Science.gov

Sample records for selection long-term memory

  1. CNTRICS Final Task Selection: Long-Term Memory

    PubMed Central

    Ragland, John D.; Cools, Roshan; Frank, Michael; Pizzagalli, Diego A.; Preston, Alison; Ranganath, Charan; Wagner, Anthony D.

    2009-01-01

    Long-term memory (LTM) is a multifactorial construct, composed of different stages of information processing and different cognitive operations that are mediated by distinct neural systems, some of which may be more responsible for the marked memory problems that limit the daily function of individuals with schizophrenia. From the outset of the CNTRICS initiative, this multidimensionality was appreciated, and an effort was made to identify the specific memory constructs and task paradigms that hold the most promise for immediate translational development. During the second CNTRICS meeting, the LTM group identified item encoding and retrieval and relational encoding and retrieval as key constructs. This article describes the process that the LTM group went through in the third and final CNTRICS meeting to select nominated tasks within the 2 LTM constructs and within a reinforcement learning construct that were judged most promising for immediate development. This discussion is followed by each nominating authors' description of their selected task paradigm, ending with some thoughts about future directions. PMID:18927344

  2. Depletion of Serotonin Selectively Impairs Short-Term Memory without Affecting Long-Term Memory in Odor Learning in the Terrestrial Slug "Limax Valentianus"

    ERIC Educational Resources Information Center

    Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto

    2006-01-01

    The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…

  3. Long-Term Memories Bias Sensitivity and Target Selection in Complex Scenes

    PubMed Central

    Patai, Eva Zita; Doallo, Sonia; Nobre, Anna Christina

    2014-01-01

    In everyday situations we often rely on our memories to find what we are looking for in our cluttered environment. Recently, we developed a new experimental paradigm to investigate how long-term memory (LTM) can guide attention, and showed how the pre-exposure to a complex scene in which a target location had been learned facilitated the detection of the transient appearance of the target at the remembered location (Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 2006; Summerfield, Rao, Garside, & Nobre, 2011). The present study extends these findings by investigating whether and how LTM can enhance perceptual sensitivity to identify targets occurring within their complex scene context. Behavioral measures showed superior perceptual sensitivity (d′) for targets located in remembered spatial contexts. We used the N2pc event-related potential to test whether LTM modulated the process of selecting the target from its scene context. Surprisingly, in contrast to effects of visual spatial cues or implicit contextual cueing, LTM for target locations significantly attenuated the N2pc potential. We propose that the mechanism by which these explicitly available LTMs facilitate perceptual identification of targets may differ from mechanisms triggered by other types of top-down sources of information. PMID:23016670

  4. CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning.

    PubMed

    Ragland, John D; Cohen, Neal J; Cools, Roshan; Frank, Michael J; Hannula, Deborah E; Ranganath, Charan

    2012-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected "item encoding and retrieval," "relational encoding and retrieval," and "reinforcement learning" as key LTM constructs to guide the nomination process. This manuscript reports on the outcome of the third CNTRICS biomarkers meeting in which nominated paradigms in each of these domains were discussed by a review panel to arrive at a consensus on which of the nominated paradigms could be recommended for immediate translational development. After briefly describing this decision process, information is presented from the nominating authors describing the 4 functional imaging paradigms that were selected for immediate development. In addition to describing the tasks, information is provided on cognitive and neural construct validity, sensitivity to behavioral or pharmacological manipulations, availability of animal models, psychometric characteristics, effects of schizophrenia, and avenues for future development.

  5. CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning

    PubMed Central

    Ragland, John D.; Cohen, Neal J.; Cools, Roshan; Frank, Michael J.; Hannula, Deborah E.; Ranganath, Charan

    2012-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected “item encoding and retrieval,” “relational encoding and retrieval,” and “reinforcement learning” as key LTM constructs to guide the nomination process. This manuscript reports on the outcome of the third CNTRICS biomarkers meeting in which nominated paradigms in each of these domains were discussed by a review panel to arrive at a consensus on which of the nominated paradigms could be recommended for immediate translational development. After briefly describing this decision process, information is presented from the nominating authors describing the 4 functional imaging paradigms that were selected for immediate development. In addition to describing the tasks, information is provided on cognitive and neural construct validity, sensitivity to behavioral or pharmacological manipulations, availability of animal models, psychometric characteristics, effects of schizophrenia, and avenues for future development. PMID:22102094

  6. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation.

  7. Long-Term Memory and Learning

    ERIC Educational Resources Information Center

    Crossland, John

    2011-01-01

    The English National Curriculum Programmes of Study emphasise the importance of knowledge, understanding and skills, and teachers are well versed in structuring learning in those terms. Research outcomes into how long-term memory is stored and retrieved provide support for structuring learning in this way. Four further messages are added to the…

  8. Climate Predictability and Long Term Memory

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Blender, R.; Fraedrich, K.; Liu, Z.

    2010-09-01

    The benefit of climate Long Term Memory (LTM) for long term prediction is assessed using data from a millennium control simulation with the atmosphere ocean general circulation model ECHAM5/MPIOM. The forecast skills are evaluated for surface temperature time series at individual grid points. LTM is characterised by the Hurst exponent in the power-law scaling of the fluctuation function which is determined by detrended fluctuation analysis (DFA). LTM with a Hurst exponent close to 0.9 occurs mainly in high latitude oceans, which are also characterized by high potential predictability. Climate predictability is diagnosed in terms of potentially predictable variance fractions. Explicit prediction experiments for various time steps are conducted on a grid point basis using an auto-correlation (AR1) predictor: in regions with LTM, prediction skills are beyond that expected from red noise persistence; exceptions occur in some areas in the southern oceans and over the northern hemisphere continents. Extending the predictability analysis to the fully forced simulation shows large improvement in prediction skills.

  9. Developmental Dyslexia and Explicit Long-Term Memory

    ERIC Educational Resources Information Center

    Menghini, Deny; Carlesimo, Giovanni Augusto; Marotta, Luigi; Finzi, Alessandra; Vicari, Stefano

    2010-01-01

    The reduced verbal long-term memory capacities often reported in dyslexics are generally interpreted as a consequence of their deficit in phonological coding. The present study was aimed at evaluating whether the learning deficit exhibited by dyslexics was restricted only to the verbal component of the long-term memory abilities or also involved…

  10. Neural bases of orthographic long-term memory and working memory in dysgraphia

    PubMed Central

    Purcell, Jeremy; Hillis, Argye E.; Capasso, Rita; Miceli, Gabriele

    2016-01-01

    Spelling a word involves the retrieval of information about the word’s letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. PMID:26685156

  11. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    PubMed

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills.

  12. The Effect of Modality on Long-Term Recognition Memory.

    ERIC Educational Resources Information Center

    Dean, Raymond S.; And Others

    1988-01-01

    The effects of visual and auditory modes of input on long-term memory were examined in two experiments, each with 40 and 80 undergraduates, respectively. In both experiments, visual stimulus attributes were a more salient dimension than were auditory features in the long-term encoding and retrieval process. (SLD)

  13. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  14. Children's Long-Term Memory for Autobiographical Events.

    ERIC Educational Resources Information Center

    Peterson, Carole

    2002-01-01

    Traces the origins of children's autobiographical memories, discussing research on infantile amnesia and young children's memory skills. Focuses on studies of children's long-term memory for autobiographical events that investigate delays of 1-2 years and delays of 4 years or more. Reports that a few studies have documented remarkably robust…

  15. Modeling maintenance of long-term potentiation in clustered synapses: long-term memory without bistability.

    PubMed

    Smolen, Paul

    2015-01-01

    Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr) persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the "clustered plasticity hypothesis" which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory.

  16. Modeling Maintenance of Long-Term Potentiation in Clustered Synapses: Long-Term Memory without Bistability

    PubMed Central

    Smolen, Paul

    2015-01-01

    Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However, bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal distributions and long-term memory persistence. Here a model is developed that connects ongoing, competing processes of synaptic growth and weakening to stochastic processes of receptor insertion and removal in dendritic spines. The model simulates long-term (>1 yr) persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters, rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and stability of memory. PMID:25945261

  17. Children's Long-Term Memory for Injury.

    ERIC Educational Resources Information Center

    Peterson, Carole; Parsons, Tina

    This study investigated children's memory of stressful, personally meaningful events--in this case, injury experiences. Children (2 to 13 years old) who were brought to the emergency room of a hospital were recruited as subjects if they had sustained trauma injuries such as broken bones or lacerations requiring suturing. A total of 42 were…

  18. The neuronal response at extended timescales: long-term correlations without long-term memory

    PubMed Central

    Soudry, Daniel; Meir, Ron

    2014-01-01

    Long term temporal correlations frequently appear at many levels of neural activity. We show that when such correlations appear in isolated neurons, they indicate the existence of slow underlying processes and lead to explicit conditions on the dynamics of these processes. Moreover, although these slow processes can potentially store information for long times, we demonstrate that this does not imply that the neuron possesses a long memory of its input, even if these processes are bidirectionally coupled with neuronal response. We derive these results for a broad class of biophysical neuron models, and then fit a specific model to recent experiments. The model reproduces the experimental results, exhibiting long term (days-long) correlations due to the interaction between slow variables and internal fluctuations. However, its memory of the input decays on a timescale of minutes. We suggest experiments to test these predictions directly. PMID:24744724

  19. Consolidation of Long-Term Memory: Evidence and Alternatives

    ERIC Educational Resources Information Center

    Meeter, Martijn; Murre, Jaap M. J.

    2004-01-01

    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of…

  20. Incidental Biasing of Attention from Visual Long-Term Memory

    ERIC Educational Resources Information Center

    Fan, Judith E.; Turk-Browne, Nicholas B.

    2016-01-01

    Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past…

  1. Reconsolidation of long-term memory in Aplysia.

    PubMed

    Cai, Diancai; Pearce, Kaycey; Chen, Shanping; Glanzman, David L

    2012-10-09

    When an animal is reminded of a prior experience and shortly afterward treated with a protein synthesis inhibitor, the consolidated memory for the experience can be disrupted; by contrast, protein synthesis inhibition without prior reminding commonly does not disrupt long-term memory [1-3]. Such results imply that the reminding triggers reconsolidation of the memory. Here, we asked whether the behavioral and synaptic changes associated with the memory for long-term sensitization (LTS) of the siphon-withdrawal reflex in the marine snail Aplysia californica [4, 5] could undergo reconsolidation. In support of this idea, we found that when sensitized animals were given abbreviated reminder sensitization training 48-96 hr after the original sensitization training, followed by treatment with the protein synthesis inhibitor anisomycin, LTS was disrupted. We also found that long-term (≥ 24 hr) facilitation (LTF) [6], which can be induced in the monosynaptic connection between Aplysia sensory and motor neurons in dissociated cell culture by multiple spaced pulses of the endogenous facilitatory transmitter serotonin (5-HT) [7, 8], could be eliminated by treating the synapses with one reminder pulse of 5-HT, followed by anisomycin, at 48 hr after the original training. Our results provide a simple model system for understanding the synaptic basis of reconsolidation.

  2. Infants long-term memory for complex music

    NASA Astrophysics Data System (ADS)

    Ilari, Beatriz; Polka, Linda; Costa-Giomi, Eugenia

    2002-05-01

    In this study we examined infants' long-term memory for two complex pieces of music. A group of thirty 7.5 month-old infants was exposed daily to one short piano piece (i.e., either the Prelude or the Forlane by Maurice Ravel) for ten consecutive days. Following the 10-day exposure period there was a two-week retention period in which no exposure to the piece occurred. After the retention period, infants were tested on the Headturn Preference Procedure. At test, 8 different excerpts of the familiar piece were mixed with 8 different foil excerpts of the unfamiliar one. Infants showed a significant preference for the familiar piece of music. A control group of fifteen nonexposed infants was also tested and showed no preferences for either piece of music. These results suggest that infants in the exposure group retained the familiar music in their long-term memory. This was demonstrated by their ability to discriminate between the different excerpts of both the familiar and the unfamiliar pieces of music, and by their preference for the familiar piece. Confirming previous findings (Jusczyk and Hohne, 1993; Saffran et al., 2000), in this study we suggest that infants can retain complex pieces of music in their long-term memory for two weeks.

  3. Long-term visual object recognition memory in aged rats.

    PubMed

    Platano, Daniela; Fattoretti, Patrizia; Balietti, Marta; Bertoni-Freddari, Carlo; Aicardi, Giorgio

    2008-04-01

    Aging is associated with memory impairments, but the neural bases of this process need to be clarified. To this end, behavioral protocols for memory testing may be applied to aged animals to compare memory performances with functional and structural characteristics of specific brain regions. Visual object recognition memory can be investigated in the rat using a behavioral task based on its spontaneous preference for exploring novel rather than familiar objects. We found that a behavioral task able to elicit long-term visual object recognition memory in adult Long-Evans rats failed in aged (25-27 months old) Wistar rats. Since no tasks effective in aged rats are reported in the literature, we changed the experimental conditions to improve consolidation processes to assess whether this form of memory can still be maintained for long term at this age: the learning trials were performed in a smaller box, identical to the home cage, and the inter-trial delays were shortened. We observed a reduction in anxiety in this box (as indicated by the lower number of fecal boli produced during habituation), and we developed a learning protocol able to elicit a visual object recognition memory that was maintained after 24 h in these aged rats. When we applied the same protocol to adult rats, we obtained similar results. This experimental approach can be useful to study functional and structural changes associated with age-related memory impairments, and may help to identify new behavioral strategies and molecular targets that can be addressed to ameliorate memory performances during aging.

  4. Effects of acute exercise on long-term memory.

    PubMed

    Labban, Jeffrey D; Etnier, Jennifer L

    2011-12-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of three groups: exercise prior to exposure, exercise after exposure, or no-exercise. Exercise consisted of 30 min on a cycle ergometer including 20 min at moderate intensity. Only the exercise prior group recalled significantly more than the control group (p < .05). Differences among the exercise groups failed to reach significance (p = .09). Results indicated that acute exercise positively influenced recall and that exercise timing relative to memory task may have an impact on this effect.

  5. Dynamics of long-term genomic selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate rapid gains in early selection cycles. Beyond those cycles allele frequency changes, recombination, and inbreeding make analytical prediction of gain impossible. On the basis of marker data on 192 breed...

  6. Notch is required for long-term memory in Drosophila.

    PubMed

    Presente, Asaf; Boyles, Randy S; Serway, Christine N; de Belle, J Steven; Andres, Andrew J

    2004-02-10

    A role for Notch in the elaboration of existing neural processes is emerging that is distinct from the increasingly well understood function of this gene in binary cell-fate decisions. Several research groups, by using a variety of organisms, have shown that Notch is important in the development of neural ultrastructure. Simultaneously, Presenilin (Psn) was identified both as a key mediator of Notch signaling and as a site of genetic lesions that cause early-onset Alzheimer's disease. Here we demonstrate that Notch loss of function produces memory deficits in Drosophila melanogaster. The effects are specific to long-term memory, which is thought to depend on ultrastructural remodeling. We propose that Notch plays an important role in the neural plasticity underlying consolidated memory.

  7. Notch is required for long-term memory in Drosophila

    PubMed Central

    Presente, Asaf; Boyles, Randy S.; Serway, Christine N.; de Belle, J. Steven; Andres, Andrew J.

    2004-01-01

    A role for Notch in the elaboration of existing neural processes is emerging that is distinct from the increasingly well understood function of this gene in binary cell-fate decisions. Several research groups, by using a variety of organisms, have shown that Notch is important in the development of neural ultrastructure. Simultaneously, Presenilin (Psn) was identified both as a key mediator of Notch signaling and as a site of genetic lesions that cause early-onset Alzheimer's disease. Here we demonstrate that Notch loss of function produces memory deficits in Drosophila melanogaster. The effects are specific to long-term memory, which is thought to depend on ultrastructural remodeling. We propose that Notch plays an important role in the neural plasticity underlying consolidated memory. PMID:14752200

  8. Long-term memory of heterospecific vocalizations by African lions

    NASA Astrophysics Data System (ADS)

    Grinnell, Jon; van Dyk, Gus; Slotow, Rob

    2005-09-01

    Animals that use and evaluate long-distance signals have the potential to glean valuable information about others in their environment via eavesdropping. In those areas where they coexist, African lions (Panthera leo) are a significant eavesdropper on spotted hyenas (Crocuta crocuta), often using hyena vocalizations to locate and scavenge from hyena kills. This relationship was used to test African lions' long-term memory of the vocalizations of spotted hyenas via playback experiments. Hyena whoops and a control sound (Canis lupus howls) were played to three populations of lions in South Africa: (1) lions with past experience of spotted hyenas; (2) lions with current experience; and (3) lions with no experience. The results strongly suggest that lions have the cognitive ability to remember the vocalizations of spotted hyenas even after 10 years with no contact of any kind with them. Such long-term memory of heterospecific vocalizations may be widespread in species that gain fitness benefits from eavesdropping on others, but where such species are sympatric and often interact it may pass unrecognized as short-term memory instead.

  9. Dissociation of Short- and Long-Term Face Memory: Evidence from Long-Term Recency Effects in Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Bengner, T.; Malina, T.

    2007-01-01

    We tested whether memory deficits in temporal lobe epilepsy (TLE) are better described by a single- or dual-store memory model. To this aim, we analyzed the influence of TLE and proactive interference (PI) on immediate and 24-h long-term recency effects during face recognition in 16 healthy participants and 18 right and 21 left non-surgical TLE…

  10. Examining the long-term stability of overgeneral autobiographical memory.

    PubMed

    Sumner, Jennifer A; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle G; Vrshek-Schallhorn, Suzanne; Epstein, Alyssa

    2014-01-01

    Overgeneral autobiographical memory (OGM) is a proposed trait-marker for vulnerability to depression, but relatively little work has examined its long-term stability. This study investigated the stability of OGM over several years in 271 late adolescents and young adults participating in a larger longitudinal study of risk for emotional disorders. The Autobiographical Memory Test (AMT) was administered twice, with test-retest intervals ranging from approximately 3 to 6 years. There was evidence of significant but modest stability in OGM over several years. Specifically, Spearman rank correlations (ρs) between the proportions of specific and categoric memories generated on the two AMTs were .31 and .32, respectively. We did not find evidence that the stability of OGM was moderated by the length of the test-retest interval. Furthermore, the stability coefficients for OGM for individuals with and without a lifetime history of major depressive disorder (MDD) were relatively similar in magnitude and not significantly different from one another (ρs=.34 and .42 for the proportions of specific and categoric memories for those with a history of MDD; ρs=.31 for both the proportions of specific and categoric memories for those without a history of MDD). Implications for the conceptualisation of OGM are discussed.

  11. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice

    PubMed Central

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-01-01

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI: http://dx.doi.org/10.7554/eLife.14846.001 PMID:27187150

  12. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    ERIC Educational Resources Information Center

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  13. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    ERIC Educational Resources Information Center

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  14. Erythropoietin enhances hippocampal long-term potentiation and memory

    PubMed Central

    Adamcio, Bartosz; Sargin, Derya; Stradomska, Alicja; Medrihan, Lucian; Gertler, Christoph; Theis, Fabian; Zhang, Mingyue; Müller, Michael; Hassouna, Imam; Hannke, Kathrin; Sperling, Swetlana; Radyushkin, Konstantin; El-Kordi, Ahmed; Schulze, Lizzy; Ronnenberg, Anja; Wolf, Fred; Brose, Nils; Rhee, Jeong-Seop; Zhang, Weiqi; Ehrenreich, Hannelore

    2008-01-01

    Background Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity. Results We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses. Conclusion We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases. PMID:18782446

  15. Dopamine controls persistence of long-term memory storage.

    PubMed

    Rossato, Janine I; Bevilaqua, Lia R M; Izquierdo, Iván; Medina, Jorge H; Cammarota, Martín

    2009-08-21

    The paradigmatic feature of long-term memory (LTM) is its persistence. However, little is known about the mechanisms that make some LTMs last longer than others. In rats, a long-lasting fear LTM vanished rapidly when the D1 dopamine receptor antagonist SCH23390 was injected into the dorsal hippocampus 12 hours, but not immediately or 9 hours, after the fearful experience. Conversely, intrahippocampal application of the D1 agonist SK38393 at the same critical post-training time converted a rapidly decaying fear LTM into a persistent one. This effect was mediated by brain-derived neurotrophic factor and regulated by the ventral tegmental area (VTA). Thus, the persistence of LTM depends on activation of VTA/hippocampus dopaminergic connections and can be specifically modulated by manipulating this system at definite post-learning time points.

  16. The short- and long-term fates of memory items retained outside the focus of attention

    PubMed Central

    Eichenbaum, Adam S.; Starrett, Michael J.; Rose, Nathan S.; Emrich, Stephen M.; Postle, Bradley R.

    2015-01-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items. PMID:25472902

  17. The short- and long-term fates of memory items retained outside the focus of attention.

    PubMed

    LaRocque, Joshua J; Eichenbaum, Adam S; Starrett, Michael J; Rose, Nathan S; Emrich, Stephen M; Postle, Bradley R

    2015-04-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items.

  18. Fragile Associations Coexist with Robust Memories for Precise Details in Long-Term Memory

    ERIC Educational Resources Information Center

    Lew, Timothy F.; Pashler, Harold E.; Vul, Edward

    2016-01-01

    What happens to memories as we forget? They might gradually lose fidelity, lose their associations (and thus be retrieved in response to the incorrect cues), or be completely lost. Typical long-term memory studies assess memory as a binary outcome (correct/incorrect), and cannot distinguish these different kinds of forgetting. Here we assess…

  19. Increasing long term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  20. Modulation of working memory updating: Does long-term memory lexical association matter?

    PubMed

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  1. Astrocyte-neuron lactate transport is required for long-term memory formation

    PubMed Central

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M.

    2011-01-01

    SUMMARY We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. PMID:21376239

  2. Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia

    PubMed Central

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-01

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572

  3. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    PubMed

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  4. Long-Term Memory for Affiliates in Ravens

    PubMed Central

    Boeckle, Markus; Bugnyar, Thomas

    2012-01-01

    Summary Complex social life requires individuals to recognize and remember group members [1] and, within those, to distinguish affiliates from nonaffiliates. Whereas long-term individual recognition has been demonstrated in some nonhuman animals [2–5], memory for the relationship valence to former group members has received little attention. Here we show that adult, pair-housed ravens not only respond differently to the playback of calls from previous group members and unfamiliar conspecifics but also discriminate between familiar birds according to the relationship valence they had to those subjects up to three years ago as subadult nonbreeders. The birds' distinction between familiar and unfamiliar individuals is reflected mainly in the number of calls, whereas their differentiation according to relationship valence is reflected in call modulation only. As compared to their response to affiliates, ravens responded to nonaffiliates by increasing chaotic parts of the vocalization and lowering formant spacing, potentially exaggerating the perceived impression of body size. Our findings indicate that ravens remember relationship qualities to former group members even after long periods of separation, confirming that their sophisticated social knowledge as nonbreeders is maintained into the territorial breeding stage. PMID:22521788

  5. Long-term memory and volatility clustering in high-frequency price changes

    NASA Astrophysics Data System (ADS)

    oh, Gabjin; Kim, Seunghwan; Eom, Cheoljun

    2008-02-01

    We studied the long-term memory in diverse stock market indices and foreign exchange rates using Detrended Fluctuation Analysis (DFA). For all high-frequency market data studied, no significant long-term memory property was detected in the return series, while a strong long-term memory property was found in the volatility time series. The possible causes of the long-term memory property were investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, the GARCH(1,1) model, reflecting the volatility clustering property, and the FIGARCH model, reflecting the long-term memory property of the volatility time series. The memory effect in the AR(1) filtered return and volatility time series remained unchanged, while the long-term memory property diminished significantly in the volatility series of the GARCH(1,1) filtered data. Notably, there is no long-term memory property, when we eliminate the long-term memory property of volatility by the FIGARCH model. For all data used, although the Hurst exponents of the volatility time series changed considerably over time, those of the time series with the volatility clustering effect removed diminish significantly. Our results imply that the long-term memory property of the volatility time series can be attributed to the volatility clustering observed in the financial time series.

  6. The properties and mechanism of long-term memory in nonparametric volatility

    NASA Astrophysics Data System (ADS)

    Li, Handong; Cao, Shi-Nan; Wang, Yan

    2010-08-01

    Recent empirical literature documents the presence of long-term memory in return volatility. But the mechanism of the existence of long-term memory is still unclear. In this paper, we investigate the origin and properties of long-term memory with nonparametric volatility, using high-frequency time series data of the Chinese Shanghai Composite Stock Price Index. We perform Detrended Fluctuation Analysis (DFA) on three different nonparametric volatility estimators with different sampling frequencies. For the same volatility series, the Hurst exponents reduce as the sampling time interval increases, but they are still larger than 1/2, which means that no matter how the interval changes, it still cannot change the existence of long memory. RRV presents a relatively stable property on long-term memory and is less influenced by sampling frequency. RV and RBV have some evolutionary trends depending on time intervals, which indicating that the jump component has no significant impact on the long-term memory property. This suggests that the presence of long-term memory in nonparametric volatility can be contributed to the integrated variance component. Considering the impact of microstructure noise, RBV and RRV still present long-term memory under various time intervals. We can infer that the presence of long-term memory in realized volatility is not affected by market microstructure noise. Our findings imply that the long-term memory phenomenon is an inherent characteristic of the data generating process, not a result of microstructure noise or volatility clustering.

  7. Musical and Verbal Memory in Alzheimer's Disease: A Study of Long-Term and Short-Term Memory

    ERIC Educational Resources Information Center

    Menard, Marie-Claude; Belleville, Sylvie

    2009-01-01

    Musical memory was tested in Alzheimer patients and in healthy older adults using long-term and short-term memory tasks. Long-term memory (LTM) was tested with a recognition procedure using unfamiliar melodies. Short-term memory (STM) was evaluated with same/different judgment tasks on short series of notes. Musical memory was compared to verbal…

  8. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  9. Roles of dynamic linkage of stable attractors across cortical networks in recalling long-term memory.

    PubMed

    Hoshino, Osamu; Zheng, MeiHong; Kuroiwa, Kazuharu

    2003-03-01

    We propose a neural network model for a category-association task. By simulating the model, neuronal relevance of cortical interactions to recalling long-term memory was investigated. The model consists of the left and right hemispheres, each of which has IT (inferotemporal cortex) and PC (prefrontal cortex) networks. Information about visual features and their categories were encoded into point attractors of the IT and PC networks, respectively. In the task, the IT network of the right hemisphere was stimulated with a cue feature. After a delay period, the IT network of the left hemisphere was simultaneously stimulated with the choice feature and an irrelevant feature. The cue and choice features belong to the same category, while the irrelevant feature belongs to another category. To complete the task, the IT network must select the point attractor corresponding to the choice feature. We demonstrate that the top-down pathway (PC-to-IT) triggers the retrieval of long-term memory of the choice feature from the IT, and the bottom-up pathway (IT-to-PC) contributes to the maintenance of the retrieved memory during the delay period. The key mechanism for the retrieval and maintenance of that memory is the dynamic linkage of attractors across separate cortical networks. We show that a single hemisphere is sufficient for the memory retrieval, but it is advantageous to use the two hemispheres because the retrieved memory is thereby retained with greater reliability until the brain chooses the choice feature.

  10. Aging and long-term memory for emotionally valenced events.

    PubMed

    Breslin, Carolyn W; Safer, Martin A

    2013-06-01

    In 2008, 1103 ardent Boston Red Sox fans answered questions about their team's 2003 loss and 2004 win in baseball championship games with archrival New York Yankees. Contrary to predictions based on socioemotional selectivity theory, there were no significant interactions of age and event valence for accuracy in remembering event details, or for self-reported subjective vividness and rehearsal of the memories. Fans 65 years and older tended to remember feeling only sad about the 2003 loss, whereas fans 25 years and under tended to remember feeling both sad and angry. Individuals may remember emotional feelings based on remembered goals about an event.

  11. Making long-term memories in minutes: a spaced learning pattern from memory research in education

    PubMed Central

    Kelley, Paul; Whatson, Terry

    2013-01-01

    Memory systems select from environmental stimuli those to encode permanently. Repeated stimuli separated by timed spaces without stimuli can initiate Long-Term Potentiation (LTP) and long-term memory (LTM) encoding. These processes occur in time scales of minutes, and have been demonstrated in many species. This study reports on using a specific timed pattern of three repeated stimuli separated by 10 min spaces drawn from both behavioral and laboratory studies of LTP and LTM encoding. A technique was developed based on this pattern to test whether encoding complex information into LTM in students was possible using the pattern within a very short time scale. In an educational context, stimuli were periods of highly compressed instruction, and spaces were created through 10 min distractor activities. Spaced Learning in this form was used as the only means of instruction for a national curriculum Biology course, and led to very rapid LTM encoding as measured by the high-stakes test for the course. Remarkably, learning at a greatly increased speed and in a pattern that included deliberate distraction produced significantly higher scores than random answers (p < 0.00001) and scores were not significantly different for experimental groups (one hour spaced learning) and control groups (four months teaching). Thus learning per hour of instruction, as measured by the test, was significantly higher for the spaced learning groups (p < 0.00001). In a third condition, spaced learning was used to replace the end of course review for one of two examinations. Results showed significantly higher outcomes for the course using spaced learning (p < 0.0005). The implications of these findings and further areas for research are briefly considered. PMID:24093012

  12. Prefrontal dopamine and the dynamic control of human long-term memory

    PubMed Central

    Wimber, M; Schott, B H; Wendler, F; Seidenbecher, C I; Behnisch, G; Macharadze, T; Bäuml, K-H T; Richardson-Klavehn, A

    2011-01-01

    Dopaminergic projections to the prefrontal cortex support higher-order cognitive functions, and are critically involved in many psychiatric disorders that involve memory deficits, including schizophrenia. The role of prefrontal dopamine in long-term memory, however, is still unclear. We used an imaging genetics approach to examine the hypothesis that dopamine availability in the prefrontal cortex selectively affects the ability to suppress interfering memories. Human participants were scanned via functional magnetic resonance imaging while practicing retrieval of previously studied target information in the face of interference from previously studied non-target information. This retrieval practice (RP) rendered the non-target information less retrievable on a later final test—a phenomenon known as retrieval-induced forgetting (RIF). In total, 54 participants were genotyped for the catechol-O-methyltransferase (COMT) Val108/158Met polymorphism. The COMT Val108/158Met genotype showed a selective and linear gene-dose effect on RIF, with the Met allele, which leads to higher prefrontal dopamine availability, being associated with greater RIF. Mirroring the behavioral pattern, the functional magnetic resonance imaging data revealed that Met allele carriers, compared with Val allele carriers, showed a greater response reduction in inhibitory control areas of the right inferior frontal cortex during RP, suggesting that they more efficiently reduced interference. These data support the hypothesis that the cortical dopaminergic system is centrally involved in the dynamic control of human long-term memory, supporting efficient remembering via the adaptive suppression of interfering memories. PMID:22832518

  13. C. elegans positive butanone learning, short-term, and long-term associative memory assays.

    PubMed

    Kauffman, Amanda; Parsons, Lance; Stein, Geneva; Wills, Airon; Kaletsky, Rachel; Murphy, Coleen

    2011-03-11

    or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring regions that are above a specified maximum size and taking the median size of the remaining regions. The number of worms is then estimated by dividing the total area identified as occupied by worms by the estimated size of a single worm. We have found that learning and short- and long-term memory can be distinguished, and that these processes share similar key molecules with higher organisms. Our assays can quickly test novel candidate genes or molecules that affect learning and short- or long-term memory in C. elegans that are relevant across species.

  14. A Long-Term Memory Competitive Process Model of a Common Procedural Error. Part II: Working Memory Load and Capacity

    DTIC Science & Technology

    2013-07-01

    A Long-Term Memory Competitive Process Model of a Common Procedural Error, Part II: Working Memory Load and Capacity Franklin P. Tamborello, II...00-00-2013 4. TITLE AND SUBTITLE A Long-Term Memory Competitive Process Model of a Common Procedural Error, Part II: Working Memory Load and...07370024.2011.601692 Tamborello, F. P., & Trafton, J. G. (2013). A long-term competitive process model of a common procedural error. In Proceedings of the 35th

  15. PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories.

    PubMed

    Serrano, Peter; Friedman, Eugenia L; Kenney, Jana; Taubenfeld, Stephen M; Zimmerman, Joshua M; Hanna, John; Alberini, Cristina; Kelley, Ann E; Maren, Stephen; Rudy, Jerry W; Yin, Jerry C P; Sacktor, Todd C; Fenton, André A

    2008-12-23

    How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP). PKMzeta maintains aversively conditioned associations, but what general form of information the kinase encodes in the brain is unknown. We first confirmed the specificity of the action of zeta inhibitory peptide (ZIP) by disrupting long-term memory for active place avoidance with chelerythrine, a second inhibitor of PKMzeta activity. We then examined, using ZIP, the effect of PKMzeta inhibition in dorsal hippocampus (DH) and basolateral amygdala (BLA) on retention of 1-d-old information acquired in the radial arm maze, water maze, inhibitory avoidance, and contextual and cued fear conditioning paradigms. In the DH, PKMzeta inhibition selectively disrupted retention of information for spatial reference, but not spatial working memory in the radial arm maze, and precise, but not coarse spatial information in the water maze. Thus retention of accurate spatial, but not procedural and contextual information required PKMzeta activity. Similarly, PKMzeta inhibition in the hippocampus did not affect contextual information after fear conditioning. In contrast, PKMzeta inhibition in the BLA impaired retention of classical conditioned stimulus-unconditioned stimulus (CS-US) associations for both contextual and auditory fear, as well as instrumentally conditioned inhibitory avoidance. PKMzeta inhibition had no effect on postshock freezing, indicating fear expression mediated by the BLA remained intact. Thus, persistent PKMzeta activity is a general mechanism for both appetitively and aversively motivated retention of specific, accurate learned information, but is not required for processing contextual, imprecise, or

  16. Subregion-Specific p300 Conditional Knock-Out Mice Exhibit Long-Term Memory Impairments

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Estevez, Marcel A.; Hawk, Joshua D.; Grimes, Shannon; Brindle, Paul K.; Abel, Ted

    2011-01-01

    Histone acetylation plays a critical role during long-term memory formation. Several studies have demonstrated that the histone acetyltransferase (HAT) CBP is required during long-term memory formation, but the involvement of other HAT proteins has not been extensively investigated. The HATs CBP and p300 have at least 400 described interacting…

  17. They Saw a Movie: Long-Term Memory for an Extended Audiovisual Narrative

    ERIC Educational Resources Information Center

    Furman, Orit; Dorfman, Nimrod; Hasson, Uri; Davachi, Lila; Dudai, Yadin

    2007-01-01

    We measured long-term memory for a narrative film. During the study session, participants watched a 27-min movie episode, without instructions to remember it. During the test session, administered at a delay ranging from 3 h to 9 mo after the study session, long-term memory for the movie was probed using a computerized questionnaire that assessed…

  18. Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects

    ERIC Educational Resources Information Center

    Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude

    2010-01-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…

  19. Molecular bases of long-term memories: a question of persistence.

    PubMed

    Dudai, Yadin

    2002-04-01

    The most distinctive attribute of long-term memory is persistence over time. New studies have uncovered many aspects of the molecular and cellular biology of synaptic plasticity, and the acquisition and consolidation of memory, which are thought to depend on synaptic plasticity. Much less, however, is known about the molecular and cellular biology of long-term memory persistence. Recent findings in the field are construed within the conceptual framework that proposes that consolidation and persistence of long-term memories require modulation of gene expression, which can culminate in synaptic remodeling. Whether modulation of gene expression, and particularly the ensuing morphological plasticity of the synapse, is permissive, causal or sufficient for the materialization and persistence of the long-term trace is, as yet, undetermined. How persistent is persistence? Renewed interest is focused on the possibility that some long-term memories consolidate anew with retrieval, and could, under certain conditions, become transiently shaky in this period of reconsolidation.

  20. Long-term spatial memory in rats with hippocampal lesions.

    PubMed

    Ramos, J M

    2000-09-01

    In animal models of human amnesia, using lesion methods, it has been difficult to establish the role played by the hippocampus in the formation of long-term spatial knowledge. For example, lesions sustained after acquisition have generally produced a flat retrograde amnesia for spatial information. These results have not made it possible to dissociate the participation of the hippocampus in retrieval/performance processes from its participation in consolidation/retention. The present study was designed to investigate if electrolytic hippocampal lesions made before training lead to a deficit in the long-term retention of spatial knowledge when the rats show equal performance levels during the acquisition. Results show that lesioned rats learn a place response just as well as the control rats when, during the training, an intramaze cue orients the animal in its navigation towards the goal arm. One day after reaching criterion, lesioned and control rats remember the task perfectly during a transfer test in which the intramaze signal used previously is not present. However, 24 days later, the hippocampal animals manifest a profound deficit in the retention of the spatial information. When the spatial task learned during the acquisition phase requires only the use of a guidance strategy, control and lesioned animals show the same level of performance during the training phase and the same degree of retention during the retraining phase 24 days after criterion. Taken together, these results suggest that the hippocampus plays a crucial role in long-term retention of allocentric spatial information.

  1. Role of Atypical Protein Kinases in Maintenance of Long-Term Memory and Synaptic Plasticity.

    PubMed

    Borodinova, A A; Zuzina, A B; Balaban, P M

    2017-03-01

    Investigation of biochemical mechanisms underlying the long-term storage of information in nervous system is one of main problems of modern neurobiology. As a molecular basis of long-term memory, long-term changes in kinase activities, increase in the level and changes in the subunit composition of receptors in synaptic membranes, local activity of prion-like proteins, and epigenetic modifications of chromatin have been proposed. Perhaps a combination of all or of some of these factors underlies the storage of long-term memory in the brain. Many recent studies have shown an exclusively important role of atypical protein kinases (PKCζ, PKMζ, and PKCι/λ) in processes of learning, consolidation and maintenance of memory. The present review is devoted to consideration of mechanisms of transcriptional and translational control of atypical protein kinases and their roles in induction and maintenance of long-term synaptic plasticity and memory in vertebrates and invertebrates.

  2. SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory

    PubMed Central

    Shimizu, Kimiko; Kobayashi, Yodai; Nakatsuji, Erika; Yamazaki, Maya; Shimba, Shigeki; Sakimura, Kenji; Fukada, Yoshitaka

    2016-01-01

    Learning and memory depend on the time of day in various organisms, but it is not clear whether and how the circadian clock regulates memory performance. Here we show that consolidation of long-term recognition memory is a circadian-regulated process, which is blunted by disruption of the hippocampal clock. We focused on SCOP, a key molecule regulating hippocampus-dependent long-term memory for objects. The amounts of SCOP and its binding partner K-Ras in the hippocampal membrane rafts exhibit robust circadian changes, and SCOP knockdown in the hippocampal CA1 impairs long-term memory at night. Circadian changes in stimulus-dependent activation of ERK in the hippocampal neurons are dependent on the SCOP levels in the membrane rafts, while Scop knockout abrogates the activation rhythm. We conclude that long-term memory formation is regulated by the circadian clock through SCOP dynamics in the membrane rafts of the hippocampal CA1. PMID:27686624

  3. The Role of Long-Term Memory in a Test of Visual Working Memory: Proactive Facilitation but No Proactive Interference

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Awh, Edward; Sutterer, David W.

    2017-01-01

    We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3…

  4. Media multitasking and memory: Differences in working memory and long-term memory.

    PubMed

    Uncapher, Melina R; K Thieu, Monica; Wagner, Anthony D

    2016-04-01

    Increasing access to media in the 21st century has led to a rapid rise in the prevalence of media multitasking (simultaneous use of multiple media streams). Such behavior is associated with various cognitive differences, such as difficulty filtering distracting information and increased trait impulsivity. Given the rise in media multitasking by children, adolescents, and adults, a full understanding of the cognitive profile of media multitaskers is imperative. Here we investigated the relationship between chronic media multitasking and working memory (WM) and long-term memory (LTM) performance. Four key findings are reported (1) heavy media multitaskers (HMMs) exhibited lower WM performance, regardless of whether external distraction was present or absent; (2) lower performance on multiple WM tasks predicted lower LTM performance; (3) media multitasking-related differences in memory reflected differences in discriminability rather than decision bias; and (4) attentional impulsivity correlated with media multitasking behavior and reduced WM performance. These findings suggest that chronic media multitasking is associated with a wider attentional scope/higher attentional impulsivity, which may allow goal-irrelevant information to compete with goal-relevant information. As a consequence, heavy media multitaskers are able to hold fewer or less precise goal-relevant representations in WM. HMMs' wider attentional scope, combined with their diminished WM performance, propagates forward to yield lower LTM performance. As such, chronic media multitasking is associated with a reduced ability to draw on the past--be it very recent or more remote--to inform present behavior.

  5. Rescue of long-term memory after reconsolidation blockade

    PubMed Central

    Trent, Simon; Barnes, Philip; Hall, Jeremy; Thomas, Kerrie L.

    2015-01-01

    Memory reconsolidation is considered to be the process whereby stored memories become labile on recall, allowing updating. Blocking the restabilization of a memory during reconsolidation is held to result in a permanent amnesia. The targeted knockdown of either Zif268 or Arc levels in the brain, and inhibition of protein synthesis, after a brief recall results in a non-recoverable retrograde amnesia, known as reconsolidation blockade. These experimental manipulations are seen as key proof for the existence of reconsolidation. However, here we demonstrate that despite disrupting the molecular correlates of reconsolidation in the hippocampus, rodents are still able to recover contextual memories. Our results challenge the view that reconsolidation is a separate memory process and instead suggest that the molecular events activated initially at recall act to constrain premature extinction. PMID:26238574

  6. Zeta inhibitory peptide (ZIP) erases long-term memories in a cockroach.

    PubMed

    Deng, Zhouheng; Lubinski, Alexander J; Page, Terry L

    2015-02-01

    Recent efforts to identify the molecules that are involved in the maintenance of long-term memories in mammals have focused attention on atypical isoforms of protein kinase C (PKC). Inhibition of these kinases by either the general PKC inhibitor, chelerythrine, or the more specific inhibitor, zeta inhibitory peptide (ZIP), can abolish both long-term potentiation in the hippocampus and as well as spatial, fear, appetitive, and sensorimotor memories. These inhibitors can also abolish long-term facilitation and long-term sensitization in the mollusk Aplysia californica. We have extended these results to an insect, the cockroach Leucophaea maderae. We show that systemic injections of either chelerythrine or ZIP erase long-term olfactory memories in the cockroach, but have no effect on memory acquisition during conditioning. We also show that inhibition of either protein kinase A (PKA) or protein synthesis can block memory acquisition but neither has an effect on the memory once it is formed. The results suggest that sustaining memories in insects requires the persistent activity of one or more isoforms of PKC and point to a strong evolutionary conservation of the molecular mechanisms that underlie the persistence of long-term memories in the central nervous system.

  7. Long-Term Memory for Different Types of Classroom Knowledge

    DTIC Science & Technology

    1992-08-01

    they start working on the job. However, much of the research on memory loss has focused on procedural/ psychomotor skills and tasks (e.g., performing...factors has focused on procedural/ psychomotor skills and tasks (e.g., performing preventive maintenance, operating equipment). After a number of...with an accompanying form, TRADOC Form 321-R. While the research on retention of procedural/ psychomotor skills has been extensive, memory for knowledge

  8. DNA methylation mediates the discriminatory power of associative long-term memory in honeybees.

    PubMed

    Biergans, Stephanie D; Jones, Julia C; Treiber, Nadine; Galizia, C Giovanni; Szyszka, Paul

    2012-01-01

    Memory is created by several interlinked processes in the brain, some of which require long-term gene regulation. Epigenetic mechanisms are likely candidates for regulating memory-related genes. Among these, DNA methylation is known to be a long lasting genomic mark and may be involved in the establishment of long-term memory. Here we demonstrate that DNA methyltransferases, which induce and maintain DNA methylation, are involved in a particular aspect of associative long-term memory formation in honeybees, but are not required for short-term memory formation. While long-term memory strength itself was not affected by blocking DNA methyltransferases, odor specificity of the memory (memory discriminatory power) was. Conversely, perceptual discriminatory power was normal. These results suggest that different genetic pathways are involved in mediating the strength and discriminatory power of associative odor memories and provide, to our knowledge, the first indication that DNA methyltransferases are involved in stimulus-specific associative long-term memory formation.

  9. The short- and long-term consequences of directed forgetting in a working memory task.

    PubMed

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2013-01-01

    Directed forgetting requires the voluntary control of memory. Whereas many studies have examined directed forgetting in long-term memory (LTM), the mechanisms and effects of directed forgetting within working memory (WM) are less well understood. The current study tests how directed forgetting instructions delivered in a WM task influence veridical memory, as well as false memory, over the short and long term. In a modified item recognition task Experiment 1 tested WM only and demonstrated that directed forgetting reduces false recognition errors and semantic interference. Experiment 2 replicated these WM effects and used a surprise LTM recognition test to assess the long-term effects of directed forgetting in WM. Long-term veridical memory for to-be-remembered lists was better than memory for to-be-forgotten lists-the directed forgetting effect. Moreover, fewer false memories emerged for to-be-forgotten information than for to-be-remembered information in LTM as well. These results indicate that directed forgetting during WM reduces semantic processing of to-be-forgotten lists over the short and long term. Implications for theories of false memory and the mechanisms of directed forgetting within working memory are discussed.

  10. Debra, a protein mediating lysosomal degradation, is required for long-term memory in Drosophila.

    PubMed

    Kottler, Benjamin; Lampin-Saint-Amaux, Aurélie; Comas, Daniel; Preat, Thomas; Goguel, Valérie

    2011-01-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behavior changes. Many of the molecular mechanisms underlying memory are conserved from flies to mammals, and Drosophila has been used extensively to study memory processes. To identify new genes involved in long-term memory, we screened Drosophila enhancer-trap P(Gal4) lines showing Gal4 expression in the mushroom bodies, a specialized brain structure involved in olfactory memory. This screening led to the isolation of a memory mutant that carries a P-element insertion in the debra locus. debra encodes a protein involved in the Hedgehog signaling pathway as a mediator of protein degradation by the lysosome. To study debra's role in memory, we achieved debra overexpression, as well as debra silencing mediated by RNA interference. Experiments conducted with a conditional driver that allowed us to specifically restrict transgene expression in the adult mushroom bodies led to a long-term memory defect. Several conclusions can be drawn from these results: i) debra levels must be precisely regulated to support normal long-term memory, ii) the role of debra in this process is physiological rather than developmental, and iii) debra is specifically required for long-term memory, as it is dispensable for earlier memory phases. Drosophila long-term memory is the only long-lasting memory phase whose formation requires de novo protein synthesis, a process underlying synaptic plasticity. It has been shown in several organisms that regulation of proteins at synapses occurs not only at translation level of but also via protein degradation, acting in remodeling synapses. Our work gives further support to a role of protein degradation in long-term memory, and suggests that the lysosome plays a role in this process.

  11. Integrin Dynamics Produce a Delayed Stage of Long-Term Potentiation and Memory Consolidation

    PubMed Central

    Babayan, Alex H.; Kramár, Enikö A.; Barrett, Ruth M.; Jafari, Matiar; Häettig, Jakob; Chen, Lulu Y.; Rex, Christopher S.; Lauterborn, Julie C.; Wood, Marcelo A.; Gall, Christine M.

    2012-01-01

    Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the β1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates β1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for β1 integrins blocked these effects. TBS-induced integrin activation was brief (<7 min) and followed by an ∼45 min period during which the adhesion receptors did not respond to a second application of TBS. Brefeldin A, which blocks integrin trafficking to the plasma membrane, prevented the delayed recovery of integrin responses to TBS. β1 integrin-neutralizing antisera erased LTP when applied during, but not after, the return of integrin responsivity. Similarly, infusions of anti-β1 into rostral mouse hippocampus blocked formation of long-term, object location memory when started 20 min after learning but not 40 min later. The finding that β1 integrin neutralization was effective in the same time window for slice and behavioral experiments strongly suggests that integrin recovery triggers a temporally discrete, previously undetected second stage of consolidation for both LTP and memory. PMID:22973009

  12. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Park, Alan J.; Tolentino, Rosa E.; Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Lee, Yool; Hansen, Rolf T.; Guercio, Leonardo A.; Linton, Edward; Neves-Zaph, Susana R.; Meerlo, Peter; Baillie, George S.; Houslay, Miles D.

    2016-01-01

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo. Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular

  13. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory

    PubMed Central

    Xue, Yan-Xue; Zhu, Zhen-Zhen; Han, Hai-Bin; Liu, Jian-Feng; Meng, Shi-Qiu; Chen, Chen; Yang, Jian-Li; Wu, Ping; Lu, Lin

    2015-01-01

    Neuroplasticity in the prefrontal cortex (PFC) after fear conditioning has been suggested to regulate the formation and expression of fear memory. Protein kinase Mζ (PKMζ), an isoform of protein kinase C with persistent activity, is involved in the formation and maintenance of memory. However, less is known about the role of PKMζ in the PFC in the formation of fear memory. We investigated whether the overexpression of PKMζ enhances the formation of auditory fear memory in rats. We found that microinfusion of lentiviral vector-expressing PKMζ into the prelimbic cortex (PrL) selectively enhanced the expression of PKMζ without influencing the expression of other isoforms of PKC. The overexpression of PKMζ in the PrL enhanced the formation of long-term fear memory without affecting short-term fear memory, whereas the overexpression of PKMζ in the infralimbic cortex had no effect on either short-term or long-term fear memory. The overexpression of PKMζ in the PrL had no effect on anxiety-like behavior or locomotor activity. We also found that PKMζ overexpression potentiated the fear conditioning-induced increase in the membrane levels of glutamate subunit 2 of AMPA receptors in the PrL. These results demonstrate that the overexpression of PKMζ in the PrL but not infralimbic cortex selectively enhanced the formation of long-term fear memory, and PKMζ in the PrL may be involved in the formation of fear memory. PMID:25722116

  14. Effects of Age on Long Term Memory for Degraded Speech

    PubMed Central

    Thiel, Christiane M.; Özyurt, Jale; Nogueira, Waldo; Puschmann, Sebastian

    2016-01-01

    Prior research suggests that acoustical degradation impacts encoding of items into memory, especially in elderly subjects. We here aimed to investigate whether acoustically degraded items that are initially encoded into memory are more prone to forgetting as a function of age. Young and old participants were tested with a vocoded and unvocoded serial list learning task involving immediate and delayed free recall. We found that degraded auditory input increased forgetting of previously encoded items, especially in older participants. We further found that working memory capacity predicted forgetting of degraded information in young participants. In old participants, verbal IQ was the most important predictor for forgetting acoustically degraded information. Our data provide evidence that acoustically degraded information, even if encoded, is especially vulnerable to forgetting in old age. PMID:27708570

  15. Biased Competition during Long-term Memory Formation

    PubMed Central

    Hutchinson, J. Benjamin; Pak, Sarah S.; Turk-Browne, Nicholas B.

    2016-01-01

    A key task for the brain is to determine which pieces of information are worth storing in memory. To build a more complete representation of the environment, memory systems may prioritize new information that has not already been stored. Here, we propose a mechanism that supports this preferential encoding of new information, whereby prior experience attenuates neural activity for old information that is competing for processing. We evaluated this hypothesis with fMRI by presenting a series of novel stimuli concurrently with repeated stimuli at different spatial locations in Experiment 1 and from different visual categories (i.e., faces and scenes) in Experiment 2. Subsequent memory for the novel stimuli could be predicted from the reduction in activity in ventral temporal cortex for the accompanying repeated stimuli. This relationship was eliminated in control conditions where the competition during encoding came from another novel stimulus. These findings reveal how prior experience adaptively guides learning toward new aspects of the environment. PMID:26439270

  16. GABA-Mediated Presynaptic Inhibition Is Required for Precision of Long-Term Memory

    ERIC Educational Resources Information Center

    Cullen, Patrick K.; Dulka, Brooke N.; Ortiz, Samantha; Riccio, David C.; Jasnow, Aaron M.

    2014-01-01

    Though much attention has been given to the neural structures that underlie the long-term consolidation of contextual memories, little is known about the mechanisms responsible for the maintenance of memory precision. Here, we demonstrate a rapid time-dependent decline in memory precision in GABA [subscript B(1a)] receptor knockout mice. First, we…

  17. The Neural Substrates of Recognition Memory for Verbal Information: Spanning the Divide between Short- and Long-Term Memory

    ERIC Educational Resources Information Center

    Buchsbaum, Bradley R.; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-01-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research…

  18. Anticipatory eye movements and long-term memory in early infancy.

    PubMed

    Wong-Kee-You, Audrey M B; Adler, Scott A

    2016-11-01

    Advances in our understanding of long-term memory in early infancy have been made possible by studies that have used the Rovee-Collier's mobile conjugate reinforcement paradigm and its variants. One function that has been attributed to long-term memory is the formation of expectations (Rovee-Collier & Hayne, 1987); consequently, a long-term memory representation should be established during expectation formation. To examine this prediction and potentially open the door on a new paradigm for exploring infants' long-term memory, using the Visual Expectation Paradigm (Haith, Hazan, & Goodman, 1988), 3-month-old infants were trained to form an expectation for predictable color and spatial information of picture events and emit anticipatory eye movements to those events. One day later, infants' anticipatory eye movements decreased in number relative to the end of training when the predictable colors were changed but not when the spatial location of the predictable color events was changed. These findings confirm that information encoded during expectation formation are stored in long-term memory, as hypothesized by Rovee-Collier and colleagues. Further, this research suggests that eye movements are potentially viable measures of long-term memory in infancy, providing confirmatory evidence for early mnemonic processes.

  19. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    PubMed Central

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  20. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    PubMed

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance.

  1. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    PubMed

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-03-08

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder

  2. Insulin signaling is acutely required for long-term memory in Drosophila

    PubMed Central

    Chambers, Daniel B.; Androschuk, Alaura; Rosenfelt, Cory; Langer, Steven; Harding, Mark; Bolduc, Francois V.

    2015-01-01

    Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal role of InS using the olfactory learning and long-term memory model in Drosophila. We found that InS is involved in both learning and memory. InS in the mushroom body is required for learning and long-term memory whereas long-term memory specifically is impaired after InS signaling disruption in the ellipsoid body, where it regulates the level of p70s6k, a downstream target of InS and a marker of protein synthesis. Finally, we show also that InS is acutely required for long-term memory formation in adult flies. PMID:25805973

  3. The Association between Physical Activity During the Day and Long-Term Memory Stability

    PubMed Central

    Pontifex, Matthew B.; Gwizdala, Kathryn L.; Parks, Andrew C.; Pfeiffer, Karin A.; Fenn, Kimberly M.

    2016-01-01

    Despite positive associations between chronic physical activity and memory; we have little understanding of how best to incorporate physical activity during the day to facilitate the consolidation of information into memory, nor even how time spent physically active during the day relates to memory processes. The purpose of this investigation was to examine the relation between physical activity during the day and long-term memory. Ninety-two young adults learned a list of paired-associate items and were tested on the items after a 12-hour interval during which heart rate was recorded continuously. Although the percentage of time spent active during the day was unrelated to memory, two critical physical activity periods were identified as relating to the maintenance of long-term memory. Engaging in physical activity during the period 1 to 2-hours following the encoding of information was observed to be detrimental to the maintenance of information in long-term memory. In contrast, physical activity during the period 1-hour prior to memory retrieval was associated with superior memory performance, likely due to enhanced retrieval processing. These findings provide initial evidence to suggest that long-term memory may be enhanced by more carefully attending to the relative timing of physical activity incorporated during the day. PMID:27909312

  4. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    ERIC Educational Resources Information Center

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  5. Delayed emergence of effects of memory-enhancing drugs: implications for the dynamics of long-term memory.

    PubMed Central

    Mondadori, C; Hengerer, B; Ducret, T; Borkowski, J

    1994-01-01

    Many theories of memory postulate that processing of information outlasts the learning situation and involves several different physiological substrates. If such physiologically distinct mechanisms or stages of memory do in fact exist, they should be differentially affected by particular experimental manipulations. Accordingly, a selective improvement of the processes underlying short-term memory should be detectable only while the information is encoded in the short-term mode, and a selective influence on long-term memory should be detectable only from the moment when memory is based on the long-term trace. Our comparative study of the time course of the effects of the cholinergic agonist arecoline, the gamma-aminobutyric acid type B receptor antagonist CGP 36742, the angiotensin-converting enzyme inhibitor captopril, and the nootropic oxiracetam, four substances with completely different primary sites of action, show that the memory-enhancing effects consistently come into evidence no sooner than 16-24 h after the learning trial. On the one hand, this finding suggests that all these substances act by way of the same type of mechanism; on the other hand, it demonstrates that the substrate modulated by the compounds forms the basis of memory only after 16-24 h. From the observation that animals also show clear signs of retention during the first 16 h--i.e., before the effects of the substances are measurable--it can be inferred that retention during this time is mediated by other mechanisms that are not influenced by any of the substances. Images PMID:8134347

  6. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    PubMed

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline.

  7. Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories.

    PubMed

    Payne, Jessica D; Jackson, Eric D; Hoscheidt, Siobhan; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn

    2007-12-01

    Stressful events frequently comprise both neutral and emotionally arousing information, yet the impact of stress on emotional and neutral events is still not fully understood. The hippocampus and frontal cortex have dense concentrations of receptors for stress hormones, such as cortisol, which at high levels can impair performance on hippocampally dependent memory tasks. Yet, the same stress hormones can facilitate memory for emotional information, which involves interactions between the hippocampus and amygdala. Here, we induced psychosocial stress prior to encoding and examined its long-term effects on memory for emotional and neutral episodes. The stress manipulation disrupted long-term memory for a neutral episode, but facilitated long-term memory for an equivalent emotional episode compared with a control condition. The stress manipulation also increased salivary cortisol, catecholamines as indicated by the presence of alpha-amylase, heart rate, and subjectively reported stress. Stressed subjects reported more false memories than nonstressed control subjects, and these false memories correlated positively with cortisol levels, providing evidence for a relationship between stress and false memory formation. Our results demonstrate that stress, when administered prior to encoding, produces different patterns of long-term remembering for neutral and emotional episodes. These differences likely emerge from differential actions of stress hormones on memory-relevant regions of the brain.

  8. Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans

    PubMed Central

    Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M.; Jednoróg, Katarzyna

    2016-01-01

    Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia. PMID:27818626

  9. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  10. Hippocampal ensemble dynamics timestamp events in long-term memory

    PubMed Central

    Rubin, Alon; Geva, Nitzan; Sheintuch, Liron; Ziv, Yaniv

    2015-01-01

    The capacity to remember temporal relationships between different events is essential to episodic memory, but little is currently known about its underlying mechanisms. We performed time-lapse imaging of thousands of neurons over weeks in the hippocampal CA1 of mice as they repeatedly visited two distinct environments. Longitudinal analysis exposed ongoing environment-independent evolution of episodic representations, despite stable place field locations and constant remapping between the two environments. These dynamics time-stamped experienced events via neuronal ensembles that had cellular composition and activity patterns unique to specific points in time. Temporally close episodes shared a common timestamp regardless of the spatial context in which they occurred. Temporally remote episodes had distinct timestamps, even if they occurred within the same spatial context. Our results suggest that days-scale hippocampal ensemble dynamics could support the formation of a mental timeline in which experienced events could be mnemonically associated or dissociated based on their temporal distance. DOI: http://dx.doi.org/10.7554/eLife.12247.001 PMID:26682652

  11. Individual Differences in the Effects of Retrieval from Long-Term Memory

    ERIC Educational Resources Information Center

    Brewer, Gene A.; Unsworth, Nash

    2012-01-01

    The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…

  12. Two Waves of Transcription Are Required for Long-Term Memory in the Honeybee

    ERIC Educational Resources Information Center

    Lefer, Damien; Perisse, Emmanuel; Hourcade, Benoit; Sandoz, JeanChristophe; Devaud, Jean-Marc

    2013-01-01

    Storage of information into long-term memory (LTM) usually requires at least two waves of transcription in many species. However, there is no clear evidence of this phenomenon in insects, which are influential models for memory studies. We measured retention in honeybees after injecting a transcription inhibitor at different times before and after…

  13. Endogenous BDNF Is Required for Long-Term Memory Formation in the Rat Parietal Cortex

    ERIC Educational Resources Information Center

    Alonso, Mariana; Bekinschtein, Pedro, Cammarota, Martin; Vianna, Monica R. M.; Izquierdo, Ivan; Medina, Jorge H.

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory…

  14. Identification of a functional connectome for long-term fear memory in mice.

    PubMed

    Wheeler, Anne L; Teixeira, Cátia M; Wang, Afra H; Xiong, Xuejian; Kovacevic, Natasa; Lerch, Jason P; McIntosh, Anthony R; Parkinson, John; Frankland, Paul W

    2013-01-01

    Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.

  15. Insulin Receptor Signaling in Long-Term Memory Consolidation Following Spatial Learning

    ERIC Educational Resources Information Center

    Dou, Jing-Tao; Chen, Min; Dufour, Franck; Alkon, Daniel L.; Zhao, Wei-Qin

    2005-01-01

    Evidence has shown that the insulin and insulin receptor (IR) play a role in cognitive function. However, the detailed mechanisms underlying insulin's action on learning and memory are not yet understood. Here we investigated changes in long-term memory-associated expression of the IR and downstream molecules in the rat hippocampus. After…

  16. PKG-Mediated MAPK Signaling Is Necessary for Long-Term Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Michel, Maximilian; Green, Charity L.; Eskin, Arnold; Lyons, Lisa C.

    2011-01-01

    Signaling pathways necessary for memory formation, such as the mitogen-activated protein kinase (MAPK) pathway, appear highly conserved across species and paradigms. Learning that food is inedible (LFI) represents a robust form of associative, operant learning that induces short- (STM) and long-term memory (LTM) in "Aplysia." We investigated the…

  17. Hormonal and Monoamine Signaling during Reinforcement of Hippocampal Long-Term Potentiation and Memory Retrieval

    ERIC Educational Resources Information Center

    Korz, Volker; Frey, Julietta U.

    2007-01-01

    Recently it was shown that holeboard training can reinforce, i.e., transform early-LTP into late-LTP in the dentate gyrus during the initial formation of a long-term spatial reference memory in rats. The consolidation of LTP as well as of the reference memory was dependent on protein synthesis. We have now investigated the transmitter systems…

  18. Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term.

    PubMed

    Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F

    2015-10-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.

  19. The Effects of Valence and Arousal on Associative Working Memory and Long-Term Memory

    PubMed Central

    Bergmann, Heiko C.; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P. C.

    2012-01-01

    Background Emotion can either facilitate or impair memory, depending on what, when and how memory is tested and whether the paradigm at hand is administered as a working memory (WM) or a long-term memory (LTM) task. Whereas emotionally arousing single stimuli are more likely to be remembered, memory for the relationship between two or more component parts (i.e., relational memory) appears to be worse in the presence of emotional stimuli, at least in some relational memory tasks. The current study investigated the effects of both valence (neutral vs. positive vs. negative) and arousal (low vs. high) in an inter-item WM binding and LTM task. Methodology/Principal Findings A five-pair delayed-match-to-sample (WM) task was administered. In each trial, study pairs consisted of one neutral picture and a second picture of which the emotional qualities (valence and arousal levels) were manipulated. These pairs had to be remembered across a delay interval of 10 seconds. This was followed by a probe phase in which five pairs were tested. After completion of this task, an unexpected single item LTM task as well as an LTM task for the pairs was assessed. As expected, emotional arousal impaired WM processing. This was reflected in lower accuracy for pairs consisting of high-arousal pictures compared to pairs with low-arousal pictures. A similar effect was found for the associative LTM task. However, the arousal effect was modulated by affective valence for the WM but not the LTM task; pairs with low-arousal negative pictures were not processed as well in the WM task. No significant differences were found for the single-item LTM task. Conclusions/Significance The present study provides additional evidence that processes during initial perception/encoding and post-encoding processes, the time interval between study and test and the interaction between valence and arousal might modulate the effects of “emotion” on associative memory. PMID:23300724

  20. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    PubMed Central

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein

  1. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory.

    PubMed

    Oliveira, Giacomo; Ruggiero, Eliana; Stanghellini, Maria Teresa Lupo; Cieri, Nicoletta; D'Agostino, Mattia; D'Agostino, Mattio; Fronza, Raffaele; Lulay, Christina; Dionisio, Francesca; Mastaglio, Sara; Greco, Raffaella; Peccatori, Jacopo; Aiuti, Alessandro; Ambrosi, Alessandro; Biasco, Luca; Bondanza, Attilio; Lambiase, Antonio; Traversari, Catia; Vago, Luca; von Kalle, Christof; Schmidt, Manfred; Bordignon, Claudio; Ciceri, Fabio; Bonini, Chiara

    2015-12-09

    Long-lasting immune protection from pathogens and cancer requires the generation of memory T cells able to survive long-term. To unravel the immunological requirements for long-term persistence of human memory T cells, we characterized and traced, over several years, T lymphocytes genetically modified to express the thymidine kinase (TK) suicide gene that were infused in 10 patients after haploidentical hematopoietic stem cell transplantation (HSCT). At 2 to 14 years after infusion and in the presence of a broad and resting immune system, we could still detect effectors/effector memory (TEM/EFF), central memory (TCM), and stem memory (TSCM) TK(+) cells, circulating at low but stable levels in all patients. Longitudinal analysis of cytomegalovirus (CMV)- and Flu-specific TK(+) cells indicated that antigen recognition was dominant in driving in vivo expansion and persistence at detectable levels. The amount of infused TSCM cells positively correlated with early expansion and with the absolute counts of long-term persisting gene-marked cells. By combining T cell sorting with sequencing of integration (IS), TCRα and TCRβ clonal markers, we showed that T cells retrieved long-term were enriched in clones originally shared in different memory T cell subsets, whereas dominant long-term clonotypes appeared to preferentially originate from infused TSCM and TCM clones. Together, these results indicate that long-term persistence of gene-modified memory T cells after haploidentical HSCT is influenced by antigen exposure and by the original phenotype of infused cells. Cancer adoptive immunotherapy might thus benefit from cellular products enriched in lymphocytes with an early-differentiated phenotype.

  2. Dopamine neurons encoding long-term memory of object value for habitual behavior

    PubMed Central

    Kim, Hyoung F.; Ghazizadeh, Ali; Hikosaka, Okihide

    2015-01-01

    SUMMARY Dopamine neurons promote learning by processing recent changes in reward values, such that reward may be maximized. However, such a flexible signal is not suitable for habitual behaviors that are sustained regardless of recent changes in reward outcome. We discovered a type of dopamine neuron in the monkey substantia nigra pars compacta (SNc) that retains past-learned reward values stably. After reward values of visual objects are learned, these neurons continue to respond differentially to the objects, even when reward is not expected. Responses are strengthened by repeated learning and are evoked upon presentation of the objects long after learning is completed. These “sustain-type” dopamine neurons are confined to the caudal-lateral SNc and project to the caudate tail, which encodes long-term value memories of visual objects and guides gaze automatically to stably valued objects. This population of dopamine neurons thus selectively promotes learning and retention of habitual behavior. PMID:26590420

  3. [The molecular scenarios of the consolidation of long-term memory].

    PubMed

    Anokhin, K V

    1997-01-01

    Long-term memory consolidation is a critical event in the transition of short-lasting experiences into durable modifications of behaviour. Present article focuses on the problem of molecular bases of this process. It starts with a brief review of biochemical and pharmacological data demonstrating a universal dependence of long-term memory on gene expression in the brain. Some of the experimental studies of immediate early gene expression in the brain during learning are described in the second part of the article. A hypothesis is discussed according to which consolidation of long-term memory employ the same biphasic molecular cascade of gene expression that is used for cell growth and differentiation during development.

  4. The prion gene is associated with human long-term memory.

    PubMed

    Papassotiropoulos, Andreas; Wollmer, M Axel; Aguzzi, Adriano; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-08-01

    Human cognitive processes are highly variable across individuals and are influenced by both genetic and environmental factors. Although genetic variations affect short-term memory in humans, it is unknown whether genetic variability has also an impact on long-term memory. Because prion-like conformational changes may be involved in the induction of long-lasting synaptic plasticity, we examined the impact of single-nucleotide polymorphisms (SNPs) of the prion protein gene (PRNP) on long-term memory in healthy young humans. SNPs in the genomic region of PRNP were associated with better long-term memory performance in two independent populations with different educational background. Among the examined PRNP SNPs, the common Met129Val polymorphism yielded the highest effect size. Twenty-four hours after a word list-learning task, carriers of either the 129MM or the 129MV genotype recalled 17% more information than 129VV carriers, but short-term memory was unaffected. These results suggest a role for the prion protein in the formation of long-term memory in humans.

  5. Learning, memory and long-term potentiation are altered in Nedd4 heterozygous mice.

    PubMed

    Camera, Daria; Coleman, Harold A; Parkington, Helena C; Jenkins, Trisha A; Pow, David V; Boase, Natasha; Kumar, Sharad; Poronnik, Philip

    2016-04-15

    The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4. These mice showed decreased long-term spatial memory as evidenced by significant increases in the time taken to learn the location of and subsequently find a platform in the Morris water maze. In contrast, there were no significant differences between Nedd4(+/+) and Nedd4(+/-) mice in terms of short-term spatial memory in a Y-maze test. Nedd4(+/-) mice also displayed a significant reduction in post-synaptic LTP measured in hippocampal brain slices. Immunofluorescence of Nedd4 in the hippocampus confirmed its expression in hippocampal neurons of the CA1 region. These findings indicate that reducing Nedd4 protein by 50% significantly impairs LTP and long-term memory thereby demonstrating an important role for Nedd4 in these processes.

  6. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment.

    PubMed

    Aleisa, A M; Alzoubi, K H; Alkadhi, K A

    2011-07-15

    Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.

  7. Complex network structure influences processing in long-term and short-term memory

    PubMed Central

    Vitevitch, Michael S.; Chan, Kit Ying; Roodenrys, Steven

    2012-01-01

    Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological word-forms influenced retrieval from the mental lexicon (that portion of long-term memory dedicated to language) during the on-line recognition and production of spoken words. In the present study we examined how network structure influences other retrieval processes in long- and short-term memory. In a false-memory task—examining long-term memory—participants falsely recognized more words with low- than high-C. In a recognition memory task—examining veridical memories in long-term memory—participants correctly recognized more words with low- than high-C. However, participants in a serial recall task—examining redintegration in short-term memory—recalled lists comprised of high-C words more accurately than lists comprised of low-C words. These results demonstrate that network structure influences cognitive processes associated with several forms of memory including lexical, long-term, and short-term. PMID:22745522

  8. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks.

    PubMed

    Izquierdo, Iván; Cammarota, Martín; Da Silva, Weber C; Bevilaqua, Lia R M; Rossato, Janine I; Bonini, Juliana S; Mello, Pamela; Benetti, Fernando; Costa, Jaderson C; Medina, Jorge H

    2008-03-01

    Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost identical to those of LTP in the same region; b)hippocampal LTP in this region accompanies memory formation of that task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and in addition plastic events in several other brain regions(amygdala, entorhinal cortex, parietal cortex) are also necessary for memory formation of the one-trial task, and perhaps of many others.

  9. A requirement for memory retrieval during and after long-term extinction learning.

    PubMed

    Ouyang, Ming; Thomas, Steven A

    2005-06-28

    Current learning theories are based on the idea that learning is driven by the difference between expectations and experience (the delta rule). In extinction, one learns that certain expectations no longer apply. Here, we test the potential validity of the delta rule by manipulating memory retrieval (and thus expectations) during extinction learning. Adrenergic signaling is critical for the time-limited retrieval (but not acquisition or consolidation) of contextual fear. Using genetic and pharmacologic approaches to manipulate adrenergic signaling, we find that long-term extinction requires memory retrieval but not conditioned responding. Identical manipulations of the adrenergic system that do not affect memory retrieval do not alter extinction. The results provide substantial support for the delta rule of learning theory. In addition, the timing over which extinction is sensitive to adrenergic manipulation suggests a model whereby memory retrieval occurs during, and several hours after, extinction learning to consolidate long-term extinction memory.

  10. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  11. Memory for relations in the short term and the long term after medial temporal lobe damage.

    PubMed

    Squire, Larry R

    2017-02-11

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc.

  12. They saw a movie: long-term memory for an extended audiovisual narrative.

    PubMed

    Furman, Orit; Dorfman, Nimrod; Hasson, Uri; Davachi, Lila; Dudai, Yadin

    2007-06-01

    We measured long-term memory for a narrative film. During the study session, participants watched a 27-min movie episode, without instructions to remember it. During the test session, administered at a delay ranging from 3 h to 9 mo after the study session, long-term memory for the movie was probed using a computerized questionnaire that assessed cued recall, recognition, and metamemory of movie events sampled approximately 20 sec apart. The performance of each group of participants was measured at a single time point only. The participants remembered many events in the movie even months after watching it. Analysis of performance, using multiple measures, indicates differences between recent (weeks) and remote (months) memory. While high-confidence recognition performance was a reliable index of memory throughout the measured time span, cued recall accuracy was higher for relatively recent information. Analysis of different content elements in the movie revealed differential memory performance profiles according to time since encoding. We also used the data to propose lower limits on the capacity of long-term memory. This experimental paradigm is useful not only for the analysis of behavioral performance that results from encoding episodes in a continuous real-life-like situation, but is also suitable for studying brain substrates and processes of real-life memory using functional brain imaging.

  13. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    SciTech Connect

    Hou Qiuling; Gao Xiang; Lu Qi; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming . E-mail: bmli@fudan.edu.cn

    2006-09-08

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation.

  14. Long-term Memories: The Good, the Bad, and the Ugly.

    PubMed

    Alberini, Cristina M

    2010-09-01

    Traumatic memories haunt the lives of people suffering from post-traumatic stress disorder, or PTSD, and other illnesses. Fortunately, recent research into the changeability of long-term memories may someday develop into treatments for such individuals. But before this can happen, writes Cristina Alberini, Ph.D., of Mount Sinai School of Medicine, researchers must determine just how effectively the fear associated with older memories-especially those involved in PTSD-can be reduced and for how long. Researchers must also address the ethical issues that go hand in hand with modifying memory.

  15. Heightened false memory: a long-term sequela of severe closed head injury.

    PubMed

    Ries, Michele; Marks, William

    2006-01-01

    Declarative memory impairment is a common long-term sequela of severe closed head injury (CHI). Although veridical memory performance following severe CHI has received attention in the literature, little is known about false memory production in this population. Within the present study, both long-term survivors of severe CHI and matched control participants studied and were tested on six 12-items word lists from the Deese Roediger McDermott (DRM) paradigm. Word lists from the DRM are composed of words that are strongly semantically associated to a non-presented word (i.e., the critical lure). Prior studies have shown that healthy young adults show a high level of false recall and recognition memory for the critical lures, and it was hypothesized individuals with severe CHI would show heightened susceptibility to false memory compared to control participants due to difficulty with monitoring of memory. It was further hypothesized that severe CHI participants would show high confidence in their false memories. Consistent with hypotheses, results indicated that although severe CHI participants remembered fewer actual list items, they made more semantically related intrusion errors (recall) and false-positive responses (recognition) than the control participants. Severe CHI participants also showed greater confidence in their false memories than did control participants. The results are interpreted in the context of theoretical accounts of false memory, and possible structural and functional brain changes that might account for the Severe CHI group's memory performance are discussed.

  16. Transgenic Mice Expressing an Inhibitory Truncated Form of p300 Exhibit Long-Term Memory Deficits

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Wood, Marcelo A.; McDonough, Conor B.; Abel, Ted

    2007-01-01

    The formation of many forms of long-term memory requires several molecular mechanisms including regulation of gene expression. The mechanisms directing transcription require not only activation of individual transcription factors but also recruitment of transcriptional coactivators. CBP and p300 are transcriptional coactivators that interact with…

  17. Intrahippocampal Glutamine Administration Inhibits mTORC1 Signaling and Impairs Long-Term Memory

    ERIC Educational Resources Information Center

    Rozas, Natalia S.; Redell, John B.; Pita-Almenar, Juan D.; McKenna, James, III.; Moore, Anthony N.; Gambello, Michael J.; Dash, Pramod K.

    2015-01-01

    The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino…

  18. Long-Term Autobiographical Memory for Legal Involvement: Individual and Sociocontextual Predictors

    ERIC Educational Resources Information Center

    Quas, Jodi A.; Alexander, Kristen Weede; Goodman, Gail S.; Ghetti, Simona; Edelstein, Robin S.; Redlich, Allison

    2010-01-01

    We examined adults' long-term autobiographical memory for a dramatic life event-participating as a child victim in a criminal prosecution because of alleged sexual abuse. The study is unique in several ways, including that we had extensive documentation concerning the sexual abuse allegations, the children's involvement in their legal case, and…

  19. Long-Term Memory for Music: Infants Remember Tempo and Timbre

    ERIC Educational Resources Information Center

    Trainor, Laurel J.; Wu, Luann; Tsang, Christine D.

    2004-01-01

    We show that infants' long-term memory representations for melodies are not just reduced to the structural features of relative pitches and durations, but contain surface or performance tempo- and timbre-specific information. Using a head turn preference procedure, we found that after a one week exposure to an old English folk song, infants…

  20. Adult Age Differences in Accessing and Retrieving Information from Long-Term Memory.

    ERIC Educational Resources Information Center

    Petros, Thomas V.; And Others

    1983-01-01

    Investigated adult age differences in accessing and retrieving information from long-term memory. Results showed that older adults (N=26) were slower than younger adults (N=35) at feature extraction, lexical access, and accessing category information. The age deficit was proportionally greater when retrieval of category information was required.…

  1. Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity

    ERIC Educational Resources Information Center

    Graff, Johannes; Koshibu, Kyoko; Jouvenceau, Anne; Dutar, Patrick; Mansuy, Isabelle M.

    2010-01-01

    Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and…

  2. Role of Proteasome-Dependent Protein Degradation in Long-Term Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Lyons, Lisa C.; Gardner, Jacob S.; Gandour, Catherine E.; Krishnan, Harini C.

    2017-01-01

    We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in "Aplysia" using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through…

  3. Interteaching and Lecture: A Comparison of Long-Term Recognition Memory

    ERIC Educational Resources Information Center

    Saville, Bryan K.; Bureau, Alex; Eckenrode, Claire; Fullerton, Alison; Herbert, Reanna; Maley, Michelle; Porter, Allen; Zombakis, Julie

    2014-01-01

    Although a number of studies suggest that interteaching is an effective alternative to traditional teaching methods, no studies have systematically examined whether interteaching improves long-term memory. In this study, we assigned students to different teaching conditions--interteaching, lecture, or control--and then gave them a multiple-choice…

  4. Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory.

    PubMed

    López-Hidalgo, Mónica; Salgado-Puga, Karla; Alvarado-Martínez, Reynaldo; Medina, Andrea Cristina; Prado-Alcalá, Roberto A; García-Colunga, Jesús

    2012-01-01

    Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions.

  5. The long-term memory analysis of industrial indices of the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Yong, L.

    2008-02-01

    The main work of this paper is to apply the fractional market theory and time series analysis for analyzing various industrial indices of the Chinese stock market by rescaling range analysis. Hurst index and the long-term memory of price change in Chinese stock market are studied.

  6. Weighted Traffic Equilibrium Problem in Non Pivot Hilbert Spaces with Long Term Memory

    SciTech Connect

    Giuffre, Sofia; Pia, Stephane

    2010-09-30

    In the paper we consider a weighted traffic equilibrium problem in a non-pivot Hilbert space and prove the equivalence between a weighted Wardrop condition and a variational inequality with long term memory. As an application we show, using recent results of the Senseable Laboratory at MIT, how wireless devices can be used to optimize the traffic equilibrium problem.

  7. Processing With and Without Long-Term Memory Modification: Attention, Level of Processing and Word Frequency.

    ERIC Educational Resources Information Center

    Schneider, Walter; Fisk, Arthur D.

    The automatic/controlled processing theory proposal that the modification of long term memory (LTM) occurs only during controlled processing, and that stimuli can be automatically processed with no resulting LTM effect was tested in two experiments. In the first experiment, subjects were shown words while performing tasks involving either…

  8. How long-term memory and accentuation interact during spoken language comprehension.

    PubMed

    Li, Xiaoqing; Yang, Yufang

    2013-04-01

    Spoken language comprehension requires immediate integration of different information types, such as semantics, syntax, and prosody. Meanwhile, both the information derived from speech signals and the information retrieved from long-term memory exert their influence on language comprehension immediately. Using EEG (electroencephalogram), the present study investigated how the information retrieved from long-term memory interacts with accentuation during spoken language comprehension. Mini Chinese discourses were used as stimuli, with an interrogative or assertive context sentence preceding the target sentence. The target sentence included one critical word conveying new information. The critical word was either highly expected or lowly expected given the information retrieved from long-term memory. Moreover, the critical word was either consistently accented or inconsistently de-accented. The results revealed that for lowly expected new information, inconsistently de-accented words elicited a larger N400 and larger theta power increases (4-6 Hz) than consistently accented words. In contrast, for the highly expected new information, consistently accented words elicited a larger N400 and larger alpha power decreases (8-14 Hz) than inconsistently de-accented words. The results suggest that, during spoken language comprehension, the effect of accentuation interacted with the information retrieved from long-term memory immediately. Moreover, our results also have important consequences for our understanding of the processing nature of the N400. The N400 amplitude is not only enhanced for incorrect information (new and de-accented word) but also enhanced for correct information (new and accented words).

  9. Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants.

    PubMed

    Guerrieri, Fernando J; d'Ettorre, Patrizia; Devaud, Jean-Marc; Giurfa, Martin

    2011-10-01

    Ants exhibit impressive olfactory learning abilities. Operant protocols in which ants freely choose between rewarded and non-rewarded odours have been used to characterise associative olfactory learning and memory. Yet, this approach precludes the use of invasive methods allowing the dissection of molecular bases of learning and memory. An open question is whether the memories formed upon olfactory learning that are retrievable several days after training are indeed based on de novo protein synthesis. Here, we addressed this question in the ant Camponotus fellah using a conditioning protocol in which individually harnessed ants learn an association between odour and reward. When the antennae of an ant are stimulated with sucrose solution, the insect extends its maxilla-labium to absorb the solution (maxilla-labium extension response). We differentially conditioned ants to discriminate between two long-chain hydrocarbons, one paired with sucrose and the other with quinine solution. Differential conditioning leads to the formation of a long-term memory retrievable at least 72 h after training. Long-term memory consolidation was impaired by the ingestion of cycloheximide, a protein synthesis blocker, prior to conditioning. Cycloheximide did not impair acquisition of either short-term memory (10 min) or early and late mid-term memories (1 or 12 h). These results show that, upon olfactory learning, ants form different memories with variable molecular bases. While short- and mid-term memories do not require protein synthesis, long-term memories are stabilised via protein synthesis. Our behavioural protocol opens interesting research avenues to explore the cellular and molecular bases of olfactory learning and memory in ants.

  10. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis

    PubMed Central

    Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin

    2012-01-01

    The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8–30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments. PMID:22514527

  11. Implicit short- and long-term memory direct our gaze in visual search.

    PubMed

    Kruijne, Wouter; Meeter, Martijn

    2016-04-01

    Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that are presented more often than others may facilitate search, even long after it is no longer present (long-term priming). In this study, we investigate whether such short-term priming and long-term priming depend on dissociable mechanisms. By recording eye movements while participants searched for one of two conjunction targets, we explored at what stages of visual search different forms of priming manifest. We found both long- and short- term priming effects. Long-term priming persisted long after the bias was present, and was again found even in participants who were unaware of a color bias. Short- and long-term priming affected the same stage of the task; both biased eye movements towards targets with the primed color, already starting with the first eye movement. Neither form of priming affected the response phase of a trial, but response repetition did. The results strongly suggest that both long- and short-term memory can implicitly modulate feedforward visual processing.

  12. Long-term central venous access device selection.

    PubMed

    Gabriel, Janice

    Infusion therapy is often viewed as a means to an end - a way to administer medications and fluids. It is one of the few specialties that affect almost all areas of healthcare. Safe, effective and reliable vascular access should be the goal of every health professional who is starting a patient on a prescribed course of intravenous therapy, especially if that patient is undergoing a prolonged course. This article aims to refresh and update nurses' clinical knowledge of the detailed patient assessment required before choosing a central venous access device, as well as supporting a reduction in complications and earlier recognition of potential problems. It discusses clinical indications for devices, the range of long-term intravenous therapies that can be used, and patient assessment.

  13. Measuring Adult Memory: The Development and Validation of a New Instrument To Measure Long-term Memory in Adults.

    ERIC Educational Resources Information Center

    Schenck, Jeb

    2001-01-01

    An instrument measuring visual memory span in long-term memory was tested on 239 adults using pictures of common objects. Correlations were found between the number of images recalled and age, level of education, level of income, intelligence, sex, and social activity. (Contains 21 references.) (Author/JOW)

  14. Greater emotional arousal predicts poorer long-term memory of communication skills in couples.

    PubMed

    Baucom, Brian R; Weusthoff, Sarah; Atkins, David C; Hahlweg, Kurt

    2012-06-01

    Many studies have examined the importance of learning skills in behaviorally based couple interventions but none have examined predictors of long-term memory for skills. Associations between emotional arousal and long-term recall of communication skills delivered to couples during a behaviorally based relationship distress prevention program were examined in a sample of 49 German couples. Fundamental frequency (f(0)), a vocal measure of encoded emotional arousal, was measured during pre-treatment couple conflict. Higher levels of f(0) were linked to fewer skills remembered 11 years after completing the program, and women remembered more skills than men. Implications of results for behaviorally based couple interventions are discussed.

  15. Working memory training shows immediate and long-term effects on cognitive performance in children

    PubMed Central

    Pugin, Fiona; Metz, Andreas J.; Stauffer, Madlaina; Wolf, Martin; Jenni, Oskar G.; Huber, Reto

    2014-01-01

    Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that visuospatial working memory training in children boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training. PMID:25671082

  16. Swimming exercise during pregnancy alleviates pregnancy-associated long-term memory impairment.

    PubMed

    Kim, Kijeong; Chung, Eunhee; Kim, Chang-Ju; Lee, Sukho

    2012-08-20

    Regular exercise has been shown to be beneficial to the brain functions, but little is known about the effects of exercise during pregnancy on the long-term memory function of the mothers. The objective of this study was to determine the effects of swimming during pregnancy on long-term memory function in rats on postpartum day 8. We examined the impact of swimming exercise during pregnancy on cell proliferation and apoptotic neuronal cell death in the hippocampus of peripartum rats. The rats were divided into three groups: the control group, the pregnant non-swimming group, and the pregnant swimming group. We found that pregnancy impaired the long-term memory while swimming during pregnancy alleviated the memory impairment. Pregnancy decreased cell proliferation in the dentate gyrus of the hippocampus, but swimming exercise during pregnancy reversed pregnancy-associated decreased cell proliferation back to control level. There was no difference in apoptotic neuronal cell death in the hippocampus among groups. Our results suggest that swimming during pregnancy alleviates pregnancy-associated decrease in memory function of mothers through an increase in cell proliferation in the hippocampus.

  17. Visual long-term memory stores high-fidelity representations of observed actions.

    PubMed

    Urgolites, Zhisen Jiang; Wood, Justin N

    2013-04-01

    The ability to remember others' actions is fundamental to social cognition, but the precision of action memories remains unknown. To probe the fidelity of the action representations stored in visual long-term memory, we asked observers to view a large number of computer-animated actions. Afterward, observers were shown pairs of actions and indicated which of the two actions they had seen for each pair. On some trials, the previously viewed action was paired with an action from a different action category, and on other trials, it was paired with an action from the same category. Accuracy on both types of trials was remarkably high (81% and 82%, respectively). Further, results from a second experiment showed that the action representations maintained in visual long-term memory can be nearly as precise as the action representations maintained in visual working memory. Together, these findings provide evidence for a mechanism in visual long-term memory that maintains high-fidelity representations of observed actions.

  18. Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia

    PubMed Central

    Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo

    2013-01-01

    There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment. PMID:24319599

  19. Making memories: the development of long-term visual knowledge in children with visual agnosia.

    PubMed

    Metitieri, Tiziana; Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo

    2013-01-01

    There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2  years and 3.7  years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.

  20. Deuterium-depleted water has stimulating effects on long-term memory in rats.

    PubMed

    Mladin, Cristian; Ciobica, Alin; Lefter, Radu; Popescu, Alexandru; Bild, Walther

    2014-11-07

    Deuterium-depleted water (DDW) is a water which has a 6-7-fold less concentration of the naturally occurring deuterium (20-25ppm vs. 150ppm). While administrated for a longer period, it may reduce the concentration of deuterium throughout the body, thus activating cellular mechanisms which are depending on protons (channels, pumps, enzyme proteins). The aim of the present work was to study, for the first time in our knowledge, the possible influence of deuterium-depleted water (DDW) chronic administration in normal Wistar rats, as compared to a control group which received distilled water, on spatial working memory and the locomotor activity (as studied through Y-maze) or both short-term and long-term spatial memory (assed in radial 8 arms-maze task). Our results presented here showed no significant modifications in terms of spatial working memory (assessed through spontaneous alternation percentage) and locomotor activity (expressed through the number of arm entries) in Y-maze, as a result of DDW ingestion. Also, no significant differences between the DDW and control group were found in terms of the number of working memory errors in the eight-arm radial maze, as a parameter of short-term memory. Still, we observed a significant decrease for the number of reference memory errors in the DDW rats. In this way, we could speculate that the administration of DDW may generate an improvement of the reference memory, as an index of long-term memory. Thus, we can reach the conclusion that the change between the deuterium/hydrogen balance may have important consequences for the mechanisms that govern long-term memory, as showed here especially in the behavioral parameters from the eight-arm radial maze task.

  1. [Short-and long-term effects of cannabinoids on memory, cognition and mental illness].

    PubMed

    Sagie, Shira; Eliasi, Yehuda; Livneh, Ido; Bart, Yosi; Monovich, Einat

    2013-12-01

    Marijuana is considered the most commonly used drug in the world, with estimated millions of users. There is dissent in the medical world about the positive and negative effects of marijuana, and recently, a large research effort has been directed to that domain. The main influencing drug ingredient is THC, which acts on the cannabinoid system and binds to the CB1 receptor. The discovery of the receptor led to the finding of an endogenous ligand, anandamide, and another receptor-CB2. The researchers also discovered that cannabinoids have extensive biological activity, and its short and long-term effects may cause cognitive and emotional deficiencies. Findings show that the short-term effects, such as shortterm memory and verbal Learning, are reversible. However, despite the accumulation of evidence about long-term cognitive damage due to cannabis use, it is difficult to find unequivocal results, arising from the existence of many variables such as large differences between cannabis users, frequency of use, dosage and endogenous brain compensation. Apart from cognitive damage, current studies investigate how marijuana affects mental illness: a high correlation between cannabis use and schizophrenia was found and a high risk to undergo a psychotic attack. Furthermore, patients with schizophrenia who used cannabis showed a selective neuro-psychological disruption, and similar cognitive deficiencies and brain morphological changes were found among healthy cannabis users and schizophrenia patients. In contrast to the negative effects of marijuana including addiction, there are the medical uses: reducing pain, anxiety and nausea, increasing appetite and an anti-inflammatory activity. Medicalization of marijuana encourages frequent use, which may elevate depression.

  2. Acute pentobarbital treatment impairs spatial learning and memory and hippocampal long-term potentiation in rats.

    PubMed

    Wang, Wei; Tan, Tao; Tu, Man; He, Wenting; Dong, Zhifang; Han, Huili

    2015-10-01

    Reports of the effects of pentobarbital on learning and memory are contradictory. Some studies have not shown any interference with learning and memory, whereas others have shown that pentobarbital impairs memory and that these impairments can last for long periods. However, it is unclear whether acute local microinjections of pentobarbital affect learning and memory, and if so, the potential mechanisms are also unclear. Here, we reported that the intra-hippocampal infusion of pentobarbital (8.0mM, 1μl per side) significantly impaired hippocampus-dependent spatial learning and memory retrieval. Moreover, in vitro electrophysiological recordings revealed that these behavioral changes were accompanied by impaired hippocampal CA1 long-term potentiation (LTP) and suppressed neuronal excitability as reflected by a decrease in the number of action potentials (APs). These results suggest that acute pentobarbital application causes spatial learning and memory deficits that might be attributable to the suppression of synaptic plasticity and neuronal excitability.

  3. Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants.

    PubMed

    Josens, Roxana; Eschbach, Claire; Giurfa, Martin

    2009-06-01

    Individual Camponotus fellah ants perceive and learn odours in a Y-maze in which one odour is paired with sugar (CS+) while a different odour (CS-) is paired with quinine (differential conditioning). We studied olfactory retention in C. fellah to determine whether olfactory learning leads to long-term memory retrievable 24 h and 72 h after training. One and 3 days after training, ants exhibited robust olfactory memory through a series of five successive retention tests in which they preferred the CS+ and stayed longer in the arm presenting it. In order to determine the nature of the associations memorized, we asked whether choices within the Y-maze were driven by excitatory memory based on choosing the CS+ and/or inhibitory memory based on avoiding the CS-. By confronting ants with a novel odour vs either the CS+ or the CS- we found that learning led to the formation of excitatory memory driving the choice of the CS+ but no inhibitory memory based on the CS- was apparent. Ants even preferred the CS- to the novel odour, thus suggesting that they used the CS- as a contextual cue in which the CS+ was embedded, or as a second-order cue predicting the CS+ and thus the sugar reward. Our results constitute the first controlled account of olfactory long-term memory in individual ants for which the nature of associations could be precisely characterized.

  4. Reward improves long-term retention of a motor memory through induction of offline memory gains

    PubMed Central

    Abe, Mitsunari; Schambra, Heidi; Wassermann, Eric M; Luckenbaugh, Dave; Schweighofer, Nicolas; Cohen, Leonardo G

    2011-01-01

    Summary In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements [1–3]. Their relative effects on consolidation and long-term retention, critical behavioral stages for successful learning [4, 5], are not known. Here, we investigated the effects of reward and punishment on these different stages of human motor skill learning. We studied healthy subjects who trained on a motor task under rewarded, punished, or neutral control conditions. Performance was tested before, and immediately, 6 hs, 24 hs and 30 days after training in the absence of reward or punishment. Performance improvements immediately after training were comparable in the three groups. At 6 hs, the rewarded group maintained performance gains while the other two groups experienced significant forgetting. At 24 hs, the reward group showed significant offline (posttraining) improvements while the other two groups did not. At 30 days, the rewarded group retained the gains identified at 24 hs, while the other two groups experienced significant forgetting. We conclude that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time. PMID:21419628

  5. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory

    PubMed Central

    Tamagnini, Francesco; Barker, Gareth; Warburton, E Clea; Burattini, Costanza; Aicardi, Giorgio; Bashir, Zafar I

    2013-01-01

    Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory. PMID:23671159

  6. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia.

    PubMed

    Chen, Shanping; Cai, Diancai; Pearce, Kaycey; Sun, Philip Y-W; Roberts, Adam C; Glanzman, David L

    2014-11-17

    Long-term memory (LTM) is believed to be stored in the brain as changes in synaptic connections. Here, we show that LTM storage and synaptic change can be dissociated. Cocultures of Aplysia sensory and motor neurons were trained with spaced pulses of serotonin, which induces long-term facilitation. Serotonin (5HT) triggered growth of new presynaptic varicosities, a synaptic mechanism of long-term sensitization. Following 5HT training, two antimnemonic treatments-reconsolidation blockade and inhibition of PKM--caused the number of presynaptic varicosities to revert to the original, pretraining value. Surprisingly, the final synaptic structure was not achieved by targeted retraction of the 5HT-induced varicosities but, rather, by an apparently arbitrary retraction of both 5HT-induced and original synapses. In addition, we find evidence that the LTM for sensitization persists covertly after its apparent elimination by the same antimnemonic treatments that erase learning-related synaptic growth. These results challenge the idea that stable synapses store long-term memories.

  7. What are the differences between long-term, short-term, and working memory?

    PubMed Central

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term “working memory”) that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1. PMID:18394484

  8. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    PubMed Central

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  9. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes.

  10. Verbal Short-Term Memory Reflects the Organization of Long-Term Memory: Further Evidence from Short-Term Memory for Emotional Words

    ERIC Educational Resources Information Center

    Majerus, Steve; D'Argembeau, Arnaud

    2011-01-01

    Many studies suggest that long-term lexical-semantic knowledge is an important determinant of verbal short-term memory (STM) performance. This study explored the impact of emotional valence on word immediate serial recall as a further lexico-semantic long-term memory (LTM) effect on STM. This effect is particularly interesting for the study of…

  11. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms.

    PubMed

    Li, Qin; Rothkegel, Martin; Xiao, Zhi Cheng; Abraham, Wickliffe C; Korte, Martin; Sajikumar, Sreedharan

    2014-02-01

    One conceptual mechanism for the induction of associative long-term memory is that a synaptic tag, set by a weak event, can capture plasticity-related proteins from a nearby strong input, thus enabling associativity between the 2 (synaptic tagging and capture, STC). So far, STC has been observed for only a limited time of 60 min. Nevertheless, association of weak memory forms can occur beyond this period and its mechanism is not well understood. Here we report that metaplasticity induced by ryanodine receptor activation or synaptic activation of metabotropic glutamate receptors prolongs the durability of the synaptic tag, thus extending the time window for associative interactions mediating storage of long-term memory. We provide evidence that such metaplasticity alters the mechanisms of STC from a CaMKII-mediated (in non-primed STC) to a protein kinase Mzeta (PKMζ)-mediated process (in primed STC). Thus the association of weak synapses with strong synapses in the "late" stage of associative memory formation occurs only through metaplasticity. The results also reveal that the short-lived, CaMKII-mediated tag may contribute to a mechanism for a fragile form of memory while metaplasticity enables a PKMζ-mediated synaptic tag capable of prolonged interactions that induce a more stable form of memory that is resistant to reversal.

  12. Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila.

    PubMed

    Musso, Pierre-Yves; Tchenio, Paul; Preat, Thomas

    2015-02-24

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value.

  13. Place memory and dementia: Findings from participatory film-making in long-term social care.

    PubMed

    Capstick, Andrea; Ludwin, Katherine

    2015-07-01

    A participatory film-making study carried out in long-term social care with 10 people with Alzheimer-type dementia found that places the participants had known early in life were spontaneously foregrounded. Participants' memories of such places were well-preserved, particularly when photo-elicitation techniques, using visual images as prompts, were employed. Consistent with previous work on the 'reminiscence bump' in dementia, the foregrounded memories belonged in all cases to the period of life between approximately 5 and 30 years. Frequently the remembered places were connected with major life events which continued to have a strong emotional component. The continuing significance of place in the context of long-term dementia care is considered from a psychogeographical perspective.

  14. Long-term memory for calls of relatives in cotton-top tamarins (Saguinus oedipus).

    PubMed

    Matthews, Stephanie; Snowdon, Charles T

    2011-08-01

    Recognition of relatives is important for dispersing animals to avoid inbreeding and possibly for developing cooperative, reciprocal relationships between individuals after dispersal. We demonstrate under controlled captive conditions that cotton-top tamarins (Saguinus oedipus) have a long-term memory for long calls of relatives from which they had been separated for periods ranging from 4 to 55 months. Tamarins responded with lower levels of arousal behavior to playbacks of long calls from current mates and from separated relatives compared to calls of unfamiliar, unrelated tamarins. Four tamarins had been out of contact with relatives for more than 4 years and still showed recognition as evidenced by low levels of arousal. Results could not be explained in terms of proximity to former relatives. Long-term memory for vocal signatures of relatives is adaptive and may be much more common than has been demonstrated.

  15. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    PubMed

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language

  16. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition

    PubMed Central

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance–contingent reward in a test can undermine long-term knowledge acquisition. PMID:26869978

  17. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition.

    PubMed

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance-contingent reward in a test can undermine long-term knowledge acquisition.

  18. Comment on "Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila".

    PubMed

    Sonderegger, Peter; Patthy, Laszlo

    2007-06-22

    Didelot et al. (Reports, 11 August 2006, p. 851) claimed that Drosophila Tequila (Teq) and human neurotrypsin are orthologs and concluded that deficient long-term memory after Teq inactivation indicates that neurotrypsin plays its essential role for human cognitive functions through a similar mechanism. Our analyses suggest that Teq and neurotrypsin are not orthologous, leading us to question their equivalent roles in higher brain function.

  19. Neural Mechanisms Underlying the Impact of Visual Distraction on Retrieval of Long-Term Memory

    PubMed Central

    Wais, Peter E.; Rubens, Michael T.; Boccanfuso, Jacqueline; Gazzaley, Adam

    2010-01-01

    Filtering information on the basis of what is relevant to accomplish our goals is a critical process supporting optimal cognitive performance. However, it is not known if exposure to irrelevant environmental stimuli impairs our ability to accurately retrieve long-term memories. We hypothesized that visual processing of irrelevant visual information would interfere with mental visualization engaged during recall of the details of a prior experience, despite instructions to the participants to direct their full attention to the retrieval task. In the current study, we compared performance on a cued-recall test of previously studied visual items when participants’ eyes were closed to performance when their eyes were open and irrelevant visual stimuli were presented. A behavioral experiment revealed that recollection of episodic details was diminished in the presence of the irrelevant information. A functional magnetic resonance imaging (fMRI) experiment using the same paradigm replicated the behavioral results and found that diminished recollection was associated with the disruption of functional connectivity in a network involving the left inferior frontal gyrus (IFG), hippocampus and visual association cortex. Network connectivity supported recollection of contextual details based on visual imagery when eyes were closed, but declined in the presence of irrelevant visual information. We conclude that bottom-up influences from irrelevant visual information interfere with top-down selection of episodic details mediated by a capacity-limited frontal control region, resulting in impaired recollection. PMID:20573901

  20. Neural mechanisms underlying the impact of visual distraction on retrieval of long-term memory.

    PubMed

    Wais, Peter E; Rubens, Michael T; Boccanfuso, Jacqueline; Gazzaley, Adam

    2010-06-23

    Filtering information on the basis of what is relevant to accomplish our goals is a critical process supporting optimal cognitive performance. However, it is not known whether exposure to irrelevant environmental stimuli impairs our ability to accurately retrieve long-term memories. We hypothesized that visual processing of irrelevant visual information would interfere with mental visualization engaged during recall of the details of a prior experience, despite goals to direct full attention to the retrieval task. In the current study, we compared performance on a cued-recall test of previously studied visual items when participants' eyes were closed to performance when their eyes were open and irrelevant visual stimuli were presented. A behavioral experiment revealed that recollection of episodic details was diminished in the presence of the irrelevant information. A functional magnetic resonance imaging experiment using the same paradigm replicated the behavioral results and found that diminished recollection was associated with the disruption of functional connectivity in a network involving the left inferior frontal gyrus, hippocampus and visual association cortex. Network connectivity supported recollection of contextual details based on visual imagery when eyes were closed, but declined in the presence of irrelevant visual information. We conclude that bottom-up influences from irrelevant visual information interfere with top-down selection of episodic details mediated by a capacity-limited frontal control region, resulting in impaired recollection.

  1. Aberrantly Silenced Promoters Retain a Persistent Memory of the Silenced State After Long-Term Reactivation

    PubMed Central

    Oyer, Jon A.; Yates, Phillip A.; Godsey, Sarah; Turker, Mitchell S.

    2010-01-01

    A hallmark of aberrant DNA methylation-associated silencing is reversibility. However, long-term stability of reactivated promoters has not been explored. To examine this issue, spontaneous reactivant clones were isolated from mouse embryonal carcinoma cells bearing aberrantly silenced Aprt alleles and re-silencing frequencies were determined as long as three months after reactivation occurred. Despite continuous selection for expression of the reactivated Aprt alleles, exceptionally high spontaneous re-silencing frequencies were observed. A DNA methylation analysis demonstrated retention of sporadic methylation of CpG sites in a protected region of the Aprt promoter in many reactivant alleles suggesting a role for these methylated sites in the re-silencing process. In contrast, a chromatin immunoprecipitation (ChIP) analysis for methyl-H3K4, acetyl-H3K9, and dimethyl-H3K9 levels failed to reveal a specific histone modification that could explain high frequency re-silencing. These results demonstrate that aberrantly silenced and reactivated promoters retain a persistent memory of having undergone the silencing process and suggest the failure to eliminate all CpG methylation as a potential contributing mechanism. PMID:21035468

  2. Development of long-term event memory in preverbal infants: an eye-tracking study.

    PubMed

    Nakano, Tamami; Kitazawa, Shigeru

    2017-03-08

    The development of long-term event memory in preverbal infants remains elusive. To address this issue, we applied an eye-tracking method that successfully revealed in great apes that they have long-term memory of single events. Six-, 12-, 18- and 24-month-old infants watched a video story in which an aggressive ape-looking character came out from one of two identical doors. While viewing the same video again 24 hours later, 18- and 24-month-old infants anticipatorily looked at the door where the character would show up before it actually came out, but 6- and 12-month-old infants did not. Next, 12-, 18- and 24-month-old infants watched a different video story, in which a human grabbed one of two objects to hit back at the character. In their second viewing after a 24-hour delay, 18- and 24-month-old infants increased viewing time on the objects before the character grabbed one. In this viewing, 24-month-old infants preferentially looked at the object that the human had used, but 18-month-old infants did not show such preference. Our results show that infants at 18 months of age have developed long-term event memory, an ability to encode and retrieve a one-time event and this ability is elaborated thereafter.

  3. Development of long-term event memory in preverbal infants: an eye-tracking study

    PubMed Central

    Nakano, Tamami; Kitazawa, Shigeru

    2017-01-01

    The development of long-term event memory in preverbal infants remains elusive. To address this issue, we applied an eye-tracking method that successfully revealed in great apes that they have long-term memory of single events. Six-, 12-, 18- and 24-month-old infants watched a video story in which an aggressive ape-looking character came out from one of two identical doors. While viewing the same video again 24 hours later, 18- and 24-month-old infants anticipatorily looked at the door where the character would show up before it actually came out, but 6- and 12-month-old infants did not. Next, 12-, 18- and 24-month-old infants watched a different video story, in which a human grabbed one of two objects to hit back at the character. In their second viewing after a 24-hour delay, 18- and 24-month-old infants increased viewing time on the objects before the character grabbed one. In this viewing, 24-month-old infants preferentially looked at the object that the human had used, but 18-month-old infants did not show such preference. Our results show that infants at 18 months of age have developed long-term event memory, an ability to encode and retrieve a one-time event and this ability is elaborated thereafter. PMID:28272489

  4. Long-term effects of interference on short-term memory performance in the rat

    PubMed Central

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a “within-session/short-term” PI effect. However, we also observed a different “between-session/long-term” PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and

  5. Isoflurane impairs odour discrimination learning in rats: differential effects on short- and long-term memory

    PubMed Central

    Pearce, R. A.; Duscher, P.; Van Dyke, K.; Lee, M.; Andrei, A. C.; Perouansky, M.

    2012-01-01

    Background Anaesthetics suppress the formation of lasting memories at concentrations that do not suppress perception, but it is unclear which elements of the complex cascade leading from a conscious experience to a lasting memory trace are disrupted. Experiments in conscious humans suggest that subhypnotic concentrations of anaesthetics impair consolidation or maintenance rather than acquisition of a representation (long-term more than short-term memory). We sought to test whether these agents similarly impair learning in rats. Methods We used operant conditioning in rats to examine the effect of isoflurane on acquisition compared with long-term (24 h) memory of non-aversive olfactory memories using two different odour discrimination tasks. Rats learned the ‘valences’ of odour pairs presented either separately (task A) or simultaneously (task B), under control conditions and under isoflurane inhalation. In a separate set of experiments, we tested the ability of the animals to recall a learning set that had been acquired 24 h previously. Results Under 0.4% isoflurane inhalation, the average number of trials required to reach criterion performance (18 correct responses in 20 successive trials) increased from 21.9 to 43.5 (P<0.05) and 24.2 to 54.4 (P<0.05) for tasks A and B, respectively. Under 0.3% isoflurane inhalation, only task B was impaired (from 24.2 to 31.5 trials, P<0.05). Recall at 24 h was dose-dependently impaired or prevented by isoflurane for both tasks. Conclusions Isoflurane interfered with long-term memory of odour valence without preventing its acquisition. This paradigm may serve as a non-aversive animal model of conscious amnesia. PMID:22258200

  6. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.

    PubMed

    Wang, Ce; Liu, Peng; Zhuang, Yan; Li, Ping; Jiang, Boling; Pan, Hong; Liu, Lanlan; Cai, Lintao; Ma, Yifan

    2014-09-22

    Although retaining antigens at the injection site (the so-called "depot effect") is an important strategy for vaccine development, increasing evidence showed that lymphatic-targeted vaccine delivery with liposomes could be a promising approach for improving vaccine efficacy. However, it remains unclear whether antigen depot or lymphatic targeting would benefit long-term immunological memory, a major determinant of vaccine efficacy. In the present study, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines, respectively. The result of in vivo imaging showed that LP mostly accumulated near the injection site, whereas LP-Man not only effectively accumulated in draining lymph nodes (LNs) and the spleen, but also enhanced the uptake by resident antigen-presenting cells. Although LP vaccines with depot effect induced anti-OVA IgG more potently than LP-Man vaccines did on day 40 after priming, they failed to mount an effective B-cell memory response upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited sustained antibody production and robust recall responses three months after priming, suggesting lymphatic targeting rather than antigen depot promoted the establishment of long-term memory responses. The enhanced long-term immunological memory by LP-Man was attributed to vigorous germinal center responses as well as increased Tfh cells and central memory CD4(+) T cells in the secondary lymphoid organs. Hence, lymphatic-targeted vaccine delivery with LP-Man could be an effective strategy to promote long-lasting immunological memory.

  7. The perirhinal cortex and long-term spatial memory in rats.

    PubMed

    Ramos, Juan M J

    2002-08-30

    Two experiments examined the effects of perirhinal cortex and hippocampal neurotoxic lesions on the retention of allocentric information. Perirhinal (Expt. 1) and hippocampal rats (Expt. 2) were trained on an allocentric task until they reached a performance equal to that of the control groups. Results showed that 24 days after acquisition, during a retraining period, only the hippocampal rats presented a deficit in retention. These results suggest that the perirhinal cortex and the hippocampus can be functionally dissociated in terms of their participation in the formation of long-term spatial memory. Also, the allocentric spatial memory functions of the hippocampus seem not to depend on their afferent connections with the perirhinal cortex.

  8. Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila.

    PubMed

    Didelot, Gérard; Molinari, Florence; Tchénio, Paul; Comas, Daniel; Milhiet, Elodie; Munnich, Arnold; Colleaux, Laurence; Preat, Thomas

    2006-08-11

    Mutations in the human neurotrypsin gene are associated with autosomal recessive mental retardation. To further understand the pathophysiological consequences of the lack of this serine protease, we studied Tequila (Teq), the Drosophila neurotrypsin ortholog, using associative memory as a behavioral readout. We found that teq inactivation resulted in a long-term memory (LTM)-specific defect. After LTM conditioning of wild-type flies, teq expression transiently increased in the mushroom bodies. Moreover, specific inhibition of teq expression in adult mushroom bodies resulted in a reversible LTM defect. Hence, the Teq pathway is essential for information processing in Drosophila.

  9. Emotion and long-term memory for duration: resistance against interference.

    PubMed

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Droit-Volet, Sylvie

    2013-07-01

    The aim of this study was to examine the effect of emotion on the long-term memory for duration. On day 1, participants learned a temporal task in a high-arousing or neutral control condition that was followed by a 15-min interference task. Then, 24 h later, on day 2, they were given a test. In this recall test, they judged whether or not comparison durations were similar to the previously learned standard duration. The results showed that temporal discrimination was more accurate in the emotional than in the neutral condition. Emotion thus strengthened memory traces of time by increasing their resistance against interference effects.

  10. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats.

    PubMed

    Favaro, Vanessa Manchim; Yonamine, Maurício; Soares, Juliana Carlota Kramer; Oliveira, Maria Gabriela Menezes

    2015-01-01

    Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT) from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs) induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM), fear conditioning and elevated plus maze (EPM) performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes.

  11. Effects of Long-Term Ayahuasca Administration on Memory and Anxiety in Rats

    PubMed Central

    Favaro, Vanessa Manchim; Yonamine, Maurício; Soares, Juliana Carlota Kramer; Oliveira, Maria Gabriela Menezes

    2015-01-01

    Ayahuasca is a hallucinogenic beverage that combines the action of the 5-HT2A/2C agonist N,N-dimethyltryptamine (DMT) from Psychotria viridis with the monoamine oxidase inhibitors (MAOIs) induced by beta-carbonyls from Banisteriopsis caapi. Previous investigations have highlighted the involvement of ayahuasca with the activation of brain regions known to be involved with episodic memory, contextual associations and emotional processing after ayahuasca ingestion. Moreover long term users show better performance in neuropsychological tests when tested in off-drug condition. This study evaluated the effects of long-term administration of ayahuasca on Morris water maze (MWM), fear conditioning and elevated plus maze (EPM) performance in rats. Behavior tests started 48h after the end of treatment. Freeze-dried ayahuasca doses of 120, 240 and 480 mg/kg were used, with water as the control. Long-term administration consisted of a daily oral dose for 30 days by gavage. The behavioral data indicated that long-term ayahuasca administration did not affect the performance of animals in MWM and EPM tasks. However the dose of 120 mg/kg increased the contextual conditioned fear response for both background and foreground fear conditioning. The tone conditioned response was not affected after long-term administration. In addition, the increase in the contextual fear response was maintained during the repeated sessions several weeks after training. Taken together, these data showed that long-term ayahuasca administration in rats can interfere with the contextual association of emotional events, which is in agreement with the fact that the beverage activates brain areas related to these processes. PMID:26716991

  12. Neurotrophins play differential roles in short and long-term recognition memory.

    PubMed

    Callaghan, Charlotte K; Kelly, Aine M

    2013-09-01

    The neurotrophin family of proteins are believed to mediate various forms of synaptic plasticity in the adult brain. Here we have assessed the roles of these proteins in object recognition memory in the rat, using icv infusions of function-blocking antibodies or the tyrosine kinase antagonist, tyrphostin AG879, to block Trk receptors. We report that tyrphostin AG879 impairs both short-term and long-term recognition memory, indicating a requirement for Trk receptor activation in both processes. The effect of inhibition of each of the neurotrophins with activity-blocking neutralising antibodies was also tested. Treatment with anti-BDNF, anti-NGF or anti-NT4 had no effect on short-term memory, but blocked long-term recognition memory. Treatment with anti-NT3 had no effect on either process. We also assessed changes in expression of neurotrophins and their respective receptors in the hippocampus, dentate gyrus and perirhinal cortex over a 24 h period following training in the object recognition task. We observed time-dependent changes in expression of the Trk receptors and their ligands in the dentate gyrus and perirhinal cortex. The data are consistent with a pivotal role for neurotrophic factors in the expression of recognition memory.

  13. When past is present: Substitutions of long-term memory for sensory evidence in perceptual judgments

    PubMed Central

    Fan, Judith E.; Hutchinson, J. Benjamin; Turk-Browne, Nicholas B.

    2016-01-01

    When perception is underdetermined by current sensory inputs, memories for related experiences in the past might fill in missing detail. To evaluate this possibility, we measured the likelihood of relying on long-term memory versus sensory evidence when judging the appearance of an object near the threshold of awareness. Specifically, we associated colors with shapes in long-term memory and then presented the shapes again later in unrelated colors and had observers judge the appearance of the new colors. We found that responses were well characterized as a bimodal mixture of original and current-color representations (vs. an integrated unimodal representation). That is, although irrelevant to judgments of the current color, observers occasionally anchored their responses on the original colors in memory. Moreover, the likelihood of such memory substitutions increased when sensory input was degraded. In fact, they occurred even in the absence of sensory input when observers falsely reported having seen something. Thus, although perceptual judgments intuitively seem to reflect the current state of the environment, they can also unknowingly be dictated by past experiences. PMID:27248565

  14. Effects of event valence on long-term memory for two baseball championship games.

    PubMed

    Breslin, Carolyn W; Safer, Martin A

    2011-11-01

    We investigated how event valence affected accuracy and vividness of long-term memory for two comparable public events. In 2008, 1,563 fans answered questions about objective details concerning two decisive baseball championship games between the Yankees (2003 winners) and the Red Sox (2004 winners). Both between- and within-groups analyses indicated that fans remembered the game their team won significantly more accurately than the game their team lost. Fans also reported more vividness and more rehearsal for the game their team won. We conclude that individuals rehearse positive events more than comparable negative events, and that this additional rehearsal increases both vividness and accuracy of memories about positive events. Our results differ from those of prior studies involving memories for negative events that may have been unavoidably rehearsed; such rehearsal may have kept those memories from fading. Long-term memory for an event is determined not only by the valence of the event, but also by experiences after the event.

  15. Do serotonin(1-7) receptors modulate short and long-term memory?

    PubMed

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  16. [Cardiac transplantation. Selection of patients and long-term results].

    PubMed

    Cabrol, C; Gandjbakhch, I; Pavie, A; Bors, V; Cabrol, A; Léger, P; Vaissier, E; Simmoneau, F; Chomette, G; Aupetit, B

    1987-12-01

    Performed for the first time in the world, in December 1967, by Barnard in Capetown, and for the first time in Europe by our team in April 1968, cardiac transplantation has now 20 years of clinical applications. A best selection of the recipients, a more precise selection of donors, refinements in surgical technique, a better and earlier diagnosis of post-operative complications, more effective therapeutic means especially cyclosporin, have brought us, from 1981, such major improvements that many teams were prompted to resume the procedure. In our experience of more than 400 transplants at La Pitié Hospital, a five-year follow-up shows that 70 p. cent of the patients are alive, having resumed a normal familial, social, professional and often sporting life. Much progress remains to be achieved, but this procedure now seems to be quite common if not routine, only limited by the insufficient number of donors.

  17. Altered Protein Synthesis is a Trigger for Long-term Memory Formation

    PubMed Central

    Klann, Eric; Sweatt, J. David

    2008-01-01

    Summary There is ongoing debate concerning whether new protein synthesis is necessary for, or even contributes to, memory formation and storage. This review summarizes a contemporary model proposing a role for altered protein synthesis in memory formation and its subsequent stabilization. One defining aspect of the model is that altered protein synthesis serves as a trigger for memory consolidation. Thus, we propose that specific alterations in the pattern of neuronal protein translation serve as an initial event in long-term memory formation. These specific alterations in protein read-out result in the formation of a protein complex that then serves as a nidus for subsequent perpetuating reinforcement by a positive feedback mechanism. The model proposes this scenario as a minimal but requisite component for long-term memory formation. Our description specifies three aspects of prevailing scenarios for the role of altered protein synthesis in memory that we feel will help clarify what, precisely, is typically proposed as the role for protein translation in memory formation. First, that a relatively short initial time window exists wherein specific alterations in the pattern of proteins translated (not overall protein synthesis) is involved in initializing the engram. Second, that a self-perpetuating positive feedback mechanism maintains the altered pattern of protein expression (synthesis or recruitment) locally. Third, that other than the formation and subsequent perpetuation of the unique initializing proteins, ongoing constitutive protein synthesis is all that is minimally necessary for formation and maintenance of the engram. We feel that a clear delineation of these three principles will assist in interpreting the available experimental data, and propose that the available data are consistent with a role for protein synthesis in memory. PMID:17919940

  18. Children's and adults' spontaneous false memories: long-term persistence and mere-testing effects.

    PubMed

    Brainerd, C J; Mojardin, A H

    1998-10-01

    In studies of children's false memories of word lists, it has been found that false alarms are stable over long-term retention intervals (persistence effect), that the stability of false alarms can equal or exceed that of hits, that earlier memory tests increase the frequency of hits on later tests (true-memory inoculation effect), that earlier memory tests increase the frequency of false alarms on later tests (false-memory creation effect), and that test-induced increases in false alarms can equal or exceed increases for hits. We studied these phenomena in 6-, 8-, and 11-year-olds and in adults using short narratives about everyday objects and events. All of the phenomena were detected at all ages, but levels of spontaneous memory falsification were much higher than for word lists and patterns of developmental change were somewhat different. Important new findings were that the persistence effect and the false-memory creation effect were greatest for statements that would be regarded as factually incorrect reports of events in sworn testimony and that, like suggestive questioning, interviews that involve nonsuggestive recognition questions may nevertheless taint children's memories.

  19. Long-term memory, forgetting, and deferred imitation in 12-month-old infants

    PubMed Central

    Klein, Pamela J.; Meltzoff, Andrew N.

    2013-01-01

    Long-term recall memory, as indexed by deferred imitation, was assessed in 12-month-old infants. Independent groups of infants were tested after retention intervals of 3 min, 1 week and 4 weeks. Deferred imitation was assessed using the ‘observation-only’ procedure in which infants were not allowed motor practice on the tasks before the delay was imposed. Thus, the memory could not have been based on re-accessing a motor habit, because none was formed in the first place. After the delay, memory was assessed either in the same or a different environmental context from the one in which the adult had originally demonstrated the acts. In Experiments 1 and 3, infants observed the target acts while in an unusual environment (an orange and white polka-dot tent), and recall memory was tested in an ordinary room. In Experiment 2, infants observed the target acts in their homes and were tested for memory in a university room. The results showed recall memory after all retention intervals, including the 4 week delay, with no effect of context change. Interestingly, the forgetting function showed that the bulk of the forgetting occurred during the first week. The findings of recall memory without motor practice support the view that infants as young as 12 months old use a declarative (nonprocedural) memory system to span delay intervals as long as 4 weeks. PMID:25147475

  20. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans

    PubMed Central

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM. PMID:21960709

  1. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.

  2. Narrative organisation at encoding facilitated children's long-term episodic memory.

    PubMed

    Wang, Qi; Bui, Van-Kim; Song, Qingfang

    2015-01-01

    This study examined the effect of narrative organisation at encoding on long-term episodic memory in a sample of five- to seven-year-old children (N = 113). At an initial interview, children were asked to narrate a story from a picture book. Six months later, they were interviewed again and asked to recall the story and answer a series of direct questions about the story. Children who initially encoded more information in narrative and produced more complete, complex, cohesive and coherent narratives remembered the story in greater detail and accuracy following the six-month interval, independent of age and verbal skills. The relation between narrative organisation and memory was consistent across culture and gender. These findings provide new insight into the critical role of narrative in episodic memory.

  3. Behavioral tagging is a general mechanism of long-term memory formation.

    PubMed

    Ballarini, Fabricio; Moncada, Diego; Martinez, Maria Cecilia; Alen, Nadia; Viola, Haydée

    2009-08-25

    In daily life, memories are intertwined events. Little is known about the mechanisms involved in their interactions. Using two hippocampus-dependent (spatial object recognition and contextual fear conditioning) and one hippocampus-independent (conditioned taste aversion) learning tasks, we show that in rats subjected to weak training protocols that induce solely short term memory (STM), long term memory (LTM) is promoted and formed only if training sessions took place in contingence with a novel, but not familiar, experience occurring during a critical time window around training. This process requires newly synthesized proteins induced by novelty and reveals a general mechanism of LTM formation that begins with the setting of a "learning tag" established by a weak training. These findings represent the first comprehensive set of evidences indicating the existence of a behavioral tagging process that in analogy to the synaptic tagging and capture process, need the creation of a transient, protein synthesis-independent, and input specific tag.

  4. Effect of gestational ethanol exposure on long-term memory formation in newborn chicks.

    PubMed

    Rao, Venugopal; Chaudhuri, Joydeep D

    2007-09-01

    Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by craniofacial malformations, and physical and mental retardation. It is significant that even children with history of gestational ethanol exposure but relatively unaffected overall IQ performance, often exhibit learning difficulties and behavioral problems, suggestive of impaired memory formation. Hence, the specific aim of this study was to examine memory formation in chicks exposed to ethanol during early gestation toward the understanding of neurobehavioral disturbances in FAS. Chicks were exposed to alcohol on gestational days 1-3 by injection of ethanol into the airspace of freshly fertilized eggs. The effects of prenatal ethanol on physical growth and development, and memory formation were studied. The one-trial passive avoidance learning paradigm in 1-day-old chicks was used to study memory formation in these chicks. It was observed that chick embryos exposed to 10% ethanol on gestational days 1-3 had significant reduction in all body parameters when compared with appropriate controls. Further, ethanol-exposed chick embryos had significantly impaired (P<.05) long-term memory (LTM) formation after training, though short-term or intermediate-term memory formation was unimpaired. Thus, the findings of the current study demonstrate the detrimental effects of ethanol exposure during early pregnancy on developing chick embryos in general and on memory formation in particular. Hence, it is suggested that impairment in LTM could be a fundamental mechanism for learning disorders and neurobehavioral abnormalities observed in FAS.

  5. The AKAP Yu is required for olfactory long-term memory formation in Drosophila.

    PubMed

    Lu, Yubing; Lu, Yi-Sheng; Shuai, Yichun; Feng, Chunhua; Tully, Tim; Xie, Zuoping; Zhong, Yi; Zhou, Hai-Meng

    2007-08-21

    Extensive neurogenetic analysis has shown that memory formation depends critically on cAMP-protein kinase A (PKA) signaling. Details of how this pathway is involved in memory formation, however, remain to be fully elucidated. From a large-scale behavioral screen in Drosophila, we identified the yu mutant to be defective in one-day memory after spaced training. The yu mutation disrupts a gene encoding an A-kinase anchoring protein (AKAP). AKAPs comprise a family of proteins, which determine the subcellular localization of PKAs and thereby critically restrict cAMP signaling within a cell. Further behavioral characterizations revealed that long-term memory (LTM) was disrupted specifically in the yu mutant, whereas learning, short-term memory and anesthesia-resistant memory all appeared normal. Another independently isolated mutation of the yu gene failed to complement the LTM defect associated with the yu mutation, and this phenotypic defect could be rescued by induced acute expression of a yu(+) transgene, suggesting that yu functions physiologically during memory formation. AKAP Yu is expressed preferentially in the mushroom body (MB) neuroanatomical structure, and expression of a yu(+) transgene to the MB, but not to other brain regions, is sufficient to rescue the LTM defect of the yu mutant. These observations lead us to conclude that proper localization of PKA by Yu AKAP in MB neurons is required for the formation of LTM.

  6. NGF promotes long-term memory formation by activating poly(ADP-ribose)polymerase-1.

    PubMed

    Wang, Shao-Hui; Liao, Xiao-Mei; Liu, Dan; Hu, Juan; Yin, Yang-Yang; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2012-11-01

    Nerve growth factor (NGF) is a critical secreted protein that plays an important role in development, survival, and function of the mammalian nervous system. Previously reports suggest that endogenous NGF is essential for the hippocampal plasticity/memory and NGF deprivation induces the impairment of hippocampus-related memory and synaptic plasticity. However, whether exogenous supplement of NGF could promote the hippocampus-dependent synaptic plasticity/memory and the possible underlying mechanisms are not clear. In this study we found that NGF administration facilitates the hippocampus-dependent long-term memory and synaptic plasticity by increasing the activity of PARP-1, a polymerase mediating the PolyADP-ribosylation and important for the memory formation. Co-application of 3-Aminobenzamide (3-AB), a specific inhibitor of PARP-1, distinctly blocked the boosting effect of NGF on memory and synaptic plasticity, and the activation of downstream PKA-CREB signal pathway. Our data provide the first evidence that NGF supplement facilitates synaptic plasticity and the memory ability through PARP-1-mediated protein polyADP-ribosylation and activation of PKA-CREB pathway.

  7. Long-term memory shapes the primary olfactory center of an insect brain.

    PubMed

    Hourcade, Benoît; Perisse, Emmanuel; Devaud, Jean-Marc; Sandoz, Jean-Christophe

    2009-10-01

    The storage of stable memories is generally considered to rely on changes in the functional properties and/or the synaptic connectivity of neural networks. However, these changes are not easily tractable given the complexity of the learning procedures and brain circuits studied. Such a search can be narrowed down by studying memories of specific stimuli in a given sensory modality and by working on networks with a modular and relatively simple organization. We have therefore focused on associative memories of individual odors and the possible related changes in the honeybee primary olfactory center, the antennal lobe (AL). As this brain structure is organized in well-identified morpho-functional units, the glomeruli, we looked for evidence of structural and functional plasticity in these units in relation with the bees' ability to store long-term memories (LTMs) of specific odors. Restrained bees were trained to form an odor-specific LTM in an appetitive Pavlovian conditioning protocol. The stability and specificity of this memory was tested behaviorally 3 d after conditioning. At that time, we performed both a structural and a functional analysis on a subset of 17 identified glomeruli by measuring glomerular volume under confocal microscopy, and odor-evoked activity, using in vivo calcium imaging. We show that long-term olfactory memory for a given odor is associated with volume increases in a subset of glomeruli. Independent of these structural changes, odor-evoked activity was not modified. Lastly, we show that structural glomerular plasticity can be predicted based on a putative model of interglomerular connections.

  8. Evidence for two distinct sleep-related long-term memory consolidation processes.

    PubMed

    Schönauer, Monika; Grätsch, Melanie; Gais, Steffen

    2015-02-01

    Numerous studies examine the effect of a night's sleep on memory consolidation, but few go beyond this short time-scale to test long-lasting effects of sleep on memory. We investigated long-term effects of sleep on typical memory tasks. During the hours following learning, participants slept or stayed awake. We compared recall performance between wake and sleep conditions after delays of up to 6 days. Performance develops in two distinct ways. Word pair, syllable, and motor sequence learning tasks benefit from sleep during the first day after encoding, when compared with daytime or nighttime wakefulness. However, performance in the wake conditions recovers after another night of sleep, so that we observe no lasting effect of sleep. Sleep deprivation before recall does not impair performance. Thus, fatigue cannot adequately explain the lack of long-term effects. We suggest that the hippocampus might serve as a buffer during the retention interval, and consolidation occurs during delayed sleep. In contrast, a non-hippocampal mirror-tracing task benefits significantly from sleep, even when tested after a 4-day delay including recovery sleep. This indicates a dissociation between two sleep-related consolidation mechanisms, which could rely on distinct neuronal processes.

  9. Improving potato drought tolerance through the induction of long-term water stress memory.

    PubMed

    Ramírez, D A; Rolando, J L; Yactayo, W; Monneveux, P; Mares, V; Quiroz, R

    2015-09-01

    Knowledge of drought tolerance in potato is limited and very little is known about stress memory in this crop. In the present study, long-term stress memory was tested on tuber yield and drought tolerance related traits in three potato varieties (Unica, Désirée and Sarnav) with contrasted yields under water restriction. Seed tubers produced by plants grown under non-restricted (non-primed tubers) and restricted (primed tubers) water conditions were sown and exposed to similar watering treatments. Tuber yield and leaf greenness of plants from primed and non-primed seeds as well as tuber carbon isotope discrimination (Δ(13)C) and antioxidant activity (AA) responses to watering treatments were compared. Higher tuber yield, both under non-restricted and restricted water regimes, was produced by primed Sarnav plants. The decrease of tuber yield and Δ(13)C with water restriction was lower in primed Unica plants. Long-term stress memory consequently appears to be highly genotype-dependent in potato. Its expression in plants originated from primed tubers and facing water restriction seems to be positively associated to the degree of inherent capability of the cultivar to yield under water restriction. However, other effects of priming appear to be genotype-independent as priming enhanced the tuber AA in response to water restriction in the three varieties.

  10. Network, cellular, and molecular mechanisms underlying long-term memory formation.

    PubMed

    Carasatorre, Mariana; Ramírez-Amaya, Víctor

    2013-01-01

    The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.

  11. Spatial coding of ordinal information in short- and long-term memory

    PubMed Central

    Ginsburg, Véronique; Gevers, Wim

    2015-01-01

    The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time. PMID:25688199

  12. Dopaminergic neurotransmission dysfunction induced by amyloid-β transforms cortical long-term potentiation into long-term depression and produces memory impairment.

    PubMed

    Moreno-Castilla, Perla; Rodriguez-Duran, Luis F; Guzman-Ramos, Kioko; Barcenas-Femat, Alejandro; Escobar, Martha L; Bermudez-Rattoni, Federico

    2016-05-01

    Alzheimer's disease (AD) is a neurodegenerative condition manifested by synaptic dysfunction and memory loss, but the mechanisms underlying synaptic failure are not entirely understood. Although dopamine is a key modulator of synaptic plasticity, dopaminergic neurotransmission dysfunction in AD has mostly been associated to noncognitive symptoms. Thus, we aimed to study the relationship between dopaminergic neurotransmission and synaptic plasticity in AD models. We used a transgenic model of AD (triple-transgenic mouse model of AD) and the administration of exogenous amyloid-β (Aβ) oligomers into wild type mice. We found that Aβ decreased cortical dopamine levels and converted in vivo long-term potentiation (LTP) into long-term depression (LTD) after high-frequency stimulation delivered at basolateral amygdaloid nucleus-insular cortex projection, which led to impaired recognition memory. Remarkably, increasing cortical dopamine and norepinephrine levels rescued both high-frequency stimulation -induced LTP and memory, whereas depletion of catecholaminergic levels mimicked the Aβ-induced shift from LTP to LTD. Our results suggest that Aβ-induced dopamine depletion is a core mechanism underlying the early synaptopathy and memory alterations observed in AD models and acts by modifying the threshold for the induction of cortical LTP and/or LTD.

  13. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior.

    PubMed

    López-Granero, Caridad; Ruiz-Muñoz, Ana M; Nieto-Escámez, Francisco A; Colomina, María T; Aschner, Michael; Sánchez-Santed, Fernando

    2016-03-01

    Little is known about the long-term effects of chronic exposure to low-level organophosphate (OP) pesticides, and the role of neurotransmitter systems, other than the cholinergic system, in mediating OP neurotoxicity. In this study, rats were administered 5mg/kg/day of chlorpyrifos (CPF) for 6 months commencing at 3-months-of-age. The animals were examined 7 months later (at 16-months-of-age) for spatial learning and memory in the Morris water maze (MWM) and locomotor activity. In addition, we assessed the chronic effects of CPF on glutamatergic and gamma-aminobutyric acid (GABAergic) function using pharmacological challenges with dizocilpine (MK801) and diazepam. Impaired performance related to altered search patterns, including thigmotaxis and long-term spatial memory was noted in the MWM in animals exposed to CPF, pointing to dietary CPF-induced behavioral disturbances, such as anxiety. Twenty-four hours after the 31st session of repeated acquisition task, 0.1mg/kg MK801, an N-methyl-d-aspartate (NMDA) antagonist was intraperitoneally (i.p.) injected for 4 consecutive days. Decreased latencies in the MWM in the control group were noted after two sessions with MK801 treatment. Once the MWM assessment was completed, animals were administered 0.1 or 0.2mg/kg of MK801 and 1 or 3mg/kg of diazepam i.p., and tested for locomotor activity. Both groups, the CPF dietary and control, displayed analogous performance in motor activity. In conclusion, our data point to a connection between the long-term spatial memory, thigmotaxic response and CPF long after the exposure ended.

  14. Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2014-07-01

    We utilize long-term memory, fractal dimension and approximate entropy as input variables for the Efficiency Index [L. Kristoufek, M. Vosvrda, Physica A 392, 184 (2013)]. This way, we are able to comment on stock market efficiency after controlling for different types of inefficiencies. Applying the methodology on 38 stock market indices across the world, we find that the most efficient markets are situated in the Eurozone (the Netherlands, France and Germany) and the least efficient ones in the Latin America (Venezuela and Chile).

  15. Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans.

    PubMed

    Vita-More, Natasha; Barranco, Daniel

    2015-10-01

    Can memory be retained after cryopreservation? Our research has attempted to answer this long-standing question by using the nematode worm Caenorhabditis elegans, a well-known model organism for biological research that has generated revolutionary findings but has not been tested for memory retention after cryopreservation. Our study's goal was to test C. elegans' memory recall after vitrification and reviving. Using a method of sensory imprinting in the young C. elegans, we establish that learning acquired through olfactory cues shapes the animal's behavior and the learning is retained at the adult stage after vitrification. Our research method included olfactory imprinting with the chemical benzaldehyde (C6H5CHO) for phase-sense olfactory imprinting at the L1 stage, the fast-cooling SafeSpeed method for vitrification at the L2 stage, reviving, and a chemotaxis assay for testing memory retention of learning at the adult stage. Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing.

  16. Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans

    PubMed Central

    Barranco, Daniel

    2015-01-01

    Abstract Can memory be retained after cryopreservation? Our research has attempted to answer this long-standing question by using the nematode worm Caenorhabditis elegans, a well-known model organism for biological research that has generated revolutionary findings but has not been tested for memory retention after cryopreservation. Our study's goal was to test C. elegans' memory recall after vitrification and reviving. Using a method of sensory imprinting in the young C. elegans, we establish that learning acquired through olfactory cues shapes the animal's behavior and the learning is retained at the adult stage after vitrification. Our research method included olfactory imprinting with the chemical benzaldehyde (C6H5CHO) for phase-sense olfactory imprinting at the L1 stage, the fast-cooling SafeSpeed method for vitrification at the L2 stage, reviving, and a chemotaxis assay for testing memory retention of learning at the adult stage. Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing. PMID:25867710

  17. Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory.

    PubMed

    Ventura-Bort, Carlos; Löw, Andreas; Wendt, Julia; Moltó, Javier; Poy, Rosario; Dolcos, Florin; Hamm, Alfons O; Weymar, Mathias

    2016-04-01

    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300-500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400-700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180-220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional--particularly unpleasant--backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.

  18. Acute stress does not impair long-term memory retrieval in older people.

    PubMed

    Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Puig-Perez, Sara; Salvador, Alicia

    2013-09-01

    Previous studies have shown that stress-induced cortisol increases impair memory retrieval in young people. This effect has not been studied in older people; however, some findings suggest that age-related changes in the brain can affect the relationships between acute stress, cortisol and memory in older people. Our aim was to investigate the effects of acute stress on long-term memory retrieval in healthy older people. To this end, 76 participants from 56 to 76 years old (38 men and 38 women) were exposed to an acute psychosocial stressor or a control task. After the stress/control task, the recall of pictures, words and stories learned the previous day was assessed. There were no differences in memory retrieval between the stress and control groups on any of the memory tasks. In addition, stress-induced cortisol response was not associated with memory retrieval. An age-related decrease in cortisol receptors and functional changes in the amygdala and hippocampus could underlie the differences observed between the results from this study and those found in studies performed with young people.

  19. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    ERIC Educational Resources Information Center

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  20. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and long term immunologic memory.

    PubMed

    Sherr, David H

    2004-06-01

    The highlighted article by B. Paige Lawrence and Beth Vorderstrasse addresses an oft forgotten aspect of immunotoxicity, the effects of environmental toxins on immunologic memory. Here, the authors take a step towards filling that information gap by evaluating the effects of a prototypic environmental toxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on memory responses to a real-world pathogen, influenza A virus, presented to an animal model in a physiologically relevant manner. Multiple outcomes are evaluated, the vast majority of which suggest important and long-term TCDD-induced changes in the immune system after both primary and secondary exposure to this pathogen. The implications of these studies with regard to the immuno-competence of TCDD-exposed individuals are far reaching.

  1. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    PubMed Central

    Gao, Virginia; Suzuki, Akinobu; Magistretti, Pierre J.; Lengacher, Sylvain; Pollonini, Gabriella; Steinman, Michael Q.; Alberini, Cristina M.

    2016-01-01

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2-adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long-term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration. PMID:27402767

  2. Early Exposure to Volatile Anesthetics Impairs Long-Term Associative Learning and Recognition Memory

    PubMed Central

    Lee, Bradley H.; Chan, John Thomas; Hazarika, Obhi; Vutskits, Laszlo; Sall, Jeffrey W.

    2014-01-01

    Background Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue. Methods Postnatal day 7 (P7) rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition. Results Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory. Conclusion Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane. PMID:25165850

  3. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    PubMed

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  4. Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation.

    PubMed

    Colomb, J; Kaiser, L; Chabaud, M-A; Preat, T

    2009-06-01

    Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long-term memory (LTM), a long-lasting memory dependent on de novo protein synthesis. In contrast, one session of odour-sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short-term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247-P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.

  5. Early and late stages of working-memory maintenance contribute differentially to long-term memory formation.

    PubMed

    Bergmann, Heiko C; Kiemeneij, Anne; Fernández, Guillén; Kessels, Roy P C

    2013-06-01

    The present paper investigated the role of early and late stages of working-memory maintenance, which have been suggested to differentially contribute to long-term memory formation. In experiment 1, we administered a delayed-match-to-sample task, requiring participants to remember line drawings of non-sense three-dimensional stimuli. In the delay phase, participants were either presented with a fixation cross (for 2 or 9s) or with one of two different interference tasks, varying in visual overlap with the target. The interference task was presented 1.5, 4.5 or 7.5s after target offset. Early interfering and early probing disproportionately affected performance on an unexpected subsequent recognition-memory task compared to later interference or probing. This was not modulated by the type of interference task. In Experiment 2, we examined whether the formation of a holistic internal code of the target may be a gradual process. An analogous delayed-match-to-sample task was administered, with interference after 0.5, 2.5 or 4.5s after target offset. The early and middle interference condition similarly disproportionately affected performance compared to later interference. Hence, the present results support the view of a functional dissociation between early and late stages of working-memory maintenance and that early working-memory processes contribute particularly to long-term memory formation.

  6. Continuum Climate Variability:. Long-Term Memory, Scaling, and 1/F-NOISE

    NASA Astrophysics Data System (ADS)

    Fraedrich, Klaus; Blender, Richard; Zhu, Xiuhua

    Continuum temperature variability represents the response of the Earth's climate to deterministic external forcing. Scaling regimes are observed which range from hours to millennia with low frequency fluctuations characterizing long-term memory. The presence of 1/f power spectra in weather and climate is noteworthy: (i) In the tropical atmosphere 1/f scaling ranging from hours to weeks is found for several variables; it emerges as superposition of uncorrelated pulses with individual 1/f spectra. (ii) The daily discharge of the Yangtze shows 1/f within one week to one year, although the precipitation spectrum is white. (iii) Beyond one year mid-latitude sea surface temperatures reveal 1/f scaling in large parts of the global ocean. The spectra can be simulated by complex atmosphere-ocean general circulation models and understood as a two layer heat diffusion process forced by an uncorrelated stochastic atmospheric. Long-term memory on time scales up to millennia are the global sea surface temperatures and the Greenland ice core records (GISP2, GRIP) with δ18O temperature proxy data during the Holocene. Complex atmosphere ocean general circulation models reproduce this behavior quantitatively up to millennia without solar variability, interacting land-ice and vegetation components.

  7. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    ERIC Educational Resources Information Center

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  8. Animal model of methylphenidate's long-term memory-enhancing effects.

    PubMed

    Carmack, Stephanie A; Howell, Kristin K; Rasaei, Kleou; Reas, Emilie T; Anagnostaras, Stephan G

    2014-01-16

    Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01-10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1-10 mg/kg, i.p.), bupropion (0.5-20 mg/kg, i.p.), and citalopram (0.01-10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development.

  9. Animal model of methylphenidate's long-term memory-enhancing effects

    PubMed Central

    Carmack, Stephanie A.; Howell, Kristin K.; Rasaei, Kleou; Reas, Emilie T.; Anagnostaras, Stephan G.

    2014-01-01

    Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01–10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1–10 mg/kg, i.p.), bupropion (0.5–20 mg/kg, i.p.), and citalopram (0.01–10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development. PMID:24434869

  10. Predator detection enables juvenile Lymnaea to form long-term memory.

    PubMed

    Orr, M V; Hittel, K; Lukowiak, K

    2010-01-15

    Learning and memory provide the flexibility an organism requires to respond to changing social and ecological conditions. Juvenile Lymnaea have previously been shown to have a diminished capacity to form long-term memory (LTM) following operant conditioning of aerial respiratory behavior. Juvenile Lymnaea, however, can form LTM following classical conditioning of appetitive behaviors. Here, we demonstrate that laboratory-reared juvenile Lymnaea have the ability to detect the presence of a sympatric predator (i.e. crayfish) and respond to the predator by altering their aerial respiratory behavior. In addition to increasing their total breathing time, predator detection confers on juvenile Lymnaea an enhanced capability to form LTM following operant conditioning of aerial respiratory behavior. That is, these juveniles now have the ability to form long-lasting memory. These data support the hypothesis that biologically relevant levels of stress associated with predator detection induce behavioral phenotypic alterations (i.e. enhanced LTM formation) in juveniles, which may increase their fitness. These data also support the notion that learning and memory formation in conjunction with predator detection is a form of inducible defense.

  11. Similarities and Differences Between Working Memory and Long-Term Memory: Evidence From the Levels-of-Processing Span Task

    PubMed Central

    Rose, Nathan S.; Myerson, Joel; Roediger, Henry L.; Hale, Sandra

    2010-01-01

    Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on WM tests, yet subsequent memory for the same items on delayed tests showed the typical benefits of semantic processing. Although the difference in LOP effects demonstrates a dissociation between WM and LTM, we also found that the retrieval practice provided by recalling words on the WM task benefited long-term retention, especially for words initially recalled from supraspan lists. The latter result is consistent with the hypothesis that WM span tasks involve retrieval from secondary memory, but the LOP dissociation suggests the processes engaged by WM and LTM tests may differ. Therefore, similarities and differences between WM and LTM depend on the extent to which retrieval from secondary memory is involved and whether there is a match (or mismatch) between initial processing and subsequent retrieval, consistent with transfer-appropriate-processing theory. PMID:20192543

  12. Great Apes Make Anticipatory Looks Based on Long-Term Memory of Single Events.

    PubMed

    Kano, Fumihiro; Hirata, Satoshi

    2015-10-05

    Everyday life poses a continuous challenge for individuals to encode ongoing events, retrieve past events, and predict impending events [1-4]. Attention and eye movements reflect such online cognitive and memory processes [5, 6], especially through "anticipatory looks" [7-10]. Previous studies have demonstrated the ability of nonhuman animals to retrieve detailed information about single events that happened in the distant past [11-20]. However, no study has tested whether nonhuman animals employ online memory processes, in which they encode ongoing movie-like events into long-term storage during single viewing experiences. Here, we developed a novel eye-tracking task to examine great apes' anticipatory looks to the events that they had encountered one time 24 hr earlier. Half-minute movie clips depicted novel and potentially alarming situations to the participant apes (six bonobos, six chimpanzees). In the experiment 1 clip, an aggressive ape-like character came out from one of two identical doors. While viewing the same movie again, apes anticipatorily looked at the door where the character would show up. In the experiment 2 clip, the human actor grabbed one of two objects and attacked the character with it. While viewing the same movie again but with object-location switched, apes anticipatorily looked at the object that the human would use, rather than the former location of the object. Our results thus show that great apes, just by watching the events once, encoded particular information (location and content) into long-term memory and later retrieved that information at a particular time in anticipation of the impending events.

  13. ADRA2B deletion variant influences time-dependent effects of pre-learning stress on long-term memory.

    PubMed

    Zoladz, Phillip R; Dailey, Alison M; Nagle, Hannah E; Fiely, Miranda K; Mosley, Brianne E; Brown, Callie M; Duffy, Tessa J; Scharf, Amanda R; Earley, McKenna B; Rorabaugh, Boyd R

    2017-02-22

    Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30min prior to learning a list of words that varied in emotional valence and arousal level. Participants' memory for the words was tested immediately (recall) and 24h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes.

  14. Increasing long-term response by selecting for favorable minor alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term response of genomic selection can be improved by considering allele frequencies of selected markers or quantitative trait loci (QTLs). A previous formula to weight allele frequency of favorable minor alleles was tested, and 2 new formulas were developed. The previous formula used nonlinear...

  15. Selection on multiple QTL with control of gene diversity and inbreeding for long-term benefit.

    PubMed

    Li, Y; Kadarmideen, H N; Dekkers, J C M

    2008-10-01

    The purpose of this study was to develop and investigate selection strategies that aim at maximizing long-term genetic response while conserving gene diversity and controlling inbreeding in populations of limited effective size, assuming complete knowledge of all genes affecting a quantitative trait. Three selection strategies were proposed to select on 100 quantitative trait loci (QTL) and compared with truncation selection on breeding value. Alternative selection strategies aimed at maximizing the average breeding value of parents with a penalty on (1) the number of unfavourable QTL genotypes among parents (OS-I), (2) the negative of the logarithm of the frequency of the favourable allele at each QTL among parents (OS-II), and (3) the average pedigree relationship among parents (OS-III). When all QTL and their effects were known, the strategies examined were able to obtain extra long-term responses, conserve QTL diversity and reduce inbreeding, compared with truncation selection. Strategy OS-II was the most effective in conserving QTL diversity and OS-III in reducing inbreeding. By changing the magnitude of the penalties applied, the impact on long-term response, inbreeding and diversity can be controlled. Extra long-term responses over truncation selection of OS-I and OS-II were even greater when effects of QTL were estimated rather than assumed known, indicating the applicability of results to practical strategies for marker-assisted selection. Extra responses are expected to be reduced for larger population sizes.

  16. Insights into the effects of long-term artificial selection on seed size in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain produced from cereal crops is a major source of human and animal feed worldwide. To understand the genetic basis of seed size variation, a component trait of grain yield, we conducted a genome-wide scan to detect evidence of selection in the Krug Yellow Dent long-term selection experiment for ...

  17. Extreme event return times in long-term memory processes near 1/f

    NASA Astrophysics Data System (ADS)

    Blender, R.; Fraedrich, K.; Sienz, F.

    2008-07-01

    The distribution of extreme event return times and their correlations are analyzed in observed and simulated long-term memory (LTM) time series with 1/f power spectra. The analysis is based on tropical temperature and mixing ratio (specific humidity) time series from TOGA COARE with 1 min resolution and an approximate 1/f power spectrum. Extreme events are determined by Peak-Over-Threshold (POT) crossing. The Weibull distribution represents a reasonable fit to the return time distributions while the power-law predicted by the stretched exponential for 1/f deviates considerably. For a comparison and an analysis of the return time predictability, a very long simulated time series with an approximate 1/f spectrum is produced by a fractionally differenced (FD) process. This simulated data confirms the Weibull distribution (a power law can be excluded). The return time sequences show distinctly weaker long-term correlations than the original time series (correlation exponent γ≍0.56).

  18. Reconsolidation of a long-term spatial memory is impaired by cycloheximide when reactivated with a contextual latent learning trial in male and female rats.

    PubMed

    Flint, R W; Valentine, S; Papandrea, D

    2007-09-21

    Reconsolidation of long-term memory has become a topic of great interest in recent years, and has the potential to provide important information regarding memory processes and the treatment of memory-related disorders. The present study examined the role of systemic protein synthesis inhibition in reconsolidation of a long-term spatial memory reactivated by a contextual latent learning trial in male and female rats. Using the Morris water maze, we demonstrate that: 1) a contextual latent reactivation treatment enhances memory, 2) systemic protein synthesis inhibition selectively impairs test performance when administered in conjunction with a memory reactivation treatment, and 3) that these effects are more pronounced in female rats. These findings indicate a role for protein synthesis in the reconsolidation of a contextually reactivated long-term spatial memory using the water maze, and a potential differential effect of sex in this apparatus. The role of the strength of the memory trace is discussed and the relevance of these findings to theories of reconsolidation and therapeutic treatment of post-traumatic stress disorder is discussed.

  19. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice.

    PubMed

    Bell, Genevieve A; Fadool, Debra Ann

    2017-03-02

    Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to

  20. Reward signal in a recurrent circuit drives appetitive long-term memory formation

    PubMed Central

    Ichinose, Toshiharu; Aso, Yoshinori; Yamagata, Nobuhiro; Abe, Ayako; Rubin, Gerald M; Tanimoto, Hiromu

    2015-01-01

    Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity. DOI: http://dx.doi.org/10.7554/eLife.10719.001 PMID:26573957

  1. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling.

    PubMed

    Puighermanal, Emma; Marsicano, Giovanni; Busquets-Garcia, Arnau; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2009-09-01

    Cognitive impairment is one of the most important negative consequences associated with cannabis consumption. We found that CB1 cannabinoid receptor (CB1R) activation transiently modulated the mammalian target of rapamycin (mTOR)/p70S6K pathway and the protein synthesis machinery in the mouse hippocampus, which correlated with the amnesic properties of delta9-tetrahydrocannabinol (THC). In addition, non-amnesic doses of either the mTOR blocker rapamycin or the protein synthesis inhibitor anisomycin abrogated the amnesic-like effects of THC, pointing to a mechanism involving new protein synthesis. Moreover, using pharmacological and genetic tools, we found that THC long-term memory deficits were mediated by CB1Rs expressed on GABAergic interneurons through a glutamatergic mechanism, as both the amnesic-like effects and p70S6K phosphorylation were reduced in GABA-CB1R knockout mice and by NMDA blockade.

  2. The involvement of long-term serial-order memory in reading development: A longitudinal study.

    PubMed

    Bogaerts, Louisa; Szmalec, Arnaud; De Maeyer, Marjolijn; Page, Mike P A; Duyck, Wouter

    2016-05-01

    Recent findings suggest that Hebb repetition learning-a paradigmatic example of long-term serial-order learning-is impaired in adults with dyslexia. The current study further investigated the link between serial-order learning and reading using a longitudinal developmental design. With this aim, verbal and visual Hebb repetition learning performance and reading skills were assessed in 96 Dutch-speaking children who we followed from first through second grade of primary school. We observed a positive association between order learning capacities and reading ability as well as weaker Hebb learning performance in early readers with poor reading skills even at the onset of reading instruction. Hebb learning further predicted individual differences in later (nonword) reading skills. Finally, Hebb learning was shown to explain a significant part of the variance in reading performance above and beyond phonological awareness. These findings highlight the role of serial-order memory in reading ability.

  3. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory

    PubMed Central

    Xia, Menghang; Huang, Ruili; Guo, Vicky; Southall, Noel; Cho, Ming-Hsuang; Inglese, James; Austin, Christopher P.; Nirenberg, Marshall

    2009-01-01

    Many studies have implicated the cAMP Response Element Binding (CREB) protein signaling pathway in long-term memory. To identify small molecule enhancers of CREB activation of gene expression, we screened ≈73,000 compounds, each at 7–15 concentrations in a quantitative high-throughput screening (qHTS) format, for activity in cells by assaying CREB mediated β-lactamase reporter gene expression. We identified 1,800 compounds that potentiated CREB mediated gene expression, with potencies as low as 16 nM, comprising 96 structural series. Mechanisms of action were systematically determined, and compounds that affect phosphodiesterase 4, protein kinase A, and cAMP production were identified, as well as compounds that affect CREB signaling via apparently unidentified mechanisms. qHTS folowed by interrogation of pathway targets is an efficient paradigm for lead generation for chemical genomics and drug development. PMID:19196967

  4. Four-month-old infants' long-term memory for a stressful social event.

    PubMed

    Montirosso, Rosario; Tronick, Ed; Morandi, Francesco; Ciceri, Francesca; Borgatti, Renato

    2013-01-01

    Infants clearly show an early capacity for memory for inanimate emotionally neutral events. However, their memory for social stress events has received far less attention. The aim of the study was to investigate infants' memory for a stressful social event (i.e., maternal unresponsiveness during the Still-Face paradigm) after a 15-day recall interval using changes in behavioral responses and salivary post-stress cortisol reactivity as measures of memory. Thirty-seven infants were exposed to social stress two times (experimental condition); the first time when they were 4 months of age and second exposure after a 2 week interval. Infants in the control condition (N = 37) were exposed to social stress just one time, at the age corresponding to the second exposure for infants in the experimental condition (4 months plus 2 weeks). Given individual differences in infants' reactivity to social stress events, we categorized infants as increasers or decreasers based on their cortisol reactivity after their initial exposure to the stress of the maternal still-face. Infants in the experimental condition, both increasers and decreasers, showed a significant change in cortisol response after the second exposure to the maternal still-face, though change was different for each reactivity group. In contrast, age-matched infants with no prior exposure to the maternal still-face showed similar post-stress cortisol reactivity to the reactivity of the experimental infants at their first exposure. There were no behavioral differences between increasers and decreasers during the Still-Face paradigm and exposures to the social stress. Thus differences between the experimental and control groups' post-stress cortisol reactivity was associated with the experimental group having previous experience with the social stress. These findings indicate long-term memory for social stress in infants as young as 4 months of age.

  5. The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference.

    PubMed

    Oberauer, Klaus; Awh, Edward; Sutterer, David W

    2017-01-01

    We report 4 experiments examining whether associations in visual working memory are subject to proactive interference from long-term memory (LTM). Following a long-term learning phase in which participants learned the colors of 120 unique objects, a working memory (WM) test was administered in which participants recalled the precise colors of 3 concrete objects in an array. Each array in the WM test consisted of 1 old (previously learned) object with a new color (old-mismatch), 1 old object with its old color (old-match), and 1 new object. Experiments 1 to 3 showed that WM performance was better in the old-match condition than in the new condition, reflecting a beneficial contribution from LTM. In the old-mismatch condition, participants sometimes reported colors associated with the relevant shape in LTM, but the probability of successful recall was equivalent to that in the new condition. Thus, information from LTM only intruded in the absence of reportable information in WM. Experiment 4 tested for, and failed to find, proactive interference from the preceding trial in the WM test: Performance in the old-mismatch condition, presenting an object from the preceding trial with a new color, was equal to performance with new objects. Experiment 5 showed that long-term memory for object-color associations is subject to proactive interference. We conclude that the exchange of information between LTM and WM appears to be controlled by a gating mechanism that protects the contents of WM from proactive interference but admits LTM information when it is useful. (PsycINFO Database Record

  6. Different Phases of Long-Term Memory Require Distinct Temporal Patterns of PKA Activity after Single-Trial Classical Conditioning

    ERIC Educational Resources Information Center

    Michel, Maximilian; Kemenes, Ildiko; Muller, Uli; Kemenes, Gyorgy

    2008-01-01

    The cAMP-dependent protein kinase (PKA) is known to play a critical role in both transcription-independent short-term or intermediate-term memory and transcription-dependent long-term memory (LTM). Although distinct phases of LTM already have been demonstrated in some systems, it is not known whether these phases require distinct temporal patterns…

  7. A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval

    ERIC Educational Resources Information Center

    Spaniol, Julia; Madden, David J.; Voss, Andreas

    2006-01-01

    Two experiments investigated adult age differences in episodic and semantic long-term memory tasks, as a test of the hypothesis of specific age-related decline in context memory. Older adults were slower and exhibited lower episodic accuracy than younger adults. Fits of the diffusion model (R. Ratcliff, 1978) revealed age-related increases in…

  8. DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment.

    PubMed

    Wittmann, Bianca C; Tan, Geoffrey C; Lisman, John E; Dolan, Raymond J; Düzel, Emrah

    2013-09-01

    Previous studies have shown that appetitive motivation enhances episodic memory formation via a network including the substantia nigra/ventral tegmental area (SN/VTA), striatum and hippocampus. This functional magnetic resonance imaging (fMRI) study now contrasted the impact of aversive and appetitive motivation on episodic long-term memory. Cue pictures predicted monetary reward or punishment in alternating experimental blocks. One day later, episodic memory for the cue pictures was tested. We also investigated how the neural processing of appetitive and aversive motivation and episodic memory were modulated by dopaminergic mechanisms. To that end, participants were selected on the basis of their genotype for a variable number of tandem repeat polymorphism of the dopamine transporter (DAT) gene. The resulting groups were carefully matched for the 5-HTTLPR polymorphism of the serotonin transporter gene. Recognition memory for cues from both motivational categories was enhanced in participants homozygous for the 10-repeat allele of the DAT, the functional effects of which are not known yet, but not in heterozygous subjects. In comparison with heterozygous participants, 10-repeat homozygous participants also showed increased striatal activity for anticipation of motivational outcomes compared to neutral outcomes. In a subsequent memory analysis, encoding activity in striatum and hippocampus was found to be higher for later recognized items in 10-repeat homozygotes compared to 9/10-repeat heterozygotes. These findings suggest that processing of appetitive and aversive motivation in the human striatum involve the dopaminergic system and that dopamine plays a role in memory for both types of motivational information. In accordance with animal studies, these data support the idea that encoding of motivational events depends on dopaminergic processes in the hippocampus.

  9. Reprint of: DAT genotype modulates striatal processing and long-term memory for items associated with reward and punishment.

    PubMed

    Wittmann, Bianca C; Tan, Geoffrey C; Lisman, John E; Dolan, Raymond J; Düzel, Emrah

    2013-10-01

    Previous studies have shown that appetitive motivation enhances episodic memory formation via a network including the substantia nigra/ventral tegmental area (SN/VTA), striatum and hippocampus. This functional magnetic resonance imaging (fMRI) study now contrasted the impact of aversive and appetitive motivation on episodic long-term memory. Cue pictures predicted monetary reward or punishment in alternating experimental blocks. One day later, episodic memory for the cue pictures was tested. We also investigated how the neural processing of appetitive and aversive motivation and episodic memory were modulated by dopaminergic mechanisms. To that end, participants were selected on the basis of their genotype for a variable number of tandem repeat polymorphism of the dopamine transporter (DAT) gene. The resulting groups were carefully matched for the 5-HTTLPR polymorphism of the serotonin transporter gene. Recognition memory for cues from both motivational categories was enhanced in participants homozygous for the 10-repeat allele of the DAT, the functional effects of which are not known yet, but not in heterozygous subjects. In comparison with heterozygous participants, 10-repeat homozygous participants also showed increased striatal activity for anticipation of motivational outcomes compared to neutral outcomes. In a subsequent memory analysis, encoding activity in striatum and hippocampus was found to be higher for later recognized items in 10-repeat homozygotes compared to 9/10-repeat heterozygotes. These findings suggest that processing of appetitive and aversive motivation in the human striatum involve the dopaminergic system and that dopamine plays a role in memory for both types of motivational information. In accordance with animal studies, these data support the idea that encoding of motivational events depends on dopaminergic processes in the hippocampus.

  10. Post-learning stress enhances long-term memory and differentially influences memory in females depending on menstrual stage.

    PubMed

    Zoladz, Phillip R; Peters, David M; Cadle, Chelsea E; Kalchik, Andrea E; Aufdenkampe, Rachael L; Dailey, Alison M; Brown, Callie M; Scharf, Amanda R; Earley, McKenna B; Knippen, Courtney L; Rorabaugh, Boyd R

    2015-09-01

    Most work has shown that post-learning stress enhances long-term memory; however, there have been recent inconsistencies in this literature. The purpose of the present study was to examine further the effects of post-learning stress on long-term memory and to explore any sex differences that may exist. Male and female participants learned a list of 42 words that varied in emotional valence and arousal level. Following encoding, participants completed a free recall assessment and then submerged their hand into a bath of ice cold (stress) or lukewarm (no stress) water for 3 min. The next day, participants were given free recall and recognition tests. Stressed participants recalled more words than non-stressed participants 24h after learning. Stress also enhanced female participants' recall of arousing words when they were in the follicular, but not luteal, phase. These findings replicate previous work examining post-learning stress effects on memory and implicate the involvement of sex-related hormones in such effects.

  11. Encyclopedic Memory: Long-Term Memory Capacity for Knowledge Vocabulary in Middle School

    ERIC Educational Resources Information Center

    Lieury, Alain; Lorant, Sonia

    2013-01-01

    This article is a synthesis of unpublished and published experiments showing that elementary memory scores (words and pictures immediate recall; delayed recall, recognition), which are very sensitive to aging and in pharmacological protocols, have little or no correlation with school achievement. The alternative assumption developed is that school…

  12. A Long-Term Outcome Study of Selective Mutism in Childhood

    ERIC Educational Resources Information Center

    Steinhausen, Hans-Christoph; Wachter, Miriam; Laimbock, Karin; Metzke, Christa Winkler

    2006-01-01

    Objective: Controlled study of the long-term outcome of selective mutism (SM) in childhood. Method: A sample of 33 young adults with SM in childhood and two age- and gender-matched comparison groups were studied. The latter comprised 26 young adults with anxiety disorders in childhood (ANX) and 30 young adults with no psychiatric disorders during…

  13. Two-time scale subordination in physical processes with long-term memory

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2008-03-01

    We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley-Torvik type of state equation.

  14. Word-frequency effects in long-term semantic priming and false memory.

    PubMed

    Sherman, Susan M; Jordan, Timothy R

    2011-08-01

    Several studies have used the lexical decision task (LDT) with the Deese-Roediger-McDermott (DRM) false-memory paradigm to investigate whether long-term semantic priming (LTSP) occurs following presentation of lists of items (e.g., bed, dream, snore) for related non-presented lure words (e.g., sleep). However, results have been mixed, with some studies observing priming, whilst others have not. The present study had four goals: (i) to investigate the existence of LTSP in the LDT; (ii) to investigate effects of LTSP on standard effects of word frequency on LDT performance; (iii) to investigate the effect, if any, of word frequency on true and false recall; and (iv) to compare LDT performance with performance on a subsequent free-recall task. The findings showed (i) a significant effect of LTSP on LDT performance; (ii) no effect of LTSP on standard effects of word frequency on LDT performance; (iii) no effect of word frequency on either true or false free recall; and (iv) a significant relationship between LDT and free-recall performance. Implications of these findings for understanding LTSP and false memories are discussed.

  15. The phosphatase SHP2 regulates the spacing effect for long-term memory induction.

    PubMed

    Pagani, Mario R; Oishi, Kimihiko; Gelb, Bruce D; Zhong, Yi

    2009-10-02

    A property of long-term memory (LTM) induction is the requirement for repeated training sessions spaced over time. This augmentation of memory formation with spaced resting intervals is called the spacing effect. We now show that in Drosophila, the duration of resting intervals required for inducing LTM is regulated by activity levels of the protein tyrosine phosphatase corkscrew (CSW). Overexpression of wild-type CSW in mushroom body neurons shortens the inter-trial interval required for LTM induction, whereas overexpression of constitutively active CSW proteins prolongs these resting intervals. These gain-of-function csw mutations are associated with a clinical condition of mental retardation. Biochemical analysis reveals that LTM-inducing training regimens generate repetitive waves of CSW-dependent MAPK activation, the length of which appears to define the duration of the resting interval. Constitutively active CSW proteins prolong the resting interval by altering the MAPK inactivation cycle. We thus provide insight into the molecular basis of the spacing effect.

  16. Long-Term Immunological Memory Induced by Recombinant Oral Salmonella Vaccine Vectors

    PubMed Central

    Kohler, James J.; Pathangey, Latha; Hasona, Adnan; Progulske-Fox, Ann; Brown, Thomas A.

    2000-01-01

    We have previously shown that Salmonella enterica serovar Typhimurium expressing the hagB hemagglutinin gene from Porphyromonas gingivalis can induce primary and recall immune responses in serum and secretions in mice; however, the longevity of memory induced by oral Salmonella carriers has not been adequately demonstrated. In this study, we examined the capacity of mice to mount a recall response 52 weeks after primary immunization. Recall responses were seen in serum immunoglobulin G (IgG) and IgA following boosting at week 52, and in most cases, they were equal to or greater than the primary responses. Significant mucosal IgA recall responses in saliva and vaginal wash were also detected following boosting at week 52. In addition, there was a considerable residual response in secretions at week 51, prior to boosting. These results indicate that oral Salmonella vectors can induce long-term memory to recombinant HagB and are particularly effective at inducing long-lasting mucosal responses as well as at inducing the capacity for mucosal recall responses. PMID:10858264

  17. Just in time for late-LTP: A mechanism for the role of PKMzeta in long-term memory.

    PubMed

    Vlachos, Andreas; Maggio, Nicola; Jedlicka, Peter

    2008-01-01

    It is a fundamental question in neuroscience how long-term memory formation is regulated at the molecular level. Although widely considered a highly complex process requiring numerous molecular players, it also has been speculated that a single protein could play a pivotal role. This "astonishing hypothesis" has made a significant impact on memory research and has led to a reevaluation of concepts regarding memory formation.1,2.

  18. Effects of trawl selectivity and genetic parameters on fish body length under long-term trawling

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Sun, Peng; Cui, He; Sheng, Huaxiang; Zhao, Fenfang; Tang, Yanli; Chen, Zelin

    2015-10-01

    Long-term fishing pressure affects the biological characteristics of exploited fish stocks. The biological characteristics of hairtail ( Trichiurus lepturus) in the East China Sea are unable to recover because of long-term trawling. Fishing induces evolutionary effects on the fish's biological characteristics. Evidence of these changes includes small size at age, a shift to earlier age structure, and early maturation. Natural and artificial selection usually affect the fish's life history. Selection can induce different chances of reproduction, and individual fish can give a different genetic contribution to the next generation. In this study, analysis of time-dependent probability of significance and test of sensitivity were used to explore the effects of fish exploitation rate, mesh size, and heritability with long-term trawling. Results showed that fishing parameters were important drivers to exploited fish population. However, genetic traits altered by fishing were slow, and the changes in biological characteristics were weaker than those caused by fishing selection. Exploitation rate and mesh size exhibited similar evolutionary trend tendency under long-term fishing. The time-dependent probability of significance trend showed a gradual growth and tended to be stable. Therefore, the direction of fishing-induced evolution and successful management of fish species require considerable attention to contribute to sustainable fisheries in China.

  19. Test of a motor theory of long-term auditory memory.

    PubMed

    Schulze, Katrin; Vargha-Khadem, Faraneh; Mishkin, Mortimer

    2012-05-01

    Monkeys can easily form lasting central representations of visual and tactile stimuli, yet they seem unable to do the same with sounds. Humans, by contrast, are highly proficient in auditory long-term memory (LTM). These mnemonic differences within and between species raise the question of whether the human ability is supported in some way by speech and language, e.g., through subvocal reproduction of speech sounds and by covert verbal labeling of environmental stimuli. If so, the explanation could be that storing rapidly fluctuating acoustic signals requires assistance from the motor system, which is uniquely organized to chain-link rapid sequences. To test this hypothesis, we compared the ability of normal participants to recognize lists of stimuli that can be easily reproduced, labeled, or both (pseudowords, nonverbal sounds, and words, respectively) versus their ability to recognize a list of stimuli that can be reproduced or labeled only with great difficulty (reversed words, i.e., words played backward). Recognition scores after 5-min delays filled with articulatory-suppression tasks were relatively high (75-80% correct) for all sound types except reversed words; the latter yielded scores that were not far above chance (58% correct), even though these stimuli were discriminated nearly perfectly when presented as reversed-word pairs at short intrapair intervals. The combined results provide preliminary support for the hypothesis that participation of the oromotor system may be essential for laying down the memory of speech sounds and, indeed, that speech and auditory memory may be so critically dependent on each other that they had to coevolve.

  20. Identification of individual neurons reflecting short- and long-term visual memory in an arthropodo.

    PubMed

    Tomsic, Daniel; Berón de Astrada, Martén; Sztarker, Julieta

    2003-09-17

    Ideally, learning-related changes should be investigated while they occur in vivo, but physical accessibility and stability limit intracellular studies. Experiments with insects and crabs demonstrate their remarkable capacity to learn and memorize visual features. However, the location and physiology of individual neurons underlying these processes is unknown. A recently developed crab preparation allows stable intracellular recordings from the optic ganglia to be performed in the intact animal during learning. In the crab Chasmagnathus, a visual danger stimulus (VDS) elicits animal escape, which declines after a few stimulus presentations. The long-lasting retention of this decrement is mediated by an association between contextual cues of the training site and the VDS, therefore, called context-signal memory (CSM). CSM is achieved only by spaced training. Massed training, on the contrary, produces a decline of the escape response that is short lasting and, because it is context independent, is called signal memory (SM). Here, we show that movement detector neurons (MDNs) from the lobula (third optic ganglion) of the crab modify their response to the VDS during visual learning. These modifications strikingly correlate with the rate of acquisition and with the duration of retention of both CSM and SM. Long-term CSM is detectable from the response of the neuron 1 d after training. In contrast to MDNs, identified neurons from the medulla (second optic ganglion) show no changes. Our results indicate that visual memory in the crab, and possibly other arthropods, including insects, is accounted for by functional changes occurring in neurons originating in the optic lobes.

  1. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    PubMed

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments.

  2. Independence of long-term contextual memory and short-term perceptual hypotheses: Evidence from contextual cueing of interrupted search.

    PubMed

    Schlagbauer, Bernhard; Mink, Maurice; Müller, Hermann J; Geyer, Thomas

    2017-02-01

    Observers are able to resume an interrupted search trial faster relative to responding to a new, unseen display. This finding of rapid resumption is attributed to short-term perceptual hypotheses generated on the current look and confirmed upon subsequent looks at the same display. It has been suggested that the contents of perceptual hypotheses are similar to those of other forms of memory acquired long-term through repeated exposure to the same search displays over the course of several trials, that is, the memory supporting "contextual cueing." In three experiments, we investigated the relationship between short-term perceptual hypotheses and long-term contextual memory. The results indicated that long-term, contextual memory of repeated displays neither affected the generation nor the confirmation of short-term perceptual hypotheses for these displays. Furthermore, the analysis of eye movements suggests that long-term memory provides an initial benefit in guiding attention to the target, whereas in subsequent looks guidance is entirely based on short-term perceptual hypotheses. Overall, the results reveal a picture of both long- and short-term memory contributing to reliable performance gains in interrupted search, while exerting their effects in an independent manner.

  3. Memory signals from the thalamus: early thalamocortical phase synchronization entrains gamma oscillations during long-term memory retrieval.

    PubMed

    Staudigl, Tobias; Zaehle, Tino; Voges, Jürgen; Hanslmayr, Simon; Esslinger, Christine; Hinrichs, Hermann; Schmitt, Friedhelm C; Heinze, Hans-Jochen; Richardson-Klavehn, Alan

    2012-12-01

    The thalamus is believed to be a key node in human memory networks, however, very little is known about its real-time functional role. Here we examined the dynamics of thalamocortical communication during long-term episodic memory retrieval in two experiments. In experiment 1, intrathalamic and surface EEG was recorded in an epileptic patient implanted with depth electrodes for brain stimulation therapy. In a recognition memory test, early (300-500 ms) stimulus-linked oscillatory synchrony between mediodorsal thalamic and frontal surface electrodes at beta frequency (20 Hz) was enhanced for correctly remembered old compared to correctly rejected new items. Directionality measures (Granger causality) indicated that the thalamus was the sender, and the neocortex the receiver, of this beta signal, which also modulated the power of neocortical gamma (55-80 Hz) oscillations (cross-frequency coupling). Experiment 2 validated the cross-frequency coupling effects in a healthy participant sample. Confirming the findings from experiment 1, significantly increased cross-frequency coupling was found over frontal scalp electrodes during successful recognition. Extending anatomical knowledge on thalamic connectivity with frontal neocortex, these results suggest that the thalamus sends an early memory signal to frontal regions, triggering further memory search processes.

  4. Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down's syndrome.

    PubMed

    Andrade-Talavera, Yuniesky; Benito, Itziar; Casañas, Juan José; Rodríguez-Moreno, Antonio; Montesinos, María Luz

    2015-10-01

    Down's syndrome (DS) is the most prevalent genetic intellectual disability. Memory deficits significantly contribute to the cognitive dysfunction in DS. Previously, we discovered that mTOR-dependent local translation, a pivotal process for some forms of synaptic plasticity, is deregulated in a DS mouse model. Here, we report that these mice exhibit deficits in both synaptic plasticity (i.e., BDNF-long term potentiation) and the persistence of spatial long-term memory. Interestingly, these deficits were fully reversible using rapamycin, a Food and Drug Administration-approved specific mTOR inhibitor; therefore, rapamycin may be a novel pharmacotherapy to improve cognition in DS.

  5. Long-term care information systems: an overview of the selection process.

    PubMed

    Nahm, Eun-Shim; Mills, Mary Etta; Feege, Barbara

    2006-06-01

    Under the current Medicare Prospective Payment System method and the ever-changing managed care environment, the long-term care information system is vital to providing quality care and to surviving in business. system selection process should be an interdisciplinary effort involving all necessary stakeholders for the proposed system. The system selection process can be modeled following the Systems Developmental Life Cycle: identifying problems, opportunities, and objectives; determining information requirements; analyzing system needs; designing the recommended system; and developing and documenting software.

  6. Activation of the basolateral amygdala induces long-term enhancement of specific memory representations in the cerebral cortex.

    PubMed

    Chavez, Candice M; McGaugh, James L; Weinberger, Norman M

    2013-03-01

    The basolateral amygdala (BLA) modulates memory, particularly for arousing or emotional events, during post-training periods of consolidation. It strengthens memories whose substrates in part or whole are stored remotely, in structures such as the hippocampus, striatum and cerebral cortex. However, the mechanisms by which the BLA influences distant memory traces are unknown, largely because of the need for identifiable target mnemonic representations. Associative tuning plasticity in the primary auditory cortex (A1) constitutes a well-characterized candidate specific memory substrate that is ubiquitous across species, tasks and motivational states. When tone predicts reinforcement, the tuning of cells in A1 shifts toward or to the signal frequency within its tonotopic map, producing an over-representation of behaviorally important sounds. Tuning shifts have the cardinal attributes of forms of memory, including associativity, specificity, rapid induction, consolidation and long-term retention and are therefore likely memory representations. We hypothesized that the BLA strengthens memories by increasing their cortical representations. We recorded multiple unit activity from A1 of rats that received a single discrimination training session in which two tones (2.0 s) separated by 1.25 octaves were either paired with brief electrical stimulation (400 ms) of the BLA (CS+) or not (CS-). Frequency response areas generated by presenting a matrix of test tones (0.5-53.82 kHz, 0-70 dB) were obtained before training and daily for 3 weeks post-training. Tuning both at threshold and above threshold shifted predominantly toward the CS+ beginning on day 1. Tuning shifts were maintained for the entire 3 weeks. Absolute threshold and bandwidth decreased, producing less enduring increases in sensitivity and selectivity. BLA-induced tuning shifts were associative, highly specific and long-lasting. We propose that the BLA strengthens memory for important experiences by increasing the

  7. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats

    PubMed Central

    Yu, Xiao-Wen; Curlik, Daniel M; Oh, M Matthew; Yin, Jerry CP; Disterhoft, John F

    2017-01-01

    The molecular mechanisms underlying age-related cognitive deficits are not yet fully elucidated. In aged animals, a decrease in the intrinsic excitability of CA1 pyramidal neurons is believed to contribute to age-related cognitive impairments. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents facilitates cognition, and increases intrinsic excitability. However, it has yet to be tested if increasing CREB expression also ameliorates age-related behavioral and biophysical deficits. To test this hypothesis, we virally overexpressed CREB in CA1 of dorsal hippocampus. Rats received CREB or control virus, before undergoing water maze training. CREB overexpression in aged animals ameliorated the long-term memory deficits observed in control animals. Concurrently, cells overexpressing CREB in aged animals had reduced post-burst afterhyperpolarizations, indicative of increased intrinsic excitability. These results identify CREB modulation as a potential therapy to treat age-related cognitive decline. DOI: http://dx.doi.org/10.7554/eLife.19358.001 PMID:28051768

  8. Long-term memory: disruption by inhibitors of protein synthesis and cytoplasmic flow

    SciTech Connect

    Flood, J.F.; Landry, D.W.; Bennett, E.L.; Jarvik, M.E.

    1981-01-01

    Colchicine (60 ..mu..g/kg), an inhibitor of axoplasmic transport, administered subcutaneously to mice has no detectable effect on retention when given shortly after active avoidance training, nor did a pertaining injection of anisomycin (ANI) have an amnesic effect. However, when ANI was administered shortly prior to training and colchicine was administered after training, retention performance was impaired. The amnesic effect was dependent on the time at which colchicine was administered. The amnesic effect was also obtained when ANI was combined with either vinblastine (6 ..mu..g/kg) or podophyllotoxin (3 ..mu..g/kg), drugs that inhibit axoplasmic transport. Intracerebral injections of colchicine (60 ng to 60 pg) caused amnesia in subjects pretreated with ANI, but not in subjects pretreated with saline. Lumicolchicine, an isomer of colchicine, which has similar central nervous system effects but has a low binding affinity for microtubule protein, did not impair retention in ANI pretreated mice. It is suggested that axonal transport of recently synthesized protein is required for long-term memory storage.

  9. Multiple interpretations of long-term working memory theory: Reply to Delaney and Ericsson (2016).

    PubMed

    Foroughi, Cyrus K; Werner, Nicole E; Barragán, Daniela; Boehm-Davis, Deborah A

    2016-10-01

    This reply is in response to Delaney and Ericsson (2016), who argue that the results of our recent research (Foroughi, Werner, Barragán, & Boehm-Davis, 2015) can be explained by Ericsson and Kintsch's (1995) long-term working memory (LTWM) theory. Our original work was designed to test the prediction made by LTWM theory that interruptions of up to 30 s in duration would not disrupt reading performance. We conducted the work following the method and outcome measures recommended by Ericsson and Kintsch (1995). Our data were clear: interruptions disrupted reading comprehension. We believe that these data do not support predictions made by LTWM theory. Although we appreciate Delaney and Ericsson's (2016) comments, we are unsure how best to move forward because it appears that some of their comments are not consistent with the published work on LTWM theory. Because of the inconsistent and contradictory claims surrounding LTWM theory, the theory does not appear to be falsifiable, or is in danger of becoming unfalsifiable. Creating and testing theory is vital for the advancement of psychological science, but it appears that testing predictions made by LTWM would be very difficult, if not impossible, given the fluid state of the theory. (PsycINFO Database Record

  10. Working Memory Training is Associated with Long Term Attainments in Math and Reading

    PubMed Central

    Söderqvist, Stina; Bergman Nutley, Sissela

    2015-01-01

    Training working memory (WM) using computerized programs has been shown to improve functions directly linked to WM such as following instructions and attention. These functions influence academic performance, which leads to the question of whether WM training can transfer to improved academic performance. We followed the academic performance of two age-matched groups during 2 years. As part of the curriculum in grade 4 (age 9–10), all students in one classroom (n = 20) completed Cogmed Working Memory Training (CWMT) whereas children in the other classroom (n = 22) received education as usual. Performance on nationally standardized tests in math and reading was used as outcome measures at baseline and two years later. At baseline both classes were normal/high performing according to national standards. At grade 6, reading had improved to a significantly greater extent for the training group compared to the control group (medium effect size, Cohen’s d = 0.66, p = 0.045). For math performance the same pattern was observed with a medium effect size (Cohen’s d = 0.58) reaching statistical trend levels (p = 0.091). Moreover, the academic attainments were found to correlate with the degree of improvements during training (p < 0.053). This is the first study of long-term (>1 year) effects of WM training on academic performance. We found performance on both reading and math to be positively impacted after completion of CWMT. Since there were no baseline differences between the groups, the results may reflect an influence on learning capacity, with improved WM leading to a boost in students’ capacity to learn. This study is also the first to investigate the effects of CWMT on academic performance in typical or high achieving students. The results suggest that WM training can help optimize the academic potential of high performers. PMID:26617545

  11. Working Memory Training is Associated with Long Term Attainments in Math and Reading.

    PubMed

    Söderqvist, Stina; Bergman Nutley, Sissela

    2015-01-01

    Training working memory (WM) using computerized programs has been shown to improve functions directly linked to WM such as following instructions and attention. These functions influence academic performance, which leads to the question of whether WM training can transfer to improved academic performance. We followed the academic performance of two age-matched groups during 2 years. As part of the curriculum in grade 4 (age 9-10), all students in one classroom (n = 20) completed Cogmed Working Memory Training (CWMT) whereas children in the other classroom (n = 22) received education as usual. Performance on nationally standardized tests in math and reading was used as outcome measures at baseline and two years later. At baseline both classes were normal/high performing according to national standards. At grade 6, reading had improved to a significantly greater extent for the training group compared to the control group (medium effect size, Cohen's d = 0.66, p = 0.045). For math performance the same pattern was observed with a medium effect size (Cohen's d = 0.58) reaching statistical trend levels (p = 0.091). Moreover, the academic attainments were found to correlate with the degree of improvements during training (p < 0.053). This is the first study of long-term (>1 year) effects of WM training on academic performance. We found performance on both reading and math to be positively impacted after completion of CWMT. Since there were no baseline differences between the groups, the results may reflect an influence on learning capacity, with improved WM leading to a boost in students' capacity to learn. This study is also the first to investigate the effects of CWMT on academic performance in typical or high achieving students. The results suggest that WM training can help optimize the academic potential of high performers.

  12. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    PubMed

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.

  13. Long-Term Memory: A Review and Meta-Analysis of Studies of Declarative and Procedural Memory in Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2013-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI)--declarative memory and aspects of procedural memory in particular. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed that individuals with SLI…

  14. When Music and Long-Term Memory Interact: Effects of Musical Expertise on Functional and Structural Plasticity in the Hippocampus

    PubMed Central

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-01-01

    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus. PMID:20957158

  15. Long-Term Memory for the Terrorist Attack of September 11: Flashbulb Memories, Event Memories, and the Factors that Influence Their Retention

    ERIC Educational Resources Information Center

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lustig, Cindy; Lyle, Keith B.; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2009-01-01

    More than 3,000 individuals from 7 U.S. cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, 1 week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas…

  16. Cortical Activation Patterns during Long-Term Memory Retrieval of Visually or Haptically Encoded Objects and Locations

    ERIC Educational Resources Information Center

    Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…

  17. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    ERIC Educational Resources Information Center

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  18. PKA and PKC Are Required for Long-Term but Not Short-Term in Vivo Operant Memory in "Aplysia"

    ERIC Educational Resources Information Center

    Michel, Maximilian; Green, Charity L.; Lyons, Lisa C.

    2011-01-01

    We investigated the involvement of PKA and PKC signaling in a negatively reinforced operant learning paradigm in "Aplysia", learning that food is inedible (LFI). In vivo injection of PKA or PKC inhibitors blocked long-term LFI memory formation. Moreover, a persistent phase of PKA activity, although not PKC activity, was necessary for long-term…

  19. Transforming Growth Factor ß Recruits Persistent MAPK Signaling to Regulate Long-Term Memory Consolidation in "Aplysia Californica"

    ERIC Educational Resources Information Center

    Shobe, Justin; Philips, Gary T.; Carew, Thomas J.

    2016-01-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization of "Aplysia." Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal…

  20. Effects of Different Types of True-False Questions on Memory Awareness and Long-Term Retention

    ERIC Educational Resources Information Center

    Schaap, Lydia; Verkoeijen, Peter; Schmidt, Henk

    2014-01-01

    This study investigated the effects of two different true-false questions on memory awareness and long-term retention of knowledge. Participants took four subsequent knowledge tests on curriculum learning material that they studied at different retention intervals prior to the start of this study (i.e. prior to the first test). At the first and…

  1. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    ERIC Educational Resources Information Center

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  2. HDAC Inhibition Modulates Hippocampus-Dependent Long-Term Memory for Object Location in a CBP-Dependent Manner

    ERIC Educational Resources Information Center

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation…

  3. Fan-Shaped Body Neurons Are Involved in "Period"-Dependent Regulation of Long-Term Courtship Memory in "Drosophila"

    ERIC Educational Resources Information Center

    Sakai, Takaomi; Inami, Show; Sato, Shoma; Kitamoto, Toshihiro

    2012-01-01

    In addition to its established function in the regulation of circadian rhythms, the "Drosophila" gene "period" ("per") also plays an important role in processing long-term memory (LTM). Here, we used courtship conditioning as a learning paradigm and revealed that (1) overexpression and knocking down of "per" in subsets of brain neurons enhance and…

  4. Hippocampal CA1 Kindling but Not Long-Term Potentiation Disrupts Spatial Memory Performance

    ERIC Educational Resources Information Center

    Leung, L. Stan; Shen, Bixia

    2006-01-01

    Long-term synaptic enhancement in the hippocampus has been suggested to cause deficits in spatial performance. Synaptic enhancement has been reported after hippocampal kindling that induced repeated electrographic seizures or afterdischarges (ADs) and after long-term potentiation (LTP) defined as synaptic enhancement without ADs. We studied…

  5. Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention

    PubMed Central

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lyle, Keith B.; Lustig, Cindy; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2010-01-01

    More than 3,000 individuals from seven US cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, one week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas others demonstrate accelerated forgetting. The present paper indicates that (1) the rate of forgetting for flashbulb memories and event memory (memory for details about the event itself) slows after a year, (2) the strong emotional reactions elicited by flashbulb events are remembered poorly, worse than non-emotional features such as where and from whom one learned of the attack, and (3) the content of flashbulb and event memories stabilizes after a year. The results are discussed in terms of community memory practices. PMID:19397377

  6. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.

    PubMed

    Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A

    2016-04-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory.

  7. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory

    PubMed Central

    Hall, Jessica H.; Wiseman, Frances K.; Fisher, Elizabeth M.C.; Tybulewicz, Victor L.J.; Harwood, John L.; Good, Mark A.

    2016-01-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30 sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the shortterm recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. PMID:26868479

  8. Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning.

    PubMed

    Alkon, Daniel L; Epstein, Herman; Kuzirian, Alan; Bennett, M Catherine; Nelson, Thomas J

    2005-11-08

    Protein synthesis has long been known to be required for associative learning to consolidate into long-term memory. Here we demonstrate that PKC isozyme activation on days before training can induce the synthesis of proteins necessary and sufficient for subsequent long-term memory consolidation. Bryostatin (Bryo), a macrolide lactone with efficacy in subnanomolar concentrations and a potential therapeutic for Alzheimer's disease, is a potent activator of PKC, some of whose isozymes undergo prolonged activation after associative learning. Under normal conditions, two training events with paired visual and vestibular stimuli cause short-term memory of the mollusc Hermissenda that lasts approximately 7 min. However, after 4-h exposures to Bryo (0.25 ng/ml) on two preceding days, the same two training events produced long-term conditioning that lasted >1 week and that was not blocked by anisomycin (1 mug/ml). Anisomycin, however, eliminated long-term memory lasting at least 1 week after nine training events. Both the nine training events alone and two Bryo exposures plus two training event regimens caused comparably increased levels of the PKC alpha-isozyme substrate calexcitin in identified type B neurons and enhanced PKC activity in the membrane fractions. Furthermore, Bryo increased overall protein synthesis in cultured mammalian neurons by up to 60% for >3 days. The specific PKC antagonist Ro-32-0432 blocked much of this Bryo-induced protein synthesis as well as the Bryo-induced enhancement of the behavioral conditioning. Thus, Bryo-induced PKC activation produces those proteins necessary and sufficient for long-term memory on days in advance of the training events themselves.

  9. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    PubMed Central

    2012-01-01

    Background Cognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system) that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM) failure at the level of individual identified neurons and synapses. Results Classical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs) critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals. Conclusions The results identify the CGCs as cellular loci of age-associated appetitive learning and memory

  10. Differences in the verbal fluency, working memory and executive functions in alcoholics: Short-term vs. long-term abstainers.

    PubMed

    Nowakowska-Domagała, Katarzyna; Jabłkowska-Górecka, Karolina; Mokros, Łukasz; Koprowicz, Jacek; Pietras, Tadeusz

    2017-03-01

    The aim of the study was to assess differences in verbal fluency, working memory and executive functions in two subgroups of alcohol-dependent patients, those undergoing short-term abstinence (STA) and those undergoing long-term abstinence (LTA), and to compare the level of cognitive functions in patients after long-term abstinence with healthy subjects. The study group consisted of 106 alcohol-dependent patients (53 immediately after drinking at least 3 days and 53 after at least one-year abstinence). The control group comprised 53 subjects, whose age, sex and education levels matched those of the patients in the experimental group. The dependence intensity was assessed using SADD and MAST scales. The neuropsychological assessment was based on the FAS Test, Stroop Test and TMT A&B Test. The results obtained for alcohol-dependent patients revealed significant disturbances of cognitive functions. Such results indicate the presence of severe frontal cerebral cortex dysfunctions. Frontal cortex dysfunctions affecting the verbal fluency and working memory subsystems and the executive functions also persisted during long-term abstinence periods. No significant correlations between the duration of dependence, quantity of alcohol consumed and efficiency of the working memory and executive functions were observed in alcohol-dependent subjects after short-term or long-term abstinence.

  11. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome.

    PubMed

    Morice, Elise; Andreae, Laura C; Cooke, Sam F; Vanes, Lesley; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Bliss, Timothy V P

    2008-07-01

    Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (alpha-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.

  12. The roles of long-term phonotactic and lexical prosodic knowledge in phonological short-term memory.

    PubMed

    Tanida, Yuki; Ueno, Taiji; Lambon Ralph, Matthew A; Saito, Satoru

    2015-04-01

    Many previous studies have explored and confirmed the influence of long-term phonological representations on phonological short-term memory. In most investigations, phonological effects have been explored with respect to phonotactic constraints or frequency. If interaction between long-term memory and phonological short-term memory is a generalized principle, then other phonological characteristics-that is, suprasegmental aspects of phonology-should also exert similar effects on phonological short-term memory. We explored this hypothesis through three immediate serial-recall experiments that manipulated Japanese nonwords with respect to lexical prosody (pitch-accent type, reflecting suprasegmental characteristics) as well as phonotactic frequency (reflecting segmental characteristics). The results showed that phonotactic frequency affected the retention not only of the phonemic sequences, but also of pitch-accent patterns, when participants were instructed to recall both the phoneme sequence and accent pattern of nonwords. In addition, accent pattern typicality influenced the retention of the accent pattern: Typical accent patterns were recalled more accurately than atypical ones. These results indicate that both long-term phonotactic and lexical prosodic knowledge contribute to phonological short-term memory performance.

  13. Assessing the associative deficit of older adults in long-term and short-term/working memory.

    PubMed

    Chen, Tina; Naveh-Benjamin, Moshe

    2012-09-01

    Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.

  14. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation

    PubMed Central

    Steinman, Michael Q.; Gao, Virginia; Alberini, Cristina M.

    2016-01-01

    Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual’s identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation. PMID:26973477

  15. Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region.

    PubMed

    Aleisa, Abdulaziz M; Alzoubi, Karem H; Gerges, Nashaat Z; Alkadhi, Karim A

    2006-08-01

    The effect of chronic nicotine treatment on chronic psychosocial stress-induced impairment of short-term memory and long-term potentiation (LTP) was determined. An "intruder" stress model was used to induce psychosocial stress for 4-6 wk, during which rats were injected with saline or nicotine (1 mg/kg s.c.) twice a day. The radial arm water maze memory task was used to test hippocampus-dependent spatial memory. Chronic psychosocial stress impaired short-term memory without affecting the learning phase or long-term memory. Concurrent chronic nicotine treatment prevented stress-induced short-term memory impairment. In normal rats chronic nicotine treatment had no effect on learning and memory. Extracellular recordings from the CA1 region of anaesthetized rats showed severe reduction of LTP magnitude in stressed rats, which was normalized in nicotine-treated stressed rats. Nicotine had no effect on LTP in control animals. These results showed that chronic nicotine treatment improved hippocampus-dependent spatial memory and LTP only when impaired by stress.

  16. Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAAAntagonist pentylenetetrazole.

    PubMed

    Ruby, Norman F; Fernandez, Fabian; Garrett, Alex; Klima, Jessy; Zhang, Pei; Sapolsky, Robert; Heller, H Craig

    2013-01-01

    Performance on many memory tests varies across the day and is severely impaired by disruptions in circadian timing. We developed a noninvasive method to permanently eliminate circadian rhythms in Siberian hamsters (Phodopus sungorus) [corrected] so that we could investigate the contribution of the circadian system to learning and memory in animals that are neurologically and genetically intact. Male and female adult hamsters were rendered arrhythmic by a disruptive phase shift protocol that eliminates cycling of clock genes within the suprachiasmatic nucleus (SCN), but preserves sleep architecture. These arrhythmic animals have deficits in spatial working memory and in long-term object recognition memory. In a T-maze, rhythmic control hamsters exhibited spontaneous alternation behavior late in the day and at night, but made random arm choices early in the day. By contrast, arrhythmic animals made only random arm choices at all time points. Control animals readily discriminated novel objects from familiar ones, whereas arrhythmic hamsters could not. Since the SCN is primarily a GABAergic nucleus, we hypothesized that an arrhythmic SCN could interfere with memory by increasing inhibition in hippocampal circuits. To evaluate this possibility, we administered the GABAA antagonist pentylenetetrazole (PTZ; 0.3 or 1.0 mg/kg/day) to arrhythmic hamsters for 10 days, which is a regimen previously shown to produce long-term improvements in hippocampal physiology and behavior in Ts65Dn (Down syndrome) mice. PTZ restored long-term object recognition and spatial working memory for at least 30 days after drug treatment without restoring circadian rhythms. PTZ did not augment memory in control (entrained) animals, but did increase their activity during the memory tests. Our findings support the hypothesis that circadian arrhythmia impairs declarative memory by increasing the relative influence of GABAergic inhibition in the hippocampus.

  17. Insights into the Effects of Long-Term Artificial Selection on Seed Size in Maize

    PubMed Central

    Hirsch, Candice N.; Flint-Garcia, Sherry A.; Beissinger, Timothy M.; Eichten, Steven R.; Deshpande, Shweta; Barry, Kerrie; McMullen, Michael D.; Holland, James B.; Buckler, Edward S.; Springer, Nathan; Buell, C. Robin; de Leon, Natalia; Kaeppler, Shawn M.

    2014-01-01

    Grain produced from cereal crops is a primary source of human food and animal feed worldwide. To understand the genetic basis of seed-size variation, a grain yield component, we conducted a genome-wide scan to detect evidence of selection in the maize Krug Yellow Dent long-term divergent seed-size selection experiment. Previous studies have documented significant phenotypic divergence between the populations. Allele frequency estimates for ∼3 million single nucleotide polymorphisms (SNPs) in the base population and selected populations were estimated from pooled whole-genome resequencing of 48 individuals per population. Using FST values across sliding windows, 94 divergent regions with a median of six genes per region were identified. Additionally, 2729 SNPs that reached fixation in both selected populations with opposing fixed alleles were identified, many of which clustered in two regions of the genome. Copy-number variation was highly prevalent between the selected populations, with 532 total regions identified on the basis of read-depth variation and comparative genome hybridization. Regions important for seed weight in natural variation were identified in the maize nested association mapping population. However, the number of regions that overlapped with the long-term selection experiment did not exceed that expected by chance, possibly indicating unique sources of variation between the two populations. The results of this study provide insights into the genetic elements underlying seed-size variation in maize and could also have applications for other cereal crops. PMID:25037958

  18. Insights into the effects of long-term artificial selection on seed size in maize.

    PubMed

    Hirsch, Candice N; Flint-Garcia, Sherry A; Beissinger, Timothy M; Eichten, Steven R; Deshpande, Shweta; Barry, Kerrie; McMullen, Michael D; Holland, James B; Buckler, Edward S; Springer, Nathan; Buell, C Robin; de Leon, Natalia; Kaeppler, Shawn M

    2014-09-01

    Grain produced from cereal crops is a primary source of human food and animal feed worldwide. To understand the genetic basis of seed-size variation, a grain yield component, we conducted a genome-wide scan to detect evidence of selection in the maize Krug Yellow Dent long-term divergent seed-size selection experiment. Previous studies have documented significant phenotypic divergence between the populations. Allele frequency estimates for ∼3 million single nucleotide polymorphisms (SNPs) in the base population and selected populations were estimated from pooled whole-genome resequencing of 48 individuals per population. Using FST values across sliding windows, 94 divergent regions with a median of six genes per region were identified. Additionally, 2729 SNPs that reached fixation in both selected populations with opposing fixed alleles were identified, many of which clustered in two regions of the genome. Copy-number variation was highly prevalent between the selected populations, with 532 total regions identified on the basis of read-depth variation and comparative genome hybridization. Regions important for seed weight in natural variation were identified in the maize nested association mapping population. However, the number of regions that overlapped with the long-term selection experiment did not exceed that expected by chance, possibly indicating unique sources of variation between the two populations. The results of this study provide insights into the genetic elements underlying seed-size variation in maize and could also have applications for other cereal crops.

  19. A novel role for extracellular signal-regulated kinase in maintaining long-term memory-relevant excitability changes.

    PubMed

    Cohen-Matsliah, Sivan Ida; Brosh, Inbar; Rosenblum, Kobi; Barkai, Edi

    2007-11-14

    Pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the postburst afterhyperpolarization (AHP), which is generated by repetitive spike firing. AHP reduction is attributable to decreased conductance of a calcium-dependent potassium current, the sI(AHP). We have previously shown that such learning-induced AHP reduction is maintained by PKC activation. However, the molecular machinery underlying such long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the extracellular signal-regulated kinase I/II (ERKI/II) pathway, which is known to be crucial in learning, memory, and synaptic plasticity processes, is instrumental for the long-term maintenance of learning-induced AHP reduction. PD98059 or UO126, which selectively block MEK, the upstream kinase of ERK, increased the AHP in neurons from trained rats but not in neurons from naive and pseudo-trained rats. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls were abolished. This effect was not mediated by modulation of basic membrane properties. In accordance with its effect on neuronal excitability, the level of activated ERK in the membranal fraction was significantly higher in piriform cortex samples taken from trained rats. In addition, the PKC activator OAG (1-oleoyl-20acety-sn-glycerol), which was shown to reduce the AHP in neurons from control rats, had no effect on these neurons in the presence of PD98059. Our data show that ERK has a key role in maintaining long-lasting learning-induced enhancement of neuronal excitability.

  20. Differences in long-term memory stability and AmCREB level between forward and backward conditioned honeybees (Apis mellifera)

    PubMed Central

    Felsenberg, Johannes; Dyck, Yan; Feige, Janina; Ludwig, Jenny; Plath, Jenny Aino; Froese, Anja; Karrenbrock, Melanie; Nölle, Anna; Heufelder, Karin; Eisenhardt, Dorothea

    2015-01-01

    In classical conditioning a predictive relationship between a neutral stimulus (conditioned stimulus; CS) and a meaningful stimulus (unconditioned stimulus; US) is learned when the CS precedes the US. In backward conditioning the sequence of the stimuli is reversed. In this situation animals might learn that the CS signals the end or the absence of the US. In honeybees 30 min and 24 h following backward conditioning a memory for the excitatory and inhibitory properties of the CS could be retrieved, but it remains unclear whether a late long-term memory is formed that can be retrieved 72 h following backward conditioning. Here we examine this question by studying late long-term memory formation in forward and backward conditioning of the proboscis extension response (PER). We report a difference in the stability of memory formed upon forward and backward conditioning with the same number of conditioning trials. We demonstrate a transcription-dependent memory 72 h after forward conditioning but do not observe a 72 h memory after backward conditioning. Moreover we find that protein degradation is differentially involved in memory formation following these two conditioning protocols. We report differences in the level of a transcription factor, the cAMP response element binding protein (CREB) known to induce transcription underlying long-term memory formation, following forward and backward conditioning. Our results suggest that these alterations in CREB levels might be regulated by the proteasome. We propose that the differences observed are due to the sequence of stimulus presentation between forward and backward conditioning and not to differences in the strength of the association of both stimuli. PMID:25964749

  1. The effects of intersensory redundancy on attention and memory: infants' long-term memory for orientation in audiovisual events.

    PubMed

    Flom, Ross; Bahrick, Lorraine E

    2010-03-01

    This research examined the effects of bimodal audiovisual and unimodal visual stimulation on infants' memory for the visual orientation of a moving toy hammer following a 5-min, 2-week, or 1-month retention interval. According to the intersensory redundancy hypothesis (L. E. Bahrick & R. Lickliter, 2000; L. E. Bahrick, R. Lickliter, & R. Flom, 2004) detection of and memory for nonredundantly specified properties, including the visual orientation of an event, are facilitated in unimodal stimulation and attenuated in bimodal stimulation in early development. Later in development, however, nonredundantly specified properties can be perceived and remembered in both multimodal and unimodal stimulation. The current study extended tests of these predictions to the domain of memory in infants of 3, 5, and 9 months of age. Consistent with predictions of the intersensory redundancy hypothesis, in unimodal stimulation, memory for visual orientation emerged by 5 months and remained stable across age, whereas in bimodal stimulation, memory did not emerge until 9 months of age. Memory for orientation was evident even after a 1-month delay and was expressed as a shifting preference, from novelty to null to familiarity, across increasing retention time, consistent with Bahrick and colleagues' four-phase model of attention. Together, these findings indicate that infant memory for nonredundantly specified properties of events is a consequence of selective attention to those event properties and is facilitated in unimodal stimulation. Memory for nonredundantly specified properties thus emerges in unimodal stimulation, is later extended to bimodal stimulation, and lasts across a period of at least 1 month.

  2. Pre-learning stress that is temporally removed from acquisition exerts sex-specific effects on long-term memory.

    PubMed

    Zoladz, Phillip R; Warnecke, Ashlee J; Woelke, Sarah A; Burke, Hanna M; Frigo, Rachael M; Pisansky, Julia M; Lyle, Sarah M; Talbot, Jeffery N

    2013-02-01

    We have examined the influence of sex and the perceived emotional nature of learned information on pre-learning stress-induced alterations of long-term memory. Participants submerged their dominant hand in ice cold (stress) or warm (no stress) water for 3 min. Thirty minutes later, they studied 30 words, rated the words for their levels of emotional valence and arousal and were then given an immediate free recall test. Twenty-four hours later, participants' memory for the word list was assessed via delayed free recall and recognition assessments. The resulting memory data were analyzed after categorizing the studied words (i.e., distributing them to "positive-arousing", "positive-non-arousing", "negative-arousing", etc. categories) according to participants' valence and arousal ratings of the words. The results revealed that participants exhibiting a robust cortisol response to stress exhibited significantly impaired recognition memory for neutral words. More interestingly, however, males displaying a robust cortisol response to stress demonstrated significantly impaired recall, overall, and a marginally significant impairment of overall recognition memory, while females exhibiting a blunted cortisol response to stress demonstrated a marginally significant impairment of overall recognition memory. These findings support the notion that a brief stressor that is temporally separated from learning can exert deleterious effects on long-term memory. However, they also suggest that such effects depend on the sex of the organism, the emotional salience of the learned information and the degree to which stress increases corticosteroid levels.

  3. Working Memory Capacity and Recall from Long-Term Memory: Examining the Influences of Encoding Strategies, Study Time Allocation, Search Efficiency, and Monitoring Abilities

    ERIC Educational Resources Information Center

    Unsworth, Nash

    2016-01-01

    The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…

  4. The compensatory effect of regular exercise on long-term memory impairment in sleep deprived female rats.

    PubMed

    Salari, Maryam; Sheibani, Vahid; Saadati, Hakimeh; Pourrahimi, Alimohammad; khaksarihadad, Mohammad; Esmaeelpour, Khadijeh; Khodamoradi, Mehdi

    2015-10-01

    Previous studies have been shown that exercise can improve short-term spatial learning, memory and synaptic plasticity impairments in sleep deprived female rats. The aim of the present study was to investigate the effects of treadmill exercise on sleep deprivation (SD) induced impairment in hippocampal dependent long-term memory in female rats. Intact and ovariectomized female rats were used in the current study. Exercise protocol was 4 weeks treadmill running. Twenty four hour SD was induced by using multiple platform apparatus after learning phase. Spatial learning and long-term memory was examined by using the Morris Water Maze (MWM) test. Our results indicated that sleep deprivation impaired long term memory in the intact and ovariectomized female rats, regardless of reproductive status (p<0.05) and treadmill exercise compensated this impairment (p<0.05). In conclusion the results of the current study confirmed the negative effect of SD on cognitive functions and regular exercise seems to protect rats from these factors, however more investigations need to be done.

  5. Satb2 determines miRNA expression and long-term memory in the adult central nervous system

    PubMed Central

    Jaitner, Clemens; Reddy, Chethan; Abentung, Andreas; Whittle, Nigel; Rieder, Dietmar; Delekate, Andrea; Korte, Martin; Jain, Gaurav; Fischer, Andre; Sananbenesi, Farahnaz; Cera, Isabella; Singewald, Nicolas

    2016-01-01

    SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory. DOI: http://dx.doi.org/10.7554/eLife.17361.001 PMID:27897969

  6. Low-complexity motion estimation for long-term memory motion compensation

    NASA Astrophysics Data System (ADS)

    Chung, Hyukjune; Ortega, Antonio; Sawchuk, Alexander A.

    2002-01-01

    Long term memory motion compensation (LTMC) is an approach to extend the temporal motion search range by using multiple decoded frames as reference frames. By employing multiple reference frames, LTMC reduces the residual frame energy significantly. However the computational complexity of motion estimation for LTMC increases significantly as well. Therefore reduction of the required computational complexity is one of the most challenging issues for LTMC. Also, if we locate motion search windows at fixed locations in a frame buffer for a given macro-block, it is highly possible that the oldest frames in a frame buffer do not contain matching blocks due to the reduced correlation between the current frame and the reference frames located further in the frame buffer. Therefore, if we can locate the motion search window at a good position adaptively in a frame buffer, we can enhance the gain performance of LTMS. In this paper, we propose a novel motion estimation algorithm for LTMC to reduce significantly the required computation complexity, and to enhance the performance of LTMC. For the proposed motion estimation algorithm, we introduce a directed search strategy. Also, we propose to employ hypothesis testing fast matching (HTFM) as a fast matching criterion. The goal of a directed search strategy is to let the location of the motion search windows change adaptively as the search proceeds to older frames in the frame buffer. The main benefit over standard, fixed window, approaches is that the algorithm can track larger motion and therefore, we can reduce the residual frame energy. In addition, because the directed search strategy keeps track of best matched blocks, we can reduce the computational complexity significantly by reducing the motion search window area in a frame buffer. Simulation results show that by employing the directed search with reduced motion search window, we can reduce the computational complexity approximately 30%-40%, and that by employing HTFM

  7. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference

    PubMed Central

    Foerster, Rebecca M.; Carbone, Elena; Schneider, Werner X.

    2014-01-01

    Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM. PMID:24847304

  8. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference.

    PubMed

    Foerster, Rebecca M; Carbone, Elena; Schneider, Werner X

    2014-01-01

    Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM.

  9. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.

    PubMed

    Sudhakaran, Indulekha P; Ramaswami, Mani

    2016-10-11

    Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs

  10. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence

    PubMed Central

    Nakamura, Emi; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  11. A Transcription Factor-Binding Domain of the Coactivator CBP Is Essential for Long-Term Memory and the Expression of Specific Target Genes

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Brindle, Paul K.; Abel, Ted; Wood, Marcelo A.; Attner, Michelle A.

    2006-01-01

    Transcriptional activation is a key process required for long-term memory formation. Recently, the transcriptional coactivator CREB-binding protein (CBP) was shown to be critical for hippocampus-dependent long-term memory and hippocampal synaptic plasticity. As a coactivator with intrinsic histone acetyltransferase activity, CBP interacts with…

  12. Effects of Joint Attention on Long-Term Memory in 9-Month-Old Infants: An Event-Related Potentials Study

    ERIC Educational Resources Information Center

    Kopp, Franziska; Lindenberger, Ulman

    2011-01-01

    Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high…

  13. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    ERIC Educational Resources Information Center

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  14. Hippocampal dynamics of synaptic NF-kappa B during inhibitory avoidance long-term memory consolidation in mice.

    PubMed

    Salles, A; Boccia, M; Blake, M; Corbi, N; Passananti, C; Baratti, C M; Romano, A; Freudenthal, R

    2015-04-16

    Since the discovery that long-term memory is dependent on protein synthesis, several transcription factors have been found to participate in the transcriptional activity needed for its consolidation. Among them, NF-kappa B is a constitutive transcription factor whose nuclear activity has proven to be necessary for the consolidation of inhibitory avoidance in mice. This transcription factor has a wide distribution in the nervous system, with a well-reported presence in dendrites and synaptic terminals. Here we report changes in synaptosomal NF-kappa B localization and activity, during long-term memory consolidation. Activity comparison of synaptosomal and nuclear NF-kappa B, indicates different dynamics for both localizations. In this study we identify two pools of synaptosomal NF-kappa B, one obtained with the synaptoplasm (free fraction) and the second bound to the synaptosomal membranes. During the early steps of consolidation the first pool is activated, as the membrane associated transcription factor fraction increases and concomitantly the free fraction decreases. These results suggest that the activation of synaptic NF-kappa B and its translocation to membranes are part of the consolidation of long-term memory in mice.

  15. Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils.

    PubMed

    Wampler, J M; Krogstad, Eirik J; Elliott, W Crawford; Kahn, Bernd; Kaplan, Daniel I

    2012-04-03

    Naturally occurring Cs and Rb are distinctly more abundant relative to K in the highly weathered upland soils of the Savannah River Site, South Carolina, than in average rock of Earth's upper continental crust (UCC), by factors of 10 and 4, respectively. Naturally occurring Cs has been selectively retained during soil evolution, and Rb to a lesser extent, while K has been leached away. In acid extracts of the soils, the Cs/K ratio is about 50 times and the Rb/K ratio about 15 times the corresponding ratios for the UCC, indicating that relatively large amounts of natural Cs and Rb have been sequestered in soil microenvironments that are highly selective for these elements relative to K. Cation exchange favoring Cs and Rb ions, and subsequent fixation of the ions, at sites in interlayer wedge zones within hydroxy-interlayered vermiculite particles may account for the observations. The amounts of stable Cs retained and the inferred duration of the soil evolution, many thousands of years, provide new insights regarding long-term stewardship of radiocesium in waste repositories and contaminated environments. Study of natural Cs in soil adds a long-term perspective on Cs transport in soils not available from studies of radiocesium.

  16. Identifying long-term memory B-cells in vaccinated children despite waning antibody levels specific for Bordetella pertussis proteins.

    PubMed

    Hendrikx, Lotte H; Oztürk, Kemal; de Rond, Lia G H; Veenhoven, Reinier H; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2011-02-04

    Whooping cough is a respiratory disease caused by Bordetella pertussis. Since the 1950s in developed countries pertussis vaccinations are included in the national immunization program. However, antibody levels rapidly wane after both whole cell and acellular pertussis vaccination. Therefore protection against pertussis may depend largely on long-term B- and T-cell immunities. We investigated long-term pertussis-specific memory B-cell responses in children who were primed at infant age with the Dutch wP-vaccine (ISRCTN65428640). Purified B-cells were characterized by FACS-analysis and after polyclonal stimulation memory B-cells were detected by ELISPOT-assays specific for pertussis toxin, filamentous haemagglutinin, pertactin and tetanus. In addition, plasma IgG levels directed to the same antigens were measured by a fluorescent bead-based multiplex immunoassay. Two and 3 years after wP priming as well as 2 and 5 years after the aP booster at the age of 4, low plasma IgG levels to the pertussis proteins were found. At the same time, however pertussis protein-specific memory B-cells could be detected and their number increased with age. The number of tetanus-specific memory B-cells was similar in all age groups, whereas IgG-tetanus levels were high 2 years after tetanus booster compared to pre- and 5 years post-booster levels. This study shows the presence of long-term pertussis protein-specific memory B-cells in children despite waning antibody levels after vaccination, which suggests that memory B-cells in addition to antibodies may contribute to protection against pertussis.

  17. Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory.

    PubMed

    Valero, Jorge; Mastrella, Giorgia; Neiva, Ismael; Sánchez, Silvia; Malva, João O

    2014-01-01

    The cognitive reserve is the capacity of the brain to maintain normal performance while exposed to insults or ageing. Increasing evidences point to a role for the interaction between inflammatory conditions and cognitive reserve status during Alzheimer's disease (AD) progression. The production of new neurons along adult life can be considered as one of the components of the cognitive reserve. Interestingly, adult neurogenesis is decreased in mouse models of AD and following inflammatory processes. The aim of this work is to reveal the long-term impact of a systemic inflammatory event on memory and adult neurogenesis in wild type (WT) and triple transgenic mouse model of AD (3xTg-AD). Four month-old mice were intraperitoneally injected once with saline or lipopolysaccharide (LPS) and their performance on spatial memory analyzed with the Morris water maze (MWM) test 7 weeks later. Our data showed that a single intraperitoneal injection with LPS has a long-term impact in the production of hippocampal neurons. Consistently, LPS-treated WT mice showed less doublecortin-positive neurons, less synaptic contacts in newborn neurons, and decreased dendritic volume and complexity. These surprising observations were accompanied with memory deficits. 3xTg-AD mice showed a decrease in new neurons in the dentate gyrus compatible with, although exacerbated, the pattern observed in WT LPS-treated mice. In 3xTg-AD mice, LPS injection did not significantly affected the production of new neurons but reduced their number of synaptic puncta and impaired memory performance, when compared to the observations made in saline-treated 3xTg-AD mice. These data indicate that LPS treatment induces a long-term impairment on hippocampal neurogenesis and memory. Our results show that acute neuroinflammatory events influence the production of new hippocampal neurons, affecting the cognitive reserve and leading to the development of memory deficits associated to AD pathology.

  18. The Value of Animations in Biology Teaching: A Study of Long-Term Memory Retention

    ERIC Educational Resources Information Center

    O'Day, Danton H.

    2007-01-01

    Previous work has established that a narrated animation is more effective at communicating a complex biological process (signal transduction) than the equivalent graphic with figure legend. To my knowledge, no study has been done in any subject area on the effectiveness of animations versus graphics in the long-term retention of information, a…

  19. Long-Term Phonological Knowledge Supports Serial Ordering in Working Memory

    ERIC Educational Resources Information Center

    Nakayama, Masataka; Tanida, Yuki; Saito, Satoru

    2015-01-01

    Serial ordering mechanisms have been investigated extensively in psychology and psycholinguistics. It has also been demonstrated repeatedly that long-term phonological knowledge contributes to serial ordering. However, the mechanisms that contribute to serial ordering have yet to be fully understood. To understand these mechanisms, we demonstrate…

  20. On the interplay between short and long term memory in the power-law cross-correlations setting

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2015-03-01

    We focus on emergence of the power-law cross-correlations from processes with both short and long term memory properties. In the case of correlated error-terms, the power-law decay of the cross-correlation function comes automatically with the characteristics of separate processes. Bivariate Hurst exponent is then equal to an average of separate Hurst exponents of the analyzed processes. Strength of short term memory has no effect on these asymptotic properties. Implications of these findings for the power-law cross-correlations concept are further discussed.

  1. A novel paradigm for nonassociative long-term memory in Drosophila: predator-induced changes in oviposition behavior.

    PubMed

    Kacsoh, Balint Z; Bozler, Julianna; Hodge, Sassan; Ramaswami, Mani; Bosco, Giovanni

    2015-04-01

    Learning processes in Drosophila have been studied through the use of Pavlovian associative memory tests, and these paradigms have been extremely useful in identifying both genetic factors and neuroanatomical structures that are essential to memory formation. Whether these same genes and brain compartments also contribute to memory formed from nonassociative experiences is not well understood. Exposures to environmental stressors such as predators are known to induce innate behavioral responses and can lead to new memory formation that allows a predator response to persist for days after the predator threat has been removed. Here, we utilize a unique form of nonassociative behavior in Drosophila where female flies detect the presence of endoparasitoid predatory wasps and alter their oviposition behavior to lay eggs in food containing high levels of alcohol. The predator-induced change in fly oviposition preference is maintained for days after wasps are removed, and this persistence in behavior requires a minimum continuous exposure time of 14 hr. Maintenance of this behavior is dependent on multiple long-term memory genes, including orb2, dunce, rutabaga, amnesiac, and Fmr1. Maintenance of the behavior also requires intact synaptic transmission of the mushroom body. Surprisingly, synaptic output from the mushroom body (MB) or the functions of any of these learning and memory genes are not required for the change in behavior when female flies are in constant contact with wasps. This suggests that perception of this predator that leads to an acute change in oviposition behavior is not dependent on the MB or dependent on learning and memory gene functions. Because wasp-induced oviposition behavior can last for days and its maintenance requires a functional MB and the wild-type products of several known learning and memory genes, we suggest that this constitutes a paradigm for a bona fide form of nonassociative long-term memory that is not dependent on associated

  2. Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells.

    PubMed

    Chen, Ke; Huang, Chunhua; Yuan, Jia; Cheng, Hanhua; Zhou, Rongjia

    2014-08-01

    Understanding genomic variation and detecting selection signatures in a genome under selection have been great challenges for a century. Activation, development/exhaustion of primordial follicles in mammalian ovary determines reproductive success, menopause/end of female reproductive life. However, molecular mechanisms underlying oogenesis, particularly under artificial selection, are largely unknown. We report that a proteome-wide scan for selection signatures in the genome over 9,000 years of artificial pressure on the ovary revealed a general picture of selection signatures in the genome, especially genomic variations through artificial selection were detected in promoter and intron regions. Crossbreeding between domestic and wild species results in more than half of the protein spots exhibiting heterosis. Translationally controlled tumor protein (TCTP) is upregulated by artificial selection and positively regulates autophagy through the AMP-activated protein kinase pathway. Notably, TCTP interacts with ATG16 complex. In addition to cytoplasmic autophagy, nucleophagy occurs in the nuclei of granulosa and cumulus cells in ovaries, indicating an importance of the nuclear material for degradation by nucleophagy. Our findings provide insight into cellular and molecular mechanisms relevant for improvement of ovary functions, and identify selection signatures in the genome for ovary function over long-term artificial selection pressure.

  3. Distractibility during retrieval of long-term memory: domain-general interference, neural networks and increased susceptibility in normal aging.

    PubMed

    Wais, Peter E; Gazzaley, Adam

    2014-01-01

    The mere presence of irrelevant external stimuli results in interference with the fidelity of details retrieved from long-term memory (LTM). Recent studies suggest that distractibility during LTM retrieval occurs when the focus of resource-limited, top-down mechanisms that guide the selection of relevant mnemonic details is disrupted by representations of external distractors. We review findings from four studies that reveal distractibility during episodic retrieval. The approach cued participants to recall previously studied visual details when their eyes were closed, or were open and irrelevant visual information was present. The results showed a negative impact of the distractors on the fidelity of details retrieved from LTM. An fMRI experiment using the same paradigm replicated the behavioral results and found that diminished episodic memory was associated with the disruption of functional connectivity in whole-brain networks. Specifically, network connectivity supported recollection of details based on visual imagery when eyes were closed, but connectivity declined in the presence of visual distractors. Another experiment using auditory distractors found equivalent effects for auditory and visual distraction during cued recall, suggesting that the negative impact of distractibility is a domain-general phenomenon in LTM. Comparisons between older and younger adults revealed an aging-related increase in the negative impact of distractibility on retrieval of LTM. Finally, a new study that compared categorization abilities between younger and older adults suggests a cause underlying age-related decline of visual details in LTM. The sum of our findings suggests that cognitive control resources, although limited, have the capability to resolve interference from distractors during tasks of moderate effort, but these resources are overwhelmed when additional processes associated with episodic retrieval, or categorization of complex prototypes, are required.

  4. Improved Long-Term Memory via Enhancing cGMP-PKG Signaling Requires cAMP-PKA Signaling

    PubMed Central

    Bollen, Eva; Puzzo, Daniela; Rutten, Kris; Privitera, Lucia; De Vry, Jochen; Vanmierlo, Tim; Kenis, Gunter; Palmeri, Agostino; D'Hooge, Rudi; Balschun, Detlef; Steinbusch, Harry MW; Blokland, Arjan; Prickaerts, Jos

    2014-01-01

    Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation. PMID:24813825

  5. Cannabinoid CB1 receptor deficiency increases contextual fear memory under highly aversive conditions and long-term potentiation in vivo.

    PubMed

    Jacob, Wolfgang; Marsch, Rudolph; Marsicano, Giovanni; Lutz, Beat; Wotjak, Carsten T

    2012-07-01

    The cannabinoid receptor type 1 (CB1) is abundantly expressed in the central nervous system where it negatively controls the release of several neurotransmitters. CB1 activity plays a crucial role in learning and memory and in synaptic plasticity. In the present study, the role of CB1 was investigated in three different hippocampus-dependent memory tasks and in in vivo hippocampal synaptic plasticity in knockout (CB1-ko) and wildtype mice. There was no difference in short-term and long-term social and object recognition memory between CB1-ko and wildtype mice. In contrast, in background contextual fear conditioning CB1-ko mice showed enhanced freezing levels in the conditioning context and increased generalised contextual fear after a high-intensity conditioning foot shock of 1.5 mA, but not after 0.7 mA. In in vivo field potential recordings in the dentate gyrus, CB1-ko mice displayed a decreased paired-pulse facilitation of the populations spikes, suggesting an altered inhibitory synaptic drive onto hippocampal granule cells. Furthermore, CB1-ko mice displayed significantly higher levels of in vivo long-term potentiation (LTP) in the dentate gyrus. In conclusion, CB1 deficiency leads to enhanced contextual fear memory and altered synaptic plasticity in the hippocampus, supporting the key role of endocannabinoid signalling in learning and memory, in particular following highly aversive encounters.

  6. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    PubMed

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  7. Get the gist? The effects of processing depth on false recognition in short-term and long-term memory.

    PubMed

    Flegal, Kristin E; Reuter-Lorenz, Patricia A

    2014-07-01

    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.

  8. Selecting networks of nature reserves: methods do affect the long-term outcome

    PubMed Central

    Virolainen, K. M.; Virola, T.; Suhonen, J.; Kuitunen, M.; Lammi, A.; ki, P. Siikam

    1999-01-01

    Data on vascular plants of boreal lakes in Finland were used to compare the efficiency of reserve selection methods in representing four aspects of biodiversity over a 63 year period. These aspects included species richness, phylogenetic diversity, restricted range diversity and threatened species. Our results show that the efficiency of reserve selection methods depends on the selection criteria used and on the aspect of biodiversity under consideration. Heuristic methods and optimizing algorithms were nearly equally efficient in selecting lake networks over a small geographical range. In addition, a scoring procedure was observed to be efficient in maintaining different aspects of biodiversity over time. However, the random selection of lakes seems to be the most inefficient option for a reserve network. In general, reserve selection methods seem to favour lakes that maximize one aspect of diversity at the time of selection, but the network may not be the best option for maintaining the maximum diversity over time. The reserve selection methods do affect the long-term outcome but it is impossible to recommend one method over the others unequivocally.

  9. Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats.

    PubMed

    Christie, Brian R; Swann, Sarah E; Fox, Christopher J; Froc, David; Lieblich, Stephanie E; Redila, Van; Webber, Alina

    2005-03-01

    Prenatal ethanol exposure can lead to long-lasting impairments in the ability to process spatial information in rats, as well as produce long-lasting deficits in the ability of animals to exhibit long-term potentiation, a biological model of learning and memory processing. Conversely, we have recently shown that both spatial memory and long-term potentiation can be enhanced in animals that are given access to a running wheel in their home cage. In the present study, Sprague-Dawley rat dams were given one of three diets throughout gestation: (i) a liquid diet containing ethanol (35.5% ethanol-derived calories); (ii) a liquid diet, isocaloric to the ethanol diet, but with maltose-dextrin substituting for the ethanol derived calories and (iii) an ad libitum diet of standard rat chow. At weaning (28 days) animals were housed individually in either a standard rat cage, or a cage that contained a running wheel. Adult offspring were tested on a two trial version of the Morris water maze beginning at postnatal day 60, for five consecutive days. Following this, the capacity of the perforant path to dentate gyrus pathway to sustain long-term potentiation was examined in these animals using theta-patterned conditioning stimuli. Our results demonstrate that prenatal ethanol exposure can produce pronounced deficits in both spatial memory and long-term potentiation, but that allowing animal's access to voluntary exercise can attenuate these deficits to the point that those exposed to ethanol prenatally can no longer be differentiated from control animals. These findings indicate that voluntary exercise may have therapeutic benefits for individuals that have undergone prenatal ethanol exposure.

  10. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein

    PubMed Central

    Gupta, Aditi; Adami, Christoph

    2016-01-01

    Epistatic interactions between residues determine a protein’s adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the “fossils” of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing environment. PMID

  11. Mind racing: The influence of exercise on long-term memory consolidation.

    PubMed

    McNerney, M Windy; Radvansky, Gabriel A

    2015-01-01

    Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.

  12. Effects of sleep deprivation and aging on long-term and remote memory in mice

    PubMed Central

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a month after training, sleep-deprived and control aged animals performed similarly, primarily due to remote memory decay in the control aged animals. Gene expression analysis supported the finding that SD has similar effects on the hippocampus in young and aged mice. PMID:25776037

  13. Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus.

    PubMed

    Kanju, Patrick M; Parameshwaran, Kodeeswaran; Sims-Robinson, Catrina; Uthayathas, Subramaniam; Josephson, Eleanor M; Rajakumar, Nagalingam; Dhanasekaran, Muralikrishnan; Suppiramaniam, Vishnu

    2012-01-01

    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.

  14. Forebrain-specific constitutively active CaMKKα transgenic mice show deficits in hippocampus-dependent long-term memory.

    PubMed

    Kaitsuka, Taku; Li, Sheng-Tian; Nakamura, Kenji; Takao, Keizo; Miyakawa, Tsuyoshi; Matsushita, Masayuki

    2011-09-01

    The Ca(2+)/calmodulin (CaM) kinase cascade is activated by Ca(2+) influx through the voltage-dependent Ca(2+) channels and the NMDA receptor. CaM kinase kinase (CaMKK), the most upstream kinase of the CaM kinase cascade, phosphorylates and activates both CaM kinase I (CaMKI) and CaMKIV, resulting in activation of cyclic AMP-responsive element binding protein (CREB)-dependent gene transcription. Using transgenic techniques, we created mutant mice in which a constitutively active form of CaMKK1, the autoinhibitory domain truncated protein, is over-expressed specifically in the forebrain. In these mice, although performance was normal in basal activity and short-term memory, specific impairments were shown in hippocampus-dependent long-term memory after training in spatial memory tasks and after contextual fear conditioning. In cultured neurons of these mice, phosphorylation of CaMKI was significantly increased in basal states, whereas the activity range of CaMKI phosphorylation by brain-derived neurotrophic factor (BDNF) and KCl stimulation was significantly diminished in mutant mice. Our results define a critical role for CaMKKα in synaptic plasticity and the retention of hippocampus-dependent long-term memory.

  15. Effects of fresh, aged and cooked garlic extracts on short- and long-term memory in diabetic rats

    PubMed Central

    Sarkaki, Alireza; Valipour Chehardacheric, Saeed; Farbood, Yaghoub; Mansouri, Seyed Mohammad Taghi; Naghizadeh, Bahareh; Basirian, Effat

    2013-01-01

    Objective: The present study was hypothesized to investigate the beneficial effects of fresh, aged, and cooked garlic extracts on blood glucose and memory of diabetic rats induced by streptozocine (STZ). Material and Methods: Diabetes was induced by an intraperitoneal injection of STZ (60 mg/kg body weight). An oral dose of 1000 mg/kg of each garlic extract was given daily for 4 weeks after diabetes induction. Five days after STZ injection, five groups were formed: Control (intact) rats (Cont) + Vehicle of garlic extract (normal saline) (Veh), STZ + Veh, STZ + Fresh (row) garlic (FG), STZ + Aged garlic (AG), and STZ + cooked (boiled) garlic (CG). In order to assess the passive avoidance memory, rats were gently placed on the wooden platform, and latency to step-down (SDL) was recorded as initial phase, after then a light electrical shock [0.3 mA, 3 sec, Alternative current (AC)] was delivered to their foot paw. The retrieval tests were done for short- and long-term memories, respectively. Blood glucose was assayed by glucometer before and after treatment with STZ and garlic extracts. Results: Hyperglycemia induced by STZ decreased short-term memory in both diabetic males and females rats significantly compared with the controls (p<0.001 and p<0.01). Fresh and cooked but not aged garlic extracts decreased blood glucose in diabetic males and increased memory in both diabetic male and female rats significantly (p<0.05 and p<0.01). Conclusions: STZ causes elevation of the blood glucose and resulted in memory deficits, possibly viafree radicals production in brain tissue. Garlic has some bioactive chemicals including allicin and sulfur compound (OSC) which could lower the blood glucose during chronic hyperglycemia, inhibit free radicals production in brain, and improve short-term (but not long-term) memory. PMID:25050258

  16. Rapid and Continued T-Cell Differentiation into Long-term Effector and Memory Stem Cells in Vaccinated Melanoma Patients.

    PubMed

    Gannon, Philippe O; Baumgaertner, Petra; Huber, Alexandre; Iancu, Emanuela M; Cagnon, Laurène; Abed Maillard, Samia; Maby-El Hajjami, Hélène; Speiser, Daniel E; Rufer, Nathalie

    2016-11-21

    Purpose: Patients with cancer benefit increasingly from T-cell-based therapies, such as adoptive T-cell transfer, checkpoint blockade, or vaccination. We have previously shown that serial vaccinations with Melan-A(MART-1)26-35 peptide, CpG-B, and incomplete Freund adjuvant (IFA) generated robust tumor-specific CD8 T-cell responses in patients with melanoma. Here, we describe the detailed kinetics of early- and long-term establishment of T-cell frequency, differentiation (into memory and effector cells), polyfunctionality, and clonotype repertoire induced by vaccination.Experimental Design: Twenty-nine patients with melanoma were treated with multiple monthly subcutaneous vaccinations consisting of CpG-B, and either the native/EAA (n = 13) or the analogue/ELA (n = 16) Melan-A(MART-1)26-35 peptide emulsified in IFA. Phenotypes and functionality of circulating Melan-A-specific CD8 T cells were assessed directly ex vivo by multiparameter flow cytometry, and TCR clonotypes were determined ex vivo by mRNA transcript analyses of individually sorted cells.Results: Our results highlight the determining impact of the initial vaccine injections on the rapid and strong induction of differentiated effector T cells in both patient cohorts. Moreover, long-term polyfunctional effector T-cell responses were associated with expansion of stem cell-like memory T cells over time along vaccination. Dominant TCR clonotypes emerged early and persisted throughout the entire period of observation. Interestingly, one highly dominant clonotype was found shared between memory and effector subsets.Conclusions: Peptide/CpG-B/IFA vaccination induced powerful long-term T-cell responses with robust effector cells and stem cell-like memory cells. These results support the further development of CpG-B-based cancer vaccines, either alone or as specific component of combination therapies. Clin Cancer Res; 1-12. ©2016 AACR.

  17. Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

    PubMed Central

    Gonzales, Edson Luck T.; Yang, Sung Min; Choi, Chang Soon; Mabunga, Darine Froy N.; Kim, Hee Jin; Cheong, Jae Hoon; Ryu, Jong Hoon; Koo, Bon-Nyeo; Shin, Chan Young

    2015-01-01

    Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner. PMID:25995824

  18. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems.

    PubMed

    Geurts, Sofie; van der Werf, Sieberen P; Kessels, Roy P C

    2015-01-01

    The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests, days, to weeks, after initial learning) are more sensitive measures than standard delayed recall measures to detect memory problems in various patient groups. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed in other populations. Here, we identified eleven studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to those of healthy controls. Signs of accelerated forgetting were found in three studies. The results of eight studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on these results, we recommend the use of a combined recall and recognition procedure to examine accelerated forgetting and we discuss the relevance of standard and optimized learning procedures in clinical practice.

  19. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems

    PubMed Central

    Geurts, Sofie; van der Werf, Sieberen P.; Kessels, Roy P. C.

    2015-01-01

    The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests, days, to weeks, after initial learning) are more sensitive measures than standard delayed recall measures to detect memory problems in various patient groups. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed in other populations. Here, we identified eleven studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to those of healthy controls. Signs of accelerated forgetting were found in three studies. The results of eight studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on these results, we recommend the use of a combined recall and recognition procedure to examine accelerated forgetting and we discuss the relevance of standard and optimized learning procedures in clinical practice. PMID:26106343

  20. Long-term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records.

    PubMed

    Bunde, Armin; Eichner, Jan F; Kantelhardt, Jan W; Havlin, Shlomo

    2005-02-04

    We study the statistics of the return intervals between extreme events above a certain threshold in long-term persistent records. We find that the long-term memory leads (i) to a stretched exponential distribution of the return intervals, (ii) to a pronounced clustering of extreme events, and (iii) to an anomalous behavior of the mean residual time to the next event that depends on the history and increases with the elapsed time in a counterintuitive way. We present an analytical scaling approach and demonstrate that all these features can be seen in long climate records. The phenomena should also occur in heartbeat records, Internet traffic, and stock market volatility and have to be taken into account for an efficient risk evaluation.

  1. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    PubMed

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    selection in autogamous crops, especially bringing long-term improvement.

  2. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  3. Differential effects of adrenergic and corticosteroid hormonal systems on human short- and long-term declarative memory for emotionally arousing material.

    PubMed

    Maheu, Francoise S; Joober, Ridha; Beaulieu, Serge; Lupien, Soriia J

    2004-04-01

    The effects of adrenergic and corticosteroid hormonal systems on emotional memory were measured in 64 young men. Placebo, propranolol (40 or 80 mg; beta blocker), or metyiapone (corticosteroid synthesis inhibitor) was administered before the viewing of a story composed of emotional and neutral segments. Short- and long-term declarative memory for the story was assessed. Propranolol 40 mg had no effects on declarative memory. Propranolol 80 mg impaired short- and long-term declarative memory for emotionally arousing material. Metyrapone did not impair short-term declarative memory but impaired long-term declarative memory for emotionally arousing and neutral material. Results demonstrate that adrenergic and corticosteroid hormonal systems differentially affect declarative memory for emotionally arousing and neutral material, and suggest that interactions between adrenal hormonal systems modulate emotionally arousing declarative memory in humans.

  4. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration.

    PubMed

    Shomrat, Tal; Levin, Michael

    2013-10-15

    Planarian flatworms are a popular system for research into the molecular mechanisms that enable these complex organisms to regenerate their entire body, including the brain. Classical data suggest that they may also be capable of long-term memory. Thus, the planarian system may offer the unique opportunity to study brain regeneration and memory in the same animal. To establish a system for the investigation of the dynamics of memory in a regenerating brain, we developed a computerized training and testing paradigm that avoided the many issues that confounded previous, manual attempts to train planarians. We then used this new system to train flatworms in an environmental familiarization protocol. We show that worms exhibit environmental familiarization, and that this memory persists for at least 14 days - long enough for the brain to regenerate. We further show that trained, decapitated planarians exhibit evidence of memory retrieval in a savings paradigm after regenerating a new head. Our work establishes a foundation for objective, high-throughput assays in this molecularly tractable model system that will shed light on the fundamental interface between body patterning and stored memories. We propose planarians as key emerging model species for mechanistic investigations of the encoding of specific memories in biological tissues. Moreover, this system is lik ely to have important implications for the biomedicine of stem-cell-derived treatments of degenerative brain disorders in human adults.

  5. Adaptation of postural control to perturbations--a process that initiates long-term motor memory.

    PubMed

    Tjernström, F; Fransson, P-A; Hafström, A; Magnusson, M

    2002-02-01

    The objective was to investigate postural control adaptation during daily repeated posturography with vibratory calf stimulation. The posturography was performed with eyes open and closed daily for 5 days and after 90 days on 12 healthy subjects. The postural control adaptation could be described as two separate processes, a rapid adaptation during the test progress and a long-term habituation between consecutive test days. The adaptive improvements gained during the 5 days consecutive testing, largely remained 90 days later but seemed restricted to the same test situation. The findings suggest that balance rehabilitation should include a variety of repeated exercises, which are sufficiently long to induce habituation.

  6. Long-Term Memory Shapes the Primary Olfactory Center of an Insect Brain

    ERIC Educational Resources Information Center

    Hourcade, Benoit; Perisse, Emmanuel; Devaud, Jean-Marc; Sandoz, Jean-Christophe

    2009-01-01

    The storage of stable memories is generally considered to rely on changes in the functional properties and/or the synaptic connectivity of neural networks. However, these changes are not easily tractable given the complexity of the learning procedures and brain circuits studied. Such a search can be narrowed down by studying memories of specific…

  7. Subjective vs. Documented Reality: A Case Study of Long-Term Real-Life Autobiographical Memory

    ERIC Educational Resources Information Center

    Mendelsohn, Avi; Furman, Orit; Navon, Inbal; Dudai, Yadin

    2009-01-01

    A young woman was filmed during 2 d of her ordinary life. A few months and then again a few years later she was tested for the memory of her experiences in those days while undergoing fMRI scanning. As time passed, she came to accept more false details as true. After months, activity of a network considered to subserve autobiographical memory was…

  8. Children's and Adults' Spontaneous False Memories: Long-Term Persistence and Mere-Testing Effects.

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Mojardin, A. H.

    1998-01-01

    Used short narratives to study false memory in 6-, 8-, and 11-year olds and adults. The persistence effect and false-memory creation effect were greatest for statements that would be regarded as factually incorrect reports of events in sworn testimony; like suggestive questioning, interviews that involve nonsuggestive recognition questions may…

  9. Long-Term Aftereffects of Response Inhibition: Memory Retrieval, Task Goals, and Cognitive Control

    ERIC Educational Resources Information Center

    Verbruggen, Frederick; Logan, Gordon D.

    2008-01-01

    Cognitive control theories attribute control to executive processes that adjust and control behavior online. Theories of automaticity attribute control to memory retrieval. In the present study, online adjustments and memory retrieval were examined, and their roles in controlling performance in the stop-signal paradigm were elucidated. There was…

  10. Transient Relay Function of Midline Thalamic Nuclei during Long-Term Memory Consolidation in Humans

    ERIC Educational Resources Information Center

    Thielen, Jan-Willem; Takashima, Atsuko; Rutters, Femke; Tendolkar, Indira; Fernández, Guillén

    2015-01-01

    To test the hypothesis that thalamic midline nuclei play a transient role in memory consolidation, we reanalyzed a prospective functional MRI study, contrasting recent and progressively more remote memory retrieval. We revealed a transient thalamic connectivity increase with the hippocampus, the medial prefrontal cortex (mPFC), and a…

  11. The Representational Consequences of Intentional Forgetting: Impairments to Both the Probability and Fidelity of Long-Term Memory

    PubMed Central

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1–E3). Memory was tested using an old–new (E1–E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2–E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more “old” or “remember” responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2–E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. PMID:26709589

  12. Attention Problems, Phonological Short-Term Memory, and Visuospatial Short-Term Memory: Differential Effects on Near- and Long-Term Scholastic Achievement

    ERIC Educational Resources Information Center

    Sarver, Dustin E.; Rapport, Mark D.; Kofler, Michael J.; Scanlan, Sean W.; Raiker, Joseph S.; Altro, Thomas A.; Bolden, Jennifer

    2012-01-01

    The current study examined individual differences in children's phonological and visuospatial short-term memory as potential mediators of the relationship among attention problems and near- and long-term scholastic achievement. Nested structural equation models revealed that teacher-reported attention problems were associated negatively with…

  13. Selective harvesting and habitat loss produce long-term life history changes in a mouflon population.

    PubMed

    Garel, Mathieu; Cugnasse, Jean-Marc; Maillard, Daniel; Gaillard, Jean-Michel; Hewison, A J Mark; Dubray, Dominique

    2007-09-01

    We examined the long-term effects (28 years) of habitat loss and phenotype-based selective harvest on body mass, horn size, and horn shape of mouflon (Ovis gmelini musimon) in southern France. This population has experienced habitat deterioration (loss of 50.8% of open area) since its introduction in 1956 and unrestricted selective hunting of the largest horned males since 1973. Both processes are predicted to lead to a decrease in phenotype quality by decreasing habitat quality and by reducing the reproductive contribution of individuals carrying traits that are targeted by hunters. Body mass and body size of both sexes and horn measurements of males markedly decreased (by 3.4-38.3%) in all age classes from the 1970s. Lamb body mass varied in relation to the spatiotemporal variation of habitat closure within the hunting-free reserve, suggesting that habitat closure explains part of these changes. However, the fact that there was no significant spatial variation in body mass in the early part of the study, when a decline in phenotypic quality already had occurred, provided support for the influence of selective harvesting. We also found that the allometric relationship between horn breadth and horn length changed over the study period. For a given horn length, horn breadth was lower during the second part of the study. This result, as well as changes in horn curve diameter, supports the interpretation that selective harvesting of males based on their horn configuration had evolutionary consequences for horn shape, since this phenotypic trait is less likely to be affected by changes in habitat characteristics. Moreover, males required more time (approximately four years) to develop a desirable trophy, suggesting that trophy hunting favors the reproductive contribution of animals with slow-growing horns. Managers should exploit hunters' desire for trophy males to finance management strategies which ensure a balance between the population and its environment. However

  14. Long-Term Use of Selective Serotonin Reuptake Inhibitors and Risk of Glaucoma in Depression Patients.

    PubMed

    Chen, Hsin-Yi; Lin, Cheng-Li; Kao, Chia-Hung

    2015-11-01

    This study investigated whether the long-term use of selective serotonin reuptake inhibitors (SSRIs) influences the risk of primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) in the Chinese ethnic population in Taiwan.The authors retrieved the data under analysis from the National Health Insurance Research Database in Taiwan and identified 26,186 newly diagnosed depression patients without preexisting glaucoma. The study cohort included 13,093 patients with over 1 year of SSRI use, and a comparison cohort of 13,093 patients who had never used SSRIs. The main outcome was a diagnosis of POAG or PACG during follow-up. The authors used univariable and multivariable Cox proportional hazards regression models to assess the effects of SSRIs on the risk of POAG and PACG.The cumulative incidences of POAG and PACG between the SSRI and comparison cohorts exhibited nonsignificant differences (log-rank test P = .52 for POAG, P = .32 for PACG). The overall incidence of POAG in the SSRI cohort was nonsignificantly higher than that in the comparison cohort (1.51 versus 1.39 per 1000 person-years), with an adjusted hazard ratio of 1.07 (95% confidence interval = 0.82-1.40). The overall incidence of PACG in the SSRI cohort was nonsignificantly lower than that in the comparison cohort (0.95 versus 1.11 per 1000 person-years), with an adjusted hazard ratio of 0.85 (95% confidence interval = 0.62-1.18).The long-term use of SSRIs does not influence the risk of POAG or PACG in depression patients.

  15. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory.

    PubMed

    Shih, Y-H; Tsai, S-F; Huang, S-H; Chiang, Y-T; Hughes, M W; Wu, S-Y; Lee, C-W; Yang, T-T; Kuo, Y-M

    2016-05-13

    Hypertension is associated with neurodegenerative diseases and cognitive impairment. Several studies using spontaneous hypertensive rats to study the effect of hypertension on memory performance and adult hippocampal neurogenesis have reached inconsistent conclusions. The contradictory findings may be related to the genetic variability of spontaneous hypertensive rats due to the conventional breeding practices. The objective of this study is to examine the effect of hypertension on hippocampal structure and function in isogenic mice. Hypertension was induced by the '2 kidneys, 1 clip' method (2K1C) which constricted one of the two renal arteries. The blood pressures of 2K1C mice were higher than the sham group on post-operation day 7 and remained high up to day 28. Mice with 2K1C-induced hypertension had impaired long-term, but not short-term, memory. Dendritic complexity of CA1 neurons and hippocampal neurogenesis were reduced by 2K1C-induced hypertension on post-operation day 28. Furthermore, 2K1C decreased the levels of hippocampal brain-derived neurotrophic factor, while blood vessel density and activation status of astrocytes and microglia were not affected. In conclusion, hypertension impairs hippocampus-associated long-term memory, dendritic arborization and neurogenesis, which may be caused by down-regulation of brain-derived neurotrophic factor signaling pathways.

  16. [Musical long-term memory throughout the progression of Alzheimer disease].

    PubMed

    Groussard, Mathilde; Mauger, Caroline; Platel, Hervé

    2013-03-01

    In Alzheimer patients with a solid musical background, isolated case-reports have reported the maintenance of remarkable musical abilities despite clear difficulties in their verbal memory and linguistic functions. These reports have encouraged a number of scientists to undertake more systematic studies which would allow a rigorous approach to the analysis of musical memory in Alzheimer patients with no formal musical background. Although restricted in number, the latest data are controversial regarding preserved musical capacities in Alzheimer patients. Our current review of the literature addresses this topic and advances the hypothesis that the processes of musical memory are function of illness progression. In the earlier stages, the majority of evaluations concerned musical episodic memory and suggested a dysfunction of this memory whereas in the moderate and severe stages, musical semantic memory and implicit learning are the majority of investigations and seemed more resistant to Alzheimer disease. In summary, our current review bring to understand the memory circuits involved and highlight the necessity to adapted the investigational tools employed to conform with the severity of the signs and symptoms of progressive Alzheimer disease in order to demonstrate the preserved musical capacities.

  17. Long-Term Heavy Ketamine Use is Associated with Spatial Memory Impairment and Altered Hippocampal Activation

    PubMed Central

    Morgan, Celia J. A.; Dodds, Chris M.; Furby, Hannah; Pepper, Fiona; Fam, Johnson; Freeman, Tom P.; Hughes, Emer; Doeller, Christian; King, John; Howes, Oliver; Stone, James M.

    2014-01-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, is rising in popularity as a drug of abuse. Preliminary evidence suggests that chronic, heavy ketamine use may have profound effects on spatial memory but the mechanism of these deficits is as yet unclear. This study aimed to examine the neural mechanism by which heavy ketamine use impairs spatial memory processing. In a sample of 11 frequent ketamine users and 15 poly-drug controls, matched for IQ, age, years in education. We used fMRI utilizing an ROI approach to examine the neural activity of three regions known to support successful navigation; the hippocampus, parahippocampal gyrus, and the caudate nucleus during a virtual reality task of spatial memory. Frequent ketamine users displayed spatial memory deficits, accompanied by and related to, reduced activation in both the right hippocampus and left parahippocampal gyrus during navigation from memory, and in the left caudate during memory updating, compared to controls. Ketamine users also exhibited schizotypal and dissociative symptoms that were related to hippocampal activation. Impairments in spatial memory observed in ketamine users are related to changes in medial temporal lobe activation. Disrupted medial temporal lobe function may be a consequence of chronic ketamine abuse and may relate to schizophrenia-like symptomatology observed in ketamine users. PMID:25538631

  18. Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory.

    PubMed

    Clarke, Julia R; Rossato, Janine I; Monteiro, Siomara; Bevilaqua, Lia R M; Izquierdo, Iván; Cammarota, Martín

    2008-09-01

    Evidence indicates that brain endocannabinoids are involved in memory processing. However, the participation of CB1 and CB2 cannabinoid receptors in recognition memory has not been yet conclusively determined. Therefore, we evaluated the effect of the posttraining activation of hippocampal cannabinoid receptors on the consolidation of object recognition memory. Rats with infusion cannulae stereotaxically aimed to the CA1 region of the dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects. Memory retention was assessed at different times after training. In the test sessions, one of the objects presented during training was replaced by a novel one. When infused in the CA1 region immediately after training, the non-selective cannabinoid receptor agonist WIN-55,212-2 and the endocannabinoid membrane transporter inhibitor VDM-11 blocked long-term memory retention in a dose-dependent manner without affecting short-term memory, exploratory behavior, anxiety state or the functionality of the hippocampus. The amnesic effect of WIN-55,212-2 and VDM-11 was not due to state-dependency and was completely reversed by co-infusion of the CB1 receptor antagonist AM-251 and mimicked by the CB1 receptor agonist ACEA but not by the CB2 receptor agonists JWH-015 and palmitoylethanolamide. Our data indicate that activation of hippocampal CB1 receptors early after training hampers consolidation of object recognition memory.

  19. Questioning short-term memory and its measurement: Why digit span measures long-term associative learning.

    PubMed

    Jones, Gary; Macken, Bill

    2015-11-01

    Traditional accounts of verbal short-term memory explain differences in performance for different types of verbal material by reference to inherent characteristics of the verbal items making up memory sequences. The role of previous experience with sequences of different types is ostensibly controlled for either by deliberate exclusion or by presenting multiple trials constructed from different random permutations. We cast doubt on this general approach in a detailed analysis of the basis for the robust finding that short-term memory for digit sequences is superior to that for other sequences of verbal material. Specifically, we show across four experiments that this advantage is not due to inherent characteristics of digits as verbal items, nor are individual digits within sequences better remembered than other types of individual verbal items. Rather, the advantage for digit sequences stems from the increased frequency, compared to other verbal material, with which digits appear in random sequences in natural language, and furthermore, relatively frequent digit sequences support better short-term serial recall than less frequent ones. We also provide corpus-based computational support for the argument that performance in a short-term memory setting is a function of basic associative learning processes operating on the linguistic experience of the rememberer. The experimental and computational results raise questions not only about the role played by measurement of digit span in cognition generally, but also about the way in which long-term memory processes impact on short-term memory functioning.

  20. A modulatory effect of male voice pitch on long-term memory in women: evidence of adaptation for mate choice?

    PubMed

    Smith, David S; Jones, Benedict C; Feinberg, David R; Allan, Kevin

    2012-01-01

    From a functionalist perspective, human memory should be attuned to information of adaptive value for one's survival and reproductive fitness. While evidence of sensitivity to survival-related information is growing, specific links between memory and information that could impact upon reproductive fitness have remained elusive. Here, in two experiments, we showed that memory in women is sensitive to male voice pitch, a sexually dimorphic cue important for mate choice because it not only serves as an indicator of genetic quality, but may also signal behavioural traits undesirable in a long-term partner. In Experiment 1, we report that women's visual object memory is significantly enhanced when an object's name is spoken during encoding in a masculinised (i.e., lower-pitch) versus feminised (i.e., higher-pitch) male voice, but that no analogous effect occurs when women listen to other women's voices. Experiment 2 replicated this pattern of results, additionally showing that lowering and raising male voice pitch enhanced and impaired women's memory, respectively, relative to a baseline (i.e., unmanipulated) voice condition. The modulatory effect of sexual dimorphism cues in the male voice may reveal a mate-choice adaptation within women's memory, sculpted by evolution in response to the dilemma posed by the double-edged qualities of male masculinity.

  1. Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events.

    PubMed

    Murayama, Kou; Kitagami, Shinji

    2014-02-01

    Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.

  2. The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP

    PubMed Central

    Yuan, Yiran; Leung, Ada W. S.; Duan, Hongxia; Zhang, Liang; Zhang, Kan; Wu, Jianhui; Qin, Shaozheng

    2016-01-01

    This study examined the neural dynamics of working memory (WM) processing under long-term stress. Forty participants who had been exposed to a long period of major exam preparation (six months) and twenty-one control participants performed a numerical n-back task (n = 1, 2) while electroencephalograms were recorded. Psychological and endocrinal measurements confirmed significantly higher levels of long-term stress for participants in the exam group. The exam group showed significantly increased P2 amplitude in the frontal-central sites in the 1-back and 2-back conditions, whereas other ERP components, including the P1, N1 and P3 and behavioral performance, were unchanged. Notably, the P2 effect was most pronounced in participants in the exam group who reported perceiving high levels of stress. The perceived stress scores positively correlated with the P2 amplitude in the 1-back and 2-back conditions. These results suggest that long-term stress has an impact on attention and the initiation of the updating process in WM. PMID:27000528

  3. Long-Term Optical Variability of Radio-selected Quasars from the FIRST Survey

    NASA Astrophysics Data System (ADS)

    Helfand, David J.; Stone, Remington P. S.; Willman, Beth; White, Richard L.; Becker, Robert H.; Price, Trevor; Gregg, Michael D.; McMahon, Richard G.

    2001-04-01

    We have obtained single-epoch optical photometry for 202 quasars, taken from the FIRST Bright Quasar Survey, which span a wide range in radio loudness. Comparison with the magnitudes of these objects on the POSS-I plates provides by far the largest sample of long-term variability amplitudes for radio-selected quasars yet produced. We find the quasars to be more variable in the blue than in the red band, consistent with work on optically selected samples. The previously noted trend of decreasing variability with increasing optical luminosity applies only to radio-quiet objects. Furthermore, we do not confirm a rise in variability amplitude with redshift, nor do we see any dependence on radio flux or luminosity. The variability over a radio-optical flux ratio range spanning a factor of 60,000 from radio-quiet to extreme radio-loud objects is largely constant, although there is a suggestion of greater variability in the extreme radio-loud objects. We demonstrate the importance of Malmquist bias in variability studies and develop a procedure to correct for the bias in order to reveal the underlying variability properties of the sample.

  4. Inter-relationships between attention, activation, fMR adaptation and long-term memory.

    PubMed

    Chee, Michael W L; Tan, Jiat Chow

    2007-10-01

    fMR adaptation in the ventral visual pathway reflects information processing that may contribute to implicit and explicit memory. In experiments that employed <1 s repetition lag, we found that attention increases adaptation for repeated objects in brain regions at the top of the visual processing hierarchy (anterior fusiform and parahippocampal gyri) but that it can still appear with minimal attention in most of the fusiform bilaterally. Of the ventral visual regions showing adaptation, the parahippocampal region and LOC showed the strongest correlation between adaptation magnitude and recognition memory across subjects. Although there was some overlap, regions showing correlations between adaptation and priming lay more posteriorly within the fusiform region. The positive association between encoding-related activation and adaptation suggests that over an entire test set, memory performance can be determined by neural events occurring in the peristimulus period. This may reflect stronger engagement of attention at encoding.

  5. Anisomycin Injection in Area CA3 of the Hippocampus Impairs Both Short-Term and Long-Term Memories of Contextual Fear

    ERIC Educational Resources Information Center

    Remaud, Jessica; Ceccom, Johnatan; Carponcy, Julien; Dugué, Laura; Menchon, Gregory; Pech, Stéphane; Halley, Helene; Francés, Bernard; Dahan, Lionel

    2014-01-01

    Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal…

  6. Evaluating Methods of Updating Training Data in Long-Term Genomewide Selection.

    PubMed

    Neyhart, Jeffrey L; Tiede, Tyler; Lorenz, Aaron J; Smith, Kevin P

    2017-03-17

    Genomewide selection is hailed for its ability to facilitate greater genetic gains per unit time. Over breeding cycles, the requisite linkage disequilibrium (LD) between quantitative trait loci (QTL) and markers is expected to change as a result of recombination, selection, and drift, leading to a decay in prediction accuracy. Previous research has identified the need to update the training population using data that may capture new LD generated over breeding cycles, however optimal methods of updating have not been explored. In a barley (Hordeum vulgare L.) breeding simulation experiment, we examined prediction accuracy and response to selection when updating the training population each cycle with the best predicted lines, the worst predicted lines, both the best and worst predicted lines, random lines, criterion-selected lines, or no lines. In the short-term, we found that updating with the best predicted lines or the best and worst predicted lines resulted in high prediction accuracy and genetic gain, but in the long-term, all methods (besides not updating) performed similarly. We also examined the impact of including all data in the training population or only the most recent data. Though patterns among update methods were similar, using a smaller, but more recent training population provided a slight advantage in prediction accuracy and genetic gain. In an actual breeding program, a breeder might desire to gather phenotypic data on lines predicted to be the best, perhaps to evaluate possible cultivars. Therefore, our results suggest that an optimal method of updating the training population is also very practical.

  7. Long-term coding of personal and universal associations underlying the memory web in the human brain

    PubMed Central

    De Falco, Emanuela; Ison, Matias J.; Fried, Itzhak; Quian Quiroga, Rodrigo

    2016-01-01

    Neurons in the medial temporal lobe (MTL), a critical area for declarative memory, have been shown to change their tuning in associative learning tasks. Yet, it is unclear how durable these neuronal representations are and if they outlast the execution of the task. To address this issue, we studied the responses of MTL neurons in neurosurgical patients to known concepts (people and places). Using association scores provided by the patients and a web-based metric, here we show that whenever MTL neurons respond to more than one concept, these concepts are typically related. Furthermore, the degree of association between concepts could be successfully predicted based on the neurons' response patterns. These results provide evidence for a long-term involvement of MTL neurons in the representation of durable associations, a hallmark of human declarative memory. PMID:27845773

  8. Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis

    PubMed Central

    Dong, Nancy; Feng, Zhong-Ping

    2017-01-01

    Learning and memory formation are essential physiological functions. While quiescent neurons have long been the focus of investigations into the mechanisms of memory formation, there is increasing evidence that spontaneously active neurons also play key roles in this process and possess distinct rules of activity-dependent plasticity. In this study, we used a well-defined aversive learning model of aerial respiration in the mollusk Lymnaea stagnalis (L. stagnalis) to study the role of basal firing activity of the respiratory pacemaker neuron Right Pedal Dorsal 1 (RPeD1) as a determinant of aversive long-term memory (LTM) formation. We investigated the relationship between basal aerial respiration behavior and RPeD1 firing activity, and examined aversive LTM formation and neuronal plasticity in animals exhibiting different basal aerial respiration behavior. We report that animals with higher basal aerial respiration behavior exhibited early responses to operant conditioning and better aversive LTM formation. Early behavioral response to the conditioning procedure was associated with biphasic enhancements in the membrane potential, spontaneous firing activity and gain of firing response, with an early phase spanning the first 2 h after conditioning and a late phase that is observed at 24 h. Taken together, we provide the first evidence suggesting that lower neuronal activity at the time of learning may be correlated with better memory formation in spontaneously active neurons. Our findings provide new insights into the diversity of cellular rules of plasticity underlying memory formation. PMID:28101006

  9. Activation of the transcription factor NF-κB by retrieval is required for long-term memory reconsolidation

    PubMed Central

    Merlo, Emiliano; Freudenthal, Ramiro; Maldonado, Héctor; Romano, Arturo

    2005-01-01

    Several studies support that stored memories undergo a new period of consolidation after retrieval. It is not known whether this process, termed reconsolidation, requires the same transcriptional mechanisms involved in consolidation. Increasing evidence supports the participation of the transcription factor NF-κB in memory. This was initially demonstrated in the crab Chasmagnathus model of associative contextual memory, in which re-exposure to the training context induces a well characterized reconsolidation process. Here we studied the role of NF-κB in reconsolidation. NF-κB was specifically activated in trained animals re-exposed to the training context but not to a different context. NF-κB was not activated when animals were re-exposed to the context after a weak training protocol insufficient to induce long-term memory. A specific inhibitor of the NF-κB pathway, sulfasalazine, impaired reconsolidation when administered 20 min before re-exposure to the training context but was not effective when a different context was used. These findings indicate for the first time that NF-κB is activated specifically by retrieval and that this activation is required for memory reconsolidation, supporting the view that this molecular mechanism is required in both consolidation and reconsolidation. PMID:15687229

  10. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation.

    PubMed

    Liu, Ji-Hong; You, Qiang-Long; Wei, Mei-Dan; Wang, Qian; Luo, Zheng-Yi; Lin, Song; Huang, Lang; Li, Shu-Ji; Li, Xiao-Wen; Gao, Tian-Ming

    2015-12-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.

  11. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex.

    PubMed

    Martínez, María Cecilia; Villar, María Eugenia; Ballarini, Fabricio; Viola, Haydée

    2014-12-01

    Retroactive interference (RI) is a type of amnesia in which a new learning experience can impair the expression of a previous one. It has been studied in several types of memories for over a century. Here, we aimed to study in the long-term memory (LTM) formation of an object-in-context task, defined as the recognition of a familiar object in a context different to that in which it was previously encountered. We trained rats with two sample trials, each taking place in a different context in association with different objects. Test sessions were performed 24 h later, to evaluate LTM for both object-context pairs using separate groups of trained rats. Furthermore, given the involvement of hippocampus (Hp) and medial prefrontal cortex (mPFC) in several recognition memories, we also analyzed the participation of these structures in the LTM formation of this task by the local infusion of muscimol. Our results show that object-in-context LTM formation is sensitive to RI by a different either familiar or novel object-context pair trial, experienced 1 h later. This interference occurs in a restricted temporal window and works on the LTM consolidation phase, leaving intact short-term memory expression. The second sample trial did not affect the object recognition part of the memory. Besides, muscimol treatment before the second sample trial blocks its object-in-context LTM and restores the first sample trial memory. We hypothesized that LTM-RI amnesia is probably caused by resources or cellular machinery competition in these brain regions when they are engaged in memory formation of the traces. In sum, when two different object-in-context memory traces are being processed, the second trace interferes with the consolidation of the first one requiring mPFC and CA1 dorsal Hp activation.

  12. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood

    PubMed Central

    Li, Na; Wang, Yumei; Zhao, Xiaochuan; Gao, Yuanyuan; Song, Mei; Yu, Lulu; Wang, Lan; Li, Ning; Chen, Qianqian; Li, Yunpeng; Cai, Jiajia; Wang, Xueyi

    2015-01-01

    Objective The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. Methods A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3–12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. Results The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. Conclusion Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood. PMID:26648728

  13. NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain

    PubMed Central

    Kaltschmidt, Barbara; Kaltschmidt, Christian

    2015-01-01

    The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of inflammation, stress, and immune responses as well as cell survival. In the nervous system, NF-κB is one of the crucial components in the molecular switch that converts short- to long-term memory—a process that requires de novo gene expression. Here, the researches published on NF-κB and downstream target genes in mammals will be reviewed, which are necessary for structural plasticity and long-term memory, both under normal and pathological conditions in the brain. Genetic evidence has revealed that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult neurogenesis was observed during aging. Proliferation of neural precursors is increased; however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus are hampered. In this process, the NF-κB target gene PKAcat and other downstream target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be crucial in regulating structural plasticity and replenishment of granule cells within the hippocampus throughout the life. In addition to the function of NF-κB in neurons, we will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly the contradictory, the friend or foe, role of NF-κB in the nervous system. PMID:26635522

  14. Passive exposure to speech sounds induces long-term memory representations in the auditory cortex of adult rats

    PubMed Central

    Kurkela, Jari L. O.; Lipponen, Arto; Hämäläinen, Jarmo A.; Näätänen, Risto; Astikainen, Piia

    2016-01-01

    Experience-induced changes in the functioning of the auditory cortex are prominent in early life, especially during a critical period. Although auditory perceptual learning takes place automatically during this critical period, it is thought to require active training in later life. Previous studies demonstrated rapid changes in single-cell responses of anesthetized adult animals while exposed to sounds presented in a statistical learning paradigm. However, whether passive exposure to sounds can form long-term memory representations remains to be demonstrated. To investigate this issue, we first exposed adult rats to human speech sounds for 3 consecutive days, 12 h/d. Two groups of rats exposed to either spectrotemporal or tonal changes in speech sounds served as controls for each other. Then, electrophysiological brain responses from the auditory cortex were recorded to the same stimuli. In both the exposure and test phase statistical learning paradigm, was applied. The exposure effect was found for the spectrotemporal sounds, but not for the tonal sounds. Only the animals exposed to spectrotemporal sounds differentiated subtle changes in these stimuli as indexed by the mismatch negativity response. The results point to the occurrence of long-term memory traces for the speech sounds due to passive exposure in adult animals. PMID:27996015

  15. Distinctiveness enhances long-term event memory in non-human primates, irrespective of reinforcement.

    PubMed

    Lewis, Amy; Call, Josep; Berntsen, Dorthe

    2017-04-13

    Non-human primates are capable of recalling events that occurred as long as 3 years ago, and are able to distinguish between similar events; akin to human memory. In humans, distinctiveness enhances memory for events, however, it is unknown whether the same occurs in non-human primates. As such, we tested three great ape species on their ability to remember an event that varied in distinctiveness. Across three experiments, apes witnessed a baiting event in which one of three identical containers was baited with food. After a delay of 2 weeks, we tested their memory for the location of the baited container. Apes failed to recall the baited container when the event was undistinctive (Experiment 1), but were successful when it was distinctive (Experiment 2), although performance was equally good in a less-distinctive condition. A third experiment (Experiment 3) confirmed that distinctiveness, independent of reinforcement, was a consistent predictor of performance. These findings suggest that distinctiveness may enhance memory for events in non-human primates in the same way as in humans, and provides further evidence of basic similarities between the ways apes and humans remember past events.

  16. Posterior parietal cortex and long-term memory: some data from laboratory animals

    PubMed Central

    Myskiw, Jociane C.; Izquierdo, Iván

    2012-01-01

    The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determine the extent to which these findings can be extrapolated to primates, including humans. In these there appears to be a paradox: imaging studies strongly suggest an important participation of the PPC in episodic memory, whereas lesion studies are much less suggestive, let alone conclusive. The data on the participation of the PPC in episodic memory so far do not permit any conclusion as to what aspect of consolidation and retrieval it handles in addition to those dealt with by the hippocampus and basolateral amygdala, if any. PMID:22375107

  17. A Long-Term Memory Competitive Process Model of a Common Procedural Error

    DTIC Science & Technology

    2013-08-01

    A novel computational cognitive model explains human procedural error in terms of declarative memory processes. This is an early version of a process ... model intended to predict and explain multiple classes of procedural error a priori. We begin with postcompletion error (PCE) a type of systematic

  18. Two Distinct Origins of Long-Term Learning Effects in Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Majerus, Steve; Perez, Trecy Martinez; Oberauer, Klaus

    2012-01-01

    Verbal short-term memory (STM) is highly sensitive to learning effects: digit sequences or nonword sequences which have been rendered more familiar via repeated exposure are recalled more accurately. In this study we show that sublist-level, incidental learning of item co-occurrence regularities affects immediate serial recall of words and…

  19. Reconsolidation of a Context Long-Term Memory in the Terrestrial Snail Requires Protein Synthesis

    ERIC Educational Resources Information Center

    Gainutdinova, Tatiana H.; Tagirova, Rosa R.; Ismailova, Asja I.; Muranova, Lyudmila N.; Samarova, Elena I.; Gainutdinov, Khalil L.; Balaban, Pavel M.

    2005-01-01

    We investigated the influence of the protein synthesis blocker anisomycin on contextual memory in the terrestrial snail "Helix." Prior to the training session, the behavioral responses in two contexts were similar. Two days after a session of electric shocks (5 d) in one context only, the context conditioning was observed as the significant…

  20. Activation of MAPK Is Necessary for Long-Term Memory Consolidation Following Food-Reward Conditioning

    ERIC Educational Resources Information Center

    Ribeiro, Maria J.; Schofield, Michael G.; Kemenes, Ildiko; O'Shea, Michael; Kemenes, Gyorgy; Benjamin, Paul R.

    2005-01-01

    Although an important role for the mitogen-activated protein kinase (MAPK) has been established for memory consolidation in a variety of learning paradigms, it is not known if this pathway is also involved in appetitive classical conditioning. We address this question by using a single-trial food-reward conditioning paradigm in the freshwater…

  1. Long-Term Effects of Gestures on Memory for Foreign Language Words Trained in the Classroom

    ERIC Educational Resources Information Center

    Macedonia, Manuela; Klimesch, Wolfgang

    2014-01-01

    Language and gesture are viewed as highly interdependent systems. Besides supporting communication, gestures also have an impact on memory for verbal information compared to pure verbal encoding in native but also in foreign language learning. This article presents a within-subject longitudinal study lasting 14 months that tested the use of…

  2. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  3. Food restriction increases long-term memory persistence in adult or aged mice.

    PubMed

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults.

  4. Long-term therapeutic efficacy of photo-selective vaporization of prostate

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Muller, Camilla; Romundstad, Pal; Stokkan, Inger; Mjønes, Jan

    2010-02-01

    OBJECTIVES: We evaluated the long term therapeutic efficacy of 80 watt photo-selective vaporization of the prostate (PVP) in patients suffering from lower urinary tract symptoms (LUTS) secondary to prostatic obstruction. MATERIAL & METHODS: 150 unselected patients at the average age 73 (range 51-92) and a mean American Society of Anesthesiologists score of 2.4 (median 2.0), of whom 33% were medicated with acetylsalicylic acid and 5% were anticoagulated with warfarin. Inclusion/exclusion criteria were the same as for TUR-P at our institution. First patient was operated March 2004 and yearly follow-up of all patients has been attempted for 5 years. Follow-up variables have included yearly creatinine, PSA, IPSS, ØOL, post-void residual urin and maximum/average urine flow rate. RESULTS: At 12 and 24 months postoperatively, the following parameters were significantly (p<0.001) improved: trans-rectal ultrasound, international prostate symptom score, quality of life score, post-void residual urine volume, flow max/average, opening pressure, pressure @ flow-max, and micturition resistance. At 48 and 60 months creatinine, PSA, IPSS, ØOL, post-void residual urin and maximum/average urine flow rates were still significantly (p<0.001) improved compared to pre-operative values. CONCLUSION: Up to 5 year follow-up reveals that 80 watt PVP provides significant and stable symptom relief as well as objective improvement in residual urine and flowmetric outcomes.

  5. Long-term depression triggers the selective elimination of weakly integrated synapses.

    PubMed

    Wiegert, J Simon; Oertner, Thomas G

    2013-11-19

    Long-term depression (LTD) weakens synaptic transmission in an activity-dependent manner. It is not clear, however, whether individual synapses are able to maintain a depressed state indefinitely, as intracellular recordings rarely exceed 1 h. Here, we combine optogenetic stimulation of identified Schaffer collateral axons with two-photon imaging of postsynaptic calcium signals and follow the fate of individual synapses for 7 d after LTD induction. Optogenetic stimulation of CA3 pyramidal cells at 1 Hz led to strong and reliable depression of postsynaptic calcium transients in CA1. NMDA receptor activation was necessary for successful induction of LTD. We found that, in the days following LTD, many depressed synapses and their "neighbors" were eliminated from the hippocampal circuit. The average lifetime of synapses on nonstimulated dendritic branches of the same neurons remained unaffected. Persistence of individual depressed synapses was highly correlated with reliability of synaptic transmission, but not with spine size or the amplitude of spine calcium transients. Our data suggest that LTD initially leads to homogeneous depression of synaptic function, followed by selective removal of unreliable synapses and recovery of function in the persistent fraction.

  6. Treadmill walking during vocabulary encoding improves verbal long-term memory

    PubMed Central

    2014-01-01

    Moderate physical activity improves various cognitive functions, particularly when it is applied simultaneously to the cognitive task. In two psychoneuroendocrinological within-subject experiments, we investigated whether very low-intensity motor activity, i.e. walking, during foreign-language vocabulary encoding improves subsequent recall compared to encoding during physical rest. Furthermore, we examined the kinetics of brain-derived neurotrophic factor (BDNF) in serum and salivary cortisol. Previous research has associated both substances with memory performance. In both experiments, subjects performed better when they were motorically active during encoding compared to being sedentary. BDNF in serum was unrelated to memory performance. In contrast we found a positive correlation between salivary cortisol concentration and the number of correctly recalled items. In summary, even very light physical activity during encoding is beneficial for subsequent recall. PMID:25015595

  7. A long-term epigenetic memory switch controls bacterial virulence bimodality.

    PubMed

    Ronin, Irine; Katsowich, Naama; Rosenshine, Ilan; Balaban, Nathalie Q

    2017-02-07

    When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading.

  8. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes

    PubMed Central

    Garcia-Alvarez, Gisela; Shetty, Mahesh S.; Lu, Bo; Yap, Kenrick An Fu; Oh-Hora, Masatsugu; Sajikumar, Sreedharan; Bichler, Zoë; Fivaz, Marc

    2015-01-01

    Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca2+ channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories. PMID:26236206

  9. Effects of long term administration of testosterone and estradiol on spatial memory in rats

    PubMed Central

    Mohammadi-Farani, Ahmad; Haghighi, Arash; Ghazvineh, Milad

    2015-01-01

    There are many discrepancies around the effect of sex hormones on spatial learning and memory in rodents. The aim of the present study was to investigate the effects of chronic administration of estradiol (ES) and testosterone (TES) on spatial memory in adult castrated male rats. Cholinesterase activity of the hippocampus in treated animals was also measured to seek if hormonal treatment can change the acetylcholinesterase (AChE) activity in this region. Six groups of castrated male rats received different doses of ES valerate (1, 4, 10 mg/kg, by subcutaneous, sc) and TES enanthate (10, 20, 40 mg/kg, sc) in weekly injection intervals for 6 weeks. Morris water maze (MWM) was used to assess the spatial reference memory of the rats. The specific activity of AChE in the hippocampus was also measured. The treatment duration and the dose quantity of ES had significant (P<0.001 and P=0.048, respectively) effect on the learning ability in the rats. For TES treated rats, treatment duration showed a significant effect (P<0.001) on learning performance of the rats. The activity of AChE compared to the control group was significantly increased in ES treated rats in a dose dependent manner and it was decreased in the group that received the highest dose of TES. Our results showed that chronic high dose of ES decreased the learning ability of male castrated rats in a reference memory version of MWM test. This can be explained by the decreased AChE activity in the hippocampus. PMID:26752989

  10. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    PubMed

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.

  11. Simulating future uncertainty to guide the selection of survey designs for long-term monitoring

    USGS Publications Warehouse

    Garman, Steven L.; Schweiger, E. William; Manier, Daniel J.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    A goal of environmental monitoring is to provide sound information on the status and trends of natural resources (Messer et al. 1991, Theobald et al. 2007, Fancy et al. 2009). When monitoring observations are acquired by measuring a subset of the population of interest, probability sampling as part of a well-constructed survey design provides the most reliable and legally defensible approach to achieve this goal (Cochran 1977, Olsen et al. 1999, Schreuder et al. 2004; see Chapters 2, 5, 6, 7). Previous works have described the fundamentals of sample surveys (e.g. Hansen et al. 1953, Kish 1965). Interest in survey designs and monitoring over the past 15 years has led to extensive evaluations and new developments of sample selection methods (Stevens and Olsen 2004), of strategies for allocating sample units in space and time (Urquhart et al. 1993, Overton and Stehman 1996, Urquhart and Kincaid 1999), and of estimation (Lesser and Overton 1994, Overton and Stehman 1995) and variance properties (Larsen et al. 1995, Stevens and Olsen 2003) of survey designs. Carefully planned, “scientific” (Chapter 5) survey designs have become a standard in contemporary monitoring of natural resources. Based on our experience with the long-term monitoring program of the US National Park Service (NPS; Fancy et al. 2009; Chapters 16, 22), operational survey designs tend to be selected using the following procedures. For a monitoring indicator (i.e. variable or response), a minimum detectable trend requirement is specified, based on the minimum level of change that would result in meaningful change (e.g. degradation). A probability of detecting this trend (statistical power) and an acceptable level of uncertainty (Type I error; see Chapter 2) within a specified time frame (e.g. 10 years) are specified to ensure timely detection. Explicit statements of the minimum detectable trend, the time frame for detecting the minimum trend, power, and acceptable probability of Type I error (

  12. Increase in posterior alpha activity during rehearsal predicts successful long-term memory formation of word sequences.

    PubMed

    Meeuwissen, Esther B; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole

    2011-12-01

    It is becoming increasingly clear that demanding cognitive tasks rely on an extended network engaging task-relevant areas and, importantly, disengaging task-irrelevant areas. Given that alpha activity (8-12 Hz) has been shown to reflect the disengagement of task-irrelevant regions in attention and working memory tasks, we here ask if alpha activity plays a related role for long-term memory formation. Subjects were instructed to encode and maintain the order of word sequences while the ongoing brain activity was recorded using magnetoencephalography (MEG). In each trial, three words were presented followed by a 3.4 s rehearsal interval. Considering the good temporal resolution of MEG this allowed us to investigate the word presentation and rehearsal interval separately. The sequences were grouped in trials where word order either could be tested immediately (working memory trials; WM) or later (LTM trials) according to instructions. Subjects were tested on their ability to retrieve the order of the three words. The data revealed that alpha power in parieto-occipital regions was lower during word presentation compared to rehearsal. Our key finding was that parieto-occipital alpha power during the rehearsal period was markedly stronger for successfully than unsuccessfully encoded LTM sequences. This subsequent memory effect demonstrates that high posterior alpha activity creates an optimal brain state for successful LTM formation possibly by actively reducing parieto-occipital activity that might interfere with sequence encoding.

  13. Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies

    PubMed Central

    Hirano, Yukinori; Ihara, Kunio; Masuda, Tomoko; Yamamoto, Takuya; Iwata, Ikuko; Takahashi, Aya; Awata, Hiroko; Nakamura, Naosuke; Takakura, Mai; Suzuki, Yusuke; Horiuchi, Junjiro; Okuno, Hiroyuki; Saitoe, Minoru

    2016-01-01

    Accumulating evidence suggests that transcriptional regulation is required for maintenance of long-term memories (LTMs). Here we characterize global transcriptional and epigenetic changes that occur during LTM storage in the Drosophila mushroom bodies (MBs), structures important for memory. Although LTM formation requires the CREB transcription factor and its coactivator, CBP, subsequent early maintenance requires CREB and a different coactivator, CRTC. Late maintenance becomes CREB independent and instead requires the transcription factor Bx. Bx expression initially depends on CREB/CRTC activity, but later becomes CREB/CRTC independent. The timing of the CREB/CRTC early maintenance phase correlates with the time window for LTM extinction and we identify different subsets of CREB/CRTC target genes that are required for memory maintenance and extinction. Furthermore, we find that prolonging CREB/CRTC-dependent transcription extends the time window for LTM extinction. Our results demonstrate the dynamic nature of stored memory and its regulation by shifting transcription systems in the MBs. PMID:27841260

  14. Four-hour delayed memory recall for stories: Theoretical and clinical implications of measuring accelerated long-term forgetting.

    PubMed

    Ladowsky-Brooks, Ricki L

    2016-01-01

    It has been noted that clinical neuropsychological assessment is "blind" to certain abnormalities of consolidation that occur beyond standard 30-min delay intervals. For example, normal forgetting at 30-min delays has been followed by enhanced forgetting at longer delays in temporal-lobe epilepsy, termed accelerated long-term forgetting (ALF). To evaluate whether ALF could be identified in the neuropsychological assessment of a small sample of examinees with head injuries or other neurological diagnoses (n = 42), a 4-hr delayed recall condition was added to the Logical Memory subtest of the Wechsler Memory Scale-Third Edition. A small percentage of examinees (5/42 or 11%), despite exhibiting unimpaired story recall immediately and after 30-min delays, showed increased forgetting when compared with the average retention of stories (M = 0.83, SD = 0.17) after a 4-hr delay. Three of these 5 examinees also had impaired scores on 20-min delayed recall of the California Verbal Learning Test-Second Edition (CVLT-II) and would have been identified as having memory impairment without an extended, 4-hr delayed recall. In fact, the highest correlation among memory indexes was between 4-hr delayed recall of stories and delayed recall of the CVLT-II word list (r = .59, p < .0001), suggesting different consolidation rates for relational and nonrelational material.

  15. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory.

    PubMed Central

    Pravosudov, Vladimir V

    2003-01-01

    It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds. PMID:14728783

  16. A Controlled Single-Case Treatment of Severe Long-Term Selective Mutism in a Child with Mental Retardation

    ERIC Educational Resources Information Center

    Facon, Bruno; Sahiri, Safia; Riviere, Vinca

    2008-01-01

    The aim of the present study was to demonstrate the efficacy of combining two operant learning procedures--shaping and fading--for treating selective mutism. The participant was a 12-year-old boy with mental retardation presenting a severe long-term selective mutism. The treatment was aimed at increasing the loudness of his vocalizations in an…

  17. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    PubMed

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.

  18. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice.

    PubMed

    Guo, Janet; Bakshi, Vikas; Lin, Ai-Ling

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals' memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions - normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity.

  19. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice

    PubMed Central

    Guo, Janet; Bakshi, Vikas; Lin, Ai-Ling

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals’ memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions – normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity. PMID:26617514

  20. Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage

    PubMed Central

    Katche, Cynthia; Bekinschtein, Pedro; Slipczuk, Leandro; Goldin, Andrea; Izquierdo, Ivan A.; Cammarota, Martin; Medina, Jorge H.

    2009-01-01

    Memory formation is a temporally graded process during which transcription and translation steps are required in the first hours after acquisition. Although persistence is a key characteristic of memory storage, its mechanisms are scarcely characterized. Here, we show that long-lasting but not short-lived inhibitory avoidance long-term memory is associated with a delayed expression of c-Fos in the hippocampus. Importantly, this late wave of c-Fos is necessary for maintenance of inhibitory avoidance long-term storage. Moreover, inhibition of transcription in the dorsal hippocampus 24 h after training hinders persistence but not formation of long-term storage. These findings indicate that a delayed phase of transcription is essential for maintenance of a hippocampus-dependent memory trace. Our results support the hypothesis that recurrent rounds of consolidation-like events take place late after learning in the dorsal hippocampus to maintain memories. PMID:20018662

  1. A Role for the Insular Cortex in Long-Term Memory for Context-Evoked Drug Craving in Rats

    PubMed Central

    Contreras, Marco; Billeke, Pablo; Vicencio, Sergio; Madrid, Carlos; Perdomo, Guetón; González, Marcela; Torrealba, Fernando

    2012-01-01

    Drug craving critically depends on the function of the interoceptive insular cortex, and may be triggered by contextual cues. However, the role of the insula in the long-term memory linking context with drug craving remains unknown. Such a memory trace probably resides in some neocortical region, much like other declarative memories. Studies in humans and rats suggest that the insula may include such a region. Rats chronically implanted with bilateral injection cannulae into the high-order rostral agranular insular cortex (RAIC) or the primary interoceptive posterior insula (pIC) were conditioned to prefer the initially aversive compartment of a 2-compartment place preference apparatus by repeatedly pairing it to amphetamine. We found a reversible but long-lasting loss (ca. 24 days) of amphetamine-conditioned place preference (CPP) and a decreased expression in the insula of zif268, a crucial protein in memory reconsolidation, when anisomycin (ANI) was microinjected into the RAIC immediately after the reactivation of the conditioned amphetamine/context memory. ANI infusion into the RAIC without reactivation did not change CPP, whereas ANI infusion into pIC plus caused a 15 days loss of CPP. We also found a 24 days loss of CPP when we reversibly inactivated pIC during extinction trials. We interpret these findings as evidence that the insular cortex, including the RAIC, is involved in a context/drug effect association. These results add a drug-related memory function to the insular cortex to the previously found role of the pIC in the perception of craving or malaise. PMID:22534623

  2. Effect of General Anesthesia in Infancy on Long-Term Recognition Memory in Humans and Rats

    PubMed Central

    Stratmann, Greg; Lee, Joshua; Sall, Jeffrey W; Lee, Bradley H; Alvi, Rehan S; Shih, Jennifer; Rowe, Allison M; Ramage, Tatiana M; Chang, Flora L; Alexander, Terri G; Lempert, David K; Lin, Nan; Siu, Kasey H; Elphick, Sophie A; Wong, Alice; Schnair, Caitlin I; Vu, Alexander F; Chan, John T; Zai, Huizhen; Wong, Michelle K; Anthony, Amanda M; Barbour, Kyle C; Ben-Tzur, Dana; Kazarian, Natalie E; Lee, Joyce YY; Shen, Jay R; Liu, Eric; Behniwal, Gurbir S; Lammers, Cathy R; Quinones, Zoel; Aggarwal, Anuj; Cedars, Elizabeth; Yonelinas, Andrew P; Ghetti, Simona

    2014-01-01

    Anesthesia in infancy impairs performance in recognition memory tasks in mammalian animals, but it is unknown if this occurs in humans. Successful recognition can be based on stimulus familiarity or recollection of event details. Several brain structures involved in recollection are affected by anesthesia-induced neurodegeneration in animals. Therefore, we hypothesized that anesthesia in infancy impairs recollection later in life in humans and rats. Twenty eight children ages 6–11 who had undergone a procedure requiring general anesthesia before age 1 were compared with 28 age- and gender-matched children who had not undergone anesthesia. Recollection and familiarity were assessed in an object recognition memory test using receiver operator characteristic analysis. In addition, IQ and Child Behavior Checklist scores were assessed. In parallel, thirty three 7-day-old rats were randomized to receive anesthesia or sham anesthesia. Over 10 months, recollection and familiarity were assessed using an odor recognition test. We found that anesthetized children had significantly lower recollection scores and were impaired at recollecting associative information compared with controls. Familiarity, IQ, and Child Behavior Checklist scores were not different between groups. In rats, anesthetized subjects had significantly lower recollection scores than controls while familiarity was unaffected. Rats that had undergone tissue injury during anesthesia had similar recollection indices as rats that had been anesthetized without tissue injury. These findings suggest that general anesthesia in infancy impairs recollection later in life in humans and rats. In rats, this effect is independent of underlying disease or tissue injury. PMID:24910347

  3. Interaction between mode of learning and subjective experience: translation effects in long-term memory.

    PubMed

    Rackie, James M; Brandt, Karen R; Eysenck, Michael W

    2015-01-01

    It has been suggested that writing auditorily presented words at encoding involves distinctive translation processes between visual and auditory domains, leading to the formation of distinctive memory traces at retrieval. This translation effect leads to higher levels of recognition than the writing of visually presented words, a non-translation effect. The present research investigated whether writing and the other translation effect of vocalisation (vocalising visually presented words) would be present in tests of recall, recognition memory and whether these effects are based on the subjective experience of remembering or knowing. Experiment 1 found a translation effect in the auditory domain in recall, as the translation effect of writing yielded higher recall than both non-translation effects of vocalisation and silently hearing. Experiment 2 found a translation effect in the visual domain in recognition, as the translation effect of vocalisation yielded higher recognition than both non-translation effects of writing and silently reading. This translation effect was attributable to the subjective experience of remembering rather than knowing. The present research therefore demonstrates the beneficial effect of translation in both recall and recognition, with the effect of vocalisation in recognition being based on rich episodic remembering.

  4. A long-term epigenetic memory switch controls bacterial virulence bimodality

    PubMed Central

    Ronin, Irine; Katsowich, Naama; Rosenshine, Ilan; Balaban, Nathalie Q

    2017-01-01

    When pathogens enter the host, sensing of environmental cues activates the expression of virulence genes. Opposite transition of pathogens from activating to non-activating conditions is poorly understood. Interestingly, variability in the expression of virulence genes upon infection enhances colonization. In order to systematically detect the role of phenotypic variability in enteropathogenic E. coli (EPEC), an important human pathogen, both in virulence activating and non-activating conditions, we employed the ScanLag methodology. The analysis revealed a bimodal growth rate. Mathematical modeling combined with experimental analysis showed that this bimodality is mediated by a hysteretic memory-switch that results in the stable co-existence of non-virulent and hyper-virulent subpopulations, even after many generations of growth in non-activating conditions. We identified the per operon as the key component of the hysteretic switch. This unique hysteretic memory switch may result in persistent infection and enhanced host-to-host spreading. DOI: http://dx.doi.org/10.7554/eLife.19599.001 PMID:28178445

  5. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models

    PubMed Central

    Choi, Catherine H.; Schoenfeld, Brian P.; Bell, Aaron J.; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J.; Campbell, Sean R.; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J.; Chambers, Daniel B.; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M.; Liebelt, David A.; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J.; Louneva, Natalia; Arnold, Steven E.; Featherstone, Robert E.; Siegel, Steven J.; Zukin, R. Suzanne; McDonald, Thomas V.; Bolduc, Francois V.; Jongens, Thomas A.; McBride, Sean M. J.

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model. PMID:27445731

  6. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    NASA Astrophysics Data System (ADS)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  7. Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity

    PubMed Central

    Kim, Minjae; Kim, Taewan; Kim, Dong Sung; Chung, Wan Kyun

    2015-01-01

    Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode. PMID:26153773

  8. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    PubMed

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect.

  9. A role for amygdaloid PKA and PKC in the acquisition of long-term conditional fear memories in rats.

    PubMed

    Goosens, K A; Holt, W; Maren, S

    2000-09-01

    Although there is great interest in the cellular mechanisms underlying Pavlovian conditioning, few studies have directly examined the contribution of intracellular signaling pathways in the amygdala to the acquisition and expression of conditional fear memories. In the present study, we examined this issue by infusing 1-(5'-isoquinolinesulfonyl)-2-methylpiperazine (H7), a potent inhibitor of both protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), directly into the amygdala prior to fear conditioning or retention testing. We found that infusion of H7 prior to training attenuated long-term conditional fear in a dose-dependent manner (Experiment 1), but short-term fear memories were spared. The contribution of protein kinases to conditional fear was region-specific within the amygdala: infusion of H7 into the basolateral amygdala (BLA) but not the central nucleus of the amygdala (CEA) resulted in attenuated freezing (Experiment 2). Moreover, the deficits in fear conditioning produced by PKA/PKC inhibition were not modality-specific, insofar as intra-BLA H7 reduced both contextual and auditory fear. The effects of H7 on conditional freezing were not attributable to either state-dependency or performance deficits (Experiment 3). Together, these experiments suggest that amygdaloid PKA and PKC play an important role in the acquisition of fear memories.

  10. Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation

    PubMed Central

    Xu, Ting; Yamaki, Vitor Nagai; Wei, Zhisheng; Huang, Mingfa; Rose, Gregory M.

    2016-01-01

    Sex differences in spatial memory have long been observed in humans, non-human primates and rodents, but the underlying cellular and molecular mechanisms responsible for these differences remain obscure. In the present study we found that adolescent male rats outperformed female rats in 7 d and 28 d retention probes, but not in learning trials and immediate probes, in the Morris water maze task. Male rats also had larger long-term potentiation (LTP) at hippocampal temproammonic-CA1 (TA-CA1) synapses, which have been implicated to play a key role in place field and memory consolidation, when protocols designed to elicit late-stage LTP (LLTP) were used. Interestingly, the ratio of evoked AMPA/NMDA currents was found to be smaller at TA-CA1 synapses in male rats compared to female rats. Protein biotinylation experiments showed that male rats expressed more surface GluN1 receptors in hippocampal CA1 stratum lacunosum-moleculare (SLM) than female rats, although GluA1 expression was also slightly higher in male rats. Taken together, our results suggest that differences in the expression of AMPA and NMDA receptors may affect LTP expression at TA-CA1 synapses in adolescent male and female rats, and thus possibly contribute to the observed sex difference in spatial memory. PMID:27806108

  11. Participation of the Classical Speech Areas in Auditory Long-Term Memory

    PubMed Central

    Karabanov, Anke Ninija; Paine, Rainer; Chao, Chi Chao; Schulze, Katrin; Scott, Brian; Hallett, Mark; Mishkin, Mortimer

    2015-01-01

    Accumulating evidence suggests that storing speech sounds requires transposing rapidly fluctuating sound waves into more easily encoded oromotor sequences. If so, then the classical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferior frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly significant increase in recognition error rate, without affecting reaction time. By contrast, IFG stimulation led only to a weak, non-significant, trend toward recognition memory impairment. Importantly, the impairment after pSTG stimulation was not due to interference with perception, since the same stimulation failed to affect pseudoword discrimination examined with short interstimulus intervals. Our findings suggest that pSTG is essential for transforming speech sounds into stored motor plans for reproducing the sound. Whether or not the IFG also plays a role in speech-sound recognition could not be determined from the present results. PMID:25815813

  12. Participation of the classical speech areas in auditory long-term memory.

    PubMed

    Karabanov, Anke Ninija; Paine, Rainer; Chao, Chi Chao; Schulze, Katrin; Scott, Brian; Hallett, Mark; Mishkin, Mortimer

    2015-01-01

    Accumulating evidence suggests that storing speech sounds requires transposing rapidly fluctuating sound waves into more easily encoded oromotor sequences. If so, then the classical speech areas in the caudalmost portion of the temporal gyrus (pSTG) and in the inferior frontal gyrus (IFG) may be critical for performing this acoustic-oromotor transposition. We tested this proposal by applying repetitive transcranial magnetic stimulation (rTMS) to each of these left-hemisphere loci, as well as to a nonspeech locus, while participants listened to pseudowords. After 5 minutes these stimuli were re-presented together with new ones in a recognition test. Compared to control-site stimulation, pSTG stimulation produced a highly significant increase in recognition error rate, without affecting reaction time. By contrast, IFG stimulation led only to a weak, non-significant, trend toward recognition memory impairment. Importantly, the impairment after pSTG stimulation was not due to interference with perception, since the same stimulation failed to affect pseudoword discrimination examined with short interstimulus intervals. Our findings suggest that pSTG is essential for transforming speech sounds into stored motor plans for reproducing the sound. Whether or not the IFG also plays a role in speech-sound recognition could not be determined from the present results.

  13. Chronic exposure of rats to noise: relationship between long-term memory deficits and slow wave sleep disturbances.

    PubMed

    Rabat, A; Bouyer, J J; George, O; Le Moal, M; Mayo, W

    2006-08-10

    Noise is now recognized as a serious health problem in our modern societies. Although its deleterious and direct effects on cognitive tasks (long-term memory, mental arithmetic activity, visual tasks, etc.) are clearly admitted, no studies have determined a delayed indirect effect of noise on cognitive processes. Furthermore, the link between sleep disturbances related to environmental noise (EN) exposure and these indirect deteriorations of human performances has never been demonstrated. This could be due to inappropriate evaluation of sleep as well as to uncontrolled and confounding factors such as sex, age, and also inter-individual vulnerability. Based on a recently validated animal model [Rabat A, Bouyer JJ, Aran JM, Le Moal M, Mayo W. Chronic exposure to an environmental noise permanently disturbs sleep in rats: inter-individual vulnerability. Brain Res 2005;1059:72-82], aims of the present study were (i) to determine long-term memory (LTM) deficits following a chronic exposure to EN and (ii) to link these behavioral problems to sleep disturbances related to EN. For this purpose in a first experiment, LTM performances were evaluated before and following 9 days of EN. Results show LTM deficits following a chronic exposure to EN with inter-individual vulnerability. Vulnerability profile was related to the psychobiological profile of rats. Results of the second experiment show LTM deficits correlated to both debt of slow wave sleep (SWS) and to daily decrease of SWS bout duration. Our results demonstrate that chronic exposure to noise indirectly disturbs LTM possibly through SWS disturbances and suggest a possible role of the stress hormonal axis in these biological effects of noise.

  14. Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory

    PubMed Central

    Chen, Mingchen; Zheng, Weihua; Wolynes, Peter G.

    2016-01-01

    Aplysia cytoplasmic polyadenylation element binding (CPEB) protein, a translational regulator that recruits mRNAs and facilitates translation, has been shown to be a key component in the formation of long-term memory. Experimental data show that CPEB exists in at least a low-molecular weight coiled-coil oligomeric form and an amyloid fiber form involving the Q-rich domain (CPEB-Q). Using a coarse-grained energy landscape model, we predict the structures of the low-molecular weight oligomeric form and the dynamics of their transitions to the β-form. Up to the decamer, the oligomeric structures are predicted to be coiled coils. Free energy profiles confirm that the coiled coil is the most stable form for dimers and trimers. The structural transition from α to β is shown to be concentration dependent, with the transition barrier decreasing with increased concentration. We observe that a mechanical pulling force can facilitate the α-helix to β-sheet (α-to-β) transition by lowering the free energy barrier between the two forms. Interactome analysis of the CPEB protein suggests that its interactions with the cytoskeleton could provide the necessary mechanical force. We propose that, by exerting mechanical forces on CPEB oligomers, an active cytoskeleton can facilitate fiber formation. This mechanical catalysis makes possible a positive feedback loop that would help localize the formation of CPEB fibers to active synapse areas and mark those synapses for forming a long-term memory after the prion form is established. The functional role of the CPEB helical oligomers in this mechanism carries with it implications for targeting such species in neurodegenerative diseases. PMID:27091989

  15. c-Rel, an NF-[kappa]B Family Transcription Factor, Is Required for Hippocampal Long-Term Synaptic Plasticity and Memory Formation

    ERIC Educational Resources Information Center

    Ahn, Hyung Jin; Hernandez, Caterina M.; Levenson, Jonathan M.; Lubin, Farah D.; Liou, Hsiou-Chi; Sweatt, J. David

    2008-01-01

    Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-[kappa]B transcription factor family, c-Rel, during…

  16. How Chunks, Long-Term Working Memory and Templates Offer a Cognitive Explanation for Neuroimaging Data on Expertise Acquisition: A Two-Stage Framework

    ERIC Educational Resources Information Center

    Guida, Alessandro; Gobet, Fernand; Tardieu, Hubert; Nicolas, Serge

    2012-01-01

    Our review of research on PET and fMRI neuroimaging of experts and expertise acquisition reveals two apparently discordant patterns in working-memory-related tasks. When experts are involved, studies show activations in brain regions typically activated during long-term memory tasks that are not observed with novices, a result that is compatible…

  17. Hearing Loss Is Negatively Related to Episodic and Semantic Long-Term Memory but Not to Short-Term Memory

    ERIC Educational Resources Information Center

    Ronnberg, Jerker; Danielsson, Henrik; Rudner, Mary; Arlinger, Stig; Sternang, Ola; Wahlin, Ake; Nilsson, Lars-Goran

    2011-01-01

    Purpose: To test the relationship between degree of hearing loss and different memory systems in hearing aid users. Method: Structural equation modeling (SEM) was used to study the relationship between auditory and visual acuity and different cognitive and memory functions in an age-hetereogenous subsample of 160 hearing aid users without…

  18. Episodic Long-Term Memory of Spoken Discourse Masked by Speech: What Is the Role for Working Memory Capacity?

    ERIC Educational Resources Information Center

    Sorqvist, Patrik; Ronnberg, Jerker

    2012-01-01

    Purpose: To investigate whether working memory capacity (WMC) modulates the effects of to-be-ignored speech on the memory of materials conveyed by to-be-attended speech. Method: Two tasks (reading span, Daneman & Carpenter, 1980; Ronnberg et al., 2008; and size-comparison span, Sorqvist, Ljungberg, & Ljung, 2010) were used to measure individual…

  19. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    ERIC Educational Resources Information Center

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  20. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location.

  1. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain*♦

    PubMed Central

    Naito-Matsui, Yuko; Davies, Leela R. L.; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F.; Verhagen, Andrea; Heyser, Charles J.; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C.; Paton, Adrienne W.; Varki, Nissi M.; Schnaar, Ronald L.; Varki, Ajit

    2017-01-01

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens. PMID:28049733

  2. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain.

    PubMed

    Naito-Matsui, Yuko; Davies, Leela R L; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F; Verhagen, Andrea; Heyser, Charles J; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C; Paton, Adrienne W; Varki, Nissi M; Schnaar, Ronald L; Varki, Ajit

    2017-02-17

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens.

  3. Monitoring programme revision highlights long-term salinity changes in selected South African rivers and the value of comprehensive long-term data sets.

    PubMed

    van Niekerk, H; Silberbauer, M J; Hohls, B C

    2009-07-01

    Determination of data adequacy for detection of long-term salinity changes was an important task in the revision of the South African National Chemical Monitoring Programme (NCMP). The NCMP has been running for more than 30 years with several hundred active monitoring sites. Twenty-five sites on major rivers had sufficient continuous data for the estimation of salinity changes over a 25-year period and statistically significant upward or downward trends occurred at 17 of the 25 sites. Most sites were too far apart for detailed analysis of whole river systems, though an upward trend is apparent in the Lower Orange River and a downward trend in the Great Fish River. Salinity in the Tugela River remained stable, well below the 70 mS m( - 1) guideline for drinking water. The results underline the importance of long-term data sets for assessing and managing aquatic systems and provide the impetus to continue building and maintaining long-term sampling programmes.

  4. The memory is in the details: Relations between memory for the specific features of events and long-term recall in infancy

    PubMed Central

    Bauer, Patricia J.; Lukowski, Angela F.

    2010-01-01

    The second year of life is marked by pronounced changes in the length of time over which events are remembered. We tested whether the age-related differences are related to differences in memory for the specific features of events. Sixteen- and twenty-month-olds were tested for immediate and long-term recall of the individual actions and the temporal order of actions of 3-step sequences in an elicited-imitation paradigm, and for forced-choice recognition of the specific feature of the props used to produce the sequences. Memory for the props was related to long-term recall of the events only for the 20-month-olds. It accounted for unique variance, above and beyond the variance explained by immediate recall of the individual actions and temporal order of actions of the sequences. The different pattern of relations in the older and younger infants seemingly reflects a developmental difference in the determinants of long-term recall over the second year of life. PMID:20493498

  5. Intensification of long-term memory deficit by chronic stress and prevention by nicotine in a rat model of Alzheimer's disease.

    PubMed

    Alkadhi, Karim A; Srivareerat, Marisa; Tran, Trinh T

    2010-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cholinergic dysfunction and deposition of beta-amyloid (Aβ) in regions of the brain associated with learning and memory. The sporadic nature and late onset of most AD cases suggests that aside from biological determinants, environmental factors such as stress may also play a role in the progression of the disease. Behavioral and molecular studies were utilized to evaluate the effects of chronic nicotine treatment in the prevention of impairment of long-term memory. The rat model of AD was induced by i.c.v. osmotic pump infusion of Aβ peptides. Chronic psychosocial stress and chronic nicotine treatment were instituted for 6weeks. Spatial memory testing in the Radial Arm Water Maze revealed that, although stress, by itself, did not affect long-term memory, the combination of chronic stress and Aβ infusion impaired long-term memory significantly more than Aβ peptides infusion alone. Chronic nicotine treatment completely prevented Aβ- and stress/Aβ combination-induced memory impairment. Furthermore, molecular findings in hippocampal CA1 region of stress/Aβ rats indicated marked reduction in the protein levels of phosphorylated cAMP response element binding (p-CREB) and calcium-calmodulin-dependent protein kinase IV (CaMKIV), with significant increases in the levels of brain-derived neurotrophic factor (BDNF). These disturbances in signaling pathways, which may be the underlying mechanisms of impairment of long-term memory in these rats, were totally prevented by chronic nicotine treatment.

  6. Alcohol during adolescence selectively alters immediate and long-term behavior and neurochemistry.

    PubMed

    Maldonado-Devincci, Antoniette M; Badanich, Kimberly A; Kirstein, Cheryl L

    2010-02-01

    Alcohol use increases across adolescence and is a concern in the United States. In humans, males and females consume different amounts of alcohol depending on the age of initiation, and the long-term consequences of early ethanol consumption are not readily understood. The purpose of our work was to better understand the immediate and long-term impact of ethanol exposure during adolescence and the effects it can have on behavior and dopaminergic responsivity. We have assessed sex differences in voluntary ethanol consumption during adolescence and adulthood and the influence of binge ethanol exposure during adolescence. We have observed that males are sensitive to passive social influences that mediate voluntary ethanol consumption, and early ethanol exposure induces long-term changes in responsivity to ethanol in adulthood. Exposure to moderate doses of ethanol during adolescence produced alterations in dopamine in the nucleus accumbens septi during adolescence and later in adulthood. Taken together, all of these data indicate that the adolescent brain is sensitive to the impact of early ethanol exposure during this critical developmental period.

  7. A reduction in long-term spatial memory persists after discontinuation of peripubertal GnRH agonist treatment in sheep.

    PubMed

    Hough, D; Bellingham, M; Haraldsen, I R; McLaughlin, M; Robinson, J E; Solbakk, A K; Evans, N P

    2017-03-01

    Chronic gonadotropin-releasing hormone agonist (GnRHa) administration is used where suppression of hypothalamic-pituitary-gonadal axis activity is beneficial, such as steroid-dependent cancers, early onset gender dysphoria, central precocious puberty and as a reversible contraceptive in veterinary medicine. GnRH receptors, however, are expressed outside the reproductive axis, e.g. brain areas such as the hippocampus which is crucial for learning and memory processes. Previous work, using an ovine model, has demonstrated that long-term spatial memory is reduced in adult rams (45 weeks of age), following peripubertal blockade of GnRH signaling (GnRHa: goserelin acetate), and this was independent of the associated loss of gonadal steroid signaling. The current study investigated whether this effect is reversed after discontinuation of GnRHa-treatment. The results demonstrate that peripubertal GnRHa-treatment suppressed reproductive function in rams, which was restored after cessation of GnRHa-treatment at 44 weeks of age, as indicated by similar testes size (relative to body weight) in both GnRHa-Recovery and Control rams at 81 weeks of age. Rams in which GnRHa-treatment was discontinued (GnRHa-Recovery) had comparable spatial maze traverse times to Controls, during spatial orientation and learning assessments at 85 and 99 weeks of age. Former GnRHa-treatment altered how quickly the rams progressed beyond a specific point in the spatial maze at 83 and 99 weeks of age, and the direction of this effect depended on gonadal steroid exposure, i.e. GnRHa-Recovery rams progressed quicker during breeding season and slower during non-breeding season, compared to Controls. The long-term spatial memory performance of GnRHa-Recovery rams remained reduced (P<0.05, 1.5-fold slower) after discontinuation of GnRHa, compared to Controls. This result suggests that the time at which puberty normally occurs may represent a critical period of hippocampal plasticity. Perturbing normal

  8. Working Memory Training for Healthy Older Adults: The Role of Individual Characteristics in Explaining Short- and Long-Term Gains

    PubMed Central

    Borella, Erika; Carbone, Elena; Pastore, Massimiliano; De Beni, Rossana; Carretti, Barbara

    2017-01-01

    Objective: The aim of the present study was to explore whether individual characteristics such as age, education, vocabulary, and baseline performance in a working memory (WM) task—similar to the one used in the training (criterion task)—predict the short- and long-term specific gains and transfer effects of a verbal WM training for older adults. Method: Four studies that adopted the Borella et al. (2010) verbal WM training procedure were found eligible for our analysis as they included: healthy older adults who attended either the training sessions (WM training group), or alternative activities (active control group); the same measures for assessing specific gains (on the criterion WM task), and transfer effects (nearest on a visuo-spatial WM task, near on short-term memory tasks and far on a measure of fluid intelligence, a measure of processing speed and two inhibitory measures); and a follow-up session. Results: Linear mixed models confirmed the overall efficacy of the training, in the short-term at least, and some maintenance effects. In the trained group, the individual characteristics considered were found to contribute (albeit only modestly in some cases) to explaining the effects of the training. Conclusions: Overall, our findings suggest the importance of taking individual characteristics and individual differences into account when examining WM training gains in older adults. PMID:28381995

  9. Effects of long-term voluntary exercise on learning and memory processes: dependency of the task and level of exercise.

    PubMed

    García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David

    2009-09-14

    The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.

  10. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica.

    PubMed

    Shobe, Justin; Philips, Gary T; Carew, Thomas J

    2016-05-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization ofAplysia Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal (T-SW) reflex, a form of memory that requires both (i) extracellular signal-regulated kinase (ERK1/2; MAPK) activity within identified sensory neurons (SNs) that mediate the T-SW and (ii) the activation of transforming growth factor β (TGFβ) signaling. We now report that repeated tail shocks that induce intermediate-term (ITM) and LTM for sensitization, also induce a sustained post-training phase of MAPK activity in SNs (lasting at least 1 h). We identified two mechanistically distinct phases of post-training MAPK: (i) an immediate phase that does not require ongoing protein synthesis or TGFβ signaling, and (ii) a sustained phase that requires both protein synthesis and extracellular TGFβ signaling. We find that LTM consolidation requires sustained MAPK, and is disrupted by inhibitors of protein synthesis and TGFβ signaling during the consolidation window. These results provide strong evidence that TGFβ signaling sustains MAPK activity as an essential mechanistic step for LTM consolidation.

  11. Distinct Growth Factor Families Are Recruited in Unique Spatiotemporal Domains during Long-Term Memory Formation in Aplysia californica.

    PubMed

    Kopec, Ashley M; Philips, Gary T; Carew, Thomas J

    2015-06-03

    Several growth factors (GFs) have been implicated in long-term memory (LTM), but no single GF can support all of the plastic changes that occur during memory formation. Because GFs engage highly convergent signaling cascades that often mediate similar functional outcomes, the relative contribution of any particular GF to LTM is difficult to ascertain. To explore this question, we determined the unique contribution of distinct GF families (signaling via TrkB and TGF-βr-II) to LTM formation in Aplysia. We demonstrate that TrkB and TGF-βr-II signaling are differentially recruited during two-trial training in both time (by trial 1 or 2, respectively) and space (in distinct subcellular compartments). These GFs independently regulate MAPK activation and synergistically regulate gene expression. We also show that trial 1 TrkB and trial 2 TGF-βr-II signaling are required for LTM formation. These data support the view that GFs engaged in LTM formation are interactive components of a complex molecular network.

  12. The effects of cortisol increase on long-term memory retrieval during and after acute psychosocial stress.

    PubMed

    Tollenaar, Marieke S; Elzinga, Bernet M; Spinhoven, Philip; Everaerd, Walter A M

    2008-03-01

    In this study the effects of stress-induced cortisol increases on long-term memory retrieval during and after acute psychosocial stress were examined. Seventy male students were exposed to either a psychosocial stress task or to a non-stressful control task. During and after this task, retrieval was tested for idiosyncratic emotionally negative and neutral word pair associations that were learned 1 day or 5 weeks earlier. Within the stress condition, retrieval of negative words, 5 weeks after learning, was impaired both during and after the stress task compared to the control group. Further, during the stress task, when sympathetic activity was enhanced, impaired retrieval of both neutral and emotional words was significantly related to enhanced cortisol response. In contrast, after the stress task, when cortisol levels were still increased but sympathetic activity was low again, no association was found between cortisol increase and retrieval of either neutral or emotional material. These results are in line with the previous animal research showing that when arousal is high, cortisol increase can impair memory retrieval.

  13. Propranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis

    PubMed Central

    Lonergan, Michelle H.; Olivera-Figueroa, Lening A.; Pitman, Roger K.; Brunet, Alain

    2013-01-01

    Background Considering the pivotal role of negative emotional experiences in the development and persistence of mental disorders, interfering with the consolidation/reconsolidation of such experiences would open the door to a novel treatment approach in psychiatry. We conducted a meta-analysis on the experimental evidence regarding the capacity of the β-blocker propranolol to block the consolidation/reconsolidation of emotional memories in healthy adults. Methods Selected studies consisted of randomized, double-blind experiments assessing long-term memory for emotional material in healthy adults and involved at least 1 propranolol and 1 placebo condition. We searched PsycInfo, PubMed, Web of Science, Cochrane Central, PILOTS, Google Scholar and clinicaltrials.org for eligible studies from the period 1995–2012. Ten consolidation (n = 259) and 8 reconsolidation (n = 308) experiments met the inclusion criteria. We calculated effect sizes (Hedges g) using a random effects model. Results Compared with placebo, propranolol given before memory consolidation reduced subsequent recall for negatively valenced stories, pictures and word lists (Hedges g = 0.44, 95% confidence interval [CI] 0.14–0.74). Propranolol before reconsolidation also reduced subsequent recall for negatively valenced emotional words and the expression of cue-elicited fear responses (Hedges g = 0.56, 95% CI 0.13–1.00). Limitations Limitations include the moderate number of studies examining the influence of propranolol on emotional memory consolidation and reconsolidation in healthy adults and the fact that most samples consisted entirely of young adults, which may limit the ecological validity of results. Conclusion Propranolol shows promise in reducing subsequent memory for new or recalled emotional material in healthy adults. However, future studies will need to investigate whether more powerful idiosyncratic emotional memories can also be weakened and whether this weakening can bring about long

  14. Effect of silicon oxidation on long-term cell selectivity of cell-patterned Au/SiO2 platforms.

    PubMed

    Veiseh, Mandana; Zhang, Miqin

    2006-02-01

    Cellular patterning on silicon platforms is the basis for development of integrated cell-based biosensing devices, for which long-term cell selectivity and biostability remain a major challenge. We report the development of a silicon-based platform in a metal-insulator format capable of producing uniform and biostable cell patterns with long-term cell selectivity. Substrates patterned with arrays of gold electrodes were surface-engineered such that the electrodes were activated with fibronectin to mediate cell attachment and the silicon oxide background was passivated with PEG to resist protein adsorption and cell adhesion. Three types of oxide surfaces, i.e., native oxide, dry thermally grown oxide, and wet thermally grown oxide, were produced to illustrate the effect of oxide state of the surface on long-term cell selectivity. Results indicated that the cell selectivity over time differed dramatically among three patterned platforms and the best cell selectivity was found on the dry oxide surface for up to 10 days. Surface analysis results suggested that this enhancement in cell selectivity may be related to the presence of additional, more active oxide states on the dry oxide surface supporting the stability of PEG films and effectively suppressing the cell adhesion. This research offers a new strategy for development of stable and uniform cell-patterned surfaces, which is versatile for immobilization of silane-based chemicals for preparation of biostable interfaces.

  15. Ganzfeld Stimulation or Sleep Enhance Long Term Motor Memory Consolidation Compared to Normal Viewing in Saccadic Adaptation Paradigm

    PubMed Central

    Voges, Caroline; Helmchen, Christoph; Heide, Wolfgang; Sprenger, Andreas

    2015-01-01

    Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation (“Ganzfeld”-stimulation or sleep) can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials – interspersed by an extinction block – which were followed by a two-hour break with or without visual deprivation (VD). Using additional adaptation and extinction blocks short and long (4 weeks) term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error) in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep), might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation. PMID:25867186

  16. The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats.

    PubMed

    Chepulis, Lynne M; Starkey, Nicola J; Waas, Joseph R; Molan, Peter C

    2009-06-22

    Sucrose is considered by many to be detrimental to health, giving rise to deterioration of the body associated with ageing. This study was undertaken to determine whether replacing sucrose in the diet long-term with honey that has a high antioxidant content could decrease deterioration in brain function during ageing. Forty-five 2-month old Sprague Dawley rats were fed ad libitum for 52 weeks on a powdered diet that was either sugar-free or contained 7.9% sucrose or 10% honey (which is the equivalent amount of sugar). Anxiety levels were assessed using an Elevated Plus Maze, whilst a Y maze and an Object Recognition task were used to assess memory. Locomotor activity was also measured using an Open Field task to ensure that differences in activity levels did not bias results in the other tasks. Anxiety generally decreased overall from 3 to 12 months, but the honey-fed rats showed significantly less anxiety at all stages of ageing compared with those fed sucrose. Honey-fed animals also displayed better spatial memory throughout the 12-month period: at 9 and 12 months a significantly greater proportion of honey-fed rats recognised the novel arm as the unvisited arm of the maze compared to rats on a sugar-free or sucrose-based diet. No significant differences among groups were observed in the Object Recognition task, and there appeared to be no differences in locomotor activity among groups at either 6 or 12 months. In conclusion, it appears that consumption of honey may reduce anxiety and improve spatial memory in middle age.

  17. Synaptic Function of Rab11Fip5: Selective Requirement for Hippocampal Long-Term Depression

    PubMed Central

    Ahmad, Mohiuddin; Jurado, Sandra; Malenka, Robert C.

    2015-01-01

    Postsynaptic AMPA-type glutamate receptors (AMPARs) are among the major determinants of synaptic strength and can be trafficked into and out of synapses. Neuronal activity regulates AMPAR trafficking during synaptic plasticity to induce long-term changes in synaptic strength, including long-term potentiation (LTP) and long-term depression (LTD). Rab family GTPases regulate most membrane trafficking in eukaryotic cells; particularly, Rab11 and its effectors are implicated in mediating postsynaptic AMPAR insertion during LTP. To explore the synaptic function of Rab11Fip5, a neuronal Rab11 effector and a candidate autism-spectrum disorder gene, we performed shRNA-mediated knock-down and genetic knock-out (KO) studies. Surprisingly, we observed robust shRNA-induced synaptic phenotypes that were rescued by a Rab11Fip5 cDNA but that were nevertheless not observed in conditional KO neurons. Both in cultured neurons and acute slices, KO of Rab11Fip5 had no significant effect on basic parameters of synaptic transmission, indicating that Rab11Fip5 is not required for fundamental synaptic operations, such as neurotransmitter release or postsynaptic AMPAR insertion. KO of Rab11Fip5 did, however, abolish hippocampal LTD as measured both in acute slices or using a chemical LTD protocol in cultured neurons but did not affect hippocampal LTP. The Rab11Fip5 KO mice performed normally in several behavioral tasks, including fear conditioning, but showed enhanced contextual fear extinction. These are the first findings to suggest a requirement for Rab11Fip5, and presumably Rab11, during LTD. PMID:25972173

  18. The Effects of Intersensory Redundancy on Attention and Memory: Infants' Long-Term Memory for Orientation in Audiovisual Events

    ERIC Educational Resources Information Center

    Flom, Ross; Bahrick, Lorraine E.

    2010-01-01

    This research examined the effects of bimodal audiovisual and unimodal visual stimulation on infants' memory for the visual orientation of a moving toy hammer following a 5-min, 2-week, or 1-month retention interval. According to the intersensory redundancy hypothesis (L. E. Bahrick & R. Lickliter, 2000; L. E. Bahrick, R. Lickliter, & R. Flom,…

  19. Long-term potentiation and memory processes in the psychological works of Sigmund Freud and in the formation of neuropsychiatric symptoms.

    PubMed

    Centonze, D; Siracusano, A; Calabresi, P; Bernardi, G

    2005-01-01

    Far from disproving the model of mind functioning proposed by psychoanalysis, the recent advances in neuropsychiatrical research confirmed the crucial ideas of Sigmund Freud. The hypothesis that the origin of mental illnesses lies in the impossibility for a subject to erase the long-term effects of a remote adverse event is in tune with the view that several psychiatric disturbances reflect the activation of aberrant unconscious memory processes. Freud's insights did not stop here, but went on to describe in an extremely precise manner the neural mechanisms of memory formation almost a century before the description of long-term synaptic potentiation.

  20. Adult newborn neurons are involved in learning acquisition and long-term memory formation: the distinct demands on temporal neurogenesis of different cognitive tasks.

    PubMed

    Suárez-Pereira, Irene; Canals, Santiago; Carrión, Angel M

    2015-01-01

    There is evidence that adult hippocampal neurogenesis influences hippocampal function, although the role these neurons fulfill in learning and consolidation processes remains unclear. Using a novel fast X-ray ablation protocol to deplete neurogenic cells, we demonstrate that immature adult hippocampal neurons are required for hippocampal learning and long-term memory formation. Moreover, we found that long-term memory formation in the object recognition and passive avoidance tests, two paradigms that involve circuits with distinct emotional components, had different temporal demands on hippocampal neurogenesis. These results reveal new and unexpected aspects of neurogenesis in cognitive processes.

  1. A novel nucleolar transcriptional activator ApLLP for long-term memory formation is intrinsically unstructured but functionally active.

    PubMed

    Liu, Jingxian; Song, Jianxing

    2008-02-08

    A novel Aplysia nucleolar protein ApLLP has been recently characterized to be a transcriptional activator that binds to the cAMP-response element (CRE) and thus induces ApC/EBP expression required for establishing long-term memory. So far, no structural information is available for both ApLLP and its homologs. Here, we expressed the entire ApLLP and its two dissected fragments, followed by structural and binding studies using CD and NMR spectroscopy. The study leads to two interesting findings: (1) all three ApLLP proteins are highly disordered, owning no predominant secondary and tertiary structures; (2) ApLLP is capable of binding the CRE DNA element but this induces no significant change in its secondary and tertiary structures. Intriguingly, it appears that the DNA-binding residues are mainly located on the C-half of the ApLLP molecule. Taken together, our results define ApLLP as an intrinsically unstructured protein and may bear important implications in understanding the molecular mechanism underlying ApLLP functions.

  2. Short-term treatment with flumazenil restores long-term object memory in a mouse model of Down syndrome.

    PubMed

    Colas, Damien; Chuluun, Bayarsaikhan; Garner, Craig C; Heller, H Craig

    2017-04-01

    Down syndrome (DS) is a common genetic cause of intellectual disability yet no pro-cognitive drug therapies are approved for human use. Mechanistic studies in a mouse model of DS (Ts65Dn mice) demonstrate that impaired cognitive function is due to excessive neuronal inhibitory tone. These deficits are normalized by chronic, short-term low doses of GABAA receptor (GABAAR) antagonists in adult animals, but none of the compounds investigated are approved for human use. We explored the therapeutic potential of flumazenil (FLUM), a GABAAR antagonist working at the benzodiazepine binding site that has FDA approval. Long-term memory was assessed by the Novel Object Recognition (NOR) testing in Ts65Dn mice after acute or short-term chronic treatment with FLUM. Short-term, low, chronic dose regimens of FLUM elicit long-lasting (>1week) normalization of cognitive function in both young and aged mice. FLUM at low dosages produces long lasting cognitive improvements and has the potential of fulfilling an unmet therapeutic need in DS.

  3. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia

    PubMed Central

    Pearce, Kaycey; Cai, Diancai; Roberts, Adam C; Glanzman, David L

    2017-01-01

    Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report that LTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation. DOI: http://dx.doi.org/10.7554/eLife.18299.001 PMID:28067617

  4. An Evidence-Based Cue-Selection Guide and Logic Model to Improve Pressure Ulcer Prevention in Long Term Care

    PubMed Central

    Yap, Tracey L.; Kennerly, Susan M.; Bergstrom, Nancy; Hudak, Sandra L.; Horn, Susan D.

    2015-01-01

    Pressure ulcers (PrUs) have consistently resisted prevention efforts in long term care (LTC) facilities nationwide. Recent research has described cueing innovations that – when selected according to the assumptions and resources of particular facilities – support best practices of PrU prevention. This paper synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a PrU prevention program. PMID:26066791

  5. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    PubMed

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this

  6. The long-term, cyclic-oxidation behavior of selected chromia-forming alloys

    SciTech Connect

    Gleeson, B.; Harper, M.A.

    1998-04-01

    Long-term, cyclic-oxidation testing in still air for about 2 years (720 days) at 982 C and 1 year (360 days) at 1093, 1149, and 1204 C has been conducted on the commercial, high-temperature chromia-forming HR-120, HR-160, and 230 alloys (all trademarks of Haynes International, Inc.). Each thermal cycle consisted of 30 days at temperature followed by about 4 hr at ambient. The results demonstrated the significant effects of alloy composition on long-term, cyclic-oxidation resistance. Each of the alloys exhibited scale spallation; however, the manner by which spallation occurred varied between the alloys. The 230 alloy, which contains 0.02 wt.% La, exhibited partial scale spallation, thus allowing for the easier formation of a protective or semiprotective Cr{sub 2}O{sub 3}-rich scale during subsequent oxidation. The HR-160 alloy exhibited complete spallation owing largely to its relatively high silicon content (2.75 wt.%). However, the silicon was also beneficial in promoting protective or semiprotective scale formation when the exposed alloy was subsequently oxidized. The HR-120 alloy showed the poorest cyclic-oxidation resistance, due in part to poor scale adhesion and the tendency of the iron in this alloy (33 wt.%) to eventually oxidize and result in the formation of a less-protective scale. All of the alloys underwent internal attack in the form of internal oxidation and void formation. In most cases, the extent of internal attack was significantly greater than that of metal loss.

  7. Measuring Workload Differences Between Short-term Memory and Long-term Memory Scenarios in a Simulated Flight Environment

    NASA Technical Reports Server (NTRS)

    Berg, S. L.; Sheridan, T. B.

    1984-01-01

    Four highly experienced Air Force pilots each flew four simulated flight scenarios. Two scenarios required a great deal of aircraft maneuvering. The other two scenarios involved less maneuvering, but required remembering a number of items. All scenarios were designed to be equaly challenging. Pilot's Subjective Ratings for Activity-level, Complexity, Difficulty, Stress, and Workload were higher for the manuevering scenarios than the memory scenarios. At a moderate workload level, keeping the pilots active resulted in better aircraft control. When required to monitor and remember items, aircraft control tended to decrease. Pilots tended to weigh information about the spatial positioning and performance of their aircraft more heavily than other items.

  8. Reinterpreting Long-Term Evolution Experiments: Is Delayed Adaptation an Example of Historical Contingency or a Consequence of Intermittent Selection?

    PubMed Central

    Maisnier-Patin, Sophie

    2016-01-01

    Van Hofwegen et al. demonstrated that Escherichia coli rapidly evolves the ability to use citrate when long selective periods are provided (D. J. Van Hofwegen, C. J. Hovde, and S. A. Minnich, J Bacteriol 198:1022–1034, 2016, http://dx.doi.org/10.1128/JB.00831-15). This contrasts with the extreme delay (15 years of daily transfers) seen in the long-term evolution experiments of Lenski and coworkers. Their idea of “historical contingency” may require reinterpretation. Rapid evolution seems to involve selection for duplications of the whole cit locus that are too unstable to contribute when selection is provided in short pulses. PMID:26883821

  9. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer's disease as well as in wild-type mice.

    PubMed

    Kemppainen, Susanna; Lindholm, Päivi; Galli, Emilia; Lahtinen, Hanna-Maija; Koivisto, Henna; Hämäläinen, Elina; Saarma, Mart; Tanila, Heikki

    2015-09-15

    Cerebral dopamine neurotrophic factor (CDNF) protects and repairs dopamine neurons in animal models of Parkinson's disease, which motivated us to investigate its therapeutic effect in an animal model of Alzheimer's disease (AD). We employed an established APP/PS1 mouse model of AD and gave intrahippocampal injections of CDNF protein or CDNF transgene in an AAV2 viral vector to 1-year-old animals. We performed a behavioral test battery 2 weeks after the injections and collected tissue samples after the 3-week test period. Intrahippocampal CDNF-therapy improved long-term memory in both APP/PS1 mice and wild-type controls, but did not affect spontaneous exploration, object neophobia or early stages of spatial learning. The memory improvement was not associated with decreased brain amyloid load or enhanced hippocampal neurogenesis. Intracranial CDNF treatment has beneficial effects on long-term memory and is well tolerated. The CDNF molecular mechanisms of action on memory await further studies.

  10. Making the case that episodic recollection is attributable to operations occurring at retrieval rather than to content stored in a dedicated subsystem of long-term memory

    PubMed Central

    Klein, Stanley B.

    2013-01-01

    Episodic memory often is conceptualized as a uniquely human system of long-term memory that makes available knowledge accompanied by the temporal and spatial context in which that knowledge was acquired. Retrieval from episodic memory entails a form of first–person subjectivity called autonoetic consciousness that provides a sense that a recollection was something that took place in the experiencer's personal past. In this paper I expand on this definition of episodic memory. Specifically, I suggest that (1) the core features assumed unique to episodic memory are shared by semantic memory, (2) episodic memory cannot be fully understood unless one appreciates that episodic recollection requires the coordinated function of a number of distinct, yet interacting, “enabling” systems. Although these systems—ownership, self, subjective temporality, and agency—are not traditionally viewed as memorial in nature, each is necessary for episodic recollection and jointly they may be sufficient, and (3) the type of subjective awareness provided by episodic recollection (autonoetic) is relational rather than intrinsic—i.e., it can be lost in certain patient populations, thus rendering episodic memory content indistinguishable from the content of semantic long-term memory. PMID:23378832

  11. KAOLIN-INDUCED VENTRICULOMEGALY AT WEANING PRODUCES LONG-TERM LEARNING, MEMORY, AND MOTOR DEFICITS IN RATS

    PubMed Central

    Williams, Michael T.; Braun, Amanda A.; Amos-Kroohs, Robyn; McAllister, James P.; Lindquist, Diana M.; Mangano, Francesco T.; Vorhees, Charles V.; Yuan, Weihong

    2014-01-01

    Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ER) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4–0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122 cm maze) and again on P42 (244 cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement

  12. Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats.

    PubMed

    Williams, Michael T; Braun, Amanda A; Amos-Kroohs, Robyn M; McAllister, James P; Lindquist, Diana M; Mangano, Francesco T; Vorhees, Charles V; Yuan, Weihong

    2014-06-01

    Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ERs) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4-0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122cm maze) and again on P42 (244cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement of

  13. An Exemplar-Familiarity Model Predicts Short-Term and Long-Term Probe Recognition across Diverse Forms of Memory Search

    ERIC Educational Resources Information Center

    Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.

    2014-01-01

    Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…

  14. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  15. Protein Synthesis-Dependent Long-Term Memory Induced by One Single Associative Training Trial in the Parasitic Wasp Lariophagus distinguendus

    ERIC Educational Resources Information Center

    Steidle, Johannes L. M.; Collatz, Jana; Muller, Caroline

    2006-01-01

    Protein synthesis-dependent long-term memory in Apis mellifera and Drosophila melanogaster is formed after multiple trainings that are spaced in time. The parasitic wasp Lariophagus distinguendus remarkably differs from these species. It significantly responds to the artificial odor furfurylheptanoate (FFH) in olfactometer experiments, when this…

  16. Hippocampal Overexpression of Mutant CREB Blocks Long-Term, but Not Short-Term Memory for a Socially Transmitted Food Preference

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Countryman, Renee A.; Neve, Rachael L.; Colombo, Paul J.; Smith, Clayton A.

    2005-01-01

    Phosphorylation of the transcription factor CREB on Ser133 is implicated in the establishment of long-term memory for hippocampus-dependent tasks, including spatial learning and contextual fear conditioning. We reported previously that training on a hippocampus-dependent social transmission of food preference (STFP) task increases CREB…

  17. The Israeli Long-Term Care Insurance Law: selected issues in providing home care services to the frail elderly.

    PubMed

    Schmid, Hillel

    2005-05-01

    The paper describes and analyses selected issues related to the provision of home care services to frail elderly people following the Israeli Long-Term Care Insurance Law (1988). The goals and principles of the Law, which mandates the provision of home care services to frail elderly people, are presented. The paper also evaluates its contribution toward enhancing the well-being of elderly clients. Several major dilemmas that arose following implementation of the Law are analysed and evaluated in comparison with other countries that have enacted and implemented similar laws. These dilemmas are community vs institutional care; services in kind vs monetary allowances; service provision through contracting out with nongovernmental agencies; unstable and unskilled labour force; and service quality. Finally, policy implications are discussed, mainly in the following areas: investment in human resources as a condition for achieving high service quality, and the need for coordination between the agencies that provide long-term care services to elderly people.

  18. The E3 Ligase APC/C-Cdh1 Is Required for Associative Fear Memory and Long-Term Potentiation in the Amygdala of Adult Mice

    ERIC Educational Resources Information Center

    Pick, Joseph E.; Malumbres, Marcos; Klann, Eric

    2013-01-01

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating…

  19. EphrinA4 mimetic peptide targeted to EphA binding site impairs the formation of long-term fear memory in lateral amygdala

    PubMed Central

    Dines, M; Lamprecht, R

    2014-01-01

    Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathologies conditions such as phobias and posttraumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). EphrinA4 and its cognate Eph receptors are intimately involved in regulating neuronal morphogenesis, synaptic transmission and plasticity. To assess possible roles of ephrinA4 in fear memory formation we designed and used a specific inhibitory ephrinA4 mimetic peptide (pep-ephrinA4) targeted to EphA binding site. We show that this peptide, composed of the ephrinA4 binding domain, interacts with EphA4 and inhibits ephrinA4-induced phosphorylation of EphA4. Microinjection of the pep-ephrinA4 into rat LA 30 min before training impaired long- but not short-term fear conditioning memory. Microinjection of a control peptide derived from a nonbinding E helix site of ephrinA4, that does not interact with EphA, had no effect on fear memory formation. Microinjection of pep-ephrinA4 into areas adjacent to the amygdala had no effect on fear memory. Acute systemic administration of pep-ephrinA4 1 h after training also impaired long-term fear conditioning memory formation. These results demonstrate that ephrinA4 binding sites in LA are essential for long-term fear memory formation. Moreover, our research shows that ephrinA4 binding sites may serve as a target for pharmacological treatment of fear and anxiety disorders. PMID:25268254

  20. The Peg-Word Mnemonic Facilitates Immediate but Not Long-Term Memory in Fifth-Grade Children.

    ERIC Educational Resources Information Center

    Krinsky, Richard; Krinsky, Suzanne G.

    1994-01-01

    Two experiments examined immediate and long-term serial list learning effects for common nouns for 42 fifth graders. Results provide additional evidence that long-term forgetting may be greater for learners who receive mnemonic instruction than for untrained controls, in spite of some immediate enhanced recall. (SLD)

  1. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory.

  2. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory.

    PubMed

    McNulty, Susan E; Barrett, Ruth M; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M Felicia; Matheos, Dina P; Schiffman, Aaron; Wood, Marcelo A

    2012-11-16

    Nr4a1 and Nr4a2 are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either Nr4a1 or Nr4a2, we found that Nr4a2 is necessary for both long-term memory for object location and object recognition. In contrast, Nr4a1 appears to be necessary only for object location. Indeed, their roles in these different types of long-term memory may be dependent on their expression in the brain, as NR4A2 was found to be expressed in hippocampal neurons (associated with object location memory) as well as in the insular and perirhinal cortex (associated with object recognition memory), whereas NR4A1 showed minimal neuronal expression in these cortical areas. These results begin to elucidate how NR4A1 and NR4A2 differentially contribute to object location versus object recognition memory.

  3. Effects of ethanolic extract and naphthoquinones obtained from the bulbs of Cipura paludosa on short-term and long-term memory: involvement of adenosine A₁ and A₂A receptors.

    PubMed

    Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D

    2013-04-01

    Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects.

  4. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T cell help.

    PubMed

    Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R

    2013-03-15

    Streptococcus pyogenes (group A Streptococcus [GAS]) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 aa from GAS, when conjugated to diphtheria toxoid, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be Ab-mediated. J8 does not contain a dominant GAS-specific T cell epitope. The current study examined long-term Ab memory and dissected the role of B and T cells. Our results demonstrated that vaccination generates specific memory B cells (MBC) and long-lasting Ab responses. The MBC response can be activated following boost with Ag or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T cell help is required for activation of MBC but can be provided by naive T cells responding directly to GAS at the time of infection. Thus, individuals whose T cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory Ab response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-diphtheria toxoid vaccine is Ab-mediated and suggest that in vaccine design for other organisms the source of T cell help for Ab responses need not be limited to sequences from the organism itself.

  5. PKA Increases in the Olfactory Bulb Act as Unconditioned Stimuli and Provide Evidence for Parallel Memory Systems: Pairing Odor with Increased PKA Creates Intermediate- and Long-Term, but Not Short-Term, Memories

    ERIC Educational Resources Information Center

    Grimes, Matthew T.; Harley, Carolyn W.; Darby-King, Andrea; McLean, John H.

    2012-01-01

    Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and…

  6. S/MAR sequence confers long-term mitotic stability on non-integrating lentiviral vector episomes without selection.

    PubMed

    Verghese, Santhosh Chakkaramakkil; Goloviznina, Natalya A; Skinner, Amy M; Lipps, Hans J; Kurre, Peter

    2014-04-01

    Insertional oncogene activation and aberrant splicing have proved to be major setbacks for retroviral stem cell gene therapy. Integrase-deficient human immunodeficiency virus-1-derived vectors provide a potentially safer approach, but their circular genomes are rapidly lost during cell division. Here we describe a novel lentiviral vector (LV) that incorporates human ß-interferon scaffold/matrix-associated region sequences to provide an origin of replication for long-term mitotic maintenance of the episomal LTR circles. The resulting 'anchoring' non-integrating lentiviral vector (aniLV) achieved initial transduction rates comparable with integrating vector followed by progressive establishment of long-term episomal expression in a subset of cells. Analysis of aniLV-transduced single cell-derived clones maintained without selective pressure for >100 rounds of cell division showed sustained transgene expression from episomes and provided molecular evidence for long-term episome maintenance. To evaluate aniLV performance in primary cells, we transduced lineage-depleted murine hematopoietic progenitor cells, observing GFP expression in clonogenic progenitor colonies and peripheral blood leukocyte chimerism following transplantation into conditioned hosts. In aggregate, our studies suggest that scaffold/matrix-associated region elements can serve as molecular anchors for non-integrating lentivector episomes, providing sustained gene expression through successive rounds of cell division and progenitor differentiation in vitro and in vivo.

  7. Long-term sensory deprivation selectively rearranges functional inhibitory circuits in mouse barrel cortex.

    PubMed

    Li, Peijun; Rudolph, Uwe; Huntsman, Molly M

    2009-07-21

    Long-term whisker removal alters the balance of excitation and inhibition in rodent barrel cortex, yet little is known about the contributions of individual cells and synapses in this process. We studied synaptic inhibition in four major types of neurons in live tangential slices that isolate layer 4 in the posteromedial barrel subfield. Voltage-clamp recordings of layer 4 neurons reveal that fast decay of synaptic inhibition requires alpha1-containing GABA(A) receptors. After 7 weeks of deprivation, we found that GABA(A)-receptor-mediated inhibitory postsynaptic currents (IPSCs) in the inhibitory low-threshold-spiking (LTS) cell recorded in deprived barrels exhibited faster decay kinetics and larger amplitudes in whisker-deprived barrels than those in nondeprived barrels in age-matched controls. This was not observed in other cell types. Additionally, IPSCs recorded in LTS cells from deprived barrels show a marked increase in zolpidem sensitivity. To determine if the faster IPSC decay in LTS cells from deprived barrels indicates an increase in alpha1 subunit functionality, we deprived alpha1(H101R) mutant mice with zolpidem-insensitive alpha1-containing GABA(A) receptors. In these mice and matched wild-type controls, IPSC decay kinetics in LTS cells were faster after whisker removal; however, the deprivation-induced sensitivity to zolpidem was reduced in alpha1(H101R) mice. These data illustrate a change of synaptic inhibition in LTS cells via an increase in alpha1-subunit-mediated function. Because alpha1 subunits are commonly associated with circuit-specific plasticity in sensory cortex, this switch in LTS cell synaptic inhibition may signal necessary circuit changes required for plastic adjustments in sensory-deprived cortex.

  8. PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate- and long-term, but not short-term, memories.

    PubMed

    Grimes, Matthew T; Harley, Carolyn W; Darby-King, Andrea; McLean, John H

    2012-02-21

    Neonatal odor-preference memory in rat pups is a well-defined associative mammalian memory model dependent on cAMP. Previous work from this laboratory demonstrates three phases of neonatal odor-preference memory: short-term (translation-independent), intermediate-term (translation-dependent), and long-term (transcription- and translation-dependent). Here, we use neonatal odor-preference learning to explore the role of olfactory bulb PKA in these three phases of mammalian memory. PKA activity increased normally in learning animals 10 min after a single training trial. Inhibition of PKA by Rp-cAMPs blocked intermediate-term and long-term memory, with no effect on short-term memory. PKA inhibition also prevented learning-associated CREB phosphorylation, a transcription factor implicated in long-term memory. When long-term memory was rescued through increased β-adrenoceptor activation, CREB phosphorylation was restored. Intermediate-term and long-term, but not short-term odor-preference memories were generated by pairing odor with direct PKA activation using intrabulbar Sp-cAMPs, which bypasses β-adrenoceptor activation. Higher levels of Sp-cAMPs enhanced memory by extending normal 24-h retention to 48-72 h. These results suggest that increased bulbar PKA is necessary and sufficient for the induction of intermediate-term and long-term odor-preference memory, and suggest that PKA activation levels also modulate memory duration. However, short-term memory appears to use molecular mechanisms other than the PKA/CREB pathway. These mechanisms, which are also recruited by β-adrenoceptor activation, must operate in parallel with PKA activation.

  9. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory.

    PubMed

    Mukherjee, Bandhan; Yuan, Qi

    2016-10-14

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory.

  10. NMDA receptors in mouse anterior piriform cortex initialize early odor preference learning and L-type calcium channels engage for long-term memory

    PubMed Central

    Mukherjee, Bandhan; Yuan, Qi

    2016-01-01

    The interactions of L-type calcium channels (LTCCs) and NMDA receptors (NMDARs) in memories are poorly understood. Here we investigated the specific roles of anterior piriform cortex (aPC) LTCCs and NMDARs in early odor preference memory in mice. Using calcium imaging in aPC slices, LTCC activation was shown to be dependent on NMDAR activation. Either D-APV (NMDAR antagonist) or nifedipine (LTCC antagonist) reduced somatic calcium transients in pyramidal cells evoked by lateral olfactory tract stimulation. However, nifedipine did not further reduce calcium in the presence of D-APV. In mice that underwent early odor preference training, blocking NMDARs in the aPC prevented short-term (3 hr) and long-term (24 hr) odor preference memory, and both memories were rescued when BayK-8644 (LTCC agonist) was co-infused. However, activating LTCCs in the absence of NMDARs resulted in loss of discrimination between the conditioned odor and a similar odor mixture at 3 hr. Elevated synaptic AMPAR expression at 3 hr was prevented by D-APV infusion but restored when LTCCs were directly activated, mirroring the behavioral outcomes. Blocking LTCCs prevented 24 hr memory and spared 3 hr memory. These results suggest that NMDARs mediate stimulus-specific encoding of odor memory while LTCCs mediate intracellular signaling leading to long-term memory. PMID:27739540

  11. The maintenance of long-term memory in the hippocampus depends on the interaction between N-ethylmaleimide-sensitive factor and GluA2.

    PubMed

    Migues, Paola Virginia; Hardt, Oliver; Finnie, Peter; Wang, Yu Wang; Nader, Karim

    2014-09-01

    The maintenance of established memories has recently been shown to involve the stabilization of GluA2-containing AMPA receptors (GluA2/AMPARs) at postsynaptic membranes. Previous studies have suggested that N-ethylmaleimide-sensitive factor (NSF) regulates the stabilization of AMPARs at the synaptic membrane. We therefore disrupted the interaction between GluA2 and NSF in the dorsal hippocampus and examined its effect on the maintenance of object location and contextual fear memory. We used two interference peptides, pep2m and pepR845A, that have been shown to block the binding of NSF to GluA2 and reduce GluA2 synaptic content. Either peptide disrupted consolidated memory, and these effects persisted for at least 5 or 28 days after peptide administration. Following peptide administration and long-term memory disruption, rats were able to acquire new memories. Memory acquisition or consolidation was not impaired when pepR845A was given immediately before the training sessions. Blocking GluA2 endocytosis with the peptide GluA23Y prevented the memory impairment effect of pepR845A. Taken together, our results indicate that the persistence of long-term memory depends on the maintenance of a steady-state level of synaptic GluA2/AMPARs, which requires the interaction of NSF with GluA2.

  12. Sex differences in gene expression for pupa weight in long term selected lines of Tribolium.

    PubMed

    Enfield, F D; Hartung, N; Hefeneider, S H

    1975-03-01

    Full-sib matings in two populations of Tribolium which had been selected for increased pupa weight for more than 85 generations resulted in a significant inbreeding depression in male progeny but showed no effect in the female progeny. An analysis of variance of a population produced by backcrossing the selected populations to the inbred lines originally used to establish the select populations (Design-III) indicated some genes were still segregating which produce dominance effects in males but not in females. The data support the hypothesis that a class of genes exists, associated with the autosomes, that differ in their dominance effects of pupa weight in the two sexes.

  13. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    PubMed

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity.SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for memory

  14. A controlled single-case treatment of severe long-term selective mutism in a child with mental retardation.

    PubMed

    Facon, Bruno; Sahiri, Safia; Rivière, Vinca

    2008-12-01

    The aim of the present study was to demonstrate the efficacy of combining two operant learning procedures--shaping and fading--for treating selective mutism. The participant was a 12-year-old boy with mental retardation presenting a severe long-term selective mutism. The treatment was aimed at increasing the loudness of his vocalizations in an increasingly social milieu. The treatment was conducted over the course of about 20 weeks, with four 15-minute sessions per week. A gradual increase in speech loudness was observed. Data indicated a close correspondence between the changes in speech loudness and the criteria for reinforcement successively applied by the therapist, thereby confirming the causal link between the child's progress and the changes in reinforcement contingencies. In addition, good generalization was noted during the stimulus fading phase. Six-month follow up showed that loudness of verbalizations was still satisfactory in the classroom despite a change of school and peer group. The impressive improvement of the child's verbal behavior shows that the implementation of a treatment package including both shaping and stimulus fading is a worthwhile therapeutic option, even in the case of severe long-term selective mutism associated with mental retardation.

  15. Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds

    PubMed Central

    Keller, G. G.; Famula, T. R.

    2017-01-01

    Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970–2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into

  16. Long-term density-dependent changes in habitat selection in red deer (Cervus elaphus).

    PubMed

    Pérez-Barbería, F J; Hooper, R J; Gordon, I J

    2013-11-01

    Understanding how habitat selection changes with population density is a key concept in population regulation, community composition and managing impacts on biodiversity and ecosystem services. At low density, it is expected that individuals select habitats in terms of their preference, but as population density increases, the availability of resources per individual declines on preferred habitats, leading to competition which forces some individuals to exploit less preferred habitats. Using spatial information of Scottish red deer (Cervus elaphus) winter counts, carried out in 110 areas across Scotland between 1961 and 2004 (a total of 1,206,495 deer observations), we showed how winter habitat niche breadth in red deer has widened with increasing population density. Heather moorland and montane habitats were most and least preferred for deer, respectively. Increasing density favoured the selection of grassland, to the detriment of the selection of heather moorland. The selection of heather and grassland decreased when temperature increased, while the selection of montane and peatland habitats increased. These findings are important for understanding how habitat use, density and population are likely to be affected by weather, and allow us to predict habitat impacts by large mammal herbivory and climate.

  17. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin.

    PubMed

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; Alvares, Lucas de Oliveira

    2016-03-07

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca(2+) channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca(2+) influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time.

  18. Forgetting of long-term memory requires activation of NMDA receptors, L-type voltage-dependent Ca2+ channels, and calcineurin

    PubMed Central

    Sachser, Ricardo Marcelo; Santana, Fabiana; Crestani, Ana Paula; Lunardi, Paula; Pedraza, Lizeth Katherine; Quillfeldt, Jorge Alberto; Hardt, Oliver; de Oliveira Alvares, Lucas

    2016-01-01

    In the past decades, the cellular and molecular mechanisms underlying memory consolidation, reconsolidation, and extinction have been well characterized. However, the neurobiological underpinnings of forgetting processes remain to be elucidated. Here we used behavioral, pharmacological and electrophysiological approaches to explore mechanisms controlling forgetting. We found that post-acquisition chronic inhibition of the N-methyl-D-aspartate receptor (NMDAR), L-type voltage-dependent Ca2+ channel (LVDCC), and protein phosphatase calcineurin (CaN), maintains long-term object location memory that otherwise would have been forgotten. We further show that NMDAR activation is necessary to induce forgetting of object recognition memory. Studying the role of NMDAR activation in the decay of the early phase of long-term potentiation (E-LTP) in the hippocampus, we found that ifenprodil infused 30 min after LTP induction in vivo blocks the decay of CA1-evoked postsynaptic plasticity, suggesting that GluN2B-containing NMDARs activation are critical to promote LTP decay. Taken together, these findings indicate that a well-regulated forgetting process, initiated by Ca2+ influx through LVDCCs and GluN2B-NMDARs followed by CaN activation, controls the maintenance of hippocampal LTP and long-term memories over time. PMID:26947131

  19. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    NASA Astrophysics Data System (ADS)

    Huang, M.; Asner, G. P.

    2009-12-01

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate C losses due to selective logging in a ~2,664,960 sq. km region of the Brazilian Amazon were 0.04 - 0.05 Pg C/yr . In sum, selective logging was responsible for 15-19% higher carbon losses than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon losses via selective logging last two to three decades following harvest, and that the original living biomass takes up to a century to recover, if the forests are not subsequently cleared. High-intensity harvests, which are widespread over the basin, are the major contributors to carbon losses following logging, in addition to obvious impacts on the ecological function of the forests. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon losses in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD).

  20. Long-term far-transfer effects of working memory training in children with ADHD: a randomized controlled trial.

    PubMed

    Bigorra, Aitana; Garolera, Maite; Guijarro, Silvina; Hervás, Amaia

    2016-08-01

    ADHD affects working memory (WM) and other executive functions (EFs) and thereby negatively impacts school performance, clinical symptoms and functional impairment. The main aim of this study was to analyse the efficacy of computerized WM training (CWMT) on EF rating scales. A secondary objective was to assess its efficacy on performance-based measures of EF (PBMEF), learning, clinical symptoms and functional impairment. 66 children with combined-type ADHD between 7 and 12 years of age from the Child and Adolescent Psychiatric Unit (Spain) were included in this randomized, double-blind, placebo-controlled, parallel-group clinical trial. The participants were randomized (1:1) to an experimental group (EG) (CWMT) (n = 36) or a control group (CG) (placebo training). Assessments were conducted at baseline (T0), 1-2 weeks (T1), and 6 months post-intervention (T2) with the administration of EF rating scales, PBMEF, measures of academic achievement, and questionnaires regarding clinical symptoms and functional impairment. Participants, parents, teachers and professionals who performed the cognitive assessments were blinded. Adjusted multiple linear regression analysis showed significant improvements in EF scales-parent version, from T1 to T2, on the metacognition index [p = 0.03, d' = -0.78 (95 % CI -1.28 to -0.27)] and on WM (also significant at T2-T0) and plan/organize subscales. Significant improvements were also noted in EF scales-teacher version, from T0 to T1 and T2, on the metacognitive index [p = 0.05, d' = -0.37 (95 % CI -0.86 to 0.12) T1-T0, p = 0.02, d' = -0.81 (95 % CI -1.31 to -0.30) T2-T0] and on the initiate, WM, monitor and shift subscales. There were also significant improvements in PBMEF, ADHD symptoms, and functional impairment. CWMT had a significant impact on ADHD deficits by achieving long-term far-transfer effects.

  1. Lidocaine Injections Targeting CA3 Hippocampus Impair Long-Term Spatial Memory and Prevent Learning-Induced Mossy Fiber Remodeling

    PubMed Central

    Holahan, Matthew R.; Routtenberg, Aryeh

    2010-01-01

    Learning a spatial location induces remodeling of the mossy fiber terminal field (MFTF) in the CA3 subfield of the dorsal hippocampus (Holahan et al., 2006; Ramirez-Amaya et al., 2001; Rekart et al., 2007a). These fibers appear to grow from the stratum lucidum (SL) into distal stratum oriens (dSO). Is this axonal growth dependent on ‘repeated and persistent’ neural activity in the CA3 region during training? To address this issue, we targeted local inactivation of the MFTF region in a post-training, consolidation paradigm. Male Wistar rats, bilaterally implanted with chronic indwelling cannulae aimed at the MFTF CA3 region, were trained on a hidden platform water maze task (10 trials per day for 5 days). Immediately after the 10th trial on each training day, rats were injected with lidocaine (4% w/V; 171 mM; n = 7) or phosphate-buffered saline (PBS; n = 7). Behavioral measures of latency, path length and thigmotaxis were recorded, as was directional heading. A retention test (probe trial) was given 7 days after the last training day and brains were subsequently processed for MFTF distribution (Timm’s stain) and cannula location. Lidocaine treatment was found to block the learning-associated structural remodeling of the MFTF that was reported previously and observed in the PBS-injected controls. During training, the lidocaine group showed elevated latencies and a misdirected heading to locate the platform on the first trial of each training day. On the 7-day retention probe trial, the lidocaine-injected group showed poor retention indicated by the absence of a search bias in the area where the platform had been located during training. These data suggest that reduction of neuronal activity in the CA3 region impairs long-term storage of spatial information. As this was associated with reduced MFTF structural remodeling, it provides initial anatomical and behavioral evidence for an activity – dependent, presynaptic growth model of memory. PMID:20865723

  2. Long-term effects of group-selection timber harvesting on abundance of forest birds.

    PubMed

    Campbell, Steven P; Witham, Jack W; Hunter, Malcolm L

    2007-10-01

    Relatively few studies have examined the ecological effects of group-selection timber harvesting, and nearly all have been short-term and have lacked experimental manipulations that allow pre- and posttreatment comparisons. We have been documenting the effects of a group-selection timber harvest on bird abundance in a Maine forest for 24 years (preharvest, 1983-1987; postharvest, 1988-2006). Here we characterized the trends in bird abundance over the first 20 years of the study in the managed and control halves of the 40-ha study area. Species responses to the group-selection harvest were idiosyncratic, but in general the mature-forest bird community was retained and species dependent on early successional habitat temporarily (selection harvest on birds and thus provides important information on the strength, direction, and duration of temporal changes in bird populations following forest management.

  3. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    SciTech Connect

    Huang, Maoyi; Asner, Gregory P.

    2010-09-30

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate that C emissions were 0.04 – 0.05 Pg C yr-1 due to selective logging from a ~2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999-2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  4. Long-term carbon loss and recovery following selective logging in Amazon forests

    NASA Astrophysics Data System (ADS)

    Huang, Maoyi; Asner, Gregory P.

    2010-09-01

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically based modeling approach in combination with high resolution remote sensing data from 1999 to 2002, we estimate that C emissions were 0.04-0.05 Pg C yr-1 due to selective logging from a ˜2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999 to 2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rain forest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest-related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  5. The effects of demography and long-term selection on the accuracy of genomic prediction with sequence data.

    PubMed

    MacLeod, Iona M; Hayes, Ben J; Goddard, Michael E

    2014-12-01

    The use of dense SNPs to predict the genetic value of an individual for a complex trait is often referred to as "genomic selection" in livestock and crops, but is also relevant to human genetics to predict, for example, complex genetic disease risk. The accuracy of prediction depends on the strength of linkage disequilibrium (LD) between SNPs and causal mutations. If sequence data were used instead of dense SNPs, accuracy should increase because causal mutations are present, but demographic history and long-term negative selection also influence accuracy. We therefore evaluated genomic prediction, using simulated sequence in two contrasting populations: one reducing from an ancestrally large effective population size (Ne) to a small one, with high LD common in domestic livestock, while the second had a large constant-sized Ne with low LD similar to that in some human or outbred plant populations. There were two scenarios in each population; causal variants were either neutral or under long-term negative selection. For large Ne, sequence data led to a 22% increase in accuracy relative to ∼600K SNP chip data with a Bayesian analysis and a more modest advantage with a BLUP analysis. This advantage increased when causal variants were influenced by negative selection, and accuracy persisted when 10 generations separated reference and validation populations. However, in the reducing Ne population, there was little advantage for sequence even with negative selection. This study demonstrates the joint influence of demography and selection on accuracy of prediction and improves our understanding of how best to exploit sequence for genomic prediction.

  6. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.

    PubMed

    Dossat, Amanda M; Jourdi, Hussam; Wright, Katherine N; Strong, Caroline E; Sarkar, Ambalika; Kabbaj, Mohamed

    2017-01-06

    In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones.

  7. [Violent video games and aggression: long-term impact and selection effects].

    PubMed

    Staude-Müller, Frithjof

    2011-01-01

    This study applied social-cognitive models of aggression in order to examine relations between video game use and aggressive tendencies and biases in social information processing. To this end, 499 secondary school students (aged 12-16) completed a survey on two occasions one year apart. Hierarchical regression analysis probed media effects and selection effects and included relevant contextual variables (parental monitoring of media consumption, impulsivity, and victimization). Results revealed that it was not the consumption of violent video games but rather an uncontrolled pattern of video game use that was associated with increasing aggressive tendencies. This increase was partly mediated by a hostile attribution bias in social information processing. The influence of aggressive tendencies on later video game consumption was also examined (selection path). Adolescents with aggressive traits intensified their video game behavior only in terms of their uncontrolled video game use. This was found even after controlling for sensation seeking and parental media control.

  8. How does adaptation sweep through the genome? Insights from long-term selection experiments.

    PubMed

    Burke, Molly K

    2012-12-22

    A major goal in evolutionary biology is to understand the origins and fates of adaptive mutations. Natural selection may act to increase the frequency of de novo beneficial mutations, or those already present in the population as standing genetic variation. These beneficial mutations may ultimately reach fixation in a population, or they may stop increasing in frequency once a particular phenotypic state has been achieved. It is not yet well understood how different features of population biology, and/or different environmental circumstances affect these adaptive processes. Experimental evolution is a promising technique for studying the dynamics of beneficial alleles, as populations evolving in the laboratory experience natural selection in a replicated, controlled manner. Whole-genome sequencing, regularly obtained over the course of sustained laboratory selection, could potentially reveal insights into the mutational dynamics that most likely occur in natural populations under similar circumstances. To date, only a few evolution experiments for which whole-genome data are available exist. This review describes results from these resequenced laboratory-selected populations, in systems with and without sexual recombination. In asexual systems, adaptation from new mutations can be studied, and results to date suggest that the complete, unimpeded fixation of these mutations is not always observed. In sexual systems, adaptation from standing genetic variation can be studied, and in the admittedly few examples we have, the complete fixation of standing variants is not always observed. To date, the relative frequency of adaptation from new mutations versus standing variation has not been tested using a single experimental system, but recent studies using Caenorhabditis elegans and Saccharomyces cerevisiae suggest that this a realistic future goal.

  9. Emergence of long-term balanced polymorphism under cyclic selection of spatially variable magnitude.

    PubMed

    Gulisija, Davorka; Kim, Yuseob

    2015-04-01

    A fundamental question in evolutionary biology is what promotes genetic variation at nonneutral loci, a major precursor to adaptation in changing environments. In particular, balanced polymorphism under realistic evolutionary models of temporally varying environments in finite natural populations remains to be demonstrated. Here, we propose a novel mechanism of balancing selection under temporally varying fitnesses. Using forward-in-time computer simulations and mathematical analysis, we show that cyclic selection that spatially varies in magnitude, such as along an environmental gradient, can lead to elevated levels of nonneutral genetic polymorphism in finite populations. Balanced polymorphism is more likely with an increase in gene flow, magnitude and period of fitness oscillations, and spatial heterogeneity. This polymorphism-promoting effect is robust to small systematic fitness differences between competing alleles or to random environmental perturbation. Furthermore, we demonstrate analytically that protected polymorphism arises as spatially heterogeneous cyclic fitness oscillations generate a type of storage effect that leads to negative frequency dependent selection. Our findings imply that spatially variable cyclic environments can promote elevated levels of nonneutral genetic variation in natural populations.

  10. Short Communication: Low Immune Activation Is Associated with Higher Frequencies of Central Memory T Cell Subset in a Cohort of Indian Long-Term Nonprogressors.

    PubMed

    Saxena, Vandana; Bichare, Shubhangi; Singh, Dharmendra; Ghate, Manisha; Godbole, Sheela; Kulkarni, Smita; Gangakhedkar, Raman; Paranjape, Ramesh; Thakar, Madhuri

    2017-02-01

    Persistent immune activation in human immunodeficiency virus (HIV) infection is responsible for alterations in immune system such as activation, apoptosis, and reduced frequencies. Reduced immune activation is known to be associated with virus control. Limited information is available on the influence of pan-immune activation on memory responses. Hence, we compared the T cell activation and memory profile in HIV-infected individuals exhibiting disease control such as long-term nonprogressors (LTNPs) and progressors. The activated CD4(+) and CD8(+) T cells were significantly lower and the CD4(+) and CD8(+) central memory T cell phenotypes were significantly higher in the LTNPs compared to the progressors. In addition, we observed significant inverse association between the T cell activation and frequencies of central memory T cells. Our findings indicate that patients with absence of disease progression have preserved central memory T cell population associated with lesser immune activation.

  11. Plant selection and soil legacy enhance long-term biodiversity effects.

    PubMed

    Zuppinger-Dingley, Debra; Flynn, Dan F B; De Deyn, Gerlinde B; Petermann, Jana S; Schmid, Bernhard

    2016-04-01

    Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of

  12. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  13. Differential Roles for "Nr4a1" and "Nr4a2" in Object Location vs. Object Recognition Long-Term Memory

    ERIC Educational Resources Information Center

    McNulty, Susan E.; Barrett, Ruth M.; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M. Felicia; Matheos, Dina P.; Schiffman, Aaron; Wood, Marcelo A.

    2012-01-01

    "Nr4a1" and "Nr4a2" are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either "Nr4a1" or "Nr4a2", we found that "Nr4a2" is necessary for both long-term…

  14. Genetic Structure and Selection of a Core Collection for Long Term Conservation of Avocado in Mexico

    PubMed Central

    Guzmán, Luis F.; Machida-Hirano, Ryoko; Borrayo, Ernesto; Cortés-Cruz, Moisés; Espíndola-Barquera, María del Carmen; Heredia García, Elena

    2017-01-01

    Mexico, as the center of origin of avocado (Persea americama Mill.), harbors a wide genetic diversity of this species, whose identification may provide the grounds to not only understand its unique population structure and domestication history, but also inform the efforts aimed at its conservation. Although molecular characterization of cultivated avocado germplasm has been studied by several research groups, this had not been the case in Mexico. In order to elucidate the genetic structure of avocado in Mexico and the sustainable use of its genetic resources, 318 avocado accessions conserved in the germplasm collection in the National Avocado Genebank were analyzed using 28 markers [9 expressed sequence tag-Simple Sequence Repeats (SSRs) and 19 genomic SSRs]. Deviation from Hardy Weinberg Equilibrium and high inter-locus linkage disequilibrium were observed especially in drymifolia, and guatemalensis. Total averages of the observed and expected heterozygosity were 0.59 and 0.75, respectively. Although clear genetic differentiation was not observed among 3 botanical races: americana, drymifolia, and guatemalensis, the analyzed Mexican population can be classified into two groups that correspond to two different ecological regions. We developed a core-collection by K-means clustering method. The selected 36 individuals as core-collection successfully represented more than 80% of total alleles and showed heterozygosity values equal to or higher than those of the original collection, despite its constituting slightly more than 10% of the latter. Accessions selected as members of the core collection have now become candidates to be introduced in cryopreservation implying a minimum loss of genetic diversity and a back-up for existing field collections of such important genetic resources. PMID:28286510

  15. Long-term balancing selection at the antiviral gene OAS1 in Central African chimpanzees.

    PubMed

    Ferguson, William; Dvora, Shira; Fikes, Ronald W; Stone, Anne C; Boissinot, Stéphane

    2012-04-01

    Oligoadenylate synthetases (OAS) are interferon-induced enzymes that participate in the first line of defense against a wide range of viral infection in animals. Upon activation by viral double-stranded RNA, OAS synthesizes (2-5) oligoadenylates, which activate RNase L, leading to the nonspecific degradation of cellular and viral RNA. Some association studies in humans suggest that variation at one of the OAS genes, OAS1, could be influencing host susceptibility to viral infection. We assessed the diversity of OAS1 in hominoid primates with a focus on chimpanzees. We found that the OAS1 gene is extremely polymorphic in Central African chimpanzee and exhibits levels of silent and replacement diversity much higher than neutral regions of the chimpanzee genome. This level of variation strongly suggests that balancing selection is acting on OAS1, and indeed, this conclusion was validated by several tests of neutrality. We further demonstrated that balancing selection has been acting at this locus since the split between chimpanzees, humans, and gorillas (~8.6 Ma) and caused the persistence of two deeply divergent allelic lineages in Central African chimpanzees. These two groups of OAS1 alleles differ by a large number of amino acids (a.a.), including several a.a. putatively involved in RNA binding. It is therefore very likely that variation at the OAS1 locus affects the innate immune response of individuals to specific viral infection. Our data strongly suggest that interactions between viral RNA and OAS1 are responsible for the maintenance of ancestral polymorphisms at this locus for at least 13.2 My.

  16. Immediate recall influences the effects of pre-encoding stress on emotional episodic long-term memory consolidation in healthy young men.

    PubMed

    Wolf, Oliver T

    2012-05-01

    The stress-associated activation of the hypothalamus-pituitary-adrenal axis influences memory. Several studies have supported the notion that post-learning stress enhances memory consolidation, while pre-retrieval stress impairs retrieval. Findings regarding the effects of pre-encoding stress, in contrast, have been rather inconsistent. In the current two studies, the impact of an immediate retrieval task on these effects was explored. In the first study, 24 healthy young male participants were exposed to a psychosocial laboratory stressor (Trier Social Stress Test) or a control condition before viewing positive, negative, and neutral photographs, which were accompanied by a brief narrative. Immediate as well as delayed (24 h later) free recall was assessed. Stress was expected to enhance emotional long-term memory without affecting immediate recall performance. Stress caused a significant increase in salivary cortisol concentrations but had no significant effects on immediate or delayed retrieval performance, even though a trend toward poorer memory of the stress group was apparent. Based on these findings, the second experiment tested the hypothesis that the beneficial effects of stress on emotional long-term memory performance might be abolished by an immediate recall test. In the second study (n = 32), the same design was used, except for the omission of the immediate retrieval test. This time stressed participants recalled significantly more negative photographs compared to the control group. The present study indicates that an immediate retrieval attempt of material studied after stress exposure can prevent or even reverse the beneficial effects of pre-encoding stress on emotional long-term memory consolidation.

  17. Brief treatment with a highly selective immunoproteasome inhibitor promotes long-term cardiac allograft acceptance in mice

    PubMed Central

    Sula Karreci, Esilida; Fan, Hao; Uehara, Mayuko; Mihali, Albana B.; Singh, Pradeep K.; Kurdi, Ahmed T.; Solhjou, Zhabiz; Riella, Leonardo V.; Ghobrial, Irene; Laragione, Teresina; Routray, Sujit; Assaker, Jean Pierre; Wang, Rong; Sukenick, George; Shi, Lei; Barrat, Franck J.; Nathan, Carl F.; Lin, Gang; Azzi, Jamil

    2016-01-01

    Constitutive proteasomes (c-20S) are ubiquitously expressed cellular proteases that degrade polyubiquitinated proteins and regulate cell functions. An isoform of proteasome, the immunoproteasome (i-20S), is highly expressed in human T cells, dendritic cells (DCs), and B cells, suggesting that it could be a potential target for inflammatory diseases, including those involving autoimmunity and alloimmunity. Here, we describe DPLG3, a rationally designed, noncovalent inhibitor of the immunoproteasome chymotryptic subunit β5i that has thousands-fold selectivity over constitutive β5c. DPLG3 suppressed cytokine release from blood mononuclear cells and the activation of DCs and T cells, diminished accumulation of effector T cells, promoted expression of exhaustion and coinhibitory markers on T cells, and synergized with CTLA4-Ig to promote long-term acceptance of cardiac allografts across a major histocompatibility barrier. These findings demonstrate the potential value of using brief posttransplant immunoproteasome inhibition to entrain a long-term response favorable to allograft survival as part of an immunomodulatory regimen that is neither broadly immunosuppressive nor toxic. PMID:27956634

  18. Having the Memory of an Elephant: Long-Term Retrieval and the Use of Analogues in Problem Solving

    ERIC Educational Resources Information Center

    Chen, Zhe; Mo, Lei; Honomichl, Ryan

    2004-01-01

    The authors report 4 experiments exploring long-term analogical transfer from problem solutions in folk tales participants heard during childhood, many years before encountering the target problems. Substantial culture-specific analogical transfer was found when American and Chinese participants' performance was compared on isomorphs of problems…

  19. Evidence for inflammation-mediated memory dysfunction in gastropods: putative PLA2 and COX inhibitors abolish long-term memory failure induced by systemic immune challenges

    PubMed Central

    2013-01-01

    Background Previous studies associate lipid peroxidation with long-term memory (LTM) failure in a gastropod model (Lymnaea stagnalis) of associative learning and memory. This process involves activation of Phospholipase A2 (PLA2), an enzyme mediating the release of fatty acids such as arachidonic acid that form the precursor for a variety of pro-inflammatory lipid metabolites. This study investigated the effect of biologically realistic challenges of L. stagnalis host defense response system on LTM function and potential involvement of PLA2, COX and LOX therein. Results Systemic immune challenges by means of β-glucan laminarin injections induced elevated H2O2 release from L. stagnalis circulatory immune cells within 3 hrs of treatment. This effect dissipated within 24 hrs after treatment. Laminarin exposure has no direct effect on neuronal activity. Laminarin injections disrupted LTM formation if training followed within 1 hr after injection but had no behavioural impact if training started 24 hrs after treatment. Intermediate term memory was not affected by laminarin injection. Chemosensory and motor functions underpinning the feeding response involved in this learning model were not affected by laminarin injection. Laminarin’s suppression of LTM induction was reversed by treatment with aristolochic acid, a PLA2 inhibitor, or indomethacin, a putative COX inhibitor, but not by treatment with nordihydro-guaiaretic acid, a putative LOX inhibitor. Conclusions A systemic immune challenge administered shortly before behavioural training impairs associative LTM function in our model that can be countered with putative inhibitors of PLA2 and COX, but not LOX. As such, this study establishes a mechanistic link between the state of activity of this gastropod’s innate immune system and higher order nervous system function. Our findings underwrite the rapidly expanding view of neuroinflammatory processes as a fundamental, evolutionary conserved cause of cognitive and

  20. Piracetam facilitates long-term memory for a passive avoidance task in chicks through a mechanism that requires a brain corticosteroid action.

    PubMed

    Loscertales, M; Rose, S P; Daisley, J N; Sandi, C

    1998-07-01

    We investigated the effects of piracetam, a nootropic, on learning and memory formation for a passive avoidance task in day-old chicks. To test for the possible cognitive-enhancing properties of piracetam, a weak learning version of this task--whereby chicks maintain a memory to avoid pecking at a bead coated in a diluted aversant for up to 10 h--was used. Post-training (5, 30 or 60 min), but not pretraining, injections of piracetam (10 or 50 mg/kg, i.p.) increased recall for the task when the chicks were tested 24 h later. Because previous studies showed that long-term memory for the passive avoidance task is dependent upon a brain corticosteroid action, and because the efficacy of piracetam-like compounds is also modulated by corticosteroids, we tested whether the facilitating effect of piracetam was dependent upon a corticosteroid action through specific brain receptors (mineralocorticoid receptor and glucocorticoid receptor). First, increased plasma levels of corticosterone were found 5 min after piracetam injection. In addition, intracerebral administration of antagonists for each receptor type (RU28318, for mineralocorticoid receptors, and RU38486 for glucocorticoid receptors; i.c.) given before the nootropic inhibited the facilitative effect of piracetam on memory consolidation. These results give further support to a modulatory action of piracetam on the mechanisms involved in long-term memory formation through a neural action that, in this learning model, requires the activation of the two types of intracellular corticosteroid receptors.

  1. The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.

    PubMed

    Pick, Joseph E; Malumbres, Marcos; Klann, Eric

    2012-12-14

    The anaphase promoting complex/cyclosome (APC/C) is an E3 ligase regulated by Cdh1. Beyond its role in controlling cell cycle progression, APC/C-Cdh1 has been detected in neurons and plays a role in long-lasting synaptic plasticity and long-term memory. Herein, we further examined the role of Cdh1 in synaptic plasticity and memory by generating knockout mice where Cdh1 was conditionally eliminated from the forebrain post-developmentally. Although spatial learning and memory in the Morris water maze (MWM) was normal, the Cdh1 conditional knockout (cKO) mice displayed enhanced reversal learning in the MWM and in a water-based Y maze. In addition, we found that the Cdh1 cKO mice had impaired associative fear memory and exhibited impaired long-term potentiation (LTP) in amygdala slices. Finally, we observed increased expression of Shank1 and NR2A expression in amygdalar slices from the Cdh1 cKO mice following the induction of LTP, suggesting a possible molecular mechanism underlying the behavioral and synaptic plasticity impairments displayed in these mice. Our findings are consistent with a role for the APC/C-Cdh1 in fear memory and synaptic plasticity in the amygdala.

  2. Does unemployment cause long-term mortality? Selection and causation after the 1992–96 deep Swedish recession

    PubMed Central

    Garcy, Anthony M.

    2016-01-01

    Background: Mass unemployment in Europe is endemic, especially among the young. Does it cause mortality? Methods: We analyzed long-term effects of unemployment occurring during the deep Swedish recession 1992–96. Mortality from all and selected causes was examined in the 6-year period after the recession among those employed in 1990 (3.4 million). Direct health selection was analyzed as risk of unemployment by prior medical history based on all hospitalizations 1981–91. Unemployment effects on mortality were estimated with and without adjustment for prior social characteristics and for prior medical history. Results: A prior circulatory disease history did not predict unemployment; a history of alcohol-related disease or suicide attempts did, in men and women. Unemployment predicted excess male, but not female, mortality from circulatory disease, both ischemic heart disease and stroke, and from all causes combined, after full adjustment. Adjustment for prior social characteristics reduced estimates considerably; additional adjustment for prior medical history did not. Mortality from external and alcohol-related causes was raised in men and women experiencing unemployment, after adjustment for social characteristics and medical history. For the youngest birth cohorts fully adjusted alcohol mortality HRs were substantial (male HR = 4.44; female HR = 5.73). The effect of unemployment on mortality was not uniform across the population; men, those with a low education, low income, unmarried or in urban employment were more vulnerable. Conclusions: Direct selection by medical history explains a modest fraction of any increased mortality risk following unemployment. Mass unemployment imposes long-term mortality risk on a sizeable segment of the population. PMID:27085193

  3. Evolutionary response to selection on clutch size in a long-term study of the mute swan.

    PubMed

    Charmantier, Anne; Perrins, Christopher; McCleery, Robin H; Sheldon, Ben C

    2006-03-01

    Life-history traits in wild populations are often regarded as being subject to directional selection, and the existence of substantial variation and microevolutionary stasis of these characters is therefore a problem in need of explanation. Avian clutch size is an archetypal life-history trait in this context, and many studies have sought to test explanations for stasis in clutch size. Surprisingly, there are many fewer studies that used long-term data to ask how selection acts on clutch size, particularly in a multivariate framework. In this article, we report selection, inheritance, and evolution of clutch size over 25 years in a colony of mute swans using a multivariate quantitative genetic framework to control for correlations with breeding time. We show that clutch size is influenced by both additive genetic and permanent environmental effects and that selection acts on clutch size in combination with breeding time. Natural selection on clutch size is strongly directional, favoring larger clutches, and we observe an increase in clutch size of 0.35 standard deviations, consistent with the expected response based on selection and inheritance of clutch size. We hypothesize that these changes result from recent relaxation of food constraints and predation risks experienced by this colony.

  4. Long-Term Memory for Instrumental Responses Does Not Undergo Protein Synthesis-Dependent Reconsolidation upon Retrieval

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Kelley, Ann E.

    2004-01-01

    Recent evidence indicates that certain forms of memory, upon recall, may return to a labile state requiring the synthesis of new proteins in order to preserve or reconsolidate the original memory trace. While the initial consolidation of "instrumental memories" has been shown to require de novo protein synthesis in the nucleus accumbens, it is not…

  5. The Less Things Change, the More They Are Different: Contributions of Long-Term Synaptic Plasticity and Homeostasis to Memory

    ERIC Educational Resources Information Center

    Schacher, Samuel; Hu, Jiang-Yuan

    2014-01-01

    An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for…

  6. Selection of Hidden Layer Neurons and Best Training Method for FFNN in Application of Long Term Load Forecasting

    NASA Astrophysics Data System (ADS)

    Singh, Navneet K.; Singh, Asheesh K.; Tripathy, Manoj

    2012-05-01

    For power industries electricity load forecast plays an important role for real-time control, security, optimal unit commitment, economic scheduling, maintenance, energy management, and plant structure planning etc. A new technique for long term load forecasting (LTLF) using optimized feed forward artificial neural network (FFNN) architecture is presented in this paper, which selects optimal number of neurons in the hidden layer as well as the best training method for the case study. The prediction performance of proposed technique is evaluated using mean absolute percentage error (MAPE) of Thailand private electricity consumption and forecasted data. The results obtained are compared with the results of classical auto-regressive (AR) and moving average (MA) methods. It is, in general, observed that the proposed method is prediction wise more accurate.

  7. Spatial cognition and memory: a reversible lesion with lidocaine into the anteromedial/posterior parietal cortex (AM/PPC) affects differently working and long-term memory on two foraging tasks.

    PubMed

    Espina-Marchant, Pablo; Pinto-Hamuy, Teresa; Bustamante, Diego; Morales, Paola; Robles, Luis; Herrera-Marschitz, Mario

    2006-01-01

    Place memory is relevant for exploration and forage behaviour. When food supply is dispersed, a win-shift has advantage over a win-stay strategy. In the Olton Octagonal Maze, the rat follows a win-shift strategy using working memory. However, in the Olton 4x4 version, the rat follows a win-stay strategy, using both working and long-term memories. It has been suggested that the neocortex is required for the resolution of tasks demanding long-term, but not for that demanding working memory alone. The role of anteromedial/posterior parietal cortex (AM/PPC) was investigated here, using a reversible lesion induced by intracerebral lidocaine infusion. Long-Evans rats were implanted with guide cannulae into the AM/PPC and trained in an Olton 4x4 maze, counting working and long-term memory errors after a delay. Then, the animals were infused with lidocaine or saline during the delay phase and tested for three days. Another series of animals, treated as before, was tested in an Olton Octagonal Maze and subjected to the same injection schedule. In the Olton 4x4 Maze, lidocaine produced a significant increase in working and long-term memory errors, compared to saline and post-lidocaine conditions. In contrast, in the Olton Octagonal Maze, lidocaine did not induce any effect on working memory errors. Thus, AM/PPC is required when both working with previous information and long-term memories are needed, but not when only working memory is required, as it happens under ethological conditions. Whenever food supply is dispersed, a win-shift strategy is preferable.

  8. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  9. The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory

    PubMed Central

    Daumas, Stephanie; Hu