 and paracetamol. Pretreatment with the extract decreased the elevated serum GOT, GPT, LDH, bilirubin, and alkaline phosphatase activities and increased the antioxidant enzymes in a dose-dependent manner. Therefore, C. songarica methanol extract may be an effective hepatic protective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases.
Parim, BrahmaNaidu; Harishankar, Nemani; Balaji, Meriga; Pothana, Sailaja; Sajjalaguddam, Ramgopal Rao
2015-01-01
Piper nigrum Linn (Piperaceae) (PnL) is used in traditional medicine to treat gastric ailments, dyslipidemia, diabetes, and hypertension. The present study explores the possible protective effects of P. nigrum extracts on high-fat diet-induced obesity in rats. High-fat diet-induced obese rats were treated orally with 200 mg/kg bw of different extracts (hexane, ethylacetate, ethanol, and aqueous extracts) of PnL for 42 d. The effects of PnL extracts on body composition, insulin resistance, biochemical parameters, leptin, adiponectin, lipid profile, liver marker enzymes, and antioxidants were studied. The HFD control group rats showed a substantial raise in body weight (472.8 ± 9.3 g), fat% (20.8 ± 0.6%), and fat-free mass (165.9 ± 2.4 g) when compared with normal control rats whose body weight, fat%, and fat-free mass were 314.3 ± 4.4 g, 6.4 ± 1.4%, and 133.8 ± 2.2 g, respectively. Oral administration of ethyl acetate or aqueous extracts of PnL markedly reduced the body weight, fat%, and fat-free mass of HFD-fed rats. In contrast to the normal control group, a profound increase in plasma glucose, insulin resistance, lipid profile, leptin, thiobarbituric acid reactive substance (TBARS), and the activities of lipase and liver marker enzymes, and a decrease in adiponectin and antioxidant enzymes were noted in HFD control rats. Administration of PnL extracts to HFD-induced obese rats significantly (p < 0.05) restored the above profiles. PnL extracts significantly reduced the body weight, fat%, and ameliorated HFD-induced hyperlipidemia and its constituents.
Zhang, Wenhao; Yang, Weixiang; Wu, Shuyi; Zheng, Kaibin; Liao, Weili; Chen, Boli; Yao, Ke; Liang, Guobin; Li, Yan
2014-10-01
To analyze the effects of different processes during bonding on endogenous cysteine cathepsin activity in dentin. Dentin powder, prepared from extracted human third molars, was divided into 10 groups. Two lots of dentin powder were used to detect the effects of the procedure of protein extraction on endogenous cathepsin activity. The others were used to study effects of different acid-etching or adhesive treatments on enzyme activity. Concentrations of 37% phosphoric acid or 10% phosphoric acid, two etch-and-rinse adhesive systems, and two self-etching adhesive systems were used as dentin powder treatments. The untreated mineralized dentin powder was set as the control. After treatment, the proteins of each group were extracted. The total cathepsin activity in the extracts of each group was monitored with a fluorescence reader. In the control group, there were no significant differences in cathepsin activity between the protein extract before EDTA treatment and the protein extract after EDTA treatment (p > 0.05). The cathepsin activities of the three different extracts in the 37% phosphoric acid-treated group were different from each other (p < 0.05). The two acid-etching groups and two etch-and-rinse groups showed significant enzyme activity reduction vs the control group (p < 0.05). There were no significant differences between those four groups (p > 0.05). Treating the dentin powder with any of the two self-etching adhesives resulted in an increase in cathepsin activity (p < 0.05). The activity of cysteine cathepsins can be detected in dentin powder. Treatment with EDTA during protein extraction exerted an influence on cathepsin activity. Acid etching or etch-and-rinse adhesive systems may reduce the activity of endogenous cathepsins in dentin. Self-etching adhesive systems may increase the enzyme activity.
Luís, Inês M.; Alexandre, Bruno M.; Oliveira, M. Margarida
2016-01-01
Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK. PMID:27727304
De Petrocellis, Luciano; Ligresti, Alessia; Moriello, Aniello Schiano; Allarà, Marco; Bisogno, Tiziana; Petrosino, Stefania; Stott, Colin G; Di Marzo, Vincenzo
2011-01-01
BACKGROUND AND PURPOSE Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. EXPERIMENTAL APPROACH The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. KEY RESULTS CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. CONCLUSIONS AND IMPLICATIONS These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21175579
Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.
Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves
2013-09-01
Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Niu, C- S; Chen, C- T; Chen, L- J; Cheng, K- C; Yeh, C- H; Cheng, J- T
2011-08-01
Hyperlipidemia is an important risk factor for cardiovascular diseases. Agents for the treatment of hyperlipidemia are well-developed in the clinic while PPARα is a target for lipid-lowering agents. Shan-Zha (Crataegus pinnatifida) is a traditional Chinese medicine used to increase digestion. Also, Shan-Zha fruit extract showed merit to improve obesity and hyperlipidemia in hamsters; however, the mechanism remained obscure. In the present study, hypertriglycemia and hypercholesterolemia were induced by high fat diet in C57BL/6 J male mice. Then, they were orally administered with Shan-Zha fruit extract at an effective dose of 250 mg/kg for 7 days. The liver was removed to estimate the expressions of PPARα and β-oxidation-related enzyme. Oral intake of Shan-Zha extract significantly improved hyperlipidemia in high fat diet-fed mice with an increase of PPARα expression in liver. Also, expression of PPARα-regulated β-oxidation-related enzymes was raised in liver by Shan-Zha extract. However, adipose tissue and others were not modified by this treatment of Shan-Zha fruit extract. Thus, Shan-Zha can increase the expression of PPARα to facilitate β-oxidation-related enzymes in liver for lipid degradation and blood lipid decrement. Also, this is the first report showing Shan-Zha fruit extract can influence liver to lower hyperlipidemia prior to the action in adipose tissue. Georg Thieme Verlag KG Stuttgart · New York.
NAD deamidation "a new reaction" by an enzyme from Aspergillus terreus DSM 826.
Elzainy, Tahany A; Ali, Thanaa H
2005-02-01
NAD deamidation is a non-previously recognized reaction. This reaction has been found to be catalyzed by extracts of Aspergillus terreus DSM 826. Conversion of NAD to the biosynthetic intermediate, deamido NAD, by these extracts, at the optimum pH and temperature did not exceed about 55 of the amount of the substrate added. Completion of the reaction was achieved when the extracts were pre-heated at 50 degrees C for 15 min in absence of the substrate. In a very similar manner, the extracts catalyzed hydrolytic cleavage of the amide linkages of different biomolecules such as nicotinamide, nicotinamide riboside, nicotinamide mononucleotide, L-glutamine, L-asparagine and acetamide. Polyacrylamide was also deamidated under the same conditions. In addition, complete dephosphorylation of the dinucleotide molecule was also effected by the same extracts. Separation of the NAD deamidating enzyme from the NAD dephosphorylating enzyme was achieved on using either DEAE - Sephadex A-25 or Sephadex G-200 column chromatography. The obtained phosphohydrolase-free-deamidase showed optimum activity at pH 8 of 0.1 M phosphate buffer and 50 degrees C. It exhibited broad substrate specificity and hyperbolic substrate saturation kinetics. It was isosterically inhibited by the product of its activity and this inhibition was prevented by heating the extracts at 50 degrees C for 15 min. Its activity was not affected in presence of sodium fluoride, partially inhibited in presence of magnesium chloride and was retained in the freezer for some months.
Beauregard, G; Roufogalis, B D
1979-01-01
Acetylcholinesterase was released from bovine erythrocytes in hypo-osmotic sodium phosphate buffer. Initially, about 30% of the enzyme was released in a soluble lipoprotein form, and further incubation resulted in the progressive release of the enzyme in a particulate form. Solubilization of the acetylcholinesterase in the particulate fraction with Lubrol WX (2 mg/ml) resulted in the loss of all lipids except a non-exchangeable fraction identified as cardiolipin. Addition of a mixture of erythrocyte phospholipids to the soluble forms and to the Lubrol WX-solubilized enzyme resulted in the formation of particulate forms of the enzyme with increased partial specific volume and Stokes radius, and a break in the Arrhenius plot of the enzyme activity around 20 degrees C. The break in the Arrhenius plot was abolished by treatment of a soluble enzyme preparation with 1.8 M salt (NaCl) in phosphate buffer, conditions that allowed the extraction of cardiolipin from the enzyme by chloroform/methanol. Failure of the high-salt treatment to decrease the Stokes radius made it unlikely that the bound cardiolipin formed a boundary layer or annulus around the protein. It is suggested that cardiolipin is bound to the core of the dimeric protein structure, thereby controlling the acetylcholinesterase activity. PMID:475749
Ma, Wai K; Smith, Ben A; Stephenson, Gladys L; Siciliano, Steven D
2009-07-01
Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrial invertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants.
van Vuuren, A J; Appeldoorn, E; Odijk, H; Yasui, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H
1993-01-01
Nucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum (XP), Cockayne's syndrome or PIBIDS, a photosensitive form of the brittle hair disease trichothiodystrophy. Laboratory-induced NER-deficient mutants of cultured rodent cells have been classified into 11 complementation groups (CGs). Some of these have been shown to correspond with human disorders. In cell-free extracts prepared from rodent CGs 1-5 and 11, but not in a mutant from CG6, we find an impaired repair of damage induced in plasmids by UV light and N-acetoxy-acetylaminofluorene. Complementation analysis in vitro of rodent CGs is accomplished by pairwise mixing of mutant extracts. The results show that mutants from groups 2, 3, 5 and XP-A can complement all other CGs tested. However, selective non-complementation in vitro was observed in mutual mixtures of groups 1, 4, 11 and XP-F, suggesting that the complementing activities involved somehow affect each other. Depletion of wild-type human extracts from ERCC1 protein using specific anti-ERCC1 antibodies concomitantly removed the correcting activities for groups 4, 11 and XP-F, but not those for the other CGs. Furthermore, we find that 33 kDa ERCC1 protein sediments as a high mol. wt species of approximately 120 kDa in a native glycerol gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8253091
Picó, Enrique Angulo; López, Carmen; Cruz-Izquierdo, Álvaro; Munarriz, Mercedes; Iruretagoyena, Francisco Javier; Serra, Juan Luis; Llama, María Jesús
2018-05-12
In this work, magnetic cross-linked enzyme aggregates (mCLEAs) of CALB (lipase B from Candida antarctica) were prepared and characterized. Moreover, a method for an easy, sustainable and economic extraction of lipids from nitrogen-starved cells of Chlorella vulgaris var L3 was developed. Then, the extracted lipids (oils and free fatty acids, FFAs) were converted to biodiesel using mCLEAs and chemical acid catalysis. Among several lipid extraction methods, saponification was selected given the amount of wet microalgal biomass it can process per unit of time, its low market value, and because it allows for the use of less toxic solvents. A biodiesel conversion of 80.2 ± 4.4% was obtained by chemical catalysis (1 h at 100°C) using FFAs and methanol as the alkyl donor. However, a biodiesel conversion of more than 90% (3 h at 30°C) was obtained using mCLEAs and methanol. Both chemical and enzymatic catalysts gave biodiesel with similar fatty acid alkyl ester (FAAE) composition. Methanol, at 15% (v/v) or higher concentration, caused a decrease of lipase activity and a concomitant increase in the size of mCLEA aggregates (up to 2 μm), as measured by dynamic light scattering (DLS). The magnetic character of the novel biocatalyst permits its easy recovery and reuse, for at least ten consecutive catalytic cycles (retaining 90% of the initial biodiesel conversion), using mild reaction conditions and environmentally-friendly solvents. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Counter-current carbon dioxide extraction of fat from soy skim
USDA-ARS?s Scientific Manuscript database
This research aims to investigate the use of counter-current carbon dioxide extraction method as a means to reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. Extractions with liquid CO2 at 25°C and 10.34 MPa and supercritical CO2 at 50°C and 25.16 MPa are comp...
Enteromorpha compressa Exhibits Potent Antioxidant Activity
Shanab, Sanaa M. M.; Shalaby, Emad A.; El-Fayoumy, Eman A.
2011-01-01
The green macroalgae, Enteromorpha compressa (Linnaeus) Nees, Ulva lactuca, and E. linza, were seasonally collected from Abu Qir bay at Alexandria (Mediterranean Sea) This work aimed to investigate the seasonal environmental conditions, controlling the green algal growth, predominance, or disappearance and determining antioxidant activity. The freshly collected selected alga (E. compressa) was subjected to pigment analysis (chlorophyll and carotenoids) essential oil and antioxidant enzyme determination (ascorbate oxidase and catalase). The air-dried ground alga was extracted with ethanol (crude extract) then sequentially fractionated by organic solvents of increasing polarity (petroleum ether, chloroform, ethyl acetate, and water). Antioxidant activity of all extracts was assayed using different methods (total antioxidant, DPPH [2, 2 diphenyl-1-picrylhydrazyl], ABTS [2, 2 azino-bis ethylbenzthiazoline-6-sulfonic acid], and reducing power, and β-carotene linoleic acid bleaching methods). The results indicated that the antioxidant activity was concentration and time dependent. Ethyl acetate fraction demonstrated higher antioxidant activity against DPPH method (82.80%) compared to the synthetic standard butylated hydroxyl toluene (BHT, 88.5%). However, the crude ethanolic extract, pet ether, chloroform fractions recorded lower to moderate antioxidant activities (49.0, 66.0, and 78.0%, resp.). Using chromatographic and spectroscopic analyses, an active compound was separated and identified from the promising ethyl acetate fraction. PMID:21869863
Talat, Mahe; Singh, Ashwani Kumar; Srivastava, O N
2011-08-01
In the present study, enzyme urease has been immobilized on amine-functionalized gold nanoparticles (AuNPs). AuNPs were synthesized using natural precursor, i.e., clove extract and amine functionalized through 0.004 M L: -cysteine. Enzyme (urease) was extracted and purified from the vegetable waste, i.e., seeds of pumpkin to apparent homogeneity (sp. activity 353 U/mg protein). FTIR spectroscopy and transmission electron microscopy was used to characterize the immobilized enzyme. The immobilized enzyme exhibited enhanced activity as compared with the enzyme in the solution, especially, at lower enzyme concentration. Based on the evaluation of activity assay of the immobilized enzyme, it was found that the immobilized enzyme was quite stable for about a month and could successfully be used even after eight cycles having enzyme activity of about 47%. In addition to this central composite design (CCD) with the help of MINITAB version 15 Software was utilized to optimize the process variables viz., pH and temperature affecting the enzyme activity upon immobilization on AuNPs. The results predicted by the design were found in good agreement (R2 = 96.38%) with the experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed the individual and cumulative effect of pH and temperature on enzyme activity indicating that the activity increased with the increase of pH up to 7.5 and temperature 75 °C. The effects of each variables represented by main effect plot, 3D surface plot, isoresponse contour plot and optimized plot were helpful in predicting results by performing a limited set of experiments.
Fawole, O A; Amoo, S O; Ndhlala, A R; Light, M E; Finnie, J F; Van Staden, J
2010-02-03
Extracts of seven South African medicinal plants used traditionally for the treatment of pain-related ailments were evaluated. The study was aimed at evaluating medicinal and therapeutic potentials of the investigated traditional medicinal plants. Plant extracts were evaluated for anti-inflammatory activity and other pharmacological properties such as anticholinesterase and antioxidant activities. Phytochemical analysis of total phenolic contents, condensed tannins, gallotannins and flavonoids in the aqueous methanol extracts of the medicinal plants were also carried out. The evaluation of anti-inflammatory activity of 50% methanol (50% MeOH), petroleum ether (PE), dichloromethane (DCM) and ethanol (EtOH) plant extracts was done against cyclooxygenase-1 and -2 (COX-1 and COX-2) enzymes. 50% MeOH, PE, DCM and EtOH extracts were tested for acetylcholinesterase (AChE) inhibition, while 50% MeOH extracts were tested for 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity and ferric-reducing power in the antioxidant assays. Total phenolic compounds, condensed tannins, gallotannins and flavonoids were quantitatively determined using spectrophotometric methods. At the screening assay concentration (0.25 microg/microl), 13 extracts showed good COX-1 inhibitory activity (>50%), while good activity was observed in 15 extracts against COX-2 enzyme. All the extracts of Crinum moorei (bulbs) showed good inhibition against both COX-1 and COX-2 enzymes. Though not significantly different (P=0.05), the highest COX-1 percentage inhibition (100%) was shown by Aloe ferox leaf PE and Colocasia antiquorum tuber DCM extracts, while Colocasia antiquorum tuber PE extract exhibited the highest (92.7%) percentage inhibition against COX-2. Crinum moorei bulb DCM extract showed the lowest EC(50) value (2.9 microg/ml) in the AChE assay. In addition, good to moderate bioactivities were observed in some extracts of Aloe ferox (leaves), Crinum moorei (bulbs) and Pycnostachys reticulata (leaves) in all the assays. The presence and/or amounts of phenolic compounds varied with plant species. The results obtained in this study validate the use of the investigated medicinal plants in South African traditional medicine for pain-related ailments. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Tabei, Yasuo; Yamanishi, Yoshihiro; Kotera, Masaaki
2016-01-01
Motivation: Metabolic pathways are an important class of molecular networks consisting of compounds, enzymes and their interactions. The understanding of global metabolic pathways is extremely important for various applications in ecology and pharmacology. However, large parts of metabolic pathways remain unknown, and most organism-specific pathways contain many missing enzymes. Results: In this study we propose a novel method to predict the enzyme orthologs that catalyze the putative reactions to facilitate the de novo reconstruction of metabolic pathways from metabolome-scale compound sets. The algorithm detects the chemical transformation patterns of substrate–product pairs using chemical graph alignments, and constructs a set of enzyme-specific classifiers to simultaneously predict all the enzyme orthologs that could catalyze the putative reactions of the substrate–product pairs in the joint learning framework. The originality of the method lies in its ability to make predictions for thousands of enzyme orthologs simultaneously, as well as its extraction of enzyme-specific chemical transformation patterns of substrate–product pairs. We demonstrate the usefulness of the proposed method by applying it to some ten thousands of metabolic compounds, and analyze the extracted chemical transformation patterns that provide insights into the characteristics and specificities of enzymes. The proposed method will open the door to both primary (central) and secondary metabolism in genomics research, increasing research productivity to tackle a wide variety of environmental and public health matters. Availability and Implementation: Contact: maskot@bio.titech.ac.jp PMID:27307627
Pan, Yan; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Pook, Peter C K; Er, Hui Meng; Ong, Chin Eng
2011-03-15
Orthosiphon stamineus (OS) has been traditionally used to treat diabetes, kidney and urinary disorders, high blood pressure and bone or muscular pain. To assess the possibility of drug-herb interaction via interference of metabolism, effects of four OS extracts of different polarity and three active constituents (sinensetin, eupatorin and rosmarinic acid) on major human cDNA-expressed cytochrome P450 (CYP) enzymes were investigated. Three substrate-probe based high-performance liquid chromatography (HPLC) assays were established to serve as activity markers for CYP2C9, CYP2D6 and CYP3A4. Our results indicate that OS extracts and constituents exhibited differential modulatory effects on different CYPs. While none of the OS components showed significant inhibition on CYP2C9, eupatorin strongly and uncompetitively inhibited CYP2D6 activity with a K(i) value of 10.2μM. CYP3A4 appeared to be the most susceptible enzyme to OS inhibitory effects. It was moderately inhibited by OS dichloromethane and petroleum ether extract with mixed-type and noncompetitive inhibitions (K(i)=93.7 and 44.9μg/mL), respectively. Correlation study indicated that the inhibition was accounted for by the presence of eupatorin in the extracts. When IC(50) values of these extracts were expressed in volume per dose unit to reflect inhibitory effect at recommended human doses from commercially available products, moderate inhibition was also observed. In addition, CYP3A4 was strongly and noncompetitively inhibited by eupatorin alone, with a K(i) value of 9.3μM. These findings suggest that co-administration of OS products, especially those with high eupatorin content, with conventional drugs may have the potential to cause drug-herb interactions involving inhibition of major CYP enzymes. 2011 Elsevier Ireland Ltd. All rights reserved.
Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals
Jarboe, Laura R.; Liu, Ping; Kautharapu, Kumar Babu; Ingram, Lonnie O.
2012-01-01
Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene. PMID:24688665
Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.
Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine
2011-01-15
The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.
Khan, Haseena Banu Hedayathullah; Vinayagam, Kaladevi Siddhi; Palanivelu, Shanthi; Panchanadham, Sachdanandam
2012-12-01
To explore the protective effect of the drug Semecarpus anacardium (S. anacardium)on altered glucose metabolism in diabetic rats. Type 2 diabetes mellitus was induced by feeding rats with high fat diet followed by single intraperitoneal injection of streptozotocin (STZ) (35 mg/kg b.w.). Seven days after STZ induction, diabetic rats received nut milk extract of S. anacardium Linn. nut milk extract orally at a dosage of 200 mg/kg daily for 4 weeks. The effect of nut milk extract of S. anacardium on blood glucose, plasma insulin, glucose metabolising enzymes and GSK were studied. Treatment with SA extract showed a significant reduction in blood glucose levels and increase in plasma insulin levels and also increase in HOMA - β and decrease in HOMA -IR. The drug significantly increased the activity of glycolytic enzymes and glucose-6-phosphate dehydrogenase activity and increased the glycogen content in liver of diabetic rats while reducing the activities of gluconeogenic enzymes. The drug also effectively ameliorated the alterations in GSK-3 mRNA expression. Overall, the present study demonstrates the possible mechanism of glucose regulation of S. anacardium suggestive of its therapeutic potential for the management of diabetes mellitus. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Bel-Rhlid, Rachid; Crespy, Vanessa; Pagé-Zoerkler, Nicole; Nagy, Kornél; Raab, Thomas; Hansen, Carl-Erik
2009-09-09
Rosmarinic acid (RA) was identified as one of the main components of rosemary extracts and has been ascribed to a number of health benefits. Several studies suggested that after ingestion, RA is metabolized by gut microflora into caffeic acid and derivatives. However, only limited information on the microorganisms and enzymes involved in this biotransformation is available. In this study, we investigated the hydrolysis of RA from rosemary extract with enzymes and a probiotic bacterium Lactobacillus johnsonii NCC 533. Chlorogenate esterase from Aspergillus japonicus (0.02 U/mg) hydrolyzed 90% of RA (5 mg/mL) after 2 h at pH 7.0 and 40 degrees C. Complete hydrolysis of RA (5 mg/mL) was achieved with a preparation of L. johnsonii (25 mg/mL, 3.3 E9 cfu/g) after 2 h of incubation at pH 7.0 and 37 degrees C. No hydrolysis of RA was observed after the passage of rosemary extract through the gastrointestinal tract model (GI model). Thus, RA is hydrolyzed neither chemically under the conditions of the GI model (temperature, pH, and bile salts) nor by secreted enzymatic activity (lipase and pancreatic enzymes). The addition of L. johnsonii cells to rosemary extract in the GI model resulted in substantial hydrolysis of RA (up to 99%).
Liu, Yu; Zhang, Yanfang; Jiang, Wei; Wang, Jing; Pan, Xiaoming; Wu, Wei; Cao, Minjie; Dong, Ping; Liang, Xingguo
2017-02-01
Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.
Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms.
Ellithey, Mona S; Lall, Namrita; Hussein, Ahmed A; Meyer, Debra
2014-02-25
Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms.
Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms
2014-01-01
Background Cancer and HIV/AIDS are two of the greatest public health and humanitarian challenges facing the world today. Infection with HIV not only weakens the immune system leading to AIDS and increasing the risk of opportunistic infections, but also increases the risk of several types of cancer. The enormous biodiversity of marine habitats is mirrored by the molecular diversity of secondary metabolites found in marine animals, plants and microbes which is why this work was designed to assess the anti-HIV and cytotoxic activities of some marine organisms of the Red Sea. Methods The lipophilic fractions of methanolic extracts of thirteen marine organisms collected from the Red Sea (Egypt) were screened for cytotoxicity against two human cancer cell lines; leukaemia (U937) and cervical cancer (HeLa) cells. African green monkey kidney cells (Vero) were used as normal non-malignant control cells. The extracts were also tested for their inhibitory activity against HIV-1 enzymes, reverse transcriptase (RT) and protease (PR). Results Cytotoxicity results showed strong activity of the Cnidarian Litophyton arboreum against U-937 (IC50; 6.5 μg/ml ±2.3) with a selectivity index (SI) of 6.45, while the Cnidarian Sarcophyton trochliophorum showed strong activity against HeLa cells (IC50; 5.2 μg/ml ±1.2) with an SI of 2.09. Other species showed moderate to weak cytotoxicity against both cell lines. Two extracts showed potent inhibitory activity against HIV-1 protease; these were the Cnidarian jelly fish Cassiopia andromeda (IC50; 0.84 μg/ml ±0.05) and the red algae Galaxura filamentosa (2.6 μg/ml ±1.29). It is interesting to note that the most active extracts against HIV-1 PR, C. andromeda and G. filamentosa showed no cytotoxicity in the three cell lines at the highest concentration tested (100 μg/ml). Conclusion The strong cytotoxicity of the soft corals L. arboreum and S. trochliophorum as well as the anti-PR activity of the jelly fish C. andromeda and the red algae G. filamentosa suggests the medicinal potential of crude extracts of these marine organisms. PMID:24568567
Ambrus, A; Füzesi, I; Susán, M; Dobi, D; Lantos, J; Zakar, F; Korsós, I; Oláh, J; Beke, B B; Katavics, L
2005-01-01
This paper reports the results of studies performed to investigate the potential of applying thin layer chromatography (TLC) detection in combination with selected extraction and cleanup methods, for providing an alternative cost-effective analytical procedure for screening and confirmation of pesticide residues in plant commodities. The extraction was carried out with ethyl acetate and an on-line extraction method applying an acetone-dichloromethane mixture. The extracts were cleaned up with SX-3 gel, an adsorbent mixture of active carbon, magnesia, and diatomaceous earth, and on silica micro cartridges. The Rf values of 118 pesticides were tested in eleven elution systems with UV, and eight biotest methods and chemical detection reagents. Cabbage, green peas, orange, and tomatoes were selected as representative sample matrices for fruits and vegetables, while maize, rice, and wheat represented cereal grains. As an internal quality control measure, marker compounds were applied on each plate to verify the proper elution and detection conditions. The Rf values varied in the different elution systems. The best separation (widest Rf range) was achieved with silica gel (SG)--ethyl acetate (0.05-0.7), SG--benzene, (0.02-0.7) and reverse phase RP-18 F-254S layer with acetone: methanol: water/30:30:30 (v/v) (0.1-0.8). The relative standard deviation of Rf values (CV(Rf)) within laboratory reproducibility was generally less than 20%, except below 0.2 Rf, where the CVRf rapidly increased with decreasing Rf values. The fungi spore inhibition, chloroplast inhibition, and enzyme inhibition were found most suitable for detection of pesticides primarily for confirming their identity or screening for known substances. Their use for determination of pesticide residues in samples of unknown origin is not recommended.
Maruthamuthu, Mukil; van Elsas, Jan Dirk
2017-01-01
Enzyme discovery is a promising approach to aid in the deconstruction of recalcitrant plant biomass in an industrial process. Novel enzymes can be readily discovered by applying metagenomics on whole microbiomes. Our goal was to select, examine, and characterize eight novel glycoside hydrolases that were previously detected in metagenomic libraries, to serve biotechnological applications with high performance. Here, eight glycosyl hydrolase family candidate genes were selected from metagenomes of wheat straw-degrading microbial consortia using molecular cloning and subsequent gene expression studies in Escherichia coli. Four of the eight enzymes had significant activities on either p NP-β-d-galactopyranoside, p NP-β-d-xylopyranoside, p NP-α-l-arabinopyranoside or p NP-α-d-glucopyranoside. These proteins, denoted as proteins 1, 2, 5 and 6, were his-tag purified and their nature and activities further characterized using molecular and activity screens with the p NP-labeled substrates. Proteins 1 and 2 showed high homologies with (1) a β-galactosidase (74%) and (2) a β-xylosidase (84%), whereas the remaining two (5 and 6) were homologous with proteins reported as a diguanylate cyclase and an aquaporin, respectively. The β-galactosidase- and β-xylosidase-like proteins 1 and 2 were confirmed as being responsible for previously found thermo-alkaliphilic glycosidase activities of extracts of E. coli carrying the respective source fosmids. Remarkably, the β-xylosidase-like protein 2 showed activities with both p NP-Xyl and p NP-Ara in the temperature range 40-50 °C and pH range 8.0-10.0. Moreover, proteins 5 and 6 showed thermotolerant α-glucosidase activity at pH 10.0. In silico structure prediction of protein 5 revealed the presence of a potential "GGDEF" catalytic site, encoding α-glucosidase activity, whereas that of protein 6 showed a "GDSL" site, encoding a 'new family' α-glucosidase activity. Using a rational screening approach, we identified and characterized four thermo-alkaliphilic glycosyl hydrolases that have the potential to serve as constituents of enzyme cocktails that produce sugars from lignocellulosic plant remains.
de Sá-Nakanishi, Anacharis B.; Soares, Andréia A.; de Oliveira, Andrea Luiza; Fernando Comar, Jurandir; Peralta, Rosane M.; Bracht, Adelar
2014-01-01
Dysfunction of the mitochondrial respiratory chain and increased oxidative stress is a striking phenomenon in the brain of aged individuals. For this reason there has been a constant search for drugs and natural products able to prevent or at least to mitigate these problems. In the present study the effects of an aqueous extract of Agaricus blazei, a medicinal mushroom, on the oxidative state and on the functionality of mitochondria from the brain of old rats (21 months) were conducted. The extract was administered intragastrically during 21 days at doses of 200 mg/kg. The administration of the A. blazei extract was protective to the brain of old rats against oxidative stress by decreasing the lipid peroxidation levels and the reactive oxygen species content and by increasing the nonenzymic and enzymic antioxidant capacities. Administration of the A. blazei extract also increased the activity of several mitochondrial respiratory enzymes and, depending on the substrate, the mitochondrial coupled respiration. PMID:24876914
de Sá-Nakanishi, Anacharis B; Soares, Andréia A; de Oliveira, Andrea Luiza; Comar, Jurandir Fernando; Peralta, Rosane M; Bracht, Adelar
2014-01-01
Dysfunction of the mitochondrial respiratory chain and increased oxidative stress is a striking phenomenon in the brain of aged individuals. For this reason there has been a constant search for drugs and natural products able to prevent or at least to mitigate these problems. In the present study the effects of an aqueous extract of Agaricus blazei, a medicinal mushroom, on the oxidative state and on the functionality of mitochondria from the brain of old rats (21 months) were conducted. The extract was administered intragastrically during 21 days at doses of 200 mg/kg. The administration of the A. blazei extract was protective to the brain of old rats against oxidative stress by decreasing the lipid peroxidation levels and the reactive oxygen species content and by increasing the nonenzymic and enzymic antioxidant capacities. Administration of the A. blazei extract also increased the activity of several mitochondrial respiratory enzymes and, depending on the substrate, the mitochondrial coupled respiration.
Bayar, Nadia; Friji, Marwa; Kammoun, Radhouane
2018-02-15
In this study, pectin was isolated from Opuntia ficus indica (OFI) cladodes after removing mucilage using the xylanase and cellulase. The process variables were optimized by the Box Behnken design with three factors at three levels. The optimal extraction condition obtained was: liquid to solid (LS), cellulase to xylanase and enzymes to matter ratios of 22ml/g, 2:1U/U and 4U/g, respectively. The simulated extraction yield of 17.91% was validated by the experimental result (16.67±0.30). The enzyme-extracted pectin from OFI cladodes (EAEPC) was low methylated, with a high uronic acid content, a water and oil holding capacity of 5.42g/g and 1.23g/g, respectively, a good foam and emulsion stability and important DPPH radical scavenging activity. Both the OFI cladodes and enzymatic process present promising alternatives to traditional sources and extraction processes of pectin, respectively. EAEPC thus represents a promising additive in food industries. Copyright © 2017. Published by Elsevier Ltd.
Pyrimidine Biosynthesis in Lactobacillus leichmannii
Hutson, Judith Y.; Downing, Mancourt
1968-01-01
Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented. PMID:5686000
EXTRACTION AND PHYSICO-CHEMICAL STUDIES OF DIASTASE-LIKE ENZYME FROM PIPER BETLE PETIOLES: PART 1
Ramasarma, G.V.S; Dutta, Sadhan Kumar
1995-01-01
Petioles of the plant piper betle-bengal variety have been subjected for extraction employing standard procedure and the crude extract obtained has been evaluated for its diastase like activity and other physico-chemical properties to investigate further its possible biological and pharmacological activities. PMID:22556729
Babar Hassan; Sohail Ahmed; Grant Kirker; Mark E Mankowski; Muhammad Misbah-ul-Haq
2018-01-01
Heterotermes indicola (Wasmann) (Blattodea: Rhinotermitidae) is a species of subterranean termite that is a destructive pest of wood and wood products in Pakistan. This study evaluated the antioxidant and antienzyme potential of heartwood extractives against H. indicola. Heartwood extractives of four durable wood species, Tectona grandis...
Li, Xiao-Juan; Li, Zhu-Gang; Wang, Xun; Han, Jun-Yan; Zhang, Bo; Fu, Yu-Jie; Zhao, Chun-Jian
2016-12-01
Cavitation-accelerated aqueous enzymatic extraction (CAEE) of seed oil from Cucurbita pepo was performed. An enzyme cocktail comprised of cellulose, pectinase and proteinase can work synergistically in releasing the oil. The CAEE extraction conditions were optimized by a Plackett-Burman design followed by a central composite methodology. A maximal extraction yield of 58.06% was achieved under optimal conditions of vacuum degree -0.07, enzyme amount 1.05% and extraction time 69min. As compared to soxhlet extraction (SE)-derived oil, CAEE-derived oil exhibited similar physical properties and better oxidation stability. In addition, chemical composition analyzing showed that the content of linoleic acid obtained by CAEE (47.67%) was higher than that of SE (44.51%). Moreover, the IC50 of oil obtained by CAEE and SE, as measured by α-amylase inhibition assay, were 40.68μg/mL and 45.46μg/mL. All results suggest that CAEE represents an excellent alternative protocol for production of oil from oil-bearing materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzymes: principles and biotechnological applications
Robinson, Peter K.
2015-01-01
Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249
Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666
Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.
2013-01-01
Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711
Rollinger, Judith M.; Schuster, Daniela; Baier, Elisabeth; Ellmerer, Ernst P.; Langer, Thierry; Stuppner, Hermann
2012-01-01
A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE, EC 3.1.1.7) inhibitory agent in a Magnolia x soulangiana extract using a microplate enzyme assay with Ellman’s reagent. This permitted the isolation of the alkaloids taspine (1) and (−)-asimilobine (2), which were detected for the first time in this species. Compound 1 showed a significantly higher effect on AChE than the positive control galanthamine and selectively inhibited the enzyme in a long-lasting and concentration-dependent fashion with an IC50 value of 0.33 ± 0.07 μM. Extensive molecular docking studies were performed with human and Torpedo californica-AChE employing Gold software to rationalize the binding interaction. The results suggested ligand 1 to bind in an alternative binding orientation when compared to galanthamine. While this is located in close vicinity to the catalytic amino acid triad, the 1–AChE complex was found to be stabilized by (i) sandwich-like π-stacking interactions between the planar aromatic ligand (1) and the Trp84 and Phe330 of the enzyme, (ii) an esteratic site anchoring with the amino side chain, and (iii) a hydrogen-bonding network. PMID:16989531
Wangchuk, Phurpa; Keller, Paul A; Pyne, Stephen G; Taweechotipatr, Malai
2013-07-30
Seven studied medicinal plants; Aconitum laciniatum, Ajania nubigena, Codonopsis bhutanica, Corydalis crispa, Corydalis dubia, Meconopsis simplicifolia and Pleurospermum amabile, are currently used in the Bhutanese Traditional Medicine (BTM) for the management of different types of disorders including the diseases that bore relevance to various inflammatory conditions. This study aimed to evaluate the inhibition of TNF-α production in LPS-activated THP-1 monocytic cells by the crude extracts of seven selected Bhutanese medicinal plants. It is expected to; (a) generate a scientific basis for their use in the BTM and (b) form a basis for prioritization of the seven plants for further phytochemical and anti-inflammatory studies. Seven plants were selected using an ethno-directed bio-rational approach and their crude extracts were prepared using four different solvents (methanol, hexane, dichloromethane and chloroform). The TNF-α inhibitory activity of these extracts was determined by cytokine-specific sandwich quantitative enzyme-linked immunosorbent assays (ELISAs). The results were quantified statistically and the statistical significance were evaluated by GraphPad Prism version 5.01 using Student's t-test with one-tailed distribution. A p-value ≤0.05 was considered statistically significant. Of the seven plants studied, the crude extracts of six of them inhibited the production of pro-inflammatory cytokine, TNF-α in LPS-activated THP-1 monocytic cells. Amongst the six plants, Corydalis crispa gave the best inhibitory activity followed by Pleurospermum amabile, Ajania nubigena, Corydalis dubia, Meconopsis simplicifolia and Codonopsis bhutanica. Of the 13 extracts that exhibited statistically significant TNF-α inhibitory activity (p<0.05; p<0.01), five of them showed very strong inhibition when compared to the DMSO control and RPMI media. Six medicinal plants studied here showed promising TNF-α inhibitory activity. These findings rationalize the traditional use of these selected medicinal plants in the BTM as an individual plant or in combination with other ingredients for the treatment of disorders bearing relevance to the inflammatory conditions. The results forms a good preliminary basis for the prioritization of candidate plant species for an in-depth phytochemical study and anti-inflammatory activity screening of the pure compounds contained within those seven plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Middelkoop, T B; Labadie, R P
1985-01-01
Extracts of S. asoca bark and pure compounds isolated from the bark were tested for properties that might inhibit the conversion of arachidonic acid by the PGH2 synthetase. They were assayed spectrophotometrically with adrenaline as cofactor. Methanol- and ethyl acetate extracts inhibited the conversion. The observed inhibition was confirmed in an oxygraphic assay. Two procyanidin dimers from the ethyl acetate extract showed enzyme catalyzed oxidation in our assay. The ether extract of the bark was also found to contain yet unknown substances which were capable of being oxidised by the PGH2 synthetase. The combined action of the components of the bark may explain the mode of action of the drug Asoka Aristha, the main ingredient of which is the bark of S. asoca. The drug is traditionally used in Sri Lanka to treat menorrhagia.
Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir.
Prado, Maria Rosa Machado; Boller, Christian; Zibetti, Rosiane Guetter Mello; de Souza, Daiany; Pedroso, Luciana Lopes; Soccol, Carlos Ricardo
2016-11-01
The search for new bioactive molecules is a driving force for research pharmaceutical industries, especially those molecules obtained from fermentation. The molecules possessing angiogenic and anti-inflammatory attributes have attracted attention and are the focus of this study. Angiogenic activity from kefir polysaccharide extract, via chorioallantoic membrane assay, exhibited a pro-angiogenic effect compared with vascular endothelial factor (pro-angiogenic) and hydrocortisone (anti-angiogenic) activity as standards with an EC50 of 192ng/mL. In terms of anti-inflammatory activity determined via hyaluronidase enzyme assay, kefir polysaccharide extract inhibited the enzyme with a minimal activity of 2.08mg/mL and a maximum activity of 2.57mg/mL. For pharmaceutical purposes, kefir polysaccharide extract is considered to be safe because it does not inhibit VERO cells in cytotoxicity assays. Copyright © 2016 Elsevier Inc. All rights reserved.
Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong
2014-02-24
Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.
Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani
2013-01-01
Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.
Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani
2013-01-01
Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID:23638112
Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O.
2016-01-01
Background/Aim: Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. Materials and Methods: The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe2+-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*+) scavenging activities of the extract were determined using spectrophotometric methods. Results: Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe2+-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe2+-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*+. Conclusion: Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases. PMID:27104032
Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom
2015-01-01
Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.
Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura
2015-01-01
Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with K m values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The K m values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control. PMID:26600471
Fernandes, Chantal; Mendes, Vitor; Costa, Joana; Empadinhas, Nuno; Jorge, Carla; Lamosa, Pedro; Santos, Helena; da Costa, Milton S.
2010-01-01
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis. PMID:20061481
Scheller, Philipp N; Nestl, Bettina M
2016-12-01
Recently imine reductases (IREDs) have emerged as promising biocatalysts for the synthesis of a wide variety of chiral amines. To promote their application, many novel enzymes were reported, but only a few of them were biochemically characterized. To expand the available knowledge about IREDs, we report the characterization of two recently identified (R)-selective IREDs from Streptosporangium roseum DSM43021 and Streptomyces turgidiscabies and one (S)-selective IRED from Paenibacillus elgii. The biochemical properties including pH profiles, temperature stabilities, and activities of the enzymes in the presence of organic solvents were investigated. All three enzymes showed relatively broad pH spectra with maximum activities in the neutral range. While the (R)-selective IREDs displayed only limited thermostabilities, the (S)-selective enzyme was found to be the most thermostable IRED known to date. The activity of this IRED proved also to be most tolerant towards the investigated co-solvents DMSO and methanol. We further studied activities and selectivities towards a panel of cyclic imine model substrates to compare these enzymes with other IREDs. In biotransformations, IREDs showed high conversions and the amine products were obtained with up to 99 % ee. By recording the kinetic constants for these compounds, substrate preferences of the IREDs were investigated and it was shown that the (S)-IRED favors the transformation of bulky imines contrary to the (R)-selective IREDs. Finally, novel exocyclic imine substrates were tested and also high activities and selectivities detected.
Directed evolution: tailoring biocatalysts for industrial applications.
Kumar, Ashwani; Singh, Suren
2013-12-01
Current challenges and promises of white biotechnology encourage protein engineers to use a directed evolution approach to generate novel and useful biocatalysts for various sets of applications. Different methods of enzyme engineering have been used in the past in an attempt to produce enzymes with improved functions and properties. Recent advancement in the field of random mutagenesis, screening, selection and computational design increased the versatility and the rapid development of enzymes under strong selection pressure with directed evolution experiments. Techniques of directed evolution improve enzymes fitness without understanding them in great detail and clearly demonstrate its future role in adapting enzymes for use in industry. Despite significant advances to date regarding biocatalyst improvement, there still remains a need to improve mutagenesis strategies and development of easy screening and selection tools without significant human intervention. This review covers fundamental and major development of directed evolution techniques, and highlights the advances in mutagenesis, screening and selection methods with examples of enzymes developed by using these approaches. Several commonly used methods for creating molecular diversity with their advantages and disadvantages including some recently used strategies are also discussed.
Watanabe, Eiki; Miyake, Shiro
2018-06-05
Easy-to-use commercial kit-based enzyme-linked immunosorbent assays (ELISAs) have been used to detect neonicotinoid dinotefuran, clothianidin and imidacloprid in Chinese chives, which are considered a troublesome matrix for chromatographic techniques. Based on their high water solubility, water was used as an extractant. Matrix interference could be avoided substantially just diluting sample extracts. Average recoveries of insecticides from spiked samples were 85-113%, with relative standard deviation of <15%. The concentrations of insecticides detected from the spiked samples with the proposed ELISA methods correlated well with those by the reference high-performance liquid chromatography (HPLC) method. The residues analyzed by the ELISA methods were consistently 1.24 times that found by the HPLC method, attributable to loss of analyte during sample clean-up for HPLC analyses. It was revealed that the ELISA methods can be applied easily to pesticide residue analysis in troublesome matrix such as Chinese chives.
McElhiney, J; Lawton, L A; Porter, A J
2000-12-01
Single-chain antibody fragments against the cyanobacterial hepatotoxin microcystin-LR were isolated from a naive human phage display library and expressed in Escherichia coli. In competition enzyme-linked immunosorbent assay (ELISA), the most sensitive antibody clone selected from the library detected free microcystin-LR with an IC(50) value of 4 microM. It was found to cross react with three other microcystin variants - microcystin-RR, microcystin-LW and microcystin-LF - and detected microcystins in extracts of the cyanobacterium Microcystis aeruginosa, found to contain the toxins by high-performance liquid chromatography (HPLC). The quantification of microcystins in these extracts by ELISA and HPLC showed good correlation. Although the antibody isolated in this study was considerably less sensitive than the polyclonal and monoclonal antibodies already available for microcystin detection, phage display technology represents a cheaper, more rapid alternative for the production of anti-microcystin antibodies than the methods currently in use.
Barba, Francisco José; Criado, María Nieves; Belda-Galbis, Clara Miracle; Esteve, María José; Rodrigo, Dolores
2014-04-01
Response surface methodology was used to evaluate the optimal high pressure processing treatment (300-500 MPa, 5-15 min) combined with Stevia rebaudiana (Stevia) addition (0-2.5% (w/v)) to guarantee food safety while maintaining maximum retention of nutritional properties. A fruit extract matrix was selected and Listeria monocytogenes inactivation was followed from the food safety point of view while polyphenoloxidase (PPO) and peroxidase (POD) activities, total phenolic content (TPC) and antioxidant capacity (TEAC and ORAC) were studied from the food quality point of view. A combination of treatments achieved higher levels of inactivation of L. monocytogenes and of the oxidative enzymes, succeeding in completely inactivating POD and also increasing the levels of TPC, TEAC and ORAC. A treatment of 453 MPa for 5 min with a 2.5% (w/v) of Stevia succeeded in inactivating over 5 log cycles of L. monocytogenes and maximizing inactivation of PPO and POD, with the greatest retention of bioactive components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vieira, Elsa; Brandão, Tiago; Ferreira, Isabel M P L V O
2013-09-18
The present work evaluates the influence of serial yeast repitching on nucleotide composition of brewer's spent yeast extracts produced without addition of exogenous enzymes. Two procedures for disrupting cell walls were compared, and the conditions for low-cost and efficient RNA hydrolysis were selected. A HILIC methodology was validated for the quantification of nucleotides and nucleosides in yeast extracts. Thirty-seven samples of brewer's spent yeast ( Saccharomyces pastorianus ) organized according to the number of serial repitchings were analyzed. Nucleotides accounted for 71.1-88.2% of the RNA products; 2'AMP was the most abundant (ranging between 0.08 and 2.89 g/100 g dry yeast). 5'GMP content ranged between 0.082 and 0.907 g/100 g dry yeast. The sum of 5'GMP, 5'IMP, and 5'AMP represented between 25 and 32% of total nucleotides. This works highlights for the first time that although serial repitching influences the content of monophosphate nucleotides and nucleosides, the profiles of these RNA hydrolysis products are not affected.
Ifie, Idolo; Marshall, Lisa J; Ho, Peter; Williamson, Gary
2016-06-22
Three varieties of Hibiscus sabdariffa were analyzed for their phytochemical content and inhibitory potential on carbohydrate-digesting enzymes as a basis for selecting a variety for wine production. The dark red variety was chosen as it was highest in phenolic content and an aqueous extract partially inhibited α-glucosidase (maltase), with delphinidin 3-O-sambubioside, cyanidin 3-O-sambubioside, and 3-O-caffeoylquinic acid accounting for 65% of this activity. None of the varieties significantly inhibited α-amylase. Regarding Hibiscus sabdariffa wine, the effect of fermentation temperature (20 and 30 °C) on the physicochemical, phytochemical, and aroma composition was monitored over 40 days. The main change in phytochemical composition observed was the hydrolysis of 3-O-caffeolquinic acid and the concomitant increase of caffeic acid irrespective of fermentation temperature. Wine fermented at 20 °C was slightly more active for α-glucosidase inhibition with more fruity aromas (ethyl octanoate), but there were more flowery notes (2-phenylethanol) at 30 °C.
Gossmann, Toni I.; Ziegler, Mathias
2014-01-01
NAD is not only an important cofactor in redox reactions but has also received attention in recent years because of its physiological importance in metabolic regulation, DNA repair and signaling. In contrast to the redox reactions, these regulatory processes involve degradation of NAD and therefore necessitate a constant replenishment of its cellular pool. NAD biosynthetic enzymes are common to almost all species in all clades, but the number of NAD degrading enzymes varies substantially across taxa. In particular, vertebrates, including humans, have a manifold of NAD degrading enzymes which require a high turnover of NAD. As there is currently a lack of a systematic study of how natural selection has shaped enzymes involved in NAD metabolism we conducted a comprehensive evolutionary analysis based on intraspecific variation and interspecific divergence. We compare NAD biosynthetic and degrading enzymes in four eukaryotic model species and subsequently focus on human NAD metabolic enzymes and their orthologs in other vertebrates. We find that the majority of enzymes involved in NAD metabolism are subject to varying levels of purifying selection. While NAD biosynthetic enzymes appear to experience a rather high level of evolutionary constraint, there is evidence for positive selection among enzymes mediating NAD-dependent signaling. This is particularly evident for members of the PARP family, a diverse protein family involved in DNA damage repair and programmed cell death. Based on haplotype information and substitution rate analysis we pinpoint sites that are potential targets of positive selection. We also link our findings to a three dimensional structure, which suggests that positive selection occurs in domains responsible for DNA binding and polymerization rather than the NAD catalytic domain. Taken together, our results indicate that vertebrate NAD metabolism is still undergoing functional diversification. PMID:25084685
Gossmann, Toni I; Ziegler, Mathias
2014-11-01
NAD is not only an important cofactor in redox reactions but has also received attention in recent years because of its physiological importance in metabolic regulation, DNA repair and signaling. In contrast to the redox reactions, these regulatory processes involve degradation of NAD and therefore necessitate a constant replenishment of its cellular pool. NAD biosynthetic enzymes are common to almost all species in all clades, but the number of NAD degrading enzymes varies substantially across taxa. In particular, vertebrates, including humans, have a manifold of NAD degrading enzymes which require a high turnover of NAD. As there is currently a lack of a systematic study of how natural selection has shaped enzymes involved in NAD metabolism we conducted a comprehensive evolutionary analysis based on intraspecific variation and interspecific divergence. We compare NAD biosynthetic and degrading enzymes in four eukaryotic model species and subsequently focus on human NAD metabolic enzymes and their orthologs in other vertebrates. We find that the majority of enzymes involved in NAD metabolism are subject to varying levels of purifying selection. While NAD biosynthetic enzymes appear to experience a rather high level of evolutionary constraint, there is evidence for positive selection among enzymes mediating NAD-dependent signaling. This is particularly evident for members of the PARP family, a diverse protein family involved in DNA damage repair and programmed cell death. Based on haplotype information and substitution rate analysis we pinpoint sites that are potential targets of positive selection. We also link our findings to a three dimensional structure, which suggests that positive selection occurs in domains responsible for DNA binding and polymerization rather than the NAD catalytic domain. Taken together, our results indicate that vertebrate NAD metabolism is still undergoing functional diversification. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.
1994-01-01
Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.
St Laurent, G; Yoshie, O; Floyd-Smith, G; Samanta, H; Sehgal, P B; Lengyel, P
1983-05-01
(2'-5')(A)n synthetase and RNAase L (a latent endoribonuclease) are among the mediators of interferon action. The product of (2'-5')(A)n synthetase (i.e., (2'-5')(A)n) binds, and thereby activates RNAase L. Interferons induce in Ehrlich ascites tumor (EAT) cells two mRNAs (sizes 1.5 kb and 3.8 kb), which can be translated in Xenopus oocytes into (2'-5')(A)n synthetases of 20,000 to 30,000 daltons and 85,000 to 100,000 daltons, respectively. (2'-5')(A)n synthetases of corresponding sizes are induced by interferons in EAT cells. In the cell extract the bulk of the larger enzyme is in the cytoplasmic fraction, and the bulk of the smaller one in the nuclear fraction. The only known function of (2'-5')(A)n is the activation of RNAase L, and RNAase L can be selectively crosslinked to a (2'-5')(A)n derivative in a cytoplasmic extract from EAT cells. The same (2'-5')(A)n derivative can be crosslinked to several proteins in the nuclear extract of EAT cells, and some of these proteins are induced by interferon.
Kunyanga, Catherine N; Imungi, Jasper K; Okoth, Michael W; Biesalski, Hans K; Vadivel, Vellingiri
2011-08-01
The present study evaluated the flavonoid content, antioxidant as well as type II diabetes-related enzyme inhibition activities of ethanolic extract of certain raw and traditionally processed indigenous food ingredients including cereals, legumes, oil seeds, tubers, vegetables and leafy vegetables, which are commonly consumed by vulnerable groups in Kenya. The vegetables exhibited higher flavonoid content (50-703 mg/100 g) when compared with the grains (47-343 mg/100 g). The ethanolic extract of presently studied food ingredients revealed 33-93% DPPH radical scavenging capacity, 486-6,389 mmol Fe(II)/g reducing power, 19-43% α-amylase inhibition activity and 14-68% α-glucosidase inhibition activity. Among the different food-stuffs, the drumstick and amaranth leaves exhibited significantly higher flavonoid content with excellent functional properties. Roasting of grains and cooking of vegetables were found to be suitable processing methods in preserving the functional properties. Hence, such viable processing techniques for respective food samples will be considered in the formulation of functional supplementary foods for vulnerable groups in Kenya.
Jia, Zhiyuan; Sukker, Issa; Müller, Mareike; Schönherr, Holger
2018-02-14
This work reports on a new approach to rapidly and selectively detect and discriminate enzymes of pathogenic from those of nonpathogenic bacteria using a patterned autonomously reporting hydrogel on a transparent support, in which the selectivity has been encoded by the pattern shape to enable facile detection by a color change at one single wavelength. In particular, enzyme-responsive chitosan hydrogel layers that report the presence of the enzymes β-glucuronidase (β-Gus) and β-galactosidase (β-Gal), produced by the nonvirulent Escherichia coli K12 and the food-borne biosafety level 3 pathogen enterohemorrhagic E. coli, respectively, via the blue color of an indigo dye were patterned by two complementary strategies. The comparison of the functionalization of patterned chitosan patches on a solid support with two chromogenic substrates on one hand and the area-selective conjugation of the substrates on the other hand showed that the two characteristic enzymes could indeed be rapidly and selectively discriminated. The limits of detection of the highly stable sensing layers for an observation time of 60 min using a spectrophotometer correspond to enzyme concentrations of β-Gus and β-Gal of ≤5 and ≤3 nM, respectively, and to ≤62 and ≤33 nM for bare eye detection in nonoptimized sensor patches. These results confirm the applicability of this approach, which is compatible with the simple measurement of optical density at one single wavelength only as well as with parallel, multiplexed detection, to differentiate the enzymes secreted by a highly pathogenic E. coli from a nonpathogenic E. coli on the basis of specifically secreted enzymes. Hence, a general approach for the rapid and selective detection of enzymes of different bacterial species for potential applications in food safety as well as point-of-care microbiological diagnostics is described.
Small molecule inhibitors of HCV replication from Pomegranate
NASA Astrophysics Data System (ADS)
Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra
2014-06-01
Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.
Vagiri, Michael; Jensen, Martin
2017-02-15
Aronia melanocarpa berries are a rich source of anthocyanins and its pomace, a by-product of juice processing, could be efficiently used for extraction of natural colours for the food industry. This study evaluated the influence blanching, freezing, maceration temperatures (2°C, 50°C) and enzyme treatments before juice pressing on the yield and anthocyanin composition of both juice and pomace. Total anthocyanin levels in pomace were affected mostly by enzyme treatment followed by maceration temperature. The pre-heating of the mash prior to processing increased juice yield and retention of anthocyanins in the pomace. Cold maceration of frozen berries without enzyme addition gave the highest concentrations of anthocyanins in the pomace, and both cold and hot maceration of fresh unblanched berries with enzyme the lowest. The results support future exploitation of natural colours from pomace side streams of Aronia, thus increasing competitiveness of Aronia berry production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diaz, Ana Belen; Moretti, Marcia Maria de Souza; Bezerra-Bussoli, Carolina; Carreira Nunes, Christiane da Costa; Blandino, Ana; da Silva, Roberto; Gomes, Eleni
2015-06-01
A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast®. The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment. Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial β-glucosidase. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oliver, Christine M; Mawson, Raymond; Melton, Laurence D; Dumsday, Geoff; Welch, Jessica; Sanguansri, Peerasak; Singh, Tanoj K; Augustin, Mary Ann
2014-10-13
The consequences of ultrasonic pre-treatment using low (40 kHz) and medium (270 kHz) frequency (40 kHz followed by 270 kHz) on the degradation of wheat chaff (8 g 100ml(-1) acetate buffer, pH 5) were evaluated. In addition, the effects of the ultrasonic pre-treatment on the degradation of the wheat chaff when subsequently exposed to enzyme extracts from two white rot fungi (Phanerochaete chrysosporium and Trametes sp.) were investigated. Pre-treatment by sequential low and medium frequency ultrasound had a disruptive effect on the lignocellulosic matrix. Analysis of the phenolic-derived volatiles after enzymatic hydrolysis showed that biodegradation with the enzyme extract obtained from P. chrysosporium was more pronounced compared to that of the Trametes sp. The efficacy of the ultrasonic pre-treatment was attributed to increased enzyme accessibility of the cellulose fibrils due to sonication-induced disruption of the plant surface structure, as shown by changes in the microstructure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A
2017-10-01
Chardonnay grape pomace was treated with pressurized heat followed by enzymatic hydrolysis, with commercial or pure enzymes, in buffered conditions. The pomace was unfermented as commonly found for white winemaking wastes and treatments aimed to simulate biovalorization processing. Cell wall profiling techniques showed that the pretreatment led to depectination of the outer layers thereby exposing xylan polymers and increasing the extractability of arabinans, galactans, arabinogalactan proteins and mannans. This higher extractability is believed to be linked with partial degradation and opening-up of cell wall networks. Pectinase-rich enzyme preparations were presumably able to access the inner rhamnogalacturonan I dominant coating layers due to the hydrothermal pretreatment. Patterns of epitope abundance and the sequential release of cell wall polymers with specific combinations of enzymes led to a working model of the hitherto, poorly understood innermost xyloglucan-rich hemicellulose layers of unfermented grape pomace. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kundu, Rakesh; Dasgupta, Suman; Biswas, Anindita; Bhattacharya, Anirban; Pal, Bikas C; Bandyopadhyay, Debashis; Bhattacharya, Shelley; Bhattacharya, Samir
2008-08-13
Cajanus cajan Linn. (Leguminosae) is a nontoxic edible herb, widely used in Indian folk medicine for the prevention of various liver disorders. In the present study we have demonstrated that methanol-aqueous fraction (MAF2) of Cajanus cajan leaf extract could prevent the chronically treated alcohol induced rat liver damage. Chronic doses of alcohol (3.7 g/ kg) orally administered to rats for 28 days and liver function marker enzymes such as GPT, GOT, ALP and anti-oxidant enzyme activities were determined. Effect of MAF2 at a dose of 50mg/kg body weight on alcohol treated rats was noted. Alcohol effected significant increase in liver marker enzyme activities and reduced the activities of anti-oxidant enzymes. Co-administration of MAF2 reversed the liver damage due to alcohol; it decreased the activities of liver marker enzymes and augmented antioxidant enzyme activities. We also demonstrate significant decrease of the phase II detoxifying enzyme, UDP-glucuronosyl transferase (UGT) activity along with a three- and two-fold decrease of UGT2B gene and protein expression respectively. MAF2 co-administration normalized UGT activity and revived the expression of UGT2B with a concomitant expression and nuclear translocation of Nrf2, a transcription factor that regulates the expression of many cytoprotective genes. Cajanus cajan extract therefore shows a promise in therapeutic use in alcohol induced liver dysfunction.
Tryptophan biosynthetic enzymes of Staphylococcus aureus.
Proctor, A R; Kloos, W E
1973-04-01
Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway.
Pais, Pilar; Villar, Agustí; Rull, Santiago
2016-01-01
The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen - 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive - some have shown significant results, and others have not - possibly the result of varying bioactivities of the SPEs used in the studies. To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%-75% inhibition of 5α-reductase type II. SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride, the established standard of therapy among prescription drugs. Future in vitro and clinical trials involving SPEs would be useful for elucidating their comparative differences, as well as appropriate patient selection for their use.
Pais, Pilar; Villar, Agustí; Rull, Santiago
2016-01-01
Background The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride, the established standard of therapy among prescription drugs. Future in vitro and clinical trials involving SPEs would be useful for elucidating their comparative differences, as well as appropriate patient selection for their use. PMID:27186566
Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han
2010-01-01
Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196
Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang
2010-04-01
Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth
2007-09-27
Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability tomore » catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes to activate otherwise unreactive molecules in the confines of an active site. Although much less complex than the evolved active sites of enzymes, synthetic host molecules have been developed that can carry out complex reactions with their cavities. While progress has been made toward highly efficient and selective reactivity inside of synthetic hosts, the lofty goal of duplicating enzymes specificity remains.[7-9] Pioneered by Lehn, Cram, Pedersen, and Breslow, supramolecular chemistry has evolved well beyond the crown ethers and cryptands originally studied.[10-12] Despite the increased complexity of synthetic host molecules, most assembly conditions utilize self-assembly to form complex highly-symmetric structures from relatively simple subunits. For supramolecular assemblies able to encapsulate guest molecules, the chemical environment in each assembly--defined by the size, shape, charge, and functional group availability--greatly influences the guest-binding characteristics.[6, 13-17]« less
Omwenga, Eric Omori; Hensel, Andreas; Pereira, Susana; Shitandi, Alfred Anakalo
2017-01-01
Productions of various bacterial traits like production of virulence factors (e.g. toxins, enzymes), biofilm formation, luminescence among others, have been known to be controlled by quorum sensing (QS), a process that is dependent on chemical signals or autoinducers (AIs). Bacteria known to rely on such AIs are known to be virulent and tend to be resistant against various antimicrobial agents. Therefore, strategies aimed at the inhibition of QS pathways, are regarded as potential novel therapies in managing bacterial virulence hence reducing their ability to induce infections in humans. In the present study, a portfolio of 25 medicinal plant extracts (ethanol 50% v/v) used in southwestern Kenya were assayed against a transformed E. coli Top 10 reporter QS strain. This biosensor responds to the exogenous addition of 3-oxo-N-hexanoyl homoserine lactone (3OC6HSL) expressing green fluorescent protein (GFP). The large majority of the screened medicinal plants seemed to exhibit toxic effects and almost none of them induced antiquorum sensing (AQS) activity. This could be the consequence of the presence of mixed compounds in the extracts. Elaeodendron buchananii Loes and Acacia gerrardii Benth extracts that seemed to show AQS activity were further proved found to possess mild AQS but with defined antimicrobial activities, and no antibiofilm formation inhibition. As a control, an E. coli pBCA9145_jtk2828::sfGFP strain that produces constitutively GFP was used and confirmed that none of the two extracts quenched the fluorescence of sfGFP. Cytotoxicity assays with mammalian MDCK cells also did indicate that the selected extracts with putative AQS activity, also reduced the cell viability. Therefore, further studies will be needed to separate and re-test the individual compounds especially from the selected two promising plants. PMID:29091715
Susanti, Dwi; Wong, Joshua H.; Vensel, William H.; Loganathan, Usha; DeSantis, Rebecca; Schmitz, Ruth A.; Balsera, Monica; Buchanan, Bob B.; Mukhopadhyay, Biswarup
2014-01-01
Thioredoxin (Trx), a small redox protein, controls multiple processes in eukaryotes and bacteria by changing the thiol redox status of selected proteins. The function of Trx in archaea is, however, unexplored. To help fill this gap, we have investigated this aspect in methanarchaea—strict anaerobes that produce methane, a fuel and greenhouse gas. Bioinformatic analyses suggested that Trx is nearly universal in methanogens. Ancient methanogens that produce methane almost exclusively from H2 plus CO2 carried approximately two Trx homologs, whereas nutritionally versatile members possessed four to eight. Due to its simplicity, we studied the Trx system of Methanocaldococcus jannaschii—a deeply rooted hyperthermophilic methanogen growing only on H2 plus CO2. The organism carried two Trx homologs, canonical Trx1 that reduced insulin and accepted electrons from Escherichia coli thioredoxin reductase and atypical Trx2. Proteomic analyses with air-oxidized extracts treated with reduced Trx1 revealed 152 potential targets representing a range of processes—including methanogenesis, biosynthesis, transcription, translation, and oxidative response. In enzyme assays, Trx1 activated two selected targets following partial deactivation by O2, validating proteomics observations: methylenetetrahydromethanopterin dehydrogenase, a methanogenesis enzyme, and sulfite reductase, a detoxification enzyme. The results suggest that Trx assists methanogens in combating oxidative stress and synchronizing metabolic activities with availability of reductant, making it a critical factor in the global carbon cycle and methane emission. Because methanogenesis developed before the oxygenation of Earth, it seems possible that Trx functioned originally in metabolic regulation independently of O2, thus raising the question whether a complex biological system of this type evolved at least 2.5 billion years ago. PMID:24505058
Siu-Rodas, Yadira; Calixto-Romo, María de Los Angeles; Guillén-Navarro, Karina; Sánchez, José E; Zamora-Briseño, Jesús Alejandro; Amaya-Delgado, Lorena
2017-12-27
The goal of this study was to isolate, select and characterize bacteria with cellulolytic activity from two different coffee residue composting piles, one of which had an internal temperature of 57°C and pH 5.5 and the other, a temperature of 61°C, and pH 9.3. Culture media were manipulated with carboxymethylcellulose and crystalline cellulose as sole carbon sources. The enzyme activity was assessed by hydrolysis halo formation, reducing sugar production and zymograms. Three out of twenty isolated strains showed higher enzymatic activity and were identified as Bacillus subtilis according to their morphological, physiological, biochemical characteristics and based on the sequence analysis of 16S rDNA regions. The enzymatic extracts of the three selected strains showed exocellulase and endocellulase maximum activity of 0.254 and 0.519 U/ml, respectively; the activity of these enzymes was maintained even in acid pH (4.8) and basic (9.3) and at temperatures of up to 60°C. The enzymatic activities observed in this study are within the highest reported for cellulose produced by bacteria of the genus Bacillus. Endocellulase activity was shown in the zymograms from 24h until 144h of incubation. Furthermore, the pH effect on the endocellulase activity is reported for the first time by zymograms. The findings in this study entail the possibility to use these enzymes in the procurement of fermentable substrates for the production of energy from the large amount of residues generated by the coffee agroindustry. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Positive selection in glycolysis among Australasian stick insects
2013-01-01
Background The glycolytic pathway is central to cellular energy production. Selection on individual enzymes within glycolysis, particularly phosphoglucose isomerase (Pgi), has been associated with metabolic performance in numerous organisms. Nonetheless, how whole energy-producing pathways evolve to allow organisms to thrive in different environments and adopt new lifestyles remains little explored. The Lanceocercata radiation of Australasian stick insects includes transitions from tropical to temperate climates, lowland to alpine habitats, and winged to wingless forms. This permits a broad investigation to determine which steps within glycolysis and what sites within enzymes are the targets of positive selection. To address these questions we obtained transcript sequences from seven core glycolysis enzymes, including two Pgi paralogues, from 29 Lanceocercata species. Results Using maximum likelihood methods a signature of positive selection was inferred in two core glycolysis enzymes. Pgi and Glyceraldehyde 3-phosphate dehydrogenase (Gaphd) genes both encode enzymes linking glycolysis to the pentose phosphate pathway. Positive selection among Pgi paralogues and orthologues predominately targets amino acids with residues exposed to the protein’s surface, where changes in physical properties may alter enzyme performance. Conclusion Our results suggest that, for Lancerocercata stick insects, adaptation to new stressful lifestyles requires a balance between maintaining cellular energy production, efficiently exploiting different energy storage pools and compensating for stress-induced oxidative damage. PMID:24079656
[3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue
NASA Technical Reports Server (NTRS)
Hall, P. J.; Bandurski, R. S.
1986-01-01
[3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.
Terminal-group oxidation of retinol by mouse epidermis. Inhibition in vitro and in vivo.
Connor, M J; Smit, M H
1987-01-01
Locally applied retinol is metabolized to retinoic acid in mouse epidermis in vivo. To characterize the oxidation system we investigated the ability of soluble extracts of hairless-mouse epidermis to convert retinol and retinal into retinoic acid. The extracts oxidized retinol to retinoic acid in two steps catalysed by two NAD+-dependent enzymes that were resolved on h.p.l.c. The first enzyme catalyses the reversible oxidation of retinol to retinal and is an alcohol dehydrogenase isoenzyme. The second enzyme oxidizes retinal to retinoic acid. Retinol oxidation by epidermal extracts was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole and by the polyene citral. The toxicity and relatively low potency at inhibiting the epidermal alcohol dehydrogenase isoenzyme curtailed the use of 4-methylpyrazole in vivo. However, citral significantly inhibited retinoic acid formation from retinol in the epidermis in vivo. The ability to inhibit the oxidation of retinol to retinoic acid in mouse epidermis provides a potential method to resolve the roles of retinol and retinoic acid in epithelial function. PMID:3663136
Zajicek, J.L.; Tillitt, D.E.; Schwartz, T.R.; Schmitt, C.J.; Harrison, R.O.
2000-01-01
The analysis of PCBs in fish tissues by immunoassay methods was evaluated using fish collected from a US monitoring program, the National Contaminant Biomonitoring Program of the US Department of Interior, Fish and Wildlife Service. Selected composite whole fish samples, which represented widely varying concentrations and sources of PCBs, were extracted and subjected to congener PCB analysis by gas chromatography (GC) and total PCB analysis using an ELISA (ePCBs) calibrated against technical Aroclor 1248. PCB congener patterns in these fishes were different from the patterns found in commercial Aroclors or their combinations as demonstrated by principal component analysis of normalized GC congener data. The sum of the PCB congeners measured by GC (total-PCBs) ranged from 37 to 4600 ng/g (wet weight). Concentrations of PCBs as determined by the ELISA method were positively correlated with total-PCBs and the ePCBs/total-PCBs ratios for individual samples ranged from 1 to 6. Ratios of ePCBs/total-PCBs for dilutions of Aroclors 1242, 1254, and 1260 and for matrix spikes range from 0.6 for 1242 to 2.5 for 1254 and 1260. These results suggest that higher chlorinated PCB congeners have higher affinity for the anti-PCB antibodies. Partial least squares with latent variable analysis of GC and ELISA data of selected Aroclors and fish samples also support the conclusion that ELISA derived PCB concentrations are dependent on the degree on chlorination.
Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G
2011-02-01
Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.
A novel research model for evaluating sunscreen protection in the UV-A1.
Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira
2018-01-01
The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.