Evolutionary stasis in Euphorbiaceae pollen: selection and constraints.
Matamoro-Vidal, A; Furness, C A; Gouyon, P-H; Wurdack, K J; Albert, B
2012-06-01
Although much attention has been paid to the role of stabilizing selection, empirical analyses testing the role of developmental constraints in evolutionary stasis remain rare, particularly for plants. This topic is studied here with a focus on the evolution of a pollen ontogenetic feature, the last points of callose deposition (LPCD) pattern, involved in the determination of an adaptive morphological pollen character (aperture pattern). The LPCD pattern exhibits a low level of evolution in eudicots, as compared to the evolution observed in monocots. Stasis in this pattern might be explained by developmental constraints expressed during male meiosis (microsporogenesis) or by selective pressures expressed through the adaptive role of the aperture pattern. Here, we demonstrate that the LPCD pattern is conserved in Euphorbiaceae s.s. and that this conservatism is primarily due to selective pressures. A phylogenetic association was found between the putative removal of selective pressures on pollen morphology after the origin of inaperturate pollen, and the appearance of variation in microsporogenesis and in the resulting LPCD pattern, suggesting that stasis was due to these selective pressures. However, even in a neutral context, variation in microsporogenesis was biased. This should therefore favour the appearance of some developmental and morphological phenotypes rather than others. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Optimization of stable quadruped locomotion using mutual information
NASA Astrophysics Data System (ADS)
Silva, Pedro; Santos, Cristina P.; Polani, Daniel
2013-10-01
Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.
Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang
2015-08-26
The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.
NASA Astrophysics Data System (ADS)
Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki
2018-01-01
We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.
NASA Astrophysics Data System (ADS)
Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro
2017-06-01
The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).
Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki
2017-06-01
Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.
A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors
Nefti-Meziani, Samia; Carbonaro, Nicola
2017-01-01
Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively. PMID:28858252
A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors.
Russo, Stefania; Nefti-Meziani, Samia; Carbonaro, Nicola; Tognetti, Alessandro
2017-08-31
Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively.
Patterning of alloy precipitation through external pressure
NASA Astrophysics Data System (ADS)
Franklin, Jack A.
Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.
Brown, Kirsten M
2015-07-01
Sexual dimorphism in the human bony pelvis is commonly assumed to be related to the intensity of obstetrical selective pressures. With intense obstetrical selective pressures, there should be greater shape dimorphism; with minimal obstetrical selective pressures, there should be reduced shape dimorphism. This pattern is seen in the nondimorphic anterior spaces and highly dimorphic posterior spaces. Decoupling sexual dimorphism in these spaces may in turn be related to the differential influence of other selective pressures, such as biomechanical ones. The relationship between sexual dimorphism and selective pressures in the human pelvis was examined using five skeletal samples (total female n = 101; male n = 103). Pelvic shape was quantified by collecting landmark coordinate data on articulated pelves. Euclidean distance matrix analysis was used to extract the distances that defined the anterior and posterior pelvic spaces. Sex and body mass were used as proxies for obstetrical and biomechanical selective pressures, respectively. MANCOVA analyses demonstrate significant effects of sex and body mass on distances in both the anterior and the posterior spaces. A comparison of the relative contribution of shape variance attributed to each of these factors suggests that the posterior space is more influenced by sex, and obstetrics by proxy, whereas the anterior space is more influenced by body mass, and biomechanics by proxy. Although the overall shape of the pelvis has been influenced by obstetrical and biomechanical selective pressures, there is a differential response within the pelvis to these factors. These results provide new insight into the ongoing debate on the obstetrical dilemma hypothesis. © 2015 Wiley Periodicals, Inc.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-08-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-01-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971
Lancaster, Lesley T; McAdam, Andrew G; Hipsley, Christy A; Sinervo, Barry R
2014-08-01
Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disassortatively) with rare male morphotypes to produce conditionally fit offspring. Conversely, under correlational selection, females should mate assortatively to preserve coadapted gene complexes and avoid ontogenetic conflict. Using controlled breeding designs, we evaluated consequences of assortative mating patterns in color-polymorphic side-blotched lizards (Uta stansburiana), to identify conflict between these sources of selection. Females who mated disassortatively, and to conditionally high-quality males in the context of frequency-dependent selection, experienced highest fertility rates. In contrast, assortatively mated females experienced higher fetal viability rates. The trade-off between fertility and egg viability resulted in no overall fitness benefit to either assortative or disassortative mating patterns. These results suggest that ongoing conflict between correlational and frequency dependent selection in polymorphic populations may generate a trade-off between rare-morph advantage and phenotypic integration and between assortative and disassortative mating decisions. More generally, interactions among multiple sources of diversity-promoting selection can alter adaptations and dynamics predicted to arise under any of these regimes alone.
Ennen, Joshua R.; Lindeman, Peter V.; Lovich, Jeffrey E.
2015-01-01
Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves.
Evolutionary stasis in pollen morphogenesis due to natural selection.
Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri
2016-01-01
The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Analysis of Synonymous Codon Usage Bias of Zika Virus and Its Adaption to the Hosts
Wang, Hongju; Liu, Siqing; Zhang, Bo
2016-01-01
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts. PMID:27893824
Van Damme, Raoul
2018-01-01
Animal signalling structures are amongst the most variable characteristics, as they are subjected to a diversity of selection pressures. A well-known example of a diverse signalling system in the animal kingdom is the dewlap of Anolis lizards. Dewlap characteristics can vary remarkably among and within species, and also between sexes. Although a considerable amount of studies have attempted to disentangle the functional significance of the staggering dewlap diversity in Anolis, the underlying evolutionary processes remain elusive. In this study, we focus on the contribution of biotic selective pressures in shaping geographic variation in dewlap design (size, colour, and pattern) and dewlap display behaviour at the intraspecific level. Notably, we have tried to replicate and extend previously reported results hereof in both sexes of the brown anole lizard (Anolis sagrei). To do this, we assembled a dataset consisting of 17 A. sagrei heterogeneous island populations from the Caribbean and specifically tested whether predation pressure, sexual selection, or species recognition could explain interpopulational variation in an array of dewlap characteristics. Our findings show that in neither males nor females estimates of predation pressure (island size, tail break frequency, model attack rate, presence of predatory Leiocephalus lizards) or sexual selection (sexual size dimorphism) could explain variation in dewlap design. We did find that A. sagrei males from larger islands showed higher dewlap display intensities than males from smaller islands, but the direct connection with predation pressure remains ambiguous and demands further investigation. Last, we could show indirect support for species recognition only in males, as they are more likely to have a ‘spotted’ dewlap pattern when co-occurring with a higher number of syntopic Anolis species. In conclusion, we found overall limited support for the idea that the extensive interpopulational variability in dewlap design and use in A. sagrei is mediated by variation in their biotic environment. We propose a variety of conceptual and methodological explanations for this unexpected finding. PMID:29761044
Riley, Megan E; Griffen, Blaine D
2017-01-01
Range shifts and expansions resulting from global climate change have the potential to create novel communities with unique plant-animal interactions. Organisms expanding their range into novel biotic and abiotic environments may encounter selection pressures that alter traditional biogeographic patterns of life history traits. Here, we used field surveys to examine latitudinal patterns of life history traits in a broadly distributed ectotherm (mangrove tree crab Aratus pisonii) that has recently experienced a climate change-induced range expansion into a novel habitat type. Additionally, we conducted laboratory and field experiments to investigate characteristics associated with these life history traits (e.g. fecundity, offspring quality, and potential selection pressures). We compared these characteristics in native mangrove habitats in which the species has historically dwelled and novel salt marsh habitats into which the species has recently expanded its range. Consistent with traditional biogeographic concepts (i.e. Bergmann's clines), size at maturity and mean body size of reproductive females increased with latitude within the native habitat. However, they decreased significantly in novel habitats at the highest latitudes of the species' range, which was consistent with habitat-specific differences in both biotic (predation) and abiotic (temperature) selection pressures. Although initial maternal investment (egg volume and weight) did not differ between habitats, fecundity was lower in novel habitats as a result of differences in size at reproduction. Offspring quality, as measured by larval starvation resistance, was likewise diminished in novel habitats relative to native habitats. These differences in offspring quality may have enduring consequences for species success and persistence in novel habitats. Life history characteristics such as those investigated here are fundamental organismal traits; consequently, understanding the potential impacts of climate change responses on latitudinal patterns of these traits is key to understanding climate change impacts on natural systems.
Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.
Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R
2011-03-04
GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.
Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L
2010-12-01
Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.
Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D
2013-09-01
Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann
2018-03-01
Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.
Mandlik, Vineetha; Shinde, Sonali; Singh, Shailza
2014-06-21
Selection pressure governs the relative mutability and the conservedness of a protein across the protein family. Biomolecules (DNA, RNA and proteins) continuously evolve under the effect of evolutionary pressure that arises as a consequence of the host parasite interaction. IPCS (Inositol phosphorylceramide synthase), SPL (Sphingosine-1-P lyase) and SPT (Serine palmitoyl transferase) represent three important enzymes involved in the sphingolipid metabolism of Leishmania. These enzymes are responsible for maintaining the viability and infectivity of the parasite and have been classified as druggable targets in the parasite metabolome. The present work relates to the role of selection pressure deciding functional conservedness and divergence of the drug targets. IPCS and SPL protein families appear to diverge from the SPT family. The three protein families were largely under the influence of purifying selection and were moderately conserved baring two residues in the IPCS protein which were under the influence of positive selection. To further explore the selection pressure at the codon level, codon usage bias indices were calculated to analyze genes for their synonymous codon usage pattern. IPCS gene exhibited slightly lower codon bias as compared to SPL and SPT protein families. Evolutionary tracing of the proposed drug targets has been done with a viewpoint that the amino-acids lining the drug binding pocket should have a lower evolvability. Sites under positive selection (HIS20 and CYS30 of IPCS) should be avoided during devising strategies for inhibitor design.
Transducer selection and application in magnetoacoustic tomography with magnetic induction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn
2016-03-07
As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharpmore » and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.« less
Detecting consistent patterns of directional adaptation using differential selection codon models.
Parto, Sahar; Lartillot, Nicolas
2017-06-23
Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toma, P.R.; Vargas, E.; Kuru, E.
Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less
Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.
Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K
2016-08-02
Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. Copyright © 2016 Elsevier B.V. All rights reserved.
Passive tire pressure sensor and method
Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook
2006-08-29
A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.
Passive tire pressure sensor and method
Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook
2007-09-04
A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.
Fate of a mutation in a fluctuating environment
Cvijović, Ivana; Good, Benjamin H.; Jerison, Elizabeth R.; Desai, Michael M.
2015-01-01
Natural environments are never truly constant, but the evolutionary implications of temporally varying selection pressures remain poorly understood. Here we investigate how the fate of a new mutation in a fluctuating environment depends on the dynamics of environmental variation and on the selective pressures in each condition. We find that even when a mutation experiences many environmental epochs before fixing or going extinct, its fate is not necessarily determined by its time-averaged selective effect. Instead, environmental variability reduces the efficiency of selection across a broad parameter regime, rendering selection unable to distinguish between mutations that are substantially beneficial and substantially deleterious on average. Temporal fluctuations can also dramatically increase fixation probabilities, often making the details of these fluctuations more important than the average selection pressures acting on each new mutation. For example, mutations that result in a trade-off between conditions but are strongly deleterious on average can nevertheless be more likely to fix than mutations that are always neutral or beneficial. These effects can have important implications for patterns of molecular evolution in variable environments, and they suggest that it may often be difficult for populations to maintain specialist traits, even when their loss leads to a decline in time-averaged fitness. PMID:26305937
Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A
2016-10-01
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
ERIC Educational Resources Information Center
Hung, Pham Thien
The 66 school censorship cases reported between 1976 and 1978 (it is estimated that only one censorship case in 25 is ever reported) do not really reveal clearcut regional patterns, but they reflect individual and selective group pressures against profanity, blasphemy, un-Christian thoughts, indecency (sexually explicit language and nude…
Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure
Ménard, Sandie; Ben Haddou, Tanila; Ramadani, Arba Pramundita; Ariey, Frédéric; Iriart, Xavier; Beghain, Johann; Bouchier, Christiane; Witkowski, Benoit; Berry, Antoine; Mercereau-Puijalon, Odile
2015-01-01
Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy. PMID:26401601
A detailed analysis of codon usage patterns and influencing factors in Zika virus.
Singh, Niraj K; Tyagi, Anuj
2017-07-01
Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.
Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form
Khale, Anubha; Bajaj, Amrita
2011-01-01
In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867
Selective LPCVD growth of graphene on patterned copper and its growth mechanism
NASA Astrophysics Data System (ADS)
Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.
2016-12-01
Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.
Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E
2017-01-01
Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.
Evaluation of a multi-point method for determining acoustic impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Parrott, Tony L.
1988-01-01
An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow.
Retirement investment theory explains patterns in songbird nest-site choice
Streby, Henry M.; Refsnider, Jeanine M.; Peterson, Sean M.; Andersen, David E.
2014-01-01
When opposing evolutionary selection pressures act on a behavioural trait, the result is often stabilizing selection for an intermediate optimal phenotype, with deviations from the predicted optimum attributed to tracking a moving target, development of behavioural syndromes or shifts in riskiness over an individual's lifetime. We investigated nest-site choice by female golden-winged warblers, and the selection pressures acting on that choice by two fitness components, nest success and fledgling survival. We observed strong and consistent opposing selection pressures on nest-site choice for maximizing these two fitness components, and an abrupt, within-season switch in the fitness component birds prioritize via nest-site choice, dependent on the time remaining for additional nesting attempts. We found that females consistently deviated from the predicted optimal behaviour when choosing nest sites because they can make multiple attempts at one fitness component, nest success, but only one attempt at the subsequent component, fledgling survival. Our results demonstrate a unique natural strategy for balancing opposing selection pressures to maximize total fitness. This time-dependent switch from high to low risk tolerance in nest-site choice maximizes songbird fitness in the same way a well-timed switch in human investor risk tolerance can maximize one's nest egg at retirement. Our results also provide strong evidence for the adaptive nature of songbird nest-site choice, which we suggest has been elusive primarily due to a lack of consideration for fledgling survival.
Direct Laser Writing of Porous-Carbon/Silver Nanocomposite for Flexible Electronics.
Rahimi, Rahim; Ochoa, Manuel; Ziaie, Babak
2016-07-06
In this Research Article, we demonstrate a facile method for the fabrication of porous-carbon/silver nanocomposites using direct laser writing on polymeric substrates. Our technique uses a combination of CO2 laser-induced carbonization and selective silver deposition on a polyimide sheet to create flexible highly conductive traces. The localized laser irradiation selectively converts the polyimide to a highly porous and conductive carbonized film with superhydrophilic wettability. The resulting pattern allows for selective trapping of aqueous silver ionic ink solutions into the carbonized regions, which are converted to silver nanoparticle fillers upon an annealing step. Elemental and surface morphology analysis via XRD and SEM reveals a uniform coating of Ag nanoparticles on the porous carbon. The Ag/C composite lowers the sheet resistance of the original laser carbonized polyimide from 50 to 0.02 Ω/□. The resulting patterns are flexible and electromechanically robust with less than 0.6 Ω variation in resistance after >15000 bending flexion cycles at a radius of curvature of 5 mm. Furthermore, using this technique, we demonstrate the fabrication of a wireless resonant pressure sensor capable of detecting pressures ranging from 0 to 97 kPa with an average sensitivity of -26 kHz/kPa.
A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes
McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J
2011-01-01
Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792
Rühle, K H; Karweina, D; Domanski, U; Nilius, G
2009-07-01
The function of automatic CPAP devices is difficult to investigate using clinical examinations due to the high variability of breathing disorders. With a flow generator, however, identical breathing patterns can be reproduced so that comparative studies on the behaviour of pressure of APAP devices are possible. Because the algorithms of APAP devices based on the experience of users can be modified without much effort, also previously investigated devices should regularly be reviewed with regard to programme changes. Had changes occurred in the algorithms of 3 selected devices--compared to the previously published benchmark studies? Do the current versions of these investigated devices differentiate between open and closed apnoeas? With a self-developed respiratory pump, sleep-related breathing patterns and, with the help of a computerised valve, resistances of the upper respiratory tract were simulated. Three different auto-CPAP devices were subjected to a bench test with and without feedback (open/closed loop). Open loop: the 3 devices showed marked differences in the rate of pressure rise but did not differ from the earlier published results. From an initial pressure of 4 mbar the pressure increased to 10 mbar after a different number of apnoeas (1-6 repetitive apnoeas). Only one device differentiated between closed and open apnoeas. Closed loop: due to the pressure increase, the flow generator simulated reduced obstruction of the upper airways (apnoeas changed to hypopnoeas, hypopnoeas changed to flattening) but different patterns of pressure regulation could still be observed. By applying bench-testing, the algorithms of auto-CPAP devices can regularly be reviewed to detect changes in the software. The differentiation between open and closed apnoeas should be improved in several APAP devices.
Hughes, Samantha Jane; Santos, Jose; Ferreira, Teresa; Mendes, Ana
2010-08-01
Bioindicators are essential for detecting environmental degradation and for assessing the success of river restoration initiatives. River restoration projects require the identification of environmental and pressure gradients that affect the river system under study and the selection of suitable indicators to assess habitat quality before, during and after restoration. We assessed the response of benthic macroinvertebrates, fish, bird and macrophyte assemblages to environmental and pressure gradients from sites situated upstream and downstream of a cofferdam on the River Odelouca, an intermittent Mediterranean river in southwest Portugal. The Odelouca will be permanently dammed in 2010. Principal Component Analyses (PCA) of environmental and pressure variables revealed that most variance was explained by environmental factors that clearly separated sites upstream and downstream of the partially built cofferdam. The pressure gradient describing physical impacts to the banks and channel as a result of land use change was less distinct. Redundancy Analysis revealed significant levels of explained variance to species distribution patterns in relation to environmental and pressure variables for all 4 biological assemblages. Partial Redundancy analyses revealed high levels of redundancy for pH between groups and that the avifauna was best associated with pressures acting upon the system. Patterns in invertebrates and fish were associated with descriptors of habitat quality, although fish distribution patterns were affected by reduced connectivity. Procrustean and RELATE (Mantel test) analyses gave broadly similar results and supported these findings. We give suggestions on the suitability of key indicator groups such as benthic macroinvertebrates and endemic fish species to assess in stream habitat quality and appropriate restoration measures, such as the release of peak flow patterns that mimic intermittent Mediterranean systems to combat habitat fragmentation and reduced connectivity.
NASA Astrophysics Data System (ADS)
Hughes, Samantha Jane; Santos, Jose; Ferreira, Teresa; Mendes, Ana
2010-08-01
Bioindicators are essential for detecting environmental degradation and for assessing the success of river restoration initiatives. River restoration projects require the identification of environmental and pressure gradients that affect the river system under study and the selection of suitable indicators to assess habitat quality before, during and after restoration. We assessed the response of benthic macroinvertebrates, fish, bird and macrophyte assemblages to environmental and pressure gradients from sites situated upstream and downstream of a cofferdam on the River Odelouca, an intermittent Mediterranean river in southwest Portugal. The Odelouca will be permanently dammed in 2010. Principal Component Analyses (PCA) of environmental and pressure variables revealed that most variance was explained by environmental factors that clearly separated sites upstream and downstream of the partially built cofferdam. The pressure gradient describing physical impacts to the banks and channel as a result of land use change was less distinct. Redundancy Analysis revealed significant levels of explained variance to species distribution patterns in relation to environmental and pressure variables for all 4 biological assemblages. Partial Redundancy analyses revealed high levels of redundancy for pH between groups and that the avifauna was best associated with pressures acting upon the system. Patterns in invertebrates and fish were associated with descriptors of habitat quality, although fish distribution patterns were affected by reduced connectivity. Procrustean and RELATE (Mantel test) analyses gave broadly similar results and supported these findings. We give suggestions on the suitability of key indicator groups such as benthic macroinvertebrates and endemic fish species to assess in stream habitat quality and appropriate restoration measures, such as the release of peak flow patterns that mimic intermittent Mediterranean systems to combat habitat fragmentation and reduced connectivity.
Discriminative Features Mining for Offline Handwritten Signature Verification
NASA Astrophysics Data System (ADS)
Neamah, Karrar; Mohamad, Dzulkifli; Saba, Tanzila; Rehman, Amjad
2014-03-01
Signature verification is an active research area in the field of pattern recognition. It is employed to identify the particular person with the help of his/her signature's characteristics such as pen pressure, loops shape, speed of writing and up down motion of pen, writing speed, pen pressure, shape of loops, etc. in order to identify that person. However, in the entire process, features extraction and selection stage is of prime importance. Since several signatures have similar strokes, characteristics and sizes. Accordingly, this paper presents combination of orientation of the skeleton and gravity centre point to extract accurate pattern features of signature data in offline signature verification system. Promising results have proved the success of the integration of the two methods.
NASA Astrophysics Data System (ADS)
Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin
2016-12-01
Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.
Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin
2016-01-01
Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites. PMID:27982114
Jourdan, Jonas; Krause, Sarah T; Lazar, V Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin
2016-12-16
Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.
Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.
Bae, Young-An
2017-04-01
Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.
Ransy, Doris G; Lord, Etienne; Caty, Martine; Lapointe, Normand; Boucher, Marc; Diallo, Abdoulaye Baniré; Soudeyns, Hugo
2018-04-17
Pregnancy is associated with modulations of maternal immunity that contribute to foeto-maternal tolerance. To understand whether and how these alterations impact antiviral immunity, a detailed cross-sectional analysis of selective pressures exerted on HIV-1 envelope amino-acid sequences was performed in a group of pregnant (n = 32) and non-pregnant (n = 44) HIV-infected women in absence of treatment with antiretroviral therapy (ART). Independent of HIV-1 subtype, p-distance, dN and dS were all strongly correlated with one another but were not significantly different in pregnant as compared to non-pregnant patients. Differential levels of selective pressure applied on different Env subdomains displayed similar yet non-identical patterns between the two groups, with pressure applied on C1 being significantly lower in constant regions C1 and C2 than in V1, V2, V3 and C3. To draw a general picture of the selection applied on the envelope and compensate for inter-individual variations, we performed a binomial test on selection frequency data pooled from pregnant and non-pregnant women. This analysis uncovered 42 positions, present in both groups, exhibiting statistically-significant frequency of selection that invariably mapped to the surface of the Env protein, with the great majority located within epitopes recognized by Env-specific antibodies or sites associated with the development of cross-reactive neutralizing activity. The median frequency of occurrence of positive selection per site was significantly lower in pregnant versus non-pregnant women. Furthermore, examination of the distribution of positively selected sites using a hypergeometric test revealed that only 2 positions (D137 and S142) significantly differed between the 2 groups. Taken together, these result indicate that pregnancy is associated with subtle yet distinctive changes in selective pressures exerted on the HIV-1 Env protein that are compatible with transient modulations of maternal immunity. Copyright © 2018 Elsevier B.V. All rights reserved.
The decline of an adaptation in the absence of a presumed selection pressure
Cruz, A.; Wiley, J.W.
1989-01-01
The colonial nesting Village Weaver (Ploceus cucullatus) lays eggs that vary in ground color and pattern, but individual females lay similar eggs each time. Tests on captive African stocks have shown that females reject eggs of other cohorts if such eggs are sufficiently different.
Ishengoma, Edson; Agaba, Morris
2017-02-16
Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that at least one of giraffe altered sites coincides with TLR3 residue known to play a critical role in receptor signaling activity. There is overall structural conservation in TLRs among giraffe, okapi and cattle indicating that the mechanism for innate immune response utilizing TLR pathways may not have changed very much during the evolution of these species. However, a broader phylogenetic analysis revealed signatures of adaptive evolution among terrestrial ungulates and cetaceans, including the observed selection divergence in TLR3. This suggests that long term ecological dynamics has led to species-specific innovation and functional variation in the mechanisms mediating innate immunity in terrestrial ungulates and cetaceans.
Genetic diversity in the interference selection limit.
Good, Benjamin H; Walczak, Aleksandra M; Neher, Richard A; Desai, Michael M
2014-03-01
Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a "linkage block"). We exploit this insensitivity in a new "coarse-grained" coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability.
McCulloch, Kyle J; Yuan, Furong; Zhen, Ying; Aardema, Matthew L; Smith, Gilbert; Llorente-Bousquets, Jorge; Andolfatto, Peter; Briscoe, Adriana D
2017-09-01
Numerous animal lineages have expanded and diversified the opsin-based photoreceptors in their eyes underlying color vision behavior. However, the selective pressures giving rise to new photoreceptors and their spectral tuning remain mostly obscure. Previously, we identified a violet receptor (UV2) that is the result of a UV opsin gene duplication specific to Heliconius butterflies. At the same time the violet receptor evolved, Heliconius evolved UV-yellow coloration on their wings, due to the pigment 3-hydroxykynurenine (3-OHK) and the nanostructure architecture of the scale cells. In order to better understand the selective pressures giving rise to the violet receptor, we characterized opsin expression patterns using immunostaining (14 species) and RNA-Seq (18 species), and reconstructed evolutionary histories of visual traits in five major lineages within Heliconius and one species from the genus Eueides. Opsin expression patterns are hyperdiverse within Heliconius. We identified six unique retinal mosaics and three distinct forms of sexual dimorphism based on ommatidial types within the genus Heliconius. Additionally, phylogenetic analysis revealed independent losses of opsin expression, pseudogenization events, and relaxation of selection on UVRh2 in one lineage. Despite this diversity, the newly evolved violet receptor is retained across most species and sexes surveyed. Discriminability modeling of behaviorally preferred 3-OHK yellow wing coloration suggests that the violet receptor may facilitate Heliconius color vision in the context of conspecific recognition. Our observations give insights into the selective pressures underlying the origins of new visual receptors. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Reconstructing life history of hominids and humans.
Crews, Douglas E; Gerber, Linda M
2003-06-01
Aspects of life history, such as processes and timing of development, age at maturation, and life span are consistently associated with one another across the animal kingdom. Species that develop rapidly tend to mature and reproduce early, have many offspring, and exhibit shorter life spans (r-selection) than those that develop slowly, have extended periods of premature growth, mature later in life, reproduce later and less frequently, have few offspring and/or single births, and exhibit extended life spans (K-selection). In general, primates are among the most K-selected of species. A suite of highly derived life history traits characterizes humans. Among these are physically immature neonates, slowed somatic development both in utero and post-natally, late attainment of reproductive maturity and first birth, and extended post-mature survival. Exactly when, why, and through what types of evolutionary interactions this suite arose is currently the subject of much conjecture and debate. Humankind's biocultural adaptations have helped to structure human life history evolution in unique ways not seen in other animal species. Among all species, life history traits may respond rapidly to alterations in selective pressures through hormonal processes. Selective pressures on life history likely varied widely among hominids and humans over their evolutionary history. This suggests that current patterns of human growth, development, maturation, reproduction, and post-mature survival may be of recent genesis, rather then long-standing adaptations. Thus, life history patterns observed among contemporary human and chimpanzee populations may provide little insight to those that existed earlier in hominid/human evolution.
Greaves, Mel; Maley, Carlo C.
2012-01-01
Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609
Anjum, B; Verma, N S; Tiwari, S; Singh, R; Mahdi, A A; Singh, R B; Singh, R K
2011-08-01
Recent studies indicate a circadian rhythm in blood pressure and heart rate and its association with various neurotransmitters. In the present study, we examine the circadian nature of blood pressure/heart rate and salivary cortisol in night shift workers and whether these circadian changes produced by night shifts are reversible. Sixteen healthy nurses of both genders, aged 20-40 years, performing day and night shift duties, were randomly selected out of 22 who volunteered for this study. Ambulatory blood pressure monitoring was done in all the subjects and salivary cortisol levels were analyzed during both day and night shift duties. There were clinically significant changes in the Acrophase of blood pressure and cortisol levels, indicating ecphasia (odd timing of systolic blood pressure) individually during night as well as day shifts. However, this pattern was statistically not significant. A reverse pattern of Acrophase was observed in 8 out of 16 subjects when they were posted on day shift. No significant change was found in midline estimating statistics of rhythm (MESOR) of blood pressure values. Changes in Double amplitude (Predictable change) were observed in 8 subjects during night shifts as well as in 7 subjects during day shifts. However, the pattern was not similar and night workers had an altered circadian pattern in the night as well as during day shifts. Changes in Double amplitude, Acrophase and Salivary cortisol were found during night as well as day shifts but these changes were not statistically significant (p > 0.05) due to incomplete recovery during day shifts (changes again seen when they came back to day shifts). Salivary cortisol levels were lowest in early morning, increased at midnight and further increased in the afternoon during night shifts along with ecphasia. It is possible that nurses working the night shift felt more tired due to the altered circadian cycle.
Sleep intensity and the evolution of human cognition.
Samson, David R; Nunn, Charles L
2015-01-01
Over the past four decades, scientists have made substantial progress in understanding the evolution of sleep patterns across the Tree of Life. Remarkably, the specifics of sleep along the human lineage have been slow to emerge. This is surprising, given our unique mental and behavioral capacity and the importance of sleep for individual cognitive performance. One view is that our species' sleep architecture is in accord with patterns documented in other mammals. We promote an alternative view, that human sleep is highly derived relative to that of other primates. Based on new and existing evidence, we specifically propose that humans are more efficient in their sleep patterns than are other primates, and that human sleep is shorter, deeper, and exhibits a higher proportion of REM than expected. Thus, we propose the sleep intensity hypothesis: Early humans experienced selective pressure to fulfill sleep needs in the shortest time possible. Several factors likely served as selective pressures for more efficient sleep, including increased predation risk in terrestrial environments, threats from intergroup conflict, and benefits arising from increased social interaction. Less sleep would enable longer active periods in which to acquire and transmit new skills and knowledge, while deeper sleep may be critical for the consolidation of those skills, leading to enhanced cognitive abilities in early humans. © 2015 Wiley Periodicals, Inc.
Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.
Mutero, A; Pralavorio, M; Bride, J M; Fournier, D
1994-06-21
Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures.
Retirement investment theory explains patterns in songbird nest-site choice
Streby, Henry M.; Refsnider, Jeanine M.; Peterson, Sean M.; Andersen, David E.
2014-01-01
When opposing evolutionary selection pressures act on a behavioural trait, the result is often stabilizing selection for an intermediate optimal phenotype, with deviations from the predicted optimum attributed to tracking a moving target, development of behavioural syndromes or shifts in riskiness over an individual's lifetime. We investigated nest-site choice by female golden-winged warblers, and the selection pressures acting on that choice by two fitness components, nest success and fledgling survival. We observed strong and consistent opposing selection pressures on nest-site choice for maximizing these two fitness components, and an abrupt, within-season switch in the fitness component birds prioritize via nest-site choice, dependent on the time remaining for additional nesting attempts. We found that females consistently deviated from the predicted optimal behaviour when choosing nest sites because they can make multiple attempts at one fitness component, nest success, but only one attempt at the subsequent component, fledgling survival. Our results demonstrate a unique natural strategy for balancing opposing selection pressures to maximize total fitness. This time-dependent switch from high to low risk tolerance in nest-site choice maximizes songbird fitness in the same way a well-timed switch in human investor risk tolerance can maximize one's nest egg at retirement. Our results also provide strong evidence for the adaptive nature of songbird nest-site choice, which we suggest has been elusive primarily due to a lack of consideration for fledgling survival. PMID:24403320
Investigation of the reaction of liquid hydrogen with liquid air in a pressure tube
NASA Technical Reports Server (NTRS)
Karb, Erich H.
1987-01-01
A pressure tube should protect the FR-2 reactor from the consequences of a hydrogen-air reaction, which is conceivable in the breakdown of several safety devices of the planned cold neutron source Project FR-2/16. The magnitudes and time pattern of the pressures to be expected were investigated. In the geometry used and the ignition mechanism selected, which is comparable to the strongest ignition process conceivable in the reactor, the reaction proceeds with greater probability than combustion. The combustion is possibly smaller if local limited partial detonations are superimposed. The magnitude of the pressure was determined by the masses of the reaction partners, liquid H2 and liquid air, and determines their ratio to each other.
Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.
Pryor, Lee N; Baldwin, Claire E; Ward, Elizabeth C; Cornwell, Petrea L; O'Connor, Stephanie N; Chapman, Marianne J; Bersten, Andrew D
2016-05-01
Advancements in tracheostomy tube design now provide clinicians with a range of options to facilitate communication for individuals receiving ventilator assistance through a cuffed tube. Little is known about the impact of these modern design features on resistance to air flow. We undertook a bench model test to measure pressure-flow characteristics and resistance of a range of tubes of similar outer diameter, including those enabling subglottic suction and speech. A constant inspiratory ± expiratory air flow was generated at increasing flows up to 150 L/min through each tube (with or without optional, mandatory, or interchangeable inner cannula). Driving pressures were measured, and resistance was calculated (cm H2O/L/s). Pressures changed with increasing flow (P < .001) and tube type (P < .001), with differing patterns of pressure change according to the type of tube (P < .001) and direction of air flow. The single-lumen reference tube encountered the lowest inspiratory and expiratory pressures compared with all double-lumen tubes (P < .001); placement of an optional inner cannula increased bidirectional tube resistance by a factor of 3. For a tube with interchangeable inner cannulas, the type of cannula altered pressure and resistance differently (P < .001); the speech cannula in particular amplified pressure-flow changes and increased tube resistance by more than a factor of 4. Tracheostomy tube type and inner cannula selection imposed differing pressures and resistance to air flow during inspiration and expiration. These differences may be important when selecting airway equipment or when setting parameters for monitoring, particularly for patients receiving supported ventilation or during the weaning process. Copyright © 2016 by Daedalus Enterprises.
Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro
2014-01-01
The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631
Associations of Region-Specific Foot Pain and Foot Biomechanics: The Framingham Foot Study
Hagedorn, Thomas J.; Dufour, Alyssa B.; Hannan, Marian T.
2015-01-01
Background. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. Methods. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. Results. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. Conclusions. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain. PMID:25995291
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-01-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-03-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
Comparing Patterns of Natural Selection across Species Using Selective Signatures
Shapiro, B. Jesse; Alm, Eric J
2008-01-01
Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 γ-proteobacterial species. We describe the pattern of fast or slow evolution across species as the “selective signature” of a gene. Selective signatures represent a profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell. PMID:18266472
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
Drivers of protogynous sex change differ across spatial scales.
Taylor, Brett M
2014-01-22
The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.
Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.
Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang
2017-07-01
It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Limited Evidence for Classic Selective Sweeps in African Populations
Granka, Julie M.; Henn, Brenna M.; Gignoux, Christopher R.; Kidd, Jeffrey M.; Bustamante, Carlos D.; Feldman, Marcus W.
2012-01-01
While hundreds of loci have been identified as reflecting strong-positive selection in human populations, connections between candidate loci and specific selective pressures often remain obscure. This study investigates broader patterns of selection in African populations, which are underrepresented despite their potential to offer key insights into human adaptation. We scan for hard selective sweeps using several haplotype and allele-frequency statistics with a data set of nearly 500,000 genome-wide single-nucleotide polymorphisms in 12 highly diverged African populations that span a range of environments and subsistence strategies. We find that positive selection does not appear to be a strong determinant of allele-frequency differentiation among these African populations. Haplotype statistics do identify putatively selected regions that are shared across African populations. However, as assessed by extensive simulations, patterns of haplotype sharing between African populations follow neutral expectations and suggest that tails of the empirical distributions contain false-positive signals. After highlighting several genomic regions where positive selection can be inferred with higher confidence, we use a novel method to identify biological functions enriched among populations’ empirical tail genomic windows, such as immune response in agricultural groups. In general, however, it seems that current methods for selection scans are poorly suited to populations that, like the African populations in this study, are affected by ascertainment bias and have low levels of linkage disequilibrium, possibly old selective sweeps, and potentially reduced phasing accuracy. Additionally, population history can confound the interpretation of selection statistics, suggesting that greater care is needed in attributing broad genetic patterns to human adaptation. PMID:22960214
Selectively Patterning Polymer Opal Films via Microimprint Lithography.
Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J
2014-11-01
Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.
Duftner, Nina; Sefc, Kristina M; Koblmüller, Stephan; Salzburger, Walter; Taborsky, Michael; Sturmbauer, Christian
2007-11-01
Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past.
Sexual Selection of Protamine 1 in Mammals.
Lüke, Lena; Tourmente, Maximiliano; Roldan, Eduardo R S
2016-01-01
Protamines have a crucial role in male fertility. They are involved in sperm chromatin packaging and influence the shape of the sperm head and, hence, are important for sperm performance. Protamine structure is basic with numerous arginine-rich DNA-binding domains. Postcopulatory sexual selection is thought to play an important role in protamine sequence evolution and expression. Here, we analyze patterns of evolution and sexual selection (in the form of sperm competition) acting on protamine 1 gene sequence in 237 mammalian species. We assessed common patterns as well as differences between the major mammalian subclasses (Eutheria, Metatheria) and clades. We found that a high arginine content in protamine 1 associates with a lower sperm head width, which may have an impact on sperm swimming velocity. Increase in arginine content in protamine 1 across mammals appears to take place in a way consistent with sexual selection. In metatherians, increase in sequence length correlates with sexual selection. Differences in selective pressures on sequences and codon sites were observed between mammalian clades. Our study revealed a complex evolutionary pattern of protamine 1, with different selective constraints, and effects of sexual selection, between mammalian groups. In contrast, the effect of arginine content on head shape, and the possible involvement of sperm competition, was identified across all mammals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Condensation of nano-refrigerant inside a horizontal tube
NASA Astrophysics Data System (ADS)
Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.
2018-05-01
In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.
Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase.
Mutero, A; Pralavorio, M; Bride, J M; Fournier, D
1994-01-01
Extensive utilization of pesticides against insects provides us with a good model for studying the adaptation of a eukaryotic genome to a strong selective pressure. One mechanism of resistance is the alteration of acetylcholinesterase (EC 3.1.1.7), the molecular target for organophosphates and carbamates. Here, we report the sequence analysis of the Ace gene in several resistant field strains of Drosophila melanogaster. This analysis resulted in the identification of five point mutations associated with reduced sensitivities to insecticides. In some cases, several of these mutations were found to be combined in the same protein, leading to different resistance patterns. Our results suggest that recombination between resistant alleles preexisting in natural populations is a mechanism by which insects rapidly adapt to new selective pressures. Images PMID:8016090
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.
1993-01-01
Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.
Exploring the relationship between lifestyles, diets and genetic adaptations in humans.
Valente, Cristina; Alvarez, Luis; Marks, Sarah J; Lopez-Parra, Ana M; Parson, Walther; Oosthuizen, Ockie; Oosthuizen, Erica; Amorim, António; Capelli, Cristian; Arroyo-Pardo, Eduardo; Gusmão, Leonor; Prata, Maria J
2015-05-28
One of the most important dietary shifts underwent by human populations began to occur in the Neolithic, during which new modes of subsistence emerged and new nutrients were introduced in diets. This change might have worked as a selective pressure over the metabolic pathways involved in the breakdown of substances extracted from food. Here we applied a candidate gene approach to investigate whether in populations with different modes of subsistence, diet-related genetic adaptations could be identified in the genes AGXT, PLRP2, MTRR, NAT2 and CYP3A5. At CYP3A5, strong signatures of positive selection were detected, though not connected to any dietary variable, but instead to an environmental factor associated with the Tropic of Cancer. Suggestive signals of adaptions that could indeed be connected with differences in dietary habits of populations were only found for PLRP2 and NAT2. Contrarily, the demographic history of human populations seemed enough to explain patterns of diversity at AGXT and MTRR, once both conformed the evolutionary expectations under selective neutrality. Accumulated evidence indicates that CYP3A5 has been under adaptive evolution during the history of human populations. PLRP2 and NAT2 also appear to have been modelled by some selective constrains, although clear support for that did not resist to a genome wide perspective. It is still necessary to clarify which were the biological mechanisms and the environmental factors involved as well as their interactions, to understand the nature and strength of the selective pressures that contributed to shape current patterns of genetic diversity at those loci.
Optimization of pressure gauge locations for water distribution systems using entropy theory.
Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon
2012-12-01
It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.
Genetic Diversity in the Interference Selection Limit
Good, Benjamin H.; Walczak, Aleksandra M.; Neher, Richard A.; Desai, Michael M.
2014-01-01
Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a “linkage block”). We exploit this insensitivity in a new “coarse-grained” coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability. PMID:24675740
Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees.
Harpur, Brock A; Dey, Alivia; Albert, Jennifer R; Patel, Sani; Hines, Heather M; Hasselmann, Martin; Packer, Laurence; Zayed, Amro
2017-09-01
Eusociality represents a major transition in evolution and is typified by cooperative brood care and reproductive division of labor between generations. In bees, this division of labor allows queens and workers to phenotypically specialize. Worker traits associated with helping are thought to be crucial to the fitness of a eusocial lineage, and recent studies of honey bees (genus Apis) have found that adaptively evolving genes often have worker-biased expression patterns. It is unclear however if worker-biased genes are disproportionately acted on by strong positive selection in all eusocial insects. We undertook a comparative population genomics study of bumble bees (Bombus) and honey bees to quantify natural selection on queen- and worker-biased genes across two levels of social complexity. Despite sharing a common eusocial ancestor, genes, and gene groups with the highest levels of positive selection were often unique within each genus, indicating that life history and the environment, but not sociality per se, drives patterns of adaptive molecular evolution. We uncovered differences in the contribution of queen- and worker-biased genes to adaptive evolution in bumble bees versus honey bees. Unlike honey bees, where worker-biased genes are enriched for signs of adaptive evolution, genes experiencing positive selection in bumble bees were predominately expressed by reproductive foundresses during the initial solitary-founding stage of colonies. Our study suggests that solitary founding is a major selective pressure and that the loss of queen totipotency may cause a change in the architecture of selective pressures upon the social insect genome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The effect of process parameters on Twin Wire Arc spray pattern shape
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
2015-04-20
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
The effect of process parameters on Twin Wire Arc spray pattern shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
Selection, constraint, and the evolution of coloration in African starlings.
Maia, Rafael; Rubenstein, Dustin R; Shawkey, Matthew D
2016-05-01
Colorful plumage plays a prominent role in the evolution of birds, influencing communication (sexual/social selection), and crypsis (natural selection). Comparative studies have focused primarily on these selective pressures, but the mechanisms underlying color production can also be important by constraining the color gamut upon which selection acts. Iridescence is particularly interesting to study the interaction between selection and color-producing mechanisms because a broad range of colors can be produced with a shared template, and innovations to this template further expand this by increasing the parameters interacting to produce colors. We examine the patterns of ornamentation and dichromatism evolution in African starlings, a group remarkably diverse in color production mechanisms, social systems, and ecologies. We find that the presence of iridescence is ancestral to the group, being predominantly lost in females and cooperative breeders, as well as species with less labile templates. Color-producing mechanisms interact and are the main predictors of plumage ornamentation and elaboration, with little influence of selective pressures in their evolution. Dichromatism, however is influenced by social system and the loss of iridescence. Our results show the importance of considering both selection and constraints, and the different roles that they may have, in the evolution of ornamentation and dimorphism. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-09-21
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.
A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-01-01
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679
Convergent evolution of sexual shape dimorphism in Diptera.
Bonduriansky, Russell
2006-05-01
Several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). Although these dimorphisms may have evolved in response to sexual selection on male body shape, conserved genetic factors may have contributed to this convergent evolution, resulting in stronger phenotypic convergence than might be expected from functional requirements alone. I compared phenotypic variation in body shape in two distantly related species exhibiting sexually dimorphic body elongation: Prochyliza xanthostoma (Piophilidae) and Telostylinus angusticollis (Neriidae). Although sexual selection appears to act differently on male body shape in these species, they exhibited strikingly similar patterns of sexual dimorphism. Likewise, patterns of within-sex shape variation were similar in the two species, particularly in males: relative elongation of the male head capsule, antenna, and legs was associated with reduced head capsule width and wing length, but was nearly independent of variation in thorax length. However, the two species presented contrasting patterns of static allometry: male sexual traits exhibited elevated allometric slopes in T. angusticollis, but not in P. xanthostoma. These results suggest that a shared pattern of covariation among traits may have channeled the evolution of sexually dimorphic body elongation in these species. Nonetheless, static allometries may have been shaped by species-specific selection pressures or genetic architectures. Copyright 2006 Wiley-Liss, Inc.
Self-organized pattern on the surface of a metal anode in low-pressure DC discharge
NASA Astrophysics Data System (ADS)
Yaqi, YANG; Weiguo, LI
2018-03-01
Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.
Codon usage bias and phylogenetic analysis of mitochondrial ND1 gene in pisces, aves, and mammals.
Uddin, Arif; Choudhury, Monisha Nath; Chakraborty, Supriyo
2018-01-01
The mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) gene is a subunit of the respiratory chain complex I and involved in the first step of the electron transport chain of oxidative phosphorylation (OXPHOS). To understand the pattern of compositional properties, codon usage and expression level of mitochondrial ND1 genes in pisces, aves, and mammals, we used bioinformatic approaches as no work was reported earlier. In this study, a perl script was used for calculating nucleotide contents and different codon usage bias parameters. The codon usage bias of MT-ND1 was low but the expression level was high as revealed from high ENC and CAI value. Correspondence analysis (COA) suggests that the pattern of codon usage for MT-ND1 gene is not same across species and that compositional constraint played an important role in codon usage pattern of this gene among pisces, aves, and mammals. From the regression equation of GC12 on GC3, it can be inferred that the natural selection might have played a dominant role while mutation pressure played a minor role in influencing the codon usage patterns. Further, ND1 gene has a discrepancy with cytochrome B (CYB) gene in preference of codons as evident from COA. The codon usage bias was low. It is influenced by nucleotide composition, natural selection, mutation pressure, length (number) of amino acids, and relative dinucleotide composition. This study helps in understanding the molecular biology, genetics, evolution of MT-ND1 gene, and also for designing a synthetic gene.
From patterns to emerging processes in mechanistic urban ecology.
Shochat, Eyal; Warren, Paige S; Faeth, Stanley H; McIntyre, Nancy E; Hope, Diane
2006-04-01
Rapid urbanization has become an area of crucial concern in conservation owing to the radical changes in habitat structure and loss of species engendered by urban and suburban development. Here, we draw on recent mechanistic ecological studies to argue that, in addition to altered habitat structure, three major processes contribute to the patterns of reduced species diversity and elevated abundance of many species in urban environments. These activities, in turn, lead to changes in animal behavior, morphology and genetics, as well as in selection pressures on animals and plants. Thus, the key to understanding urban patterns is to balance studying processes at the individual level with an integrated examination of environmental forces at the ecosystem scale.
Marcombe, Sébastien; Paris, Margot; Paupy, Christophe; Bringuier, Charline; Yebakima, André; Chandre, Fabrice; David, Jean-Philippe; Corbel, Vincent; Despres, Laurence
2013-01-01
Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.
Hydrologic regimes as potential drivers of morphologic divergence in fish
Bruckerhoff, Lindsey; Magoulick, Daniel D.
2017-01-01
Fishes often exhibit phenotypic divergence across gradients of abiotic and biotic selective pressures. In streams, many of the known selective pressures driving phenotypic differentiation are largely influenced by hydrologic regimes. Because flow regimes drive so many attributes of lotic systems, we hypothesized fish exhibit phenotypic divergence among streams with different flow regimes. We used a comparative field study to investigate the morphological divergence of Campostoma anomalom (central stonerollers) among streams characterized by highly variable, intermittent flow regimes and streams characterized by relatively stable, groundwater flow regimes. We also conducted a mesocosm experiment to compare the plastic effects of one component of flow regimes, water velocity, on morphology of fish from different flow regimes. We observed differences in shape between flow regimes likely driven by differences in allometric growth patterns. Although we observed differences in morphology across flow regimes in the field, C. anomalum did not exhibit morphologic plasticity in response to water velocity alone. This study contributes to the understanding of how complex environmental factors drive phenotypic divergence and may provide insight into the evolutionary consequences of disrupting natural hydrologic patterns, which are increasingly threatened by climate change and anthropogenic alterations.
A Strain of Bacillus sphaericus Causes Slower Development of Resistance in Culex quinquefasciatus
Pei, Guofeng; Oliveira, Cláudia M. F.; Yuan, Zhiming; Nielsen-LeRoux, Christina; Silva-Filha, Maria Helena; Yan, Jianpin; Regis, Lêda
2002-01-01
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae. PMID:12039761
Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems
NASA Astrophysics Data System (ADS)
Bakhtiari-Nejad, Marjan; Elnahhas, Ahmed; Hajj, Muhammad R.; Shahab, Shima
2018-03-01
Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.
NASA Astrophysics Data System (ADS)
Pérez-Zanón, Núria; Casas-Castillo, M. Carmen; Peña, Juan Carlos; Aran, Montserrat; Rodríguez-Solà, Raúl; Redaño, Angel; Solé, German
2018-03-01
The study has obtained a classification of the synoptic patterns associated with a selection of extreme rain episodes registered in the Ebre Observatory between 1905 and 2003, showing a return period of not less than 10 years for any duration from 5 min to 24 h. These episodes had been previously classified in four rainfall intensity groups attending to their meteorological time scale. The synoptic patterns related to every group have been obtained applying a multivariable analysis to three atmospheric levels: sea-level pressure, temperature, and geopotential at 500 hPa. Usually, the synoptic patterns associated with intense rain in southern Catalonia are featured by low-pressure systems advecting warm and wet air from the Mediterranean Sea at the low levels of the troposphere. The configuration in the middle levels of the troposphere is dominated by negative anomalies of geopotential, indicating the presence of a low or a cold front, and temperature anomalies, promoting the destabilization of the atmosphere. These configurations promote the occurrence of severe convective events due to the difference of temperature between the low and medium levels of troposphere and the contribution of humidity in the lowest levels of the atmosphere.
Salaudeen, A G; Musa, O I; Babatunde, O A; Atoyebi, O A; Durowade, K A; Omokanye, L O
2014-09-01
High job strain, mental stress, sedentary lifestyle, increase in BMI are among the factors associated with significantly higher incidence of hypertension. The job of bank employees is both sedentary in nature and accompanies high mental stress. The aim of this study is to assess the level of knowledge of risk factors among respondents and to compare the blood pressure pattern of bankers and traffic wardens. The study design is a descriptive cross-sectional conducted among bankers and traffic wardens in Ilorin to determine the pattern and knowledge of blood pressure. Self-administered questionnaires, weighing scale (Omron Digital scale), stadiometer and sphygmomanometer were used as the research instruments. Simple random sampling was used to select respondents involved in the study. The prevalence of hypertension in this study was 34.4% in bankers and 22.2% in traffic wardens. The risk factors the bankers commonly had knowledge of are alcohol, obesity, high salt intake, certain drugs, stress, emotional problems and family history while the traffic wardens commonly had knowledge of all these in addition to cigarette smoking. Also, more bankers (32.2%) than traffic wardens (13.3%) were smoking cigarette and more of these cigarette smokers that are bankers (17.8%) had elevated blood pressure compared to the traffic wardens (3.3%). Workers in the banking industry as well as traffic wardens should be better educated about the risk factors of hypertension and bankers should be encouraged to create time for exercise.
Neutrality and evolvability of designed protein sequences
NASA Astrophysics Data System (ADS)
Bhattacherjee, Arnab; Biswas, Parbati
2010-07-01
The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria are used. This generalized foldability criterion is derived using the high temperature cumulant expansion approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is determined with a selective pressure of stability (ΔΔG) for the theory designed sequences, which are found to be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results show that this foldability criterion selects viable protein sequences more effectively compared to the Monte Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence space. These observations may impact de novo sequence design and its applications in protein engineering.
The use of in-flight foot pressure as a countermeasure to neuromuscular degradation
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; Pruett, C. J.; McDonald, P. V.; Kozlovskaya, I. B.; Bloomberg, J. J.
1998-01-01
The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.
Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)
Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele
2011-01-01
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698
Mendez, Yesenia P; Ralston, Penny A; Wickrama, Kandauda K A S; Bae, Dayoung; Young-Clark, Iris; Ilich, Jasminka Z
2018-06-01
This study examined lower life satisfaction, active coping and cardiovascular disease risk factors (diastolic and systolic blood pressure, body mass index, and circumferences) in older African Americans over the phases of an 18-month church-based intervention, using a quasi-experimental design. Participants (n = 89) were 45 years of age and older from six churches (three treatment, three comparison) in North Florida. Lower life satisfaction had a persistent unfavorable effect on weight variables. Active coping showed a direct beneficial effect on selected weight variables. However, active coping was adversely associated with blood pressure, and did not moderate the association between lower life satisfaction and cardiovascular risk factors. The intervention had a beneficial moderating influence on the association between lower life satisfaction and weight variables and on the association between active coping and these variables. Yet, this pattern did not hold for the association between active coping and blood pressure. The relationship of lower life satisfaction and selected cardiovascular risk factors and the positive effect of active coping were established, but findings regarding blood pressure suggest further study is needed.
Badyaev, A V; Hill, G E; Stoehr, A M; Nolan, P M; McGraw, K J
2000-12-01
Recent colonization of ecologically distinct areas in North America by the house finch (Carpodacus mexicanus) was accompanied by strong population divergence in sexual size dimorphism. Here we examined whether this divergence was produced by population differences in local selection pressures acting on each sex. In a long-term study of recently established populations in Alabama, Michigan, and Montana, we examined three selection episodes for each sex: selection for pairing success, overwinter survival, and within-season fecundity. Populations varied in intensity of these selection episodes, the contribution of each episode to the net selection, and in the targets of selection. Direction and intensity of selection strongly differed between sexes, and different selection episodes often favored opposite changes in morphological traits. In each population, current net selection for sexual dimorphism was highly concordant with observed sexual dimorphism--in each population, selection for dimorphism was the strongest on the most dimorphic traits. Strong directional selection on sexually dimorphic traits, and similar intensities of selection in both sexes, suggest that in each of the recently established populations, both males and females are far from their local fitness optimum, and that sexual dimorphism has arisen from adaptive responses in both sexes. Population differences in patterns of selection on dimorphism, combined with both low levels of ontogenetic integration in heritable sexually dimorphic traits and sexual dimorphism in growth patterns, may account for the close correspondence between dimorphism in selection and observed dimorphism in morphology across house finch populations.
You, Young Youl; Chung, Sin Ho; Lee, Hyung Jin
2016-11-01
[Purpose] This study was to examine the changes in the gait lines and plantar pressures in static and dynamic circumstances, according to the differences in the strengths of the plantar flexors in the ankle joints on the affected sides of hemiplegic patients, and to determine their impacts on walking symmetry. [Subjects and Methods] A total of thirty hospitalized stroke patients suffering from hemiplegia were selected in this study. The subjects had ankylosing patterns in the ankle joints of the affected sides. Fifteen of the patients had plantar flexor manual muscle testing scores between poor and fair, while fifteen of the patients had zero and trace. [Results] The contact pattern of the plantar surface with the ground is a reliable method for walking analysis, which is an important index for understanding the ankle mechanism and the relationship between the plantar surface and the ground. [Conclusion] The functional improvement of patients with stroke could be supported through a verification of the analysis methods of the therapy strategy and walking pattern.
McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M
2013-09-01
The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.
On the Reverse Asymmetric Gas Transport Effect in the Polymer Membranes
NASA Astrophysics Data System (ADS)
Kurchatov, I. M.; Laguntsov, N. I.; Skuridin, I. E.
In this paper, change of gas permeability value, depending on orientation of polymer gas membrane, in a wide pressure range was investigated. Consistent patterns of asymmetric gas transfer through the PVTMS-membrane were established experimentally. Reverse asymmetric transport effect was observed, wherein the permeability from the direction of porous support prevails at the permeability from the direction of selective non-porous layer.
Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal
Risso, Davide S.; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis
2016-01-01
The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes. PMID:27138342
Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal.
Risso, Davide S; Mezzavilla, Massimo; Pagani, Luca; Robino, Antonietta; Morini, Gabriella; Tofanelli, Sergio; Carrai, Maura; Campa, Daniele; Barale, Roberto; Caradonna, Fabio; Gasparini, Paolo; Luiselli, Donata; Wooding, Stephen; Drayna, Dennis
2016-05-03
The ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) is a polymorphic trait mediated by the TAS2R38 bitter taste receptor gene. It has long been hypothesized that global genetic diversity at this locus evolved under pervasive pressures from balancing natural selection. However, recent high-resolution population genetic studies of TAS2Rs suggest that demographic events have played a critical role in the evolution of these genes. We here utilized the largest TAS2R38 database yet analyzed, consisting of 5,589 individuals from 105 populations, to examine natural selection, haplotype frequencies and linkage disequilibrium to estimate the effects of both selection and demography on contemporary patterns of variation at this locus. We found signs of an ancient balancing selection acting on this gene but no post Out-Of-Africa departures from neutrality, implying that the current observed patterns of variation can be predominantly explained by demographic, rather than selective events. In addition, we found signatures of ancient selective forces acting on different African TAS2R38 haplotypes. Collectively our results provide evidence for a relaxation of recent selective forces acting on this gene and a revised hypothesis for the origins of the present-day worldwide distribution of TAS2R38 haplotypes.
Sterzing, Thorsten; Frommhold, Clivia; Rosenbaum, Dieter
2016-05-01
Backward locomotion in humans occurs during leisure, rehabilitation, and competitive sports. Little is known about its general biomechanical characteristics and how it affects lower extremity loading as well as muscle coordination. Thus, the purpose of this research was to analyze in-shoe plantar pressure patterns and lower extremity muscle activity patterns for backward compared to forward running. On a treadmill, nineteen runners performed forward running at their individually preferred speed, followed by backward running at 70% of their self-selected forward speed. In-shoe plantar pressures of nine foot regions and muscular activity of nine lower extremity muscles were recorded simultaneously over a one-minute interval. Backward and forward running variables were averaged over the accumulated steps and compared with Wilcoxon-signed rank tests (p<.05). For backward compared to forward running, in-shoe plantar pressure distribution showed a load increase under metatarsal heads I and II, as well as under the medial midfoot. This was indicated by higher maximum forces and peak pressures, and by longer contact times. Muscle activity showed significantly higher mean amplitudes during backward running in the semitendinosus, rectus femoris, vastus lateralis, and gluteus medius during stance, and in the rectus femoris during swing phase, while significantly lower mean amplitudes were observed in the tibialis anterior during swing phase. Observations indicate plantar foot loading and muscle activity characteristics that are specific for the running direction. Thus, backward running may be used on purpose for certain rehabilitation tasks, aiming to strengthen respective lower extremity muscles. Furthermore, the findings are relevant for sport specific backward locomotion training. Finally, results provide an initial baseline for innovative athletic footwear development aiming to increase comfort and performance during backward running. Copyright © 2016 Elsevier B.V. All rights reserved.
Bone-associated gene evolution and the origin of flight in birds.
Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho
2016-05-18
Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.
Agorasti, Athanasia; Trivellas, Theodoros; Mourvati, Efthimia; Papadopoulos, Vasilios; Tsatalas, Konstantinos; Vargemezis, Vasilios; Passadakis, Ploumis
2013-06-01
The aim of this study is to assess whether the haemostatic markers D-dimer, factor VIII (FVIII) and von Willebrand factor (VWF) are predictive of non-dipping status in treated hypertensive patients; so, as easy available laboratory data can predict non-dipping pattern and help with the selection of the patients whom circadian blood pressure should be re-examined. Forty treated hypertensive patients with essential hypertension were included in the study. Twenty-four-hour ambulatory blood pressure monitoring was performed in all patients. Daytime and nocturnal average systolic, diastolic and mean blood pressures were calculated. Patients were characterised as "non-dippers" on the basis of a less than 10 % decline in nocturnal blood pressure (BP); either systolic or diastolic or mean (MAP). D-dimer as marker of fibrinolytic function, FVIII activity and VWF antigen as marker of endothelial dysfunction were measured on plasma. The predictive efficiency was analysed by receiver operating characteristic (ROC) curves. Youden index was used for the estimation of the cut-off points and the associated values for sensitivity and 1-specificity. Plasma levels of D-dimer, FVIII and VWF were significantly higher in non-dippers as compared with dippers, irrespective of the classification used (BP index); all P < 0.05. The ROC curves indicated a good diagnostic efficiency for D-dimer (AUC(ROC) = 0.697, 0.715 and 0.774), FVIII (AUC(ROC) = 0.714, 0.692 and 0.755) and VWF (AUC(ROC) = 0.706, 0.740 and 0.708) in distinguishing non-dipping pattern (systolic, diastolic or mean) in the study population; all P < 0.05. Among the three haemostatic markers, D-dimer presents the most satisfactory sensitivity/1-specificity for the differentiation of non-dippers, with a cut-off point >168 ng/ml (sensitivity/1-specificity for systolic BP non-dippers of 0.789/0.381, for diastolic BP non-dippers 0.923/0.444 and for MAP non-dippers 0.875/0.375). In conclusion, D-dimer has a good predictive value for non-dipping pattern and the decision for the 24-h ambulatory blood pressure re-monitoring among dippers could rely on its values.
Evans, Jonathan P.; Gasparini, Clelia; Holwell, Gregory I.; Ramnarine, Indar W.; Pitcher, Trevor E.; Pilastro, Andrea
2011-01-01
The role of sexual selection in fuelling genital evolution is becoming increasingly apparent from comparative studies revealing interspecific divergence in male genitalia and evolutionary associations between male and female genital traits. Despite this, we know little about intraspecific variance in male genital morphology, or how male and female reproductive traits covary among divergent populations. Here we address both topics using natural populations of the guppy, Poecilia reticulata, a livebearing fish that exhibits divergent patterns of male sexual behaviour among populations. Initially, we performed a series of mating trials on a single population to examine the relationship between the morphology of the male's copulatory organ (the gonopodium) and the success of forced matings. Using a combination of linear measurements and geometric morphometrics, we found that variation in the length and shape of the gonopodium predicted the success of forced matings in terms of the rate of genital contacts and insemination success, respectively. We then looked for geographical divergence in these traits, since the relative frequency of forced matings tends to be greater in high-predation populations. We found consistent patterns of variation in male genital size and shape in relation to the level of predation, and corresponding patterns of (co)variation in female genital morphology. Together, these data enable us to draw tentative conclusions about the underlying selective pressures causing correlated patterns of divergence in male and female genital traits, which point to a role for sexually antagonistic selection. PMID:21270040
Ghalayini, Mohamed; Magnan, Mélanie; Glodt, Jérémy; Pintard, Coralie; Dion, Sara; Denamur, Erick; Tenaillon, Olivier
2017-01-01
Though microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E. coli natural isolate, the streptomycin resistant strain 536, in the digestive tract of streptomycin treated mice. After a year of evolution, a clone from 15 replicates was sequenced. Consistently with in vitro observations, the identified mutations revealed a strong pattern of convergence at the mutation, gene, operon and functional levels. Yet, the rate of molecular evolution was lower than in in vitro and no mutations in global regulators were recovered. More specific targets were observed: the dgo operon, involved in the galactonate pathway that improved growth on D-galactonate, and rluD and gidB, implicated in the maturation of the ribosomes, which mutations improved growth only in the presence of streptomycin. As in vitro, the non-random associations of mutations within the same pathways suggested a role of epistasis in shaping the adaptive landscape. Overall, we show that “evolve and sequence” approach coupled to an analysis of convergence, when applied to a natural isolate, can be used to study adaptation in vivo and uncover the specific selective pressures of that environment. PMID:27661780
Oyebola, Kolapo M; Idowu, Emmanuel T; Olukosi, Yetunde A; Awolola, Taiwo S; Amambua-Ngwa, Alfred
2017-06-29
The burden of falciparum malaria is especially high in sub-Saharan Africa. Differences in pressure from host immunity and antimalarial drugs lead to adaptive changes responsible for high level of genetic variations within and between the parasite populations. Population-specific genetic studies to survey for genes under positive or balancing selection resulting from drug pressure or host immunity will allow for refinement of interventions. We performed a pooled sequencing (pool-seq) of the genomes of 100 Plasmodium falciparum isolates from Nigeria. We explored allele-frequency based neutrality test (Tajima's D) and integrated haplotype score (iHS) to identify genes under selection. Fourteen shared iHS regions that had at least 2 SNPs with a score > 2.5 were identified. These regions code for genes that were likely to have been under strong directional selection. Two of these genes were the chloroquine resistance transporter (CRT) on chromosome 7 and the multidrug resistance 1 (MDR1) on chromosome 5. There was a weak signature of selection in the dihydrofolate reductase (DHFR) gene on chromosome 4 and MDR5 genes on chromosome 13, with only 2 and 3 SNPs respectively identified within the iHS window. We observed strong selection pressure attributable to continued chloroquine and sulfadoxine-pyrimethamine use despite their official proscription for the treatment of uncomplicated malaria. There was also a major selective sweep on chromosome 6 which had 32 SNPs within the shared iHS region. Tajima's D of circumsporozoite protein (CSP), erythrocyte-binding antigen (EBA-175), merozoite surface proteins - MSP3 and MSP7, merozoite surface protein duffy binding-like (MSPDBL2) and serine repeat antigen (SERA-5) were 1.38, 1.29, 0.73, 0.84 and 0.21, respectively. We have demonstrated the use of pool-seq to understand genomic patterns of selection and variability in P. falciparum from Nigeria, which bears the highest burden of infections. This investigation identified known genomic signatures of selection from drug pressure and host immunity. This is evidence that P. falciparum populations explore common adaptive strategies that can be targeted for the development of new interventions.
NASA Astrophysics Data System (ADS)
Hoffert, M.; Anderson, R. E.; Stepanauskas, R.; Huber, J. A.
2017-12-01
Deep-sea hydrothermal vents sustain diverse communities of microorganisms. The effects of geochemical and biological interactions on the process of evolution in these ecosystems remains poorly understood because the majority of subsurface microorganisms remain uncultivated. By examining metagenomic samples from hydrothermal fluids and mapping the samples to closely-related genomes found in vent sites, we can better understand how the process of evolution is affected by the geochemical and environmental context in deep-sea vents. The Mid-Cayman Rise is a spreading ridge that hosts both mafic-influenced and ultramafic-influenced vent fields. Previous research on metagenomic samples from sites in the Mid-Cayman Rise has shown that these vents contain metabolically and taxonomically diverse microbial communities. Here, we investigate five single cell amplified Methanothermococcus genomes (SAGs) to investigate patterns in pangenomic variation and molecular evolution in these methanogens. Mappings of metagenomic reads from 15 sample sites to the SAGs reveal substantial variation in Methanothermococcus population abundance, nucleotide variability and selection pressure among the 15 geochemically distinct sample sites. Within each sample site, we observed distinct patterns of single nucleotide variant (SNV) accumulation and selection pressure within the SAG populations. Closely related genomes showed similar patterns of SNV accumulation. Analysis of open reading frames (ORFs) from the SAGs indicated that homologous genes accumulated variation at the same rate. For example, a genomic island for Nif genes was identified in three of the five genomes with significantly elevated SNV counts. dN/dS analyses revealed evidence for frequency-dependent selection, in which genes unique to individual SAGs displayed elevated diversifying selection relative to other genes. These results indicate that different strains of Methanothermococcus outcompete others in specific environmental settings, and that these fitness advantages may result from variation in the pangenome, as revealed by dN/dS and SNV analyses. By examining variation and the scale of nucleotide and genes, we aim to gain insight into the roles of genetic diversity and environmental selection on microbial evolution in these ecosystems.
NASA Astrophysics Data System (ADS)
Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.
2015-12-01
The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p < 0.05) between heterotrophic and coliform bacteria. Though the coliforms showed significantly high level of antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.
Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping
Rochelle, Gary T [Austin, TX; Oyenekan, Babatunde A [Katy, TX
2011-03-08
Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.
Zhang, Pei; Huang, Kang; Zhang, Bingyi; Dunn, Derek W; Chen, Dan; Li, Fan; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo
2018-03-13
Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates.
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
From wild wolf to domestic dog: gene expression changes in the brain.
Saetre, Peter; Lindberg, Julia; Leonard, Jennifer A; Olsson, Kerstin; Pettersson, Ulf; Ellegren, Hans; Bergström, Tomas F; Vilà, Carles; Jazin, Elena
2004-07-26
Despite the relatively recent divergence time between domestic dogs (Canis familiaris) and gray wolves (Canis lupus), the two species show remarkable behavioral differences. Since dogs and wolves are nearly identical at the level of DNA sequence, we hypothesize that the two species may differ in patterns of gene expression. We compare gene expression patterns in dogs, wolves and a close relative, the coyote (Canis latrans), in three parts of the brain: hypothalamus, amygdala and frontal cortex, with microarray technology. Additionally, we identify genes with region-specific expression patterns in all three species. Among the wild canids, the hypothalamus has a highly conserved expression profile. This contrasts with a marked divergence in domestic dogs. Real-time PCR experiments confirm the altered expression of two neuropeptides, CALCB and NPY. Our results suggest that strong selection on dogs for behavior during domestication may have resulted in modifications of mRNA expression patterns in a few hypothalamic genes with multiple functions. This study indicates that rapid changes in brain gene expression may not be exclusive to the development of human brains. Instead, they may provide a common mechanism for rapid adaptive changes during speciation, particularly in cases that present strong selective pressures on behavioral characters.
Orsini, Luisa; Spanier, Katina I; DE Meester, Luc
2012-05-01
Natural populations are confronted with multiple selection pressures resulting in a mosaic of environmental stressors at the landscape level. Identifying the genetic underpinning of adaptation to these complex selection environments and assigning causes of natural selection within multidimensional selection regimes in the wild is challenging. The water flea Daphnia is a renowned ecological model system with its well-documented ecology, the possibility to analyse subfossil dormant egg banks and the short generation time allowing an experimental evolution approach. Capitalizing on the strengths of this model system, we here link candidate genome regions to three selection pressures, known to induce micro-evolutionary responses in Daphnia magna: fish predation, parasitism and land use. Using a genome scan approach in space, time and experimental evolution trials, we provide solid evidence of selection at the genome level under well-characterized environmental gradients in the wild and identify candidate genes linked to the three environmental stressors. Our study reveals differential selection at the genome level in Daphnia populations and provides evidence for repeatable patterns of local adaptation in a geographic mosaic of environmental stressors fuelled by standing genetic variation. Our results imply high evolutionary potential of local populations, which is relevant to understand the dynamics of trait changes in natural populations and their impact on community and ecosystem responses through eco-evolutionary feedbacks. © 2012 Blackwell Publishing Ltd.
Tamate, Tsuyoshi
2015-08-01
Evolutionary ecologists often expect that natural and sexual selection result in systematic co-occurrence patterns of sex-biased mortality and sexual size dimorphism (SSD) within animal species. However, whether such patterns actually occur in wild animals is poorly examined. The following expectation, the larger sex suffers higher mortality, was primarily tested here for apparently native sea-run masu salmon (Oncorhynchus masou) in three populations in Hokkaido, Japan. Field surveys on sex ratios, body sizes, and ages of smolts and returning adults revealed that two of the three populations exhibited an expected pattern, a female-biased marine mortality and SSD, but one population demonstrated an unexpected co-occurrence of male-biased marine mortality and female-biased SSD. These female-biased SSDs were attributed to faster marine growth of females because of no sex difference in smolt body size. It has been previously suggested that breeding selection favoring large size generally act more strongly in females than in males in Japanese anadromous masu, as there is a weak sexual selection on adult males but universally intensive natural selection on adult females. Thus, this hypothesis explains female-biased SSDs well in all study populations. Interpopulation variation in sex-biased mortality found here might result from differences in marine predation and/or fishing pressures, given that selection driving female-biased SSD makes females forage more aggressively than males during the marine phase. Taken together, these results raise the possibility that evolutionary forces have shaped adaptive sex-specific foraging strategies under relationships between growth and mortality, resulting in co-occurrence patterns of sex-biased mortality and SSD within animal species.
Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.
Wandeler, Peter; Camenisch, Glauco
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583
Selective decontamination of the digestive tract.
Krueger, Wolfgang A; Unertl, Klaus E
2002-04-01
Ventilator-associated pneumonia usually originates from the patient's oropharyngeal microflora. In selective digestive decontamination, topical antibiotics are applied to the oropharynx and stomach for prevention of pneumonia and other infections, possibly reducing infection-related mortality. Selective digestive decontamination is also used for the prevention of gut-derived infections in acute necrotizing pancreatitis and liver transplantation. Despite numerous clinical trials, selective digestive decontamination remains controversial. Reduction of the incidence of pneumonia is accepted, but the extent of reduction is debated. Mortality was not reduced in most individual trials, but this finding was calculated in meta-analyses, especially for combined use of topical and systemic antibiotics in surgical ICU patients. Some investigators reported increased resistance and a shift to Gram-positive pathogens. Today, it appears that selective means not only selective suppression of pathogenic bacteria but also selection of appropriate groups of patients for underlying diseases and severity of illness, and selection of ICUs, where the endemic resistance patterns might allow the use of selective digestive decontamination at a relatively low risk for increased selection pressure.
Host population structure and treatment frequency maintain balancing selection on drug resistance
Baskerville, Edward B.; Colijn, Caroline; Hanage, William; Fraser, Christophe; Lipsitch, Marc
2017-01-01
It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact. PMID:28835542
Tollenaere, Charlotte; Ivanova, Svilena; Duplantier, Jean-Marc; Loiseau, Anne; Rahalison, Lila; Rahelinirina, Soanandrasana; Brouat, Carine
2012-01-01
Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.
Echave, Julian; Wilke, Claus O.
2018-01-01
For decades, rates of protein evolution have been interpreted in terms of the vague concept of “functional importance”. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating them has large impacts on protein structure and stability. Here, we review the studies of the emergent field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field. PMID:28301766
Peladeau-Pigeon, Melanie
2017-01-01
Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767
2012-01-01
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response. PMID:22257588
Evolution of disease response genes in loblolly pine: insights from candidate genes.
Ersoz, Elhan S; Wright, Mark H; González-Martínez, Santiago C; Langley, Charles H; Neale, David B
2010-12-06
Host-pathogen interactions that may lead to a competitive co-evolution of virulence and resistance mechanisms present an attractive system to study molecular evolution because strong, recent (or even current) selective pressure is expected at many genomic loci. However, it is unclear whether these selective forces would act to preserve existing diversity, promote novel diversity, or reduce linked neutral diversity during rapid fixation of advantageous alleles. In plants, the lack of adaptive immunity places a larger burden on genetic diversity to ensure survival of plant populations. This burden is even greater if the generation time of the plant is much longer than the generation time of the pathogen. Here, we present nucleotide polymorphism and substitution data for 41 candidate genes from the long-lived forest tree loblolly pine, selected primarily for their prospective influences on host-pathogen interactions. This dataset is analyzed together with 15 drought-tolerance and 13 wood-quality genes from previous studies. A wide range of neutrality tests were performed and tested against expectations from realistic demographic models. Collectively, our analyses found that axr (auxin response factor), caf1 (chromatin assembly factor) and gatabp1 (gata binding protein 1) candidate genes carry patterns consistent with directional selection and erd3 (early response to drought 3) displays patterns suggestive of a selective sweep, both of which are consistent with the arm-race model of disease response evolution. Furthermore, we have identified patterns consistent with diversifying selection at erf1-like (ethylene responsive factor 1), ccoaoemt (caffeoyl-CoA-O-methyltransferase), cyp450-like (cytochrome p450-like) and pr4.3 (pathogen response 4.3), expected under the trench-warfare evolution model. Finally, a drought-tolerance candidate related to the plant cell wall, lp5, displayed patterns consistent with balancing selection. In conclusion, both arms-race and trench-warfare models seem compatible with patterns of polymorphism found in different disease-response candidate genes, indicating a mixed strategy of disease tolerance evolution for loblolly pine, a major tree crop in southeastern United States.
A Spatially Explicit Method for Prioritizing AIS Surveillance ...
Choosing where to sample for aquatic invasive species (AIS) is a daunting challenge in the Laurentian Great Lakes. Management resources are finite hence it is important that monitoring efforts concentrate on those sites with the highest risk of introduction based on transparent criteria and assumptions and the best available data. Here we describe the development of a site prioritization method designed to address such challenges. The U.S. waters of the Great Lakes and tributaries were divided into standardized management units (9 km x 9 km). An index of invasion pressure was defined using a standardized set of spatial surrogates to estimate cumulative propagule pressure for each management unit. Weighting multipliers were applied to the attributed spatial surrogate data so that both historic patterns and future predicted patterns of introduction were incorporated into the final calculation of the index of invasion pressure for each management unit. Of the total of 5,953 management units in the U.S. Great Lakes basin (land and water), about 1,800 units have attributes resulting in index scores greater than zero. The site prioritization method can be used to select surveillance priorities for fish, invertebrates, and/or plants across the U.S. waters of the Great Lakes basin. not applicable
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry
Chen, Ji-Hong; Yu, Yuanjie; Yang, Zixian; Yu, Wen-Zhen; Chen, Wu Lan; Yu, Hui; Kim, Marie Jeong-Min; Huang, Min; Tan, Shiyun; Luo, Hesheng; Chen, Jianfeng; Chen, Jiande D. Z.; Huizinga, Jan D.
2017-01-01
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal. PMID:28216670
Pan, Xue; Peng, Fred Y.; Weselake, Randall J.
2015-01-01
PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) is an enzyme that catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3-position of sn-1,2-diacylglyerol, thus forming triacylglycerol and a lysophospholipid. Although the importance of PDAT in triacylglycerol biosynthesis has been illustrated in some previous studies, the evolutionary relationship of plant PDATs has not been studied in detail. In this study, we investigated the evolutionary relationship of the PDAT gene family across the green plants using a comparative phylogenetic framework. We found that the PDAT candidate genes are present in all examined green plants, including algae, lowland plants (a moss and a lycophyte), monocots, and eudicots. Phylogenetic analysis revealed the evolutionary division of the PDAT gene family into seven major clades. The separation is supported by the conservation and variation in the gene structure, protein properties, motif patterns, and/or selection constraints. We further demonstrated that there is a eudicot-wide PDAT gene expansion, which appears to have been mainly caused by the eudicot-shared ancient gene duplication and subsequent species-specific segmental duplications. In addition, selection pressure analyses showed that different selection constraints have acted on three core eudicot clades, which might enable paleoduplicated PDAT paralogs to either become nonfunctionalized or develop divergent expression patterns during evolution. Overall, our study provides important insights into the evolution of the plant PDAT gene family and explores the evolutionary mechanism underlying the functional diversification among the core eudicot PDAT paralogs. PMID:25585619
Maynard, George A.; Kinnison, M.T.; Zydlewski, Joseph D.
2017-01-01
The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large-bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91-cm salmon was 21%–27% and 12%–16% less likely to pass than a 45-cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild-reproducing population, exclusion of large fish from spawning areas may have population-level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow-maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.
Crosbie, Jack; Burns, Joshua
2008-01-01
People who have extremely high arched feet may be subject to substantial levels of foot pain, despite the lack of obvious pathology. This study sought to investigate the effect of pes cavus on pain intensity and location and on the magnitude and distribution of foot pressure. Measurements were derived from the more symptomatic foot of 130 participants with painful, idiopathic pes cavus. Data were collected using Pedar in-shoe pressure sensors and averaged over nine randomly selected steps. Participant information, including location and intensity of pain, Foot Posture Index values and anthropometric and "quality of life" variables, were also recorded. Painful idiopathic pes cavus seems to provoke a more cautious gait pattern than normal, with reduced peak and mean pressure values, particularly in the fore- and rear-foot regions. In particular, participants with pain confined to the rear-foot exhibit an antalgic gait pattern, with lower pressure values and a longer period of foot-ground contact in the heel region than those with pain only in the fore-foot. We determined no clear predictors of pain in terms of foot posture or demographics, although people with high body mass index values are more likely to have pain in several regions. The relationship between the posture of the foot and the presentation of pain remains unclear, however we believe that the presence of heel pain in pes cavus may be more restricting than fore-foot pain.
Pattern of blood pressure and hypertension in adolescents in Port Harcourt, Nigeria.
Okpere, A N; Anochie, I C; Eke, F U
2013-01-01
The rate and prevalence of hypertension in children is increasing. Childhood hypertensionif untreated can lead to hypertension in adulthood with its consequent cardiovascular and renal complications. Early detection of paediatric hypertension may lead to improvement in cardiovascular health in adults. This study aims to determine the blood pressure (BP) pattern and prevalence of hypertension in asymptomatic secondary school children and factors associated with hypertension in these adolescents. A cross-sectional study of 820 adolescents selected from 12 secondary schools in Port Harcourt was conducted. BP was measured by the auscultatory method. The average of three readings was taken as the actual blood pressure. Hypertension was defined as systolic and/or diastolic blood pressures equal to or greater than the 95th percentile for age, sex and height. Data was analysed using SPSS version 17.0. Systolic and diastolic BP increased with age in all subjects. Male subjects had a higher systolic BP compared to females. Hypertension was seen in 26 (3.2%) subjects; 13 males and 13 females. The proportional prevalence was higher in the age group 15-17 years (3.9%); in those in social classes V (9.1%) and with family history of hypertension (3.6%), (p à 0.05 in all cases). It was however significantly higher in the obese subjects (p = 0.000). The prevalence of hypertension in adolescents in Port Harcourt is high and is strongly associated with obesity. We recommend blood pressure measurement as part of the school health programme in secondary schools.
Complex Patterns of Local Adaptation in Teosinte
Pyhäjärvi, Tanja; Hufford, Matthew B.; Mezmouk, Sofiane; Ross-Ibarra, Jeffrey
2013-01-01
Populations of widely distributed species encounter and must adapt to local environmental conditions. However, comprehensive characterization of the genetic basis of adaptation is demanding, requiring genome-wide genotype data, multiple sampled populations, and an understanding of population structure and potential selection pressures. Here, we used single-nucleotide polymorphism genotyping and data on numerous environmental variables to describe the genetic basis of local adaptation in 21 populations of teosinte, the wild ancestor of maize. We found complex hierarchical genetic structure created by altitude, dispersal events, and admixture among subspecies, which complicated identification of locally beneficial alleles. Patterns of linkage disequilibrium revealed four large putative inversion polymorphisms showing clinal patterns of frequency. Population differentiation and environmental correlations suggest that both inversions and intergenic polymorphisms are involved in local adaptation. PMID:23902747
Scheikl, Daniela; Tellier, Aurélien
2017-01-01
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved. PMID:28133579
Stam, Remco; Scheikl, Daniela; Tellier, Aurélien
2017-01-01
Wild tomatoes are a valuable source of disease resistance germplasm for tomato ( Solanum lycopersicum ) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense , both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense . We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens ( Alternaria solani , Phytophthora infestans and a Fusarium sp .) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense , resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Synthesis of Large-grain, Single-crystalline Monolayer and AB-stacking Bilayer Graphene
NASA Astrophysics Data System (ADS)
Zhang, Luyao; Lin, Yung-Chen; Zhang, Yi; Chang, Han-Wen; Yeh, Wen-Cheng; Zhou, Chongwu; USC Nanotechnology Research Laboratory Team
2013-03-01
We report the growth of large-grain, single-crystalline monolayer and AB-stacking bilayer graphene by the combination of ambient pressure chemical vapor deposition and low pressure chemical vapor deposition. The shape of the monolayer graphene was modified to be either hexagons or flowers under different growth conditions. The size of the bilayer graphene region was enlarged under ambient pressure growth conditions with low methane concentration. Raman spectra and selected area electron diffraction of individual graphene grain indicated that the each graphene grain is single-crystalline. With electron beam lithography patterned PMMA seeds, graphene nucleation can be controlled and graphene monolayer and bilayer arrays were synthesized on copper foil. Electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Mork Family Department of Chemical Engineering and Materials Science
Norderhaug, K M; Anglès d'Auriac, M B; Fagerli, C W; Gundersen, H; Christie, H; Dahl, K; Hobæk, A
We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56-79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes.
Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh
2015-11-01
Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Nogales, Manuel; González-Castro, Aarón; Marrero, Patricia; Bonnaud, Elsa; Traveset, Anna
2013-01-01
Many fleshy-fruited plants from the Mediterranean and Macaronesian islands are dispersed through endozoochory. In mainland Mediterranean areas, reciprocal adaptations have been found between plants and animals, although evidence is scarce. On small isolated oceanic islands, such reciprocal adaptations might well be more prevalent due to intrinsic island traits. Here we evaluate the existence of selective pressures exerted by two different disperser guilds (lizards and birds) on two seed traits (seed coat thickness and seed germination pattern) of two congeneric species present on Mediterranean and Macaronesian islands. In the continental Balearic Islands, Rubia peregrina has evolved mostly with birds, although frugivorous lizards are present in some of these islands and are known to eventually consume its fruits. By contrast, R. fruticosa, endemic to the Macaronesian archipelago, has evolved mostly interacting with lizards and only recently with birds. We hypothesized that R. fruticosa would be especially adapted to saurochory, with thicker seed coats and higher germination proportion, whereas R. peregrina would be more adapted to ornithocory, with thinner seed coats and showing a lower germination percentage after being ingested by lizards. Captivity experiments of seed ingestions by natural and non-natural dispersers (i.e., frugivores that have not evolved with those plants) were conducted. Results suggest that dispersers did not exert any strong enough selective pressure to induce changes in germination patterns. We attribute this to the fact that the Rubiaceae is an ancestral family in the Mediterranean (both on continent and islands) and thus probably interacted with lizards in the past. Lastly, although we hold that the seed coat structure of R. fruticosa is probably associated with its evolutionary success after a long interaction with insular lizards, our findings support the idea that the relationship between endozoochorous plants and the guild of dispersers with whom they evolved is rather unspecific.
Nogales, Manuel; González-Castro, Aarón; Marrero, Patricia; Bonnaud, Elsa; Traveset, Anna
2013-01-01
Many fleshy-fruited plants from the Mediterranean and Macaronesian islands are dispersed through endozoochory. In mainland Mediterranean areas, reciprocal adaptations have been found between plants and animals, although evidence is scarce. On small isolated oceanic islands, such reciprocal adaptations might well be more prevalent due to intrinsic island traits. Here we evaluate the existence of selective pressures exerted by two different disperser guilds (lizards and birds) on two seed traits (seed coat thickness and seed germination pattern) of two congeneric species present on Mediterranean and Macaronesian islands. In the continental Balearic Islands, Rubia peregrina has evolved mostly with birds, although frugivorous lizards are present in some of these islands and are known to eventually consume its fruits. By contrast, R. fruticosa, endemic to the Macaronesian archipelago, has evolved mostly interacting with lizards and only recently with birds. We hypothesized that R. fruticosa would be especially adapted to saurochory, with thicker seed coats and higher germination proportion, whereas R. peregrina would be more adapted to ornithocory, with thinner seed coats and showing a lower germination percentage after being ingested by lizards. Captivity experiments of seed ingestions by natural and non-natural dispersers (i.e., frugivores that have not evolved with those plants) were conducted. Results suggest that dispersers did not exert any strong enough selective pressure to induce changes in germination patterns. We attribute this to the fact that the Rubiaceae is an ancestral family in the Mediterranean (both on continent and islands) and thus probably interacted with lizards in the past. Lastly, although we hold that the seed coat structure of R. fruticosa is probably associated with its evolutionary success after a long interaction with insular lizards, our findings support the idea that the relationship between endozoochorous plants and the guild of dispersers with whom they evolved is rather unspecific. PMID:23667598
Neural network pattern recognition of lingual-palatal pressure for automated detection of swallow.
Hadley, Aaron J; Krival, Kate R; Ridgel, Angela L; Hahn, Elizabeth C; Tyler, Dustin J
2015-04-01
We describe a novel device and method for real-time measurement of lingual-palatal pressure and automatic identification of the oral transfer phase of deglutition. Clinical measurement of the oral transport phase of swallowing is a complicated process requiring either placement of obstructive sensors or sitting within a fluoroscope or articulograph for recording. Existing detection algorithms distinguish oral events with EMG, sound, and pressure signals from the head and neck, but are imprecise and frequently result in false detection. We placed seven pressure sensors on a molded mouthpiece fitting over the upper teeth and hard palate and recorded pressure during a variety of swallow and non-swallow activities. Pressure measures and swallow times from 12 healthy and 7 Parkinson's subjects provided training data for a time-delay artificial neural network to categorize the recordings as swallow or non-swallow events. User-specific neural networks properly categorized 96 % of swallow and non-swallow events, while a generalized population-trained network was able to properly categorize 93 % of swallow and non-swallow events across all recordings. Lingual-palatal pressure signals are sufficient to selectively and specifically recognize the initiation of swallowing in healthy and dysphagic patients.
Schwartz, Bryan G; Qualls, Clifford; Kloner, Robert A; Laskey, Warren K
2015-10-15
A distinct seasonal pattern in total and cardiovascular death rates has been reported. The factors contributing to this pattern have not been fully explored. Seven locations (average total population 71,354,000) were selected where data were available including relatively warm, cold, and moderate temperatures. Over the period 2004 to 2009, there were 2,526,123 all-cause deaths, 838,264 circulatory deaths, 255,273 coronary heart disease deaths, and 135,801 ST-elevation myocardial infarction (STEMI) deaths. We used time series and multivariate regression modeling to explore the association between death rates and climatic factors (temperature, dew point, precipitation, barometric pressure), influenza levels, air pollution levels, hours of daylight, and day of week. Average seasonal patterns for all-cause and cardiovascular deaths were very similar across the 7 locations despite differences in climate. After adjusting for multiple covariates and potential confounders, there was a 0.49% increase in all-cause death rate for every 1°C decrease. In general, all-cause, circulatory, coronary heart disease and STEMI death rates increased linearly with decreasing temperatures. The temperature effect varied by location, including temperature's linear slope, cubic fit, positional shift on the temperature axis, and the presence of circulatory death increases in locally hot temperatures. The variable effect of temperature by location suggests that people acclimatize to local temperature cycles. All-cause and circulatory death rates also demonstrated sizable associations with influenza levels, dew point temperature, and barometric pressure. A greater understanding of how climate, temperature, and barometric pressure influence cardiovascular responses would enhance our understanding of circulatory and STEMI deaths. Copyright © 2015 Elsevier Inc. All rights reserved.
Association between stress and blood pressure variation in a Caribbean population.
Hutchinson, J
1986-09-01
Based on the work of Selye (The Stress of Life, New York: McGraw-Hill, 1976) it is hypothesized that stress can produce physiological abnormalities, i.e., elevated blood pressure, and that social variables can be used as indicators or risk factors for disease. It is theorized that deviations from acceptable social patterns or traditional life-styles can produce stressful conditions that are associated with disease and that these situations can be demonstrated by examination of certain social characteristics. This association is examined among the Black Caribs of St. Vincent, West Indies. The social variables included in this analysis are marital status (single, married, widowed, or separated), frequency of church attendance (frequently, sometimes, seldom, or never), years of education, and number of children (for women only). The findings show that single individuals have higher pressures than married subjects and that males who never attend church have higher pressures than men who frequently attend church; a relationship was not demonstrated for females. Among males, as the years of education increased, blood pressure also increased, but for females, increased education was associated with lower pressures. Family size was not associated with systolic or diastolic pressure. The analysis of these selected social variables suggests that these variables influence male systolic and diastolic pressures, but only female diastolic pressure.
Spatial patterns of fasting and fed antropyloric pressure waves in humans.
Sun, W M; Hebbard, G S; Malbert, C H; Jones, K L; Doran, S; Horowitz, M; Dent, J
1997-01-01
1. Gastric mechanics were investigated by categorizing the temporal and spatial patterning of pressure waves associated with individual gastric contractions. 2. In twelve healthy volunteers, intraluminal pressures were monitored from nine side hole recording points spaced at 1.5 cm intervals along the antrum, pylorus and duodenum. 3. Pressure wave sequences that occurred during phase II fasting contractions (n = 221) and after food (n = 778) were evaluated. 4. The most common pattern of pressure wave onset along the antrum was a variable combination of antegrade, synchronous and retrograde propagation between side hole pairs. This variable pattern accounted for 42% of sequences after food, and 34% during fasting (P < 0.05). Other common pressure wave sequence patterns were: purely antegrade-29% after food and 42% during fasting (P < 0.05); purely synchronous-23% fed and 17% fasting; and purely retrograde-6% fed and 8% fasting. The length of sequences was shorter after food (P < 0.05). Some sequences 'skipped' individual recording points. 5. The spatial patterning of gastric pressure wave sequences is diverse, and may explain the differing mechanical outcomes among individual gastric contractions. 6. Better understanding of gastric mechanics may be gained from temporally precise correlations of luminal flows and pressures and gastric wall motion during individual gastric contraction sequences. PMID:9306286
Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).
Momigliano, P; Harcourt, R; Robbins, W D; Jaiteh, V; Mahardika, G N; Sembiring, A; Stow, A
2017-09-01
With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.
A Versatile Method of Patterning Proteins and Cells.
Shrirao, Anil B; Kung, Frank H; Yip, Derek; Firestein, Bonnie L; Cho, Cheul H; Townes-Anderson, Ellen
2017-02-26
Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.
Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C
2014-01-01
We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development.
Maat, Harro; Richards, Paul; Struik, Paul C.
2014-01-01
We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should be more effectively involved in crop development. PMID:24465809
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2010-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2008-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
Zverev, Yury
2016-08-01
In a recent paper, Mayolas Pi, Arrese, Aparicio, and Masià reported the absence of significant bilateral differences between legs in the average plantar pressure during walking in six- to seven-year-old children. However, the authors demonstrated bilateral differences in the distribution of plantar pressure during walking independent of foot preference in three tests: kicking a ball with precision, balancing on one foot, and jumping on one foot. From the results, Mayolas Pi et al. proposed that this asymmetric pattern of plantar pressure distribution is not caused by laterality. This paper suggests that the selected age range of participants and methods of diagnosing of laterality and data analysis could have significant effects on the results. Indeed, according to the literature, laterality in humans is a multidimensional trait with poor stabilization and conformity between different dimensions in preschool and younger school children. © The Author(s) 2016.
The Evolution of Human Genetic and Phenotypic Variation in Africa
Campbell, Michael C.
2010-01-01
Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral populations into other regions of the world. Indigenous Africans are characterized by high levels of genetic diversity within and between populations. The pattern of genetic variation in these populations has been shaped by demographic events occurring over the last 200,000 years. The dramatic variation in climate, diet, and exposure to infectious disease across the continent has also resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes some recent advances in our understanding of the demographic history and selective pressures that have influenced levels and patterns of diversity in African populations. PMID:20178763
Remmert, Hermann
1969-08-01
Synchrony of diurnal activity patterns seems to have evolved entirely between groups of species. No well established case of synchrony is known which involves only two species. The interdependence of activity patterns based on diurnal rhythms is a phenomenon well known in autecology, e.g. between flowers and their pollinators, parasites and their hosts, predators and their prey.At different daytimes there are completely different food chains in one and the same biotope.The few existing quantitative investigations reveal that 1. strong selective pressure can limit the diurnal activity of a species; 2. the productivity in a biotope may reach a maximum when the daily feeding time of its predators is restricted. This seems to hold, e.g., for the marine plancton.
Stasche, Norbert
2006-01-01
Positive airway pressure (PAP) is the therapy of choice for most sleep-related breathing disorders (SRBD). A variety of PAP devices using positive airway pressure (CPAP, BiPAP, APAP, ASV) must be carefully considered before application. This overview aims to provide criteria for choosing the optimal PAP device according to severity and type of sleep-related breathing disorder. In addition, the range of therapeutic applications, constraints and side effects as well as alternative methods to PAP will be discussed. This review is based on an analysis of current literature and clinical experience. The data is presented from an ENT-sleep-laboratory perspective and is designed to help the ENT practitioner initiate treatment and provide support. Different titration methods, current devices and possible applications will be described. In addition to constant pressure devices (CPAP), most commonly used for symptomatic obstructive sleep apnoea (OSA) without complicating conditions, BiPAP models will be introduced. These allow two different positive pressure settings and are thus especially suitable for patients with cardiopulmonary diseases or patients with pressure intolerance, increasing compliance in this subgroup considerably. Compliance can also be increased in patients during first night of therapy, patients with highly variable pressure demands or position-dependent OSA, by using self-regulating Auto-adjust PAP devices (Automatic positive airway pressure, APAP). Patients with Cheyne-Stokes breathing, a subtype of central sleep apnoea, benefit from adaptive servo-ventilation (ASV), which analyzes breathing patterns continually and adjusts the actual ventilation pressure accordingly. This not only reduces daytime sleepiness, but can also influence heart disease positively. Therapy with positive airway pressure is very effective in eliminating obstruction-related sleep diseases and symptoms. However, because therapy is generally applied for life, the optimal PAP device must be carefully selected, taking into account side effects that influence compliance. PMID:22073075
Bera, Bidhan Ch; Virmani, Nitin; Kumar, Naveen; Anand, Taruna; Pavulraj, S; Rash, Adam; Elton, Debra; Rash, Nicola; Bhatia, Sandeep; Sood, Richa; Singh, Raj Kumar; Tripathi, Bhupendra Nath
2017-08-23
Equine influenza is a major health problem of equines worldwide. The polymerase genes of influenza virus have key roles in virus replication, transcription, transmission between hosts and pathogenesis. Hence, the comprehensive genetic and codon usage bias of polymerase genes of equine influenza virus (EIV) were analyzed to elucidate the genetic and evolutionary relationships in a novel perspective. The group - specific consensus amino acid substitutions were identified in all polymerase genes of EIVs that led to divergence of EIVs into various clades. The consistent amino acid changes were also detected in the Florida clade 2 EIVs circulating in Europe and Asia since 2007. To study the codon usage patterns, a total of 281,324 codons of polymerase genes of EIV H3N8 isolates from 1963 to 2015 were systemically analyzed. The polymerase genes of EIVs exhibit a weak codon usage bias. The ENc-GC3s and Neutrality plots indicated that natural selection is the major influencing factor of codon usage bias, and that the impact of mutation pressure is comparatively minor. The methods for estimating host imposed translation pressure suggested that the polymerase acidic (PA) gene seems to be under less translational pressure compared to polymerase basic 1 (PB1) and polymerase basic 2 (PB2) genes. The multivariate statistical analysis of polymerase genes divided EIVs into four evolutionary diverged clusters - Pre-divergent, Eurasian, Florida sub-lineage 1 and 2. Various lineage specific amino acid substitutions observed in all polymerase genes of EIVs and especially, clade 2 EIVs underwent major variations which led to the emergence of a phylogenetically distinct group of EIVs originating from Richmond/1/07. The codon usage bias was low in all the polymerase genes of EIVs that was influenced by the multiple factors such as the nucleotide compositions, mutation pressure, aromaticity and hydropathicity. However, natural selection was the major influencing factor in defining the codon usage patterns and evolution of polymerase genes of EIVs.
Phytogeographic patterns and cryptic diversity in an aposematic toad from NW Argentina.
Clemente-Carvalho, Rute B; Vaira, Marcos; King, Laura E; Koscinski, Daria; Bonansea, Maria I; Lougheed, Stephen C
2017-11-01
The Yungas Redbelly Toad, Melanophryniscus rubriventris, is patchily distributed in Argentina, confined to the upland portion (1000-2000m above sea level) of the montane forests of northern and central regions of Salta, and in central-eastern and south-eastern Jujuy. This species is known for its striking aposematic color variation across its geographic distribution, and was once treated as a complex of three subspecies based on distinctive color patterns. Here we assess the geographical genetic variation within M. rubriventris and quantify divergence in color and pattern among individuals sampled from Northwestern Argentina. We compare multi-gene phylogeography of M. rubriventris to patterns of dorsal and ventral coloration to test whether evolutionary affinities predict variation in warning color. Our results reveal two well-supported species lineages: one confined to the extreme northern portion of our sampling area, and the other extending over most of the Argentine portion of the species' range, within which there are two populations. However, these well-supported evolutionary relationships do not mirror the marked variation in warning coloration. This discordance between DNA genealogy and warning color variation may reflect selection brought about by differences in local predation pressures, potentially coupled with effects of sexual selection and thermoregulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Copper circuit patterning on polymer using selective surface modification and electroless plating
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2017-02-01
We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.
Predicting summer monsoon of Bhutan based on SST and teleconnection indices
NASA Astrophysics Data System (ADS)
Dorji, Singay; Herath, Srikantha; Mishra, Binaya Kumar; Chophel, Ugyen
2018-02-01
The paper uses a statistical method of predicting summer monsoon over Bhutan using the ocean-atmospheric circulation variables of sea surface temperature (SST), mean sea-level pressure (MSLP), and selected teleconnection indices. The predictors are selected based on the correlation. They are the SST and MSLP of the Bay of Bengal and the Arabian Sea and the MSLP of Bangladesh and northeast India. The Northern Hemisphere teleconnections of East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern, and East Atlantic/West Russia Pattern (EA/WR). The rainfall station data are grouped into two regions with principal components analysis and Ward's hierarchical clustering algorithm. A support vector machine for regression model is proposed to predict the monsoon. The model shows improved skills over traditional linear regression. The model was able to predict the summer monsoon for the test data from 2011 to 2015 with a total monthly root mean squared error of 112 mm for region A and 33 mm for region B. Model could also forecast the 2016 monsoon of the South Asia Monsoon Outlook of World Meteorological Organization (WMO) for Bhutan. The reliance on agriculture and hydropower economy makes the prediction of summer monsoon highly valuable information for farmers and various other sectors. The proposed method can predict summer monsoon for operational forecasting.
Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen
2014-05-01
Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.
Repar, Jelena; Warnecke, Tobias
2017-01-01
Abstract Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin–terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus–Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. PMID:28407093
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas.
Esquerré, Damien; Scott Keogh, J
2016-07-01
Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems. © 2016 John Wiley & Sons Ltd/CNRS.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Small Laminated Axial Turbine Design and Test Program.
1980-12-01
ILLUSTRATIONS Figure No. Title Page 1 Typical Test Results from TFE731 -3 Hot-Rig Testing. 5 2 Laminated Blade Chordwise Flow Patterns 8 3 Laminated Blade Cooling...Flow Parameter Versus Pressure Ratio 36 24 Blade Flow Distribution 37 25 TFE731 Turbofan Engine 38 26 Laminated Turbine Wheel 40 27 Selected Blade...facility, which was specifically developed to permit evaluation of cooled compo- nents for gas turbine engines. Four TFE731 -3 Laminated Turbine Wheels
Predation drives interpopulation differences in parental care expression.
Huang, Wen-San; Lin, Si-Min; Dubey, Sylvain; Pike, David A
2013-03-01
Expressing parental care after oviposition or parturition is usually an obligate (evolved) trait within a species, despite evolutionary theory predicting that widespread species should vary in whether or not they express parental care according to local selection pressures. The lizard Eutropis longicaudata expresses maternal care only in a single population throughout its large geographical range, but why this pattern occurs is unknown. We used reciprocal translocation and predator exclusion experiments to test whether this intraspecific variation is a fixed trait within populations and whether predator abundance explains this perplexing pattern. Wild-caught female lizards that were reciprocally translocated consistently guarded or abandoned eggs in line with their population of origin. By contrast, most lizards raised in a common garden environment and subsequently released as adults adopted the maternal care strategy of the recipient population, even when the parents originated from a population lacking maternal care. Egg predation represents a significant fitness cost in the populations where females display egg-guarding behaviour, but guarding eggs outweighs this potential cost by increasing hatching success. These results imply that predators can be a driving force in the expression of parental care in instances where it is normally absent and that local selection pressure is sufficient to cause behavioural divergence in whether or not parental care is expressed. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Astrophysics Data System (ADS)
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
NASA Astrophysics Data System (ADS)
Orini, Michele; Bailón, Raquel; Laguna, Pablo; Mainardi, Luca T.; Barbieri, Riccardo
2012-12-01
Respiratory activity introduces oscillations both in arterial pressure and heart period, through mechanical and autonomic mechanisms. Respiration, arterial pressure, and heart period are, generally, non-stationary processes and the interactions between them are dynamic. In this study we present a methodology to robustly estimate the time course of cross spectral indices to characterize dynamic interactions between respiratory oscillations of heart period and blood pressure, as well as their interactions with respiratory activity. Time-frequency distributions belonging to Cohen's class are used to estimate time-frequency (TF) representations of coherence, partial coherence and phase difference. The characterization is based on the estimation of the time course of cross spectral indices estimated in specific TF regions around the respiratory frequency. We used this methodology to describe the interactions between respiration, heart period variability (HPV) and systolic arterial pressure variability (SAPV) during tilt table test with both spontaneous and controlled respiratory patterns. The effect of selective autonomic blockade was also studied. Results suggest the presence of common underling mechanisms of regulation between cardiovascular signals, whose interactions are time-varying. SAPV changes followed respiratory flow both in supine and standing positions and even after selective autonomic blockade. During head-up tilt, phase differences between respiration and SAPV increased. Phase differences between respiration and HPV were comparable to those between respiration and SAPV during supine position, and significantly increased during standing. As a result, respiratory oscillations in SAPV preceded respiratory oscillations in HPV during standing. Partial coherence was the most sensitive index to orthostatic stress. Phase difference estimates were consistent among spontaneous and controlled breathing patterns, whereas coherence was higher in spontaneous breathing. Parasympathetic blockade did not affect interactions between respiration and SAPV, reduced the coherence between SAPV and HPV and between respiration and HPV. Our results support the hypothesis that non-autonomic, possibly mechanically mediated, mechanisms also contributes to the respiratory oscillations in HPV. A small contribution of sympathetic activity on HPV-SAPV interactions around the respiratory frequency was also observed.
GROSS, BRIANA L.; TURNER, KATHRYN G.; RIESEBERG, LOREN H.
2008-01-01
The evolution of different populations within a species in response to selective pressures can potentially happen in three different ways. It can occur in parallel, where similar changes occur independently in each population in response to selection; in concert, where the spread of an adaptive mutation across a species’ range results in a single allele fixing in each population; or populations can diverge in response to local selective pressures. We explored these possibilities in populations of the homoploid hybrid species Helianthus deserticola relative to its parental species Helianthus annuus and Helianthus petiolaris using an analysis of variation in 96 expressed sequence tag-based microsatellites. A total of nine loci showed evidence consistent with recent selection at either the species or population level, although two of these genes were discarded because the apparent sweep did not occur relative to the parent from which the locus was derived. Between one and five loci showed a putative sweep across the entire species range with the same microsatellite allele fixed in each population. This pattern is consistent with evolution in concert despite geographical isolation and potential independent origins of the populations. Only one population of H. deserticola showed candidate sweeps that were unique compared to the rest of the species, and this population has also potentially experienced recent admixture with the parental species. PMID:18092993
Adaptations to Climate-Mediated Selective Pressures in Sheep
Lv, Feng-Hua; Agha, Saif; Kantanen, Juha; Colli, Licia; Stucki, Sylvie; Kijas, James W.; Joost, Stéphane; Li, Meng-Hua; Ajmone Marsan, Paolo
2014-01-01
Following domestication, sheep (Ovis aries) have become essential farmed animals across the world through adaptation to a diverse range of environments and varied production systems. Climate-mediated selective pressure has shaped phenotypic variation and has left genetic “footprints” in the genome of breeds raised in different agroecological zones. Unlike numerous studies that have searched for evidence of selection using only population genetics data, here, we conducted an integrated coanalysis of environmental data with single nucleotide polymorphism (SNP) variation. By examining 49,034 SNPs from 32 old, autochthonous sheep breeds that are adapted to a spectrum of different regional climates, we identified 230 SNPs with evidence for selection that is likely due to climate-mediated pressure. Among them, 189 (82%) showed significant correlation (P ≤ 0.05) between allele frequency and climatic variables in a larger set of native populations from a worldwide range of geographic areas and climates. Gene ontology analysis of genes colocated with significant SNPs identified 17 candidates related to GTPase regulator and peptide receptor activities in the biological processes of energy metabolism and endocrine and autoimmune regulation. We also observed high linkage disequilibrium and significant extended haplotype homozygosity for the core haplotype TBC1D12-CH1 of TBC1D12. The global frequency distribution of the core haplotype and allele OAR22_18929579-A showed an apparent geographic pattern and significant (P ≤ 0.05) correlations with climatic variation. Our results imply that adaptations to local climates have shaped the spatial distribution of some variants that are candidates to underpin adaptive variation in sheep. PMID:25249477
Kin-selected cooperation without lifetime monogamy: human insights and animal implications.
Kramer, Karen L; Russell, Andrew F
2014-11-01
Recent phylogenetic analyses suggest that monogamy precedes the evolution of cooperative breeding involving non-breeding helpers. The rationale: only through monogamy can helper-recipient relatedness coefficients match those of parent-offspring. Given that humans are cooperative breeders, these studies imply a monogamy bottleneck during hominin evolution. However, evidence from multiple sources is not compelling. In reconciliation, we propose that selection against cooperative breeding under alternative mating patterns will be mitigated by: (i) kin discrimination, (ii) reduced birth-intervals, and (iii) constraints on independent breeding, particularly for premature and post-fertile individuals. We suggest that such alternatives require consideration to derive a complete picture of the selection pressures acting on the evolution of cooperative breeding in humans and other animals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Contrasting mode of evolution at a coat color locus in wild and domestic pigs.
Fang, Meiying; Larson, Greger; Ribeiro, Helena Soares; Li, Ning; Andersson, Leif
2009-01-01
Despite having only begun approximately 10,000 years ago, the process of domestication has resulted in a degree of phenotypic variation within individual species normally associated with much deeper evolutionary time scales. Though many variable traits found in domestic animals are the result of relatively recent human-mediated selection, uncertainty remains as to whether the modern ubiquity of long-standing variable traits such as coat color results from selection or drift, and whether the underlying alleles were present in the wild ancestor or appeared after domestication began. Here, through an investigation of sequence diversity at the porcine melanocortin receptor 1 (MC1R) locus, we provide evidence that wild and domestic pig (Sus scrofa) haplotypes from China and Europe are the result of strikingly different selection pressures, and that coat color variation is the result of intentional selection for alleles that appeared after the advent of domestication. Asian and European wild boar (evolutionarily distinct subspecies) differed only by synonymous substitutions, demonstrating that camouflage coat color is maintained by purifying selection. In domestic pigs, however, each of nine unique mutations altered the amino acid sequence thus generating coat color diversity. Most domestic MC1R alleles differed by more than one mutation from the wild-type, implying a long history of strong positive selection for coat color variants, during which time humans have cherry-picked rare mutations that would be quickly eliminated in wild contexts. This pattern demonstrates that coat color phenotypes result from direct human selection and not via a simple relaxation of natural selective pressures.
Differential retention of metabolic genes following whole-genome duplication.
Gout, Jean-François; Duret, Laurent; Kahn, Daniel
2009-05-01
Classical studies in Metabolic Control Theory have shown that metabolic fluxes usually exhibit little sensitivity to changes in individual enzyme activity, yet remain sensitive to global changes of all enzymes in a pathway. Therefore, little selective pressure is expected on the dosage or expression of individual metabolic genes, yet entire pathways should still be constrained. However, a direct estimate of this selective pressure had not been evaluated. Whole-genome duplications (WGDs) offer a good opportunity to address this question by analyzing the fates of metabolic genes during the massive gene losses that follow. Here, we take advantage of the successive rounds of WGD that occurred in the Paramecium lineage. We show that metabolic genes exhibit different gene retention patterns than nonmetabolic genes. Contrary to what was expected for individual genes, metabolic genes appeared more retained than other genes after the recent WGD, which was best explained by selection for gene expression operating on entire pathways. Metabolic genes also tend to be less retained when present at high copy number before WGD, contrary to other genes that show a positive correlation between gene retention and preduplication copy number. This is rationalized on the basis of the classical concave relationship relating metabolic fluxes with enzyme expression.
Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching
2013-01-01
A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication. PMID:23531381
Latent fingermark visualisation using reduced-pressure sublimation of copper phthalocyanine.
Williams, Geraint; ap Llwyd Dafydd, Hefin; Watts, Alun; McMurray, Neil
2011-01-30
The sublimation of copper phthalocyanine (CuPc) at a temperature of 400°C under conditions of reduced pressure is shown to be an effective method of developing latent fingermarks on certain types of surface. Preliminary experiments on a limited selection of surfaces including paper, plastic and ceramic tiles were carried out using a simple apparatus consisting of a vacuum desiccator and a resistive heater. CuPc from the gas phase condenses preferentially on fingermark deposits, revealing deep blue patterns with excellent ridge detail clarity on light coloured surfaces. The technique is shown to be most effective on porous surfaces such as paper, but relatively ineffective on non-porous ceramic and plastic surfaces. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agnès; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.
2010-01-01
Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of “pattern recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151
Genetic Variation in the Acorn Barnacle from Allozymes to Population Genomics
Flight, Patrick A.; Rand, David M.
2012-01-01
Understanding the patterns of genetic variation within and among populations is a central problem in population and evolutionary genetics. We examine this question in the acorn barnacle, Semibalanus balanoides, in which the allozyme loci Mpi and Gpi have been implicated in balancing selection due to varying selective pressures at different spatial scales. We review the patterns of genetic variation at the Mpi locus, compare this to levels of population differentiation at mtDNA and microsatellites, and place these data in the context of genome-wide variation from high-throughput sequencing of population samples spanning the North Atlantic. Despite considerable geographic variation in the patterns of selection at the Mpi allozyme, this locus shows rather low levels of population differentiation at ecological and trans-oceanic scales (FST ∼ 5%). Pooled population sequencing was performed on samples from Rhode Island (RI), Maine (ME), and Southwold, England (UK). Analysis of more than 650 million reads identified approximately 335,000 high-quality SNPs in 19 million base pairs of the S. balanoides genome. Much variation is shared across the Atlantic, but there are significant examples of strong population differentiation among samples from RI, ME, and UK. An FST outlier screen of more than 22,000 contigs provided a genome-wide context for interpretation of earlier studies on allozymes, mtDNA, and microsatellites. FST values for allozymes, mtDNA and microsatellites are close to the genome-wide average for random SNPs, with the exception of the trans-Atlantic FST for mtDNA. The majority of FST outliers were unique between individual pairs of populations, but some genes show shared patterns of excess differentiation. These data indicate that gene flow is high, that selection is strong on a subset of genes, and that a variety of genes are experiencing diversifying selection at large spatial scales. This survey of polymorphism in S. balanoides provides a number of genomic tools that promise to make this a powerful model for ecological genomics of the rocky intertidal. PMID:22767487
Response of local vascular volumes to lower body negative pressure stress
NASA Technical Reports Server (NTRS)
Wolthuis, R. A.; Leblanc, A.; Carpentier, W. A.; Bergman, S. A., Jr.
1975-01-01
The present study involved an intravenous injection of radioactive iodinated serum albumin, equilibration of this isotope within the vascular space, and the continuous measurement of isotope activity over selected anatomical areas before, during and following multiple human LBNP tests. Both rate and magnitude of vascular pooling were distinctly different within each of five selected lower body anatomical areas. In the upper body, all areas except the abdomen showed depletions from their resting vascular volumes during LBNP. The presence of uniquely different pooling patterns in the lower body, the apparent stability of abdominal vascular volumes, and a possible decrease in cerebral blood volume during LBNP represent the major findings of this study.
1988-08-01
heavily on the original SPQR component, and uses the same context free grammar to analyze the ISR. The main difference is that, where before SPQR ...ISR is semantically coherent. This has been tested thoroughly on the CASREPS domain, and selects the same parses that SPQR Eid, in less time. There...were a few SPQR patterns that reflected semantic information that could only be provided by time analysis, such as the fact that [pressure during
Sufiun, Abu; Rafiq, Kazi; Fujisawa, Yoshihide; Rahman, Asadur; Mori, Hirohito; Nakano, Daisuke; Kobori, Hiroyuki; Ohmori, Koji; Masaki, Tsutomu; Kohno, Masakazu; Nishiyama, Akira
2015-01-01
A growing body of evidence has indicated that dipeptidyl peptidase-4 (DPP-4) inhibitors have antihypertensive effects. Here, we aim to examine the effect of vildagliptin, a DPP-4-specific inhibitor, on blood pressure and its circadian-dipping pattern during the development of salt-dependent hypertension in Dahl salt-sensitive (DSS) rats. DSS rats were treated with a high-salt diet (8% NaCl) plus vehicle or vildagliptin (3 or 10 mg kg−1 twice daily by oral gavage) for 7 days. Blood pressure was measured by the telemetry system. High-salt diet for 7 days significantly increased the mean arterial pressure (MAP), systolic blood pressure (SBP) and were also associated with an extreme dipping pattern of blood pressure in DSS rats. Treatment with vildagliptin dose-dependently decreased plasma DPP-4 activity, increased plasma glucagon-like peptide 1 (GLP-1) levels and attenuated the development of salt-induced hypertension. Furthermore, vildagliptin significantly increased urine sodium excretion and normalized the dipping pattern of blood pressure. In contrast, intracerebroventricular infusion of vildagliptin (50, 500 or 2500 μg) did not alter MAP and heart rate in DSS rats. These data suggest that salt-dependent hypertension initially develops with an extreme blood pressure dipping pattern. The DPP-4 inhibitor, vildagliptin, may elicit beneficial antihypertensive effects, including the improvement of abnormal circadian blood pressure pattern, by enhancing urinary sodium excretion. PMID:25588850
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu
2016-02-24
Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts.
Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu
2016-01-01
Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064
Emerging prion disease drives host selection in a wildlife population
Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.
2012-01-01
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.
Life begins when the sea lion is ashore: microhabitat use by a louse living on a diving mammal host.
Leonardi, M S; Crespo, E A; Vales, D G; Feijoo, M; Raga, J A; Aznar, F J
2012-08-01
Among Anoplura, the family Echinophthiriidae includes species that infest pinnipeds and otters. Previous evidence obtained from pinnipeds infested by echinophthiriids, specifically from seals, indicates that flippers are the preferred infestation sites, while lice from fur seals select areas in the pelage. We studied habitat selection of Antarctophthirus microchir on South American sea lion pups (Otaria flavescens Shaw, 1800) from Patagonia, Argentina, during the austral summer of 2009. We found a clear pattern of habitat selection: eggs are laid on the dorsal surface; nymphs 1 hatch there and then migrate to the belly, where they develop into adults and copulate; and then ovigerous females return to the dorsal surface. On the one hand, nymphs 1 are characterised by their low locomotory ability; therefore, the fact that they migrate as soon as they hatch suggests a clear pressure leading to microhabitat restriction. On the other hand, the described pattern of microhabitat selection seems to respond to the physiological requirements of each stage, which vary according to the physiological process considered, e.g. oviposition, morphogenesis, hatching and development. Accordingly, it appears that A. microchir would prefer the host's ventral area for development and copulation and the dorsal area for oviposition. However, the causes of this pattern are not clear, and many factors could be involved. Considering that sea lion pups periodically soak at high tides, and that prolonged immersion and very high humidity are known to be lethal for lice eggs, selecting the dorsal area would be advantageous for oviposition because it dries much faster. Furthermore, because humidity should be retained for longer periods on the ventral surface of the pup, wetter conditions on the sea lion would prevent desiccation of the nymphs in the very arid environment where O. flavescens breeds.
Directional radiation pattern in structural-acoustic coupled system
NASA Astrophysics Data System (ADS)
Seo, Hee-Seon; Kim, Yang-Hann
2005-07-01
In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.
Sams, Aaron; Hawks, John
2013-01-01
Celiac disease is a common small intestinal inflammatory condition induced by wheat gluten and related proteins from rye and barley. Left untreated, the clinical presentation of CD can include failure to thrive, malnutrition, and distension in juveniles. The disease can additionally lead to vitamin deficiencies, anemia, and osteoporosis. Therefore, CD potentially negatively affected fitness in past populations utilizing wheat, barley, and rye. Previous analyses of CD risk variants have uncovered evidence for positive selection on some of these loci. These studies also suggest the possibility that risk for common autoimmune conditions such as CD may be the result of positive selection on immune related loci in the genome to fight infection. Under this evolutionary scenario, disease phenotypes may be a trade-off from positive selection on immunity. If this hypothesis is generally true, we can expect to find a signal of natural selection when we survey across the network of loci known to influence CD risk. This study examines the non-HLA autosomal network of gene loci associated with CD risk in Europe. We reject the null hypothesis of neutrality on this network of CD risk loci. Additionally, we can localize evidence of selection in time and space by adding information from the genome of the Tyrolean Iceman. While we can show significant differentiation between continental regions across the CD network, the pattern of evidence is not consistent with primarily recent (Holocene) selection across this network in Europe. Further localization of ancient selection on this network may illuminate the ecological pressures acting on the immune system during this critically interesting phase of our evolution.
Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M.; Villemant, Claire
2014-01-01
Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism. PMID:24740142
Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M; Villemant, Claire
2014-01-01
Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism.
Head shape evolution in Tropidurinae lizards: does locomotion constrain diet?
Kohlsdorf, T; Grizante, M B; Navas, C A; Herrel, A
2008-05-01
Different components of complex integrated systems may be specialized for different functions, and thus the selective pressures acting on the system as a whole may be conflicting and can ultimately constrain organismal performance and evolution. The vertebrate cranial system is one of the most striking examples of a complex system with several possible functions, being associated to activities as different as locomotion, prey capture, display and defensive behaviours. Therefore, selective pressures on the cranial system as a whole are possibly complex and may be conflicting. The present study focuses on the influence of potentially conflicting selective pressures (diet vs. locomotion) on the evolution of head shape in Tropidurinae lizards. For example, the expected adaptations leading to flat heads and bodies in species living on vertical structures may conflict with the need for improved bite performance associated with the inclusion of hard or tough prey into the diet, a common phenomenon in Tropidurinae lizards. Body size and six variables describing head shape were quantified in preserved specimens of 23 species, and information on diet and substrate usage was obtained from the literature. No phylogenetic signal was observed in the morphological data at any branch length tested, suggesting adaptive evolution of head shape in Tropidurinae. This pattern was confirmed by both factor analysis and independent contrast analysis, which suggested adaptive co-variation between the head shape and the inclusion of hard prey into the diet. In contrast to our expectations, habitat use did not constrain or drive head shape evolution in the group.
Ferreira, Zélia; Hurle, Belen; Andrés, Aida M.; Kretzschmar, Warren W.; Mullikin, James C.; Cherukuri, Praveen F.; Cruz, Pedro; Gonder, Mary Katherine; Stone, Anne C.; Tishkoff, Sarah; Swanson, Willie J.; Green, Eric D.; Clark, Andrew G.; Seixas, Susana
2013-01-01
Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC) genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human populations, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpanzees, we sequenced 17 WFDC genes and 47 autosomal pseudogenes in 68 chimpanzees (15 P. t. troglodytes, 22 P. t. verus, and 31 P. t. ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in 0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar footprints of selection across the WFDC locus, possibly due to different selective pressures between the two species related to immune response and reproductive biology. PMID:24356879
Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J.
2013-01-01
Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide. PMID:23805195
Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J
2013-01-01
Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.
Convergent evolution in locomotory patterns of flying and swimming animals.
Gleiss, Adrian C; Jorgensen, Salvador J; Liebsch, Nikolai; Sala, Juan E; Norman, Brad; Hays, Graeme C; Quintana, Flavio; Grundy, Edward; Campagna, Claudio; Trites, Andrew W; Block, Barbara A; Wilson, Rory P
2011-06-14
Locomotion is one of the major energetic costs faced by animals and various strategies have evolved to reduce its cost. Birds use interspersed periods of flapping and gliding to reduce the mechanical requirements of level flight while undergoing cyclical changes in flight altitude, known as undulating flight. Here we equipped free-ranging marine vertebrates with accelerometers and demonstrate that gait patterns resembling undulating flight occur in four marine vertebrate species comprising sharks and pinnipeds. Both sharks and pinnipeds display intermittent gliding interspersed with powered locomotion. We suggest, that the convergent use of similar gait patterns by distinct groups of animals points to universal physical and physiological principles that operate beyond taxonomic limits and shape common solutions to increase energetic efficiency. Energetically expensive large-scale migrations performed by many vertebrates provide common selection pressure for efficient locomotion, with potential for the convergence of locomotory strategies by a wide variety of species.
Atmospheric Pressure Patterns Before and During Dust Storm
2012-11-27
This graph compares a typical daily pattern of changing atmospheric pressure blue with the pattern during a regional dust storm hundreds of miles away red. The data are by the Rover Environmental Monitoring Station REMS on NASA Curiosity rover.
Treydte, Anna Christina; Baumgartner, Sabine; Heitkönig, Ignas M. A.; Grant, Catharina C.; Getz, Wayne M.
2013-01-01
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types. PMID:24358228
Xu, Yan; Xu, Jian; Mao, Daqing; Luo, Yi
2017-01-01
Our previous study demonstrated that high levels of antibiotic resistance genes (ARGs) in the Haihe River were directly attributed to the excessive use of antibiotics in animal agriculture. The antibiotic residues of the Xiangjiang River determined in this study were much lower than those of the Haihe River, but the relative abundance of 16 detected ARGs (sul1, sul2 and sul3, qepA, qnrA, qnrB, qnrD and qnrS, tetA, tetB, tetW, tetM, tetQ and tetO, ermB and ermC), were as high as the Haihe River particularly in the downstream of the Xiangjiang River which is close to the extensive metal mining. The ARGs discharged from the pharmaceutical wastewater treatment plant (PWWTP) are a major source of ARGs in the upstream of the Xiangjiang River. In the downstream, selective stress of heavy metals rather than source release had a significant influence on the distinct distribution pattern of ARGs. Some heavy metals showed a positive correlation with certain ARG subtypes. Additionally, there is a positive correlation between individual ARG subtypes and heavy metal resistance genes, suggesting that heavy metals may co select the ARGs on the same plasmid of antibiotic resistant bacteria. The co-selection mechanism between specific metal and antibiotic resistance was further confirmed by these isolations encoding the resistance genotypes to antibiotics and metals. To our knowledge, this is the first study on the fate and distribution of ARGs under the selective pressure exerted by heavy metals in the catchment scale. These results are beneficial to understand the fate, and to discern the contributors of ARGs from either the source release or the selective pressure by sub-lethal levels of environmental stressors during their transport on a river catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sherratt, Emma; Serb, Jeanne M; Adams, Dean C
2017-12-08
Rates of morphological evolution vary across different taxonomic groups, and this has been proposed as one of the main drivers for the great diversity of organisms on Earth. Of the extrinsic factors pertaining to this variation, ecological hypotheses feature prominently in observed differences in phenotypic evolutionary rates across lineages. But complex organisms are inherently modular, comprising distinct body parts that can be differentially affected by external selective pressures. Thus, the evolution of trait covariation and integration in modular systems may also play a prominent role in shaping patterns of phenotypic diversity. Here we investigate the role ecological diversity plays in morphological integration, and the tempo of shell shape evolution and of directional asymmetry in bivalved scallops. Overall, the shape of both valves and the magnitude of asymmetry of the whole shell (difference in shape between valves) are traits that are evolving fast in ecomorphs under strong selective pressures (gliders, recessers and nestling), compared to low rates observed in other ecomorphs (byssal-attaching, free-living and cementing). Given that different parts of an organism can be under different selective pressures from the environment, we also examined the degree of evolutionary integration between the valves as it relates to ecological shifts. We find that evolutionary morphological integration is consistent and surprisingly high across species, indicating that while the left and right valves of a scallop shell are diversifying in accordance with ecomorphology, they are doing so in a concerted fashion. Our study on scallops adds another strong piece of evidence that ecological shifts play an important role in the tempo and mode of morphological evolution. Strong selective pressures from the environment, inferred from the repeated evolution of distinct ecomorphs, have influenced the rate of morphological evolution in valve shape and the magnitude of asymmetry between valves. Our observation that morphological integration of the valves making up the shell is consistently strong suggests tight developmental pathways are responsible for the concerted evolution of these structures while environmental pressures are driving whole shell shape. Finally, our study shows that directional asymmetry in shell shape among species is an important aspect of scallop macroevolution.
Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.
Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho
2015-10-06
The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.
2008-01-01
Background Sperm morphology can be highly variable among species, but less is known about patterns of population differentiation within species. Most studies of sperm morphometric variation are done in species with internal fertilization, where sexual selection can be mediated by complex mating behavior and the environment of the female reproductive tract. Far less is known about patterns of sperm evolution in broadcast spawners, where reproductive dynamics are largely carried out at the gametic level. We investigated variation in sperm morphology of a broadcast spawner, the green sea urchin (Strongylocentrotus droebachiensis), within and among spawnings of an individual, among individuals within a population, and among populations. We also examined population-level variation between two reproductive seasons for one population. We then compared among-population quantitative genetic divergence (QST) for sperm characters to divergence at neutral microsatellite markers (FST). Results All sperm traits except total length showed strong patterns of high diversity among populations, as did overall sperm morphology quantified using multivariate analysis. We also found significant differences in almost all traits among individuals in all populations. Head length, axoneme length, and total length had high within-male repeatability across multiple spawnings. Only sperm head width had significant within-population variation across two reproductive seasons. We found signatures of directional selection on head length and head width, with strong selection possibly acting on head length between the Pacific and West Atlantic populations. We also discuss the strengths and limitations of the QST-FST comparison. Conclusion Sperm morphology in S. droebachiensis is highly variable, both among populations and among individuals within populations, and has low variation within an individual across multiple spawnings. Selective pressures acting among populations may differ from those acting within, with directional selection implicated in driving divergence among populations and balancing selection as a possible mechanism for producing variability among males. Sexual selection in broadcast spawners may be mediated by different processes from those acting on internal fertilizers. Selective divergence in sperm head length among populations is associated with ecological differences among populations that may play a large role in mediating sexual selection in this broadcast spawner. PMID:18851755
Rapid evolution in insect pests: the importance of space and time in population genomics studies.
Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D
2018-04-01
Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.
Dynamical systems techniques reveal the sexual dimorphic nature of motor patterns in birdsong
NASA Astrophysics Data System (ADS)
Mendez, J. M.; Alliende, J. A.; Amador, A.; Mindlin, G. B.
2006-10-01
In this work we analyze the pressure motor patterns used by canaries (Serinus canaria) during song, both in the cases of males and testosterone treated females. We found a qualitative difference between them which was not obvious from the acoustical features of the uttered songs. We also show the diversity of patterns, both for males and females, to be consistent with a recently proposed model for the dynamics of the oscine respiratory system. The model not only allows us to reproduce qualitative features of the different pressure patterns, but also to account for all the diversity of pressure patterns found in females.
Genomic Signatures Reveal New Evidences for Selection of Important Traits in Domestic Cattle
Xu, Lingyang; Bickhart, Derek M.; Cole, John B.; Schroeder, Steven G.; Song, Jiuzhou; Tassell, Curtis P. Van; Sonstegard, Tad S.; Liu, George E.
2015-01-01
We investigated diverse genomic selections using high-density single nucleotide polymorphism data of five distinct cattle breeds. Based on allele frequency differences, we detected hundreds of candidate regions under positive selection across Holstein, Angus, Charolais, Brahman, and N'Dama. In addition to well-known genes such as KIT, MC1R, ASIP, GHR, LCORL, NCAPG, WIF1, and ABCA12, we found evidence for a variety of novel and less-known genes under selection in cattle, such as LAP3, SAR1B, LRIG3, FGF5, and NUDCD3. Selective sweeps near LAP3 were then validated by next-generation sequencing. Genome-wide association analysis involving 26,362 Holsteins confirmed that LAP3 and SAR1B were related to milk production traits, suggesting that our candidate regions were likely functional. In addition, haplotype network analyses further revealed distinct selective pressures and evolution patterns across these five cattle breeds. Our results provided a glimpse into diverse genomic selection during cattle domestication, breed formation, and recent genetic improvement. These findings will facilitate genome-assisted breeding to improve animal production and health. PMID:25431480
Foot strike patterns after obstacle clearance during running.
Scholten, Shane D; Stergiou, Nicholas; Hreljac, Alan; Houser, Jeremy; Blanke, Daniel; Alberts, L Russell
2002-01-01
Running over obstacles of sufficient height requires heel strike (HS) runners to make a transition in landing strategy to a forefoot (FF) strike, resulting in similar ground reaction force patterns to those observed while landing from a jump. Identification of the biomechanical variables that distinguish between the landing strategies may offer some insight into the reasons that the transition occurs. The purpose of this study was to investigate the difference in foot strike patterns and kinetic parameters of heel strike runners between level running and running over obstacles of various heights. Ten heel strike subjects ran at their self-selected pace under seven different conditions: unperturbed running (no obstacle) and over obstacles of six different heights (10%, 12.5%, 15%, 17.5%, 20%, and 22.5% of their standing height). The obstacle was placed directly before a Kistler force platform. Repeated measures ANOVAs were performed on the subject means of selected kinetic parameters. The statistical analysis revealed significant differences (P < 0.004) for all of the parameters analyzed. The evaluation of the center of pressure and the ground reaction forces indicated that the foot strike patterns were affected by the increased obstacle height. Between the 12.5% and 15% obstacle conditions, the group response changed from a heel strike to a forefoot strike pattern. At height > 15%, the pattern was more closely related to the foot strike patterns found in jumping activities. This strategy change may represent a gait transition effected as a mechanism to protect against increased impact forces. Greater involvement of the ankle and the calf muscles could have assisted in attenuating the increased impact forces while maintaining speed after clearing the obstacle.
Adaptations to Climate in Candidate Genes for Common Metabolic Disorders
Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna
2008-01-01
Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109
Romero, H; Zavala, A; Musto, H
2000-01-25
It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.
Adaptations to climate-mediated selective pressures in sheep.
Lv, Feng-Hua; Agha, Saif; Kantanen, Juha; Colli, Licia; Stucki, Sylvie; Kijas, James W; Joost, Stéphane; Li, Meng-Hua; Ajmone Marsan, Paolo
2014-12-01
Following domestication, sheep (Ovis aries) have become essential farmed animals across the world through adaptation to a diverse range of environments and varied production systems. Climate-mediated selective pressure has shaped phenotypic variation and has left genetic "footprints" in the genome of breeds raised in different agroecological zones. Unlike numerous studies that have searched for evidence of selection using only population genetics data, here, we conducted an integrated coanalysis of environmental data with single nucleotide polymorphism (SNP) variation. By examining 49,034 SNPs from 32 old, autochthonous sheep breeds that are adapted to a spectrum of different regional climates, we identified 230 SNPs with evidence for selection that is likely due to climate-mediated pressure. Among them, 189 (82%) showed significant correlation (P ≤ 0.05) between allele frequency and climatic variables in a larger set of native populations from a worldwide range of geographic areas and climates. Gene ontology analysis of genes colocated with significant SNPs identified 17 candidates related to GTPase regulator and peptide receptor activities in the biological processes of energy metabolism and endocrine and autoimmune regulation. We also observed high linkage disequilibrium and significant extended haplotype homozygosity for the core haplotype TBC1D12-CH1 of TBC1D12. The global frequency distribution of the core haplotype and allele OAR22_18929579-A showed an apparent geographic pattern and significant (P ≤ 0.05) correlations with climatic variation. Our results imply that adaptations to local climates have shaped the spatial distribution of some variants that are candidates to underpin adaptive variation in sheep. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
Expert monitoring and verbal feedback as sources of performance pressure.
Buchanan, John J; Park, Inchon; Chen, Jing; Mehta, Ranjana K; McCulloch, Austin; Rhee, Joohyun; Wright, David L
2018-05-01
The influence of monitoring-pressure and verbal feedback on the performance of the intrinsically stable bimanual coordination patterns of in-phase and anti-phase was examined. The two bimanual patterns were produced under three conditions: 1) no-monitoring, 2) monitoring-pressure (viewed by experts), and 3) monitoring-pressure (viewed by experts) combined with verbal feedback emphasizing poor performance. The bimanual patterns were produced at self-paced movement frequencies. Anti-phase coordination was always less stable than in-phase coordination across all three conditions. When performed under conditions 2 and 3, both bimanual patterns were performed with less variability in relative phase across a wide range of self-paced movement frequencies compared to the no-monitoring condition. Thus, monitoring-pressure resulted in performance stabilization rather than degradation and the presence of verbal feedback had no impact on the influence of monitoring pressure. The current findings are inconsistent with the predictions of explicit monitoring theory; however, the findings are consistent with studies that have revealed increased stability for the system's intrinsic dynamics as a result of attentional focus and intentional control. The results are discussed within the contexts of the dynamic pattern theory of coordination, explicit monitoring theory, and action-focused theories as explanations for choking under pressure. Copyright © 2018. Published by Elsevier B.V.
Synoptic patterns leading to hailstorm in Chaharmahal and Bakhtiari province, Iran
NASA Astrophysics Data System (ADS)
Salahi, Bromand; Nohegar, Ahmad; Behrouzi, Mahmoud; Aalijahan, Mehdi
2018-03-01
The purpose of this study was to extract the synoptic patterns of 500 mb geopotential height and the sea level pressure leading to form hail in Chaharmahal and Bakhtiari province, Iran. To this end, at first, we explored hail occurrence in different areas of the province under investigation. Then, using sea level pressure and 500 mb geopotential height data, the patterns of hail occurrence were investigated through hierarchical clustering and Ward's method. The level of 500 mb patterns resulting in hail formation in the area include: (1) settlement of a cut-off low pressure blocking in Turkey and Iran's position in downstream of trough and injection of humidity coming from the Red Sea; (2) settlement of low ridge in northern Europe and Iran lying in downstream of the trough and injection of humidity of the Mediterranean Sea; (3) settlement of a cut-off low pressure in east of Europe and Iran lying in downstream of the trough; and (4) settlement of a deep trough in the Mediterranean Sea, formation of an omega-shaped blocking in Northern Europe and Iran lying in downstream of the trough. At sea level, the following patterns have caused hail formation in Chaharmahal and Bakhtiari province: (1) settlement of low pressure in Iran and Russia accompanying high pressure in Taklimakan Desert and east of Europe; (2) settlement of low pressure in Iran and high pressure in Egypt, northern Europe, and Taklimakan Desert; and (3) settlement of low pressure in Iran, Saudi Arabia and south of Italy and high pressure in Egypt and Siberia.
Rohwer, V G; Bonier, F; Martin, P R
2015-10-22
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype-active bird nests-and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. © 2015 The Author(s).
Rohwer, V. G.; Bonier, F.; Martin, P. R.
2015-01-01
Climatic selective pressures are thought to dominate biotic selective pressures at higher latitudes. However, few studies have experimentally tested how these selective pressures differentially act on traits across latitudes because traits can rarely be manipulated independently of the organism in nature. We overcame this challenge by using an extended phenotype—active bird nests—and conducted reciprocal transplant experiments between a subarctic and temperate site, separated by 14° of latitude. At the subarctic site, biotic selective pressures (nest predation) favoured smaller, non-local temperate nests, whereas climatic selective pressures (temperature) favoured larger local nests, particularly at colder temperatures. By contrast, at the temperate site, climatic and biotic selective pressures acted similarly on temperate and subarctic nests. Our results illustrate a functional trade-off in the subarctic between nest morphologies favoured by biotic versus climatic selective pressures, with climate favouring local nest morphologies. At our temperate site, however, allocative trade-offs in the time and effort devoted to nest construction favour smaller, local nests. Our findings illustrate a conflict between biotic and climatic selective pressures at the northern extremes of a species geographical range, and suggest that trade-offs between trait function and trait elaboration act differentially across latitude to create broad geographic variation in traits. PMID:26490789
Long-term archives reveal shifting extinction selectivity in China's postglacial mammal fauna
Crees, Jennifer J.; Li, Zhipeng; Bielby, Jon; Yuan, Jing
2017-01-01
Ecosystems have been modified by human activities for millennia, and insights about ecology and extinction risk based only on recent data are likely to be both incomplete and biased. We synthesize multiple long-term archives (over 250 archaeological and palaeontological sites dating from the early Holocene to the Ming Dynasty and over 4400 historical records) to reconstruct the spatio-temporal dynamics of Holocene–modern range change across China, a megadiverse country experiencing extensive current-day biodiversity loss, for 34 mammal species over three successive postglacial time intervals. Our combined zooarchaeological, palaeontological, historical and current-day datasets reveal that both phylogenetic and spatial patterns of extinction selectivity have varied through time in China, probably in response both to cumulative anthropogenic impacts (an ‘extinction filter’ associated with vulnerable species and accessible landscapes being affected earlier by human activities) and also to quantitative and qualitative changes in regional pressures. China has experienced few postglacial global species-level mammal extinctions, and most species retain over 50% of their maximum estimated Holocene range despite millennia of increasing regional human pressures, suggesting that the potential still exists for successful species conservation and ecosystem restoration. Data from long-term archives also demonstrate that herbivores have experienced more historical extinctions in China, and carnivores have until recently displayed greater resilience. Accurate assessment of patterns of biodiversity loss and the likely predictive power of current-day correlates of faunal vulnerability and resilience is dependent upon novel perspectives provided by long-term archives. PMID:29167363
Willemet, Romain
2012-05-18
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.
Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach
Willemet, Romain
2012-01-01
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772
Wenzel, Marius A; Douglas, Alex; James, Marianne C; Redpath, Steve M; Piertney, Stuart B
2016-01-01
Landscape genomics promises to provide novel insights into how neutral and adaptive processes shape genome-wide variation within and among populations. However, there has been little emphasis on examining whether individual-based phenotype-genotype relationships derived from approaches such as genome-wide association (GWAS) manifest themselves as a population-level signature of selection in a landscape context. The two may prove irreconcilable as individual-level patterns become diluted by high levels of gene flow and complex phenotypic or environmental heterogeneity. We illustrate this issue with a case study that examines the role of the highly prevalent gastrointestinal nematode Trichostrongylus tenuis in shaping genomic signatures of selection in red grouse (Lagopus lagopus scotica). Individual-level GWAS involving 384 SNPs has previously identified five SNPs that explain variation in T. tenuis burden. Here, we examine whether these same SNPs display population-level relationships between T. tenuis burden and genetic structure across a small-scale landscape of 21 sites with heterogeneous parasite pressure. Moreover, we identify adaptive SNPs showing signatures of directional selection using F(ST) outlier analysis and relate population- and individual-level patterns of multilocus neutral and adaptive genetic structure to T. tenuis burden. The five candidate SNPs for parasite-driven selection were neither associated with T. tenuis burden on a population level, nor under directional selection. Similarly, there was no evidence of parasite-driven selection in SNPs identified as candidates for directional selection. We discuss these results in the context of red grouse ecology and highlight the broader consequences for the utility of landscape genomics approaches for identifying signatures of selection. © 2015 John Wiley & Sons Ltd.
Gagliano, Monica; McCormick, Mark I; Meekan, Mark G
2007-07-07
For organisms with complex life cycles, variation among individuals in traits associated with survival in one life-history stage can strongly affect the performance in subsequent stages with important repercussions on population dynamics. To identify which individual attributes are the most influential in determining patterns of survival in a cohort of reef fish, we compared the characteristics of Pomacentrus amboinensis surviving early juvenile stages on the reef with those of the cohort from which they originated. Individuals were collected at hatching, the end of the planktonic phase, and two, three, four, six and eight weeks post-settlement. Information stored in the otoliths of individual fish revealed strong carry-over effects of larval condition at hatching on juvenile survival, weeks after settlement (i.e. smaller-is-better). Among the traits examined, planktonic growth history was, by far, the most influential and long-lasting trait associated with juvenile persistence in reef habitats. However, otolith increments suggested that larval growth rate may not be maintained during early juvenile life, when selective mortality swiftly reverses its direction. These changes in selective pressure may mediate growth-mortality trade-offs between predation and starvation risks during early juvenile life. Ontogenetic changes in the shape of selectivity may be a mechanism maintaining phenotypic variation in growth rate and size within a population.
Telling tails: selective pressures acting on investment in lizard tails.
Fleming, Patricia A; Valentine, Leonie E; Bateman, Philip W
2013-01-01
Caudal autotomy is a common defense mechanism in lizards, where the animal may lose part or all of its tail to escape entrapment. Lizards show an immense variety in the degree of investment in a tail (i.e., length) across species, with tails of some species up to three or four times body length (snout-vent length [SVL]). Additionally, body size and form also vary dramatically, including variation in leg development and robustness and length of the body and tail. Autotomy is therefore likely to have fundamentally different effects on the overall body form and function in different species, which may be reflected directly in the incidence of lost/regenerating tails within populations or, over a longer period, in terms of relative tail length for different species. We recorded data (literature, museum specimens, field data) for relative tail length (n=350 species) and the incidence of lost/regenerating tails (n=246 species). We compared these (taking phylogeny into account) with intrinsic factors that have been proposed to influence selective pressures acting on caudal autotomy, including body form (robustness, body length, leg development, and tail specialization) and ecology (foraging behavior, physical and temporal niches), in an attempt to identify patterns that might reflect adaptive responses to these different factors. More gracile species have relatively longer tails (all 350 spp., P < 0.001; also significant for five of the six families tested separately), as do longer (all species, P < 0.001; Iguanidae, P < 0.05; Lacertidae, P < 0.001; Scindidae, P < 0.001), climbing (all species, P < 0.05), and diurnal (all species, P < 0.01; Pygopodidae, P < 0.01) species; geckos without specialized tails (P < 0.05); or active-foraging skinks (P < 0.05). We also found some relationships with the data for caudal autotomy, with more lost/regenerating tails for nocturnal lizards (all 246 spp., P < 0.01; Scindidae, P < 0.05), larger skinks (P < 0.05), climbing geckos (P < 0.05), or active-foraging iguanids (P < 0.05). The selective advantage of investing in a relatively longer tail may be due to locomotor mechanics, although the patterns observed are also largely consistent with predictions based on predation pressure.
Vacuum-assisted fluid flow in microchannels to pattern substrates and cells.
Shrirao, Anil B; Kung, Frank H; Yip, Derek; Cho, Cheul H; Townes-Anderson, Ellen
2014-09-01
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon et al 1999 Adv. Mater 11 946) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm(2). Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology.
Vacuum-assisted Fluid Flow in Microchannels to Pattern Substrates and Cells
Shrirao, Anil B.; Kung, Frank H.; Yip, Derek; Cho, Cheul H.; Townes-Anderson, Ellen
2014-01-01
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon, Choi et al. 1999) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm2. Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology. PMID:24989641
Microstructural characterization and mechanical properties of Excel alloy pressure tube material
NASA Astrophysics Data System (ADS)
Sattari, Mohammad
Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared to typical pressure tube texture. Variant selection was observed upon water quenching while partial memory effect and some transformation texture with variant selection was observed in the air-cooled sample. The results of creep-rupture tests suggest that fully martensitic and aged microstructure has better creep properties at high stress levels (>700 MPa) while the microstructure from air cooling from high in the alphaZr+betaZr region is less sensitive to stress and shows better creep properties compared to the as-received annealed microstructure at lower stresses (<560 MPa).
[Resistance to peer and partner pressure and tobacco and alcohol use among adolescents].
Andrade Palos, Patricia; Pérez de la Barrera, Citlalli; Alfaro Martínez, Lilia Bertha; Sánchez Oviedo, Martha Elba; López Montes de Oca, Alicia
2009-01-01
Drug consumption constitutes a public health problem in Mexico. In the international literature and from the health promotion perspective, the Life Skills Approach proposed by the World Health Organization identifies the ability to resist pressure as a key component in the prevention of legal and illegal drug use among adolescents. An instrument for measuring this ability was developed and validated in order to confirm whether, as the empirical evidence suggests, it differs between users and non-users of alcohol and tobacco. The sample was made up of 5651 adolescents, 2637 (47.9%) of whom were male and 2864 (52.1%) female. These participants were selected at random from among public high school pupils in Mexico City, and average age was 16.7 years. The instrument used was that validated in the first phase of the study. To measure patterns of use, we used a scale based on indicators derived from the National Addiction Survey (2002). Factor analysis yielded three factors: peer pressure acceptance, partner pressure acceptance and peer/partner pressure resistance. Non-users of alcohol and tobacco scored higher in the ability to resist pressure than those who had used alcohol and tobacco in the last month. Based on these results, the aim is to develop an addiction prevention program for public high school pupils in Mexico City.
Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Azevedo, João C; Patton, John C; Muñoz, Irene; De la Rúa, Pilar; Pinto, M Alice
2013-12-01
Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human-mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)-based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST -based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross-validated by four FST -based methods, and 8.9% (34 of 383) were cross-validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human-mediated environmental changes. © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohmi, Hiromasa, E-mail: ohmi@prec.eng.osaka-u.ac.jp; Yasutake, Kiyoshi; Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
2015-07-28
The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (R{sub d}) is dependent upon the substrate type. At the initial stage of Si film formation, R{sub d} on glass substrates increased with elapsed time and reached to a constant value. In contrast, R{sub d} on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (T{sub sub}) and hydrogen concentration (C{sub H2}) in the process atmosphere.more » For any given deposition time, it was found that an optimum C{sub H2} exists for a given T{sub sub} to realize the selective deposition of a Si film, and the optimum T{sub sub} value tends to increase with decreasing C{sub H2}. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH{sub 2}, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.« less
Johnston, Iain G; Williams, Ben P
2016-02-24
Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.
Repar, Jelena; Warnecke, Tobias
2017-08-01
Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin-terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus-Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genome-wide diversity and selective pressure in the human rhinovirus
Kistler, Amy L; Webster, Dale R; Rouskin, Silvi; Magrini, Vince; Credle, Joel J; Schnurr, David P; Boushey, Homer A; Mardis, Elaine R; Li, Hao; DeRisi, Joseph L
2007-01-01
Background The human rhinoviruses (HRV) are one of the most common and diverse respiratory pathogens of humans. Over 100 distinct HRV serotypes are known, yet only 6 genomes are available. Due to the paucity of HRV genome sequence, little is known about the genetic diversity within HRV or the forces driving this diversity. Previous comparative genome sequence analyses indicate that recombination drives diversification in multiple genera of the picornavirus family, yet it remains unclear if this holds for HRV. Results To resolve this and gain insight into the forces driving diversification in HRV, we generated a representative set of 34 fully sequenced HRVs. Analysis of these genomes shows consistent phylogenies across the genome, conserved non-coding elements, and only limited recombination. However, spikes of genetic diversity at both the nucleotide and amino acid level are detectable within every locus of the genome. Despite this, the HRV genome as a whole is under purifying selective pressure, with islands of diversifying pressure in the VP1, VP2, and VP3 structural genes and two non-structural genes, the 3C protease and 3D polymerase. Mapping diversifying residues in these factors onto available 3-dimensional structures revealed the diversifying capsid residues partition to the external surface of the viral particle in statistically significant proximity to antigenic sites. Diversifying pressure in the pleconaril binding site is confined to a single residue known to confer drug resistance (VP1 191). In contrast, diversifying pressure in the non-structural genes is less clear, mapping both nearby and beyond characterized functional domains of these factors. Conclusion This work provides a foundation for understanding HRV genetic diversity and insight into the underlying biology driving evolution in HRV. It expands our knowledge of the genome sequence space that HRV reference serotypes occupy and how the pattern of genetic diversity across HRV genomes differs from other picornaviruses. It also reveals evidence of diversifying selective pressure in both structural genes known to interact with the host immune system and in domains of unassigned function in the non-structural 3C and 3D genes, raising the possibility that diversification of undiscovered functions in these essential factors may influence HRV fitness and evolution. PMID:17477878
Sosnowski, Tytus; Rynkiewicz, Andrzej; Wordecha, Małgorzata; Kępkowicz, Anna; Majewska, Adrianna; Pstrągowska, Aleksandra; Oleksy, Tomasz; Wypych, Marek; Marchewka, Artur
2017-07-01
It is known that solving mental tasks leads to tonic increase in cardiovascular activity. Our previous research showed that tasks involving rule application (RA) caused greater tonic increase in cardiovascular activity than tasks requiring rule discovery (RD). However, it is not clear what brain mechanisms are responsible for this difference. The aim of two experimental studies was to compare the patterns of brain and cardiovascular activity while both RD and the RA numeric tasks were being solved. The fMRI study revealed greater brain activation while solving RD tasks than while solving RA tasks. In particular, RD tasks evoked greater activation of the left inferior frontal gyrus and selected areas in the parietal, and temporal cortices, including the precuneus, supramarginal gyrus, angular gyrus, inferior parietal lobule, and the superior temporal gyrus, and the cingulate cortex. In addition, RA tasks caused larger increases in HR than RD tasks. The second study, carried out in a cardiovascular laboratory, showed greater increases in heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) while solving RA tasks than while solving RD tasks. The results support the hypothesis that RD and RA tasks involve different modes of information processing, but the neuronal mechanism responsible for the observed greater cardiovascular response to RA tasks than to RD tasks is not completely clear. Copyright © 2017. Published by Elsevier B.V.
Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish
Kratochwil, Claudius F.; Geissler, Laura; Irisarri, Iker; Meyer, Axel
2015-01-01
Abstract Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits—suggesting an important role for NC network architecture during the diversification in vertebrates. PMID:26475317
Variation in Foot Strike Patterns during Running among Habitually Barefoot Populations
Hatala, Kevin G.; Dingwall, Heather L.; Wunderlich, Roshna E.; Richmond, Brian G.
2013-01-01
Endurance running may have a long evolutionary history in the hominin clade but it was not until very recently that humans ran wearing shoes. Research on modern habitually unshod runners has suggested that they utilize a different biomechanical strategy than runners who wear shoes, namely that barefoot runners typically use a forefoot strike in order to avoid generating the high impact forces that would be experienced if they were to strike the ground with their heels first. This finding suggests that our habitually unshod ancestors may have run in a similar way. However, this research was conducted on a single population and we know little about variation in running form among habitually barefoot people, including the effects of running speed, which has been shown to affect strike patterns in shod runners. Here, we present the results of our investigation into the selection of running foot strike patterns among another modern habitually unshod group, the Daasanach of northern Kenya. Data were collected from 38 consenting adults as they ran along a trackway with a plantar pressure pad placed midway along its length. Subjects ran at self-selected endurance running and sprinting speeds. Our data support the hypothesis that a forefoot strike reduces the magnitude of impact loading, but the majority of subjects instead used a rearfoot strike at endurance running speeds. Their percentages of midfoot and forefoot strikes increased significantly with speed. These results indicate that not all habitually barefoot people prefer running with a forefoot strike, and suggest that other factors such as running speed, training level, substrate mechanical properties, running distance, and running frequency, influence the selection of foot strike patterns. PMID:23326341
Variation in foot strike patterns during running among habitually barefoot populations.
Hatala, Kevin G; Dingwall, Heather L; Wunderlich, Roshna E; Richmond, Brian G
2013-01-01
Endurance running may have a long evolutionary history in the hominin clade but it was not until very recently that humans ran wearing shoes. Research on modern habitually unshod runners has suggested that they utilize a different biomechanical strategy than runners who wear shoes, namely that barefoot runners typically use a forefoot strike in order to avoid generating the high impact forces that would be experienced if they were to strike the ground with their heels first. This finding suggests that our habitually unshod ancestors may have run in a similar way. However, this research was conducted on a single population and we know little about variation in running form among habitually barefoot people, including the effects of running speed, which has been shown to affect strike patterns in shod runners. Here, we present the results of our investigation into the selection of running foot strike patterns among another modern habitually unshod group, the Daasanach of northern Kenya. Data were collected from 38 consenting adults as they ran along a trackway with a plantar pressure pad placed midway along its length. Subjects ran at self-selected endurance running and sprinting speeds. Our data support the hypothesis that a forefoot strike reduces the magnitude of impact loading, but the majority of subjects instead used a rearfoot strike at endurance running speeds. Their percentages of midfoot and forefoot strikes increased significantly with speed. These results indicate that not all habitually barefoot people prefer running with a forefoot strike, and suggest that other factors such as running speed, training level, substrate mechanical properties, running distance, and running frequency, influence the selection of foot strike patterns.
Proteomics analysis in frozen horse mackerel previously high-pressure processed.
Pazos, Manuel; Méndez, Lucía; Vázquez, Manuel; Aubourg, Santiago P
2015-10-15
The effect of high-pressure processing (HPP) (150, 300 and 450 MPa for 0, 2.5 and 5 min) on total sodium dodecyl sulphate (SDS)-soluble and sarcoplasmic proteins in frozen (-10 °C for 3 months) horse mackerel (Trachurus trachurus) was evaluated. Proteomics tools based on image analysis of SDS-PAGE protein gels and protein identification by tandem mass spectrometry (MS/MS) were applied. Although total SDS-soluble fraction indicated no important changes induced by HPP, this processing modified the 1-D SDS-PAGE sarcoplasmic patterns in a direct-dependent manner and exerted a selective effect on particular proteins depending on processing conditions. Thus, application of the highest pressure (450 MPa) provoked a significant degradation of phosphoglycerate mutase 2, glycogen phosphorylase muscle form, pyruvate kinase muscle isozyme, beta-enolase and triosephosphate isomerase and phosphoglucomutase-1. Conversely, protein bands assigned to tropomyosin alpha-1 chain, fast myotomal muscle troponin T and parvalbumin beta 2 increased their intensity after applying a 450-MPa processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Programmable assembly of pressure sensors using pattern-forming bacteria.
Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong
2017-11-01
Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.
Cheng, Ren-Chung; Kuntner, Matjaž
2014-10-01
Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb-weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum-likelihood molecular species-level phylogeny, and then used it to reconstruct sex-specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female-biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Wu, Songyuan; Tong, Xiaoling; Peng, Chenxing; Xiong, Gao; Lu, Kunpeng; hu, Hai; Tan, Duan; Li, Chunlin; Han, Minjin; Lu, Cheng; Dai, Fangyin
2016-01-01
The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae. PMID:27193628
Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang
2015-01-01
Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired. PMID:25961030
Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang
2015-01-01
Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.
Opposite GC skews at the 5' and 3' ends of genes in unicellular fungi
2011-01-01
Background GC-skews have previously been linked to transcription in some eukaryotes. They have been associated with transcription start sites, with the coding strand G-biased in mammals and C-biased in fungi and invertebrates. Results We show a consistent and highly significant pattern of GC-skew within genes of almost all unicellular fungi. The pattern of GC-skew is asymmetrical: the coding strand of genes is typically C-biased at the 5' ends but G-biased at the 3' ends, with intermediate skews at the middle of genes. Thus, the initiation, elongation, and termination phases of transcription are associated with different skews. This pattern influences the encoded proteins by generating differential usage of amino acids at the 5' and 3' ends of genes. These biases also affect fourfold-degenerate positions and extend into promoters and 3' UTRs, indicating that skews cannot be accounted by selection for protein function or translation. Conclusions We propose two explanations, the mutational pressure hypothesis, and the adaptive hypothesis. The mutational pressure hypothesis is that different co-factors bind to RNA pol II at different phases of transcription, producing different mutational regimes. The adaptive hypothesis is that cytidine triphosphate deficiency may lead to C-avoidance at the 3' ends of transcripts to control the flow of RNA pol II molecules and reduce their frequency of collisions. PMID:22208287
Fast-acting sprinkler system design considerations for propellant manufacture
NASA Astrophysics Data System (ADS)
Matthews, A. L.; Crable, J. M.; Kristoff, P. T.
1984-08-01
Fast-acting sprinkler systems for detection and suppression of fires in propellant operations, which require activation in the millisecond range in order to be effective, can be easily defeated unless particular attention is paid to design and maintenance details. Of primary consideration are detector selection and placement in processes to minimize the effect of environmental influences. Also important are nozzle placement, water flow density, water supply pressure, and pattern and sloping of piping. When all of these design criteria are properly implemented, water application can occur within 100 ms of fire detection.
Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 20051
Zuidhof, M. J.; Schneider, B. L.; Carney, V. L.; Korver, D. R.; Robinson, F. E.
2014-01-01
The effect of commercial selection on the growth, efficiency, and yield of broilers was studied using 2 University of Alberta Meat Control strains unselected since 1957 and 1978, and a commercial Ross 308 strain (2005). Mixed-sex chicks (n = 180 per strain) were placed into 4 replicate pens per strain, and grown on a current nutritional program to 56 d of age. Weekly front and side profile photographs of 8 birds per strain were collected. Growth rate, feed intake, and measures of feed efficiency including feed conversion ratio, residual feed intake, and residual maintenance energy requirements were characterized. A nonlinear mixed Gompertz growth model was used to predict BW and BW variation, useful for subsequent stochastic growth simulation. Dissections were conducted on 8 birds per strain semiweekly from 21 to 56 d of age to characterize allometric growth of pectoralis muscles, leg meat, abdominal fat pad, liver, gut, and heart. A novel nonlinear analysis of covariance was used to test the hypothesis that allometric growth patterns have changed as a result of commercial selection pressure. From 1957 to 2005, broiler growth increased by over 400%, with a concurrent 50% reduction in feed conversion ratio, corresponding to a compound annual rate of increase in 42 d live BW of 3.30%. Forty-two-day FCR decreased by 2.55% each year over the same 48-yr period. Pectoralis major growth potential increased, whereas abdominal fat decreased due to genetic selection pressure over the same time period. From 1957 to 2005, pectoralis minor yield at 42 d of age was 30% higher in males and 37% higher in females; pectoralis major yield increased by 79% in males and 85% in females. Over almost 50 yr of commercial quantitative genetic selection pressure, intended beneficial changes have been achieved. Unintended changes such as enhanced sexual dimorphism are likely inconsequential, though musculoskeletal, immune function, and parent stock management challenges may require additional attention in future selection programs. PMID:25260522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grouse, L.H.; Ketterling, R.P.; Sommer, S.S.
Most mutations causing hemophilia B have arisen within the past 150 years. By correcting for multiple biases, the underlying rates of spontaneous germline mutation have been estimated in the factor IX gene. From these rates, an underlying pattern of mutation has emerged. To determine if this pattern compares to a underlying pattern found in the great apes, sequence changes were determined in intronic regions of the factor IX gene. The following species were studied: Gorilla gorilla, Pan troglodytes (chimpanzee), Pongo pygmacus (orangutan) and Homo sapiens. Intronic sequences at least 200 bp from a splice junction were randomly chosen, amplified bymore » cross-species PCR, and sequenced. These regions are expected to be subject to little if any selective pressure. Early diverged species of Old World monkeys were also studied to help determine the direction of mutational changes. A total of 62 sequence changes were observed. Initial data suggest that the average pattern since evolution of the great apes has a paucity of transitions at CpG dinucleotides and an excess of microinsertions to microdeletions when compared to the pattern observed in humans during the past 150 years (p<.05). A larger study is in progress to confirm these results.« less
Analysis of synonymous codon usage patterns in the genus Rhizobium.
Wang, Xinxin; Wu, Liang; Zhou, Ping; Zhu, Shengfeng; An, Wei; Chen, Yu; Zhao, Lin
2013-11-01
The codon usage patterns of rhizobia have received increasing attention. However, little information is available regarding the conserved features of the codon usage patterns in a typical rhizobial genus. The codon usage patterns of six completely sequenced strains belonging to the genus Rhizobium were analysed as model rhizobia in the present study. The relative neutrality plot showed that selection pressure played a role in codon usage in the genus Rhizobium. Spearman's rank correlation analysis combined with correspondence analysis (COA) showed that the codon adaptation index and the effective number of codons (ENC) had strong correlation with the first axis of the COA, which indicated the important role of gene expression level and the ENC in the codon usage patterns in this genus. The relative synonymous codon usage of Cys codons had the strongest correlation with the second axis of the COA. Accordingly, the usage of Cys codons was another important factor that shaped the codon usage patterns in Rhizobium genomes and was a conserved feature of the genus. Moreover, the comparison of codon usage between highly and lowly expressed genes showed that 20 unique preferred codons were shared among Rhizobium genomes, revealing another conserved feature of the genus. This is the first report of the codon usage patterns in the genus Rhizobium.
[Nursing methodology applicated in patients with pressure ulcers. Clinical report].
Galvez Romero, Carmen
2014-05-01
The application of functional patterns lets us to make a systematic and premeditated nursing assessment, with which we obtain a lot of relevant patient data in an organized way, making easier to analize them. In our case, we use Marjory Gordon's functional health patterns and NANDA (North American Nursing Diagnosis Association), NOC (Nursing Outcomes Classification), NIC (Nursing Intervention Classification) taxonomy. The overall objective of this paper is to present the experience of implementation and development of nursing methodology in the care of patients with pressure ulcers. In this article it's reported a case of a 52-year-old female who presented necrosis of phalanxes in upper and lower limbs and suffered amputations of them after being hospitalized in an Intensive Care Unit. She was discharged with pressure ulcers on both heels. GENERAL ASSESSMENT: It was implemented the nursing theory known as "Gordon's functional health patterns" and the affected patterns were identified. The Second Pattern (Nutritional-Metabolic) was considered as reference, since this was the pattern which altered the rest. EVOLUTION OF THE PATIENT: The patient had a favourable evolution, improving all the altered patterns. The infections symptoms disappeared and the pressure ulcers of both heels healed completely. The application of nursing methodology to care patients with pressure ulcers using clinical practice guidelines, standardized procedures and rating scales of assessment improves the evaluation of results and the performance of nurses.
NASA Astrophysics Data System (ADS)
Plavcová, Eva; Kyselý, Jan
2010-09-01
The study examines the relationship between sudden changes in weather conditions in summer, represented by (1) sudden air temperature changes, (2) sudden atmospheric pressure changes, and (3) passages of strong atmospheric fronts; and variations in daily mortality in the population of the Czech Republic. The events are selected from data covering 1986-2005 and compared with the database of daily excess all-cause mortality for the whole population and persons aged 70 years and above. Relative deviations of mortality, i.e., ratios of the excess mortality to the expected number of deaths, were averaged over the selected events for days D-2 (2 days before a change) up to D+7 (7 days after), and their statistical significance was tested by means of the Monte Carlo method. We find that the periods around weather changes are associated with pronounced patterns in mortality: a significant increase in mortality is found after large temperature increases and on days of large pressure drops; a decrease in mortality (partly due to a harvesting effect) occurs after large temperature drops, pressure increases, and passages of strong cold fronts. The relationship to variations in excess mortality is better expressed for sudden air temperature/pressure changes than for passages of atmospheric fronts. The mortality effects are usually more pronounced in the age group 70 years and above. The impacts associated with large negative changes of pressure are statistically independent of the effects of temperature; the corresponding dummy variable is found to be a significant predictor in the ARIMA model for relative deviations of mortality. This suggests that sudden weather changes should be tested also in time series models for predicting excess mortality as they may enhance their performance.
Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps.
Huang, Xing; Xu, Jing; Chen, Lin; Wang, Yu; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou
2017-04-20
Codon usage bias (CUB) is an important evolutionary feature in genomes that has been widely observed in many organisms. However, the synonymous codon usage pattern in the genome of T. multiceps remains to be clarified. In this study, we analyzed the codon usage of T. multiceps based on the transcriptome data to reveal the constraint factors and to gain an improved understanding of the mechanisms that shape synonymous CUB. Analysis of a total of 8,620 annotated mRNA sequences from T. multiceps indicated only a weak codon bias, with mean GC and GC3 content values of 49.29% and 51.43%, respectively. Our analysis indicated that nucleotide composition, mutational pressure, natural selection, gene expression level, amino acids with grand average of hydropathicity (GRAVY) and aromaticity (Aromo) and the effective selection of amino-acids all contributed to the codon usage in T. multiceps. Among these factors, natural selection was implicated as the major factor affecting the codon usage variation in T. multiceps. The codon usage of ribosome genes was affected mainly by mutations, while the essential genes were affected mainly by selection. In addition, 21codons were identified as "optimal codons". Overall, the optimal codons were GC-rich (GC:AU, 41:22), and ended with G or C (except CGU). Furthermore, different degrees of variation in codon usage were found between T. multiceps and Escherichia coli, yeast, Homo sapiens. However, little difference was found between T. multiceps and Taenia pisiformis. In this study, the codon usage pattern of T. multiceps was analyzed systematically and factors affected CUB were also identified. This is the first study of codon biology in T. multiceps. Understanding the codon usage pattern in T. multiceps can be helpful for the discovery of new genes, molecular genetic engineering and evolutionary studies.
Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.
Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho
2016-09-11
A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Orlando, Paul A; Gatenby, Robert A; Brown, Joel S
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.
The genome landscape of indigenous African cattle.
Kim, Jaemin; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Bashir, Salim; Diallo, Boubacar; Agaba, Morris; Kim, Kwondo; Kwak, Woori; Sung, Samsun; Seo, Minseok; Jeong, Hyeonsoo; Kwon, Taehyung; Taye, Mengistie; Song, Ki-Duk; Lim, Dajeong; Cho, Seoae; Lee, Hyun-Jeong; Yoon, Duhak; Oh, Sung Jong; Kemp, Stephen; Lee, Hak-Kyo; Kim, Heebal
2017-02-20
The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890
Circadian pattern of blood pressure in normal pregnancy and preeclampsia.
Gupta, Hem Prabha; Singh, R K; Singh, Urmila; Mehrotra, Seema; Verma, N S; Baranwal, Neelam
2011-08-01
AIMS #ENTITYSTARTX00026; To find out the circadian pattern of blood pressure in normotensive pregnant women and in women with preeclampsia. A cross-sectional prospective observational case control study. Blood pressure was sampled in thirty-five normotensive pregnant women (control) and thirty five preeclamptic women (study group) by using non-invasive automatic ambulatory blood pressure monitoring machine for 72 h. Blood pressure (BP) was not constant over 24 h period and it oscillated from time to time in control group. BP was maximum during early part of afternoon. However, in preeclampsia besides quantitative increase in BP, circadian BP oscillations were less pronounced and in around 50% subjects BP was maximum during evening and night hours. Both systolic and diastolic BP showed definite reproducible circadian pattern in both preeclamptic and normotensive pregnant women. This pattern both quantitatively and qualitatively was different in preeclamptic women. Standardized 24 h BP monitoring allows quantitative and qualitative evaluation of hypertensive status and is important for timing and dosing of antihypertensive medications.
The role of protozoa-driven selection in shaping human genetic variability.
Pozzoli, Uberto; Fumagalli, Matteo; Cagliani, Rachele; Comi, Giacomo P; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela
2010-03-01
Protozoa exert a strong selective pressure in humans. The selection signatures left by these pathogens can be exploited to identify genetic modulators of infection susceptibility. We show that protozoa diversity in different geographic locations is a good measure of protozoa-driven selective pressure; protozoa diversity captured selection signatures at known malaria resistance loci and identified several selected single nucleotide polymorphisms in immune and hemolytic anemia genes. A genome-wide search enabled us to identify 5180 variants mapping to 1145 genes that are subjected to protozoa-driven selective pressure. We provide a genome-wide estimate of protozoa-driven selective pressure and identify candidate susceptibility genes for protozoa-borne diseases. Copyright 2010 Elsevier Ltd. All rights reserved.
Programmable assembly of pressure sensors using pattern-forming bacteria
Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D.; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong
2017-01-01
Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration. PMID:28991268
Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T
2012-12-01
Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.
Garcia, Victor; Feldman, Marcus W.; Regoes, Roland R.
2016-01-01
During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by interference effects cannot simply be overcome by improved sampling frequencies or sizes. This problem is a consequence of the fundamental shortcomings of current estimation techniques under interference regimes. Hence, accounting for the stochastic nature of competition between mutations demands novel estimation methodologies based on the analysis of HIV strains, rather than mutation frequencies. PMID:26829720
Meanings of thinness and dysfunctional eating in black South African females: a qualitative study.
Morris, P F; Szabo, C P
2013-09-01
This study qualitatively explored local meanings of thinness and dysfunctional eating in black adolescent females in the rapidly westernizing socio-cultural context of post-apartheid South Africa. Four (n=4) urban state highschools in KwaZulu-Natal were selected from which 40 subjects were sampled from Grades 9-12. Focus groups were conducted following a semi-structured interview and analysed using Constant Comparative Analysis. Subjects reported a wide range of different meanings for thinness, which included traditional idioms of distress and typically western pressures towards thinness, which was particularly evident in the multicultural schools. Subjects also reported a wide range of dysfunctional eating practices (such as purging) which were underscored by a wide range of motivations, including traditional practices and western body image concern; and which did not tend to follow patterns of 'dieting' that are typical in affluent, western societies. Western pressures towards thinness may be blending with traditional idioms of distress and culturally sanctioned rituals of remedial purging and social over-eating, thereby placing this group at particular risk for a range of dysfunctional eating patterns that may not follow typically western paradigms or diagnostic systems.
2010 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona
Dealy, Timothy P.; East, Amy E.; Fairley, Helen C.
2014-01-01
Measurements of weather parameters and aeolian sand transport were made in 2010 near selected archeological sites in the Colorado River corridor through Grand Canyon, Arizona. Data collected in 2010 indicate event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Differences in weather patterns between 2009 and 2010 included a slightly later spring windy season, greater spring precipitation and annual rainfall totals, and a later onset and length of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. The increase in spring precipitation was consistent with the 2010 spring El Niño conditions compared to the 2009 spring La Niña conditions, whereas the subsequent transition to an El Niño-Southern Oscillation neutral phase appeared to delay the reduction in diurnal barometric fluctuations.
Life-course blood pressure in relation to brain volumes
Power, Melinda C.; Schneider, Andrea L. C.; Wruck, Lisa; Griswold, Michael; Coker, Laura H.; Alonso, Alvaro; Jack, Clifford R.; Knopman, David; Mosley, Thomas H.; Gottesman, Rebecca F
2016-01-01
INTRODUCTION The impact of blood pressure on brain volumes may be time- or pattern-dependent. METHODS In 1678 participants from the Atherosclerosis Risk in Communities Neurocognitive Study, we quantified the association between measures and patterns of blood pressure over three time points (~24 or ~15 years prior and concurrent with neuroimaging) with late life brain volumes. RESULTS Higher diastolic blood pressure ~24 years prior, higher systolic and pulse pressure ~15 years prior, and consistently elevated or rising systolic blood pressure from ~15 years prior to concurrent with neuroimaging, but not blood pressures measured concurrent with neuroimaging, were associated with smaller volumes. The pattern of hypertension ~15 years prior and hypotension concurrent with neuroimaging was associated with smaller volumes in regions preferentially affected by Alzheimer’s disease (e.g., hippocampus: −0.27 standard units, 95%CI:−0.51,−0.03). DISCUSSION Hypertension 15 to 24 years prior is relevant to current brain volumes. Hypertension followed by hypotension appears particularly detrimental. PMID:27139841
Yang, Zhi; Gu, Qinfen; Hemar, Yacine
2013-08-14
The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Complex and changing patterns of natural selection explain the evolution of the human hip.
Grabowski, Mark; Roseman, Charles C
2015-08-01
Causal explanations for the dramatic changes that occurred during the evolution of the human hip focus largely on selection for bipedal function and locomotor efficiency. These hypotheses rest on two critical assumptions. The first-that these anatomical changes served functional roles in bipedalism-has been supported in numerous analyses showing how postcranial changes likely affected locomotion. The second-that morphological changes that did play functional roles in bipedalism were the result of selection for that behavior-has not been previously explored and represents a major gap in our understanding of hominin hip evolution. Here we use evolutionary quantitative genetic models to test the hypothesis that strong directional selection on many individual aspects of morphology was responsible for the large differences observed across a sample of fossil hominin hips spanning the Plio-Pleistocene. Our approach uses covariance among traits and the differences between relatively complete fossils to estimate the net selection pressures that drove the major transitions in hominin hip evolution. Our findings show a complex and changing pattern of natural selection drove hominin hip evolution, and that many, but not all, traits hypothesized to play functional roles in bipedalism evolved as a direct result of natural selection. While the rate of evolutionary change for all transitions explored here does not exceed the amount expected if evolution was occurring solely through neutral processes, it was far above rates of evolution for morphological traits in other mammalian groups. Given that stasis is the norm in the mammalian fossil record, our results suggest that large shifts in the adaptive landscape drove hominin evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome.
Wernegreen, Jennifer J; Funk, Daniel J
2004-12-01
The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (AT-->GC vs. GC-->AT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 AT-->GC:GC-->AT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of AT-->GC and GC-->AT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced N(e) in the molecular evolution of bacterial endosymbionts.
Roy, Jeannine; Blanckenhorn, Wolf U; Rohner, Patrick T
2018-05-17
Clinal variation in body size and related life history traits is common and has stimulated the postulation of several eco-geographical rules. Whereas some clinal patterns are clearly adaptive, the causes of others remain obscure. We investigated intra-specific body size, development time and female fecundity (egg size and number) clines across 13 European populations of the dung fly Sepsis fulgens spanning 20° latitude from southern Italy to Estonia in a genetic common garden approach. Despite very short generation times (ca. 2 weeks at 24 °C), we found a converse Bergmann cline (smaller size at higher latitudes). As development time did not change with latitude (flat cline), integral growth rate thus likely declines towards the pole. At the same time, early fecundity, but not egg size, increased with latitude. Rather than being mediated by seasonal time constraints, the body size reduction in the northernmost flies from Estonia could suggest that these are marginal, edge populations, as when omitting them the body size cline became flat as well. Most of the other sepsid species investigated to date also show flat body size clines, a pattern that strikingly differs from Drosophila. We conclude that S. fulgens life history traits appear to be shaped by similar environmental pressures and selective mechanisms across Europe, be they adaptive or not. This reiterates the suggestion that body size clines can result as a secondary consequence of selection pressures shaping an entire life history syndrome, rendering them inconsistent and unpredictable in general.
Uddin, Md Emaj
Arrack, indigenously fermented from palm and date juice, is locally known as tari and commonly consumed by socio-culturally lower economic groups of all communities in northwestern villages of Bangladesh. This study examines and compares gender dimensions of arrack drinking pattern in association with respective community religiosity, and socio-cultural and gender statuses among the Muslims, Hindu, Santal, and Oraon drinkers in the Mongaltara, Akkelpur, Sherpur, and Ekrapara villages of Rasulpur Union of Bangladesh. A total of 391 respondents (Muslim, n = 109, Hindu, n = 103, Santal, n = 89, and Oraon, n = 90) with males and females selected by simple random sampling were intensively interviewed singly by semi-structured questionnaire. The results reveal that there are differences in arrack drinking patterns not only in gender norms, but also among the overall communities. It is argued that a respective community's religiosity, gender norms, and drinker's personality and attitude, and socio-cultural pressure and stress directly influence arrack drinking patterns.
Smith, Heather F.
2011-01-01
The means by which various microevolutionary processes have acted in the past to produce patterns of cranial variation that characterize modern humans is not thoroughly understood. Applying a microevolutionary framework, within- and among-population variance/covariance (V/CV) structure was compared for several functional and developmental modules of the skull across a worldwide sample of modern humans. V/CV patterns in the basicranium, temporal bone, and face are proportional within and among groups, which is consistent with a hypothesis of neutral evolution; however, mandibular morphology deviated from this pattern. Degree of intergroup similarity in facial, temporal bone, and mandibular morphology is significantly correlated with geographic distance; however, much of the variance remains unexplained. These findings provide insight into the evolutionary history of modern human cranial variation by identifying signatures of genetic drift, gene flow, and migration and set the stage for inferences regarding selective pressures that early humans encountered since their initial migrations around the world. PMID:21461369
Association between abnormal nocturnal blood pressure profile and dementia in Parkinson's disease.
Tanaka, Ryota; Shimo, Yasushi; Yamashiro, Kazuo; Ogawa, Takashi; Nishioka, Kenya; Oyama, Genko; Umemura, Atsushi; Hattori, Nobutaka
2018-01-01
Circadian blood pressure alterations are frequently observed in Parkinson's disease, but the association between these changes and dementia in the condition remains unclear. Here, we assess the relationship between abnormal nocturnal blood pressure profiles and dementia in Parkinson's disease. We enrolled 137 patients with Parkinson's disease, who underwent 24 h ambulatory blood pressure monitoring, following cognitive and clinical assessment. Twenty-seven patients (19.7%) were diagnosed with dementia in this cohort. We observed significant associations of dementia with age, male gender, Hoehn-Yahr (H-Y) stage, diabetes mellitus, history of stroke, presence of cerebrovascular lesions on MRI, and orthostatic hypotension. Univariate logistic regression analysis showed that among the patterns of nocturnal blood pressure profiles, the riser pattern was significantly associated with dementia (OR 11.6, 95%CI: 2.14-215.0, P < 0.01), and this trend was observed after adjusting for all confounding factors except orthostatic hypotension (OR 19.2, 95%CI: 1.12-1960.3, P = 0.04). However, coexistence of a riser pattern and orthostatic hypotension was related to a higher prevalence of dementia (45.2%) than was a riser pattern alone (9.5%). Furthermore, coexistence of a riser pattern and orthostatic hypotension was significantly more associated with dementia than was a riser pattern alone, even after adjusting for confounders (OR 1625.1, 95%CI: 21.9-1343909.5, P < 0.01). Our results suggest a relationship between a riser pattern coexisting with orthostatic hypotension and dementia in Parkinson's disease. Further prospective studies are warranted to investigate whether abnormal nocturnal blood pressure profiles predict dementia in Parkinson's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paal, Z.; Zhan, Z.; Manninger, I.
The activity and selectivity of three samples of 8% Pt-NaY calcined at 633, 723, and 823 K, respectively, have been probed with n-hexane as the model reactant at 603 K and subatmospheric pressures in a glass closed-loop reactor. These catalysts were compared with 6.3% Pt/SiO{sub 2} (EUROPT-1), HY, and a physical mixture of the latter two. The activity of all Pt-NaY catalysts is superior to EUROPT-1 and they deactivate more slowly. The selectivity pattern of all Pt-NaY samples is closer to that characteristic of monofunctional Pt catalysts, as opposed to the pronounced acidic character of pure HY and the mechanicalmore » mixtures. The sample calcined at 633 K, which has the highest dispersion and probably contains Pt particles anchored to the support as [Pt{sub n} - H{sub x}]{sup x+} entities, shows the highest aromatization selectivity. The sample precalcined at 823 K with the lowest dispersion has a pronouncedly high skeletal isomerization selectivity. The isomerization pathway may be related to the C{sub 5} cyclic route on metal sites that are more abundant on the larger crystallites of this catalyst and are more easily accessible with its partially collapsed zeolite framework. Characteristic differences between samples in the response of their catalytic performance to changes in hydrogen and hydrocarbon pressure are discussed. 37 refs., 5 figs., 4 tabs.« less
Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I
2016-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Phenotypic integration of the cervical vertebrae in the Hominoidea (Primates).
Villamil, Catalina I
2018-03-01
Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Purfield, Deirdre C.; McParland, Sinead; Wall, Eamon; Berry, Donagh P.
2017-01-01
Domestication and the subsequent selection of animals for either economic or morphological features can leave a variety of imprints on the genome of a population. Genomic regions subjected to high selective pressures often show reduced genetic diversity and frequent runs of homozygosity (ROH). Therefore, the objective of the present study was to use 42,182 autosomal SNPs to identify genomic regions in 3,191 sheep from six commercial breeds subjected to selection pressure and to quantify the genetic diversity within each breed using ROH. In addition, the historical effective population size of each breed was also estimated and, in conjunction with ROH, was used to elucidate the demographic history of the six breeds. ROH were common in the autosomes of animals in the present study, but the observed breed differences in patterns of ROH length and burden suggested differences in breed effective population size and recent management. ROH provided a sufficient predictor of the pedigree inbreeding coefficient, with an estimated correlation between both measures of 0.62. Genomic regions under putative selection were identified using two complementary algorithms; the fixation index and hapFLK. The identified regions under putative selection included candidate genes associated with skin pigmentation, body size and muscle formation; such characteristics are often sought after in modern-day breeding programs. These regions of selection frequently overlapped with high ROH regions both within and across breeds. Multiple yet uncharacterised genes also resided within putative regions of selection. This further substantiates the need for a more comprehensive annotation of the sheep genome as these uncharacterised genes may contribute to traits of interest in the animal sciences. Despite this, the regions identified as under putative selection in the current study provide an insight into the mechanisms leading to breed differentiation and genetic variation in meat production. PMID:28463982
Study of two-phase flow in helical and spiral coils
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Yan, AN; Omrani, Adel
1990-01-01
The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.
Echocardiographic features of the normofunctional Labcor-Santiago pericardial bioprosthesis.
Gonzalez-Juanatey, J R; Garcia-Bengoechea, J B; Vega, M; Rubio, J; Sierra, J; Duran, D; Amaro, A; Gil, M
1994-09-01
Echocardiography was performed in 94 patients with a total of 99 normally functioning Labcor-Santiago bioprostheses, 62 in the aortic and 37 in the mitral position. The following variables were measured: peak and mean transvalvular velocities, peak and mean instantaneous pressure gradients as calculated from the modified Bernoulli equation, pressure half-time, cardiac index, stroke volume and effective orifice area (using continuity and Hatle equations). Regurgitation patterns were sought by transthoracic echocardiography (all valves) and, for selected mitral bioprostheses, by transesophageal echocardiography. Calculated mean aortic pressure gradient ranged from six to 10 mmHg and calculated effective aortic orifice area increased with ring diameter, with means of 1.27 cm2 for the 19 mm valve and 2.58 cm2 for the 27 mm valve. For mitral bioprostheses, mean pressure gradient ranged from 3.0 to 4.5 mmHg and calculated effective orifice area from 2.27 to 2.73 cm2. Only central regurgitation was observed. The Labcor-Santiago pericardial bioprostheses created little resistance to forward flow. In the small aortic root their hemodynamic performance was as good or better than that of other currently available devices. It is hoped that this new design will contribute increased in vivo mechanical durability.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Patterns of Endemism and Habitat Selection in Coalbed Microbial Communities
Lawson, Christopher E.; Strachan, Cameron R.; Williams, Dominique D.; Koziel, Susan; Hallam, Steven J.
2015-01-01
Microbially produced methane, a versatile, cleaner-burning alternative energy resource to fossil fuels, is sourced from a variety of natural and engineered ecosystems, including marine sediments, anaerobic digesters, shales, and coalbeds. There is a prevailing interest in developing environmental biotechnologies to enhance methane production. Here, we use small-subunit rRNA gene sequencing and metagenomics to better describe the interplay between coalbed methane (CBM) well conditions and microbial communities in the Alberta Basin. Our results show that CBM microbial community structures display patterns of endemism and habitat selection across the Alberta Basin, consistent with observations from other geographical locations. While some phylum-level taxonomic patterns were observed, relative abundances of specific taxonomic groups were localized to discrete wells, likely shaped by local environmental conditions, such as coal rank and depth-dependent physicochemical conditions. To better resolve functional potential within the CBM milieu, a metagenome from a deep volatile-bituminous coal sample was generated. This sample was dominated by Rhodobacteraceae genotypes, resolving a near-complete population genome bin related to Celeribacter sp. that encoded metabolic pathways for the degradation of a wide range of aromatic compounds and the production of methanogenic substrates via acidogenic fermentation. Genomic comparisons between the Celeribacter sp. population genome and related organisms isolated from different environments reflected habitat-specific selection pressures that included nitrogen availability and the ability to utilize diverse carbon substrates. Taken together, our observations reveal that both endemism and metabolic specialization should be considered in the development of biostimulation strategies for nonproductive wells or for those with declining productivity. PMID:26341214
Eating Habits and Associated Factors Among Adolescent Students in Jordan.
Dalky, Heyam F; Al Momani, Maysa H; Al-Drabaah, Taghreed Kh; Jarrah, Samiha
2017-08-01
The study aimed to assess adolescent patterns of eating habits, determine factors influencing these patterns, and identify male and female differences related to eating habits. Using a cross-sectional study approach, a sample of adolescents ( N = 423) in randomly selected clusters chosen from government and private schools in the south of Jordan completed self-administered questionnaires relating to socio-demographic data and personal eating habits. Results showed that parents, peers, and mass media are contributing factors, with peer pressure likely outweighing parental guidance. Males were more likely to be influenced by peers than females, whereas females were more likely to be influenced by media-based advertising. Lower body mass indices correlate with eating breakfast, which a majority of adolescents reported they do not do. Interventions targeted toward improving eating and active behaviors should involve peers as well as parents.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
Registered Replication Report: Rand, Greene, and Nowak (2012).
Bouwmeester, S; Verkoeijen, P P J L; Aczel, B; Barbosa, F; Bègue, L; Brañas-Garza, P; Chmura, T G H; Cornelissen, G; Døssing, F S; Espín, A M; Evans, A M; Ferreira-Santos, F; Fiedler, S; Flegr, J; Ghaffari, M; Glöckner, A; Goeschl, T; Guo, L; Hauser, O P; Hernan-Gonzalez, R; Herrero, A; Horne, Z; Houdek, P; Johannesson, M; Koppel, L; Kujal, P; Laine, T; Lohse, J; Martins, E C; Mauro, C; Mischkowski, D; Mukherjee, S; Myrseth, K O R; Navarro-Martínez, D; Neal, T M S; Novakova, J; Pagà, R; Paiva, T O; Palfi, B; Piovesan, M; Rahal, R-M; Salomon, E; Srinivasan, N; Srivastava, A; Szaszi, B; Szollosi, A; Thor, K Ø; Tinghög, G; Trueblood, J S; Van Bavel, J J; van 't Veer, A E; Västfjäll, D; Warner, M; Wengström, E; Wills, J; Wollbrant, C E
2017-05-01
In an anonymous 4-person economic game, participants contributed more money to a common project (i.e., cooperated) when required to decide quickly than when forced to delay their decision (Rand, Greene & Nowak, 2012), a pattern consistent with the social heuristics hypothesis proposed by Rand and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned to conditions and who met the protocol inclusion criteria (an intent-to-treat approach that included the 65.9% of participants in the time-pressure condition and 7.5% in the forced-delay condition who did not adhere to the time constraints), and we observed a difference in contributions of -0.37 percentage points compared with an 8.6 percentage point difference calculated from the original data. Analyzing the data as the original article did, including data only for participants who complied with the time constraints, the RRR observed a 10.37 percentage point difference in contributions compared with a 15.31 percentage point difference in the original study. In combination, the results of the intent-to-treat analysis and the compliant-only analysis are consistent with the presence of selection biases and the absence of a causal effect of time pressure on cooperation.
Registered Replication Report: Rand, Greene, and Nowak (2012)
Bouwmeester, S.; Verkoeijen, P. P. J. L.; Aczel, B.; Barbosa, F.; Bègue, L.; Brañas-Garza, P.; Chmura, T. G. H.; Cornelissen, G.; Døssing, F. S.; Espín, A. M.; Evans, A. M.; Ferreira-Santos, F.; Fiedler, S.; Flegr, J.; Ghaffari, M.; Glöckner, A.; Goeschl, T.; Guo, L.; Hauser, O. P.; Hernan-Gonzalez, R.; Herrero, A.; Horne, Z.; Houdek, P.; Johannesson, M.; Koppel, L.; Kujal, P.; Laine, T.; Lohse, J.; Martins, E. C.; Mauro, C.; Mischkowski, D.; Mukherjee, S.; Myrseth, K. O. R.; Navarro-Martínez, D.; Neal, T. M. S.; Novakova, J.; Pagà, R.; Paiva, T. O.; Palfi, B.; Piovesan, M.; Rahal, R.-M.; Salomon, E.; Srinivasan, N.; Srivastava, A.; Szaszi, B.; Szollosi, A.; Thor, K. Ø.; Tinghög, G.; Trueblood, J. S.; Van Bavel, J. J.; van ‘t Veer, A. E.; Västfjäll, D.; Warner, M.; Wengström, E.; Wills, J.; Wollbrant, C. E.
2017-01-01
In an anonymous 4-person economic game, participants contributed more money to a common project (i.e., cooperated) when required to decide quickly than when forced to delay their decision (Rand, Greene & Nowak, 2012), a pattern consistent with the social heuristics hypothesis proposed by Rand and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned to conditions and who met the protocol inclusion criteria (an intent-to-treat approach that included the 65.9% of participants in the time-pressure condition and 7.5% in the forced-delay condition who did not adhere to the time constraints), and we observed a difference in contributions of −0.37 percentage points compared with an 8.6 percentage point difference calculated from the original data. Analyzing the data as the original article did, including data only for participants who complied with the time constraints, the RRR observed a 10.37 percentage point difference in contributions compared with a 15.31 percentage point difference in the original study. In combination, the results of the intent-to-treat analysis and the compliant-only analysis are consistent with the presence of selection biases and the absence of a causal effect of time pressure on cooperation. PMID:28475467
Fujiwara, Takeshi; Tomitani, Naoko; Sato, Keiko; Okura, Ayako; Suzuki, Noriyuki; Kario, Kazuomi
2017-11-01
The authors sought to determine the association between the blunted morning blood pressure (BP) surge and nocturnal BP dipping of the "riser" pattern in 501 patients with hypertension enrolled in the ACHIEVE-ONE (Ambulatory Blood Pressure Control and Home Blood Pressure [Morning and Evening] Lowering by the N-Channel Blocker Cilnidipine) trial. The patients' sleep-trough morning BP surge and prewaking surge were calculated and then classified according to their nocturnal systolic BP reduction pattern as extreme dippers, dippers, nondippers, and risers. The prevalence of the riser pattern was significantly higher in both the lowest sleep-trough morning BP surge decile and the prewaking surge decile (blunted surge group) compared with the remaining deciles (56.0% vs 10.4% [P<.0001] and 59.2% vs 10.2% [P<.0001], respectively). The riser pattern was a significant determinant of both blunted sleep-trough morning BP surge (odds ratio, 73.3; P<.0001) and blunted prewaking surge (odds ratio, 14.8; P<.0001). The high prevalence of the riser pattern in patients with blunted morning BP surges may account for the cardiovascular risk previously reported in such patients. ©2017 Wiley Periodicals, Inc.
Rothenberger, Jens; Krauss, Sabrina; Held, Manuel; Bender, Dominik; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Constantinescu, Mihai Adrian; Jaminet, Patrick
2014-11-01
Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Dengue virus type 1 clade replacement in recurring homotypic outbreaks
2013-01-01
Background Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control. Results We used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the periods of 1987–2011 in Malaysia. Phylogenetic analysis of DENV-1 E gene revealed that genotype I virus clade replacements were associated with the cyclical pattern of major DENV-1 outbreaks in Malaysia. A total of 9 non-conservative amino acid substitutions in the DENV-1 E gene consensus were identified; 4 in domain I, 3 in domain II and 2 in domain III. Selection pressure analyses did not reveal any positively selected codon site within the full length E gene sequences (1485 nt, 495 codons). A total of 183 (mean dN/dS = 0.0413) negatively selected sites were found within the Malaysian isolates; neither positive nor negative selection was noted for the remaining 312 codons. All the viruses were cross-neutralized by the respective patient sera suggesting no strong support for immunological advantage of any of the amino acid substitutions. Conclusion DENV-1 clade replacement is associated with recurrences of major DENV-1 outbreaks in Malaysia. Our findings are consistent with those of other studies that the DENV-1 clade replacement is a stochastic event independent of positive selection. PMID:24073945
NASA Astrophysics Data System (ADS)
Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona
2016-12-01
Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.
Biro, Peter A; Post, John R; Abrahams, Mark V
2005-01-01
Given limited food, prey fishes in a temperate climate must take risks to acquire sufficient reserves for winter and/or to outgrow vulnerability to predation. However, how can we distinguish which selective pressure promotes risk-taking when larger body size is always beneficial? To address this question, we examined patterns of energy allocation in populations of age-0 trout to determine if greater risk-taking corresponds with energy allocation to lipids or to somatic growth. Trout achieved maximum growth rates in all lakes and allocated nearly all of their acquired energy to somatic growth when small in early summer. However, trout in low-food lakes took greater risks to achieve this maximal growth, and therefore incurred high mortality. By late summer, age-0 trout allocated considerable energy to lipids and used previously risky habitats in all lakes. These results indicate that: (i) the size-dependent risk of predation (which is independent of behaviour) promotes risk-taking behaviour of age-0 trout to increase growth and minimize time spent in vulnerable sizes; and (ii) the physiology of energy allocation and behaviour interact to mediate growth/mortality trade-offs for young animals at risk of predation and starvation. PMID:16011918
Motion-based signaling in sympatric species of Australian agamid lizards.
Ramos, Jose A; Peters, Richard A
2017-08-01
Signaling species occurring in sympatry are often exposed to similar environmental constraints, so similar adaptations to enhance signal efficacy are expected. However, potentially opposing selective pressures might be present to ensure species recognition. Here, we analyzed the movement-based signals of two pairs of sympatric lizard species to consider how reliable communication is maintained while avoiding misidentification. Our novel approach allows us to quantify signal contrast with plant motion noise at any site we measure, including those utilized by other species. Ctenophorus caudicinctus and Gowidon longirostris differed in display complexity and motor pattern use. They also differed in overall morphology, but their signal contrast scores are strikingly similar. These results demonstrate similar adaptations to their shared environment while maintaining species recognition cues. In contrast, Ctenophorus fordi and Ctenophorus pictus are much closer in appearance, but C. pictus produces considerably higher signal contrast scores, which we suggest is attributable to the absence of territoriality in C. fordi. Taken together, our data provide evidence for adaptation to the local environment in movement-based signals, while also meeting species recognition requirements, but the selective pressure to deal with local conditions is mediated by signal function.
Microbial pattern of pressure ulcer in pediatric patients
NASA Astrophysics Data System (ADS)
Paramita, D. A.; Khairina; Lubis, N. Z.
2018-03-01
Pressure ulcer (PU) is a localized trauma to the skin and or tissue beneath which lies in bony prominence due to pressure or pressure that combines with a sharp surface. Several studies have found that PU is a common problem in pediatrics population. Infection at the site of a PU is the most common complication in which the PU may host a resistant microorganism and may turn into a local infection that will be the source of bacteremia in hospitalized patients. To reveal which is the most common microbial species that underlie in pressure ulcer of pediatrics patients.A cross-sectional study was conducted in July-September 2017, involving 18 PU pediatric patients in Haji Adam Malik Hospital. To each subject, swab culture from the ulcer was madein microbial laboratory in Haji Adam Malik Hospital to determine the microbial pattern. This study found that the most common microbial pattern in pressure ulcers of pediatrics patient in Haji Adam Malik Hospital is Acinetobacter baumannii (22.2%).
Mendis, Shanthi; Abegunde, Dele; Oladapo, Olulola; Celletti, Francesca; Nordet, Porfirio
2004-01-01
Assess capacity of health-care facilities in a low-resource setting to implement the absolute risk approach for assessment of cardiovascular risk in hypertensive patients and effective management of hypertension. A descriptive cross-sectional study in Egbeda and Oluyole local government areas of Oyo State in Nigeria in 56 randomly selected primary- (n = 42) and secondary-level (n = 2) health-care and private health-care (n = 12) facilities. One thousand consecutive, known hypertensives attending the selected facilities for follow-up, and health-care providers working in the above randomly selected facilities, were interviewed. About two-thirds of hypertensives utilized primary-care centers both for diagnosis and for follow-up. Laboratory and other investigations to exclude secondary hypertension or to assess target organ damage were not available in the majority of facilities, particularly in primary care. A considerable knowledge and awareness gap related to hypertension and its complications was found, both among patients and health-care providers. Blood pressure control rates were poor (28% with systolic blood pressure (SBP) < 140 mmHg and diastolic blood pressure (DBP) < 90 mmHg] and drug prescription patterns were not evidence based and cost effective. The majority of patients (73%) in this low socio-economic group (mean monthly income 73 US dollars) had to pay fully, out of their own pocket, for consultations and medications. If the absolute risk approach for assessment of risk and effective management of hypertension is to be implemented in low-resource settings, appropriate policy measures need to be taken to improve the competency of health-care providers, to provide basic laboratory facilities and to develop affordable financing mechanisms.
Zhu, Fuxiang; Sun, Ying; Wang, Yan; Pan, Hongyu; Wang, Fengting; Zhang, Xianghui; Zhang, Yanhua; Liu, Jinliang
2016-06-04
Turnip mosaic virus (TuMV) infects crops of plant species in the family Brassicaceae worldwide. TuMV isolates were clustered to five lineages corresponding to basal-B, basal-BR, Asian-BR, world-B and OMs. Here, we determined the complete genome sequences of three TuMV basal-BR isolates infecting radish from Shandong and Jilin Provinces in China. Their genomes were all composed of 9833 nucleotides, excluding the 3'-terminal poly(A) tail. They contained two open reading frames (ORFs), with the large one encoding a polyprotein of 3164 amino acids and the small overlapping ORF encoding a PIPO protein of 61 amino acids, which contained the typically conserved motifs found in members of the genus Potyvirus. In pairwise comparison with 30 other TuMV genome sequences, these three isolates shared their highest identities with isolates from Eurasian countries (Germany, Italy, Turkey and China). Recombination analysis showed that the three isolates in this study had no "clear" recombination. The analyses of conserved amino acids changed between groups showed that the codons in the TuMV out group (OGp) and OMs group were the same at three codon sites (852, 1006, 1548), and the other TuMV groups (basal-B, basal-BR, Asian-BR, world-B) were different. This pattern suggests that the codon in the OMs progenitor did not change but that in the other TuMV groups the progenitor sequence did change at divergence. Genetic diversity analyses indicate that the PIPO gene was under the highest selection pressure and the selection pressure on P3N-PIPO and P3 was almost the same. It suggests that most of the selection pressure on P3 was probably imposed through P3N-PIPO.
Patterns of Alloy Deformation by Pulsed Pressure
NASA Astrophysics Data System (ADS)
Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.
2015-06-01
Patterns of alloy deformation for optimization of a welding regime are studied by the method of modeling and deformation profiles providing high deformation quality are determined. A model of stepwise kinetics of the alloy deformation by pulsed pressure from the expanding plasma channel inside of a deformable cylinder is suggested. The model is based on the analogy between the acoustic and electromagnetic wave processes in long lines. The shock wave pattern of alloy deformation in the presence of multiple reflections of pulsed pressure waves in the gap plasma channel - cylinder wall and the influence of unloading waves from free surfaces are confirmed.
Scanning nozzle plating system. [for etching or plating metals on substrates without masking
NASA Technical Reports Server (NTRS)
Oliver, G. D. (Inventor)
1974-01-01
A plating system is described in which a substrate to be plated is supported on a stationary platform. A nozzle assembly with a small nozzle is supplied with a plating solution under high pressure, so that a constant-flow stream of solution is directed to the substrate. The nozzle assembly is moved relative to the substrate at a selected rate and movement pattern. A potential difference (voltage) is provided between the substrate and the solution in the assembly. The voltage amplitude is modulated so that only when the amplitude is above a minimum known value plating takes place.
Wet active chevron nozzle for controllable jet noise reduction
NASA Technical Reports Server (NTRS)
Thomas, Russell H. (Inventor); Kinzie, Kevin W. (Inventor)
2011-01-01
Disposed at or toward the trailing edge of one or more nozzles associated with a jet engine are injection ports which can selectively be made to discharge a water stream into a nozzle flow stream for the purpose of increasing turbulence in somewhat of a similar fashion as mechanically disposed chevrons have done in the known art. Unlike mechanically disposed chevrons of the known art, the fluid flow may be secured thereby increasing the engine efficiency. Various flow patterns, water pressures, orifice designs or other factors can be made operative to provide desired performance characteristics.
Extreme reversed sexual dichromatism in a bird without sex role reversal.
Heinsohn, Robert; Legge, Sarah; Endler, John A
2005-07-22
Brilliant plumage is typical of male birds, reflecting differential enhancement of male traits when females are the limiting sex. Brighter females are thought to evolve exclusively in response to sex role reversal. The striking reversed plumage dichromatism of Eclectus roratus parrots does not fit this pattern. We quantify plumage color in this species and show that very different selection pressures are acting on males and females. Male plumage reflects a compromise between the conflicting requirements for camouflage from predators while foraging and conspicuousness during display. Females are liberated from the need for camouflage but compete for rare nest hollows.
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
NASA Technical Reports Server (NTRS)
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
2012-01-01
Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the positively selected genes reveals the past selection pressures experienced by the populations used in this study. PMID:22853646
NASA Astrophysics Data System (ADS)
Li, Qing; Zhu, Wen-Chao; Zhu, Xi-Ming; Pu, Yi-Kang
2010-09-01
Atmospheric pressure plasma jets, generated in a coaxial dielectric barrier discharge configuration, have been investigated with different flowing gases. Discharge patterns in different tube regions were compared in the flowing gases of helium, neon and krypton. To explain the difference of these discharge patterns, a theoretical analysis is presented to reveal the possible basic processes. A comparison of experimental and theoretical results identifies that Penning ionization is mainly responsible for the discharge patterns of helium and neon plasma jets.
Mobile monolithic polymer elements for flow control in microfluidic devices
Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.
2004-08-31
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems
Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.
2006-01-24
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Mobile monolithic polymer elements for flow control in microfluidic devices
Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Shepodd, Timothy J [Livermore, CA; Kirby, Brian J [San Francisco, CA
2005-11-11
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Behavior patterns and coronary heart disease
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Cronin, J. P.
1975-01-01
The relationships between two behavioral patterns, cardiac risk factors, and coronary heart disease are investigated. Risk factors used in the analysis were family history of coronary disease, smoking, cholesterol, obesity, systotic blood pressure, diastolic blood pressure, blood sugar, uric acid, erythrocyte sedimentation rate, and white blood unit. It was found that conventional, non-behavioral pattern risk factors alone were not significantly related to coronary heart disease.
Ward, David; Shrestha, Madan K.; Golan-Goldhirsh, Avi
2012-01-01
Background and Aims The ecological, evolutionary and genetic bases of population differentiation in a variable environment are often related to the selection pressures that plants experience. We compared differences in several growth- and defence-related traits in two isolated populations of Acacia raddiana trees from sites at either end of an extreme environmental gradient in the Negev desert. Methods We used random amplified polymorphic DNA (RAPD) to determine the molecular differences between populations. We grew plants under two levels of water, three levels of nutrients and three levels of herbivory to test for phenotypic plasticity and adaptive phenotypic plasticity. Key Results The RAPD analyses showed that these populations are highly genetically differentiated. Phenotypic plasticity in various morphological traits in A. raddiana was related to patterns of population genetic differentiation between the two study sites. Although we did not test for maternal effects in these long-lived trees, significant genotype × environment (G × E) interactions in some of these traits indicated that such plasticity may be adaptive. Conclusions The main selection pressure in this desert environment, perhaps unsurprisingly, is water. Increased water availability resulted in greater growth in the southern population, which normally receives far less rain than the northern population. Even under the conditions that we defined as low water and/or nutrients, the performance of the seedlings from the southern population was significantly better, perhaps reflecting selection for these traits. Consistent with previous studies of this genus, there was no evidence of trade-offs between physical and chemical defences and plant growth parameters in this study. Rather, there appeared to be positive correlations between plant size and defence parameters. The great variation in several traits in both populations may result in a diverse potential for responding to selection pressures in different environments. PMID:22039007
Sundby, Øyvind H; Høiseth, Lars Øivind; Mathiesen, Iacob; Jørgensen, Jørgen J; Weedon-Fekjær, Harald; Hisdal, Jonny
2016-09-01
Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro- and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (-40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P < 0.001). Skin blood flow and skin temperature increased during all INP sequences (P < 0.001). During constant negative pressure, average blood flow velocity, skin blood flow, and skin temperature decreased (P < 0.001). In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP on the lower limb. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming
NASA Astrophysics Data System (ADS)
Mohrmann, Jacob Steven
2007-10-01
Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8.55 hour pattern in discharge found at both Rabbit and White Creeks may suggest a physical link between the sites, which are close (2.5 km). The time pattern could be a result of a shared hydrothermal aquifer, convectively heating and discharging at both streams. However, the common time pattern could also be the result of independent factors, which coincidentally caused a similar time pattern.
Porac, Clare
2009-03-01
Searleman and Porac (2001) studied lateral preference patterns among successfully switched left-hand writers, left-hand writers with no switch pressure history, and left-hand writers who did not switch when pressured. They concluded that left-handers who successfully shift to right-hand writing are following an inherent right-sided lateralisation pattern that they already possess. Searleman and Porac suggested that the neural mechanisms that control lateralisation in the successfully switched individuals are systematically different from those of other groups of left-handers. I examined patterns of skilled and less-skilled hand preference and skilled hand performance in a sample of 394 adults (ages 18-94 years). The sample contained successfully switched left-hand writers, left-handers pressured to shift who remained left-hand writers, left-handers who did not experience shift pressures, and right-handers. Both skilled hand preference and skilled hand performance were shifted towards the right side in successfully switched left-hand writers. This group also displayed mixed patterns of hand preference and skilled hand performance in that they were not as right-sided as "natural" right-handers nor were they as left-sided as the two left-hand writing groups, which did not differ from each other. The experience of being pressured to switch to right-hand writing was not sufficient to shift lateralisation patterns; the pressures must be experienced in the context of an underlying neural control mechanism that is amenable to change as a result of these external influences.
van Harreveld, Frenk; Wagenmakers, Eric-Jan; van der Maas, Han L J
2007-09-01
The ability to play chess is generally assumed to depend on two types of processes: slow processes such as search, and fast processes such as pattern recognition. It has been argued that an increase in time pressure during a game selectively hinders the ability to engage in slow processes. Here we study the effect of time pressure on expert chess performance in order to test the hypothesis that compared to weak players, strong players depend relatively heavily on fast processes. In the first study we examine the performance of players of various strengths at an online chess server, for games played under different time controls. In a second study we examine the effect of time controls on performance in world championship matches. Both studies consistently show that skill differences between players become less predictive of the game outcome as the time controls are tightened. This result indicates that slow processes are at least as important for strong players as they are for weak players. Our findings pose a challenge for current theorizing in the field of expertise and chess.
NASA Astrophysics Data System (ADS)
Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor
2017-06-01
Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.
Numerical Simulation of the Ground Response to the Tire Load Using Finite Element Method
NASA Astrophysics Data System (ADS)
Valaskova, Veronika; Vlcek, Jozef
2017-10-01
Response of the pavement to the excitation caused by the moving vehicle is one of the actual problems of the civil engineering practice. The load from the vehicle is transferred to the pavement structure through contact area of the tires. Experimental studies show nonuniform distribution of the pressure in the area. This non-uniformity is caused by the flexible nature and the shape of the tire and is influenced by the tire inflation. Several tire load patterns, including uniform distribution and point load, were involved in the numerical modelling using finite element method. Applied tire loads were based on the tire contact forces of the lorry Tatra 815. There were selected two procedures for the calculations. The first one was based on the simplification of the vehicle to the half-part model. The characteristics of the vehicle model were verified by the experiment and by the numerical model in the software ADINA, when vehicle behaviour during the ride was investigated. Second step involved application of the calculated contact forces for the front axle as the load on the multi-layered half space representing the pavement structure. This procedure was realized in the software Plaxis and considered various stress patterns for the load. The response of the ground to the vehicle load was then analyzed. Axisymmetric model was established for this procedure. The paper presents the results of the investigation of the contact pressure distribution and corresponding reaction of the pavement to various load distribution patterns. The results show differences in some calculated quantities for different load patterns, which need to be verified by the experimental way when also ground response should be observed.
NASA Astrophysics Data System (ADS)
Chandler, Curran Matthew
Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6--7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4--based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.
Navier-Stokes flow field analysis of compressible flow in a high pressure safety relief valve
NASA Technical Reports Server (NTRS)
Vu, Bruce; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat
1993-01-01
The objective of this study is to investigate the complex three-dimensional flowfield of an oxygen safety pressure relieve valve during an incident, with a computational fluid dynamic (CFD) analysis. Specifically, the analysis will provide a flow pattern that would lead to the expansion of the eventual erosion pattern of the hardware, so as to combine it with other findings to piece together a most likely scenario for the investigation. The CFD model is a pressure based solver. An adaptive upwind difference scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the velocity-pressure coupling. The computational result indicated vortices formation near the opening of the valve which matched the erosion pattern of the damaged hardware.
Subramaniam, Saravanan; Mohapatra, Jajati K; Das, Biswajit; Sharma, Gaurav K; Biswal, Jitendra K; Mahajan, Sonalika; Misri, Jyoti; Dash, Bana B; Pattnaik, Bramhadev
2015-07-01
Foot-and-mouth disease virus (FMDV) serotype Asia1 was first reported in India in 1951, where three major genetic lineages (B, C and D) of this serotype have been described until now. In this study, the capsid protein coding region of serotype Asia1 viruses (n = 99) from India were analyzed, giving importance to the viruses circulating since 2007. All of the isolates (n = 50) recovered during 2007-2013 were found to group within the re-emerging cluster of lineage C (designated as sublineage C(R)). The evolutionary rate of sublineage C(R) was estimated to be slightly higher than that of the serotype as a whole, and the time of the most recent common ancestor for this cluster was estimated to be approximately 2001. In comparison to the older isolates of lineage C (1993-2001), the re-emerging viruses showed variation at eight amino acid positions, including substitutions at the antigenically critical residues VP279 and VP2131. However, no direct correlation was found between sequence variations and antigenic relationships. The number of codons under positive selection and the nature of the selection pressure varied widely among the structural proteins, implying a heterogeneous pattern of evolution in serotype Asia1. While episodic diversifying selection appears to play a major role in shaping the evolution of VP1 and VP3, selection pressure acting on codons of VP2 is largely pervasive. Further, episodic positive selection appears to be responsible for the early diversification of lineage C. Recombination events identified in the structural protein coding region indicates its probable role in adaptive evolution of serotype Asia1 viruses.
Bielza, Pablo
2008-11-01
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest of a wide range of crops grown throughout the world. Insecticide resistance has been documented in many populations of WFT. Biological and behavioural characteristics and pest management practices that promote insecticide resistance are discussed. In addition, an overview is provided of the development of insecticide resistance in F. occidentalis populations and the resistance mechanisms involved. Owing to widespread resistance to most conventional insecticides, a new approach to insecticide resistance management (IRM) of F. occidentalis is needed. The IRM strategy proposed consists of two parts. Firstly, a general strategy to minimise the use of insecticides in order to reduce selection pressure. Secondly, a strategy designed to avoid selection of resistance mechanisms, considering cross-resistance patterns and resistance mechanisms. Copyright (c) 2008 Society of Chemical Industry.
Patterson, L; Staiger, E A; Brooks, S A
2015-04-01
The Mangalarga Marchador (MM) is a Brazilian horse breed known for a uniquely smooth gait. A recent publication described a mutation in the DMRT3 gene that the authors claim controls the ability to perform lateral patterned gaits (Andersson et al. 2012). We tested 81 MM samples for the DMRT3 mutation using extracted DNA from hair bulbs using a novel RFLP. Horses were phenotypically categorized by their gait type (batida or picada), as recorded by the Brazilian Mangalarga Marchador Breeders Association (ABCCMM). Statistical analysis using the plink toolset (Purcell, 2007) revealed significant association between gait type and the DMRT3 mutation (P = 2.3e-22). Deviation from Hardy-Weinberg equilibrium suggests that selective pressure for gait type is altering allele frequencies in this breed (P = 1.00e-5). These results indicate that this polymorphism may be useful for genotype-assisted selection for gait type within this breed. As both batida and picada MM horses can perform lateral gaits, the DMRT3 mutation is not the only locus responsible for the lateral gait pattern. © 2015 Stichting International Foundation for Animal Genetics.
Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis
2012-01-22
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.
Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.
Karniychuk, Uladzimir U
2016-09-02
Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis
2012-01-01
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172
Tiradentes, R.V.; Pires, J.G.P.; Silva, N.F.; Ramage, A.G.; Santuzzi, C.H.; Futuro, H.A.
2014-01-01
Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central. PMID:25003632
Cools, A R
1980-10-01
The purpose of this study was to detect the behavioural effect of drug-induced changes in the neostriatal dopaminergic activity upon the degree of intrinsic (self-generated) and extrinsic (externally produced) constraints on the selection of behavioural patterns in rats. Both systemic and neostriatal injections of extremely low doses of apomorphine and haloperidol were used to change the neostriatal dopaminergic activity. Behavioural changes were observed in (a) an open-field test, (b) a so-called 'swimming without escape' test, (c) a so-called 'swimming with escape' test, and (d) a test to detect deficiencies in sensory, motor and sensorimotor capacities required to perform both swimming tests. Evidence is found that the neostriatum, especially the neostriatal, dopaminergic activity determines the animal's ability to select the best strategy in a stressful situation by modifying the process of switching strategies under pressure of factors intrinsic to the organism: neither sensory neglect nor inability to initiate voluntary movements underlay the observed phenomena. It is suggested that the neostriatum determines the individual flexibility to cope with available sensory information.
CO2 time series patterns in contrasting headwater streams of North America
Crawford, John T.; Stanley, Emily H.; Dornblaser, Mark M.; Striegl, Robert G.
2017-01-01
We explored the underlying patterns of temporal stream CO2 partial pressure (pCO2) variability using highfrequency sensors in seven disparate headwater streams distributed across the northern hemisphere. We also compared this dataset of [40,000 pCO2 records with other published records from lotic systems. Individual stream sites exhibited relatively distinct pCO2 patterns over time with few consistent traits across sites. Some sites showed strong diel variability, some exhibited increasing pCO2 with increasing discharge, whereas other streams had reduced pCO2 with increasing discharge or no clear response to changes in flow. The only ‘‘universal’’ signature observed in headwater streams was a late summer pCO2 maxima that was likely driven by greatest rates of organic matter respiration due to highest annual temperatures. However, we did not observe this seasonal pattern in a southern hardwood forest site, likely because the region was transitioning from a severe drought. This work clearly illustrates the heterogeneous nature of headwater streams, and highlights the idiosyncratic nature of a non-conservative solute that is jointly influenced by physics, hydrology, and biology. We suggest that future researchers carefully select sensor locations (within and among streams) and provide additional contextual information when attempting to explain pCO2 patterns.
Air pressure waves from Mount St. Helens eruptions
NASA Astrophysics Data System (ADS)
Reed, Jack W.
1987-10-01
Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.
Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review
Viera, Anthony J.; Shimbo, Daichi
2016-01-01
Ambulatory blood pressure monitoring offers the ability to collect blood pressure readings several times an hour across a 24-hour period. Ambulatory blood pressure monitoring facilitates the identification of white-coat hypertension, the phenomenon whereby certain individuals who are not on antihypertensive medication show elevated blood pressure in a clinical setting but show non-elevated blood pressure averages when assessed by ambulatory blood pressure monitoring. Additionally, readings can be segmented into time windows of particular interest, e.g., mean daytime and nighttime values. During sleep, blood pressure typically decreases, or dips, such that mean sleep blood pressure is lower than mean awake blood pressure. A non-dipping pattern and nocturnal hypertension are strongly associated with increased cardiovascular morbidity and mortality. Approximately 70% of individuals dip ≥10% at night, while 30% have non-dipping patterns, when blood pressure remains similar to daytime average, or occasionally rises above daytime average. The various blood pressure categorizations afforded by ambulatory blood pressure monitoring are valuable for clinical management of high blood pressure since they increase accuracy for diagnosis and the prediction of cardiovascular risk. PMID:25107387
Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates
Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin
2014-01-01
The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Jia, Beixi; Wang, Sing-Chun; Estes, Mark; Shen, Lu; Xie, Yuanyu
2016-12-01
The Bermuda High (BH) quasi-permanent pressure system is the key large-scale circulation pattern influencing summertime weather over the eastern and southern US. Here we developed a multiple linear regression (MLR) model to characterize the effect of the BH on year-to-year changes in monthly-mean maximum daily 8 h average (MDA8) ozone in the Houston-Galveston-Brazoria (HGB) metropolitan region during June, July, and August (JJA). The BH indicators include the longitude of the BH western edge (BH-Lon) and the BH intensity index (BHI) defined as the pressure gradient along its western edge. Both BH-Lon and BHI are selected by MLR as significant predictors (p < 0.05) of the interannual (1990-2015) variability of the HGB-mean ozone throughout JJA, while local-scale meridional wind speed is selected as an additional predictor for August only. Local-scale temperature and zonal wind speed are not identified as important factors for any summer month. The best-fit MLR model can explain 61-72 % of the interannual variability of the HGB-mean summertime ozone over 1990-2015 and shows good performance in cross-validation (R2 higher than 0.48). The BH-Lon is the most important factor, which alone explains 38-48 % of such variability. The location and strength of the Bermuda High appears to control whether or not low-ozone maritime air from the Gulf of Mexico can enter southeastern Texas and affect air quality. This mechanism also applies to other coastal urban regions along the Gulf Coast (e.g., New Orleans, LA, Mobile, AL, and Pensacola, FL), suggesting that the BH circulation pattern can affect surface ozone variability through a large portion of the Gulf Coast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui
Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less
Amaral, Hugo Leonardo da Cunha; Bergmann, Fabiane Borba; Dos Santos, Paulo Roberto Silveira; Silveira, Tony; Krüger, Rodrigo Ferreira
2017-12-01
Parasites may influence host fitness and consequently exert a selective pressure on distinct phenotypes of the host population. This pressure can result in an evolutionary response, maintaining only individuals with certain traits in the population. The present study was aimed at identifying the morphological characteristics of juveniles and adults of Columba livia that may influence the distribution patterns of lice, Pseudolynchia canariensis and Haemoproteus columbae and how the populations of these parasites vary throughout the seasons of the year. Between July 2012 and July 2014, 377 specimens of C. livia were captured. We observed a significant increase in the mean intensities of infestation by pigeon flies and lice, as well as in species richness of ectoparasites during the warmest seasons, suggesting a reproductive synchrony between ectoparasites and host species. Bill length, body mass, and body length did not affect the infestation levels of ectoparasites on adults and juveniles of C. livia with three distinct plumage colors. In juveniles, plumage color affected only the mean intensity of infestation by lice, with Spread individuals as the most infested. This indicates that melanin in feathers was not an effective barrier against ectoparasites. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reddy, P. J.; Barbarick, D. E.; Osterburg, R. D.
1995-03-01
In 1990, the State of Colorado implemented a visibility standard of 0.076 km1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with visibility impairment as well as those due to high levels of the federal criteria pollutants. Visibility forecasts are made from a few hours up to about 26 h in advance of the period of interest. Here we discuss the key microscale, mesoscale, and synoptic-scale features associated with episodes of visibility impairment. Data from special studies, case studies, and the 22 NOAA Program for Regional Observing and Forecasting Services mesonet sites have been invaluable in identifying patterns associated with extremes in visibility conditions. A preliminary statistical forecast model has been developed using variables that represent many of these patterns. Six variables were selected from an initial pool of 27 to be used in a model based on linear logistic regression. These six variables include forecast measures of snow cover, surface pressures and a surface pressure gradient in eastern Colorado, relative humidity, and 500-mb ridge position. The initial testing of the model has been encouraging. The model correctly predicted 76% of the good visibility days and 67% of the poor visibility days for a test set of 171 days.
Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; ...
2015-08-27
Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less
Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.
Orbán, Levente L; Chartier, Sylvain
2015-01-01
Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.
Hancock, Viktoria; Nielsen, Eva Møller; Krag, Louise; Engberg, Jørgen; Klemm, Per
2009-11-01
Urinary tract infections (UTIs) are one of the most common infectious diseases in humans and domestic animals such as pigs. The most frequent infectious agent in such infections is Escherichia coli. Virulence characteristics of E. coli UTI strains range from highly virulent pyelonephritis strains to relatively benign asymptomatic bacteriuria strains. Here we analyse a spectrum of porcine and human UTI E. coli strains with respect to their antibiotic resistance patterns and their phylogenetic groups, determined by multiplex PCR. The clonal profiles of the strains differed profoundly; whereas human strains predominantly belonged to clonal types B2 and D, these were not seen among the porcine strains, which all belonged to the E. coli clonal groups A and B1. Contrary to the human strains, the majority of the porcine strains were multidrug resistant. The distinct profiles of the porcine strains suggest selective pressure due to extensive antibiotic use.
Implications of Operational Pressure on CSSE PGS Design
NASA Technical Reports Server (NTRS)
Lee, Ryan
2008-01-01
The Constellation Spacesuit Element (CSSE) was required to support crew survival (CS); launch, entry, and abort (LEA) scenarios; zero gravity (0-g) extravehicular activity (EVA) (both unscheduled and contingency); and planetary EVA. Operation of the CSSE in all of these capacities required a pressure garment subsystem (PGS) that would operate efficiently through various pressure profiles. The PGS team initiated a study to determine the appropriate operational pressure profile of the CSSE and how this selection would affect the design of the CSSE PGS. This study included an extensive review of historical PGS operational pressure selection and the operational effects of those pressures, the presentation of four possible pressure paradigm options for use by the CSSE, the risks and design impacts of these options, and the down-selected pressure option.
Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.
Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji
2017-09-01
Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.
Clustering of Synoptic Pattern over the Korean Peninsula from Meteorological Models
NASA Astrophysics Data System (ADS)
Kim, Jinah; Heo, Kiyoung; Choi, Jungwoon; Jung, Sanghoon
2017-04-01
Numerical modeling data on meteorological and ocean science is one of example of big geographic data sources. The properties of the data including the volume, variety, and dynamic aspects pose new challenges for geographic visualization, and visual geoanalytics using big data analysis using machine learning method. A combination of algorithmic and visual approaches that make sense of large volumes of various types of spatiotemporal data are required to gain knowledge about complex phenomena. In the East coast of Korea, it is suffering from property damages and human causalities due to abnormal high waves (swell-like high-height waves). It is known to be caused by local meteorological conditions on the East Sea of Korean Peninsula in previous research and they proposed three kinds of pressure patterns that generate abnormal high waves. However, they cannot describe all kinds of pressure patterns that generate abnormal high waves. In our study, we propose unsupervised machine learning method for pattern clustering and applied it to classify a pattern which has occurred abnormal high waves using numerical meteorological model's reanalysis data from 2000 to 2015 and past historical records of accidents by abnormal high waves. About 25,000 patterns of total spatial distribution of sea surface pressure are clustered into 30 patterns and they are classified into seasonal sea level pressure patterns based on meteorological characteristics of Korean peninsula. Moreover, in order to determine the representative patterns which occurs abnormal high waves, we classified it again using historical accidents cases among the winter season pressure patterns. In this work, we clustered synoptic pattern over the Korean Peninsula in meteorological modeling reanalysis data and we could understand a seasonal variation through identifying the occurrence of clustered synoptic pattern. For the future work, we have to identify the relationship of wave modeling data for better understanding of abnormal high waves and we will develop pattern decision system to predict abnormal high waves in advances. This research was a part of the project titled "Development of Korea Operational Oceanographic System (KOOS), Phase 2" and "Investigation of Large Swell Waves and Rip currents and Development of The Disaster Response System," funded by the Ministry of Oceans & Fisheries Korea (Grant PM59691 and PM59240).
Cardiovascular reactivity patterns and pathways to hypertension: a multivariate cluster analysis.
Brindle, R C; Ginty, A T; Jones, A; Phillips, A C; Roseboom, T J; Carroll, D; Painter, R C; de Rooij, S R
2016-12-01
Substantial evidence links exaggerated mental stress induced blood pressure reactivity to future hypertension, but the results for heart rate reactivity are less clear. For this reason multivariate cluster analysis was carried out to examine the relationship between heart rate and blood pressure reactivity patterns and hypertension in a large prospective cohort (age range 55-60 years). Four clusters emerged with statistically different systolic and diastolic blood pressure and heart rate reactivity patterns. Cluster 1 was characterised by a relatively exaggerated blood pressure and heart rate response while the blood pressure and heart rate responses of cluster 2 were relatively modest and in line with the sample mean. Cluster 3 was characterised by blunted cardiovascular stress reactivity across all variables and cluster 4, by an exaggerated blood pressure response and modest heart rate response. Membership to cluster 4 conferred an increased risk of hypertension at 5-year follow-up (hazard ratio=2.98 (95% CI: 1.50-5.90), P<0.01) that survived adjustment for a host of potential confounding variables. These results suggest that the cardiac reactivity plays a potentially important role in the link between blood pressure reactivity and hypertension and support the use of multivariate approaches to stress psychophysiology.
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomechanical analysis of the circular friction hand massage.
Ryu, Jeseong; Son, Jongsang; Ahn, Soonjae; Shin, Isu; Kim, Youngho
2015-01-01
A massage can be beneficial to relieve muscle tension on the neck and shoulder area. Various massage systems have been developed, but their motions are not uniform throughout different body parts nor specifically targeted to the neck and shoulder areas. Pressure pattern and finger movement trajectories of the circular friction hand massage on trapezius, levator scapulae, and deltoid muscles were determined to develop a massage system that can mimic the motion and the pressure of the circular friction massage. During the massage, finger movement trajectories were measured using a 3D motion capture system, and finger pressures were simultaneously obtained using a grip pressure sensor. Results showed that each muscle had different finger movement trajectory and pressure pattern. The trapezius muscle experienced a higher pressure, longer massage time (duration of pressurization), and larger pressure-time integral than the other muscles. These results could be useful to design a better massage system simulating human finger movements.
NASA Astrophysics Data System (ADS)
Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei
2017-08-01
Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.
Mating tactics determine patterns of condition dependence in a dimorphic horned beetle.
Knell, Robert J; Simmons, Leigh W
2010-08-07
The persistence of genetic variability in performance traits such as strength is surprising given the directional selection that such traits experience, which should cause the fixation of the best genetic variants. One possible explanation is 'genic capture' which is usually considered as a candidate mechanism for the maintenance of high genetic variability in sexual signalling traits. This states that if a trait is 'condition dependent', with expression being strongly influenced by the bearer's overall viability, then genetic variability can be maintained via mutation-selection balance. Using a species of dimorphic beetle with males that gain matings either by fighting or by 'sneaking', we tested the prediction of strong condition dependence for strength, walking speed and testes mass. Strength was strongly condition dependent only in those beetles that fight for access to females. Walking speed, with less of an obvious selective advantage, showed no condition dependence, and testes mass was more condition dependent in sneaks, which engage in higher levels of sperm competition. Within a species, therefore, condition dependent expression varies between morphs, and corresponds to the specific selection pressures experienced by that morph. These results support genic capture as a general explanation for the maintenance of genetic variability in traits under directional selection.
Jiang, Peng; Shi, Feng-Xue; Li, Ming-Rui; Liu, Bao; Wen, Jun; Xiao, Hong-Xing; Li, Lin-Feng
2018-01-01
Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes. PMID:29670636
Jiang, Peng; Shi, Feng-Xue; Li, Ming-Rui; Liu, Bao; Wen, Jun; Xiao, Hong-Xing; Li, Lin-Feng
2018-01-01
Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.
Exponential growth and selection in self-replicating materials from DNA origami rafts
NASA Astrophysics Data System (ADS)
He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.
2017-10-01
Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.
Rebuilding fish communities: the ghost of fisheries past and the virtue of patience.
Collie, Jeremy; Rochet, Marie-Joëlle; Bell, Richard
2013-03-01
The ecosystem approach to management requires the status of individual species to be considered in a community context. We conducted a comparative ecosystem analysis of the Georges Bank and North Sea fish communities to determine the extent to which biological diversity is restored when fishing pressure is reduced. First, fishing mortality estimates were combined to quantify the community-level intensity and selectivity of fishing pressure. Second, standardized bottom-trawl survey data were used to investigate the temporal trends in community metrics. Third, a size-based, multispecies model (LeMans) was simulated to test the response of community metrics to both hypothetical and observed changes in fishing pressure in the two communities. These temperate North Atlantic fish communities have much in common, including a history of overfishing. In recent decades fishing pressure has been reduced, and some species have started to rebuild. The Georges Bank fishery has been more selective, and fishing pressure was reduced sooner. The two communities have similar levels of size diversity and biomass per unit area, but fundamentally different community structure. The North Sea is dominated by smaller species and has lower evenness than Georges Bank. These fundamental differences in community structure are not explained by recent fishing patterns. The multispecies model was able to predict the observed changes in community metrics better on Georges Bank, where rebuilding is more apparent than in the North Sea. Model simulations predicted hysteresis in rebuilding community metrics toward their unfished levels, particularly in the North Sea. Species in the community rebuild at different rates, with smaller prey species outpacing their large predators and overshooting their pre-exploitation abundances. This indirect effect of predator release delays the rebuilding of community structure and biodiversity. Therefore community rebuilding is not just the sum of single-species rebuilding plans. Management strategies that account for interspecific interactions will be needed to restore biodiversity and community structure.
Morabito, Marco; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian F; Modesti, Pietro A
2008-07-01
Higher blood pressure (BP) values in cold than in hot months has been documented in hypertensives. These changes may potentially contribute to the observed excess winter cardiovascular mortality. However, the association with weather has always been investigated by considering the relationship with a single variable rather than considering the combination of ground weather variables characterizing a specific weather pattern (air mass (AM)). We retrospectively investigate in Florence (Italy) the relationship between BP and specific AMs in hypertensive subjects (n = 540) referred to our Hypertension Unit for 24-h ambulatory BP monitoring during the period of the year characterized by the highest weather variability (winter). Five different winter daily AMs were classified according to the combination of ground weather data (air temperature, cloud cover, relative humidity, atmospheric pressure, wind speed, and direction). Multiple variable analysis selected the AM as a significant predictor of mean 24-h BP (P < 0.01 for diastolic BP (DBP) and P < 0.05 for systolic BP (SBP)), daytime DBP (P < 0.001) and nighttime BP (P < 0.01 for both SBP and DBP), with higher BP values observed in cyclonic (unstable, cloudy, and mild weather) than in anticyclonic (settled, cloudless, and cold weather) days. When the association with 2-day sequences of AMs was considered, an increase in ambulatory BP followed a sudden day-to-day change of weather pattern going from anticyclonic to cyclonic days. The weather considered as a combination of different weather variables may affect BP. The forecast of a sudden change of AM could provide important information helpful for hypertensives during winter.
A real-time plantar pressure feedback device for foot unloading.
Femery, Virginie G; Moretto, Pierre G; Hespel, Jean-Michel G; Thévenon, André; Lensel, Ghislaine
2004-10-01
To develop and test a plantar pressure control device that provides both visual and auditory feedback and is suitable for correcting plantar pressure distribution patterns in persons susceptible to neuropathic foot ulceration. Pilot test. Sports medicine laboratory in a university in France. One healthy man in his mid thirties. Not applicable. Main outcome measures A device was developed based on real-time feedback, incorporating an acoustic alarm and visual signals, adjusted to a specific pressure load. Plantar pressure measured during walking, at 6 sensor locations over 27 steps under 2 different conditions: (1) natural and (2) unloaded in response to device feedback. The subject was able to modify his gait in response to the auditory and visual signals. He did not compensate for the decrease of peak pressure under the first metarsal by increasing the duration of the load shift under this area. Gait pattern modification centered on a mediolateral load shift. The auditory signal provided a warning system alerting the user to potentially harmful plantar pressures. The visual signal warned of the degree of pressure. People who have lost nociceptive perception, as in cases of diabetic neuropathy, may be able to change their walking pattern in response to the feedback provided by this device. The visual may have diagnostic value in determining plantar pressures in such patients. This pilot test indicates that further studies are warranted.
Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube
NASA Astrophysics Data System (ADS)
Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo
2013-07-01
Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.
Zajac, David J.; Weissler, Mark C.
2011-01-01
Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults produced syllable trains of /pΛ/ using a mouthpiece coupled to a computer-controlled perturbator. The device randomly created bleed apertures that ranged from 0 to 40 mm2 during production of the 2nd or 4th syllable of an utterance. Although peak oral air pressure dropped in a linear manner across bleed apertures, it averaged 2 to 3 cm H2O at the largest bleed. While slope of oral pressure also decreased in a linear trend, duration of the oral pressure pulse remained relatively constant. The patterns suggest that respiratory reflexes, if present, have little effect on oral air pressure levels. In Study 2, both oral and subglottal air pressure responses were monitored in 2 adults while bleed apertures of 20 and 40 mm2 were randomly created. For 1 participant, peak oral air pressure dropped across bleed apertures, as in Study 1. Subglottal air pressure and slope, however, remained relatively stable. These patterns provide some support for the occurrence of respiratory reflexes to regulate subglottal air pressure. Overall, the studies indicate that the inherent physiologic processes of the respiratory system, which may involve reflexes, and passive aeromechanical resistance of the upper airway are capable of developing oral air pressure in the face of substantial pressure bleeds. Implications for understanding speech production and the characteristics of individuals with velopharyngeal dysfunction are discussed. PMID:15324286
Real-time determination of fringe pattern frequencies: An application to pressure measurement
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Piroozan, Parham
2007-05-01
Retrieving information in real time from fringe patterns is a topic of a great deal of interest in scientific and engineering applications of optical methods. This paper presents a method for fringe frequency determination based on the capability of neural networks to recognize signals that are similar but not identical to signals used to train the neural network. Sampled patterns are generated by calibration and stored in memory. Incoming patterns are analyzed by a back-propagation neural network at the speed of the recording device, a CCD camera. This method of information retrieval is utilized to measure pressures on a boundary layer flow. The sensor combines optics and electronics to analyze dynamic pressure distributions and to feed information to a control system that is capable to preserve the stability of the flow.
Rossenkhan, Raabya; MacLeod, Iain J; Brumme, Zabrina L; Magaret, Craig A; Sebunya, Theresa K; Musonda, Rosemary; Gashe, Berhanu A; Edlefsen, Paul T; Novitsky, Vlad; Essex, M
Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission.
Rossenkhan, Raabya; MacLeod, Iain J.; Brumme, Zabrina L.; Magaret, Craig A.; Sebunya, Theresa K.; Musonda, Rosemary; Gashe, Berhanu A.; Edlefsen, Paul T.; Novitsky, Vlad
2016-01-01
Abstract Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission. PMID:27349335
The neural basis for category-specific knowledge: an fMRI study.
Grossman, Murray; Koenig, Phyllis; DeVita, Chris; Glosser, Guila; Alsop, David; Detre, John; Gee, James
2002-04-01
Functional neuroimaging studies of healthy adults have associated different categories of knowledge with distinct activation patterns. The basis for these recruitment patterns has been controversial, due in part to the limited range of categories that has been studied. We used fMRI to monitor regional cortical recruitment patterns while subjects were exposed to printed names of Animals, Implements, and Abstract nouns. Both Implements and Abstract nouns were related to recruitment of left posterolateral temporal cortex and left prefrontal cortex, and Abstract nouns additionally recruited posterolateral temporal and prefrontal regions of the right hemisphere. Animals were associated with activation of ventral-medial occipital cortex in the left hemisphere at a level that approaches significance. These findings are not consistent with the "sensory-motor" model proposed to explain the neural representation of word knowledge. We suggest instead a neural model of semantic memory that reflects the processes common to understanding Implements and Abstract nouns and a selective sensitivity, possibly evolving from adaptive pressures, to the overlapping, intercorrelated visual characteristics of Animals. (C)2002 Elsevier Science (USA).
Jaimes-Becerra, Adrian; Chung, Ray; Morandini, André C; Weston, Andrew J; Padilla, Gabriel; Gacesa, Ranko; Ward, Malcolm; Long, Paul F; Marques, Antonio C
2017-10-01
Cnidarians are probably the oldest group of animals to be venomous, yet our current picture of cnidarian venom evolution is highly imbalanced due to limited taxon sampling. High-throughput tandem mass spectrometry was used to determine venom composition of the scyphozoan Chrysaora lactea and two cubozoans Tamoya haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then compared against 5 other cnidarian venom proteomes taken from the literature. A total of 28 putative toxin protein families were identified, many for the first time in Cnidaria. Character mapping analysis revealed that 17 toxin protein families with predominantly cytolytic biological activities were likely recruited into the cnidarian venom proteome before the lineage split between Anthozoa and Medusozoa. Thereafter, venoms of Medusozoa and Anthozoa differed during subsequent divergence of cnidarian classes. Recruitment and loss of toxin protein families did not correlate with accepted phylogenetic patterns of Cnidaria. Selective pressures that drive toxin diversification independent of taxonomic positioning have yet to be identified in Cnidaria and now warrant experimental consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Establishing the behavioural limits for countershaded camouflage.
Penacchio, Olivier; Harris, Julie M; Lovell, P George
2017-10-20
Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis.
Corea, M; Seeliger, E; Boemke, W; Reinhardt, H W
1996-01-01
In 5 conscious dogs the diurnal patterns of urinary sodium excretion (UNaV) were investigated, initially during 1 control day and, thereafter, during 4 days of servo-controlled reduction of renal perfusion pressure (rRPP). The individual dog's mean arterial blood pressure was reduced to 80% of the blood pressure on the control day. This value was always found to be below the threshold for the pressure-dependent renin release. During the entire study period urine was collected in 4-hour intervals and blood samples were taken every 4 h. The dogs were kept on a standardized high sodium and high water intake and were fed once daily at 8.30 h. On the control day, UNaV, urinary flow rate (UV), fractional lithium excretion (FELi) and fractional sodium excretion (FENa) had similar diurnal patterns. They peaked 4-8 h after food intake and decreased to low values during the night. On day 1 of rRPP, UNaV and FENa were maintained at very low levels in all collection periods, whereas the patterns of UV and FELi were unaltered compared with the patterns on the control day. On days 2-4 of rRPP, a clear-cut maximum in the patterns of UNaV and FENa recurred, comparable with the patterns on the control day. However, compared with the control day this maximum was shifted by 4 h towards the night. In contrast, the patterns of UV and FELi remained unchanged compared with the control day. The results indicate that UNaV has a typical time course in conscious, sodium- and water-replete dogs fed once daily. Endogenous stimulation of sodium reabsorption by means of rRPP results in a characteristic 4-hour shift of UNaV and FENa towards the night during rRPP days 2-4. This delay in UNaV seems to be evoked by processes in the distal tubule.
Rushton, J P
1992-12-01
Genetic distance estimates calculated from DNA sequencing indicate that in years since emergence from the ancestral hominid line, Mongoloids = 41,000, Caucasoids = 110,000, and Negroids = 200,000. Data also show that this succession is matched by numerous other differences such that Mongoloids > Caucasoids > Negroids in brain size and intelligence (cranial capacity = 1448, 1408, 1334 cm3; brain weight = 1351, 1336, 1286 gm.; millions of excess neurons = 8900, 8650, 8550; IQ = 107, 100, 85); maturational delay (age to walk alone, age of first intercourse, age of death); sexual restraint (ovulation rate, intercourse frequencies, sexually transmitted diseases including AIDS); quiescent temperament (aggressiveness, anxiety, sociability); and social organization (law abidingness, marital stability, mental health). This pattern is ordered by a theory of r/K reproductive strategies in which Mongoloids are posited to be more K-selected than Caucasoids and especially more than Negroids. (K-selected reproductive strategies emphasize parental care and are to be contrasted with r-selected strategies which emphasize fecundity, the bioenergetic trade-off between which is postulated to underlie cross-species differences in brain size, speed of maturation, reproductive effort, and longevity.) It is suggested that this pattern came about because the ice ages exerted greater selection pressures on the later emerging populations to produce larger brains, longer lives, and more K-like behavior. One theoretical possibility is that evolution is progressive and that some populations are more "advanced" than others. Predictions are made concerning economic projections and the spread of AIDS.
Composite patterning devices for soft lithography
Rogers, John A.; Menard, Etienne
2007-03-27
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.
2013-09-30
tropopause polar vortices, which are prevalent circulation features over the Arctic that play a major role in the evolution of surface pressure anomalies...pressure and tropospheric circulation anomalies and will allow us to answer specific questions regarding its ability to reproduce the appropriate AO... circulation patterns (Fig. 1c). While the mean patterns are favorable regarding the ability of MPAS to encapsulate the overall patterns of these two
NASA Astrophysics Data System (ADS)
Wu, Lin
2018-05-01
In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.
Formation mechanisms and characteristics of transition patterns in oblique detonations
NASA Astrophysics Data System (ADS)
Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong
2018-01-01
The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps < 1.3, a smooth transition appears. A parameter ε is introduced to describe the transition patterns quantitatively. Besides, a criterion based on the velocity ratio Φ=U0/UCJ is proposed to predict the transition patterns based on the inflow conditions. It is concluded that an abrupt transition appears when Φ < 0.98Φ*, while a smooth transition occurs when Φ > 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).
NASA Astrophysics Data System (ADS)
Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa
2018-03-01
Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.
Diffusion Dynamics and Creative Destruction in a Simple Classical Model
2015-01-01
ABSTRACT The article explores the impact of the diffusion of new methods of production on output and employment growth and income distribution within a Classical one‐sector framework. Disequilibrium paths are studied analytically and in terms of simulations. Diffusion by differential growth affects aggregate dynamics through several channels. The analysis reveals the non‐steady nature of economic change and shows that the adaptation pattern depends both on the innovation's factor‐saving bias and on the extent of the bias, which determines the strength of the selection pressure on non‐innovators. The typology of different cases developed shows various aspects of Schumpeter's concept of creative destruction. PMID:27642192
García-Ortiz, Luis; Gómez-Marcos, Manuel A; Martín-Moreiras, Javier; González-Elena, Luis J; Recio-Rodriguez, Jose I; Castaño-Sánchez, Yolanda; Grandes, Gonzalo; Martínez-Salgado, Carlos
2009-08-01
To analyse the relationship between various parameters derived from ambulatory blood pressure monitoring (ABPM) and vascular, cardiac and renal target organ damage. A cross-sectional, descriptive study. It included 353 patients with short-term or recently diagnosed hypertension. ABPM, carotid intima-media thickness (IMT), Cornell voltage-duration product (Cornell VDP), glomerular filtration rate and albumin/creatinine ratio to assess vascular, cardiac and renal damage. Two hundred and twenty-three patients (63.2%) were males, aged 56.12+/-11.21 years. The nocturnal fall in blood pressure was 11.33+/-8.41, with a dipper pattern in 49.0% (173), nondipper in 30.3% (107), extreme dipper in 12.7% (45) and riser in 7.9% (28). The IMT was lower in the extreme dipper (0.716+/-0.096 mm) and better in the riser pattern (0.794+/-0.122 mm) (P<0.05). The Cornell VDP and albumin/creatinine ratio were higher in the riser pattern (1818.94+/-1798.63 mm/ms and 140.78+/-366.38 mg/g, respectively) than in the other patterns. In the multivariate analysis after adjusting for age, sex and antihypertensive treatment, with IMT as dependent variable the 24-h pulse pressure (beta = 0.003), with Cornell VDP the rest pulse pressure (beta = 12.04), and with the albumin/creatinine ratio the percentage of nocturnal fall in systolic blood pressure (beta = -3.59), the rest heart rate (beta = 1.83) and the standard deviation of 24-h systolic blood pressure (beta = 5.30) remain within the equation. The estimated pulse pressure with ABPM is a predictor of vascular and cardiac organ damage. The nocturnal fall and the standard deviation in 24-h systolic blood pressure measured with the ABPM is a predictor of renal damage.
Optimal defense theory explains deviations from latitudinal herbivory defense hypothesis.
Kooyers, Nicholas J; Blackman, Benjamin K; Holeski, Liza M
2017-04-01
The latitudinal herbivory defense hypothesis (LHDH) postulates that the prevalence of species interactions, including herbivory, is greater at lower latitudes, leading to selection for increased levels of plant defense. While latitudinal defense clines may be caused by spatial variation in herbivore pressure, optimal defense theory predicts that clines could also be caused by ecogeographic variation in the cost of defense. For instance, allocation of resources to defense may not increase plant fitness when growing seasons are short and plants must reproduce quickly. Here we use a common garden experiment to survey genetic variation for constitutive and induced phenylpropanoid glycoside (PPG) concentrations across 35 Mimulus guttatus populations over a ~13° latitudinal transect. Our sampling regime is unique among studies of the LHDH in that it allows us to disentangle the effects of growing season length from those of latitude, temperature, and elevation. For five of the seven PPGs surveyed, we find associations between latitude and plant defense that are robust to population structure. However, contrary to the LHDH, only two PPGs were found at higher levels in low latitude populations, and total PPG concentrations were higher at higher latitudes. PPG levels are strongly correlated with growing season length, with higher levels of PPGs in plants from areas with longer growing seasons. Further, flowering time is positively correlated with the concentration of nearly all PPGs, suggesting that there may be a strong trade-off between development time and defense production. Our results reveal that ecogeographic patterns in plant defense may reflect variation in the cost of producing defense compounds in addition to variation in herbivore pressure. Thus, the biogeographic pattern predicted by the LHDH may not be accurate because the underlying factors driving variation in defense, in this case, growing season length, are not always associated with latitude in the same manner. Given these results, we conclude that LHDH cannot be interpreted without considering life history, and we recommend that future work on the LHDH move beyond solely testing the core LHDH prediction and place greater emphasis on isolating agents of selection that generate spatial variation in defense and herbivore pressure. © 2017 by the Ecological Society of America.
Bigham, Abigail; Bauchet, Marc; Pinto, Dalila; Mao, Xianyun; Akey, Joshua M; Mei, Rui; Scherer, Stephen W; Julian, Colleen G; Wilson, Megan J; López Herráez, David; Brutsaert, Tom; Parra, Esteban J; Moore, Lorna G; Shriver, Mark D
2010-09-09
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude.
Bigham, Abigail; Bauchet, Marc; Pinto, Dalila; Mao, Xianyun; Akey, Joshua M.; Mei, Rui; Scherer, Stephen W.; Julian, Colleen G.; Wilson, Megan J.; López Herráez, David; Brutsaert, Tom; Parra, Esteban J.; Moore, Lorna G.; Shriver, Mark D.
2010-01-01
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude. PMID:20838600
... also make blood pressure rise. Eating too much sodium Unhealthy eating patterns, particularly eating too much sodium, ... you an adult who is curious about how sodium affects your blood pressure? This study is testing ...
Understanding macroscale invasion patterns and processes with FIA data
Songlin Fei; Basil V. Iannone III; Christopher M. Oswalt; Qinfeng Guo; Kevin M. Potter; Sonja N. Oswalt; Bryan C. Pijanowski; Gabriela C. Nunez-Mir
2015-01-01
Using empirical data from FIA, we modeled invasion richness and invasion prevalence as functions of 22 factors reflective of propagule pressure and/or habitat invasibility across the continental US. Our statistical models suggest that both propagule pressure and habitat invasibility contribute to macroscale patterns of forest plant invasions. Our investigation provides...
Numerical Investigation of Pre-detonator Geometries for PDE Applications
2010-03-01
pattern will be traced that resembles the scales of a fish. The fishscale pattern is a trace of the high pressure transverse waves. Figure 10 shows a...numerically generated smokefoil record that is created by taking a peak pressure histogram of the transient data set. Each of the fishscale -like diamonds
Nomura, Koh; Yonezawa, Takahiro; Mano, Shuhei; Kawakami, Shigehisa; Shedlock, Andrew M.; Hasegawa, Masami; Amano, Takashi
2013-01-01
Goats (Capra hircus) are one of the oldest domesticated species, and they are kept all over the world as an essential resource for meat, milk, and fiber. Although recent archeological and molecular biological studies suggested that they originated in West Asia, their domestication processes such as the timing of population expansion and the dynamics of their selection pressures are little known. With the aim of addressing these issues, the nearly complete mitochondrial protein-encoding genes were determined from East, Southeast, and South Asian populations. Our coalescent time estimations suggest that the timing of their major population expansions was in the Late Pleistocene and significantly predates the beginning of their domestication in the Neolithic era (≈10,000 years ago). The ω (ratio of non-synonymous rate/synonymous substitution rate) for each lineage was also estimated. We found that the ω of the globally distributed haplogroup A which is inherited by more than 90% of goats examined, turned out to be extremely low, suggesting that they are under severe selection pressure probably due to their large population size. Conversely, the ω of the Asian-specific haplogroup B inherited by about 5% of goats was relatively high. Although recent molecular studies suggest that domestication of animals may tend to relax selective constraints, the opposite pattern observed in our goat mitochondrial genome data indicates the process of domestication is more complex than may be presently appreciated and cannot be explained only by a simple relaxation model. PMID:23936295
Menopause and High Blood Pressure: What's the Connection?
... pattern of blood pressure in postmenopausal women with hypertension in Nigeria. Ethiopian Journal of Health Sciences. 2014;24:153. April 28, 2016 Original article: http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/menopause-and-high-blood-pressure/FAQ- ...
Feature selection for elderly faller classification based on wearable sensors.
Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D
2017-05-30
Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.
Discovery of a Distinct Superfamily of Kunitz-Type Toxin (KTT) from Tarantulas
Diao, Jian-Bo; Jiang, Li-Ping; Tang, Xing; Liang, Song-Ping
2008-01-01
Background Kuntiz-type toxins (KTTs) have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking) were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle. Principal Findings Here we report the presence of a new superfamily of KTTs in spiders (Tarantulas: Ornithoctonus huwena and Ornithoctonus hainana), which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI) as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (ω) for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins) derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications. Conclusions/Significance These finding illustrate that the two activity sites of Kunitz-type toxins are functionally and evolutionally independent and provide new insights into effects of Darwinian selection pressures on KTT evolution, and mechanisms by which new functions can be grafted onto old protein scaffolds. PMID:18923708
Some influences of touch and pressure cues on human spatial orientation
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1978-01-01
In order to evaluate the influences of touch and pressure cues on human spatial orientation, blindfolded subjects were exposed to 30 rmp rotation about the Z-axis of their bodies while the axis was horizontal or near horizontal. It was found that the manipulation of pressure patterns to which the subjects are exposed significantly influences apparent orientation. When provided with visual information about actual orientation the subjects will eliminate the postural illusions created by pressure-cue patterns. The localization of sounds is dependent of the apparent orientation and the actual pattern of auditory stimulation. The study provides a basis for investigating: (1) the postural illusions experienced by astronauts in orbital flight and subjects in the free-fall phase of parabolic flight, and (2) the spatial-constancy mechanisms distinguishing changes in sensory afflux conditioned by a subject's movements in relation to the environment, and those conditioned by movements of the environment.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.
Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster.
Burke, Molly K; Barter, Thomas T; Cabral, Larry G; Kezos, James N; Phillips, Mark A; Rutledge, Grant A; Phung, Kevin H; Chen, Richard H; Nguyen, Huy D; Mueller, Laurence D; Rose, Michael R
2016-09-01
Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life-history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G
2013-01-25
The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Inference of Evolutionary Forces Acting on Human Biological Pathways
Daub, Josephine T.; Dupanloup, Isabelle; Robinson-Rechavi, Marc; Excoffier, Laurent
2015-01-01
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald–Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures. PMID:25971280
Decision-making dynamics in parasitoids of Drosophila.
Thiel, Andra; Hoffmeister, Thomas S
2009-01-01
Drosophilids and their associated parasitoids live in environments that vary in resource availability and quality within and between generations. The use of information to adapt behavior to the current environment is a key feature under such circumstances and Drosophila parasitic wasps are excellent model systems to study learning and information use. They are among the few parasitoid model species that have been tested in a wide array of situations. Moreover, several related species have been tested under similar conditions, allowing the analysis of within and between species variability, the effect of natural selection in a typical environment, the current physiological status, and previous experience of the individual. This holds for host habitat and host location as well as for host choice and search time allocation. Here, we review patterns of learning and memory, of information use and updating mechanisms, and we point out that information use itself is under strong selective pressure and thus, optimized by parasitic wasps.
How constraints affect the hunter's decision to shoot a deer.
Diekert, Florian K; Richter, Andries; Rivrud, Inger Maren; Mysterud, Atle
2016-12-13
Hunting is the predominant way of controlling many wildlife populations devoid of large carnivores. It subjects animals to mortality rates that far exceed natural rates and that differ markedly in which age, sex, or size classes are removed relative to those of natural predators. To explain the emerging selection pattern we develop behavioral microfoundations for a hunting model, emphasizing in particular the constraints given by the formal and informal norms, rules, and regulations that govern the hunter's choice. We show how a shorter remaining season, competition among hunters, lower sighting probabilities, and higher costs all lead to lower reservation values, i.e., an increased likelihood of shooting a particular animal. Using a unique dataset on seen and shot deer from Norway, we test and confirm the theoretical predictions in a recreational and meat-motivated hunting system. To achieve sustainability, future wildlife management should account for this predictable selection pressure.
How constraints affect the hunter’s decision to shoot a deer
Diekert, Florian K.; Richter, Andries; Rivrud, Inger Maren; Mysterud, Atle
2016-01-01
Hunting is the predominant way of controlling many wildlife populations devoid of large carnivores. It subjects animals to mortality rates that far exceed natural rates and that differ markedly in which age, sex, or size classes are removed relative to those of natural predators. To explain the emerging selection pattern we develop behavioral microfoundations for a hunting model, emphasizing in particular the constraints given by the formal and informal norms, rules, and regulations that govern the hunter’s choice. We show how a shorter remaining season, competition among hunters, lower sighting probabilities, and higher costs all lead to lower reservation values, i.e., an increased likelihood of shooting a particular animal. Using a unique dataset on seen and shot deer from Norway, we test and confirm the theoretical predictions in a recreational and meat-motivated hunting system. To achieve sustainability, future wildlife management should account for this predictable selection pressure. PMID:27911775
Rodríguez, L L; Fitch, W M; Nichol, S T
1996-11-12
Vesicular stomatitis New Jersey virus (VSV-NJ) is a rhabdovirus that causes economically important disease in cattle and other domestic animals in endemic areas from southeastern United States to northern South America. Its negatively stranded RNA genome is capable of undergoing rapid evolution, which allows phylogenetic analysis and molecular epidemiology studies to be performed. Previous epidemiological studies in Costa Rica showed the existence of at least two distinct ecological zones of high VSV-NJ activity, one located in the highlands (premontane tropical moist forest) and the other in the lowlands (tropical dry forest). We wanted to test the hypothesis that the viruses circulating in these ecological zones were genetically distinct. For this purpose, we sequenced the hypervariable region of the phosphoprotein gene for 50 VSV-NJ isolates from these areas. Phylogenetic analysis showed that viruses from each ecological zone had distinct genotypes. These genotypes were maintained in each area for periods of up to 8 years. This evolutionary pattern of VSV-NJ suggests an adaptation to ecological factors that could exert selective pressure on the virus. As previous data indicated an absence of virus adaptation to factors related to the bovine host (including immunological pressure), it appears that VSV genetic divergence represents positive selection to adapt to specific vectors and/or reservoirs at each ecological zone.
Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1988
Wood, James L.; Hill, Kevin J.; Andraski, Brian J.
1992-01-01
Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty/ Nevada, for calendar year 1988. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1988, the average hourly air temperatures ranged from -10.2 degrees Celsius, in December, to 45.3 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.09 to 2.22 kilopascals. Daily values for maximum incident solar radiation ranged from 63 to 1,064 watts per square meter. Daily mean windspeed ranged from 1.2 to 7.8 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1988 was 104.5 millimeters, with over 70 percent occurring from January through May.
Long-term evolution of the Luteoviridae: time scale and mode of virus speciation.
Pagán, Israel; Holmes, Edward C
2010-06-01
Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.
Martínez-García, Miguel-Angel; Capote, Francisco; Campos-Rodríguez, Francisco; Lloberes, Patricia; Díaz de Atauri, María Josefa; Somoza, María; Masa, Juan F; González, Mónica; Sacristán, Lirios; Barbé, Ferrán; Durán-Cantolla, Joaquín; Aizpuru, Felipe; Mañas, Eva; Barreiro, Bienvenido; Mosteiro, Mar; Cebrián, Juan J; de la Peña, Mónica; García-Río, Francisco; Maimó, Andrés; Zapater, Jordi; Hernández, Concepción; Grau SanMarti, Nuria; Montserrat, Josep María
2013-12-11
More than 70% of patients with resistant hypertension have obstructive sleep apnea (OSA). However, there is little evidence about the effect of continuous positive airway pressure (CPAP) treatment on blood pressure in patients with resistant hypertension. To assess the effect of CPAP treatment on blood pressure values and nocturnal blood pressure patterns in patients with resistant hypertension and OSA. Open-label, randomized, multicenter clinical trial of parallel groups with blinded end point design conducted in 24 teaching hospitals in Spain involving 194 patients with resistant hypertension and an apnea-hypopnea index (AHI) of 15 or higher. Data were collected from June 2009 to October 2011. CPAP or no therapy while maintaining usual blood pressure control medication. The primary end point was the change in 24-hour mean blood pressure after 12 weeks. Secondary end points included changes in other blood pressure values and changes in nocturnal blood pressure patterns. Both intention-to-treat (ITT) and per-protocol analyses were performed. A total of 194 patients were randomly assigned to receive CPAP (n = 98) or no CPAP (control; n = 96). The mean AHI was 40.4 (SD, 18.9) and an average of 3.8 antihypertensive drugs were taken per patient. Baseline 24-hour mean blood pressure was 103.4 mm Hg; systolic blood pressure (SBP), 144.2 mm Hg; and diastolic blood pressure (DBP), 83 mm Hg. At baseline, 25.8% of patients displayed a dipper pattern (a decrease of at least 10% in the average nighttime blood pressure compared with the average daytime blood pressure). The percentage of patients using CPAP for 4 or more hours per day was 72.4%. When the changes in blood pressure over the study period were compared between groups by ITT, the CPAP group achieved a greater decrease in 24-hour mean blood pressure (3.1 mm Hg [95% CI, 0.6 to 5.6]; P = .02) and 24-hour DBP (3.2 mm Hg [95% CI, 1.0 to 5.4]; P = .005), but not in 24-hour SBP (3.1 mm Hg [95% CI, -0.6 to 6.7]; P = .10) compared with the control group. Moreover, the percentage of patients displaying a nocturnal blood pressure dipper pattern at the 12-week follow-up was greater in the CPAP group than in the control group (35.9% vs 21.6%; adjusted odds ratio [OR], 2.4 [95% CI, 1.2 to 5.1]; P = .02). There was a significant positive correlation between hours of CPAP use and the decrease in 24-hour mean blood pressure (r = 0.29, P = .006), SBP (r = 0.25; P = .02), and DBP (r = 0.30, P = .005). Among patients with OSA and resistant hypertension, CPAP treatment for 12 weeks compared with control resulted in a decrease in 24-hour mean and diastolic blood pressure and an improvement in the nocturnal blood pressure pattern. Further research is warranted to assess longer-term health outcomes. clinicaltrials.gov Identifier: NCT00616265.
Pressure-flow characteristics of normal and disordered esophageal motor patterns.
Singendonk, Maartje M J; Kritas, Stamatiki; Cock, Charles; Ferris, Lara F; McCall, Lisa; Rommel, Nathalie; van Wijk, Michiel P; Benninga, Marc A; Moore, David; Omari, Taher I
2015-03-01
To perform pressure-flow analysis (PFA) in a cohort of pediatric patients who were referred for diagnostic manometric investigation. PFA was performed using purpose designed Matlab-based software. The pressure-flow index (PFI), a composite measure of bolus pressurization relative to flow and the impedance ratio, a measure of the extent of bolus clearance failure were calculated. Tracings of 76 pediatric patients (32 males; 9.1 ± 0.7 years) and 25 healthy adult controls (7 males; 36.1 ± 2.2 years) were analyzed. Patients mostly had normal motility (50%) or a category 4 disorder and usually weak peristalsis (31.5%) according to the Chicago Classification. PFA of healthy controls defined reference ranges for PFI ≤142 and impedance ratio ≤0.49. Pediatric patients with pressure-flow (PF) characteristics within these limits had normal motility (62%), most patients with PF characteristics outside these limits also had an abnormal Chicago Classification (61%). Patients with high PFI and disordered motor patterns all had esophagogastric junction outflow obstruction. Disordered PF characteristics are associated with disordered esophageal motor patterns. By defining the degree of over-pressurization and/or extent of clearance failure, PFA may be a useful adjunct to esophageal pressure topography-based classification. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jurczak, P.; Falicki, J.
2016-08-01
In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen's stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are given in detail.
DINNING, P. G.; WIKLENDT, L.; MASLEN, L.; GIBBINS, I.; PATTON, V.; ARKWRIGHT, J. W.; LUBOWSKI, D. Z.; O'GRADY, G.; BAMPTON, P. A.; BROOKES, S. J.; COSTA, M.
2015-01-01
Background Until recently, investigations of the normal patterns of motility of the healthy human colon have been limited by the resolution of in vivo recording techniques. Methods We have used a new, high-resolution fiber-optic manometry system (72 sensors at 1-cm intervals) to record motor activity from colon in 10 healthy human subjects. Key Results In the fasted colon, on the basis of rate and extent of propagation, four types of propagating motor pattern could be identified: (i) cyclic motor patterns (at 2–6/min); (ii) short single motor patterns; (iii) long single motor patterns; and (iv) occasional retrograde, slow motor patterns. For the most part, the cyclic and short single motor patterns propagated in a retrograde direction. Following a 700 kCal meal, a fifth motor pattern appeared; high-amplitude propagating sequences (HAPS) and there was large increase in retrograde cyclic motor patterns (5.6±5.4/2 h vs 34.7±19.8/2 h; p < 0.001). The duration and amplitude of individual pressure events were significantly correlated. Discriminant and multivariate analysis of duration, gradient, and amplitude of the pressure events that made up propagating motor patterns distinguished clearly two types of pressure events: those belonging to HAPS and those belonging to all other propagating motor patterns. Conclusions & Inferences This work provides the first comprehensive description of colonic motor patterns recorded by high-resolution manometry and demonstrates an abundance of retrograde propagating motor patterns. The propagating motor patterns appear to be generated by two independent sources, potentially indicating their neurogenic or myogenic origin. PMID:25131177
Pressurized security barrier and alarm system
Carver, Don W.
1995-01-01
A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder's making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed.
Pressurized security barrier and alarm system
Carver, D.W.
1995-04-11
A security barrier for placement across a passageway is made up of interconnected pressurized tubing made up in a grid pattern with openings too small to allow passage. The tubing is connected to a pressure switch, located away from the barrier site, which activates an alarm upon occurrence of a pressure drop. A reinforcing bar is located inside and along the length of the tubing so as to cause the tubing to rupture and set off the alarm upon an intruder`s making an attempt to crimp and seal off a portion of the tubing by application of a hydraulic tool. Radial and rectangular grid patterns are disclosed. 7 figures.
Motrescu, Iuliana; Nagatsu, Masaaki
2016-05-18
With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.
NASA Astrophysics Data System (ADS)
Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong
2017-06-01
This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.
Compressed storage of arterial pressure waveforms by selection of significant points.
de Graaf, P M; van Goudoever, J; Wesseling, K H
1997-09-01
Continuous records of arterial blood pressure can be obtained non-invasively with Finapres, even for periods of 24 hours. Increasingly, storage of such records is done digitally, requiring large disc capacities. It is therefore necessary to find methods to store blood pressure waveforms in compressed form. The method of selection of significant points known from ECG data compression is adapted. Points are selected as significant wherever the first derivative of the pressure wave changes sign. As a second stage recursive partitioning is used to select additional points such that the difference between the selected points, linearly interpolated, and the original curve remains below a maximum. This method is tested on finger arterial pressure waveform epochs of 60 s duration taken from 32 patients with a wide range of blood pressures and heart rates. An average compression factor of 4.6 (SD 1.0) is obtained when accepting a maximum difference of 3 mmHg. The root mean squared error is 1 mmHg averaged over the group of patient waveforms. Clinically relevant parameters such as systolic, diastolic and mean pressure are reproduced with an offset error of less than 0.5 (0.3) mmHg and scatter less than 0.6 (0.1) mmHg. It is concluded that a substantial compression factor can be achieved with a simple and computationally fast algorithm and little deterioration in waveform quality and pressure level accuracy.
A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan.
De Paula, Washington X; Denadai, Ângelo M L; Braga, Aline N G; Shastri, V Prasad; Pinheiro, Sérgio V B; Frezard, Frederic; Santos, Robson A S; Sinisterra, Ruben D
2018-05-10
Losartan (Los), a non-peptidic orally active agent, reduces arterial pressure through specific and selective blockade of angiotensin II receptor AT1. However, this widely used AT1 antagonist presents low bioavailability and needs once or twice a day dosage. In order to improve its bioavailability, we used the host: guest strategy based on β-cyclodextrin (βCD). The results suggest that Los included in βCD showed a typical pulsatile release pattern after oral administration to rats, with increasing the levels of plasma of Los. In addition, the inclusion compound presented oral efficacy for 72 h, in contrast to Los alone, which shows antagonist effect for only 6 h. In transgenic (mREN2)L27 rats, the Los/βCD complex reduced blood pressure for about 6 d, whereas Los alone reduced blood pressure for only 2 d. More importantly, using this host: guest strategy, sustained release of Los for over a week via the oral route can be achieved without the need for encapsulation in a polymeric carrier. The proposed preformulation increased the efficacy reducing the dose or spacing between each dose intake.
A hypothesis to explain accuracy of wasp resemblances.
Boppré, Michael; Vane-Wright, Richard I; Wickler, Wolfgang
2017-01-01
Mimicry is one of the oldest concepts in biology, but it still presents many puzzles and continues to be widely debated. Simulation of wasps with a yellow-black abdominal pattern by other insects (commonly called "wasp mimicry") is traditionally considered a case of resemblance of unprofitable by profitable prey causing educated predators to avoid models and mimics to the advantage of both (Figure 1a). However, as wasps themselves are predators of insects, wasp mimicry can also be seen as a case of resemblance to one's own potential antagonist. We here propose an additional hypothesis to Batesian and Müllerian mimicry (both typically involving selection by learning vertebrate predators; cf. Table 1) that reflects another possible scenario for the evolution of multifold and in particular very accurate resemblances to wasps: an innate, visual inhibition of aggression among look-alike wasps, based on their social organization and high abundance. We argue that wasp species resembling each other need not only be Müllerian mutualists and that other insects resembling wasps need not only be Batesian mimics, but an innate ability of wasps to recognize each other during hunting is the driver in the evolution of a distinct kind of masquerade, in which model, mimic, and selecting agent belong to one or several species (Figure 1b). Wasp mimics resemble wasps not (only) to be mistaken by educated predators but rather, or in addition, to escape attack from their wasp models. Within a given ecosystem, there will be selection pressures leading to masquerade driven by wasps and/or to mimicry driven by other predators that have to learn to avoid them. Different pressures by guilds of these two types of selective agents could explain the widely differing fidelity with respect to the models in assemblages of yellow jackets and yellow jacket look-alikes.
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels
Phadnis, Nitin
2017-01-01
Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. PMID:28810709
Characterization of the porcine epidemic diarrhea virus codon usage bias.
Chen, Ye; Shi, Yuzhen; Deng, Hongjuan; Gu, Ting; Xu, Jian; Ou, Jinxin; Jiang, Zhiguo; Jiao, Yiren; Zou, Tan; Wang, Chong
2014-12-01
Porcine epidemic diarrhea virus (PEDV) has been responsible for several recent outbreaks of porcine epidemic diarrhea (PED) and has caused great economic loss in the swine-raising industry. Considering the significance of PEDV, a systemic analysis was performed to study its codon usage patterns. The relative synonymous codon usage value of each codon revealed that codon usage bias exists and that PEDV tends to use codons that end in T. The mean ENC value of 47.91 indicates that the codon usage bias is low. However, we still wanted to identify the cause of this codon usage bias. A correlation analysis between the codon compositions (A3s, T3s, G3s, C3s, and GC3s), the ENC values, and the nucleotide contents (A%, T%, G%, C%, and GC%) indicated that mutational bias plays role in shaping the PEDV codon usage bias. This was further confirmed by a principal component analysis between the codon compositions and the axis values. Using the Gravy, Aroma, and CAI values, a role of natural selection in the PEDV codon usage pattern was also identified. Neutral analysis indicated that natural selection pressure plays a more important role than mutational bias in codon usage bias. Natural selection also plays an increasingly significant role during PEDV evolution. Additionally, gene function and geographic distribution also influence the codon usage bias to a degree. Copyright © 2014 Elsevier B.V. All rights reserved.
Goz, Eli; Zafrir, Zohar; Tuller, Tamir
2018-04-30
Understanding how viruses co-evolve with their hosts and adapt various genomic level strategies in order to ensure their fitness may have essential implications in unveiling the secrets of viral evolution, and in developing new vaccines and therapeutic approaches. Here, based on a novel genomic analysis of 2,625 different viruses and 439 corresponding host organisms, we provide evidence of universal evolutionary selection for high dimensional 'silent' patterns of information hidden in the redundancy of viral genetic code. Our model suggests that long substrings of nucleotides in the coding regions of viruses from all classes, often also repeat in the corresponding viral hosts from all domains of life. Selection for these substrings cannot be explained only by such phenomena as codon usage bias, horizontal gene transfer, and the encoded proteins. Genes encoding structural proteins responsible for building the core of the viral particles were found to include more host-repeating substrings, and these substrings tend to appear in the middle parts of the viral coding regions. In addition, in human viruses these substrings tend to be enriched with motives related to transcription factors and RNA binding proteins. The host-repeating substrings are possibly related to the evolutionary pressure on the viruses to effectively interact with host's intracellular factors and to efficiently escape from the host's immune system. tamirtul@post.tau.ac.il (TT). Supplementary data are available at Bioinformatics online.
Shang, Xianwen; Li, Yanping; Liu, Ailing; Zhang, Qian; Hu, Xiaoqi; Du, Songming; Ma, Guansheng
2012-01-01
Background The association of dietary pattern with chronic diseases has been investigated widely in western countries. However, information is quite limited among children in China. Our study is aimed to identify the dietary patterns of Chinese children and examine their association with obesity and related cardiometabolic risk factors. Methods A total of 5267 children were selected using multistage random sampling from 30 primary schools of 5 provincial capital cities in China. Dietary intake was derived from 24 hour dietary recall for three consecutive days. Anthropometric measurements, glucose and lipid profiles were obtained. Factor analysis combined with cluster analysis was used for identifying major dietary patterns. The associations of dietary patterns with obesity and related cardiometabolic risk factors were examined by logistic regression analysis. Results Three mutually exclusive dietary patterns were identified, which were labeled as the healthy dietary pattern, the transitive dietary pattern, and the Western dietary pattern. Compared with children of the healthy dietary pattern, the multiple-adjusted odds ratios (95% confidence interval (CI)) of obesity were 1.11 (0.89–1.38) for children with the transitive dietary pattern and 1.80 (1.15–2.81) for children with the Western dietary pattern, which was 1.31 (95%CI 1.09–1.56) and 1.71 (95%CI: 1.13–2.56), respectively, for abdominal obesity. The Western dietary pattern was associated with significantly higher concentrations of low-density lipoprotein cholesterol (P<.001), triglycerides (P<.001), systolic blood pressure (P = 0.0435) and fasting glucose (P = 0.0082) and a lower concentration of high-density lipoprotein cholesterol (P = 0.0023), as compared with the healthy dietary pattern. Conclusions The Western dietary pattern characterized by red meat, eggs, refined grain and products, was positively associated with odds of obesity, the levels of plasma glucose, low-density lipoprotein cholesterol and triglycerides, and was inversely associated with the level of high-density lipoprotein cholesterol. PMID:22905228
Controlling and assessing pressure conditions during treatment of tar sands formations
Zhang, Etuan; Beer, Gary Lee
2015-11-10
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.
Interactions of glyphosate use with farm characteristics and cropping patterns in Central Europe.
Wiese, Armin; Schulte, Michael; Theuvsen, Ludwig; Steinmann, Horst-Henning
2018-05-01
Although glyphosate is the most widely used herbicide in the European Union, little is known about the patterns of its usage in arable farming. Therefore, a nationwide survey of 2026 German farmers was analysed to obtain further knowledge about glyphosate applications in conventional European arable farming. Given its broad range of agri-environmental and farm-type conditions, Germany can be regarded as a suitable study region to represent Central European farming. The growing season 2013/2014 was set as a reference. Farmers who participated in the survey employ diverse patterns of glyphosate use. While 23% stated that they did not use glyphosate in the season in question, others applied glyphosate to their total arable area. However, most applications occurred on specific parts of the farm. Application patterns of oilseed rape, winter wheat, maize and sugar beet were studied in detail, and U-shaped distributions of glyphosate use intensity were observed. The effects of farm type and management practices on glyphosate use patterns were mixed in the various crops. Motivation for glyphosate use differs widely within the farming community. Agricultural researchers, extension services and policy makers are recommended to mitigate vulnerabilities associated with glyphosate use, such as routine spraying and practices that increase selection pressure for the evolution of glyphosate-resistant weeds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Li-Tsang, Cecilia W P; Feng, Beibei; Huang, Lin; Liu, Xusheng; Shu, Bin; Chan, Yvonne T Y; Cheung, Kwok-Kuen
2015-08-01
Although pressure therapy (PT) has been widely used as the first-line treatment for hypertrophic scars (HS), the histopathological changes involved have seldom been studied. This study aimed to examine the longitudinal effect of PT on the histopathological changes in HS. Ten scar samples were selected from six patients with HS after burn and they were given a standardized PT intervention for 3 months while 16 scar samples were obtained on those without PT. The scar biopsies were collected pre-treatment, 1 and 3 months post-intervention for both clinical and histopathological examinations. Clinical assessments demonstrated significant improvement in the thickness and redness of the scars after PT. Histological examination revealed that cell density in the dermal layer was markedly reduced in the 3-months post-pressurized scar tissues, while the arrangement of the collagen fiber was changed from nodular to wave-like pattern. The α-smooth muscle actin immunoreactivity was significantly decreased after 1-month pressure treatment. There was a significant reduction of myofibroblasts population and a concomitant increase in the apoptotic index in the dermal layer in the 3-months' post-pressurized scars. A significant negative correlation was found between the myofibroblasts population and the apoptotic index. The keratinocyte proliferation was found inhibited after PT. Results demonstrated that PT appeared to promote HS maturation by inhibiting the keratinocyte proliferation and suppressing myofibroblasts population, the latter possibly via apoptosis. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Moncion, Alexander; Arlotta, Keith J.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Carson, Paul L.; Putnam, Andrew J.; Franceschi, Renny T.; Fabiilli, Mario L.
2015-01-01
Hydrogel scaffolds are used in tissue engineering as a delivery vehicle for regenerative growth factors (GFs). Spatiotemporal patterns of GF signaling are critical for tissue regeneration, yet most scaffolds afford limited control of GF release, especially after implantation. We previously demonstrated that acoustic droplet vaporization (ADV) can control GF release from a fibrin scaffold doped with a perfluorocarbon emulsion. This study investigates properties of the acoustically responsive scaffold (ARS) critical for further translation. At 2.5 MHz, ADV and inertial cavitation thresholds ranged from 1.5 – 3.0 MPa and 2.0 – 7.0 MPa peak rarefactional pressure, respectively, for ARSs of varying compositions. Viability of C3H10T1/2 cells, encapsulated in the ARS, did not decrease significantly for pressures below 4 MPa. ARSs with perfluorohexane emulsions displayed higher stability versus perfluoropentane emulsions, while surrogate payload release was minimal without ultrasound. These results enable the selection of ARS compositions and acoustic parameters needed for optimized spatiotemporal control. PMID:26526782
Raasch, Walter; Schäfer, Ulrich; Qadri, Fatimunnisa; Dominiak, Peter
2002-01-01
Since agmatine has been identified as a clonidine displacing substance (CDS), the aim of this study was to investigate whether agmatine can mimic CDS-induced cardiovascular reactions in organ bath experiments, pithed spontaneously hypertensive rats (SHR) and anaesthetized SHR.Intravenously-administered agmatine significantly reduced the blood pressure and heart rate of anaesthetized SHR at doses higher than 1 and 3 mg kg−1, respectively. These effects are probably mediated via central mechanisms, since there was an approximate 8 fold rightward shift of the dose-response curve in the pithed SHR (indicating a weakened cardiovascular effect). Moreover, in organ bath experiments, agmatine failed to alter the contractility of intact or endothelium-denuded aortal rings. When agmatine was administered i.c.v. to anaesthetized SHR, blood pressure was increased without any alteration of heart rate, whereas blood pressure was unchanged and heart rate was increased after injection into the 4th brain ventricle. This suggests that haemodynamic reaction patterns after central application are related to distinct influences on central cardiovascular mechanisms.Agmatine reduces noradrenaline release in pithed SHR while α2-adrenoceptors are irreversibly blocked with phenoxybenzamine, but not while I1-binding sites are selectively blocked with AGN192403. This suggests that agmatine may modulate noradrenaline release in the same way that clonidine does, i.e. via imidazoline binding sites; this involves a reduction in sympathetic tone which in turn reduces blood pressure and heart rate.Finally, CDS-like cardiovascular activity appears not to be due to agmatine, since (i) blood pressure in anaesthetized SHR is decreased by agmatine and clonidine, and (ii) agmatine did not antagonize the blood pressure reaction to clonidine in pithed or anaesthetized SHR. PMID:11834614
Odom, Karan J; Omland, Kevin E; Price, J Jordan
2015-03-01
Female bird song and combined vocal duets of mated pairs are both frequently associated with tropical, monogamous, sedentary natural histories. Little is known, however, about what selects for duetting behavior versus female song. Female song likely preceded duet evolution and could drive apparent relationships between duets and these natural histories. We compared the evolution of female song and male-female duets in the New World blackbirds (Icteridae) by investigating patterns of gains and losses of both traits and their relationships with breeding latitude, mating system, nesting pattern, and migratory behavior. We found that duets evolved only in lineages in which female song was likely ancestral. Both female song and duets were correlated with tropical breeding, social monogamy, territorial nesting, and sedentary behavior when all taxa were included; however, correlations between duets and these natural history traits disappeared when comparisons were limited to taxa with female song. Also, likelihood values supported stronger relationships between the natural history traits and female song than between these traits and duets. Our results suggest that the natural histories thought to favor the evolution of duetting may in fact be associated with female song and that additional selection pressures are responsible for the evolution of duets. © 2015 The Author(s).
Variation in the structure of bird nests between northern Manitoba and southeastern Ontario.
Crossman, Carla A; Rohwer, Vanya G; Martin, Paul R
2011-04-28
Traits that converge in appearance under similar environmental conditions among phylogenetically independent lineages are thought to represent adaptations to local environments. We tested for convergence in nest morphology and composition of birds breeding in two ecologically different locations in Canada: Churchill in northern Manitoba and Elgin in southeastern Ontario. We examined nests from four families of passerine birds (Turdidae: Turdus, Parulidae: Dendroica, Emberizidae: Passerculus and Fringillidae: Carduelis) where closely related populations or species breed in both locations. Nests of American Robins, Yellow Warblers, and Carduelis finches had heavier nest masses, and tended to have thicker nest-walls, in northern Manitoba compared with conspecifics or congenerics breeding in southeastern Ontario. Together, all species showed evidence for wider internal and external nest-cup diameters in northern Manitoba, while individual species showed varying patterns for internal nest-cup and external nest depths. American Robins, Yellow Warblers, and Carduelis finches in northern Manitoba achieved heavier nest masses in different ways. American Robins increased all materials in similar proportions, and Yellow Warblers and Common Redpolls used greater amounts of select materials. While changes in nest composition vary uniquely for each species, the pattern of larger nests in northern Manitoba compared to southeastern Ontario in three of our four phylogenetically-independent comparisons suggests that birds are adapting to similar selective pressures between locations.
Rothbart, Matti Michael; Hennig, Ralf Matthias
2012-01-01
In Europe, several species of crickets are available commercially as pet food. Here we investigated the calling song and phonotactic selectivity for sound patterns on the short and long time scales for one such a cricket, Gryllus spec., available as “Gryllus assimilis”, the Steppengrille, originally from Ecuador. The calling song consisted of short chirps (2–3 pulses, carrier frequency: 5.0 kHz) emitted with a pulse period of 30.2 ms and chirp rate of 0.43 per second. Females exhibited high selectivity on both time scales. The preference for pulse period peaked at 33 ms which was higher then the pulse period produced by males. Two consecutive pulses per chirp at the correct pulse period were already sufficient for positive phonotaxis. The preference for the chirp pattern was limited by selectivity for small chirp duty cycles and for chirp periods between 200 ms and 500 ms. The long chirp period of the songs of males was unattractive to females. On both time scales a mismatch between the song signal of the males and the preference of females was observed. The variability of song parameters as quantified by the coefficient of variation was below 50% for all temporal measures. Hence, there was not a strong indication for directional selection on song parameters by females which could account for the observed mismatch. The divergence of the chirp period and female preference may originate from a founder effect, when the Steppengrille was cultured. Alternatively the mismatch was a result of selection pressures exerted by commercial breeders on low singing activity, to satisfy customers with softly singing crickets. In the latter case the prominent divergence between male song and female preference was the result of domestication and may serve as an example of rapid evolution of song traits in acoustic communication systems. PMID:22970154
Buhler, Stéphane; Sanchez-Mazas, Alicia
2011-01-01
Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies. Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution. PMID:21408106
Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster
Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.
2013-01-01
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788
Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, Kyle T.
2016-09-08
Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm 2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperaturemore » (T g ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below T g. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).« less
NASA Astrophysics Data System (ADS)
Kamali, Hamidreza; Javan Ahram, Masoud; Mohammadi, S. Ali
2017-09-01
Using channels and tubes with a variety of shapes for fluids transportation is an epidemic approach which has been grown rampantly through recent years. In some cases obstacles which placed in the fluid flow act as a barrier and cause increase in pressure loss and accordingly enhance the need to more power in the entry as well as change flow patterns and produce vortexes that are not optimal. In this paper a method to suppress produced vortexes in two dimension channel that a fixed square cylinder placed in the middle of it in ReD 200 in order to find a way to suppress vortexes are investigated. At first different length of splitter plates attached to square obstruction are studied to obtain the effects of length on flow pattern. Subsequently simulations have been conducted in three dimension to validate previous results as well as acquire better understanding about the selected approach. Simulations have done by Lagrangian Eulerian method, plates first assummed fix with length 1.5mm, 4mm and 7.5mm, and then flexible plates with the same length are studied. Young’s modulus for flexible plate and blockage ratio were constant values of 2×106 and 0.25 in all simulations, respectively. Results indicate more vortexes would be suppressed when the length of splitter plate enhances.
Klein, Wilfried; Abe, Augusto S; Perry, Steven F
2003-04-15
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (V(Lr)) and maximal lung volume (V(Lm)) when compared with tegus with intact PHS. Standardised for body mass (M(B)), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm.
NASA Astrophysics Data System (ADS)
Přikryl, Richard; Lokajíček, Tomáš; Pros, Zdeněk; Klíma, Karel
2007-02-01
The geomechanical models were established based on the absence or presence of certain rock fabric elements — texture (crystallographic preferred orientation), microstructure (shape preferred orientation) and microcracks (flat voids). The proposed models include both (i) the ideal material showing random texture and structure but no microcracks, i.e. the material which is hardly to be found in nature, and (ii) the materials possessing various combinations of fabric elements that show different spatial arrangements. The mutual relationship between those parameters and seismic and geomechanical properties are discussed. Selected models were experimentally verified during laboratory experiments. These consist of measurement of P-wave velocities in 132 independent directions under several confining pressures in the range 0.1-400 MPa. From measured data 3D P-wave patterns can be constructed and the influence of microcracks and of texture and structure on the rock seismic anisotropy can be determined. The seismic anisotropy established at different levels of confining pressure can be used for the interpretation of rock fabric symmetry of rocks showing low anisotropy in macroscale and for the selection of directions in which the geomechanical test can be performed. The measured P-wave velocities were then mathematically processed by using a fitting function V=V+k·P-v·10 which reflects contribution of P-wave velocity in the mineral skeleton of an ideal sample without microcracks extrapolated to the atmospheric pressure level from high confining pressure interval (ca. 200-400 MPa) ( v0), linear compressibility of the samples ( kv), and confining pressure during which most of the cracks are closed ( P0). These parameters improve the understanding of the response of various rock fabric elements on increasing confinement and corresponding changes in elasticity. The observed seismic and geomechanical anisotropies reflect intensity of the fabric of rock-forming minerals and microcracks. The magnitude of seismic anisotropy measured at atmospheric pressure corresponds to the anisotropy of static elastic modulus and is governed by the spatial arrangement of microcracks. The magnitude of strength anisotropy (uniaxial compressive strength) correlates more likely to the seismic anisotropy determined at high confining pressure and is connected to the preferred orientations (either CPO or SPO or both) of rock-forming minerals.
Race and diurnal blood pressure patterns. A review and meta-analysis.
Profant, J; Dimsdale, J E
1999-05-01
Investigators have reported variable findings regarding the role of race in diurnal blood pressure patterns. We performed a review and meta-analysis of this literature to identify the overall effect of race on circadian blood pressure patterns. Eighteen studies involving 2852 participants were reviewed. Meta-analyses were conducted using effect sizes calculated from the data provided directly in the study reports. Separate meta-analyses were conducted on effect sizes for differences between blacks and whites in daytime and nighttime systolic and diastolic blood pressure and nocturnal dip in systolic and diastolic blood pressure. To evaluate discrepancies in findings from studies involving American versus non-American blacks, overall meta-analyses as well as within-subset meta-analyses of black/white differences were conducted for comparisons involving American and non-American blacks. Results of overall meta-analyses indicate that blacks experience higher levels of systolic and diastolic blood pressure, both at night and during the day. These differences were significantly greater at night than during the day (P<0.05). Results of within-subset analyses involving American blacks mirrored those for all black/white comparisons, except that the effect of race on nocturnal dip, ie, that American blacks experienced less of a dip in both systolic and diastolic blood pressure at night, was significant (P<0.05). In contrast, the effect of race on nocturnal dip was not significant for comparisons involving non-American blacks. These results suggest a consistent difference in the chronobiology of blood pressure, particularly in American blacks.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
High hunting pressure selects for earlier birth date: Wild boar as a case study
Gamelon, M.; Besnard, A.; Gaillard, J.-M.; Servanty, S.; Baubet, E.; Brandt, S.; Gimenez, O.
2011-01-01
Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. ?? 2011 The Author(s). Evolution?? 2011 The Society for the Study of Evolution..
Khrustaleva, A M; Gritsenko, O F; Klovach, N V
2013-11-01
The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.
Evolution of the Male-Determining Gene SRY Within the Cat Family Felidae
King, V.; Goodfellow, P. N.; Wilkerson, A. J. Pearks; Johnson, W. E.; O'Brien, S. J.; Pecon-Slattery, J.
2007-01-01
In most placental mammals, SRY is a single-copy gene located on the Y chromosome and is the trigger for male sex determination during embryonic development. Here, we present comparative genomic analyses of SRY (705 bp) along with the adjacent noncoding 5′ flank (997 bp) and 3′ flank (948 bp) in 36 species of the cat family Felidae. Phylogenetic analyses indicate that the noncoding genomic flanks and SRY closely track species divergence. However, several inconsistencies are observed in SRY. Overall, the gene exhibits purifying selection to maintain function (ω = 0.815) yet SRY is under positive selection in two of the eight felid lineages. SRY has low numbers of nucleotide substitutions, yet most encode amino acid changes between species, and four different species have significantly altered SRY due to insertion/deletions. Moreover, fixation of nonsynonymous substitutions between sister taxa is not consistent and may occur rapidly, as in the case of domestic cat, or not at all over long periods of time, as observed within the Panthera lineage. The former resembles positive selection during speciation, and the latter purifying selection to maintain function. Thus, SRY evolution in cats likely reflects the different phylogeographic histories, selection pressures, and patterns of speciation in modern felids. PMID:17277366
Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili
2017-01-01
Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794
Zhang, Ziheng; Dione, Donald P.; Brown, Peter B.; Shapiro, Erik M.; Sinusas, Albert J.; Sampath, Smita
2011-01-01
A novel MR imaging technique, spatial modulation of magnetization with polarity alternating velocity encoding (SPAMM-PAV), is presented to simultaneously examine the left ventricular early diastolic temporal relationships between myocardial deformation and intra-cavity hemodynamics with a high temporal resolution of 14 ms. This approach is initially evaluated in a dynamic flow and tissue mimicking phantom. A comparison of regional longitudinal strains and intra-cavity pressure differences (integration of computed in-plane pressure gradients within a selected region) in relation to mitral valve inflow velocities is performed in eight normal volunteers. Our results demonstrate that apical regions have higher strain rates (0.145 ± 0.005 %/ms) during the acceleration period of rapid filling compared to mid-ventricular (0.114 ± 0.007 %/ms) and basal regions (0.088 ± 0.009 %/ms), and apical strain curves plateau at peak mitral inflow velocity. This pattern is reversed during the deceleration period, when the strain-rates in the basal regions are the highest (0.027 ± 0.003 %/ms) due to ongoing basal stretching. A positive base-to-apex gradient in peak pressure difference is observed during acceleration, followed by a negative base-to apex gradient during deceleration. These studies shed insight into the regional volumetric and pressure difference changes in the left ventricle during early diastolic filling. PMID:21630348
Variability and repeatability analysis of plantar pressure during gait in older people.
Franco, Pedro S; Silva, Caio Borella P da; Rocha, Emmanuel S da; Carpes, Felipe P
2015-01-01
Repeatability and variability of the plantar pressure during walking are important components in the clinical assessment of the elderly. However, there is a lack of information on the uniformity of plantar pressure patterns in the elderly. To analyze the repeatability and variability in plantar pressure considering mean, peak and asymmetries during aged gait. Plantar pressure was monitored in four different days for ten elderly subjects (5 female), with mean±standard-deviation age of 73±6 years, walking barefoot at preferred speed. Data were compared between steps for each day and between different days. Mean and peak plantar pressure values were similar between the different days of evaluation. Asymmetry indexes were similar between the different days evaluated. Plantar pressure presented a consistent pattern in the elderly. However, the asymmetry indexes observed suggest that the elderly are exposed to repetitive asymmetric loading during locomotion. Such result requires further investigation, especially concerning the role of these asymmetries for development of articular injuries. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Duk Jae; Park, Jeongwon; Geon Han, Jeon
2016-08-01
We show results of the patterning of graphene layers on poly(ethylene terephthalate) (PET) films through remote atmospheric-pressure dielectric barrier discharge plasma. The size of plasma discharge electrodes was adjusted for large-area and role-to-role-type substrates. Optical emission spectroscopy (OES) was used to analyze the characteristics of charge species in atmospheric-pressure plasma. The OES emission intensity of the O2* peaks (248.8 and 259.3 nm) shows the highest value at the ratio of \\text{N}2:\\text{clean dry air (CDA)} = 100:1 due to the highest plasma discharge. The PET surface roughness and hydrophilic behavior were controlled with CDA flow rate during the process. Although the atmospheric-pressure plasma treatment of the PET film led to an increase in the FT-IR intensity of C-O bonding at 1240 cm-1, the peak intensity at 1710 cm-1 (C=O bonding) decreased. The patterning of graphene layers was confirmed by scanning electron microscopy and Raman spectroscopy.
Yap, Tracey L; Kennerly, Susan M; Bergstrom, Nancy; Hudak, Sandra L; Horn, Susan D
2016-01-01
Pressure ulcers have consistently resisted prevention efforts in long-term care facilities nationwide. Recent research has described cueing innovations that-when selected according to the assumptions and resources of particular facilities-support best practices of pressure ulcer prevention. This article synthesizes that research into a unified, dynamic logic model to facilitate effective staff implementation of a pressure ulcer prevention program.
Pomati, Francesco; Kraft, Nathan J. B.; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W.
2013-01-01
In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which our measured traits were not under selection. PMID:23951218
Pomati, Francesco; Kraft, Nathan J B; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W
2013-01-01
In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which our measured traits were not under selection.
Karvonen, Anssi; Kristjánsson, Bjarni K; Skúlason, Skúli; Lanki, Maiju; Rellstab, Christian; Jokela, Jukka
2013-06-01
Parasite communities of fishes are known to respond directly to the abiotic environment of the host, for example, to water quality and water temperature. Biotic factors are also important as they affect the exposure profile through heterogeneities in parasite distribution in the environment. Parasites in a particular environment may pose a strong selection on fish. For example, ecological differences in selection by parasites have been hypothesized to facilitate evolutionary differentiation of freshwater fish morphs specializing on different food types. However, as parasites may also respond directly to abiotic environment the parasite risk does not depend only on biotic features of the host environment. It is possible that different morphs experience specific selection gradients by parasites but it is not clear how consistent the selection is when abiotic factors change. We examined parasite pressure in sympatric morphs of threespine stickleback (Gasterosteus aculeatus) across a temperature gradient in two large Icelandic lakes, Myvatn and Thingvallavatn. Habitat-specific temperature gradients in these lakes are opposite. Myvatn lava rock morph lives in a warm environment, while the mud morph lives in the cold. In Thingvallavatn, the lava rock morph lives in a cold environment and the mud morph in a warm habitat. We found more parasites in fish living in higher temperature in both lakes, independent of the fish morph, and this pattern was similar for the two dominating parasite taxa, trematodes and cestodes. However, at the same time, we also found higher parasite abundance in a third morph living in deep cold-water habitat in Thingvallavatn compared to the cold-water lava morph, indicating strong effect of habitat-specific biotic factors. Our results suggest complex interactions between water temperature and biotic factors in determining the parasite community structure, a pattern that may have implications for differentiation of stickleback morphs.
High Selection Pressure Promotes Increase in Cumulative Adaptive Culture
Vegvari, Carolin; Foley, Robert A.
2014-01-01
The evolution of cumulative adaptive culture has received widespread interest in recent years, especially the factors promoting its occurrence. Current evolutionary models suggest that an increase in population size may lead to an increase in cultural complexity via a higher rate of cultural transmission and innovation. However, relatively little attention has been paid to the role of natural selection in the evolution of cultural complexity. Here we use an agent-based simulation model to demonstrate that high selection pressure in the form of resource pressure promotes the accumulation of adaptive culture in spite of small population sizes and high innovation costs. We argue that the interaction of demography and selection is important, and that neither can be considered in isolation. We predict that an increase in cultural complexity is most likely to occur under conditions of population pressure relative to resource availability. Our model may help to explain why culture change can occur without major environmental change. We suggest that understanding the interaction between shifting selective pressures and demography is essential for explaining the evolution of cultural complexity. PMID:24489724
Madill, Stéphanie J; McLean, Linda
2006-01-01
Activation of the abdominal muscles might contribute to the generation of a strong pelvic floor muscle contraction, and consequently may contribute to the continence mechanism in women. The purpose of this study was to determine the abdominal muscle activation levels and the patterns of muscle activity associated with voluntary pelvic floor muscle (PFM) contractions in urinary continent women. Fifteen healthy continent women participated. They performed three maximal contractions of each of the four abdominal muscles and of their PFMs while in supine. Abdominal and PFM activity was recorded using electromyography (EMG), and intravaginal pressure was recorded using a custom modified Femiscan probe. During voluntary maximal PFM contractions, rectus abdominus was activated to 9.61 (+/-7.42)% maximal voluntary electrical activity (MVE), transversus abdominus was activated to 224.30(+/-47.4)% MVE, the external obliques were activated to 18.72(+/-13.33)% MVE, and the internal obliques were activated to 81.47(+/-63.57)% MVE. A clear pattern of activation emerged, whereby the transversus abdominus, internal oblique, and rectus abdominus muscles worked with the PFM in the initial generation of maximal intravaginal pressure. PFM activity predominated in the initial rise in lower vaginal pressure, with later increases in pressure (up to 70% maximum pressure) being associated with the combined activation of the PFM, rectus abdominus, internal obliques, and transverses abdominus. These abdominal muscles were the primary source of intravaginal pressure increases in the latter 30% of the task, whereas there was little increase in PFM activation from this point on. The external oblique muscles showed no clear pattern of activity, but worked at approximately 20% MVE throughout the PFM contractions, suggesting that their role may be predominantly in postural setting prior to the initiation of intravaginal pressure increases. Defined patterns of abdominal muscle activity were found in response to voluntary PFM contractions in healthy continent women. (c) 2006 Wiley-Liss, Inc.
Vengiau, Gwendalyn; Umezaki, Masahiro; Phuanukoonnon, Suparat; Siba, Peter; Watanabe, Chiho
2012-01-01
Obesity and hypertension are increasing in Papua New Guinea. This study investigated the association of dietary pattern and physical activity level with anthropometric measurements and blood pressure in migrant Bougainvilleans in the capital city of Port Moresby. Adults who had moved from Naasioi territory on Bougainville Island and resided in Port Moresby during the study period were studied (n = 70). The International Physical Activity Questionnaire was used to evaluate physical activity, and dietary pattern was assessed by per week consumption frequency of food items. The least square regression analysis revealed that interindividual variation in body mass index and waist circumference was explained by variations in physical activity but not by dietary pattern. Blood pressure was not associated with physical activity level or dietary pattern. The individual variation in anthropometric measurements in urban Papua New Guinea is mainly influenced by physical activity level. Copyright © 2012 Wiley Periodicals, Inc.
Rajachandrakumar, Roshanth; Fraser, Julia E; Schinkel-Ivy, Alison; Inness, Elizabeth L; Biasin, Lou; Brunton, Karen; McIlroy, William E; Mansfield, Avril
2017-02-01
Anticipatory postural adjustments, executed prior to gait initiation, help preserve lateral stability when stepping. Atypical patterns of anticipatory activity prior to gait initiation may occur in individuals with unilateral impairment (e.g., stroke). This study aimed to determine the prevalence, correlates, and consequences of atypical anticipatory postural adjustment patterns prior to gait initiation in a sub-acute stroke population. Forty independently-ambulatory individuals with sub-acute stroke stood on two force plates and initiated gait at a self-selected speed. Medio-lateral centre of pressure displacement was calculated and used to define anticipatory postural adjustments (shift in medio-lateral centre of pressure >10mm from baseline). Stroke severity, motor recovery, and functional balance and mobility status were also obtained. Three patterns were identified: single (typical), absent (atypical), and multiple (atypical) anticipatory postural adjustments. Thirty-five percent of trials had atypical anticipatory postural adjustments (absent and multiple). Frequency of absent anticipatory postural adjustments was negatively correlated with walking speed. Multiple anticipatory postural adjustments were more prevalent when leading with the non-paretic than the paretic limb. Trials with multiple anticipatory postural adjustments had longer duration of anticipatory postural adjustment and time to foot-off, and shorter unloading time than trials with single anticipatory postural adjustments. A high prevalence of atypical anticipatory control prior to gait initiation was found in individuals with stroke. Temporal differences were identified with multiple anticipatory postural adjustments, indicating altered gait initiation. These findings provide insight into postural control during gait initiation in individuals with sub-acute stroke, and may inform interventions to improve ambulation in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bose, Kunal; Ganguly, J.
1992-01-01
As part of our continued program of study on the volatile bearing phases and volatile resource potential of carbonaceous chondrite, results of our experimental studies on the dehydration kinetics of talc as a function of temperature and grain size (50 to 0.5 microns), equilibrium dehydration boundary of talc to 40 kbars, calorimetric study of enthalpy of formation of both natural and synthetic talc as a function of grain size, and preliminary results on the dehydration kinetics of epsomite are reported. In addition, theoretical calculations on the gas release pattern of Murchison meteorite, which is a C2(CM) carbonaceous chondrite, were performed. The kinetic study of talc leads to a dehydration rate constant for 40-50 microns size fraction of k = (3.23 x 10(exp 4))exp(-Q/RT)/min with the activation energy Q = 376 (plus or minus 20) kJ/mole. The dehydration rate was found to increase somewhat with decreasing grain size. The enthalpy of formation of talc from elements was measured to be -5896(10) kJ/mol. There was no measurable effect of grain size on the enthalpy beyond the limits of precision of the calorimetric studies. Also the calorimetric enthalpy of both synthetic and natural talc was found to be essentially the same, within the precision of measurements, although the natural talc had a slightly larger field of stability in our phase equilibrium studies. The high pressure experimental data the dehydration equilibrium of talc (talc = enstatite + coesite + H2O) is in strong disagreement with that calculated from the available thermochemical data, which were constrained to fit the low pressure experimental results. The calculated gas release pattern of Murchison meteorite were in reasonable agreement with that determined by stepwise heating in a gas chromatograph.
Soban, Lynn M; Finley, Erin P; Miltner, Rebecca S
2016-01-01
To describe the presence or absence of key components of hospital pressure ulcer (PU) prevention programs in 6 acute care hospitals. Multisite comparative case study. Using purposeful selection based on PU rates (high vs low) and hospital size, 6 hospitals within the Veterans Health Administration health care system were invited to participate. Key informant interviews (n = 48) were conducted in each of the 6 participating hospitals among individuals playing key roles in PU prevention: senior nursing leadership (n = 9), nurse manager (n = 7), wound care specialist (n = 6), frontline RNs (n = 26). Qualitative data were collected during face-to-face, semistructured interviews. Interview protocols were tailored to each interviewee's role with a core set of common questions covering 3 major content areas: (1) practice environment (eg, policies and wound care specialists), (2) current prevention practices (eg, conduct of PU risk assessment and skin inspection), and (3) barriers to PU prevention. We conducted structured coding of 5 key components of PU prevention programs and cross-case analysis to identify patterns in operationalization and implementation of program components across hospitals based on facility size and PU rates (low vs high). All hospitals had implemented all PU prevention program components. Component operationalization varied considerably across hospitals. Wound care specialists were integral to the operationalization of the 4 other program components examined; however, staffing levels and work assignments of wound care specialists varied widely. Patterns emerged among hospitals with low and high PU rates with respect to wound care specialist staffing, data monitoring, and staff education. We found hospital-level variations in PU prevention programs. Wound care specialist staffing may represent a potential point of leverage in achieving other PU program components, particularly performance monitoring and staff education.
Inspiratory muscular weakness is most evident in chronic stroke survivors with lower walking speeds.
Pinheiro, M B; Polese, J C; Faria, C D; Machado, G C; Parreira, V F; Britto, R R; Teixeira-Salmela, L F
2014-06-01
Respiratory muscular weakness and associated changes in thoracoabdominal motion have been poorly studied in stroke subjects, since the individuals' functional levels were not previously considered in the investigations. To investigate the breathing patterns, thoracoabdominal motion, and respiratory muscular strength in chronic stroke subjects, who were stratified into two groups, according to their walking speeds. Cross-sectional, observational study. University laboratory. Eighty-nine community-dwelling chronic stroke subjects The subjects, according to their gait speeds, were stratified into community (gait speed ≥0.8 m/s) and non-community ambulators (gait speed <0.8 m/s). Variables related to pulmonary function, breathing patterns, and thoracoabdominal motions were assessed. Measures of maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) were obtained and were compared with the reference values for the Brazilian population. The MIP and MEP values were expressed as percentages of the predicted values. Mann-Whitney-U or independent Student t-tests were employed to compare the differences between the two groups for the selected variables. No significant between-group differences were found for the variables related to the breathing patterns and thoracoabdominal motions (0.01 < z/t < 1.51; 0.14
Interplay Between Innate Immunity and the Plant Microbiota.
Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul
2017-08-04
The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.
Guivier, Emmanuel; Galan, Maxime; Malé, Pierre-Jean G; Kallio, Eva R; Voutilainen, Liina; Henttonen, Heikki; Olsson, Gert E; Lundkvist, Ake; Tersago, Katrien; Augot, Denis; Cosson, Jean-François; Charbonnel, Nathalie
2010-10-01
We analysed the influence of MHC class II Dqa and Drb genes on Puumala virus (PUUV) infection in bank voles (Myodes glareolus). We considered voles sampled in five European localities or derived from a previous experiment that showed variable infection success of PUUV. The genetic variation observed in the Dqa and Drb genes was assessed by using single-strand conformation polymorphism and pyrosequencing methods, respectively. Patterns were compared with those obtained from 13 microsatellites. We revealed significant genetic differentiation between PUUV-seronegative and -seropositive bank voles sampled in wild populations, at the Drb gene only. The absence of genetic differentiation observed at neutral microsatellites confirmed the important role of selective pressures in shaping these Drb patterns. Also, we found no significant associations between infection success and MHC alleles among laboratory-colonized bank voles, which is explained by a loss of genetic variability that occurred during the captivity of these voles.
Laser Trabeculoplasty Induces Changes in the Trabecular Meshwork Glycoproteome: A pilot study
Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K.; Bhattacharya, Sanjoy K.; Parel, Jean-Marie A
2009-01-01
Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. Using cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and non-treated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to non-lasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to non-lasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty. PMID:19432485
Bender, Renato; Bender, Nicole
2013-09-01
Extant hominoids, including humans, are well known for their inability to swim instinctively. We report swimming and diving in two captive apes using visual observation and video recording. One common chimpanzee and one orangutan swam repeatedly at the water surface over a distance of 2-6 m; both individuals submerged repeatedly. We show that apes are able to overcome their negative buoyancy by deliberate swimming, using movements which deviate from the doggy-paddle pattern observed in other primates. We suggest that apes' poor swimming ability is due to behavioral, anatomical, and neuromotor changes related to an adaptation to arboreal life in their early phylogeny. This strong adaptive focus on arboreal life led to decreased opportunities to interact with water bodies and consequently to a reduction of selective pressure to maintain innate swimming behavior. As the doggy paddle is associated with quadrupedal walking, a deviation from terrestrial locomotion might have interfered with the fixed rhythmic action patterns responsible for innate swimming. Copyright © 2013 Wiley Periodicals, Inc.
Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin
2013-09-01
Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.
The evolution of vertebrate Toll-like receptors
Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.
2005-01-01
The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.
Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko
2016-03-01
Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter-gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter-gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC-800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. © 2016 The Author(s).
Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko
2016-01-01
Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter–gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter–gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC–800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. PMID:27029838
Laser trabeculoplasty induces changes in the trabecular meshwork glycoproteome: a pilot study.
Amelinckx, Adriana; Castello, Maria; Arrieta-Quintero, Esdras; Lee, Tinthu; Salas, Nelson; Hernandez, Eleut; Lee, Richard K; Bhattacharya, Sanjoy K; Parel, Jean-Marie A
2009-07-01
Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. With the use of cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and nontreated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to nonlasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to nonlasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty.
Quantifying the role of noise on droplet decisions in bifurcating microchannels
NASA Astrophysics Data System (ADS)
Norouzi Darabad, Masoud; Vaughn, Mark; Vanapalli, Siva
2017-11-01
While many aspects of path selection of droplets flowing through a bifurcating microchannel have been studied, there are still unaddressed issues in predicting and controlling droplet traffic. One of the more important is understanding origin of aperiodic patterns. As a new tool to investigate this phenomena we propose monitoring the continuous time response of pressure fluctuations at different locations. Then we use time-series analysis to investigate the dynamics of the system. We suggest that natural system noise is the cause of irregularity in the traffic patterns. Using a mathematical model, we investigate the effect of noise on droplet decisions at the junction. Noise can be derived from different sources including droplet size variation, droplet spacing, and pump induced velocity fluctuation. By analyzing different situations we explain system behavior. We also investigate the ``memory'' of a microfluidic system in terms of the resistance to perturbations that quantify the allowable deviation in operating condition before the system changes state.
Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity
Shabalina, Svetlana A.; Spiridonov, Nikolay A.; Kashina, Anna
2013-01-01
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions. PMID:23293005
Relationship between ultrasonically detected phasic antral contractions and antral pressure.
Hveem, K; Sun, W M; Hebbard, G; Horowitz, M; Doran, S; Dent, J
2001-07-01
The relationships between gastric wall motion and intraluminal pressure are believed to be major determinants of flows within and from the stomach. Gastric antral wall motion and intraluminal pressures were monitored in five healthy subjects by concurrent antropyloroduodenal manometry and transabdominal ultrasound for 60 min after subjects drank 500 ml of clear soup. We found that 99% of antral contractions detected by ultrasound were propagated aborally, and 68% of contractions became lumen occlusive at the site of the ultrasound marker. Of the 203 contractions detected by ultrasound, 53% were associated with pressure events in the manometric reference channel; 86% of contractions had corresponding pressure events detectable somewhere in the antrum. Contractions that occluded the lumen were more likely to be associated with a pressure event in the manometric reference channel (P < 0.01) and to be of greater amplitude (P < 0.01) than non-lumen-occlusive contractions. We conclude that heterogeneous pressure event patterns in the antrum occur despite a stereotyped pattern of contraction propagation seen on ultrasound. Lumen occlusion is more likely to be associated with higher peak antral pressure events.
Impact of selection and demography on the diffusion of lactase persistence.
Gerbault, Pascale; Moret, Céline; Currat, Mathias; Sanchez-Mazas, Alicia
2009-07-24
The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s) (LCT*P) are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out if a positively selected lactase gene was carried at the front of the expansion wave during the Neolithic transition in Europe.
Fetterman, Christina D; Rannala, Bruce; Walter, Michael A
2008-09-24
Members of the forkhead gene family act as transcription regulators in biological processes including development and metabolism. The evolution of forkhead genes has not been widely examined and selection pressures at the molecular level influencing subfamily evolution and differentiation have not been explored. Here, in silico methods were used to examine selection pressures acting on the coding sequence of five multi-species FOX protein subfamily clusters; FoxA, FoxD, FoxI, FoxO and FoxP. Application of site models, which estimate overall selection pressures on individual codons throughout the phylogeny, showed that the amino acid changes observed were either neutral or under negative selection. Branch-site models, which allow estimated selection pressures along specified lineages to vary as compared to the remaining phylogeny, identified positive selection along branches leading to the FoxA3 and Protostomia clades in the FoxA cluster and the branch leading to the FoxO3 clade in the FoxO cluster. Residues that may differentiate paralogs were identified in the FoxA and FoxO clusters and residues that differentiate orthologs were identified in the FoxA cluster. Neutral amino acid changes were identified in the forkhead domain of the FoxA, FoxD and FoxP clusters while positive selection was identified in the forkhead domain of the Protostomia lineage of the FoxA cluster. A series of residues under strong negative selection adjacent to the N- and C-termini of the forkhead domain were identified in all clusters analyzed suggesting a new method for refinement of domain boundaries. Extrapolation of domains among cluster members in conjunction with selection pressure information allowed prediction of residue function in the FoxA, FoxO and FoxP clusters and exclusion of known domain function in residues of the FoxA and FoxI clusters. Consideration of selection pressures observed in conjunction with known functional information allowed prediction of residue function and refinement of domain boundaries. Identification of residues that differentiate orthologs and paralogs provided insight into the development and functional consequences of paralogs and forkhead subfamily composition differences among species. Overall we found that after gene duplication of forkhead family members, rapid differentiation and subsequent fixation of amino acid changes through negative selection has occurred.
Johnson-Down, L; Labonte, M E; Martin, I D; Tsuji, L J S; Nieboer, E; Dewailly, E; Egeland, G; Lucas, M
2015-01-01
Indigenous people worldwide have a greater disease burden than their non-aboriginal counterparts with health challenges that include increased obesity and higher prevalence of diabetes. We investigate the relationships of dietary patterns with nutritional biomarkers, selected environmental contaminants and measures of insulin resistance in the Cree (Eeyouch) of northern Québec Canada. The cross-sectional 'Nituuchischaayihitaau Aschii: A Multi-Community Environment-and-Health Study in Eeyou Istchee' recruited 835 adult participants (≥18 y) from 7 communities in the James Bay region of northern Québec. The three dietary patterns identified by principal component analysis (PCA) were: inland and coastal patterns with loadings on traditional foods, and a junk food pattern with high-fat and high-sugar foods. We investigated dietary patterns scores (in quantiles) in relation with nutritional biomarkers, environmental contaminants, anthropometry, blood pressure, fasting plasma glucose and insulin, and insulin resistance. Homeostatic model assessment (HOMA-IR) was used as surrogate markers of insulin resistance. ANCOVA ascertained relationships between dietary patterns relationship and outcomes. Greater scores for the traditional patterns were associated with higher levels of n-3 fatty acids, mercury and polychlorinated biphenyls (PCBs) (P trend <0.001). Higher scores for the junk food pattern were associated with lower levels of PCBs and Vitamin D, but higher fasting plasma insulin and HOMA-IR. Our results suggest that poor diet quality accompanied greater insulin resistance. Impacts of diet quality on insulin resistance, as a sign of metabolism perturbation, deserve more attention in this indigenous population with high rates of obesity and diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.
The fitness cost of mis-splicing is the main determinant of alternative splicing patterns.
Saudemont, Baptiste; Popa, Alexandra; Parmley, Joanna L; Rocher, Vincent; Blugeon, Corinne; Necsulea, Anamaria; Meyer, Eric; Duret, Laurent
2017-10-30
Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92-98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift.
Reales, Guillermo; Rovaris, Diego L; Jacovas, Vanessa C; Hünemeier, Tábita; Sandoval, José R; Salazar-Granara, Alcibiades; Demarchi, Darío A; Tarazona-Santos, Eduardo; Felkl, Aline B; Serafini, Michele A; Salzano, Francisco M; Bisso-Machado, Rafael; Comas, David; Paixão-Côrtes, Vanessa R; Bortolini, Maria Cátira
2017-07-01
To determine genetic differences between agriculturalist and hunter-gatherer southern Native American populations for selected metabolism-related markers and to test whether Neel's thrifty genotype hypothesis (TGH) could explain the genetic patterns observed in these populations. 375 Native South American individuals from 17 populations were genotyped using six markers (APOE rs429358 and rs7412; APOA2 rs5082; CD36 rs3211883; TCF7L2 rs11196205; and IGF2BP2 rs11705701). Additionally, APOE genotypes from 39 individuals were obtained from the literature. AMOVA, main effects, and gene-gene interaction tests were performed. We observed differences in allele distribution patterns between agriculturalists and hunter-gatherers for some markers. For instance, between-groups component of genetic variance (F CT ) for APOE rs429358 showed strong differences in allelic distributions between hunter-gatherers and agriculturalists (p = 0.00196). Gene-gene interaction analysis indicated that the APOE E4/CD36 TT and APOE E4/IGF2BP2 A carrier combinations occur at a higher frequency in hunter-gatherers, but this combination is not replicated in archaic (Neanderthal and Denisovan) and ancient (Anzick, Saqqaq, Ust-Ishim, Mal'ta) hunter-gatherer individuals. A complex scenario explains the observed frequencies of the tested markers in hunter-gatherers. Different factors, such as pleotropic alleles, rainforest selective pressures, and population dynamics, may be collectively shaping the observed genetic patterns. We conclude that although TGH seems a plausible hypothesis to explain part of the data, other factors may be important in our tested populations. © 2017 Wiley Periodicals, Inc.
Mulcahy, D M; McCormack, D M; Stephens, M M
1998-12-01
Intra-articular calcaneal fractures are associated with significant long-term morbidity, and considerable controversy exists regarding the optimum method of treating them. The contact characteristics in the intact subtalar joint were determined at known loads and for different positions of the ankle and subtalar joint, using pressure-sensitive film (Super Low; Fuji, Itochu Canada Ltd, Montreal, Quebec). We measured the contact area to joint area ratio (pressure > 5 kg force/cm2 [kgf/cm2]) which normalizes for differences in joint size and the ratio of high pressure zone (>20 kgf/cm2) as a reflection of overall increase in joint pressure. Three simulated fracture patterns were then created and stabilized with either 1 or 2 mm of articular incongruity. Eight specimens were prepared with a primary fracture line through the posterior facet, eight with a joint depression-type fracture, and six with a central joint depression fracture. A measure of 1 to 2 mm of incongruity in the posterior facet for all three fracture patterns produced significant unloading of the depressed fragment, with a redistribution of the overall pattern of pressure distribution to parts of the facet that were previously unloaded.
The structural and properties of magnesium-phosphorus compounds under pressure.
Liu, Yunxian; Wang, Chao; Lv, Pin; Sun, Hairui; Duan, Defang
2018-06-01
Inspired by the emerging of compounds with novel structures and unique properties (i.e., superconductivity and hardness) under high pressure, we systematically explored a binary Mg-P system under pressure combining first-principles calculation with structure prediction. Several stoichiometries (Mg3P, Mg2P, MgP, MgP2, and MgP3) were predicted stable under pressure. Especially, the P-P bonding patterns are different in the P-rich compounds and the Mg-rich compounds: in the former, the P-P bonding patterns form P2, P3, quadrilateral units, P-P***P chains or disordered "graphene-like" sublattice, while in the latter, the P-P bonding patterns eventually isolated P ions. The analysis of integrated crystal orbital Hamilton populations reveals that the P-P interactions are mainly responsible for the structural stability. The P-rich compounds with stoichiometries of MgP, MgP2 and MgP3 exhibit superconductive behaviors, and these phases show Tc in the range of 4.3-20 K. Our study provides useful information for understanding the Mg-P binary compounds at high pressure. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adaptive self-organization during growth of bacterial colonies
NASA Astrophysics Data System (ADS)
Ben-Jacob, Eshel; Shmueli, Haim; Shochet, Ofer; Tenenbaum, Adam
1992-09-01
We present a study of interfacial pattern formation during diffusion-limited growth of Bacillus subtilis. It is demonstrated that bacterial colonies can develop patterns similar to morphologies observed during diffusion-limited growth in non-living (azoic) systems such as solidification and electro-chemical deposition. The various growth morphologies, that is the global structure of the colony, are observed as we vary the growth conditions. These include fractal growth, dense-branching growth, compact growth, dendritic growth and chiral growth. The results demonstrate the action of a singular interplay between the micro-level (individual bacterium) and macro-level (the colony) in selecting the observed morphologies as is understood for non-living systems. Furthermore, the observed morphologies can be organized within a morphology diagram indicating the existence of a morphology selection principle similar to the one proposed for azoic systems. We propose a phase-field-like model (the phase being the bacterial concentration and the field being the nutrient concentration) to describe the growth. The bacteria-bacteria interaction is manifested as a phase dependent diffusion constant. Growth of a bacterial colony presents an inherent additional level of complexity compared to azoic systems, since the building blocks themselves are living systems. Thus, our studies also focus on the transition between morphologies. We have observed extended morphology transitions due to phenotypic changes of the bacteria, as well as bursts of new morphologies resulting from genotypic changes. In addition, we have observed extended and heritable transitions (mainly between dense branching growth and chiral growth) as well as phenotypic transitions that turn genotypic over time. We discuss the implications of our results in the context of the evolving picture of genome cybernetics. Diffusion limited growth of bacterial colonies combined with new understanding of pattern formation in azoic systems provide new tools for the study of adaptive self-organization and mutation in the presence of selective pressures. We include brief reviews of both the recent developments in the study of interfacial pattern formation in non-living systems and the current trends in the view of mutation dynamics.
Prabha, K C; Bernard, D G; Gardner, M; Smatresk, N J
2000-01-01
The breathing pattern in the aquatic caecilian Typhlonectes natans was investigated by recording airflow via a pneumotachograph under unrestrained normal physiological conditions. Ventilatory mechanics were assessed using airflow and pressure measurements from the buccal cavity and trachea. The breathing pattern consisted of an expiratory phase followed by a series of 10-15 small buccal pumps to inflate the lung, succeeded by a long non-ventilatory period. T. natans separate the expiratory and inspiratory gases in the buccal cavity and take several inspiratory pumps, distinguishing their breathing pattern from that of sarcopterygians. Hydrostatic pressure assisted exhalation. The tracheal pressure was greater than the water pressure at that depth, suggesting that pleuroperitoneal pressure as well as axial or pulmonary smooth muscles may have contributed to the process of exhalation. The frequency of lung ventilation was 6.33+/-0.84 breaths h(-)(1), and ventilation occurred via the nares. Compared with other amphibians, this low ventilatory frequency suggests that T. natans may have acquired very efficient pulmonary respiration as an adaptation for survival in their seasonally fluctuating natural habitat. Their respiratory pathway is quite unique, with the trachea separated into anterior, central and posterior regions. The anterior region serves as an air channel, the central region is attached to the tracheal lung, and the posterior region consists of a bifurcated air channel leading to the left and right posterior lungs. The lungs are narrow, elongated, profusely vascularized and compartmentalized. The posterior lungs extend to approximately two-thirds of the body length. On the basis of their breathing pattern, it appears that caecilians are phylogenetically derived from two-stroke breathers.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Chemical recovery process using break up steam control to prevent smelt explosions
Kohl, Arthur L.; Stewart, Albert E.
1988-08-02
An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.
2017-11-01
Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. Finally, we show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressuremore » and film thickness with nontrivial topology or switchable and nonswitchable regions.« less
Fredricks, K.T.; Gingerich, W.H.; Fater, D.C.
1993-01-01
1. We compared the effects of four anesthetics on heart rate, dorsal and ventral aortic blood pressure, and electrocardiograms of rainbow trout (Oncorhynchus mykiss).2. Exposure to the local anesthetics tricaine methanesulfonate (MS-222) and benzocaine hydrochloride (BZH) produced minimal cardiovascular alterations. Mean dorsal aortic pressure (DAP) decreased during exposure to MS-222, and mean DAP and mean ventral aortic pressure (VAP) increased 15% during recovery from BZH.3. Exposure to the general anesthetic 2-phenoxyethanol (2-PE) or the hypnotic agent etomidate (ET) dramatically decreased heart rate and blood pressures and altered EKG patterns.4. During recovery, VAP and DAP increased above baseline for an extended period. Heart rate and EKG patterns rapidly returned to normal.
A Reactive-Ion Etch for Patterning Piezoelectric Thin Film
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wild, Larry
2003-01-01
Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article, several experiments on RIE in BCl3 and Cl2 (and sometimes Ar) had demonstrated the 10:1 selectivity ratio, and further experiments to enhance understanding and obtain further guidance for optimizing process conditions were planned.
NASA Astrophysics Data System (ADS)
Masnadi, N.; Duncan, J. H.
2013-11-01
The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.
2010-01-01
Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet. Trial Registration Clinical Trials.gov Identifier: NCT01083082 PMID:20459634
Kuyper, Lisette; de Wit, John; Smolenski, Derek; Adam, Philippe; Woertman, Liesbeth; van Berlo, Willy
2013-11-01
The development of effective policies and programs to prevent sexual coercion among young people requires thorough understanding of the diversity of coercive sexual experiences, patterns in such types of experiences, and similarities and differences between subgroups, especially by gender, in patterns of coercive sexual experiences and associations with potential vulnerability factors. The present online self-report study assessed a wide range of coercive sexual experiences and potential vulnerability factors among a sociodemographically diverse sample of 1,319 young people (16-25 years old) in The Netherlands. Findings confirm that sexual coercion comprises a diversity of experiences, with rates differing substantially across types of coercion. Latent class analysis revealed distinct patterns of coercive sexual experiences for young women and young men. Among young men, three patterns of experiences were found: no coercive sexual experiences, experience with verbal pressure, and experience with verbal pressure as well as coercion related to alcohol intoxication. Among young women, four patterns of coercive experiences were identified. In addition to the three patterns observed among young men, a fourth pattern encompassed experiences with verbal pressure as well as the use of force or violence. Higher numbers of sexual partners, lower levels of sexual refusal skills, and higher levels of token resistance were consistently associated with increased vulnerability. Findings illustrate the importance of communication skills and suggest that sexual communication training should be an integral part of sexuality education.
Electronic scanning pressure measuring system and transducer package
NASA Technical Reports Server (NTRS)
Coe, C. F. (Inventor); Parra, G. T.
1984-01-01
An electronic scanning pressure system that includes a plurality of pressure transducers is examined. A means obtains an electrical signal indicative of a pressure measurement from each of the plurality of pressure transducers. A multiplexing means is connected for selectivity supplying inputs from the plurality of pressure transducers to the signal obtaining means. A data bus connects the plurality of pressure transducers to the multiplexing means. A latch circuit is connected to supply control inputs to the multiplexing means. An address bus is connected to supply an address signal of a selected one of the plurality of pressure transducers to the latch circuit. In operation, each of the pressure transducers is successively scanned by the multiplexing means in response to address signals supplied on the address bus to the latch circuit.
Snacking patterns, diet quality, and cardiovascular risk factors in adults.
Nicklas, Theresa A; O'Neil, Carol E; Fulgoni, Victor L
2014-04-23
The relationship of snacking patterns on nutrient intake and cardiovascular risk factors (CVRF) in adults is unknown. The aim of this study was to examine the associations of snacking patterns with nutrient intake, diet quality, and a selection of CVRF in adults participating in the 2001-2008 National Health and Nutrition Examination Survey. 24-hour dietary recalls were used to determine intake and cluster analysis was used to identify the snacking patterns. Height and weight were obtained and the health indices that were evaluated included diastolic and systolic blood pressure, high density lipoprotein-cholesterol, low density lipoprotein cholesterol, triacylglycerides, blood glucose, and insulin. The sample was participants (n = 18,988) 19+ years (50% males; 11% African-Americans; 72% white, 12% Hispanic-Americans, and 5% other). Cluster analyses generated 12 distinct snacking patterns, explaining 61% of the variance in snacking. Comparisons of snacking patterns were made to the no snack pattern. It was found that miscellaneous snacks constituted the most common snacking pattern (17%) followed by cakes/cookies/pastries (12%) and sweets (9%). Most snacking patterns were associated with higher energy intakes. Snacking patterns cakes/cookies/pastries, vegetables/legumes, crackers/salty snacks, other grains and whole fruit were associated with lower intakes of saturated fatty acids. Added sugars intakes were higher in the cakes/cookies/pastries, sweets, milk desserts, and soft drinks patterns. Five snack patterns (cakes/cookies/pastries, sweets, vegetable/legumes, milk desserts, soft drinks) were associated with lower sodium intakes. Several snack patterns were associated with higher intakes of potassium, calcium, fiber, vitamin A, and magnesium. Five snacking patterns (miscellaneous snacks; vegetables/legumes; crackers/salty snacks; other grains; and whole fruit) were associated with better diet quality scores. Alcohol was associated with a lower body mass index and milk desserts were associated with a lower waist circumference. No snack patterns were associated with other CVRF studied. Overall, several snacking patterns were associated with better diet quality than those consuming no snacks. Yet, the majority of the snacking patterns were not associated with CVRF. Education is needed to improve snacking patterns in terms of nutrients to limit in the diet along with more nutrient-dense foods to be included in snacks.
Cavanagh, Colin R; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K; Sorrells, Mark E; Hayden, Matthew J; Akhunov, Eduard
2013-05-14
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.
Cavanagh, Colin R.; Chao, Shiaoman; Wang, Shichen; Huang, Bevan Emma; Stephen, Stuart; Kiani, Seifollah; Forrest, Kerrie; Saintenac, Cyrille; Brown-Guedira, Gina L.; Akhunova, Alina; See, Deven; Bai, Guihua; Pumphrey, Michael; Tomar, Luxmi; Wong, Debbie; Kong, Stephan; Reynolds, Matthew; da Silva, Marta Lopez; Bockelman, Harold; Talbert, Luther; Anderson, James A.; Dreisigacker, Susanne; Baenziger, Stephen; Carter, Arron; Korzun, Viktor; Morrell, Peter Laurent; Dubcovsky, Jorge; Morell, Matthew K.; Sorrells, Mark E.; Hayden, Matthew J.; Akhunov, Eduard
2013-01-01
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. PMID:23630259
Scales, Jeffrey A; Butler, Marguerite A
2016-01-01
Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Foot pressure distributions during walking in African elephants (Loxodonta africana)
Pataky, Todd C.; Day, Madeleine; Hensman, Michael C.; Hensman, Sean; Hutchinson, John R.; Clemente, Christofer J.
2016-01-01
Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples. PMID:27853539
Does Potassium Deficiency Contribute to Hypertension in Children and Adolescents?
Falkner, Bonita
2017-05-01
The increasing prevalence of cardiovascular risk factors in children and adolescents has been largely, but not entirely, related to the childhood obesity epidemic. Among the noted risk factors detectable in children is elevated blood pressure. Emerging findings indicate that in addition to overweight and obesity, sodium intake is associated with elevated blood pressure in youth. Moreover, dietary sodium intake is quite high and well above recommended levels throughout childhood. In adults, the relationship of sodium consumption with hypertension is well established, and there is evidence from both population and clinical studies that potassium intake is also associated with blood pressure. Higher potassium intake is associated with lower blood pressure; and potassium deficit leads to an increase in blood pressure. Findings on relationships of potassium intake with blood pressure in childhood are sparse. There are some reports that provide evidence that a dietary pattern that includes potassium-rich foods is associated with lower blood pressure and may also lower blood pressure in adolescents with elevated blood pressure. Considering the secular changes in dietary patterns throughout childhood, it is prudent to encourage a diet for children that is high in potassium-rich foods.
Hua, Ning; Piersma, Theunis; Ma, Zhijun
2013-01-01
Refuelling by migratory birds before take-off on long flights is generally considered a two-phase process, with protein accumulation preceding rapid fat deposition. The first phase expresses the demands for a large digestive system for nutrient storage after shrinkage during previous flights, the second phase the demands for fat stores to fuel the subsequent flight. At the last staging site in northward migration, this process may include expression of selection pressures both en route to and after arrival at the breeding grounds, which remains unascertained. Here we investigated changes in body composition during refuelling of High Arctic breeding red knots (Calidris canutus piersmai) in the northern Yellow Sea, before their flight to the tundra. These red knots followed a three-phase fuel deposition pattern, with protein being stored in the first and last phases, and fat being deposited mainly in the second phase. Thus, they did not shrink nutritional organs before take-off, and even showed hypertrophy of the nutritional organs. These suggest the build up of strategic protein stores before departure to cope with a protein shortage upon arrival on the breeding grounds. Further comparative studies are warranted to examine the degree to which the deposition of stores by migrant birds generally reflects a balance between concurrent and upcoming environmental selection pressures. PMID:23638114
Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1987
Wood, James L.; Fischer, Jeffrey M.
1992-01-01
Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1987. Data were collected in support of an ongoing study to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs A discussion of the instrumentation used at the site is presented. Included in the discussion are the type of sensors, their reported accuracy, and mounting height of each sensor.In 1987, the average hourly air temperatures ranged from -7.6 degrees Celsius, in December, to 43.1 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.12 to 1.77 kilopascals. Daily values for maximum incident solar radiation ranged from 118 to 1,067 watts per square meter. Daily mean windspeed ranged from 1.4 to 9.4 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1987 was 136.4 millimeters, more than 75 percent occurring during January-April and November-December.
Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host.
Yohannes, Elizabeth; Hansson, Bengt; Lee, Raymond W; Waldenström, Jonas; Westerdahl, Helena; Akesson, Mikael; Hasselquist, Dennis; Bensch, Staffan
2008-11-01
It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.
Long-Term Evolution of the Luteoviridae: Time Scale and Mode of Virus Speciation▿ †
Pagán, Israel; Holmes, Edward C.
2010-01-01
Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature. PMID:20375155
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilpueng, Kitti; Wongwises, Somchai
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less
recorded simultaneously by auscultation of the brachial artery; and (2) to study the pattern of pressure and flow dynamics during bicycle work at moderate...strenuous and maximal intensities. In most instances systolic pressures measured by auscultation were in close agreement with the directly recorded
Citerne, Hélène L.; Reyes, Elisabeth; Le Guilloux, Martine; Delannoy, Etienne; Simonnet, Franck; Sauquet, Hervé; Weston, Peter H.; Nadot, Sophie; Damerval, Catherine
2017-01-01
Background and Aims The basal eudicot family Proteaceae (approx. 1700 species) shows considerable variation in floral symmetry but has received little attention in studies of evolutionary development at the genetic level. A framework for understanding the shifts in floral symmetry in Proteaceae is provided by reconstructing ancestral states on an upated phylogeny of the family, and homologues of CYCLOIDEA (CYC), a key gene for the control of floral symmetry in both monocots and eudicots, are characterized. Methods Perianth symmetry transitions were reconstructed on a new species-level tree using parsimony and maximum likelihood. CYC-like genes in 35 species (31 genera) of Proteaceae were sequenced and their phylogeny was reconstructed. Shifts in selection pressure following gene duplication were investigated using nested branch-site models of sequence evolution. Expression patterns of CYC homologues were characterized in three species of Grevillea with different types of floral symmetry. Key Results Zygomorphy has evolved 10–18 times independently in Proteaceae from actinomorphic ancestors, with at least four reversals to actinomorphy. A single duplication of CYC-like genes occurred prior to the diversification of Proteaceae, with putative loss or divergence of the ProtCYC1 paralogue in more than half of the species sampled. No shifts in selection pressure were detected in the branches subtending the two ProtCYC paralogues. However, the amino acid sequence preceding the TCP domain is strongly divergent in Grevillea ProtCYC1 compared with other species. ProtCYC genes were expressed in developing flowers of both actinomorphic and zygomorphic Grevillea species, with late asymmetric expression in the perianth of the latter. Conclusion Proteaceae is a remarkable family in terms of the number of transitions in floral symmetry. Furthermore, although CYC-like genes in Grevillea have unusual sequence characteristics, they display patterns of expression that make them good candidates for playing a role in the establishment of floral symmetry. PMID:28025288
Speed Pressure in Conflict Situations Impedes Inhibitory Action Control in Parkinson’s Disease
Van Wouwe, N.C.; van den Wildenberg, W.P.M.; Claassen, D.O.; Kanoff, K.; Bashore, T.R.; Wylie, S.A.
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative basal ganglia disease that disrupts cognitive control processes involved in response selection. The current study investigated the effects of PD on the ability to resolve conflicts during response selection when performance emphasized response speed versus response accuracy. Twenty-one (21) PD patients and 21 healthy controls (HC) completed a Simon conflict task, and a subset of 10 participants from each group provided simultaneous movement-related potential (MRP) data to track patterns of motor cortex activation and inhibition associated with the successful resolution of conflicting response tendencies. Both groups adjusted performance strategically to emphasize response speed or accuracy (i.e., speed-accuracy effect). For HC, interference from a conflicting response was reduced when response accuracy rather than speed was prioritized. For PD patients, however, there was a reduction in interference, but it was not statistically significant. The conceptual framework of the Dual-Process Activation-Suppression (DPAS) model revealed that the groups experienced similar susceptibility to making fast impulsive errors in conflict trials irrespective of speed-accuracy instructions, but PD patients were less proficient and delayed compared to HC at suppressing the interference from these incorrect response tendencies, especially under speed pressure. Analysis of MRPs on response conflict trials showed attenuated inhibition of the motor cortex controlling the conflicting impulsive response tendency in PD patients compared to HC. These results further confirm the detrimental effects of PD inhibitory control mechanisms and their exacerbation when patients perform under speed pressure. The results also suggest that a downstream effect of inhibitory dysfunction in PD is diminished inhibition of motor cortex controlling conflicting response tendencies. PMID:25017503
Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE
NASA Astrophysics Data System (ADS)
Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin
2013-02-01
Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.
Brumme, Chanson J.; Martin, Eric; Listgarten, Jennifer; Brockman, Mark A.; Le, Anh Q.; Chui, Celia K. S.; Cotton, Laura A.; Knapp, David J. H. F.; Riddler, Sharon A.; Haubrich, Richard; Nelson, George; Pfeifer, Nico; DeZiel, Charles E.; Heckerman, David; Apps, Richard; Carrington, Mary; Mallal, Simon; Harrigan, P. Richard; John, Mina
2012-01-01
HLA class I-associated polymorphisms identified at the population level mark viral sites under immune pressure by individual HLA alleles. As such, analysis of their distribution, frequency, location, statistical strength, sequence conservation, and other properties offers a unique perspective from which to identify correlates of protective cellular immunity. We analyzed HLA-associated HIV-1 subtype B polymorphisms in 1,888 treatment-naïve, chronically infected individuals using phylogenetically informed methods and identified characteristics of HLA-associated immune pressures that differentiate protective and nonprotective alleles. Over 2,100 HLA-associated HIV-1 polymorphisms were identified, approximately one-third of which occurred inside or within 3 residues of an optimally defined cytotoxic T-lymphocyte (CTL) epitope. Differential CTL escape patterns between closely related HLA alleles were common and increased with greater evolutionary distance between allele group members. Among 9-mer epitopes, mutations at HLA-specific anchor residues represented the most frequently detected escape type: these occurred nearly 2-fold more frequently than expected by chance and were computationally predicted to reduce peptide-HLA binding nearly 10-fold on average. Characteristics associated with protective HLA alleles (defined using hazard ratios for progression to AIDS from natural history cohorts) included the potential to mount broad immune selection pressures across all HIV-1 proteins except Nef, the tendency to drive multisite and/or anchor residue escape mutations within known CTL epitopes, and the ability to strongly select mutations in conserved regions within HIV's structural and functional proteins. Thus, the factors defining protective cellular immune responses may be more complex than simply targeting conserved viral regions. The results provide new information to guide vaccine design and immunogenicity studies. PMID:23055555
Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier
2014-01-01
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Xu, Miao; Li, Haolong; Zhang, Liying; Wang, Yizhan; Yuan, Yuan; Zhang, Jianming; Wu, Lixin
2012-10-16
In this paper, four organic-inorganic hybrid complexes were prepared using a cationic surfactant dimethyldioctadecylammonium (DODA) to replace the counter cations of four Keggin-type polyoxometalate (POM) clusters with gradually increased negative charges, PW(12)O(40)(3-), SiW(12)O(40)(4-), BW(12)O(40)(5-), and CoW(12)O(40)(6-). The formed surfactant-encapsulated POM (SEP) complexes showed typical amphiphilic properties and can be spread onto the air-water interface to form Langmuir monolayers. The interfacial behavior of the SEP monolayer films was systemically studied by multiple in situ and ex situ characterization methods including Brewster angle microscopy (BAM), atomic force microscopy (AFM), reflection-absorption infrared (RAIR), and X-ray photoelectron spectroscopy (XPS). We found that the increasing alkyl chain density of SEPs leads to an enhanced stability and a higher collapse pressure of SEP Langmuir monolayers. Moreover, a second layer evolved as patterns from the initial monolayers of all the SEPs, when the surface pressures approached the collapse values. The rational combination of alkyl chain density and surface pressure can precisely control the size and the morphology of SEP patterns transforming from disk-like to leaf-like structures on a micrometer scale. The pattern formation was demonstrated to be driven by the self-optimized surface energy of SEP monolayers. This finding can direct a new strategy for the fabrication of POM-hybrid films with controllable patterns, which should be instructive for designing POM-based thin film devices.
Nondipping pattern and carotid atherosclerosis in a middle-aged population: OPERA Study.
Vasunta, Riitta-Liisa; Kesäniemi, Y Antero; Ylitalo, Antti; Ukkola, Olavi
2012-01-01
BACKGROUND The lack of dropping in night-time blood pressure of 10% or more (nondipping) seems to associate with cardiovascular risk factors. The relationship between the dipping pattern and atherosclerosis is not clear. The night-time systolic blood pressure (SBP) determines the dipping status. We investigated the connection between intima-media thickness (IMT) and dipping status (dipper, nondipper) taking into account covariates known to associate with hypertension and early atherosclerosis. 900 middle-aged (446 men, 454 women) were studied, 51% of them using blood pressure lowering medication. IMT was measured by a duplex ultrasound from the common carotid artery (CCA), the internal carotid artery (ICA) and the bifurcation enlargement (BIF). The mean IMT was defined as the mean of ICA, BIF, and the 3 highest CCA measurements. Ambulatory blood pressure (ABP) was recorded using the fully automatic SpaceLabs90207 oscillometric unit. Nondippers had lower high-density lipoprotein cholesterol (P = 0.02), higher triglycerides (P < 0.01), body mass index (P < 0.0001) and higher night-time blood pressure (P < 0.0001) than dippers and they were more often nonsmokers (P = 0.01). Increased mean IMT in carotid artery was associated with ABP nondipping pattern (P < 0.01) regardless of conventional cardiovascular risk factors, antihypertensive or lipid lowering medications. Nocturnal blood pressure elevation was independently associated with IMT (P < 0.01). When sexes were analysed separately, the association was seen in men but was only a trend among women. Nondipping status in ABP monitoring is independently associated with early atherosclerosis. Whether nondipping pattern is a predictor of atherosclerosis remains to be explored in a future prospective follow-up of this cohort.
Urethral pressure response patterns induced by squeeze in continent and incontinent women.
Teleman, Pia M; Mattiasson, Anders
2007-09-01
Our aim was to compare the urethral pressure response pattern to pelvic floor muscle contractions in 20-27 years old, nulliparous continent women (n = 31) to that of continent (n = 28) and formerly untreated incontinent (n = 59) (53-63 years old) women. These women underwent urethral pressure measurements during rest and repeated pelvic muscle contractions. The response to the contractions was graded 0-4. The young continent women showed a mean urethral pressure response of 2.8, the middle-aged continent women 2.2 (NS vs young continent), and the incontinent women 1.5 (p < 0.05 vs middle-aged continent, p < 0.001 vs young continent). Urethral pressures during rest were significantly higher in the younger women than in both groups of middle-aged women. The decreased ability to increase urethral pressure on demand seen in middle-aged incontinent women compared to continent women of the same age as well as young women seems to be a consequence of a neuromuscular disorder rather than of age.
Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.
2015-01-01
Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at np 10436 and a tRNA Thr mutation at np 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to bone and also occurred in three patients. Conclusions Mitochondrial genomic variation was greater in metastatic sites than the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational “hot-spot” was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific “survival of the fittest” as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. PMID:25952970
Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A
2015-09-01
Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. Published by Elsevier Inc.
Vercellotti, Giuseppe; Piperata, Barbara A; Agnew, Amanda M; Wilson, Warren M; Dufour, Darna L; Reina, Julio C; Boano, Rosa; Justus, Hedy M; Larsen, Clark Spencer; Stout, Sam D; Sciulli, Paul W
2014-10-01
Adult stature variation is commonly attributed to differential stress-levels during development. However, due to selective mortality and heterogeneous frailty, a population's tall stature may be more indicative of high selective pressures than of positive life conditions. This article examines stature in a biocultural context and draws parallels between bioarchaeological and living populations to explore the multidimensionality of stature variation in the past. This study investigates: 1) stature differences between archaeological populations exposed to low or high stress (inferred from skeletal indicators); 2) similarities in growth retardation patterns between archaeological and living groups; and 3) the apportionment of variance in growth outcomes at the regional level in archaeological and living populations. Anatomical stature estimates were examined in relation to skeletal stress indicators (cribra orbitalia, porotic hyperostosis, linear enamel hypoplasia) in two medieval bioarchaeological populations. Stature and biocultural information were gathered for comparative living samples from South America. Results indicate 1) significant (P < 0.01) differences in stature between groups exposed to different levels of skeletal stress; 2) greater prevalence of stunting among living groups, with similar patterns in socially stratified archaeological and modern groups; and 3) a degree of regional variance in growth outcomes consistent with that observed for highly selected traits. The relationship between early stress and growth is confounded by several factors-including catch-up growth, cultural buffering, and social inequality. The interpretations of early life conditions based on the relationship between stress and stature should be advanced with caution. Copyright © 2014 Wiley Periodicals, Inc.
Zenni, Rafael D; Hoban, Sean M
2015-07-01
Identifying the genes underlying rapid evolutionary changes, describing their function and ascertaining the environmental pressures that determine fitness are the central elements needed for understanding of evolutionary processes and phenotypic changes that improve the fitness of populations. It has been hypothesized that rapid adaptive changes in new environments may contribute to the rapid spread and success of invasive plants and animals. As yet, studies of adaptation during invasion are scarce, as is knowledge of the genes underlying adaptation, especially in multiple replicated invasions. Here, we quantified how genotype frequencies change during invasions, resulting in rapid evolution of naturalized populations. We used six fully replicated common garden experiments in Brazil where Pinus taeda (loblolly pine) was introduced at the same time, in the same numbers, from the same seed sources, and has formed naturalized populations expanding outward from the plantations. We used a combination of nonparametric, population genetics and multivariate statistics to detect changes in genotype frequencies along each of the six naturalization gradients and their association with climate as well as shifts in allele frequencies compared to the source populations. Results show 25 genes with significant shifts in genotype frequencies. Six genes had shifts in more than one population. Climate explained 25% of the variation in the groups of genes under selection across all locations, but specific genes under strong selection during invasions did not show climate-related convergence. In conclusion, we detected rapid evolutionary changes during invasive range expansions, but the particular gene-level patterns of evolution may be population specific. © 2015 John Wiley & Sons Ltd.
Shea, Patrick R; Beres, Stephen B; Flores, Anthony R; Ewbank, Amy L; Gonzalez-Lugo, Javier H; Martagon-Rosado, Alexandro J; Martinez-Gutierrez, Juan C; Rehman, Hina A; Serrano-Gonzalez, Monica; Fittipaldi, Nahuel; Ayers, Stephen D; Webb, Paul; Willey, Barbara M; Low, Donald E; Musser, James M
2011-03-22
Many pathogens colonize different anatomical sites, but the selective pressures contributing to survival in the diverse niches are poorly understood. Group A Streptococcus (GAS) is a human-adapted bacterium that causes a range of infections. Much effort has been expended to dissect the molecular basis of invasive (sterile-site) infections, but little is known about the genomes of strains causing pharyngitis (streptococcal "sore throat"). Additionally, there is essentially nothing known about the genetic relationships between populations of invasive and pharyngitis strains. In particular, it is unclear if invasive strains represent a distinct genetic subpopulation of strains that cause pharyngitis. We compared the genomes of 86 serotype M3 GAS pharyngitis strains with those of 215 invasive M3 strains from the same geographical location. The pharyngitis and invasive groups were highly related to each other and had virtually identical phylogenetic structures, indicating they belong to the same genetic pool. Despite the overall high degree of genetic similarity, we discovered that strains from different host environments (i.e., throat, normally sterile sites) have distinct patterns of diversifying selection at the nucleotide level. In particular, the pattern of polymorphisms in the hyaluronic acid capsule synthesis operon was especially different between the two strain populations. This finding was mirrored by data obtained from full-genome analysis of strains sequentially cultured from nonhuman primates. Our results answer the long-standing question of the genetic relationship between GAS pharyngitis and invasive strains. The data provide previously undescribed information about the evolutionary history of pathogenic microbes that cause disease in different anatomical sites.
Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels.
Cooper, Jacob C; Phadnis, Nitin
2017-07-01
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns.
Rojas, Bibiana
2017-05-01
The role of colours and colour patterns in behavioural ecology has been extensively studied in a variety of contexts and taxa, while almost overlooked in many others. For decades anurans have been the focus of research on acoustic signalling due to the prominence of vocalisations in their communication. Much less attention has been paid to the enormous diversity of colours, colour patterns, and other types of putative visual signals exhibited by frogs. With the exception of some anecdotal observations and studies, the link between colour patterns and the behavioural and evolutionary ecology of anurans had not been addressed until approximately two decades ago. Since then, there has been ever-increasing interest in studying how colouration is tied to different aspects of frog behaviour, ecology and evolution. Here I review the literature on three different contexts in which frog colouration has been recently studied: predator-prey interactions, intraspecific communication, and habitat use; and I highlight those aspects that make frogs an excellent, yet understudied, group to examine the role of colour in the evolution of anti-predation strategies and animal communication systems. Further, I argue that in addition to natural-history observations, more experiments are needed in order to elucidate the functions of anuran colouration and the selective pressures involved in its diversity. To conclude, I encourage researchers to strengthen current experimental approaches, and suggest future directions that may broaden our current understanding of the adaptive value of anuran colour pattern diversity. © 2016 Cambridge Philosophical Society.
2012-01-01
Background Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. Results Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. Conclusions MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species. PMID:23083308
Evolution of meiotic recombination genes in maize and teosinte.
Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P
2017-01-25
Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.
Clinical Issues-November 2017.
Johnstone, Esther M
2017-11-01
Heating, ventilation, and air-conditioning (HVAC) systems in the OR Key words: airborne contaminants, HVAC system, air pressure, air quality, temperature and humidity. Air changes and positive pressure Key words: air changes, positive pressure airflow, unidirectional airflow, outdoor air, recirculated air. Product selection Key word: product evaluation, product selection, selection committee. Entry into practice Key words: associate degree in nursing, bachelor of science in nursing, entry-level position, advanced education, BSN-prepared RNs. Mentoring in perioperative nursing Key words: mentor, novice, practice improvement, nursing workforce. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J
2016-05-11
Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.
Sexual differences in telomere selection in the wild.
Olsson, Mats; Pauliny, Angela; Wapstra, Erik; Uller, Tobias; Schwartz, Tonia; Miller, Emily; Blomqvist, Donald
2011-05-01
Telomere length is restored primarily through the action of the reverse transcriptase telomerase, which may contribute to a prolonged lifespan in some but not all species and may result in longer telomeres in one sex than the other. To what extent this is an effect of proximate mechanisms (e.g. higher stress in males, higher oestradiol/oestrogen levels in females), or is an evolved adaptation (stronger selection for telomere length in one sex), usually remains unknown. Sand lizard (Lacerta agilis) females have longer telomeres than males and better maintain telomere length through life than males do. We also show that telomere length more strongly contributes to life span and lifetime reproductive success in females than males and that telomere length is under sexually diversifying selection in the wild. Finally, we performed a selection analysis with number of recruited offspring into the adult population as a response variable with telomere length, life span and body size as predictor variables. This showed significant differences in selection pressures between the sexes with strong ongoing selection in females, with these three predictors explaining 63% of the variation in recruitment. Thus, the sexually dimorphic telomere dynamics with longer telomeres in females is a result of past and ongoing selection in sand lizards. Finally, we compared the results from our selection analyses based on Telometric-derived data to the results based on data generated by the software ImageJ. ImageJ resulted in shorter average telomere length, but this difference had virtually no qualitative effect on the patterns of ongoing selection. © 2011 Blackwell Publishing Ltd.
Methods and Systems for Configuring Sensor Acquisition Based on Pressure Steps
NASA Technical Reports Server (NTRS)
DeDonato, Mathew (Inventor)
2015-01-01
Technologies are provided for underwater measurements. A system includes an underwater vessels including: a plurality of sensors disposed thereon for measuring underwater properties; and a programmable controller configured to selectively activate the plurality of sensors based at least in part on underwater pressure. A user may program at what pressure ranges certain sensors are activated to measure selected properties, and may also program the ascent/descent rate of the underwater vessel, which is correlated with the underwater pressure.
Ibernon, Meritxell; Moreso, Francesc; Sarrias, Xavier; Sarrias, Maria; Grinyó, Josep M; Fernandez-Real, José M; Ricart, Wifredo; Serón, Daniel
2012-05-01
Cardiovascular disease is the major cause of morbidity and mortality after renal transplantation. It has been shown that both traditional and transplant-specific risk factors contribute to the high cardiovascular burden after renal transplantation The aim is to evaluate the association among ambulatory blood pressure monitoring (ABPM) at 3 months, inflammation and graft outcome. ABPM at 3 months was performed in 126 consecutive renal transplants. According to the nocturnal reduction of systolic blood pressure (SBP), dipper (ΔSBP ≥ 10%), non-dipper (0 < ΔSBP < 10%) and reverse dipper (SBP nocturnal rise) pattern were defined. The outcome variable was the combination of any cardiovascular event and graft failure for any reason. Circadian blood pressure pattern was dipper (n = 22), non-dipper (n = 65) and reverse dipper (n = 39). Reverse dipper pattern was associated with pre-transplant diabetes (18 versus 2%, P = 0.004), body mass index (26.9 ± 5.0 versus 24.8 ± 3.8 kg/m(2), P = 0.001), calcineurin inhibitor treatment (74 versus 54%, P = 0.001) and serum soluble tumour necrosis factor receptor 2 levels (18 ± 15 versus 11 ± 6 ng/mL, P = 0.010). During 45 ± 11 months of follow-up, 22 patients reached the combined outcome variable. Multivariate Cox regression analysis showed that reverse dipper pattern [relative risk (RR): 3.50 and 95% confidence interval (CI): 1.36-8.93; P = 0.009] and creatinine clearance (RR: 0.94 and 95% CI: 0.91-0.98, P = 0.003) were independently associated with outcome. The reverse dipper circadian pattern is associated with inflammation and constitutes an independent predictor of graft outcome.
Ecological release and venom evolution of a predatory marine snail at Easter Island.
Duda, Thomas F; Lee, Taehwan
2009-05-20
Ecological release is coupled with adaptive radiation and ecological diversification yet little is known about the molecular basis of phenotypic changes associated with this phenomenon. The venomous, predatory marine gastropod Conus miliaris has undergone ecological release and exhibits increased dietary breadth at Easter Island. We examined the extent of genetic differentiation of two genes expressed in the venom of C. miliaris among samples from Easter Island, American Samoa and Guam. The population from Easter Island exhibits unique frequencies of alleles that encode distinct peptides at both loci. Levels of divergence at these loci exceed observed levels of divergence observed at a mitochondrial gene region at Easter Island. Patterns of genetic variation at two genes expressed in the venom of this C. miliaris suggest that selection has operated at these genes and contributed to the divergence of venom composition at Easter Island. These results show that ecological release is associated with strong selection pressures that promote the evolution of new phenotypes.
Geometric morphometrics reveals sex-differential shape allometry in a spider.
Fernández-Montraveta, Carmen; Marugán-Lobón, Jesús
2017-01-01
Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly results from sexual selection operating on males. However, testing predictions from this hypothesis, particularly male size hyperallometry, has been restricted by methodological constraints. Here, using geometric morphometrics (GMM) we studied for the first time sex-differential shape allometry in a spider ( Donacosa merlini , Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased) of spider sexual size dimorphism. GMM reveals previously undetected sex-differential shape allometry and sex-related shape differences that are size independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape dimorphism affects both the relative carapace-to-opisthosoma size and the carapace geometry, arguably resulting from sex differences in both reproductive roles (female egg load and male competition) and life styles (wandering males and burrowing females). Our results demonstrate that body portions may vary modularly in response to different selection pressures, giving rise to sex differences in shape, which reconciles previously considered mutually exclusive interpretations about the origins of spider SD.
Temporal and spatial variation of hematozoans in Scandinavian willow warblers.
Bensch, Staffan; Akesson, Susanne
2003-04-01
We examined temporal and geographical distribution of Haemoproteus sp. and Plasmodium sp. parasites in Swedish willow warblers, Phylloscopus trochilus. Parasite lineages were detected with molecular methods in 556 birds from 41 sites distributed at distances up to 1,500 km. Two mitochondrial lineages of Haemoproteus sp. were detected, WW1 in 56 birds and WW2 in 75 birds, that differed by 5.2% sequence divergence. We discuss the reasons behind the observed pattern of variation and identify 3 possible causes: (1) variation in the geographic distribution of the vector species, (2) the degree of parasite sharing with other bird species coexisting with the willow warbler, and (3) timing of transmission. Our results support a fundamental and rarely tested assumption of the now classical Hamilton-Zuk hypothesis of sexual selection, namely, that these parasites vary in both time and space. Such fluctuations of parasites and the selection pressure they supposedly impose on the host population are likely to maintain variation in immune system genes in the host population.
Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.
Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto
2008-04-01
Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.
Dick, Daniel G.; Maxwell, Erin E.
2015-01-01
We explore the functional, developmental, and evolutionary processes which are argued to produce tooth reduction in the extinct marine reptile Stenopterygius quadriscissus (Reptilia: Ichthyosauria). We analyze the relationship between mandible growth and tooth size, shape, and count, to establish an ontogenetic trend. The pattern in S. quadriscissus is consistent with hypotheses of tooth size reduction by neutral selection, and this unusual morphology (a functionally edentulous rostrum) was produced by a series of different evolutionary developmental changes that are known for other taxa showing tooth reduction and loss. Specifically, this species evolved functional edentulism by evolutionary changes in the growth allometry of the dentition and by altering growth rates through ontogeny. This observation supports previous hypotheses that S. quadriscissus underwent ontogenetic tooth reduction. Tooth reduction in S. quadriscissus may be caused by unique selective pressures resulting from prey choice and feeding behavior, expanding our current understanding of the mechanisms producing tooth reduction. PMID:26579712