Sample records for selective analytical methods

  1. SAM Radiochemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target radiochemical analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select radiochemical analytes.

  2. SAM Pathogen Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target pathogen analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select pathogens.

  3. SAM Biotoxin Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select biotoxins.

  4. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) - Home

    EPA Pesticide Factsheets

    The SAM Home page provides access to all information provided in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), and includes a query function allowing users to search methods by analyte, sample type and instrumentation.

  5. Updates to Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    View information on the latest updates to methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including the newest recommended methods and publications.

  6. External Standards or Standard Addition? Selecting and Validating a Method of Standardization

    NASA Astrophysics Data System (ADS)

    Harvey, David T.

    2002-05-01

    A common feature of many problem-based laboratories in analytical chemistry is a lengthy independent project involving the analysis of "real-world" samples. Students research the literature, adapting and developing a method suitable for their analyte, sample matrix, and problem scenario. Because these projects encompass the complete analytical process, students must consider issues such as obtaining a representative sample, selecting a method of analysis, developing a suitable standardization, validating results, and implementing appropriate quality assessment/quality control practices. Most textbooks and monographs suitable for an undergraduate course in analytical chemistry, however, provide only limited coverage of these important topics. The need for short laboratory experiments emphasizing important facets of method development, such as selecting a method of standardization, is evident. The experiment reported here, which is suitable for an introductory course in analytical chemistry, illustrates the importance of matrix effects when selecting a method of standardization. Students also learn how a spike recovery is used to validate an analytical method, and obtain a practical experience in the difference between performing an external standardization and a standard addition.

  7. Basic Information for EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    Contains basic information on the role and origins of the Selected Analytical Methods including the formation of the Homeland Security Laboratory Capacity Work Group and the Environmental Evaluation Analytical Process Roadmap for Homeland Security Events

  8. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  9. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  10. The Importance of Method Selection in Determining Product Integrity for Nutrition Research1234

    PubMed Central

    Mudge, Elizabeth M; Brown, Paula N

    2016-01-01

    The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application. PMID:26980823

  11. The Importance of Method Selection in Determining Product Integrity for Nutrition Research.

    PubMed

    Mudge, Elizabeth M; Betz, Joseph M; Brown, Paula N

    2016-03-01

    The American Herbal Products Association estimates that there as many as 3000 plant species in commerce. The FDA estimates that there are about 85,000 dietary supplement products in the marketplace. The pace of product innovation far exceeds that of analytical methods development and validation, with new ingredients, matrixes, and combinations resulting in an analytical community that has been unable to keep up. This has led to a lack of validated analytical methods for dietary supplements and to inappropriate method selection where methods do exist. Only after rigorous validation procedures to ensure that methods are fit for purpose should they be used in a routine setting to verify product authenticity and quality. By following systematic procedures and establishing performance requirements for analytical methods before method development and validation, methods can be developed that are both valid and fit for purpose. This review summarizes advances in method selection, development, and validation regarding herbal supplement analysis and provides several documented examples of inappropriate method selection and application. © 2016 American Society for Nutrition.

  12. SAM Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation

  13. SAM Chemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery

  14. Rational Selection, Criticality Assessment, and Tiering of Quality Attributes and Test Methods for Analytical Similarity Evaluation of Biosimilars.

    PubMed

    Vandekerckhove, Kristof; Seidl, Andreas; Gutka, Hiten; Kumar, Manish; Gratzl, Gyöngyi; Keire, David; Coffey, Todd; Kuehne, Henriette

    2018-05-10

    Leading regulatory agencies recommend biosimilar assessment to proceed in a stepwise fashion, starting with a detailed analytical comparison of the structural and functional properties of the proposed biosimilar and reference product. The degree of analytical similarity determines the degree of residual uncertainty that must be addressed through downstream in vivo studies. Substantive evidence of similarity from comprehensive analytical testing may justify a targeted clinical development plan, and thus enable a shorter path to licensing. The importance of a careful design of the analytical similarity study program therefore should not be underestimated. Designing a state-of-the-art analytical similarity study meeting current regulatory requirements in regions such as the USA and EU requires a methodical approach, consisting of specific steps that far precede the work on the actual analytical study protocol. This white paper discusses scientific and methodological considerations on the process of attribute and test method selection, criticality assessment, and subsequent assignment of analytical measures to US FDA's three tiers of analytical similarity assessment. Case examples of selection of critical quality attributes and analytical methods for similarity exercises are provided to illustrate the practical implementation of the principles discussed.

  15. Selected field and analytical methods and analytical results in the Dutch Flats area, western Nebraska, 1995-99

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Steele, G.V.; Cannia, J.C.; Bohlke, J.K.; Kraemer, T.E.; Hitch, D.E.; Wilson, K.E.; Carnes, A.E.

    2001-01-01

    A study of the water resources of the Dutch Flats area in the western part of the North Platte Natural Resources District, western Nebraska, was conducted from 1995 through 1999 to describe the surface water and hydrogeology, the spatial distribution of selected water-quality constituents in surface and ground water, and the surface-water/ground-water interaction in selected areas. This report describes the selected field and analytical methods used in the study and selected analytical results from the study not previously published. Specifically, dissolved gases, age-dating data, and other isotopes collected as part of an intensive sampling effort in August and November 1998 and all uranium and uranium isotope data collected through the course of this study are included in the report.

  16. IMMUNOCHEMICAL APPLICATIONS IN ENVIRONMENTAL SCIENCE

    EPA Science Inventory

    Immunochemical methods are based on selective antibodies combining with a particular target analyte or analyte group. The specific binding between antibody and analyte can be used to detect environmental contaminants in a variety of sample matrixes. Immunoassay methods provide ...

  17. SAM Companion Documents

    EPA Pesticide Factsheets

    SAM Companion Documents and Sample Collection Procedures provide information intended to complement the analytical methods listed in Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  18. Selection of Wavelengths for Optimum Precision in Simultaneous Spectrophotometric Determinations.

    ERIC Educational Resources Information Center

    DiTusa, Michael R.; Schilt, Alfred A.

    1985-01-01

    Although many textbooks include a description of simultaneous determinations employing absorption spectrophotometry and treat the mathematics necessary for analytical quantitations, treatment of analytical wavelength selection has been mostly qualitative. Therefore, a general method for selecting wavelengths for optimum precision in simultaneous…

  19. Selectivity in analytical chemistry: two interpretations for univariate methods.

    PubMed

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-01-01

    Selectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled. The error based selectivity is very general and very safe but its application to a range of samples (as opposed to a single sample) requires the knowledge of some constraint about the possible sample compositions. The selectivity concepts based on the response surface are easily applied to linear response surfaces but may lead to difficulties and counterintuitive results when applied to nonlinear response surfaces. A particular advantage of this class of selectivity is that with linear response surfaces it can provide a concentration independent measure of selectivity. In contrast, the error based selectivity concept allows only yes/no type decision about selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sol-Gel Matrices For Direct Colorimetric Detection Of Analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2002-11-26

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  1. Sol-gel matrices for direct colorimetric detection of analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  2. On-line solid-phase microextraction of triclosan, bisphenol A, chlorophenols, and selected pharmaceuticals in environmental water samples by high-performance liquid chromatography-ultraviolet detection.

    PubMed

    Kim, Dalho; Han, Jungho; Choi, Yongwook

    2013-01-01

    A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol-water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar-polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng L(-1), except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.

  3. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill.

    PubMed

    Adhikari, Puspa L; Wong, Roberto L; Overton, Edward B

    2017-10-01

    Accurate characterization of petroleum hydrocarbons in complex and weathered oil residues is analytically challenging. This is primarily due to chemical compositional complexity of both the oil residues and environmental matrices, and the lack of instrumental selectivity due to co-elution of interferences with the target analytes. To overcome these analytical selectivity issues, we used an enhanced resolution gas chromatography coupled with triple quadrupole mass spectrometry in Multiple Reaction Monitoring (MRM) mode (GC/MS/MS-MRM) to eliminate interferences within the ion chromatograms of target analytes found in environmental samples. This new GC/MS/MS-MRM method was developed and used for forensic fingerprinting of deep-water and marsh sediment samples containing oily residues from the Deepwater Horizon oil spill. The results showed that the GC/MS/MS-MRM method increases selectivity, eliminates interferences, and provides more accurate quantitation and characterization of trace levels of alkyl-PAHs and biomarker compounds, from weathered oil residues in complex sample matrices. The higher selectivity of the new method, even at low detection limits, provides greater insights on isomer and homolog compositional patterns and the extent of oil weathering under various environmental conditions. The method also provides flat chromatographic baselines for accurate and unambiguous calculation of petroleum forensic biomarker compound ratios. Thus, this GC/MS/MS-MRM method can be a reliable analytical strategy for more accurate and selective trace level analyses in petroleum forensic studies, and for tacking continuous weathering of oil residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Safety and Waste Management for SAM Chemistry Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Safety and Waste Management for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  6. Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.

    PubMed

    Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María

    2017-01-01

    This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.

  7. Net analyte signal-based simultaneous determination of ethanol and water by quartz crystal nanobalance sensor.

    PubMed

    Mirmohseni, A; Abdollahi, H; Rostamizadeh, K

    2007-02-28

    Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 microg mL(-1) for ethanol and 7.01-28.07 microg mL(-1) for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.

  8. ELEGANT ENVIRONMENTAL IMMUNOASSAYS

    EPA Science Inventory

    Immunochemical methods are based on selective antibodies directed to a particular target analyte. The specific binding between antibody and analyte can be used for detection and quantitation. Methods such as the enzyme-linked immunosorbent assay (ELISA) can provide a sensitiv...

  9. Field Sampling and Selecting On-Site Analytical Methods for Explosives in Soil

    EPA Pesticide Factsheets

    The purpose of this issue paper is to provide guidance to Remedial Project Managers regarding field sampling and on-site analytical methods fordetecting and quantifying secondary explosive compounds in soils.

  10. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of selected carbamate pesticides in water by high-performance liquid chromatography

    USGS Publications Warehouse

    Werner, S.L.; Johnson, S.M.

    1994-01-01

    As part of its primary responsibility concerning water as a national resource, the U.S. Geological Survey collects and analyzes samples of ground water and surface water to determine water quality. This report describes the method used since June 1987 to determine selected total-recoverable carbamate pesticides present in water samples. High- performance liquid chromatography is used to separate N-methyl carbamates, N-methyl carbamoyloximes, and an N-phenyl carbamate which have been extracted from water and concentrated in dichloromethane. Analytes, surrogate compounds, and reference compounds are eluted from the analytical column within 25 minutes. Two modes of analyte detection are used: (1) a photodiode-array detector measures and records ultraviolet-absorbance profiles, and (2) a fluorescence detector measures and records fluorescence from an analyte derivative produced when analyte hydrolysis is combined with chemical derivatization. Analytes are identified and confirmed in a three-stage process by use of chromatographic retention time, ultraviolet (UV) spectral comparison, and derivatization/fluorescence detection. Quantitative results are based on the integration of single-wavelength UV-absorbance chromatograms and on comparison with calibration curves derived from external analyte standards that are run with samples as part of an instrumental analytical sequence. Estimated method detection limits vary for each analyte, depending on the sample matrix conditions, and range from 0.5 microgram per liter to as low as 0.01 microgram per liter. Reporting levels for all analytes have been set at 0.5 microgram per liter for this method. Corrections on the basis of percentage recoveries of analytes spiked into distilled water are not applied to values calculated for analyte concentration in samples. These values for analyte concentrations instead indicate the quantities recovered by the method from a particular sample matrix.

  11. METHOD 544. DETERMINATION OF MICROCYSTINS AND ...

    EPA Pesticide Factsheets

    Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensitivity and ability to speciate the microcystins. This method development task establishes sample preservation techniques, sample concentration and analytical procedures, aqueous and extract holding time criteria and quality control procedures. Draft Method 544 undergone a multi-laboratory verification to ensure other laboratories can implement the method and achieve the quality control measures specified in the method. It is anticipated that Method 544 may be used in UCMR 4 to collect nationwide occurrence data for selected microcystins in drinking water. The purpose of this research project is to develop an accurate and precise analytical method to concentrate and determine selected MCs and nodularin in drinking water.

  12. Applicability of bioanalysis of multiple analytes in drug discovery and development: review of select case studies including assay development considerations.

    PubMed

    Srinivas, Nuggehally R

    2006-05-01

    The development of sound bioanalytical method(s) is of paramount importance during the process of drug discovery and development culminating in a marketing approval. Although the bioanalytical procedure(s) originally developed during the discovery stage may not necessarily be fit to support the drug development scenario, they may be suitably modified and validated, as deemed necessary. Several reviews have appeared over the years describing analytical approaches including various techniques, detection systems, automation tools that are available for an effective separation, enhanced selectivity and sensitivity for quantitation of many analytes. The intention of this review is to cover various key areas where analytical method development becomes necessary during different stages of drug discovery research and development process. The key areas covered in this article with relevant case studies include: (a) simultaneous assay for parent compound and metabolites that are purported to display pharmacological activity; (b) bioanalytical procedures for determination of multiple drugs in combating a disease; (c) analytical measurement of chirality aspects in the pharmacokinetics, metabolism and biotransformation investigations; (d) drug monitoring for therapeutic benefits and/or occupational hazard; (e) analysis of drugs from complex and/or less frequently used matrices; (f) analytical determination during in vitro experiments (metabolism and permeability related) and in situ intestinal perfusion experiments; (g) determination of a major metabolite as a surrogate for the parent molecule; (h) analytical approaches for universal determination of CYP450 probe substrates and metabolites; (i) analytical applicability to prodrug evaluations-simultaneous determination of prodrug, parent and metabolites; (j) quantitative determination of parent compound and/or phase II metabolite(s) via direct or indirect approaches; (k) applicability in analysis of multiple compounds in select disease areas and/or in clinically important drug-drug interaction studies. A tabular representation of select examples of analysis is provided covering areas of separation conditions, validation aspects and applicable conclusion. A limited discussion is provided on relevant aspects of the need for developing bioanalytical procedures for speedy drug discovery and development. Additionally, some key elements such as internal standard selection, likely issues of mass detection, matrix effect, chiral aspects etc. are provided for consideration during method development.

  13. Sensitive analytical method for simultaneous analysis of some vasoconstrictors with highly overlapped analytical signals

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Žerajić, S.; Cakić, M.

    2011-10-01

    Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.

  14. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    DOEpatents

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  15. Dominating Scale-Free Networks Using Generalized Probabilistic Methods

    PubMed Central

    Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.

    2014-01-01

    We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937

  16. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases.

    PubMed

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline

    2015-08-21

    Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5μm fully porous or 2.6-2.7μm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOEpatents

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  18. BIOMOLECULAR SENSING FOR BIOLOGICAL PROCESSES AND ENVIRONMENTAL MONITORING APPLICATIONS

    EPA Science Inventory

    Biomolecular recognition is being increasingly employed as the basis for a variety of analytical methods such as biosensors. he sensitivity, selectivity, and format versatility inherent in these methods may allow them to be adapted to solving a number of analytical problems. ltho...

  19. Methods and devices for high-throughput dielectrophoretic concentration

    DOEpatents

    Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  20. Validation of the analytical method for the simultaneous determination of selected polybrominated diphenyl ethers, polychlorinated biphenyls and organochlorine pesticides in human blood serum by gas chromatography with microelectron capture detector.

    PubMed

    Matuszak, Małgorzata; Minorczyk, Maria; Góralczyk, Katarzyna; Hernik, Agnieszka; Struciński, Paweł; Liszewska, Monika; Czaja, Katarzyna; Korcz, Wojciech; Łyczewska, Monika; Ludwicki, Jan K

    2016-01-01

    Polybrominated diphenyl ethers (PBDEs) as other persistent organic pollutants like polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) pose a significant hazard to human health, mainly due to interference with the endocrine system and carcinogenetic effects. Humans are exposed to these substances mainly through a food of animal origin. These pollutants are globally detected in human matrices which requires to dispose reliable and simple analytical method that would enable further studies to assess the exposure of specific human populations to these compounds. The purpose of this study was to modify and validate of the analytical procedure for the simultaneous determination of selected PBDEs, PCBs and OCPs in human blood serum samples. The analytical measurement was performed by GC-µECD following preparation of serum samples (denaturation, multiple extraction, lipid removal). Identity of the compounds was confirmed by GC-MS. The method was characterised by the appropriate linearity, good repeatability (CV below 20%). The recoveries ranged from 52.9 to 125.0% depending on compound and level of fortification. The limit of quantification was set at 0.03 ng mL(-1) of serum. The modified analytical method proved to be suitable for the simultaneous determination of selected PBDEs, PCBs and OCPs in human blood serum by GC-µECD with good precision.

  1. Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels

    DOEpatents

    Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.

    2002-01-01

    This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.

  2. Method 1200: Analytical Protocol for Non-Typhoidal Salmonella in Drinking Water and Surface Water

    EPA Pesticide Factsheets

    Method 1200 is used for identification, confirmation and quantitation of non-typhoidal Salmonella in water samples, using selective and non-selective media followed by biochemical and serological confirmation.

  3. Identifying or measuring selected substances or toxins in a subject using resonant raman signals

    NASA Technical Reports Server (NTRS)

    Borchert, Mark S. (Inventor); Lambert, James L. (Inventor)

    2005-01-01

    Methods and systems of the present invention identify the presence of and/or the concentration of a selected analyte in a subject by: (a) illuminating a selected region of the eye of a subject with an optical excitation beam, wherein the excitation beam wavelength is selected to generate a resonant Raman spectrum of the selected analyte with a signal strength that is at least 100 times greater than Raman spectrums generated by non-resonant wavelengths and/or relative to signals of normal constituents present in the selected region of the eye; (b) detecting a resonant Raman spectrum corresponding to the selected illuminated region of the eye; and (c) identifying the presence, absence and/or the concentration of the selected analyte in the subject based on said detecting step. The apparatus may also be configured to be able to obtain biometric data of the eye to identify (confirm the identity of) the subject.

  4. Considerations regarding the validation of chromatographic mass spectrometric methods for the quantification of endogenous substances in forensics.

    PubMed

    Hess, Cornelius; Sydow, Konrad; Kueting, Theresa; Kraemer, Michael; Maas, Alexandra

    2018-02-01

    The requirement for correct evaluation of forensic toxicological results in daily routine work and scientific studies is reliable analytical data based on validated methods. Validation of a method gives the analyst tools to estimate the efficacy and reliability of the analytical method. Without validation, data might be contested in court and lead to unjustified legal consequences for a defendant. Therefore, new analytical methods to be used in forensic toxicology require careful method development and validation of the final method. Until now, there are no publications on the validation of chromatographic mass spectrometric methods for the detection of endogenous substances although endogenous analytes can be important in Forensic Toxicology (alcohol consumption marker, congener alcohols, gamma hydroxy butyric acid, human insulin and C-peptide, creatinine, postmortal clinical parameters). For these analytes, conventional validation instructions cannot be followed completely. In this paper, important practical considerations in analytical method validation for endogenous substances will be discussed which may be used as guidance for scientists wishing to develop and validate analytical methods for analytes produced naturally in the human body. Especially the validation parameters calibration model, analytical limits, accuracy (bias and precision) and matrix effects and recovery have to be approached differently. Highest attention should be paid to selectivity experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An active learning representative subset selection method using net analyte signal.

    PubMed

    He, Zhonghai; Ma, Zhenhe; Luan, Jingmin; Cai, Xi

    2018-05-05

    To guarantee accurate predictions, representative samples are needed when building a calibration model for spectroscopic measurements. However, in general, it is not known whether a sample is representative prior to measuring its concentration, which is both time-consuming and expensive. In this paper, a method to determine whether a sample should be selected into a calibration set is presented. The selection is based on the difference of Euclidean norm of net analyte signal (NAS) vector between the candidate and existing samples. First, the concentrations and spectra of a group of samples are used to compute the projection matrix, NAS vector, and scalar values. Next, the NAS vectors of candidate samples are computed by multiplying projection matrix with spectra of samples. Scalar value of NAS is obtained by norm computation. The distance between the candidate set and the selected set is computed, and samples with the largest distance are added to selected set sequentially. Last, the concentration of the analyte is measured such that the sample can be used as a calibration sample. Using a validation test, it is shown that the presented method is more efficient than random selection. As a result, the amount of time and money spent on reference measurements is greatly reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. An active learning representative subset selection method using net analyte signal

    NASA Astrophysics Data System (ADS)

    He, Zhonghai; Ma, Zhenhe; Luan, Jingmin; Cai, Xi

    2018-05-01

    To guarantee accurate predictions, representative samples are needed when building a calibration model for spectroscopic measurements. However, in general, it is not known whether a sample is representative prior to measuring its concentration, which is both time-consuming and expensive. In this paper, a method to determine whether a sample should be selected into a calibration set is presented. The selection is based on the difference of Euclidean norm of net analyte signal (NAS) vector between the candidate and existing samples. First, the concentrations and spectra of a group of samples are used to compute the projection matrix, NAS vector, and scalar values. Next, the NAS vectors of candidate samples are computed by multiplying projection matrix with spectra of samples. Scalar value of NAS is obtained by norm computation. The distance between the candidate set and the selected set is computed, and samples with the largest distance are added to selected set sequentially. Last, the concentration of the analyte is measured such that the sample can be used as a calibration sample. Using a validation test, it is shown that the presented method is more efficient than random selection. As a result, the amount of time and money spent on reference measurements is greatly reduced.

  7. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.

    2001-01-01

    A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.

  8. Analysis of Environmental Contamination resulting from ...

    EPA Pesticide Factsheets

    Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to safe levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illu

  9. Molecularly imprinted solid-phase extraction for selective extraction of bisphenol analogues in beverages and canned food.

    PubMed

    Yang, Yunjia; Yu, Jianlong; Yin, Jie; Shao, Bing; Zhang, Jing

    2014-11-19

    This study aimed to develop a selective analytical method for the simultaneous determination of seven bisphenol analogues in beverage and canned food samples by using a new molecularly imprinted polymer (MIP) as a sorbent for solid-phase extraction (SPE). Liquid chromatography coupled to triple-quadruple tandem mass spectrometry (LC-MS/MS) was used to identify and quantify the target analytes. The MIP-SPE method exhibited a higher level of selectivity and purification than the traditional SPE method. The developed procedures were further validated in terms of accuracy, precision, and sensitivity. The obtained recoveries varied from 50% to 103% at three fortification levels and yielded a relative standard deviation (RSD, %) of less than 15% for all of the analytes. The limits of quantification (LOQ) for the seven analytes varied from 0.002 to 0.15 ng/mL for beverage samples and from 0.03 to 1.5 ng/g for canned food samples. This method was used to analyze real samples that were collected from a supermarket in Beijing. Overall, the results revealed that bisphenol A and bisphenol F were the most frequently detected bisphenols in the beverage and canned food samples and that their concentrations were closely associated with the type of packaging material. This study provides an alternative method of traditional SPE extraction for screening bisphenol analogues in food matrices.

  10. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  11. Exhaled breath condensate – from an analytical point of view

    PubMed Central

    Dodig, Slavica; Čepelak, Ivana

    2013-01-01

    Over the past three decades, the goal of many researchers is analysis of exhaled breath condensate (EBC) as noninvasively obtained sample. A total quality in laboratory diagnostic processes in EBC analysis was investigated: pre-analytical (formation, collection, storage of EBC), analytical (sensitivity of applied methods, standardization) and post-analytical (interpretation of results) phases. EBC analysis is still used as a research tool. Limitations referred to pre-analytical, analytical, and post-analytical phases of EBC analysis are numerous, e.g. low concentrations of EBC constituents, single-analyte methods lack in sensitivity, and multi-analyte has not been fully explored, and reference values are not established. When all, pre-analytical, analytical and post-analytical requirements are met, EBC biomarkers as well as biomarker patterns can be selected and EBC analysis can hopefully be used in clinical practice, in both, the diagnosis and in the longitudinal follow-up of patients, resulting in better outcome of disease. PMID:24266297

  12. Evaluation of selected methods for determining streamflow during periods of ice effect

    USGS Publications Warehouse

    Melcher, N.B.; Walker, J.F.

    1990-01-01

    The methods are classified into two general categories, subjective and analytical, depending on whether individual judgement is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods, and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used for streamflow-gaging stations where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice adjustment factor) may be appropriate for use for stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge ratio and multiple regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.

  13. Analysis of environmental contamination resulting from catastrophic incidents: part 2. Building laboratory capability by selecting and developing analytical methodologies.

    PubMed

    Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba

    2014-11-01

    Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity. However, the same techniques discussed could also have application to catastrophes resulting from other incidents, such as natural disasters or industrial accidents. Further, the high sample throughput enabled by the techniques discussed could be employed for conventional environmental studies and compliance monitoring, potentially decreasing costs and/or increasing the quantity of data available to decision-makers. Published by Elsevier Ltd.

  14. 40 CFR 63.7521 - What fuel analyses and procedures must I use?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., at a point prior to mixing with other dissimilar fuel types. (iv) For each fuel type, the analytical methods, with the expected minimum detection levels, to be used for the measurement of selected total metals, chlorine, or mercury. (v) If you request to use an alternative analytical method other than those...

  15. RESEARCH TOWARDS DEVELOPING METHODS FOR SELECTED PHARMACEUTICAL AND PERSONAL CARE PRODUCTS (PPCPS) ADAPTED FOR BIOSOLIDS

    EPA Science Inventory

    Development, standardization, and validation of analytical methods provides state-of-the-science

    techniques to evaluate the presence, or absence, of select PPCPs in biosolids. This research

    provides the approaches, methods, and tools to assess the exposures and redu...

  16. EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water by Direct Aqueous Injection-Liquid Chromatography/Tandem Mass Spectrometry (DAI-LC/MS/MS)

    EPA Pesticide Factsheets

    EPA’s Selected Analytical Methods for Environmental Remediation and Recovery (SAM) lists this method for preparation and analysis of drinking water samples to detect and measure acephate, diisopropyl methylphosphonate (DIMP), methamidophos and thiofanox.

  17. Development of a Simultaneous Extraction and Cleanup Method for Pyrethroid Pesticides from Indoor House Dust Samples

    EPA Science Inventory

    An efficient and reliable analytical method was developed for the sensitive and selective quantification of pyrethroid pesticides (PYRs) in house dust samples. The method is based on selective pressurized liquid extraction (SPLE) of the dust-bound PYRs into dichloromethane (DCM) wi...

  18. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory.

    PubMed

    Olivieri, Alejandro C

    2005-08-01

    Sensitivity and selectivity are important figures of merit in multiway analysis, regularly employed for comparison of the analytical performance of methods and for experimental design and planning. They are especially interesting in the second-order advantage scenario, where the latter property allows for the analysis of samples with a complex background, permitting analyte determination even in the presence of unsuspected interferences. Since no general theory exists for estimating the multiway sensitivity, Monte Carlo numerical calculations have been developed for estimating variance inflation factors, as a convenient way of assessing both sensitivity and selectivity parameters for the popular parallel factor (PARAFAC) analysis and also for related multiway techniques. When the second-order advantage is achieved, the existing expressions derived from net analyte signal theory are only able to adequately cover cases where a single analyte is calibrated using second-order instrumental data. However, they fail for certain multianalyte cases, or when third-order data are employed, calling for an extension of net analyte theory. The results have strong implications in the planning of multiway analytical experiments.

  19. Evaluation of selected methods for determining streamflow during periods of ice effect

    USGS Publications Warehouse

    Melcher, Norwood B.; Walker, J.F.

    1992-01-01

    Seventeen methods for estimating ice-affected streamflow are evaluated for potential use with the U.S. Geological Survey streamflow-gaging station network. The methods evaluated were identified by written responses from U.S. Geological Survey field offices and by a comprehensive literature search. The methods selected and techniques used for applying the methods are described in this report. The methods are evaluated by comparing estimated results with data collected at three streamflow-gaging stations in Iowa during the winter of 1987-88. Discharge measurements were obtained at 1- to 5-day intervals during the ice-affected periods at the three stations to define an accurate baseline record. Discharge records were compiled for each method based on data available, assuming a 6-week field schedule. The methods are classified into two general categories-subjective and analytical--depending on whether individual judgment is necessary for method application. On the basis of results of the evaluation for the three Iowa stations, two of the subjective methods (discharge ratio and hydrographic-and-climatic comparison) were more accurate than the other subjective methods and approximately as accurate as the best analytical method. Three of the analytical methods (index velocity, adjusted rating curve, and uniform flow) could potentially be used at streamflow-gaging stations, where the need for accurate ice-affected discharge estimates justifies the expense of collecting additional field data. One analytical method (ice-adjustment factor) may be appropriate for use at stations with extremely stable stage-discharge ratings and measuring sections. Further research is needed to refine the analytical methods. The discharge-ratio and multiple-regression methods produce estimates of streamflow for varying ice conditions using information obtained from the existing U.S. Geological Survey streamflow-gaging network.

  20. Method development and validation for simultaneous quantification of 15 drugs of abuse and prescription drugs and 7 of their metabolites in whole blood relevant in the context of driving under the influence of drugs--usefulness of multi-analyte calibration.

    PubMed

    Steuer, Andrea E; Forss, Anna-Maria; Dally, Annika M; Kraemer, Thomas

    2014-11-01

    In the context of driving under the influence of drugs (DUID), not only common drugs of abuse may have an influence, but also medications with similar mechanisms of action. Simultaneous quantification of a variety of drugs and medications relevant in this context allows faster and more effective analyses. Therefore, multi-analyte approaches have gained more and more popularity in recent years. Usually, calibration curves for such procedures contain a mixture of all analytes, which might lead to mutual interferences. In this study we investigated whether the use of such mixtures leads to reliable results for authentic samples containing only one or two analytes. Five hundred microliters of whole blood were extracted by routine solid-phase extraction (SPE, HCX). Analysis was performed on an ABSciex 3200 QTrap instrument with ESI+ in scheduled MRM mode. The method was fully validated according to international guidelines including selectivity, recovery, matrix effects, accuracy and precision, stabilities, and limit of quantification. The selected SPE provided recoveries >60% for all analytes except 6-monoacetylmorphine (MAM) with coefficients of variation (CV) below 15% or 20% for quality controls (QC) LOW and HIGH, respectively. Ion suppression >30% was found for benzoylecgonine, hydrocodone, hydromorphone, MDA, oxycodone, and oxymorphone at QC LOW, however CVs were always below 10% (n=6 different whole blood samples). Accuracy and precision criteria were fulfilled for all analytes except for MAM. Systematic investigation of accuracy determined for QC MED in a multi-analyte mixture compared to samples containing only single analytes revealed no relevant differences for any analyte, indicating that a multi-analyte calibration is suitable for the presented method. Comparison of approximately 60 samples to a former GC-MS method showed good correlation. The newly validated method was successfully applied to more than 1600 routine samples and 3 proficiency tests. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. A probabilistic and multi-objective analysis of lexicase selection and ε-lexicase selection.

    PubMed

    Cava, William La; Helmuth, Thomas; Spector, Lee; Moore, Jason H

    2018-05-10

    Lexicase selection is a parent selection method that considers training cases individually, rather than in aggregate, when performing parent selection. Whereas previous work has demonstrated the ability of lexicase selection to solve difficult problems in program synthesis and symbolic regression, the central goal of this paper is to develop the theoretical underpinnings that explain its performance. To this end, we derive an analytical formula that gives the expected probabilities of selection under lexicase selection, given a population and its behavior. In addition, we expand upon the relation of lexicase selection to many-objective optimization methods to describe the behavior of lexicase selection, which is to select individuals on the boundaries of Pareto fronts in high-dimensional space. We show analytically why lexicase selection performs more poorly for certain sizes of population and training cases, and show why it has been shown to perform more poorly in continuous error spaces. To address this last concern, we propose new variants of ε-lexicase selection, a method that modifies the pass condition in lexicase selection to allow near-elite individuals to pass cases, thereby improving selection performance with continuous errors. We show that ε-lexicase outperforms several diversity-maintenance strategies on a number of real-world and synthetic regression problems.

  2. Analytical method development of nifedipine and its degradants binary mixture using high performance liquid chromatography through a quality by design approach

    NASA Astrophysics Data System (ADS)

    Choiri, S.; Ainurofiq, A.; Ratri, R.; Zulmi, M. U.

    2018-03-01

    Nifedipin (NIF) is a photo-labile drug that easily degrades when it exposures a sunlight. This research aimed to develop of an analytical method using a high-performance liquid chromatography and implemented a quality by design approach to obtain effective, efficient, and validated analytical methods of NIF and its degradants. A 22 full factorial design approach with a curvature as a center point was applied to optimize of the analytical condition of NIF and its degradants. Mobile phase composition (MPC) and flow rate (FR) as factors determined on the system suitability parameters. The selected condition was validated by cross-validation using a leave one out technique. Alteration of MPC affected on time retention significantly. Furthermore, an increase of FR reduced the tailing factor. In addition, the interaction of both factors affected on an increase of the theoretical plates and resolution of NIF and its degradants. The selected analytical condition of NIF and its degradants has been validated at range 1 – 16 µg/mL that had good linearity, precision, accuration and efficient due to an analysis time within 10 min.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ehwang; Gao, Yuqian; Wu, Chaochao

    Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less

  4. Quality Control Guidelines for SAM Chemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. Quality Control Guidelines for SAM Pathogen Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the biotoxin methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  6. Quality Control Guidelines for SAM Radiochemical Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  7. General Quality Control (QC) Guidelines for SAM Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. Quality Control Guidelines for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    Learn more about quality control guidelines and recommendations for the analysis of samples using the pathogen methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    DOEpatents

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  10. Sample Collection Information Document for Chemical & Radiochemical Analytes – Companion to Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2012

    EPA Pesticide Factsheets

    Sample Collection Information Document is intended to provide sampling information to be used during site assessment, remediation and clearance activities following a chemical or radiological contamination incident.

  11. Quantifying construction and demolition waste: an analytical review.

    PubMed

    Wu, Zezhou; Yu, Ann T W; Shen, Liyin; Liu, Guiwen

    2014-09-01

    Quantifying construction and demolition (C&D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C&D waste generation at both regional and project levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C&D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sources and preparation of data for assessing trends in concentrations of pesticides in streams of the United States, 1992–2010

    USGS Publications Warehouse

    Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi

    2011-01-01

    This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.

  13. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    PubMed Central

    Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua

    2015-01-01

    A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810

  14. [Validation of an in-house method for the determination of zinc in serum: Meeting the requirements of ISO 17025].

    PubMed

    Llorente Ballesteros, M T; Navarro Serrano, I; López Colón, J L

    2015-01-01

    The aim of this report is to propose a scheme for validation of an analytical technique according to ISO 17025. According to ISO 17025, the fundamental parameters tested were: selectivity, calibration model, precision, accuracy, uncertainty of measurement, and analytical interference. A protocol has been developed that has been applied successfully to quantify zinc in serum by atomic absorption spectrometry. It is demonstrated that our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  15. Quantifying construction and demolition waste: An analytical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zezhou; Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Shen, Liyin

    2014-09-15

    Highlights: • Prevailing C and D waste quantification methodologies are identified and compared. • One specific methodology cannot fulfill all waste quantification scenarios. • A relevance tree for appropriate quantification methodology selection is proposed. • More attentions should be paid to civil and infrastructural works. • Classified information is suggested for making an effective waste management plan. - Abstract: Quantifying construction and demolition (C and D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C and D waste generation at both regional and projectmore » levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C and D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested.« less

  16. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOEpatents

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  17. EPA Science Matters Newsletter: Stand-by Science: EPA Helps the Nation Be Better Prepared for Emergency Response (Published November 2013)

    EPA Pesticide Factsheets

    Learn about the EPA guide (Selected Analytical Methods for Environmental Remediation and Recovery) that helps labs around the country quickly select the appropriate environmental testing and analysis methods to use after a wide-scale chemical event

  18. Semi-automated solid phase extraction method for the mass spectrometric quantification of 12 specific metabolites of organophosphorus pesticides, synthetic pyrethroids, and select herbicides in human urine.

    PubMed

    Davis, Mark D; Wade, Erin L; Restrepo, Paula R; Roman-Esteva, William; Bravo, Roberto; Kuklenyik, Peter; Calafat, Antonia M

    2013-06-15

    Organophosphate and pyrethroid insecticides and phenoxyacetic acid herbicides represent important classes of pesticides applied in commercial and residential settings. Interest in assessing the extent of human exposure to these pesticides exists because of their widespread use and their potential adverse health effects. An analytical method for measuring 12 biomarkers of several of these pesticides in urine has been developed. The target analytes were extracted from one milliliter of urine by a semi-automated solid phase extraction technique, separated from each other and from other urinary biomolecules by reversed-phase high performance liquid chromatography, and detected using tandem mass spectrometry with isotope dilution quantitation. This method can be used to measure all the target analytes in one injection with similar repeatability and detection limits of previous methods which required more than one injection. Each step of the procedure was optimized to produce a robust, reproducible, accurate, precise and efficient method. The required selectivity and sensitivity for trace-level analysis (e.g., limits of detection below 0.5ng/mL) was achieved using a narrow diameter analytical column, higher than unit mass resolution for certain analytes, and stable isotope labeled internal standards. The method was applied to the analysis of 55 samples collected from adult anonymous donors with no known exposure to the target pesticides. This efficient and cost-effective method is adequate to handle the large number of samples required for national biomonitoring surveys. Published by Elsevier B.V.

  19. ELISA: Methods and Protocols

    USDA-ARS?s Scientific Manuscript database

    The antibody is central to the performance of an ELISA providing the basis of analyte selection and detection. It is the interaction of antibody with analyte under defined conditions that dictates the outcome of the ELISA and deviations in those conditions will impact assay performance. The aim of...

  20. Interactive Management and Updating of Spatial Data Bases

    NASA Technical Reports Server (NTRS)

    French, P.; Taylor, M.

    1982-01-01

    The decision making process, whether for power plant siting, load forecasting or energy resource planning, invariably involves a blend of analytical methods and judgement. Management decisions can be improved by the implementation of techniques which permit an increased comprehension of results from analytical models. Even where analytical procedures are not required, decisions can be aided by improving the methods used to examine spatially and temporally variant data. How the use of computer aided planning (CAP) programs and the selection of a predominant data structure, can improve the decision making process is discussed.

  1. Separation and quantitation of three acidic herbicide residues in tobacco and soil by dispersive solid-phase extraction and UPLC-MS/MS.

    PubMed

    Xiong, Wei; Tao, Xiaoqiu; Pang, Su; Yang, Xue; Tang, GangLing; Bian, Zhaoyang

    2014-01-01

    A method for the determination of three acidic herbicides, dicamba, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in tobacco and soil has been developed based on the use of liquid-liquid extraction and dispersive solid-phase extraction (dispersive-SPE) followed by UPLC-MS/MS. Two percentage of (v/v) formic acid in acetonitrile as the extraction helped partitioning of analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using primary secondary amine as selective sorbents. Quantitative analysis was done in the multiple-reaction monitoring mode using stable isotope-labeled internal standards for each compound. A separate internal standard for each analyte is required to minimize sample matrix effects on each analyte, which can lead to poor analyte recoveries and decreases in method accuracy and precision. The total analysis time was <4 min. The linear range of the method was from 1 to 100 ng mL(-1) with a limit of detection of each herbicide varied from 0.012 to 0.126 ng g(-1). The proposed method is faster, more sensitive and selective than the traditional methods and more accurate and robust than the published LC-MS/MS methods. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Quantification of six herbicide metabolites in human urine.

    PubMed

    Norrgran, Jessica; Bravo, Roberto; Bishop, Amanda M; Restrepo, Paula; Whitehead, Ralph D; Needham, Larry L; Barr, Dana B

    2006-01-18

    We developed a sensitive, selective and precise method for measuring herbicide metabolites in human urine. Our method uses automated liquid delivery of internal standards and acetate buffer and a mixed polarity polymeric phase solid phase extraction of a 2 mL urine sample. The concentrated eluate is analyzed using high-performance liquid chromatography-tandem mass spectrometry. Isotope dilution calibration is used for quantification of all analytes. The limits of detection of our method range from 0.036 to 0.075 ng/mL. The within- and between-day variation in pooled quality control samples range from 2.5 to 9.0% and from 3.2 to 16%, respectively, for all analytes at concentrations ranging from 0.6 to 12 ng/mL. Precision was similar with samples fortified with 0.1 and 0.25 ng/mL that were analyzed in each run. We validated our selective method against a less selective method used previously in our laboratory by analyzing human specimens using both methods. The methods produced results that were in agreement, with no significant bias observed.

  3. SUPRAMOLECULAR COMPOSITE MATERIALS FROM CELLULOSE, CHITOSAN AND CYCLODEXTRIN: FACILE PREPARATION AND THEIR SELECTIVE INCLUSION COMPLEX FORMATION WITH ENDOCRINE DISRUPTORS

    PubMed Central

    Duri, Simon; Tran, Chieu D.

    2013-01-01

    We have successfully developed a simple and one step method to prepare high performance supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and (2,3,6-tri-O-acetyl)-α-, β- and γ-cyclodextrin (α-, β- and γ-TCD). In this method, [BMIm+Cl−], an ionic liquid (IL), was used as a solvent to dissolve and prepare the composites. Since majority (>88%) of the IL used was recovered for reuse, the method is recyclable. XRD, FT-IR, NIR and SEM were used to monitor the dissolution process and to confirm that the polysaccharides were regenerated without any chemical modifications. It was found that unique properties of each component including superior mechanical properties (from CEL), excellent adsorbent for pollutants and toxins (from CS) and size/structure selectivity through inclusion complex formation (from TCDs) remain intact in the composites. Specifically, results from kinetics and adsorption isotherms show that while CS-based composites can effectively adsorb the endocrine disruptors (polychlrophenols, bisphenol-A), its adsorption is independent on the size and structure of the analytes. Conversely, the adsorption by γ-TCD-based composites exhibits strong dependency on size and structure of the analytes. For example, while all three TCD-based composites (i.e., α-, β- and γ-TCD) can effectively adsorb 2-, 3- and 4-chlorophenol, only γ-TCD-based composite can adsorb analytes with bulky groups including 3,4-dichloro- and 2,4,5-trichlorophenol. Furthermore, equilibrium sorption capacities for the analytes with bulky groups by γ-TCD-based composite are much higher than those by CS-based composites. Together, these results indicate that γ-TCD-based composite with its relatively larger cavity size can readily form inclusion complexes with analytes with bulky groups, and through inclusion complex formation, it can strongly adsorb much more analytes and with size/structure selectivity compared to CS-based composites which can adsorb the analyte only by surface adsorption. PMID:23517477

  4. A decision support system using analytical hierarchy process (AHP) for the optimal environmental reclamation of an open-pit mine

    NASA Astrophysics Data System (ADS)

    Bascetin, A.

    2007-04-01

    The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.

  5. Development of magnetic dispersive solid phase extraction using toner powder as an efficient and economic sorbent in combination with dispersive liquid-liquid microextraction for extraction of some widely used pesticides in fruit juices.

    PubMed

    Farajzadeh, Mir Ali; Mohebbi, Ali

    2018-01-12

    In this study, for the first time, a magnetic dispersive solid phase extraction method using an easy-accessible, cheap, and efficient magnetic sorbent (toner powder) combined with dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of some widely used pesticides (diazinon, ametryn, chlorpyrifos, penconazole, oxadiazon, diniconazole, and fenazaquin) from fruit juices prior to their determination by gas chromatography-flame ionization detection. In this method, the magnetic sorbent is mixed with an appropriate dispersive solvent (methanol-water, 80:20, v/v) and then injected into an aqueous sample containing the analytes. By this action the analytes are rapidly adsorbed on the sorbent by binding to its carbon. The sorbent particles are isolated from the aqueous solution in the presence of an external magnetic field. Then an appropriate organic solvent (acetone) is used to desorb the analytes from the sorbent. Finally, the obtained supernatant is mixed with an extraction solvent and injected into deionized water in order to achieve high enrichment factors and sensitivity. Several significant factors affecting the performance of the introduced method were investigated and optimized. Under the optimum experimental conditions, the extraction recoveries of the proposed method for the selected analytes ranged from 49-75%. The relative standard deviations were ≤7% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 10 μg L -1 of each analyte. The limits of detection were in the range of 0.15-0.36 μg L -1 . Finally, the applicability of the proposed method was evaluated by analysis of the selected analytes in some fruit juices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer

    DOE PAGES

    Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...

    2017-07-19

    Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less

  7. Complexometric Determination of Mercury Based on a Selective Masking Reaction

    ERIC Educational Resources Information Center

    Romero, Mercedes; Guidi, Veronica; Ibarrolaza, Agustin; Castells, Cecilia

    2009-01-01

    In the first analytical chemistry course, students are introduced to the concepts of equilibrium in water solutions and classical (non-instrumental) analytical methods. Our teaching experience shows that "real samples" stimulate students' enthusiasm for the laboratory work. From this diagnostic, we implemented an optional activity at the end of…

  8. Safety and Waste Management for SAM Pathogen Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. Safety and Waste Management for SAM Biotoxin Methods

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  10. Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bio-nano-chip

    PubMed Central

    Jokerst, Jesse V.; Chou, Jie; Camp, James P.; Wong, Jorge; Lennart, Alexis; Pollard, Amanda A.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; Zhou, Yanjie; Ali, Mehnaaz F.

    2012-01-01

    The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered. PMID:21290601

  11. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  12. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.

  13. QSPR studies on the photoinduced-fluorescence behaviour of pharmaceuticals and pesticides.

    PubMed

    López-Malo, D; Bueso-Bordils, J I; Duart, M J; Alemán-López, P A; Martín-Algarra, R V; Antón-Fos, G M; Lahuerta-Zamora, L; Martínez-Calatayud, J

    2017-07-01

    Fluorimetric analysis is still a growing line of research in the determination of a wide range of organic compounds, including pharmaceuticals and pesticides, which makes necessary the development of new strategies aimed at improving the performance of fluorescence determinations as well as the sensitivity and, especially, the selectivity of the newly developed analytical methods. In this paper are presented applications of a useful and growing tool suitable for fostering and improving research in the analytical field. Experimental screening, molecular connectivity and discriminant analysis are applied to organic compounds to predict their fluorescent behaviour after their photodegradation by UV irradiation in a continuous flow manifold (multicommutation flow assembly). The screening was based on online fluorimetric measurement and comprised pre-selected compounds with different molecular structures (pharmaceuticals and some pesticides with known 'native' fluorescent behaviour) to study their changes in fluorescent behaviour after UV irradiation. Theoretical predictions agree with the results from the experimental screening and could be used to develop selective analytical methods, as well as helping to reduce the need for expensive, time-consuming and trial-and-error screening procedures.

  14. Quantitation of cocaine and cocaethylene in small volumes of rat whole blood using gas chromatography-mass spectrometry.

    PubMed

    Burdick, J D; Boni, R L; Fochtman, F W

    1997-05-01

    A simple solid phase extraction (SPE) technique combined with gas chromatography-mass spectrometry (GC/MS) operated in selected ion monitoring (SIM) mode is described for quantitation of cocaine and cocaethylene in small samples (250 microliters) of rat whole blood. Use of (N-[2H3C])-cocaine and (N-[2H3C])-cocaethylene internal standards resulted in high sensitivity and selectivity for this analytical method. Analysis was performed using a Hewlett-Packard 5890 GC equipped with a 7673A Automatic Liquid Sampler linked to a Hewlett-Packard 5972 Mass Selective Detector. Separation of analytes was accomplished on a cross-linked methyl silicone gum capillary column (Ultra 1: 12m x 0.2mm (i.d.) x 0.33 microns). Linearity was established over a wide range of concentrations (5.0-2000.0 ng ml-1) with good precision. Limits of detection (LOD) were 1.0 and 2.0 ng ml-1 for cocaine and cocaethylene, respectively. This analytical method was designed for use in pharmacokinetic experiments studying the formation of cocaethylene following ethanol pretreatment in rats administered cocaine.

  15. Selective and rapid determination of tadalafil and finasteride using solid phase extraction by high performance liquid chromatography and tandem mass spectrometry.

    PubMed

    Pappula, Nagaraju; Kodali, Balaji; Datla, Peda Varma

    2018-04-15

    Highly selective and fast liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for simultaneous determination of tadalafil (TDL) and finasteride (FNS) in human plasma. The method was successfully applied for analysis of TDL and FNS samples in clinical study. The method was validated as per USFDA (United States Food and Drug Administration), EMA (European Medicines Agency), and ANVISA (Agência Nacional de Vigilância Sanitária-Brazil) bio analytical method validation guidelines. Glyburide (GLB) was used as common internal standard (ISTD) for both analytes. The selected multiple reaction monitoring (MRM) transitions for mass spectrometric analysis were m/z 390.2/268.2, m/z 373.3/305.4 and m/z 494.2/369.1 for TDL, FNS and ISTD respectively. The extraction of analytes and ISTD was accomplished by a simple solid phase extraction (SPE) procedure. Rapid analysis time was achieved on Zorbax Eclipse C18 column (50 × 4.6 mm, 5 μm). The calibration ranges for TDL and FNS were 5-800 ng/ml and 0.2-30 ng/ml respectively. The results of precision and accuracy, linearity, recovery and matrix effect of the method are acceptable. The accuracy was in the range of 92.9%-106.4% and method precision was also good; %CV was less than 8.1%. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  17. Generation of gas-phase ions from charged clusters: an important ionization step causing suppression of matrix and analyte ions in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lou, Xianwen; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W

    2016-12-30

    Ionization in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a very complicated process. It has been reported that quaternary ammonium salts show extremely strong matrix and analyte suppression effects which cannot satisfactorily be explained by charge transfer reactions. Further investigation of the reasons causing these effects can be useful to improve our understanding of the MALDI process. The dried-droplet and modified thin-layer methods were used as sample preparation methods. In the dried-droplet method, analytes were co-crystallized with matrix, whereas in the modified thin-layer method analytes were deposited on the surface of matrix crystals. Model compounds, tetrabutylammonium iodide ([N(Bu) 4 ]I), cesium iodide (CsI), trihexylamine (THA) and polyethylene glycol 600 (PEG 600), were selected as the test analytes given their ability to generate exclusively pre-formed ions, protonated ions and metal ion adducts respectively in MALDI. The strong matrix suppression effect (MSE) observed using the dried-droplet method might disappear using the modified thin-layer method, which suggests that the incorporation of analytes in matrix crystals contributes to the MSE. By depositing analytes on the matrix surface instead of incorporating in the matrix crystals, the competition for evaporation/ionization from charged matrix/analyte clusters could be weakened resulting in reduced MSE. Further supporting evidence for this inference was found by studying the analyte suppression effect using the same two sample deposition methods. By comparing differences between the mass spectra obtained via the two sample preparation methods, we present evidence suggesting that the generation of gas-phase ions from charged matrix/analyte clusters may induce significant suppression of matrix and analyte ions. The results suggest that the generation of gas-phase ions from charged matrix/analyte clusters is an important ionization step in MALDI-MS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Comparative Chemometric Analysis for Classification of Acids and Bases via a Colorimetric Sensor Array.

    PubMed

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E

    2018-02-01

    With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.

  19. Study on site selection of cold chain logistics in northwest territories

    NASA Astrophysics Data System (ADS)

    Liu, Yubin; Ren, Zongwei

    2017-08-01

    In this research, we mainly studied the Site selection problem of cold chain logistics in northwest of China. In the first place, we counted the demands of cold chain products in northwest territories, and then classified it into the Site selection problem in five provinces in northwest territories(Xinjiang, Qinghai, Gansu, Ningxia, Shanxi); Next, we used the Center of gravity Method to select initial location; Finally, we established the location of distribution by using Analytic Hierarchy Process (AHP)and fuzzy comprehensive evaluation method. Comparing with the traditional method, this method not only considered the cost of transportation and distance, but also deliberated the physical condition, social environment and economics condition which associated with Site selection problem.

  20. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  1. An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor

    PubMed Central

    Boo, Yong Chool; Tressel, Sarah L.; Jo, Hanjoong

    2007-01-01

    Nitric oxide produced from nitric oxide synthase(s) is an important cell signaling molecule in physiology and pathophysiology. In the present study, we describe a very sensitive and convenient analytical method to measure NOx (nitrite plus nitrate) in culture media by employing an ultra-sensitive nitric oxide-selective electrochemical sensor which became commercially available recently. An aliquot of conditioned culture media was first treated with nitrate reductase/NADPH/glucose-6-phosphate dehydrogenase/glucose-6-phosphate to convert nitrate to nitrite quantitatively. The nitrite (that is present originally plus the reduced nitrate) was then reduced to equimolar NO in an acidic iodide bath while NO was being detected by the sensor. This analytical method appears to be very useful to assess basal and stimulated NO release from cultured cells. PMID:17056288

  2. Simultaneous Screening and Quantification of Basic, Neutral and Acidic Drugs in Blood Using UPLC-QTOF-MS.

    PubMed

    Bidny, Sergei; Gago, Kim; Chung, Phuong; Albertyn, Desdemona; Pasin, Daniel

    2017-04-01

    An analytical method using ultra performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) was developed and validated for the targeted toxicological screening and quantification of commonly used pharmaceuticals and drugs of abuse in postmortem blood using 100 µL sample. It screens for more than 185 drugs and metabolites and quantifies more than 90 drugs. The selected compounds include classes of pharmaceuticals and drugs of abuse such as: antidepressants, antipsychotics, analgesics (including narcotic analgesics), anti-inflammatory drugs, benzodiazepines, beta-blockers, amphetamines, new psychoactive substances (NPS), cocaine and metabolites. Compounds were extracted into acetonitrile using a salting-out assisted liquid-liquid extraction (SALLE) procedure. The extracts were analyzed using a Waters ACQUITY UPLC coupled with a XEVO QTOF mass spectrometer. Separation of the analytes was achieved by gradient elution using Waters ACQUITY HSS C18 column (2.1 mm x 150 mm, 1.8 μm). The mass spectrometer was operated in both positive and negative electrospray ionization modes. The high-resolution mass spectrometry (HRMS) data was acquired using a patented Waters MSE acquisition mode which collected low and high energy spectra alternatively during the same acquisition. Positive identification of target analytes was based on accurate mass measurements of the molecular ion, product ion, peak area ratio and retention times. Calibration curves were linear over the concentration range 0.05-2 mg/L for basic and neutral analytes and 0.1-6 mg/L for acidic analytes with the correlation coefficients (r2) > 0.96 for most analytes. The limits of detection (LOD) were between 0.001-0.05 mg/L for all analytes. Good recoveries were achieved ranging from 80% to 100% for most analytes using the SALLE method. The method was validated for sensitivity, selectivity, accuracy, precision, stability, carryover and matrix effects. The developed method was tested on a number of authentic forensic samples producing consistent results that correlated with results obtained from other validated methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. An analytical method of estimating turbine performance

    NASA Technical Reports Server (NTRS)

    Kochendorfer, Fred D; Nettles, J Cary

    1949-01-01

    A method is developed by which the performance of a turbine over a range of operating conditions can be analytically estimated from the blade angles and flow areas. In order to use the method, certain coefficients that determine the weight flow and the friction losses must be approximated. The method is used to calculate the performance of the single-stage turbine of a commercial aircraft gas-turbine engine and the calculated performance is compared with the performance indicated by experimental data. For the turbine of the typical example, the assumed pressure losses and the tuning angles give a calculated performance that represents the trends of the experimental performance with reasonable accuracy. The exact agreement between analytical performance and experimental performance is contingent upon the proper selection of a blading-loss parameter.

  4. EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry

    EPA Pesticide Factsheets

    \\tEPA’s Selected Analytical Methods for Environmental Remediation and Recovery (SAM) lists this method for preparation and analysis of drinking water samples to detect and measure compounds containing arsenic, thallium and vanadium.

  5. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    PubMed

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  6. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  7. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    PubMed Central

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  8. Fast determination of pyrethroid pesticides in tobacco by GC-MS-SIM coupled with modified QuEChERS sample preparation procedure.

    PubMed

    Gao, Yan; Sun, Ying; Jiang, Chunzhu; Yu, Xi; Wang, Yuanpeng; Zhang, Hanqi; Song, Daqian

    2013-01-01

    An analytical method was developed for the extraction and determination of pyrethroid pesticide residues in tobacco. The modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was applied for preparing samples. In this study, methyl cyanide (MeCN)-saturated salt aqueous was used as the two-phase extraction solvent for the first time, and a vortex shaker was used for the simultaneous shaking and concentration of the analytes. The effects of experimental parameters on extraction and clean-up efficiency were investigated and optimized. The analytes were determined by gas chromatography-mass spectrometry-selected ion monitoring (GC-MS-SIM). The obtained recoveries of the analytes at three different fortification levels were 76.85-114.1% and relative standard deviations (RSDs) were lower than 15.7%. The limits of quantification (LOQs) were from 1.28 to 26.6 μg kg(-1). This method was also applied to the analysis of actual commercial tobacco products and the analytical results were satisfactory.

  9. Multiple reaction monitoring with multistage fragmentation (MRM3) detection enhances selectivity for LC-MS/MS analysis of plasma free metanephrines.

    PubMed

    Wright, Michael J; Thomas, Rebecca L; Stanford, Phoebe E; Horvath, Andrea R

    2015-03-01

    LC-MS/MS with multiple reaction monitoring (MRM) is a powerful tool for quantifying target analytes in complex matrices. However, the technique lacks selectivity when plasma free metanephrines are measured. We propose the use of multistage fragmentation (MRM(3)) to improve the analytical selectivity of plasma free metanephrine measurement. Metanephrines were extracted from plasma with weak cation exchange solid-phase extraction before separation by hydrophilic interaction liquid chromatography. We quantified normetanephrine and metanephrine by either MRM or MRM(3) transitions m/z 166→134→79 and m/z 180→149→121, respectively. Over a 6-month period, approximately 1% (n = 21) of patient samples showed uncharacterized coeluting substances that interfered with the routine assay, resulting in an inability to report results. Quantification with MRM(3) removed these interferences and enabled measurement of the target compounds. For patient samples unaffected by interferences, Deming regression analysis demonstrated a correlation between MRM(3) and MRM methods of y = 1.00x - 0.00 nmol/L for normetanephrine and y = 0.99x + 0.03 nmol/L for metanephrine. Between the MRM(3) method and the median of all LC-MS/MS laboratories enrolled in a quality assurance program, the correlations were y = 0.97x + 0.03 nmol/L for normetanephrine and y = 1.03x - 0.04 nmol/L for metanephrine. Imprecision for the MRM(3) method was 6.2%-7.0% for normetanephrine and 6.1%-9.9% for metanephrine (n = 10). The lower limits of quantification for the MRM(3) method were 0.20 nmol/L for normetanephrine and 0.16 nmol/L for metanephrine. The use of MRM(3) technology improves the analytical selectivity of plasma free metanephrine quantification by LC-MS/MS while demonstrating sufficient analytical sensitivity and imprecision. © 2014 American Association for Clinical Chemistry.

  10. Potassium sodium chloride integrated microconduits in a potentiometric analytical system.

    PubMed

    Hongbo, C; Junyan, S

    1991-09-01

    The preparation and application of a K(+), Na(+) and Cl(-) integrated microconduit potentiometric analytical system with tubular ion-selective electrodes (ISEs), microvalve, chemfold, electrostatic and pulse inhibitors is described. Electrochemical characteristics of the tubular ISEs and integrated microconduit FIA-ISEs were studied. The contents of K(+), Na(+) and Cl(-) in soil, water and serum were determined with the device. The analytical results agreed well with those obtained by flame photometric and silver nitrate volumetric methods.

  11. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils.

    PubMed

    Hogendoom, E A; Huls, R; Dijkman, E; Hoogerbrugge, R

    2001-12-14

    A screening method has been developed for the determination of acidic pesticides in various types of soils. Methodology is based on the use of microwave assisted solvent extraction (MASE) for fast and efficient extraction of the analytes from the soils and coupled-column reversed-phase liquid chromatography (LC-LC) with UV detection at 228 nm for the instrumental analysis of uncleaned extracts. Four types of soils, including sand, clay and peat, with a range in organic matter content of 0.3-13% and ten acidic pesticides of different chemical families (bentazone, bromoxynil, metsulfuron-methyl, 2,4-D, MCPA, MCPP, 2,4-DP, 2,4,5-T, 2,4-DB and MCPB) were selected as matrices and analytes, respectively. The method developed included the selection of suitable MASE and LC-LC conditions. The latter consisted of the selection of a 5-microm GFF-II internal surface reversed-phase (ISRP, Pinkerton) analytical column (50 x 4.6 mm, I.D.) as the first column in the RAM-C18 configuration in combination with an optimised linear gradient elution including on-line cleanup of sample extracts and reconditioning of the columns. The method was validated with the analysis of freshly spiked samples and samples with aged residues (120 days). The four types of soils were spiked with the ten acidic pesticides at levels between 20 and 200 microg/kg. Weighted regression of the recovery data showed for most analyte-matrix combinations, including freshly spiked samples and aged residues, that the method provides overall recoveries between 60 and 90% with relative standard deviations of the intra-laboratory reproducibility's between 5 and 25%; LODs were obtained between 5 and 50 microg/kg. Evaluation of the data set with principal component analysis revealed that the parameters (i) increase of organic matter content of the soil samples and (ii) aged residues negatively effect the recovery of the analytes.

  12. Combining an Analytic Hierarchy Process and TOPSIS for Selecting Postharvest Technology Method for Selayar Citrus in Indonesia

    NASA Astrophysics Data System (ADS)

    Dirpan, Andi

    2018-05-01

    This research was intended to select the best handling methods or postharvest technologies that can be used to maintain the quality of citrus fruit in Selayar, South Sulawesi, Indonesia among (1) modified atmosphere packaging (MAP (2) Controlled atmosphere storage (CAS) (3) coatings (4) hot water treatment (5) Hot Calcium Dip (HCD) by using combination between an analytic hierarchy process (AHP) and TOPSIS. Improving quality, applicability, increasing shelf life and reducing cost are used as the criteria to determine the best postharvest technologies. The results show that the most important criteria for selecting postharvest technology is improving quality followed by increasing shelf life, reducing cost and applicability. Furthermore, by using TOPSIS, it is clear that the postharvest technology that had the lowest rangking is modified atmosphere packaging (MAP), followed by controlled atmosphere storage (CAS), coatings, hot calcium dip (HCD) and hot water treatment (HWT). Therefore, it can be concluded that the best postharvest technology method for Selayar citrus is modified atmosphere packaging (MAP).

  13. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    PubMed

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  14. Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: Selection the optimal conditions by MCDM approach based on different criteria weighting methods.

    PubMed

    Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali

    2017-03-05

    A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe 3+ in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe 2+ /1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00mgL -1 for AA and UA, respectively. The 3σ detection limits were 0.07mgL -1 for AA and 0.12mgL -1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results. Copyright © 2016. Published by Elsevier B.V.

  15. Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: Selection the optimal conditions by MCDM approach based on different criteria weighting methods

    NASA Astrophysics Data System (ADS)

    Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali

    2017-03-01

    A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe3 + in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe2 +/1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510 nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00 mg L- 1 for AA and UA, respectively. The 3σ detection limits were 0.07 mg L- 1 for AA and 0.12 mg L- 1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results.

  16. Devices and methods to detect and quantify trace gases

    DOEpatents

    Allendorf, Mark D.; Robinson, Alex

    2016-05-03

    Sensing devices based on a surface acoustic wave ("SAW") device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO.sub.2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH.sub.3), phosgene (COCl.sub.2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.

  17. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  18. Other Resources Related to SAM

    EPA Pesticide Factsheets

    Learn more about websites and information related to EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including key EPA collaborators, laboratories, and research centers.

  19. Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.

    PubMed

    Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik

    2016-01-01

    Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.

  20. Systematic Development and Validation of a Thin-Layer Densitometric Bioanalytical Method for Estimation of Mangiferin Employing Analytical Quality by Design (AQbD) Approach

    PubMed Central

    Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O.P.; Singh, Bhupinder

    2016-01-01

    The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett–Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm with Rf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50–800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. PMID:26912808

  1. Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs

    USDA-ARS?s Scientific Manuscript database

    Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...

  2. The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples--definitions, nomenclature and strategies: state of the art.

    PubMed

    Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech

    2015-01-01

    Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.

    PubMed

    Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten

    2014-03-01

    We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.

  4. Flow chemistry vs. flow analysis.

    PubMed

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  6. Increasing productivity for the analysis of trace contaminants in food by gas chromatography-mass spectrometry using automated liner exchange, backflushing and heart-cutting.

    PubMed

    David, Frank; Tienpont, Bart; Devos, Christophe; Lerch, Oliver; Sandra, Pat

    2013-10-25

    Laboratories focusing on residue analysis in food are continuously seeking to increase sample throughput by minimizing sample preparation. Generic sample extraction methods such as QuEChERS lack selectivity and consequently extracts are not free from non-volatile material that contaminates the analytical system. Co-extracted matrix constituents interfere with target analytes, even if highly sensitive and selective GC-MS/MS is used. A number of GC approaches are described that can be used to increase laboratory productivity. These techniques include automated inlet liner exchange and column backflushing for preservation of the performance of the analytical system and heart-cutting two-dimensional GC for increasing sensitivity and selectivity. The application of these tools is illustrated by the analysis of pesticides in vegetables and fruits, PCBs in milk powder and coplanar PCBs in fish. It is demonstrated that considerable increase in productivity can be achieved by decreasing instrument down-time, while analytical performance is equal or better compared to conventional trace contaminant analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  8. [Local Regression Algorithm Based on Net Analyte Signal and Its Application in Near Infrared Spectral Analysis].

    PubMed

    Zhang, Hong-guang; Lu, Jian-gang

    2016-02-01

    Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.

  9. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection ofmore » analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.« less

  10. [Construction of NIRS-based process analytical system for production of salvianolic acid for injection and relative discussion].

    PubMed

    Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang

    2016-10-01

    Currently, near infrared spectroscopy (NIRS) has been considered as an efficient tool for achieving process analytical technology(PAT) in the manufacture of traditional Chinese medicine (TCM) products. In this article, the NIRS based process analytical system for the production of salvianolic acid for injection was introduced. The design of the process analytical system was described in detail, including the selection of monitored processes and testing mode, and potential risks that should be avoided. Moreover, the development of relative technologies was also presented, which contained the establishment of the monitoring methods for the elution of polyamide resin and macroporous resin chromatography processes, as well as the rapid analysis method for finished products. Based on author's experience of research and work, several issues in the application of NIRS to the process monitoring and control in TCM production were then raised, and some potential solutions were also discussed. The issues include building the technical team for process analytical system, the design of the process analytical system in the manufacture of TCM products, standardization of the NIRS-based analytical methods, and improving the management of process analytical system. Finally, the prospect for the application of NIRS in the TCM industry was put forward. Copyright© by the Chinese Pharmaceutical Association.

  11. Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments.

    PubMed

    Bigus, Paulina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek; Tobiszewski, Marek

    2016-05-01

    This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.

  12. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  13. Analytic strategies to evaluate the association of time-varying exposures to HIV-related outcomes: Alcohol consumption as an example.

    PubMed

    Cook, Robert L; Kelso, Natalie E; Brumback, Babette A; Chen, Xinguang

    2016-01-01

    As persons with HIV are living longer, there is a growing need to investigate factors associated with chronic disease, rate of disease progression and survivorship. Many risk factors for this high-risk population change over time, such as participation in treatment, alcohol consumption and drug abuse. Longitudinal datasets are increasingly available, particularly clinical data that contain multiple observations of health exposures and outcomes over time. Several analytic options are available for assessment of longitudinal data; however, it can be challenging to choose the appropriate analytic method for specific combinations of research questions and types of data. The purpose of this review is to help researchers choose the appropriate methods to analyze longitudinal data, using alcohol consumption as an example of a time-varying exposure variable. When selecting the optimal analytic method, one must consider aspects of exposure (e.g. timing, pattern, and amount) and outcome (fixed or time-varying), while also addressing minimizing bias. In this article, we will describe several analytic approaches for longitudinal data, including developmental trajectory analysis, generalized estimating equations, and mixed effect models. For each analytic strategy, we describe appropriate situations to use the method and provide an example that demonstrates the use of the method. Clinical data related to alcohol consumption and HIV are used to illustrate these methods.

  14. Analytical slave-spin mean-field approach to orbital selective Mott insulators

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Kotliar, Gabriel

    2017-09-01

    We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in the presence of Hund's coupling interaction. By analytical analysis of the Hamiltonian, we show that the locking of the two orbitals vs orbital selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean field to impurity problems, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating interorbital tunnelings in the case of multiorbital Bethe lattices with particle-hole symmetry.

  15. Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.

    1983-01-01

    Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.

  16. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes

    NASA Astrophysics Data System (ADS)

    Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.

    1983-05-01

    Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.

  17. Rapid Radiochemical Method for Radium-226 in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Radium-226 in building materials Method Selected for: SAM lists this method for qualitative analysis of radium-226 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  18. Rapid Radiochemical Method for Americium-241 in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241 in building materials Method Selected for: SAM lists this method for qualitative analysis of americium-241 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  19. A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.

    PubMed

    Yang, Harry; Zhang, Jianchun

    2015-01-01

    The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current methods. Analytical methods are often used to ensure safety, efficacy, and quality of medicinal products. According to government regulations and regulatory guidelines, these methods need to be validated through well-designed studies to minimize the risk of accepting unsuitable methods. This article describes a novel statistical test for analytical method validation, which provides better protection for the risk of accepting unsuitable analytical methods. © PDA, Inc. 2015.

  20. Comparison of potential method in analytic hierarchy process for multi-attribute of catering service companies

    NASA Astrophysics Data System (ADS)

    Mamat, Siti Salwana; Ahmad, Tahir; Awang, Siti Rahmah

    2017-08-01

    Analytic Hierarchy Process (AHP) is a method used in structuring, measuring and synthesizing criteria, in particular ranking of multiple criteria in decision making problems. On the other hand, Potential Method is a ranking procedure in which utilizes preference graph ς (V, A). Two nodes are adjacent if they are compared in a pairwise comparison whereby the assigned arc is oriented towards the more preferred node. In this paper Potential Method is used to solve problem on a catering service selection. The comparison of result by using Potential method is made with Extent Analysis. The Potential Method is found to produce the same rank as Extent Analysis in AHP.

  1. Determining a carbohydrate profile for Hansenula polymorpha

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.

    1985-01-01

    The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrate profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.

  2. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    ERIC Educational Resources Information Center

    Akcay, Hüsamettin; Durmaz, Asli; Tüysüz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  3. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    PubMed Central

    Rifat, Ahmmed A.; Mahdiraji, G. Amouzad; Chow, Desmond M.; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-01-01

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint. PMID:25996510

  4. A novel strategy for selection of allosteric ribozymes yields RiboReporter™ sensors for caffeine and aspartame

    PubMed Central

    Ferguson, Alicia; Boomer, Ryan M.; Kurz, Markus; Keene, Sara C.; Diener, John L.; Keefe, Anthony D.; Wilson, Charles; Cload, Sharon T.

    2004-01-01

    We have utilized in vitro selection technology to develop allosteric ribozyme sensors that are specific for the small molecule analytes caffeine or aspartame. Caffeine- or aspartame-responsive ribozymes were converted into fluorescence-based RiboReporter™ sensor systems that were able to detect caffeine or aspartame in solution over a concentration range from 0.5 to 5 mM. With read-times as short as 5 min, these caffeine- or aspartame-dependent ribozymes function as highly specific and facile molecular sensors. Interestingly, successful isolation of allosteric ribozymes for the analytes described here was enabled by a novel selection strategy that incorporated elements of both modular design and activity-based selection methods typically used for generation of catalytic nucleic acids. PMID:15026535

  5. Determination of selected neurotoxic insecticides in small amounts of animal tissue utilizing a newly constructed mini-extractor.

    PubMed

    Seifertová, Marta; Čechová, Eliška; Llansola, Marta; Felipo, Vicente; Vykoukalová, Martina; Kočan, Anton

    2017-10-01

    We developed a simple analytical method for the simultaneous determination of representatives of various groups of neurotoxic insecticides (carbaryl, chlorpyrifos, cypermethrin, and α-endosulfan and β-endosulfan and their metabolite endosulfan sulfate) in limited amounts of animal tissues containing different amounts of lipids. Selected tissues (rodent fat, liver, and brain) were extracted in a special in-house-designed mini-extractor constructed on the basis of the Soxhlet and Twisselmann extractors. A dried tissue sample placed in a small cartridge was extracted, while the nascent extract was simultaneously filtered through a layer of sodium sulfate. The extraction was followed by combined clean-up, including gel permeation chromatography (in case of high lipid content), ultrasonication, and solid-phase extraction chromatography using C 18 on silica and aluminum oxide. Gas chromatography coupled with high-resolution mass spectrometry was used for analyte separation, detection, and quantification. Average recoveries for individual insecticides ranged from 82 to 111%. Expanded measurement uncertainties were generally lower than 35%. The developed method was successfully applied to rat tissue samples obtained from an animal model dealing with insecticide exposure during brain development. This method may also be applied to the analytical treatment of small amounts of various types of animal and human tissue samples. A significant advantage achieved using this method is high sample throughput due to the simultaneous treatment of many samples. Graphical abstract Optimized workflow for the determination of selected insecticides in small amounts of animal tissue including newly developed mini-extractor.

  6. Method validation using weighted linear regression models for quantification of UV filters in water samples.

    PubMed

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-01-01

    This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis.

    PubMed

    Hsu, Pi-Fang; Wu, Cheng-Ru; Li, Ya-Ting

    2008-01-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.

  8. Analytical method for nitroaromatic explosives in radiologically contaminated soil for ISO/IEC 17025 accreditation

    DOE PAGES

    Boggess, Andrew; Crump, Stephen; Gregory, Clint; ...

    2017-12-06

    Here, unique hazards are presented in the analysis of radiologically contaminated samples. Strenuous safety and security precautions must be in place to protect the analyst, laboratory, and instrumentation used to perform analyses. A validated method has been optimized for the analysis of select nitroaromatic explosives and degradative products using gas chromatography/mass spectrometry via sonication extraction of radiologically contaminated soils, for samples requiring ISO/IEC 17025 laboratory conformance. Target analytes included 2-nitrotoluene, 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene, as well as the degradative product 4-amino-2,6-dinitrotoluene. Analytes were extracted from soil in methylene chloride by sonication. Administrative and engineering controls, as well as instrument automationmore » and quality control measures, were utilized to minimize potential human exposure to radiation at all times and at all stages of analysis, from receiving through disposition. Though thermal instability increased uncertainties of these selected compounds, a mean lower quantitative limit of 2.37 µg/mL and mean accuracy of 2.3% relative error and 3.1% relative standard deviation were achieved. Quadratic regression was found to be optimal for calibration of all analytes, with compounds of lower hydrophobicity displaying greater parabolic curve. Blind proficiency testing (PT) of spiked soil samples demonstrated a mean relative error of 9.8%. Matrix spiked analyses of PT samples demonstrated that 99% recovery of target analytes was achieved. To the knowledge of the authors, this represents the first safe, accurate, and reproducible quantitative method for nitroaromatic explosives in soil for specific use on radiologically contaminated samples within the constraints of a nuclear analytical lab.« less

  9. Analytical method for nitroaromatic explosives in radiologically contaminated soil for ISO/IEC 17025 accreditation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggess, Andrew; Crump, Stephen; Gregory, Clint

    Here, unique hazards are presented in the analysis of radiologically contaminated samples. Strenuous safety and security precautions must be in place to protect the analyst, laboratory, and instrumentation used to perform analyses. A validated method has been optimized for the analysis of select nitroaromatic explosives and degradative products using gas chromatography/mass spectrometry via sonication extraction of radiologically contaminated soils, for samples requiring ISO/IEC 17025 laboratory conformance. Target analytes included 2-nitrotoluene, 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene, as well as the degradative product 4-amino-2,6-dinitrotoluene. Analytes were extracted from soil in methylene chloride by sonication. Administrative and engineering controls, as well as instrument automationmore » and quality control measures, were utilized to minimize potential human exposure to radiation at all times and at all stages of analysis, from receiving through disposition. Though thermal instability increased uncertainties of these selected compounds, a mean lower quantitative limit of 2.37 µg/mL and mean accuracy of 2.3% relative error and 3.1% relative standard deviation were achieved. Quadratic regression was found to be optimal for calibration of all analytes, with compounds of lower hydrophobicity displaying greater parabolic curve. Blind proficiency testing (PT) of spiked soil samples demonstrated a mean relative error of 9.8%. Matrix spiked analyses of PT samples demonstrated that 99% recovery of target analytes was achieved. To the knowledge of the authors, this represents the first safe, accurate, and reproducible quantitative method for nitroaromatic explosives in soil for specific use on radiologically contaminated samples within the constraints of a nuclear analytical lab.« less

  10. Validation of a liquid chromatography-tandem mass spectrometry method for the identification and quantification of 5-nitroimidazole drugs and their corresponding hydroxy metabolites in lyophilised pork meat.

    PubMed

    Zeleny, Reinhard; Harbeck, Stefan; Schimmel, Heinz

    2009-01-09

    A liquid chromatography-electrospray ionisation tandem mass spectrometry method for the simultaneous detection and quantitation of 5-nitroimidazole veterinary drugs in lyophilised pork meat, the chosen format of a candidate certified reference material, has been developed and validated. Six analytes have been included in the scope of validation, i.e. dimetridazole (DMZ), metronidazole (MNZ), ronidazole (RNZ), hydroxymetronidazole (MNZOH), hydroxyipronidazole (IPZOH), and 2-hydroxymethyl-1-methyl-5-nitroimidazole (HMMNI). The analytes were extracted from the sample with ethyl acetate, chromatographically separated on a C(18) column, and finally identified and quantified by tandem mass spectrometry in the multiple reaction monitoring mode (MRM) using matrix-matched calibration and (2)H(3)-labelled analogues of the analytes (except for MNZOH, where [(2)H(3)]MNZ was used). The method was validated in accordance with Commission Decision 2002/657/EC, by determining selectivity, linearity, matrix effect, apparent recovery, repeatability and intermediate precision, decision limits and detection capabilities, robustness of sample preparation method, and stability of extracts. Recovery at 1 microg/kg level was at 100% (estimates in the range of 101-107%) for all analytes, repeatabilities and intermediate precisions at this level were in the range of 4-12% and 2-9%, respectively. Linearity of calibration curves in the working range 0.5-10 microg/kg was confirmed, with r values typically >0.99. Decision limits (CCalpha) and detection capabilities (CCbeta) according to ISO 11843-2 (calibration curve approach) were 0.29-0.44 and 0.36-0.54 microg/kg, respectively. The method reliably identifies and quantifies the selected nitroimidazoles in the reconstituted pork meat in the low and sub-microg/kg range and will be applied in an interlaboratory comparison for determining the mass fraction of the selected nitroimidazoles in the candidate reference material currently developed at IRMM.

  11. Transfer of analytical procedures: a panel of strategies selected for risk management, with emphasis on an integrated equivalence-based comparative testing approach.

    PubMed

    Agut, C; Caron, A; Giordano, C; Hoffman, D; Ségalini, A

    2011-09-10

    In 2001, a multidisciplinary team made of analytical scientists and statisticians at Sanofi-aventis has published a methodology which has governed, from that time, the transfers from R&D sites to Manufacturing sites of the release monographs. This article provides an overview of the recent adaptations brought to this original methodology taking advantage of our experience and the new regulatory framework, and, in particular, the risk management perspective introduced by ICH Q9. Although some alternate strategies have been introduced in our practices, the comparative testing one, based equivalence testing as statistical approach, remains the standard for assays lying on very critical quality attributes. This is conducted with the concern to control the most important consumer's risk involved at two levels in analytical decisions in the frame of transfer studies: risk, for the receiving laboratory, to take poor release decisions with the analytical method and risk, for the sending laboratory, to accredit such a receiving laboratory on account of its insufficient performances with the method. Among the enhancements to the comparative studies, the manuscript presents the process settled within our company for a better integration of the transfer study into the method life-cycle, just as proposals of generic acceptance criteria and designs for assay and related substances methods. While maintaining rigor and selectivity of the original approach, these improvements tend towards an increased efficiency in the transfer operations. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Methods in endogenous steroid profiling - A comparison of gas chromatography mass spectrometry (GC-MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS).

    PubMed

    Teubel, Juliane; Wüst, Bernhard; Schipke, Carola G; Peters, Oliver; Parr, Maria Kristina

    2018-06-15

    In various fields of endocrinology, the determination of steroid hormones synthesised by the human body plays an important role. Research on central neurosteroids has been intensified within the last years, as they are discussed as biomarkers for various cognitive disorders. Their concentrations in cerebrospinal fluid (CSF) are considered to be regulated independently from peripheral fluids. For that reason, the challenging matrix CSF becomes a very interesting specimen for analysis. Concentrations are expected to be very low and available amount of CSF is limited. Thus, a comprehensive method for very sensitive quantification of a set of analytes as large as possible in one analytical aliquot is desired. However, high structural similarities of the selected panel of 51 steroids and steroid sulfates, including numerous isomers, challenges achievement of chromatographic selectivity. Since decades the analysis of endogenous steroids in various body fluids is mainly performed by gas chromatography (GC) coupled to (tandem) mass spectrometry (MS(/MS)). Due to the structure of the steroids of interest, derivatisation is performed to meet the analytical requirements for GC-MS(/MS). Most of the laboratories use a two-step derivatisation in multi-analyte assays that was already published in the 1980s. However, for some steroids this elaborate procedure yields multiple isomeric derivatives. Thus, some laboratories utilize (ultra) high performance liquid chromatography ((U)HPLC)-MS/MS as alternative but, even UHPLC is not able to separate some of the isomeric pairs. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to GC and (U)HPLC may help to overcome these issues. Within this project the two most promising methods for endogenous steroid profiling were investigated and compared: the "gold standard" GC-MS and the orthogonal separation technique SFC-MS/MS. Different derivatisation procedures for gas chromatographic detection were explored and the formation of multiple derivatives described and confirmed. Taken together, none of the investigated derivatisation procedures provided acceptable results for further method development to meet the requirements of this project. SFC with its unique selectivity was able to overcome these issues and to distinguish all selected steroids, including (pro-)gestagens, androgens, corticoids, estrogens, and steroid sulfates with appropriate selectivity. Valued especially in the separation of enantiomeric analytes, SFC has shown its potential as alternative to GC. The successful separation of 51 steroids and steroid sulfates on different columns is presented to demonstrate the potential of SFC in endogenous steroid profiling. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples.

    PubMed

    Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B

    2008-02-28

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.

  14. Evaluation of capillary electrophoresis for in-flight ionic contaminant monitoring of SSF potable water

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Schultz, John R.; Sauer, Richard L.

    1992-01-01

    Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations. Preliminary results indicate that CE has an impressive selectivity and trace sensitivity, although considerable methods development remains to be performed.

  15. Immobilized aptamer paper spray ionization source for ion mobility spectrometry.

    PubMed

    Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T

    2017-01-05

    A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electromigrative separation techniques in forensic science: combining selectivity, sensitivity, and robustness.

    PubMed

    Posch, Tjorben Nils; Pütz, Michael; Martin, Nathalie; Huhn, Carolin

    2015-01-01

    In this review we introduce the advantages and limitations of electromigrative separation techniques in forensic toxicology. We thus present a summary of illustrative studies and our own experience in the field together with established methods from the German Federal Criminal Police Office rather than a complete survey. We focus on the analytical aspects of analytes' physicochemical characteristics (e.g. polarity, stereoisomers) and analytical challenges including matrix tolerance, separation from compounds present in large excess, sample volumes, and orthogonality. For these aspects we want to reveal the specific advantages over more traditional methods. Both detailed studies and profiling and screening studies are taken into account. Care was taken to nearly exclusively document well-validated methods outstanding for the analytical challenge discussed. Special attention was paid to aspects exclusive to electromigrative separation techniques, including the use of the mobility axis, the potential for on-site instrumentation, and the capillary format for immunoassays. The review concludes with an introductory guide to method development for different separation modes, presenting typical buffer systems as starting points for different analyte classes. The objective of this review is to provide an orientation for users in separation science considering using capillary electrophoresis in their laboratory in the future.

  17. Ionic liquids: solvents and sorbents in sample preparation.

    PubMed

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rapid Radiochemical Method for Total Radiostrontium (Sr-90) ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Beta counting Method Developed for: Strontium-89 and strontium-90 in building materials Method Selected for: SAM lists this method for qualitative analysis of strontium-89 and strontium-90 in concrete or brick building materials Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  19. Decision Support System for Determining Scholarship Selection using an Analytical Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Puspitasari, T. D.; Sari, E. O.; Destarianto, P.; Riskiawan, H. Y.

    2018-01-01

    Decision Support System is a computer program application that analyzes data and presents it so that users can make decision more easily. Determining Scholarship Selection study case in Senior High School in east Java wasn’t easy. It needed application to solve the problem, to improve the accuracy of targets for prospective beneficiaries of poor students and to speed up the screening process. This research will build system uses the method of Analytical Hierarchy Process (AHP) is a method that solves a complex and unstructured problem into its group, organizes the groups into a hierarchical order, inputs numerical values instead of human perception in comparing relative and ultimately with a synthesis determined elements that have the highest priority. The accuracy system for this research is 90%.

  20. Systematic Development and Validation of a Thin-Layer Densitometric Bioanalytical Method for Estimation of Mangiferin Employing Analytical Quality by Design (AQbD) Approach.

    PubMed

    Khurana, Rajneet Kaur; Rao, Satish; Beg, Sarwar; Katare, O P; Singh, Bhupinder

    2016-01-01

    The present work aims at the systematic development of a simple, rapid and highly sensitive densitometry-based thin-layer chromatographic method for the quantification of mangiferin in bioanalytical samples. Initially, the quality target method profile was defined and critical analytical attributes (CAAs) earmarked, namely, retardation factor (Rf), peak height, capacity factor, theoretical plates and separation number. Face-centered cubic design was selected for optimization of volume loaded and plate dimensions as the critical method parameters selected from screening studies employing D-optimal and Plackett-Burman design studies, followed by evaluating their effect on the CAAs. The mobile phase containing a mixture of ethyl acetate : acetic acid : formic acid : water in a 7 : 1 : 1 : 1 (v/v/v/v) ratio was finally selected as the optimized solvent for apt chromatographic separation of mangiferin at 262 nm withRf 0.68 ± 0.02 and all other parameters within the acceptance limits. Method validation studies revealed high linearity in the concentration range of 50-800 ng/band for mangiferin. The developed method showed high accuracy, precision, ruggedness, robustness, specificity, sensitivity, selectivity and recovery. In a nutshell, the bioanalytical method for analysis of mangiferin in plasma revealed the presence of well-resolved peaks and high recovery of mangiferin. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Analytical techniques and method validation for the measurement of selected semivolatile and nonvolatile organofluorochemicals in air.

    PubMed

    Reagen, William K; Lindstrom, Kent R; Thompson, Kathy L; Flaherty, John M

    2004-09-01

    The widespread use of semi- and nonvolatile organofluorochemicals in industrial facilities, concern about their persistence, and relatively recent advancements in liquid chromatography/mass spectrometry (LC/MS) technology have led to the development of new analytical methods to assess potential worker exposure to airborne organofluorochemicals. Techniques were evaluated for the determination of 19 organofluorochemicals and for total fluorine in ambient air samples. Due to the potential biphasic nature of most of these fluorochemicals when airborne, Occupational Safety and Health Administration (OSHA) versatile sampler (OVS) tubes were used to simultaneously trap fluorochemical particulates and vapors from workplace air. Analytical methods were developed for OVS air samples to quantitatively analyze for total fluorine using oxygen bomb combustion/ion selective electrode and for 17 organofluorochemicals using LC/MS and gas chromatography/mass spectrometry (GC/MS). The experimental design for this validation was based on the National Institute of Occupational Safety and Health (NIOSH) Guidelines for Air Sampling and Analytical Method Development and Evaluation, with some revisions of the experimental design. The study design incorporated experiments to determine analytical recovery and stability, sampler capacity, the effect of some environmental parameters on recoveries, storage stability, limits of detection, precision, and accuracy. Fluorochemical mixtures were spiked onto each OVS tube over a range of 0.06-6 microg for each of 12 compounds analyzed by LC/MS and 0.3-30 microg for 5 compounds analyzed by GC/MS. These ranges allowed reliable quantitation at 0.001-0.1 mg/m3 in general for LC/MS analytes and 0.005-0.5 mg/m3 for GC/MS analytes when 60 L of air are sampled. The organofluorochemical exposure guideline (EG) is currently 0.1 mg/m3 for many analytes, with one exception being ammonium perfluorooctanoate (EG is 0.01 mg/m3). Total fluorine results may be used to determine if the individual compounds quantified provide a suitable mass balance of total airborne organofluorochemicals based on known fluorine content. Improvements in precision and/or recovery as well as some additional testing would be needed to meet all NIOSH validation criteria. This study provided valuable information about the accuracy of this method for organofluorochemical exposure assessment.

  2. Sensory evaluation based fuzzy AHP approach for material selection in customized garment design and development process

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Curteza, A.; Zeng, X.; Bruniaux, P.; Chen, Y.

    2016-06-01

    Material selection is the most difficult section in the customized garment product design and development process. This study aims to create a hierarchical framework for material selection. The analytic hierarchy process and fuzzy sets theories have been applied to mindshare the diverse requirements from the customer and inherent interaction/interdependencies among these requirements. Sensory evaluation ensures a quick and effective selection without complex laboratory test such as KES and FAST, using the professional knowledge of the designers. A real empirical application for the physically disabled people is carried out to demonstrate the proposed method. Both the theoretical and practical background of this paper have indicated the fuzzy analytical network process can capture expert's knowledge existing in the form of incomplete, ambiguous and vague information for the mutual influence on attribute and criteria of the material selection.

  3. An analysis of an optimal selection process for characteristics and technical performance of baseball pitchers.

    PubMed

    Lin, Wen-Bin; Tung, I-Wu; Chen, Mei-Jung; Chen, Mei-Yen

    2011-08-01

    Selection of a qualified pitcher has relied previously on qualitative indices; here, both quantitative and qualitative indices including pitching statistics, defense, mental skills, experience, and managers' recognition were collected, and an analytic hierarchy process was used to rank baseball pitchers. The participants were 8 experts who ranked characteristics and statistics of 15 baseball pitchers who comprised the first round of potential representatives for the Chinese Taipei National Baseball team. The results indicated a selection rate that was 91% consistent with the official national team roster, as 11 pitchers with the highest scores who were recommended as optimal choices to be official members of the Chinese Tai-pei National Baseball team actually participated in the 2009 Baseball World Cup. An analytic hierarchy can aid in selection of qualified pitchers, depending on situational and practical needs; the method could be extended to other sports and team-selection situations.

  4. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    PubMed

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    NASA Astrophysics Data System (ADS)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation.

  6. Selection of reference standard during method development using the analytical hierarchy process.

    PubMed

    Sun, Wan-yang; Tong, Ling; Li, Dong-xiang; Huang, Jing-yi; Zhou, Shui-ping; Sun, Henry; Bi, Kai-shun

    2015-03-25

    Reference standard is critical for ensuring reliable and accurate method performance. One important issue is how to select the ideal one from the alternatives. Unlike the optimization of parameters, the criteria of the reference standard are always immeasurable. The aim of this paper is to recommend a quantitative approach for the selection of reference standard during method development based on the analytical hierarchy process (AHP) as a decision-making tool. Six alternative single reference standards were assessed in quantitative analysis of six phenolic acids from Salvia Miltiorrhiza and its preparations by using ultra-performance liquid chromatography. The AHP model simultaneously considered six criteria related to reference standard characteristics and method performance, containing feasibility to obtain, abundance in samples, chemical stability, accuracy, precision and robustness. The priority of each alternative was calculated using standard AHP analysis method. The results showed that protocatechuic aldehyde is the ideal reference standard, and rosmarinic acid is about 79.8% ability as the second choice. The determination results successfully verified the evaluation ability of this model. The AHP allowed us comprehensive considering the benefits and risks of the alternatives. It was an effective and practical tool for optimization of reference standards during method development. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sampling Large Graphs for Anticipatory Analytics

    DTIC Science & Technology

    2015-05-15

    low. C. Random Area Sampling Random area sampling [8] is a “ snowball ” sampling method in which a set of random seed vertices are selected and areas... Sampling Large Graphs for Anticipatory Analytics Lauren Edwards, Luke Johnson, Maja Milosavljevic, Vijay Gadepally, Benjamin A. Miller Lincoln...systems, greater human-in-the-loop involvement, or through complex algorithms. We are investigating the use of sampling to mitigate these challenges

  8. Selected Analytical Methods for Environmental Remediation ...

    EPA Pesticide Factsheets

    The US Environmental Protection Agency’s Office of Research and Development (ORD) conducts cutting-edge research that provides the underpinning of science and technology for public health and environmental policies and decisions made by federal, state and other governmental organizations. ORD’s six research programs identify the pressing research needs with input from EPA offices and stakeholders. Research is conducted by ORD’s 3 labs, 4 centers, and 2 offices located in 14 facilities. The EPA booth at APHL will have several resources available to attendees, mostly in the form of print materials, that showcase our research labs, case studies of research activities, and descriptions of specific research projects. The Selected Analytical Methods for Environmental Remediation and Recovery (SAM), a library of selected methods that are helping to increase the nation's laboratory capacity to support large-scale emergency response operations, will be demoed by EPA scientists at the APHL Experience booth in the Exhibit Hall on Tuesday during the morning break. Please come to the EPA booth #309 for more information! To be on a loop at our ORD booth demo during APHL.

  9. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Standard addition determination of impurities in Na2CrO4 by ICP-AES].

    PubMed

    Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong

    2015-02-01

    Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.

  11. Development of a fast liquid chromatography-tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters.

    PubMed

    Di Carro, Marina; Scapolla, Carlo; Liscio, Camilla; Magi, Emanuele

    2010-09-01

    A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water-acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d (16) as internal standard were drawn, showing good correlation coefficients (0.9993-0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.

  12. Determination of Selected Perfluorinated Alkyl Acids in ...

    EPA Pesticide Factsheets

    The 1996 amendments to the Safe Drinking Water Act (SDWA) required EPA to establish a Contaminant Candidate List (CCL), that contains a list of drinking water contaminants that the Agency will consider for future regulation. EPA must make a regulatory determination on a minimum of five contaminants every five years. The first CCL was published in 1998, and updates were anticipated every five years thereafter. One of the key pieces of information that must be available in order to make a regulatory determination is nationwide occurrence data for the chemical contaminants under consideration. Historically, EPA has collected the necessary occurrence data under its Unregulated Contaminant Monitoring Regulations (UCMR). Under the UCMR, monitoring is conducted at selected drinking water utilities for specific contaminants of interest. The chemical analyses are usually performed by the utilities or by commercial laboratories. To meet the requirements of monitoring under the UCMR program, the analytical methods developed should be specific, sensitive, and practical enough for application in commercial laboratories. This task will focus on the development of analytical methods for chemicals identified on future CCLs or emerging contaminants not yet listed on the CCL. These methods will be used for the collection of occurrence data under future UCMRs. The objective of this research effort is to develop analytical methods to be used to measure the occurrence of

  13. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 5, Technical Memorandums 06-09A, 06-10A, and 06-12A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachmentsmore » 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).« less

  14. Development of a validated liquid chromatographic method for quantification of sorafenib tosylate in the presence of stress-induced degradation products and in biological matrix employing analytical quality by design approach.

    PubMed

    Sharma, Teenu; Khurana, Rajneet Kaur; Jain, Atul; Katare, O P; Singh, Bhupinder

    2018-05-01

    The current research work envisages an analytical quality by design-enabled development of a simple, rapid, sensitive, specific, robust and cost-effective stability-indicating reversed-phase high-performance liquid chromatographic method for determining stress-induced forced-degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two-factor-three-level-13-run, face-centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C 18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H 2 O 2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Measuring solids concentration in stormwater runoff: comparison of analytical methods.

    PubMed

    Clark, Shirley E; Siu, Christina Y S

    2008-01-15

    Stormwater suspended solids typically are quantified using one of two methods: aliquot/subsample analysis (total suspended solids [TSS]) or whole-sample analysis (suspended solids concentration [SSC]). Interproject comparisons are difficult because of inconsistencies in the methods and in their application. To address this concern, the suspended solids content has been measured using both methodologies in many current projects, but the question remains about how to compare these values with historical water-quality data where the analytical methodology is unknown. This research was undertaken to determine the effect of analytical methodology on the relationship between these two methods of determination of the suspended solids concentration, including the effect of aliquot selection/collection method and of particle size distribution (PSD). The results showed that SSC was best able to represent the known sample concentration and that the results were independent of the sample's PSD. Correlations between the results and the known sample concentration could be established for TSS samples, but they were highly dependent on the sample's PSD and on the aliquot collection technique. These results emphasize the need to report not only the analytical method but also the particle size information on the solids in stormwater runoff.

  16. Rapid and Automated Analytical Methods for Redox Species Based on Potentiometric Flow Injection Analysis Using Potential Buffers

    PubMed Central

    Ohura, Hiroki; Imato, Toshihiko

    2011-01-01

    Two analytical methods, which prove the utility of a potentiometric flow injection technique for determining various redox species, based on the use of some redox potential buffers, are reviewed. The first is a potentiometric flow injection method in which a redox couple such as Fe(III)-Fe(II), Fe(CN)6 3−-Fe(CN)(CN)6 4−, and bromide-bromine and a redox electrode or a combined platinum-bromide ion selective electrode are used. The analytical principle and advantages of the method are discussed, and several examples of its application are reported. Another example is a highly sensitive potentiometric flow injection method, in which a large transient potential change due to bromine or chlorine as an intermediate, generated during the reaction of the oxidative species with an Fe(III)-Fe(II) potential buffer containing bromide or chloride, is utilized. The analytical principle and details of the proposed method are described, and examples of several applications are described. The determination of trace amounts of hydrazine, based on the detection of a transient change in potential caused by the reaction with a Ce(IV)-Ce(III) potential buffer, is also described. PMID:21584280

  17. An UPLC-MS/MS method for separation and accurate quantification of tamoxifen and its metabolites isomers.

    PubMed

    Arellano, Cécile; Allal, Ben; Goubaa, Anwar; Roché, Henri; Chatelut, Etienne

    2014-11-01

    A selective and accurate analytical method is needed to quantify tamoxifen and its phase I metabolites in a prospective clinical protocol, for evaluation of pharmacokinetic parameters of tamoxifen and its metabolites in adjuvant treatment of breast cancer. The selectivity of the analytical method is a fundamental criteria to allow the quantification of the main active metabolites (Z)-isomers from (Z)'-isomers. An UPLC-MS/MS method was developed and validated for the quantification of (Z)-tamoxifen, (Z)-endoxifen, (E)-endoxifen, Z'-endoxifen, (Z)'-endoxifen, (Z)-4-hydroxytamoxifen, (Z)-4'-hydroxytamoxifen, N-desmethyl tamoxifen, and tamoxifen-N-oxide. The validation range was set between 0.5ng/mL and 125ng/mL for 4-hydroxytamoxifen and endoxifen isomers, and between 12.5ng/mL and 300ng/mL for tamoxifen, tamoxifen N-desmethyl and tamoxifen-N-oxide. The application to patient plasma samples was performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Determination of fat-soluble vitamins and carotenoids in standard reference material 3280 multivitamin/multielement tablets by liquid chromatography with absorbance detection.

    PubMed

    Thomas, Jeanice B; Sharpless, Katherine E; Yen, James H; Rimmer, Catherine A

    2011-01-01

    The concentrations of selected fat-soluble vitamins and carotenoids in Standard Reference Material (SRM) 3280 Multivitamin/Multielement Tablets have been determined by two independent LC methods, with measurements performed by the National Institute of Standards and Technology (NIST). This SRM has been prepared as part of a collaborative effort between NIST and the National Institutes of Health Office of Dietary Supplements. The SRM is also intended to support the Dietary Supplement Ingredient Database that is being established by the U.S. Department of Agriculture. The methods used at NIST to determine the concentration levels of vitamins A and E, and beta-carotene in the SRM used RPLC with absorbance detection. The relative precision of these methods ranged from 2 to 8% for the analytes measured. SRM 3280 is primarily intended for use in validating analytical methods for the determination of selected vitamins, carotenoids, and elements in multivitamin/multielement tablets and similar matrixes.

  19. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples

  20. EPA Method 525.3 - Determination of Semivolatile Organic Chemicals in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Science Inventory

    Method 525.3 is an analytical method that uses solid phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS) for the identification and quantitation of 125 selected semi-volatile organic chemicals in drinking water.

  1. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    PubMed

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the selected pesticides in soya beans at appropriate uncertainty levels, making it suitable for the characterization of candidate reference materials. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Addressing unmeasured confounding in comparative observational research.

    PubMed

    Zhang, Xiang; Faries, Douglas E; Li, Hu; Stamey, James D; Imbens, Guido W

    2018-04-01

    Observational pharmacoepidemiological studies can provide valuable information on the effectiveness or safety of interventions in the real world, but one major challenge is the existence of unmeasured confounder(s). While many analytical methods have been developed for dealing with this challenge, they appear under-utilized, perhaps due to the complexity and varied requirements for implementation. Thus, there is an unmet need to improve understanding the appropriate course of action to address unmeasured confounding under a variety of research scenarios. We implemented a stepwise search strategy to find articles discussing the assessment of unmeasured confounding in electronic literature databases. Identified publications were reviewed and characterized by the applicable research settings and information requirements required for implementing each method. We further used this information to develop a best practice recommendation to help guide the selection of appropriate analytical methods for assessing the potential impact of unmeasured confounding. Over 100 papers were reviewed, and 15 methods were identified. We used a flowchart to illustrate the best practice recommendation which was driven by 2 critical components: (1) availability of information on the unmeasured confounders; and (2) goals of the unmeasured confounding assessment. Key factors for implementation of each method were summarized in a checklist to provide further assistance to researchers for implementing these methods. When assessing comparative effectiveness or safety in observational research, the impact of unmeasured confounding should not be ignored. Instead, we suggest quantitatively evaluating the impact of unmeasured confounding and provided a best practice recommendation for selecting appropriate analytical methods. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Rapid determination of anti-estrogens by gas chromatography/mass spectrometry in urine: Method validation and application to real samples.

    PubMed

    Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M

    2012-02-01

    A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.

  4. Rapid determination of anti-estrogens by gas chromatography/mass spectrometry in urine: Method validation and application to real samples

    PubMed Central

    Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.

    2011-01-01

    A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714

  5. On-matrix derivatization extraction of chemical weapons convention relevant alcohols from soil.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Dubey, D K; Pardasani, Deepak

    2013-10-11

    Present study deals with the on-matrix derivatization-extraction of aminoalcohols and thiodiglycols, which are important precursors and/or degradation products of VX analogues and vesicants class of chemical warfare agents (CWAs). The method involved hexamethyldisilazane (HMDS) mediated in situ silylation of analytes on the soil. Subsequent extraction and gas chromatography-mass spectrometry analysis of derivatized analytes offered better recoveries in comparison to the procedure recommended by the Organization for the Prohibition of Chemical Weapons (OPCW). Various experimental conditions such as extraction solvent, reagent and catalyst amount, reaction time and temperature were optimized. Best recoveries of analytes ranging from 45% to 103% were obtained with DCM solvent containing 5%, v/v HMDS and 0.01%, w/v iodine as catalyst. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes ranged from 8 to 277 and 21 to 665ngmL(-1), respectively, in selected ion monitoring mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality

    PubMed Central

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; MacEachren, Alan M

    2008-01-01

    Background Kulldorff's spatial scan statistic and its software implementation – SaTScan – are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. Results We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. Conclusion The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. Method We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit. PMID:18992163

  7. Quantitative Method for Simultaneous Analysis of Acetaminophen and 6 Metabolites.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Pistorius, Marcel C M; Romijn, Johannes A; Mathôt, Ron A A

    2017-04-01

    Hepatotoxicity after ingestion of high-dose acetaminophen [N-acetyl-para-aminophenol (APAP)] is caused by the metabolites of the drug. To gain more insight into factors influencing susceptibility to APAP hepatotoxicity, quantification of APAP and metabolites is important. A few methods have been developed to simultaneously quantify APAP and its most important metabolites. However, these methods require a comprehensive sample preparation and long run times. The aim of this study was to develop and validate a simplified, but sensitive method for the simultaneous quantification of acetaminophen, the main metabolites acetaminophen glucuronide and acetaminophen sulfate, and 4 Cytochrome P450-mediated metabolites by using liquid chromatography with mass spectrometric (LC-MS) detection. The method was developed and validated for the human plasma, and it entailed a single method for sample preparation, enabling quick processing of the samples followed by an LC-MS method with a chromatographic run time of 9 minutes. The method was validated for selectivity, linearity, accuracy, imprecision, dilution integrity, recovery, process efficiency, ionization efficiency, and carryover effect. The method showed good selectivity without matrix interferences. For all analytes, the mean process efficiency was >86%, and the mean ionization efficiency was >94%. Furthermore, the accuracy was between 90.3% and 112% for all analytes, and the within- and between-run imprecision were <20% for the lower limit of quantification and <14.3% for the middle level and upper limit of quantification. The method presented here enables the simultaneous quantification of APAP and 6 of its metabolites. It is less time consuming than previously reported methods because it requires only a single and simple method for the sample preparation followed by an LC-MS method with a short run time. Therefore, this analytical method provides a useful method for both clinical and research purposes.

  8. Reference intervals for selected serum biochemistry analytes in cheetahs Acinonyx jubatus.

    PubMed

    Hudson-Lamb, Gavin C; Schoeman, Johan P; Hooijberg, Emma H; Heinrich, Sonja K; Tordiffe, Adrian S W

    2016-02-26

    Published haematologic and serum biochemistry reference intervals are very scarce for captive cheetahs and even more for free-ranging cheetahs. The current study was performed to establish reference intervals for selected serum biochemistry analytes in cheetahs. Baseline serum biochemistry analytes were analysed from 66 healthy Namibian cheetahs. Samples were collected from 30 captive cheetahs at the AfriCat Foundation and 36 free-ranging cheetahs from central Namibia. The effects of captivity-status, age, sex and haemolysis score on the tested serum analytes were investigated. The biochemistry analytes that were measured were sodium, potassium, magnesium, chloride, urea and creatinine. The 90% confidence interval of the reference limits was obtained using the non-parametric bootstrap method. Reference intervals were preferentially determined by the non-parametric method and were as follows: sodium (128 mmol/L - 166 mmol/L), potassium (3.9 mmol/L - 5.2 mmol/L), magnesium (0.8 mmol/L - 1.2 mmol/L), chloride (97 mmol/L - 130 mmol/L), urea (8.2 mmol/L - 25.1 mmol/L) and creatinine (88 µmol/L - 288 µmol/L). Reference intervals from the current study were compared with International Species Information System values for cheetahs and found to be narrower. Moreover, age, sex and haemolysis score had no significant effect on the serum analytes in this study. Separate reference intervals for captive and free-ranging cheetahs were also determined. Captive cheetahs had higher urea values, most likely due to dietary factors. This study is the first to establish reference intervals for serum biochemistry analytes in cheetahs according to international guidelines. These results can be used for future health and disease assessments in both captive and free-ranging cheetahs.

  9. A field study of selected U.S. Geological Survey analytical methods for measuring pesticides in filtered stream water, June - September 2012

    USGS Publications Warehouse

    Martin, Jeffrey D.; Norman, Julia E.; Sandstrom, Mark W.; Rose, Claire E.

    2017-09-06

    U.S. Geological Survey monitoring programs extensively used two analytical methods, gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, to measure pesticides in filtered water samples during 1992–2012. In October 2012, the monitoring programs began using direct aqueous-injection liquid chromatography tandem mass spectrometry as a new analytical method for pesticides. The change in analytical methods, however, has the potential to inadvertently introduce bias in analysis of datasets that span the change.A field study was designed to document performance of the new method in a variety of stream-water matrices and to quantify any potential changes in measurement bias or variability that could be attributed to changes in analytical methods. The goals of the field study were to (1) summarize performance (bias and variability of pesticide recovery) of the new method in a variety of stream-water matrices; (2) compare performance of the new method in laboratory blank water (laboratory reagent spikes) to that in a variety of stream-water matrices; (3) compare performance (analytical recovery) of the new method to that of the old methods in a variety of stream-water matrices; (4) compare pesticide detections and concentrations measured by the new method to those of the old methods in a variety of stream-water matrices; (5) compare contamination measured by field blank water samples in old and new methods; (6) summarize the variability of pesticide detections and concentrations measured by the new method in field duplicate water samples; and (7) identify matrix characteristics of environmental water samples that adversely influence the performance of the new method. Stream-water samples and a variety of field quality-control samples were collected at 48 sites in the U.S. Geological Survey monitoring networks during June–September 2012. Stream sites were located across the United States and included sites in agricultural and urban land-use settings, as well as sites on major rivers.The results of the field study identified several challenges for the analysis and interpretation of data analyzed by both old and new methods, particularly when data span the change in methods and are combined for analysis of temporal trends in water quality. The main challenges identified are large (greater than 30 percent), statistically significant differences in analytical recovery, detection capability, and (or) measured concentrations for selected pesticides. These challenges are documented and discussed, but specific guidance or statistical methods to resolve these differences in methods are beyond the scope of the report. The results of the field study indicate that the implications of the change in analytical methods must be assessed individually for each pesticide and method.Understanding the possible causes of the systematic differences in concentrations between methods that remain after recovery adjustment might be necessary to determine how to account for the differences in data analysis. Because recoveries for each method are independently determined from separate reference standards and spiking solutions, the differences might be due to an error in one of the reference standards or solutions or some other basic aspect of standard procedure in the analytical process. Further investigation of the possible causes is needed, which will lead to specific decisions on how to compensate for these differences in concentrations in data analysis. In the event that further investigations do not provide insight into the causes of systematic differences in concentrations between methods, the authors recommend continuing to collect and analyze paired environmental water samples by both old and new methods. This effort should be targeted to seasons, sites, and expected concentrations to supplement those concentrations already assessed and to compare the ongoing analytical recovery of old and new methods to those observed in the summer and fall of 2012.

  10. A tool for selective inline quantification of co-eluting proteins in chromatography using spectral analysis and partial least squares regression.

    PubMed

    Brestrich, Nina; Briskot, Till; Osberghaus, Anna; Hubbuch, Jürgen

    2014-07-01

    Selective quantification of co-eluting proteins in chromatography is usually performed by offline analytics. This is time-consuming and can lead to late detection of irregularities in chromatography processes. To overcome this analytical bottleneck, a methodology for selective protein quantification in multicomponent mixtures by means of spectral data and partial least squares regression was presented in two previous studies. In this paper, a powerful integration of software and chromatography hardware will be introduced that enables the applicability of this methodology for a selective inline quantification of co-eluting proteins in chromatography. A specific setup consisting of a conventional liquid chromatography system, a diode array detector, and a software interface to Matlab® was developed. The established tool for selective inline quantification was successfully applied for a peak deconvolution of a co-eluting ternary protein mixture consisting of lysozyme, ribonuclease A, and cytochrome c on SP Sepharose FF. Compared to common offline analytics based on collected fractions, no loss of information regarding the retention volumes and peak flanks was observed. A comparison between the mass balances of both analytical methods showed, that the inline quantification tool can be applied for a rapid determination of pool yields. Finally, the achieved inline peak deconvolution was successfully applied to make product purity-based real-time pooling decisions. This makes the established tool for selective inline quantification a valuable approach for inline monitoring and control of chromatographic purification steps and just in time reaction on process irregularities. © 2014 Wiley Periodicals, Inc.

  11. Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH.

    PubMed

    Neue, Uwe D; Méndez, Alberto

    2007-05-01

    The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.

  12. Analytical Chemical Sensing in the Submillimeter/terahertz Spectral Range

    NASA Astrophysics Data System (ADS)

    Moran, Benjamin L.; Fosnight, Alyssa M.; Medvedev, Ivan R.; Neese, Christopher F.

    2012-06-01

    Highly sensitive and selective Terahertz sensor utilized to quantitatively analyze a complex mixture of Volatile Organic Compounds is reported. To best demonstrate analytical capabilities of THz chemical sensors we chose to perform analytical quantitative analysis of a certified gas mixture using a novel prototype chemical sensor that couples a commercial preconcentration system (Entech 7100A) to a high resolution THz spectrometer. We selected Method TO-14A certified mixture of 39 volatile organic compounds (VOCs) diluted to 1 part per million (ppm) in nitrogen. 26 of the 39 chemicals were identified by us as suitable for THz spectroscopic detection. Entech 7100A system is designed and marketed as an inlet system for Gas Chromatography-Mass Spectrometry (GC-MS) instruments with a specific focus on TO-14 and TO-15 EPA sampling methods. Its preconcentration efficiency is high for the 39 chemicals in the mixture used for this study and our preliminary results confirm this. Here we present the results of this study which serves as basis for our ongoing research in environmental sensing and analysis of exhaled human breath.

  13. Multiple animal studies for medical chemical defense program in soldier/patient decontamination and drug development on task 85-17: Validation of an analytical method for the detection of soman (GD), mustard (HD), tabun (GA), and VX in wastewater samples. Final report, 13 October 1985-1 January 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, R.L.; Hayes, L.; Rust, W.

    1989-05-01

    The following report summarizes the development and validation of an analytical method for the analyses of soman (GD), mustard (HD), VX, and tabun (GA) in wastewater. The need for an analytical method that can detect GD, HD, VX, and GA with the necessary sensitivity (< 20 parts per billion (PPB))and selectivity is essential to Medical Research and Evaluation Facility (MREF) operations. The analytical data were generated using liquid-liquid extraction of the wastewater, with the extract being concentrated and analyzed by gas chromatography (GC) methods. The sample preparation and analyses methods were developed in support of ongoing activities within the MREF.more » We have documented the precision and accuracy of the analytical method through an expected working calibration range (3.0 to 60 ppb). The analytical method was statistically evaluated over a range of concentrations to establish a detection limit and quantitation limit for the method. Whenever the true concentration is 8.5 ppb or above, the probability is at least 99.9 percent that the measured concentration will be ppb or above. Thus, 6 ppb could be used as a lower reliability limit for detecting concentrations in excess of 8.5 ppb. In summary, the proposed sample extraction and analyses methods are suitable for quantitative analyses to determine the presence of GD, HD, VX, and GA in wastewater samples. Our findings indicate that we can detect any of these chemical surety materiel (CSM) in water at or below the established U.S. Army Surgeon General's safety levels in drinking water.« less

  14. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, P.-F.; Wu, C.-R.; Li, Y.-T.

    2008-07-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derivedmore » to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.« less

  15. Genetics-based methods for detection of Salmonella spp. in foods.

    PubMed

    Mozola, Mark A

    2006-01-01

    Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.

  16. In-house validation of a liquid chromatography-tandem mass spectrometry method for the determination of selective androgen receptor modulators (SARMS) in bovine urine.

    PubMed

    Schmidt, Kathrin S; Mankertz, Joachim

    2018-06-01

    A sensitive and robust LC-MS/MS method allowing the rapid screening and confirmation of selective androgen receptor modulators in bovine urine was developed and successfully validated according to Commission Decision 2002/657/EC, chapter 3.1.3 'alternative validation', by applying a matrix-comprehensive in-house validation concept. The confirmation of the analytes in the validation samples was achieved both on the basis of the MRM ion ratios as laid down in Commission Decision 2002/657/EC and by comparison of their enhanced product ion (EPI) spectra with a reference mass spectral library by making use of the QTRAP technology. Here, in addition to the MRM survey scan, EPI spectra were generated in a data-dependent way according to an information-dependent acquisition criterion. Moreover, stability studies of the analytes in solution and in matrix according to an isochronous approach proved the stability of the analytes in solution and in matrix for at least the duration of the validation study. To identify factors that have a significant influence on the test method in routine analysis, a factorial effect analysis was performed. To this end, factors considered to be relevant for the method in routine analysis (e.g. operator, storage duration of the extracts before measurement, different cartridge lots and different hydrolysis conditions) were systematically varied on two levels. The examination of the extent to which these factors influence the measurement results of the individual analytes showed that none of the validation factors exerts a significant influence on the measurement results.

  17. An interactive website for analytical method comparison and bias estimation.

    PubMed

    Bahar, Burak; Tuncel, Ayse F; Holmes, Earle W; Holmes, Daniel T

    2017-12-01

    Regulatory standards mandate laboratories to perform studies to ensure accuracy and reliability of their test results. Method comparison and bias estimation are important components of these studies. We developed an interactive website for evaluating the relative performance of two analytical methods using R programming language tools. The website can be accessed at https://bahar.shinyapps.io/method_compare/. The site has an easy-to-use interface that allows both copy-pasting and manual entry of data. It also allows selection of a regression model and creation of regression and difference plots. Available regression models include Ordinary Least Squares, Weighted-Ordinary Least Squares, Deming, Weighted-Deming, Passing-Bablok and Passing-Bablok for large datasets. The server processes the data and generates downloadable reports in PDF or HTML format. Our website provides clinical laboratories a practical way to assess the relative performance of two analytical methods. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. MFAHP: A novel method on the performance evaluation of the industrial wireless networked control system

    NASA Astrophysics Data System (ADS)

    Wu, Linqin; Xu, Sheng; Jiang, Dezhi

    2015-12-01

    Industrial wireless networked control system has been widely used, and how to evaluate the performance of the wireless network is of great significance. In this paper, considering the shortcoming of the existing performance evaluation methods, a comprehensive performance evaluation method of networks multi-indexes fuzzy analytic hierarchy process (MFAHP) combined with the fuzzy mathematics and the traditional analytic hierarchy process (AHP) is presented. The method can overcome that the performance evaluation is not comprehensive and subjective. Experiments show that the method can reflect the network performance of real condition. It has direct guiding role on protocol selection, network cabling, and node setting, and can meet the requirements of different occasions by modifying the underlying parameters.

  19. Field validation of the dnph method for aldehydes and ketones. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, G.S.; Steger, J.L.

    1996-04-01

    A stationary source emission test method for selected aldehydes and ketones has been validated. The method employs a sampling train with impingers containing 2,4-dinitrophenylhydrazine (DNPH) to derivatize the analytes. The resulting hydrazones are recovered and analyzed by high performance liquid chromatography. Nine analytes were studied; the method was validated for formaldehyde, acetaldehyde, propionaldehyde, acetophenone and isophorone. Acrolein, menthyl ethyl ketone, menthyl isobutyl ketone, and quinone did not meet the validation criteria. The study employed the validation techniques described in EPA method 301, which uses train spiking to determine bias, and collocated sampling trains to determine precision. The studies were carriedmore » out at a plywood veneer dryer and a polyester manufacturing plant.« less

  20. General Safety and Waste Management Related to SAM

    EPA Pesticide Factsheets

    The General Safety and Waste Management page offers section-specific safety and waste management details for chemicals, radiochemicals, pathogens, and biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  1. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality.

    PubMed

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; Maceachren, Alan M

    2008-11-07

    Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of SaTScan results. The geovisual analytics approach described in this manuscript facilitates the interpretation of spatial cluster detection methods by providing cartographic representation of SaTScan results and by providing visualization methods and tools that support selection of SaTScan parameters. Our methods distinguish between heterogeneous and homogeneous clusters and assess the stability of clusters across analytic scales. We analyzed the cervical cancer mortality data for the United States aggregated by county between 2000 and 2004. We ran SaTScan on the dataset fifty times with different parameter choices. Our geovisual analytics approach couples SaTScan with our visual analytic platform, allowing users to interactively explore and compare SaTScan results produced by different parameter choices. The Standardized Mortality Ratio and reliability scores are visualized for all the counties to identify stable, homogeneous clusters. We evaluated our analysis result by comparing it to that produced by other independent techniques including the Empirical Bayes Smoothing and Kafadar spatial smoother methods. The geovisual analytics approach introduced here is developed and implemented in our Java-based Visual Inquiry Toolkit.

  2. Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing Raman spectrum signals of selected regions in the eye

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2003-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier. Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam (e.g., at a wavelength of 600 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  3. Assessing blood brain barrier dynamics or identifying or measuring selected substances, including ethanol or toxins, in a subject by analyzing Raman spectrum signals

    NASA Technical Reports Server (NTRS)

    Borchert, Mark S. (Inventor); Lambert, James L. (Inventor)

    2008-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier.Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam at a selected wavelength (e.g., at a wavelength of about 400 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  4. Quality assessment of internet pharmaceutical products using traditional and non-traditional analytical techniques.

    PubMed

    Westenberger, Benjamin J; Ellison, Christopher D; Fussner, Andrew S; Jenney, Susan; Kolinski, Richard E; Lipe, Terra G; Lyon, Robbe C; Moore, Terry W; Revelle, Larry K; Smith, Anjanette P; Spencer, John A; Story, Kimberly D; Toler, Duckhee Y; Wokovich, Anna M; Buhse, Lucinda F

    2005-12-08

    This work investigated the use of non-traditional analytical methods to evaluate the quality of a variety of pharmaceutical products purchased via internet sites from foreign sources and compared the results with those obtained from conventional quality assurance methods. Traditional analytical techniques employing HPLC for potency, content uniformity, chromatographic purity and drug release profiles were used to evaluate the quality of five selected drug products (fluoxetine hydrochloride, levothyroxine sodium, metformin hydrochloride, phenytoin sodium, and warfarin sodium). Non-traditional techniques, such as near infrared spectroscopy (NIR), NIR imaging and thermogravimetric analysis (TGA), were employed to verify the results and investigate their potential as alternative testing methods. Two of 20 samples failed USP monographs for quality attributes. The additional analytical methods found 11 of 20 samples had different formulations when compared to the U.S. product. Seven of the 20 samples arrived in questionable containers, and 19 of 20 had incomplete labeling. Only 1 of the 20 samples had final packaging similar to the U.S. products. The non-traditional techniques complemented the traditional techniques used and highlighted additional quality issues for the products tested. For example, these methods detected suspect manufacturing issues (such as blending), which were not evident from traditional testing alone.

  5. Analyte discrimination from chemiresistor response kinetics.

    PubMed

    Read, Douglas H; Martin, James E

    2010-08-15

    Chemiresistors are polymer-based sensors that transduce the sorption of a volatile organic compound into a resistance change. Like other polymer-based gas sensors that function through sorption, chemiresistors can be selective for analytes on the basis of the affinity of the analyte for the polymer. However, a single sensor cannot, in and of itself, discriminate between analytes, since a small concentration of an analyte that has a high affinity for the polymer might give the same response as a high concentration of another analyte with a low affinity. In this paper we use a field-structured chemiresistor to demonstrate that its response kinetics can be used to discriminate between analytes, even between those that have identical chemical affinities for the polymer phase of the sensor. The response kinetics is shown to be independent of the analyte concentration, and thus the magnitude of the sensor response, but is found to vary inversely with the analyte's saturation vapor pressure. Saturation vapor pressures often vary greatly from analyte to analyte, so analysis of the response kinetics offers a powerful method for obtaining analyte discrimination from a single sensor.

  6. Simultaneous determination of gabapentin, pregabalin, vigabatrin, and topiramate in plasma by HPLC with fluorescence detection.

    PubMed

    Martinc, Boštjan; Roškar, Robert; Grabnar, Iztok; Vovk, Tomaž

    2014-07-01

    Therapeutic drug monitoring (TDM) of antiepileptic drugs (AEDs) has been recognized as a useful tool in management of epilepsy. We developed a simple analytical method for simultaneous determination of four second generation AEDs, including gabapentin (GBP), pregabalin (PGB), vigabatrin (VGB), and topiramate (TOP). Analytes were extracted from human plasma using universal solid phase extraction, derivatized with 4-chloro-7-nitrobenzofurazan (NBD-Cl) and analyzed by HPLC with fluorescence detection. Using mass spectrometry we confirmed that NBD-Cl reacts with sulfamate group of TOP similarly as with amine group of the other three analytes. The method is linear (r(2)>0.998) across investigated analytical ranges (0.375-30.0μg/mL for GBP, PGB, and VGB; 0.50-20.0μg/mL for TOP). Intraday and interday precision do not exceed 9.40%. The accuracy is from 95.6% to 106%. The recovery is higher than 80.6%, and the lower limit of quantification is at least 0.5μg/mL. The method is selective and robust. For TOP determination the method was compared to a previously published method and the results obtained by the two methods were in good agreement. The developed method is suitable for routine TDM. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    PubMed

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Analysis of Iranian Students' Persistence in Online Education

    ERIC Educational Resources Information Center

    Mahmodi, Mahdi; Ebrahimzade, Issa

    2015-01-01

    In the following research, the relationship between instructional interaction and student persistence in e-learning has been analyzed. In order to conduct a descriptive-analytic survey, 744 undergraduate e-students were selected by stratified random sampling method to examine not only the frequency and the methods of establishing an instructional…

  9. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  10. Development and validation of an analytical method for regorafenib and its metabolites in mouse plasma.

    PubMed

    Fu, Qiang; Chen, Mingqing; Hu, Shuiying; McElroy, Craig A; Mathijssen, Ron H; Sparreboom, Alex; Baker, Sharyn D

    2018-05-05

    An analytical method was developed for measuring the effect of OATP1B2 deficiency on plasma levels of the kinase inhibitor regorafenib and its metabolites regorafenib-N-oxide, N-desmethyl-regorafenib-N-oxide, and regorafenib-N-β-glucuronide (RG) in mice. Compounds were separated by liquid chromatography and monitored by a triple quadrupole mass spectrometer in the selected reaction monitoring mode after positive electrospray ionization. All calibration curves were linear in the selected concentration range (R 2  ≥ 0.99). The lower limit of quantification was 5 ng/mL for the four analytes. Within-day precisions, between-day precisions, and accuracies were 2.59-6.82%, 3.97-11.3%, and 94.5-111%, respectively. The identification and structure elucidation of RG, isolated from human urine, was performed by NMR. Compared with wild-type mice given regorafenib (10 mg/kg), deficiency of the drug transporter OATP1B2 in vivo had minimal effects on plasma levels of parent drug and the metabolite regorafenib-N-oxide, and N-desmethyl-regorafenib-N-oxide. However, the area under the curve and peak levels of RG were increased by 5.6-fold and 5.1-fold, respectively, in OATP1B2-knockout mice. In conclusion, our analytical method allowed accurate and precise quantitation of regorafenib and its main metabolites in mouse plasma, and is suitable for evaluation of transporter-dependent pharmacokinetic properties of these agents in vivo. Published by Elsevier B.V.

  11. A multi-frequency iterative imaging method for discontinuous inverse medium problem

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Feng, Lixin

    2018-06-01

    The inverse medium problem with discontinuous refractive index is a kind of challenging inverse problem. We employ the primal dual theory and fast solution of integral equations, and propose a new iterative imaging method. The selection criteria of regularization parameter is given by the method of generalized cross-validation. Based on multi-frequency measurements of the scattered field, a recursive linearization algorithm has been presented with respect to the frequency from low to high. We also discuss the initial guess selection strategy by semi-analytical approaches. Numerical experiments are presented to show the effectiveness of the proposed method.

  12. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule

    NASA Astrophysics Data System (ADS)

    Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  13. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C(18) analytical column with a mobile phase consisting of a mixture of 20mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ((1)DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  14. Nanocoating cellulose paper based microextraction combined with nanospray mass spectrometry for rapid and facile quantitation of ribonucleosides in human urine.

    PubMed

    Wan, Lingzhong; Zhu, Haijing; Guan, Yafeng; Huang, Guangming

    2017-07-01

    A rapid and facile analytical method for quantification of ribonucleosides in human urine was developed by the combination of nanocoating cellulose paper based microextraction and nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). Cellulose paper used for microextraction was modified by nano-precision deposition of uniform ultrathin zirconia gel film using a sol-gel process. Due to the large surface area of the cellulose paper and the strong affinity between zirconia and the cis-diol compounds, the target analytes were selectively extracted from the complex matrix. Thus, the detection sensitivity was greatly improved. Typically, the nanocoating cellulose paper was immersed into the diluted urine for selective extraction of target analytes, then the extracted analytes were subjected to nESI-MS/MS detection. The whole analytical procedure could be completed within 10min. The method was evaluated by the determination of ribonucleosides (adenosine, cytidine, uridine, guanosine) in urine sample. The signal intensities of the ribonuclesides extracted by the nanocoating cellulose paper were greatly enhanced by 136-459-folds compared with the one of the unmodified cellulose paper based microextraction. The limits of detection (LODs) and the limits of quantification (LOQs) of the four ribonucleosides were in the range of 0.0136-1.258μgL -1 and 0.0454-4.194μgL -1 , respectively. The recoveries of the target nucleosides from spiked human urine were in the range of 75.64-103.49% with the relative standard deviations (RSDs) less than 9.36%. The results demonstrate the potential of the proposed method for rapid and facile determination of endogenous ribonucleosides in urine sample. Copyright © 2017. Published by Elsevier B.V.

  15. Rapid Radiochemical Method for Isotopic Uranium in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  16. Role of chromatography in the development of Standard Reference Materials for organic analysis.

    PubMed

    Wise, Stephen A; Phinney, Karen W; Sander, Lane C; Schantz, Michele M

    2012-10-26

    The certification of chemical constituents in natural-matrix Standard Reference Materials (SRMs) at the National Institute of Standards and Technology (NIST) can require the use of two or more independent analytical methods. The independence among the methods is generally achieved by taking advantage of differences in extraction, separation, and detection selectivity. This review describes the development of the independent analytical methods approach at NIST, and its implementation in the measurement of organic constituents such as contaminants in environmental materials, nutrients and marker compounds in food and dietary supplement matrices, and health diagnostic and nutritional assessment markers in human serum. The focus of this review is the important and critical role that separation science techniques play in achieving the necessary independence of the analytical steps in the measurement of trace-level organic constituents in natural matrix SRMs. Published by Elsevier B.V.

  17. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    PubMed

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  18. Selective determination of pyridine alkaloids in tobacco by PFTBA ions/analyte molecule reaction ionization ion trap mass spectrometry.

    PubMed

    Zhang, Jianxun; Ji, Houwei; Sun, Shihao; Mao, Duobin; Liu, Huwei; Guo, Yinlong

    2007-10-01

    The application of perfluorotributylamine (PFTBA) ions/analyte molecule reaction ionization for the selective determination of tobacco pyridine alkaloids by ion trap mass spectrometry (IT-MS) is reported. The main three PFTBA ions (CF(3)(+), C(3)F(5)(+), and C(5)F(10)N(+)) are generated in the external source and then introduced into ion trap for reaction with analytes. Because the existence of the tertiary nitrogen atom in the pyridine makes it possible for PFTBA ions to react smoothly with pyridine and forms adduct ions, pyridine alkaloids in tobacco were selectively ionized and formed quasi-molecular ion [M + H](+)and adduct ions, including [M + 69](+), [M + 131](+), and [M + 264](+), in IT-MS. These ions had distinct abundances and were regarded as the diagnostic ions of each tobacco pyridine alkaloid for quantitative analysis in selected-ion monitoring mode. Results show that the limit of detection is 0.2 microg/mL, and the relative standard deviations for the seven alkaloids are in the range of 0.71% to 6.8%, and good recovery of 95.6% and 97.2%. The proposed method provides substantially greater selectivity and sensitivity compared with the conventional approach and offers an alternative approach for analysis of tobacco alkaloids.

  19. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  20. Comparative study of solar optics for paraboloidal concentrators

    NASA Technical Reports Server (NTRS)

    Wen, L.; Poon, P.; Carley, W.; Huang, L.

    1979-01-01

    Different analytical methods for computing the flux distribution on the focal plane of a paraboloidal solar concentrator are reviewed. An analytical solution in algebraic form is also derived for an idealized model. The effects resulting from using different assumptions in the definition of optical parameters used in these methodologies are compared and discussed in detail. These parameters include solar irradiance distribution (limb darkening and circumsolar), reflector surface specular spreading, surface slope error, and concentrator pointing inaccuracy. The type of computational method selected for use depends on the maturity of the design and the data available at the time the analysis is made.

  1. Development and validation of an UHPLC-MS/MS method for β2-agonists quantification in human urine and application to clinical samples.

    PubMed

    Bozzolino, Cristina; Leporati, Marta; Gani, Federica; Ferrero, Cinzia; Vincenti, Marco

    2018-02-20

    A fast analytical method for the simultaneous detection of 24 β 2 -agonists in human urine was developed and validated. The method covers the therapeutic drugs most commonly administered, but also potentially abused β 2 -agonists. The procedure is based on enzymatic deconjugation with β-glucuronidase followed by SPE clean up using mixed-phase cartridges with both ion-exchange and lipophilic properties. Instrumental analysis conducted by UHPLC-MS/MS allowed high peak resolution and rapid chromatographic separation, with reduced time and costs. The method was fully validated according ISO 17025:2005 principles. The following parameters were determined for each analyte: specificity, selectivity, linearity, limit of detection, limit of quantification, precision, accuracy, matrix effect, recovery and carry-over. The method was tested on real samples obtained from patients subjected to clinical treatment under chronic or acute therapy with either formoterol, indacaterol, salbutamol, or salmeterol. The drugs were administered using pressurized metered dose inhalers. All β 2 -agonists administered to the patients were detected in the real samples. The method proved adequate to accurately measure the concentration of these analytes in the real samples. The observed analytical data are discussed with reference to the administered dose and the duration of the therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. An analytical framework to assist decision makers in the use of forest ecosystem model predictions

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Ascough, J.C.; Liu, J.; Luckai, N.; Mailly, D.; Archambault, L.; Gordon, Andrew M.

    2011-01-01

    The predictions from most forest ecosystem models originate from deterministic simulations. However, few evaluation exercises for model outputs are performed by either model developers or users. This issue has important consequences for decision makers using these models to develop natural resource management policies, as they cannot evaluate the extent to which predictions stemming from the simulation of alternative management scenarios may result in significant environmental or economic differences. Various numerical methods, such as sensitivity/uncertainty analyses, or bootstrap methods, may be used to evaluate models and the errors associated with their outputs. However, the application of each of these methods carries unique challenges which decision makers do not necessarily understand; guidance is required when interpreting the output generated from each model. This paper proposes a decision flow chart in the form of an analytical framework to help decision makers apply, in an orderly fashion, different steps involved in examining the model outputs. The analytical framework is discussed with regard to the definition of problems and objectives and includes the following topics: model selection, identification of alternatives, modelling tasks and selecting alternatives for developing policy or implementing management scenarios. Its application is illustrated using an on-going exercise in developing silvicultural guidelines for a forest management enterprise in Ontario, Canada.

  3. Use of High-Resolution Continuum Source Flame Atomic Absorption Spectrometry (HR-CS FAAS) for Sequential Multi-Element Determination of Metals in Seawater and Wastewater Samples

    NASA Astrophysics Data System (ADS)

    Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.

    2015-09-01

    The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.

  4. Quantitative Determination of NTA and Other Chelating Agents in Detergents by Potentiometric Titration with Copper Ion Selective Electrode.

    PubMed

    Ito, Sana; Morita, Masaki

    2016-01-01

    Quantitative analysis of nitrilotriacetate (NTA) in detergents by titration with Cu 2+ solution using a copper ion selective electrode was achieved. This method tolerates a wide range of pH and ingredients in detergents. In addition to NTA, other chelating agents, having relatively lower stability constants toward Cu 2+ , were also qualified with sufficient accuracy by this analytical method for model detergent formulations. The titration process was automated by automatic titrating systems available commercially.

  5. An isotope-dilution standard GC/MS/MS method for steroid hormones in water

    USGS Publications Warehouse

    Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Lindley, Chris E.; Losche, Scott A.

    2013-01-01

    An isotope-dilution quantification method was developed for 20 natural and synthetic steroid hormones and additional compounds in filtered and unfiltered water. Deuterium- or carbon-13-labeled isotope-dilution standards (IDSs) are added to the water sample, which is passed through an octadecylsilyl solid-phase extraction (SPE) disk. Following extract cleanup using Florisil SPE, method compounds are converted to trimethylsilyl derivatives and analyzed by gas chromatography with tandem mass spectrometry. Validation matrices included reagent water, wastewater-affected surface water, and primary (no biological treatment) and secondary wastewater effluent. Overall method recovery for all analytes in these matrices averaged 100%; with overall relative standard deviation of 28%. Mean recoveries of the 20 individual analytes for spiked reagent-water samples prepared along with field samples analyzed in 2009–2010 ranged from 84–104%, with relative standard deviations of 6–36%. Detection levels estimated using ASTM International’s D6091–07 procedure range from 0.4 to 4 ng/L for 17 analytes. Higher censoring levels of 100 ng/L for bisphenol A and 200 ng/L for cholesterol and 3-beta-coprostanol are used to prevent bias and false positives associated with the presence of these analytes in blanks. Absolute method recoveries of the IDSs provide sample-specific performance information and guide data reporting. Careful selection of labeled compounds for use as IDSs is important because both inexact IDS-analyte matches and deuterium label loss affect an IDS’s ability to emulate analyte performance. Six IDS compounds initially tested and applied in this method exhibited deuterium loss and are not used in the final method.

  6. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    PubMed

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was validated by national standards and the results are in agreement with certified values. The method is simple, rapid, is an advanced analytical method for the determination of trace amounts of geochemical samples' boron, molybdenum, silver, tin and lead, and has a certain practicality.

  7. An isotope dilution ultra high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of sugars and humectants in tobacco products.

    PubMed

    Wang, Liqun; Cardenas, Roberto Bravo; Watson, Clifford

    2017-09-08

    CDC's Division of Laboratory Sciences developed and validated a new method for the simultaneous detection and measurement of 11 sugars, alditols and humectants in tobacco products. The method uses isotope dilution ultra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and has demonstrated high sensitivity, selectivity, throughput and accuracy, with recoveries ranging from 90% to 113%, limits of detection ranging from 0.0002 to 0.0045μg/mL and coefficients of variation (CV%) ranging from 1.4 to 14%. Calibration curves for all analytes were linear with linearity R 2 values greater than 0.995. Quantification of tobacco components is necessary to characterize tobacco product components and their potential effects on consumer appeal, smoke chemistry and toxicology, and to potentially help distinguish tobacco product categories. The researchers analyzed a variety of tobacco products (e.g., cigarettes, little cigars, cigarillos) using the new method and documented differences in the abundance of selected analytes among product categories. Specifically, differences were detected in levels of selected sugars found in little cigars and cigarettes, which could help address appeal potential and have utility when product category is unknown, unclear, or miscategorized. Copyright © 2017. Published by Elsevier B.V.

  8. Conceptual data sampling for breast cancer histology image classification.

    PubMed

    Rezk, Eman; Awan, Zainab; Islam, Fahad; Jaoua, Ali; Al Maadeed, Somaya; Zhang, Nan; Das, Gautam; Rajpoot, Nasir

    2017-10-01

    Data analytics have become increasingly complicated as the amount of data has increased. One technique that is used to enable data analytics in large datasets is data sampling, in which a portion of the data is selected to preserve the data characteristics for use in data analytics. In this paper, we introduce a novel data sampling technique that is rooted in formal concept analysis theory. This technique is used to create samples reliant on the data distribution across a set of binary patterns. The proposed sampling technique is applied in classifying the regions of breast cancer histology images as malignant or benign. The performance of our method is compared to other classical sampling methods. The results indicate that our method is efficient and generates an illustrative sample of small size. It is also competing with other sampling methods in terms of sample size and sample quality represented in classification accuracy and F1 measure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Developments in preparation and experimental method of solid phase microextraction fibers].

    PubMed

    Yi, Xu; Fu, Yujie

    2004-09-01

    Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.

  10. Literature search of publications concerning the prediction of dynamic inlet flow distortion and related topics

    NASA Technical Reports Server (NTRS)

    Schweikhhard, W. G.; Chen, Y. S.

    1983-01-01

    Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.

  11. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  12. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  13. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    PubMed

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  14. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    PubMed

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Guidance for Data Useability in Risk Assessment (Part B-4), Final, May, 1992

    EPA Pesticide Factsheets

    This chapter provides guidance to the RPM and the risk assessor for designing an effective sampling plan and selecting suitable analytical methods to collect environmental data for use in baseline risk assessments.

  16. Electrolyte system strategies for anionic ITP with ESI-MS detection. 3. The ITP spacer technique in moving-boundary systems and configurations with two self-maintained ITP subsystems.

    PubMed

    Gebauer, Petr; Malá, Zdena; Boček, Petr

    2014-03-01

    This contribution is the third part of the project on strategies used in the selection and tuning of electrolyte systems for anionic ITP with ESI-MS detection. The strategy presented here is based on the creation of self-maintained ITP subsystems in moving-boundary systems and describes two new principal approaches offering physical separation of analyte zones from their common ITP stack and/or simultaneous selective stacking of two different analyte groups. Both strategic directions are based on extending the number of components forming the electrolyte system by adding a third suitable anion. The first method is the application of the spacer technique to moving-boundary anionic ITP systems, the second method is a technique utilizing a moving-boundary ITP system in which two ITP subsystems exist and move with mutually different velocities. It is essential for ESI detection that both methods can be based on electrolyte systems containing only several simple chemicals, such as simple volatile organic acids (formic and acetic) and their ammonium salts. The properties of both techniques are defined theoretically and discussed from the viewpoint of their applicability to trace analysis by ITP-ESI-MS. Examples of system design for selected model separations of preservatives and pharmaceuticals illustrate the validity of the theoretical model and application potential of the proposed techniques by both computer simulations and experiments. Both new methods enhance the application range of ITP-MS and may be beneficial particularly for complex multicomponent samples or for analytes with identical molecular mass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Matrix Effect Evaluation and Method Validation of Azoxystrobin and Difenoconazole Residues in Red Flesh Dragon Fruit (Hylocereus polyrhizus) Matrices Using QuEChERS Sample Preparation Methods Followed by LC-MS/MS Determination.

    PubMed

    Noegrohati, Sri; Hernadi, Elan; Asviastuti, Syanti

    2018-06-01

    Production of red flesh dragon fruit (Hylocereus polyrhizus) was hampered by Colletotrichum sp. Pre-harvest application of azoxystrobin and difenoconazole mixture is recommended, therefore, a selective and sensitive multi residues analytical method is required in monitoring and evaluating the commodity's safety. LC-MS/MS is a well-established analytical technique for qualitative and quantitative determination in complex matrices. However, this method is hurdled by co-eluted coextractives interferences. This work evaluated the pH effect of acetate buffered and citrate buffered QuEChERS sample preparation in their effectiveness of matrix effect reduction. Citrate buffered QuEChERS proved to produce clean final extract with relative matrix effect 0.4%-0.7%. Method validation of the selected sample preparation followed by LC-MS/MS for whole dragon fruit, flesh and peel matrices fortified at 0.005, 0.01, 0.1 and 1 g/g showed recoveries 75%-119%, intermediate repeatability 2%-14%. The expanded uncertainties were 7%-48%. Based on the international acceptance criteria, this method is valid.

  18. Freeze-thaw approach: A practical sample preparation strategy for residue analysis of multi-class veterinary drugs in chicken muscle.

    PubMed

    Zhang, Meiyu; Li, Erfen; Su, Yijuan; Song, Xuqin; Xie, Jingmeng; Zhang, Yingxia; He, Limin

    2018-06-01

    Seven drugs from different classes, namely, fluoroquinolones (enrofloxacin, ciprofloxacin, sarafloxacin), sulfonamides (sulfadimidine, sulfamonomethoxine), and macrolides (tilmicosin, tylosin), were used as test compounds in chickens by oral administration, a simple extraction step after cryogenic freezing might allow the effective extraction of multi-class veterinary drug residues from minced chicken muscles by mix vortexing. On basis of the optimized freeze-thaw approach, a convenient, selective, and reproducible liquid chromatography with tandem mass spectrometry method was developed. At three spiking levels in blank chicken and medicated chicken muscles, average recoveries of the analytes were in the range of 71-106 and 63-119%, respectively. All the relative standard deviations were <20%. The limits of quantification of analytes were 0.2-5.0 ng/g. Regardless of the chicken levels, there were no significant differences (P > 0.05) in the average contents of almost any of the analytes in medicated chickens between this method and specific methods in the literature for the determination of specific analytes. Finally, the developed method was successfully extended to the monitoring of residues of 55 common veterinary drugs in food animal muscles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. DETERMINATION OF ECOLOGICALLY RELEVANT PHARMACEUTICALS AND THEIR SELECTED METABOLITES IN EFFLUENT AND SURFACE WATER USING UPLC/MS/MS

    EPA Science Inventory

    Objective is to develop analytical methods including SPE and UPLC/MS/MS needed to analyze over 60 human prescription pharamceuticals and metabolites belonging to a multitude of different classes in surface waters and wastewater effluent. The methods will be used in future studies...

  20. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection.

    PubMed

    Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz

    2017-10-23

    New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK.

    PubMed

    Smith, David; Španěl, Patrik

    2015-04-21

    Selected ion flow tube mass spectrometry, SIFT-MS, a relatively new gas/vapour phase analytical method, is derived from the much earlier selected ion flow tube, SIFT, used for the study of gas phase ion-molecule reactions. Both the SIFT and SIFT-MS techniques were conceived and developed in the UK, the former at Birmingham University, the latter at Keele University along with the complementary flowing afterglow mass spectrometry, FA-MS, technique. The focus of this short review is largely to describe the origins, developments and, most importantly, the unique features of SIFT-MS as an analytical tool for ambient analysis and to indicate its growing use to analyse humid air, especially exhaled breath, its unique place as a on-line, real time analytical method and its growing use and applications as a non-invasive diagnostic in clinical diagnosis and therapeutic monitoring, principally within several UK universities and hospitals, and briefly in the wider world. A few case studies are outlined that show the potential of SIFT-MS and FA-MS in the detection and quantification of metabolites in exhaled breath as a step towards recognising pathophysiology indicative of disease and the presence of bacterial and fungal infection of the airways and lungs. Particular cases include the detection of Pseudomonas aeruginosa infection of the airways of patients with cystic fibrosis (SIFT-MS) and the measurement of total body water in patients with chronic kidney disease (FA-MS). The growing exploitation of SIFT-MS in other areas of research and commerce are briefly listed to show the wide utility of this unique UK-developed analytical method, and future prospects and developments are alluded to.

  2. Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine.

    PubMed

    Remane, Daniela; Grunwald, Soeren; Hoeke, Henrike; Mueller, Andrea; Roeder, Stefan; von Bergen, Martin; Wissenbach, Dirk K

    2015-08-15

    During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comprehensive characterizations of nanoparticle biodistribution following systemic injection in mice

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Yin; Li, Hui-Jing; Chang, Ming-Yao; Tang, Alan C. L.; Hoffman, Allan S.; Hsieh, Patrick C. H.

    2013-10-01

    Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS). This, in part, is due to better curve linearity offered by HPLC than IVIS. Furthermore, HPLC enables us to fully analyze each gram of NPs present in the organs without compromising the signals and the depth-related sensitivity as is the case in IVIS measurements. In addition, we found that changing physiological conditions improved large NP (200-500 nm) distribution in brain tissue. These results reveal the importance of selecting analytic tools and physiological environment when characterizing NP biodistribution for future nanoscale toxicology, therapeutics and diagnostics.Various nanoparticle (NP) properties such as shape and surface charge have been studied in an attempt to enhance the efficacy of NPs in biomedical applications. When trying to undermine the precise biodistribution of NPs within the target organs, the analytical method becomes the determining factor in measuring the precise quantity of distributed NPs. High performance liquid chromatography (HPLC) represents a more powerful tool in quantifying NP biodistribution compared to conventional analytical methods such as an in vivo imaging system (IVIS). This, in part, is due to better curve linearity offered by HPLC than IVIS. Furthermore, HPLC enables us to fully analyze each gram of NPs present in the organs without compromising the signals and the depth-related sensitivity as is the case in IVIS measurements. In addition, we found that changing physiological conditions improved large NP (200-500 nm) distribution in brain tissue. These results reveal the importance of selecting analytic tools and physiological environment when characterizing NP biodistribution for future nanoscale toxicology, therapeutics and diagnostics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03954d

  4. Comparison of green sample preparation techniques in the analysis of pyrethrins and pyrethroids in baby food by liquid chromatography-tandem mass spectrometry.

    PubMed

    Petrarca, Mateus Henrique; Ccanccapa-Cartagena, Alexander; Masiá, Ana; Godoy, Helena Teixeira; Picó, Yolanda

    2017-05-12

    A new selective and sensitive liquid chromatography triple quadrupole mass spectrometry method was developed for simultaneous analysis of natural pyrethrins and synthetic pyrethroids residues in baby food. In this study, two sample preparation methods based on ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and salting-out assisted liquid-liquid extraction (SALLE) were optimized, and then, compared regarding the performance criteria. Appropriate linearity in solvent and matrix-based calibrations, and suitable recoveries (75-120%) and precision (RSD values≤16%) were achieved for selected analytes by any of the sample preparation procedures. Both methods provided the analytical selectivity required for the monitoring of the insecticides in fruit-, cereal- and milk-based baby foods. SALLE, recognized by cost-effectiveness, and simple and fast execution, provided a lower enrichment factor, consequently, higher limits of quantification (LOQs) were obtained. Some of them too high to meet the strict legislation regarding baby food. Nonetheless, the combination of ultrasound and DLLME also resulted in a high sample throughput and environmental-friendly method, whose LOQs were lower than the default maximum residue limit (MRL) of 10μgkg -1 set by European Community for baby foods. In the commercial baby foods analyzed, cyhalothrin and etofenprox were detected in different samples, demonstrating the suitability of proposed method for baby food control. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    PubMed

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Olsen, K.B.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis planmore » (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.« less

  7. Researching Mental Health Disorders in the Era of Social Media: Systematic Review

    PubMed Central

    Vadillo, Miguel A; Curcin, Vasa

    2017-01-01

    Background Mental illness is quickly becoming one of the most prevalent public health problems worldwide. Social network platforms, where users can express their emotions, feelings, and thoughts, are a valuable source of data for researching mental health, and techniques based on machine learning are increasingly used for this purpose. Objective The objective of this review was to explore the scope and limits of cutting-edge techniques that researchers are using for predictive analytics in mental health and to review associated issues, such as ethical concerns, in this area of research. Methods We performed a systematic literature review in March 2017, using keywords to search articles on data mining of social network data in the context of common mental health disorders, published between 2010 and March 8, 2017 in medical and computer science journals. Results The initial search returned a total of 5386 articles. Following a careful analysis of the titles, abstracts, and main texts, we selected 48 articles for review. We coded the articles according to key characteristics, techniques used for data collection, data preprocessing, feature extraction, feature selection, model construction, and model verification. The most common analytical method was text analysis, with several studies using different flavors of image analysis and social interaction graph analysis. Conclusions Despite an increasing number of studies investigating mental health issues using social network data, some common problems persist. Assembling large, high-quality datasets of social media users with mental disorder is problematic, not only due to biases associated with the collection methods, but also with regard to managing consent and selecting appropriate analytics techniques. PMID:28663166

  8. Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992–2010

    USGS Publications Warehouse

    Martin, Jeffrey D.; Eberle, Michael

    2011-01-01

    Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ("spiked" QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as a percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in apparent environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report presents data and models related to the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as "pesticides") that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 through 2010 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Models of recovery, based on robust, locally weighted scatterplot smooths (lowess smooths) of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.

  9. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  10. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    PubMed

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87

  11. Differential Mobility Spectrometry for Improved Selectivity in Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Analysis of Paralytic Shellfish Toxins

    NASA Astrophysics Data System (ADS)

    Beach, Daniel G.

    2017-08-01

    Paralytic shellfish toxins (PSTs) are neurotoxins produced by dinoflagellates and cyanobacteria that cause paralytic shellfish poisoning in humans. PST quantitation by LC-MS is challenging because of their high polarity, lability as gas-phase ions, and large number of potentially interfering analogues. Differential mobility spectrometry (DMS) has the potential to improve the performance of LC-MS methods for PSTs in terms of selectivity and limits of detection. This work describes a comprehensive investigation of the separation of 16 regulated PSTs by DMS and the development of highly selective LC-DMS-MS methods for PST quantitation. The effects of all DMS parameters on the separation of PSTs from one another were first investigated in detail. The labile nature of 11α-gonyautoxin epimers gave unique insight into fragmentation of labile analytes before, during, and after the DMS analyzer. Two sets of DMS parameters were identified that either optimized the resolution of PSTs from one another or transmitted them at a limited number of compensation voltage (CV) values corresponding to structural subclasses. These were used to develop multidimensional LC-DMS-MS/MS methods using existing HILIC-MS/MS parameters. In both cases, improved selectivity was observed when using DMS, and the quantitative capabilities of a rapid UPLC-DMS-MS/MS method were evaluated. Limits of detection of the developed method were similar to those without DMS, and differences were highly analyte-dependant. Analysis of shellfish matrix reference materials showed good agreement with established methods. The developed methods will be useful in cases where specific matrix interferences are encountered in the LC-MS/MS analysis of PSTs in complex biological samples.

  12. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  13. Quantitative evaluation of analyte transport on microfluidic paper-based analytical devices (μPADs).

    PubMed

    Ota, Riki; Yamada, Kentaro; Suzuki, Koji; Citterio, Daniel

    2018-02-07

    The transport efficiency during capillary flow-driven sample transport on microfluidic paper-based analytical devices (μPADs) made from filter paper has been investigated for a selection of model analytes (Ni 2+ , Zn 2+ , Cu 2+ , PO 4 3- , bovine serum albumin, sulforhodamine B, amaranth) representing metal cations, complex anions, proteins and anionic molecules. For the first time, the transport of the analytical target compounds rather than the sample liquid, has been quantitatively evaluated by means of colorimetry and absorption spectrometry-based methods. The experiments have revealed that small paperfluidic channel dimensions, additional user operation steps (e.g. control of sample volume, sample dilution, washing step) as well as the introduction of sample liquid wicking areas allow to increase analyte transport efficiency. It is also shown that the interaction of analytes with the negatively charged cellulosic paper substrate surface is strongly influenced by the physico-chemical properties of the model analyte and can in some cases (Cu 2+ ) result in nearly complete analyte depletion during sample transport. The quantitative information gained through these experiments is expected to contribute to the development of more sensitive μPADs.

  14. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters.

    PubMed

    Pacheco-Fernández, Idaira; Najafi, Ali; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-09-01

    Several crosslinked polymeric ionic liquid (PIL)-based sorbent coatings of different nature were prepared by UV polymerization onto nitinol wires. They were evaluated in a direct-immersion solid-phase microextraction (DI-SPME) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The studied PIL coatings contained either vinyl alkyl or vinylbenzyl imidazolium-based (ViCnIm- or ViBCnIm-) IL monomers with different anions, as well as different dicationic IL crosslinkers. The analytical performance of these PIL-based SPME coatings was firstly evaluated for the extraction of a group of 10 different model analytes, including hydrocarbons and phenols, while exhaustively comparing the performance with commercial SPME fibers such as polydimethylsyloxane (PDMS), polyacrylate (PA) and polydimethylsiloxane/divinylbenzene (PDMS/DVB), and using all fibers under optimized conditions. Those fibers exhibiting a high selectivity for polar compounds were selected to carry out an analytical method for a group of 5 alkylphenols, including bisphenol-A (BPA) and nonylphenol (n-NP). Under optimum conditions, average relative recoveries of 108% and inter-day precision values (3 non-consecutive days) lower than 19% were obtained for a spiked level of 10µgL(-1). Correlations coefficients for the overall method ranged between 0.990 and 0.999, and limits of detection were down to 1µgL(-1). Tap water, river water, and bottled water were analyzed to evaluate matrix effects. Comparison with the PA fiber was also performed in terms of analytical performance. Partition coefficients (logKfs) of the alkylphenols to the SPME coating varied from 1.69 to 2.45 for the most efficient PIL-based fiber, and from 1.58 to 2.30 for the PA fiber. These results agree with those obtained by the normalized calibration slopes, pointing out the affinity of these PILs-based coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A novel LC-MS/MS method for the simultaneous quantification of topiramate and its main metabolites in human plasma.

    PubMed

    Milosheska, Daniela; Roškar, Robert

    2017-05-10

    The aim of the present report was to develop and validate simple, sensitive and reliable LC-MS/MS method for quantification of topiramate (TPM) and its main metabolites: 2,3-desisopropylidene TPM, 4,5-desisopropylidene TPM, 10-OH TPM and 9-OH TPM in human plasma samples. The most abundant metabolite 2,3-desisopropylidene TPM was isolated from patients urine, characterized and afterwards used as an authentic standard for method development and validation. Sample preparation method employs 100μL of plasma sample and liquid-liquid extraction with a mixture of ethyl acetate and diethyl ether as extraction solvent. Chromatographic separation was achieved on a 1290 Infinity UHPLC coupled to 6460 Triple Quad Mass Spectrometer operated in negative MRM mode using Kinetex C18 column (50×2.1mm, 2.6μm) by gradient elution using water and methanol as a mobile phase and stable isotope labeled TPM as internal standard. The method showed to be selective, accurate, precise and linear over the concentration ranges of 0.10-20μg/mL for TPM, 0.01-2.0μg/mL for 2,3-desisopropylidene TPM, and 0.001-0.200μg/mL for 4,5-desisopropylidene TPM, 10-OH TPM and 9-OH TPM. The described method is the first fully validated method capable of simultaneous determination of TPM and its main metabolites in plasma over the selected analytical range. The suitability of the method was successfully demonstrated by the quantification of all analytes in plasma samples of patients with epilepsy and can be considered as reliable analytical tool for future investigations of the TPM metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analysis of 2-oxothiazolidine-4-carboxylic acid by hydrophilic interaction liquid chromatography: application for ocular delivery using chitosan nanoparticles.

    PubMed

    Al-Kinani, Ali Athab; Naughton, Declan P; Calabrese, Gianpiero; Vangala, Anil; Smith, James R; Pierscionek, Barbara K; Alany, Raid G

    2015-03-01

    Oxidative damage due to low levels of glutathione (GSH) is one of the main causes of cataract formation. It has been reported that 2-oxothiazolidine-4-carboxylic acid (OTZ), a cysteine prodrug, can increase the cellular level of GSH. Currently, there is no analytical method to separate and quantify OTZ from aqueous humour samples for cataract research. The present study aims to develop and validate a hydrophilic interaction liquid chromatography (HILIC) method for the quantification of OTZ in simulated aqueous humour (SAH). The developed method was validated according to FDA guidelines. Accuracy, precision, selectivity, sensitivity, linearity, lower limit of quantification (LLOQ), lower limit of detection (LLOD) and stability were the parameters assessed in the method validation. The developed method was found to be accurate and precise with LLOQ and LLOD of 200 and 100 ng/mL, respectively; method selectivity was confirmed by the absence of any matrix interference with the analyte peak. The constructed calibration curve was linear in the range of 0.2-10 μg/mL, with a regression coefficient of 0.999. In addition, the OTZ was found to be stable in SAH after three freeze/thaw cycles. Chitosan nanoparticles loaded with OTZ were formulated by the ionic gelation method. The nanoparticles were found to be uniform in shape and well dispersed with average size of 153 nm. The in vitro release of OTZ from the nanoparticles was quantified using the developed analytical method over 96 h. Permeation of OTZ through excised bovine cornea was measured using HILIC. The lag time and the flux were 0.2 h and 3.05 μg/cm(2) h, respectively.

  17. Evaluation of algorithms for point cloud surface reconstruction through the analysis of shape parameters

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Verbeek, Fons J.

    2012-03-01

    In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.

  18. An evolution in listening: An analytical and critical study of structural, acoustic, and phenomenal aspects of selected works by Pauline Oliveros

    NASA Astrophysics Data System (ADS)

    Setar, Katherine Marie

    1997-08-01

    This dissertation analytically and critically examines composer Pauline Oliveros's philosophy of 'listening' as it applies to selected works created between 1961 and 1984. The dissertation is organized through the application of two criteria: three perspectives of listening (empirical, phenomenal, and, to a lesser extent, personal), and categories derived, in part, from her writings and interviews (improvisational, traditional, theatrical, electronic, meditational, and interactive). In general, Oliveros's works may be categorized by one of two listening perspectives. The 'empirical' listening perspective, which generally includes pure acoustic phenomenon, independent from human interpretation, is exemplified in the analyses of Sound Patterns (1961), OH HA AH (1968), and, to a lesser extent, I of IV (1966). The 'phenomenal' listening perspective, which involves the human interaction with the pure acoustic phenomenon, includes a critical examination of her post-1971 'meditation' pieces and an analytical and critical examination of her tonal 'interactive' improvisations in highly resonant space, such as Watertank Software (1984). The most pervasive element of Oliveros's stylistic evolution is her gradual change from the hierarchical aesthetic of the traditional composer, to one in which creative control is more equally shared by all participants. Other significant contributions by Oliveros include the probable invention of the 'meditation' genre, an emphasis on the subjective perceptions of musical participants as a means to greater musical awareness, her musical exploration of highly resonant space, and her pioneering work in American electronic music. Both analytical and critical commentary were applied to selective representative works from Oliveros's six compositional categories. The analytical methods applied to the Oliveros's works include Wayne Slawson's vowel/formant theory as described in his book, Sound Color, an original method of categorizing consonants as noise sources based upon the principles of the International Phonetic Association, traditional morphological analyses, linear-extrapolation analyses which are derived from Schenker's theory, and discussions of acoustic phenomena as they apply to such practices as 1960s electronic studio techniques and the dynamics of room acoustics.

  19. Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

    PubMed

    Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-15

    We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.

  20. Detection methods and performance criteria for genetically modified organisms.

    PubMed

    Bertheau, Yves; Diolez, Annick; Kobilinsky, André; Magin, Kimberly

    2002-01-01

    Detection methods for genetically modified organisms (GMOs) are necessary for many applications, from seed purity assessment to compliance of food labeling in several countries. Numerous analytical methods are currently used or under development to support these needs. The currently used methods are bioassays and protein- and DNA-based detection protocols. To avoid discrepancy of results between such largely different methods and, for instance, the potential resulting legal actions, compatibility of the methods is urgently needed. Performance criteria of methods allow evaluation against a common standard. The more-common performance criteria for detection methods are precision, accuracy, sensitivity, and specificity, which together specifically address other terms used to describe the performance of a method, such as applicability, selectivity, calibration, trueness, precision, recovery, operating range, limit of quantitation, limit of detection, and ruggedness. Performance criteria should provide objective tools to accept or reject specific methods, to validate them, to ensure compatibility between validated methods, and be used on a routine basis to reject data outside an acceptable range of variability. When selecting a method of detection, it is also important to consider its applicability, its field of applications, and its limitations, by including factors such as its ability to detect the target analyte in a given matrix, the duration of the analyses, its cost effectiveness, and the necessary sample sizes for testing. Thus, the current GMO detection methods should be evaluated against a common set of performance criteria.

  1. Analytical Approach to the Fuel Optimal Impulsive Transfer Problem Using Primer Vector Method

    NASA Astrophysics Data System (ADS)

    Fitrianingsih, E.; Armellin, R.

    2018-04-01

    One of the objectives of mission design is selecting an optimum orbital transfer which often translated as a transfer which requires minimum propellant consumption. In order to assure the selected trajectory meets the requirement, the optimality of transfer should first be analyzed either by directly calculating the ΔV of the candidate trajectories and select the one that gives a minimum value or by evaluating the trajectory according to certain criteria of optimality. The second method is performed by analyzing the profile of the modulus of the thrust direction vector which is known as primer vector. Both methods come with their own advantages and disadvantages. However, it is possible to use the primer vector method to verify if the result from the direct method is truly optimal or if the ΔV can be reduced further by implementing correction maneuver to the reference trajectory. In addition to its capability to evaluate the transfer optimality without the need to calculate the transfer ΔV, primer vector also enables us to identify the time and position to apply correction maneuver in order to optimize a non-optimum transfer. This paper will present the analytical approach to the fuel optimal impulsive transfer using primer vector method. The validity of the method is confirmed by comparing the result to those from the numerical method. The investigation of the optimality of direct transfer is used to give an example of the application of the method. The case under study is the prograde elliptic transfers from Earth to Mars. The study enables us to identify the optimality of all the possible transfers.

  2. Sensitive ionization of non-volatile analytes using protein solutions as spray liquid in desorption electrospray ionization mass spectrometry.

    PubMed

    Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen

    2012-12-15

    Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods usingSimulated Hanford Waste Samples-Phase I Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Charles J.; Edwards, Thomas B.

    2005-04-30

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL).more » Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround time. Because of the simplicity of the warm mixed-acid method, a well-trained cell operator team may in time be able to perform both sets of digestions. However, having separate shielded cells for each of the methods is prudent to avoid overcrowding problems that would impede a minimal turnaround time.« less

  4. Working towards accreditation by the International Standards Organization 15189 Standard: how to validate an in-house developed method an example of lead determination in whole blood by electrothermal atomic absorption spectrometry.

    PubMed

    Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe

    2014-09-01

    Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

  5. Recent Progresses in Nanobiosensing for Food Safety Analysis

    PubMed Central

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-01-01

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014–present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly. PMID:27447636

  6. Recent Progresses in Nanobiosensing for Food Safety Analysis.

    PubMed

    Yang, Tao; Huang, Huifen; Zhu, Fang; Lin, Qinlu; Zhang, Lin; Liu, Junwen

    2016-07-19

    With increasing adulteration, food safety analysis has become an important research field. Nanomaterials-based biosensing holds great potential in designing highly sensitive and selective detection strategies necessary for food safety analysis. This review summarizes various function types of nanomaterials, the methods of functionalization of nanomaterials, and recent (2014-present) progress in the design and development of nanobiosensing for the detection of food contaminants including pathogens, toxins, pesticides, antibiotics, metal contaminants, and other analytes, which are sub-classified according to various recognition methods of each analyte. The existing shortcomings and future perspectives of the rapidly growing field of nanobiosensing addressing food safety issues are also discussed briefly.

  7. Powder Handling Device for Analytical Instruments

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Blake, David F. (Inventor)

    2006-01-01

    Method and system for causing a powder sample in a sample holder to undergo at least one of three motions (vibration, rotation and translation) at a selected motion frequency in order to present several views of an individual grain of the sample. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using light in a selected wavelength region.

  8. Initial interlaboratory validation of an analytical method for the determination of lead in canned tuna to be used for monitoring and regulatory purposes.

    PubMed

    Santiago, E C; Bello, F B B

    2003-06-01

    The Association of Official Analytical Chemists (AOAC) Standard Method 972.23 (dry ashing and flame atomic absorption spectrophotometry (FAAS)), applied to the analysis of lead in tuna, was validated in three selected local laboratories to determine the acceptability of the method to both the Codex Alimentarius Commission (Codex) and the European Union (EU) Commission for monitoring lead in canned tuna. Initial validation showed that the standard AOAC method as performed in the three participating laboratories cannot satisfy the Codex/EU proposed criteria for the method detection limit for monitoring lead in fish at the present regulation level of 0.5 mg x kg(-1). Modification of the standard method by chelation/concentration of the digest solution before FAAS analysis showed that the modified method has the potential to meet Codex/EU criteria on sensitivity, accuracy and precision at the specified regulation level.

  9. Selection of remedial alternatives for mine sites: a multicriteria decision analysis approach.

    PubMed

    Betrie, Getnet D; Sadiq, Rehan; Morin, Kevin A; Tesfamariam, Solomon

    2013-04-15

    The selection of remedial alternatives for mine sites is a complex task because it involves multiple criteria and often with conflicting objectives. However, an existing framework used to select remedial alternatives lacks multicriteria decision analysis (MCDA) aids and does not consider uncertainty in the selection of alternatives. The objective of this paper is to improve the existing framework by introducing deterministic and probabilistic MCDA methods. The Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) methods have been implemented in this study. The MCDA analysis involves processing inputs to the PROMETHEE methods that are identifying the alternatives, defining the criteria, defining the criteria weights using analytical hierarchical process (AHP), defining the probability distribution of criteria weights, and conducting Monte Carlo Simulation (MCS); running the PROMETHEE methods using these inputs; and conducting a sensitivity analysis. A case study was presented to demonstrate the improved framework at a mine site. The results showed that the improved framework provides a reliable way of selecting remedial alternatives as well as quantifying the impact of different criteria on selecting alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fuzzy multicriteria disposal method and site selection for municipal solid waste.

    PubMed

    Ekmekçioğlu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-01-01

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights. 2010 Elsevier Ltd. All rights reserved.

  11. Method development and qualification of capillary zone electrophoresis for investigation of therapeutic monoclonal antibody quality.

    PubMed

    Suba, Dávid; Urbányi, Zoltán; Salgó, András

    2016-10-01

    Capillary electrophoresis techniques are widely used in the analytical biotechnology. Different electrophoretic techniques are very adequate tools to monitor size-and charge heterogenities of protein drugs. Method descriptions and development studies of capillary zone electrophoresis (CZE) have been described in literature. Most of them are performed based on the classical one-factor-at-time (OFAT) approach. In this study a very simple method development approach is described for capillary zone electrophoresis: a "two-phase-four-step" approach is introduced which allows a rapid, iterative method development process and can be a good platform for CZE method. In every step the current analytical target profile and an appropriate control strategy were established to monitor the current stage of development. A very good platform was established to investigate intact and digested protein samples. Commercially available monoclonal antibody was chosen as model protein for the method development study. The CZE method was qualificated after the development process and the results were presented. The analytical system stability was represented by the calculated RSD% value of area percentage and migration time of the selected peaks (<0.8% and <5%) during the intermediate precision investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Influence of different extraction methods on the yield and linalool content of the extracts of Eugenia uniflora L.

    PubMed

    Galhiane, Mário S; Rissato, Sandra R; Chierice, Gilberto O; Almeida, Marcos V; Silva, Letícia C

    2006-09-15

    This work has been developed using a sylvestral fruit tree, native to the Brazilian forest, the Eugenia uniflora L., one of the Mirtaceae family. The main goal of the analytical study was focused on extraction methods themselves. The method development pointed to the Clevenger extraction as the best yield in relation to SFE and Soxhlet. The SFE method presented a good yield but showed a big amount of components in the final extract, demonstrating low selectivity. The essential oil extracted was analyzed by GC/FID showing a large range of polarity and boiling point compounds, where linalool, a widely used compound, was identified. Furthermore, an analytical solid phase extraction method was used to clean it up and obtain separated classes of compounds that were fractionated and studied by GC/FID and GC/MS.

  13. Selecting Surrogates for an Alkylphenol Ethoxylate Analytical Method in Sewage and Soil Matrices

    EPA Science Inventory

    Alkylphenol ethoxylates (APEs) are nonionic surfactants commonly used in industrial detergents. These products contain complex mixtures of branched and linear chains. APEs and their degradation products, alkylphenols, are highly toxic to aquatic organisms, potentially estrogeni...

  14. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    DOEpatents

    Brettin, Thomas S.; Cottingham, Robert W.; Griffith, Shelton D.; Quest, Daniel J.

    2015-09-08

    A system and method of integrating diverse sources of data and data streams is presented. The method can include selecting a scenario based on a topic, creating a multi-relational directed graph based on the scenario, identifying and converting resources in accordance with the scenario and updating the multi-directed graph based on the resources, identifying data feeds in accordance with the scenario and updating the multi-directed graph based on the data feeds, identifying analytical routines in accordance with the scenario and updating the multi-directed graph using the analytical routines and identifying data outputs in accordance with the scenario and defining queries to produce the data outputs from the multi-directed graph.

  15. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    PubMed Central

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859

  16. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies.

    PubMed

    Li, Danhui; Martini, Nataly; Wu, Zimei; Wen, Jingyuan

    2012-10-01

    The aim of this study was to develop a simple, rapid and accurate isocratic HPLC analytical method to qualify and quantify five catechin derivatives, namely (+)-catechin (C), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epicatechin (EC) and (-)-epigallocatechin gallate (EGCG). To validate the analytical method, linearity, repeatability, intermediate precision, sensitivity, selectivity and recovery were investigated. The five catechin derivatives were completely separated by HPLC using a mobile phase containing 0.1% TFA in Milli-Q water (pH 2.0) mixed with methanol at the volume ratio of 75:25 at a flow rate of 0.8 ml/min. The method was shown to be linear (r²>0.99), repeatable with instrumental precision<2.0 and intra-assay precision<2.5 (%CV, percent coefficient of variation), precise with intra-day variation<1 and inter-day variation<2.5 (%CV, percent coefficient of variation) and sensitive (LOD<1 μg/mL and LOQ<3 μg/mL) over the calibration range for all five derivatives. Derivatives could be fully recovered in the presence of niosomal formulation (recovery rates>91%). Selectivity of the method was proven by the forced degradation studies, which showed that under acidic, basic, oxidation temperature and photolysis stresses, the parent drug can be separated from the degradation products by means of this analytical method. The described method was successfully applied in the in vitro release studies of catechin-loaded niosomes to manifest its utility in formulation characterization. Obtained results indicated that the drug release from niosomal formulations was a biphasic process and a diffusion mechanism regulated the permeation of catechin niosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Development and application of a validated HPLC method for the analysis of dissolution samples of levothyroxine sodium drug products.

    PubMed

    Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J

    2011-02-20

    A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.

  18. Development and application of a validated HPLC method for the analysis of dissolution samples of levothyroxine sodium drug products

    PubMed Central

    Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.

    2011-01-01

    A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276

  19. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa.

    PubMed

    Manickum, Thavrin; John, Wilson

    2015-07-01

    The availability of national test centers to offer a routine service for analysis and quantitation of some selected steroid hormones [natural estrogens (17-β-estradiol, E2; estrone, E1; estriol, E3), synthetic estrogen (17-α-ethinylestradiol, EE2), androgen (testosterone), and progestogen (progesterone)] in wastewater matrix was investigated; corresponding internationally used chemical- and immuno-analytical test methods were reviewed. The enzyme-linked immunosorbent assay (ELISA) (immuno-analytical technique) was also assessed for its suitability as a routine test method to quantitate the levels of these hormones at a sewage/wastewater treatment plant (WTP) (Darvill, Pietermaritzburg, South Africa), over a 2-year period. The method performance and other relevant characteristics of the immuno-analytical ELISA method were compared to the conventional chemical-analytical methodology, like gas/liquid chromatography-mass spectrometry (GC/LC-MS), and GC-LC/tandem mass spectrometry (MSMS), for quantitation of the steroid hormones in wastewater and environmental waters. The national immuno-analytical ELISA technique was found to be sensitive (LOQ 5 ng/L, LOD 0.2-5 ng/L), accurate (mean recovery 96%), precise (RSD 7-10%), and cost-effective for screening and quantitation of these steroid hormones in wastewater and environmental water matrix. A survey of the most current international literature indicates a fairly equal use of the LC-MS/MS, GC-MS/MS (chemical-analytical), and ELISA (immuno-analytical) test methods for screening and quantitation of the target steroid hormones in both water and wastewater matrix. Internationally, the observed sensitivity, based on LOQ (ng/L), for the steroid estrogens E1, E2, EE2, is, in decreasing order: LC-MSMS (0.08-9.54) > GC-MS (1) > ELISA (5) (chemical-analytical > immuno-analytical). At the national level, the routine, unoptimized chemical-analytical LC-MSMS method was found to lack the required sensitivity for meeting environmental requirements for steroid hormone quantitation. Further optimization of the sensitivity of the chemical-analytical LC-tandem mass spectrometry methods, especially for wastewater screening, in South Africa is required. Risk assessment studies showed that it was not practical to propose standards or allowable limits for the steroid estrogens E1, E2, EE2, and E3; the use of predicted-no-effect concentration values of the steroid estrogens appears to be appropriate for use in their risk assessment in relation to aquatic organisms. For raw water sources, drinking water, raw and treated wastewater, the use of bioassays, with trigger values, is a useful screening tool option to decide whether further examination of specific endocrine activity may be warranted, or whether concentrations of such activity are of low priority, with respect to health concerns in the human population. The achievement of improved quantitation limits for immuno-analytical methods, like ELISA, used for compound quantitation, and standardization of the method for measuring E2 equivalents (EEQs) used for biological activity (endocrine: e.g., estrogenic) are some areas for future EDC research.

  20. Optimization of analytical parameters for inferring relationships among Escherichia coli isolates from repetitive-element PCR by maximizing correspondence with multilocus sequence typing data.

    PubMed

    Goldberg, Tony L; Gillespie, Thomas R; Singer, Randall S

    2006-09-01

    Repetitive-element PCR (rep-PCR) is a method for genotyping bacteria based on the selective amplification of repetitive genetic elements dispersed throughout bacterial chromosomes. The method has great potential for large-scale epidemiological studies because of its speed and simplicity; however, objective guidelines for inferring relationships among bacterial isolates from rep-PCR data are lacking. We used multilocus sequence typing (MLST) as a "gold standard" to optimize the analytical parameters for inferring relationships among Escherichia coli isolates from rep-PCR data. We chose 12 isolates from a large database to represent a wide range of pairwise genetic distances, based on the initial evaluation of their rep-PCR fingerprints. We conducted MLST with these same isolates and systematically varied the analytical parameters to maximize the correspondence between the relationships inferred from rep-PCR and those inferred from MLST. Methods that compared the shapes of densitometric profiles ("curve-based" methods) yielded consistently higher correspondence values between data types than did methods that calculated indices of similarity based on shared and different bands (maximum correspondences of 84.5% and 80.3%, respectively). Curve-based methods were also markedly more robust in accommodating variations in user-specified analytical parameter values than were "band-sharing coefficient" methods, and they enhanced the reproducibility of rep-PCR. Phylogenetic analyses of rep-PCR data yielded trees with high topological correspondence to trees based on MLST and high statistical support for major clades. These results indicate that rep-PCR yields accurate information for inferring relationships among E. coli isolates and that accuracy can be enhanced with the use of analytical methods that consider the shapes of densitometric profiles.

  1. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-09-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives--everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively--fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  2. Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.

  3. Comparison of serum, EDTA plasma and P100 plasma for luminex-based biomarker multiplex assays in patients with chronic obstructive pulmonary disease in the SPIROMICS study

    PubMed Central

    2014-01-01

    Background As a part of the longitudinal Chronic Obstructive Pulmonary Disease (COPD) study, Subpopulations and Intermediate Outcome Measures in COPD study (SPIROMICS), blood samples are being collected from 3200 subjects with the goal of identifying blood biomarkers for sub-phenotyping patients and predicting disease progression. To determine the most reliable sample type for measuring specific blood analytes in the cohort, a pilot study was performed from a subset of 24 subjects comparing serum, Ethylenediaminetetraacetic acid (EDTA) plasma, and EDTA plasma with proteinase inhibitors (P100™). Methods 105 analytes, chosen for potential relevance to COPD, arranged in 12 multiplex and one simplex platform (Myriad-RBM) were evaluated in duplicate from the three sample types from 24 subjects. The reliability coefficient and the coefficient of variation (CV) were calculated. The performance of each analyte and mean analyte levels were evaluated across sample types. Results 20% of analytes were not consistently detectable in any sample type. Higher reliability and/or smaller CV were determined for 12 analytes in EDTA plasma compared to serum, and for 11 analytes in serum compared to EDTA plasma. While reliability measures were similar for EDTA plasma and P100 plasma for a majority of analytes, CV was modestly increased in P100 plasma for eight analytes. Each analyte within a multiplex produced independent measurement characteristics, complicating selection of sample type for individual multiplexes. Conclusions There were notable detectability and measurability differences between serum and plasma. Multiplexing may not be ideal if large reliability differences exist across analytes measured within the multiplex, especially if values differ based on sample type. For some analytes, the large CV should be considered during experimental design, and the use of duplicate and/or triplicate samples may be necessary. These results should prove useful for studies evaluating selection of samples for evaluation of potential blood biomarkers. PMID:24397870

  4. [Rapid determination of 40 pesticide residues in fruits using gas chromatography-mass spectrometry coupled with analyte protectants to compensate for matrix effects].

    PubMed

    Xu, Xiuli; Zhao, Haixiang; Li, Li; Liu, Hanxia; Ren, Heling; Zhong, Weike

    2012-03-01

    A gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 40 pesticides in fruits. The effects of adding analyte protectants were evaluated for compensating matrix effects and the impacts on the quantitative results. A new combination of analyte protectants - Polyethylene Glycol 400 (PEG 400) and olive oil combination, which can be dissolved in acetone, was used for the quantitative analysis. The pesticides were extracted from fruit samples with acetonitrile and the extracts were cleaned up using micro-solid phase extraction. A GC-MS method in selective ion monitoring (SIM) mode coupled with large volume injection was finally developed. Using the newly developed analyte protectant combination of PEG 400 and olive oil, a good linearity was obtained in the range of 1 - 200 microg/L with coefficients better than 0.99, and the detection limits were between 0.1 - 3.0 microg/L. The mean recoveries of the pesticides were 75% - 119% with the relative standard deviation values less than 16.6% except for dimethoate. The performance of the analyte protectants was compared with matrix-matched standards calibration curves in terms of quantitative accuracy. The results showed that the method of adding analyte protectants can replace the matrix-matched standard calibration, and can also reduce the sample pretreatment. When the devel- oped method was used for the analysis of apple, peache, orange, banana, grape and other fruit samples, a good matrix compensation effect was achieved, and thus effectively reduced the bad effects of the water-soluble agents to the gas chromatographic column.

  5. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    USGS Publications Warehouse

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  6. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction.

    PubMed

    Kim, Chansik; Ryu, Hong-Duck; Chung, Eu Gene; Kim, Yongseok

    2018-05-01

    The use of antibiotics and their occurrence in the environment have received significant attention in recent years owing to the generation of antibiotic-resistant bacteria. Antibiotic residues in water near livestock farming areas should be monitored to establish effective strategies for reducing the use of veterinary antibiotics. However, environmental water contamination resulting from veterinary antibiotics has not been studied extensively. In this work, we developed an analytical method for the simultaneous determination of multiple classes of veterinary antibiotic residues in environmental water using on-line solid-phase extraction (SPE)-high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). Eighteen popular antibiotics (eight classes) were selected as target analytes based on veterinary antibiotics sales in South Korea in 2015. The developed method was validated by calibration-curve linearities, precisions, relative recoveries, and method detection limits (MDLs)/limits of quantification (LOQs) of the selected antibiotics, and applied to the analysis of environmental water samples (groundwater, river water, and wastewater-treatment-plant effluent). All calibration curves exhibited r 2  > 0.995 with MDLs ranging from 0.2 to 11.9 ng/L. Relative recoveries were between 50 and 150% with coefficients of variation below 20% for all analytes (spiked at 500 ng/L) in groundwater and river water samples. Relative standard deviations (RSDs) of standard-spiked samples were lower than 7% for all antibiotics. The on-line SPE system eliminates human-based SPE errors and affords excellent method reproducibility. Amoxicillin, ampicillin, clopidol, fenbendazole, flumequine, lincomycin, sulfadiazine, and trimethoprim were detected in environmental water samples in concentrations ranging from 1.26 to 127.49 ng/L. The developed method is a reliable analytical technique for the potential routine monitoring of veterinary antibiotics. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Navigating the Interface Between Landscape Genetics and Landscape Genomics.

    PubMed

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used.

  8. Navigating the Interface Between Landscape Genetics and Landscape Genomics

    PubMed Central

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K.

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used. PMID:29593776

  9. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) Presentation for APHL

    EPA Science Inventory

    The US Environmental Protection Agency’s Office of Research and Development (ORD) conducts cutting-edge research that provides the underpinning of science and technology for public health and environmental policies and decisions made by federal, state and other governmental...

  10. Underground Mining Method Selection Using WPM and PROMETHEE

    NASA Astrophysics Data System (ADS)

    Balusa, Bhanu Chander; Singam, Jayanthu

    2018-04-01

    The aim of this paper is to represent the solution to the problem of selecting suitable underground mining method for the mining industry. It is achieved by using two multi-attribute decision making techniques. These two techniques are weighted product method (WPM) and preference ranking organization method for enrichment evaluation (PROMETHEE). In this paper, analytic hierarchy process is used for weight's calculation of the attributes (i.e. parameters which are used in this paper). Mining method selection depends on physical parameters, mechanical parameters, economical parameters and technical parameters. WPM and PROMETHEE techniques have the ability to consider the relationship between the parameters and mining methods. The proposed techniques give higher accuracy and faster computation capability when compared with other decision making techniques. The proposed techniques are presented to determine the effective mining method for bauxite mine. The results of these techniques are compared with methods used in the earlier research works. The results show, conventional cut and fill method is the most suitable mining method.

  11. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Kenneth Paul

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonancemore » (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.« less

  12. Analysis of multiple quaternary ammonium compounds in the brain using tandem capillary column separation and high resolution mass spectrometric detection.

    PubMed

    Falasca, Sara; Petruzziello, Filomena; Kretz, Robert; Rainer, Gregor; Zhang, Xiaozhe

    2012-06-08

    Endogenous quaternary ammonium compounds are involved in various physiological processes in the central nervous system. In the present study, eleven quaternary ammonium compounds, including acetylcholine, choline, carnitine, acetylcarnitine and seven other acylcarnitines of low polarity, were analyzed from brain extracts using a two dimension capillary liquid chromatography-Fourier transform mass spectrometry method. To deal with their large difference in hydrophobicities, tandem coupling between reversed phase and hydrophilic interaction chromatography columns was used to separate all the targeted quaternary ammonium compounds. Using high accuracy mass spectrometry in selected ion monitoring mode, all the compounds could be detected from each brain sample with high selectivity. The developed method was applied for the relative quantification of these quaternary ammonium compounds in three different brain regions of tree shrews: prefrontal cortex, striatum, and hippocampus. The comparative analysis showed that quaternary ammonium compounds were differentially distributed across the three brain areas. The analytical method proved to be highly sensitive and reliable for simultaneous determination of all the targeted analytes from brain samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Toward the use of surface modified activated carbon in speciation: selective preconcentration of selenite and selenate in environmental waters.

    PubMed

    Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2011-04-22

    This paper describes a novel application of tetrabutylammonium hydroxide-modified activated carbon (AC-TBAH) to the speciation of ultra-trace Se(IV) and Se(VI) using LC-ICP-DRC-MS. The anion exchange functionality was immobilized onto the AC surface enables selective preconcentration of inorganic Se anions in a wide range of working pHs. Simultaneous retention and elution of both analytes, followed by subsequent analysis with LC-ICP-DRC-MS, allows to accomplish speciation analysis in natural samples without complicated redox pre-treatment. The laboratory-made column of immobilized AC (0.4 g of sorbent packed in a 6 mL syringe barrel) has achieved analyte enrichment factors of 76 and 93, respectively, for Se(IV) and Se(VI), thus proving its superior preconcentration efficiency and selectivity over common AC. The considerable enhancement in sensitivity achieved by using the preconcentration column has improved the method's detection limits to 1.9-2.2 ng L(-1), which is a 100-fold improvement compared with direct injection. The analyte recoveries from heavily polluted river matrix were between 95.3 and 107.7% with less than 5.0% RSD. The robustness of the preconcentration and speciation method was validated by analysis of natural waters collected from rivers and reservoirs in Hong Kong. The modified AC material is hence presented as a low-cost yet robust substitute for conventional anion exchange resins for routine applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Selective determination of aluminum bound with tannin in tea infusion.

    PubMed

    Erdemoğlu, Sema B; Güçer, Seref

    2005-08-01

    In this study, an analytical method for indirect measurement of Al bound with tannin in tea infusion was studied. This method utilizes the ability of the tannins to precipitate with protein. Separation conditions were investigated using model solutions. This method is uncomplicated, inexpensive and suitable for real samples. About 34% of the total Al in brew extracted from commercially available teas was bound to condensed and hydrolyzable tannins.

  15. Selection and authentication of botanical materials for the development of analytical methods.

    PubMed

    Applequist, Wendy L; Miller, James S

    2013-05-01

    Herbal products, for example botanical dietary supplements, are widely used. Analytical methods are needed to ensure that botanical ingredients used in commercial products are correctly identified and that research materials are of adequate quality and are sufficiently characterized to enable research to be interpreted and replicated. Adulteration of botanical material in commerce is common for some species. The development of analytical methods for specific botanicals, and accurate reporting of research results, depend critically on correct identification of test materials. Conscious efforts must therefore be made to ensure that the botanical identity of test materials is rigorously confirmed and documented through preservation of vouchers, and that their geographic origin and handling are appropriate. Use of material with an associated herbarium voucher that can be botanically identified is always ideal. Indirect methods of authenticating bulk material in commerce, for example use of organoleptic, anatomical, chemical, or molecular characteristics, are not always acceptable for the chemist's purposes. Familiarity with botanical and pharmacognostic literature is necessary to determine what potential adulterants exist and how they may be distinguished.

  16. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    PubMed

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  17. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples

    PubMed Central

    Garelnabi, Mahdi; Litvinov, Dmitry; Parthasarathy, Sampath

    2010-01-01

    Background: Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. Materials and Methods: We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. Results: AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Conclusions: Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations. PMID:22558586

  18. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS.

    PubMed

    Kaufmann, Anton

    2018-04-30

    Quadrupole Orbitrap instruments (Q Orbitrap) permit high-resolution mass spectrometry (HRMS)-based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and HRMS-based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi-residue analysis (e.g., pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi-residue methods. This article is protected by copyright. All rights reserved.

  19. Use of LC-HRMS in full scan-XIC mode for multi-analyte urine drug testing - a step towards a 'black-box' solution?

    PubMed

    Stephanson, N N; Signell, P; Helander, A; Beck, O

    2017-08-01

    The influx of new psychoactive substances (NPS) has created a need for improved methods for drug testing in toxicology laboratories. The aim of this work was to design, validate and apply a multi-analyte liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for screening of 148 target analytes belonging to the NPS class, plant alkaloids and new psychoactive therapeutic drugs. The analytical method used a fivefold dilution of urine with nine deuterated internal standards and injection of 2 μl. The LC system involved a 2.0 μm 100 × 2.0 mm YMC-UltraHT Hydrosphere-C 18 column and gradient elution with a flow rate of 0.5 ml/min and a total analysis time of 6.0 min. Solvent A consisted of 10 mmol/l ammonium formate and 0.005% formic acid, pH 4.8, and Solvent B was methanol with 10 mmol/l ammonium formate and 0.005% formic acid. The HRMS (Q Exactive, Thermo Scientific) used a heated electrospray interface and was operated in positive mode with 70 000 resolution. The scan range was 100-650 Da, and data for extracted ion chromatograms used ± 10 ppm tolerance. Product ion monitoring was applied for confirmation analysis and for some selected analytes also for screening. Method validation demonstrated limited influence from urine matrix, linear response within the measuring range (typically 0.1-1.0 μg/ml) and acceptable imprecision in quantification (CV <15%). A few analytes were found to be unstable in urine upon storage. The method was successfully applied for routine drug testing of 17 936 unknown samples, of which 2715 (15%) contained 52 of the 148 analytes. It is concluded that the method design based on simple dilution of urine and using LC-HRMS in extracted ion chromatogram mode may offer an analytical system for urine drug testing that fulfils the requirement of a 'black box' solution and can replace immunochemical screening applied on autoanalyzers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Fast and selective pressurized liquid extraction with simultaneous in cell clean up for the analysis of alkylphenols and bisphenol A in bivalve molluscs.

    PubMed

    Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzoa, S; López-Mahía, P; Prada-Rodríguez, D

    2012-12-28

    A novel and green analytical methodology for the determination of alkylphenols (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol technical mixture) and bisphenol A in bivalve mollusc samples was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography–electrospray ionization tandem mass spectrometry in negative mode (LC–ESI-MS/MS). Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 80 and 107% and repeatability and intermediate precision were <20% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.34 (4-n-octylphenol) and 3.6 ng g(−1) dry weight (nonylphenol). The main advantages of the method are sensitivity, selectivity, automaticity, low volumes of solvents required and low sample analysis time (according with the principles of Green Chemistry). The method was applied to the analysis of mussel samples of Galicia coast (NW of Spain). Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 9.3 and 372 ng g(−1) dw. As an approach, the human daily intake of these compounds was estimated and no risk for human health was found.

  1. Determination of glycerol in oils and fats using liquid chromatography chloride attachment electrospray ionization mass spectrometry.

    PubMed

    Jin, Chunfen; Viidanoja, Jyrki

    2017-01-15

    Existing liquid chromatography - mass spectrometry method for the analysis of short chain carboxylic acids was expanded and validated to cover also the measurement of glycerol from oils and fats. The method employs chloride anion attachment and two ions, [glycerol+ 35 Cl] - and [glycerol+ 37 Cl] - , as alternative quantifiers for improved selectivity of glycerol measurement. The averaged within run precision, between run precision and accuracy ranged between 0.3-7%, 0.4-6% and 94-99%, respectively, depending on the analyte ion and sample matrix. Selected renewable diesel feedstocks were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Peroxyoxalate chemiluminescence detection for the highly sensitive determination of fluorescence-labeled chlorpheniramine with Suzuki coupling reaction.

    PubMed

    Adutwum, Lawrence Asamoah; Kishikawa, Naoya; Ohyama, Kaname; Harada, Shiro; Nakashima, Kenichiro; Kuroda, Naotaka

    2010-09-01

    A sensitive and selective high performance liquid chromatography-peroxyoxalate chemiluminescence (PO-CL) method has been developed for the simultaneous determination of chlorpheniramine (CPA) and monodesmethyl chlorpheniramine (MDCPA) in human serum. The method combines fluorescent labeling with 4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl boronic acid using Suzuki coupling reaction with PO-CL detection. CPA and MDCPA were extracted from human serum by liquid-liquid extraction with n-hexane. Excess labeling reagent, which interfered with trace level determination of analytes, was removed by solid-phase extraction using a C18 cartridge. Separation of derivatives of both analytes was achieved isocratically on a silica column with a mixture of acetonitrile and 60 mM imidazole-HNO(3) buffer (pH 7.2; 85:15, v/v) containing 0.015% triethylamine. The proposed method exhibited a good linearity with a correlation coefficient of 0.999 for CPA and MDCPA within the concentration range of 0.5-100 ng/mL. The limits of detection (S/N = 3) were 0.14 and 0.16 ng/mL for CPA and MDCPA, respectively. Using the proposed method, CPA could be selectively determined in human serum after oral administration.

  3. Gas chromatography and ultra high performance liquid chromatography tandem mass spectrometry methods for the determination of selected endocrine disrupting chemicals in human breast milk after stir-bar sorptive extraction.

    PubMed

    Rodríguez-Gómez, R; Zafra-Gómez, A; Camino-Sánchez, F J; Ballesteros, O; Navalón, A

    2014-07-04

    In the present work, two specific, accurate and sensitive methods for the determination of endocrine disrupting chemicals (EDCs) in human breast milk are developed and validated. Bisphenol A and its main chlorinated derivatives, five benzophenone-UV filters and four parabens were selected as target analytes. The method involves a stir-bar sorptive extraction (SBSE) procedure followed by a solvent desorption prior to GC-MS/MS or UHPLC-MS/MS analysis. A derivatization step is also necessary when GC analysis is performed. The GC column used was a capillary HP-5MS with a run time of 26min. For UHPLC analysis, the stationary phase was a non-polar Acquity UPLC(®) BEH C18 column and the run time was 10min. In both cases, the analytes were detected and quantified using a triple quadrupole mass spectrometer (QqQ). Quality parameters such as linearity, accuracy (trueness and precision), sensitivity and selectivity were examined and yielded good results. The limits of quantification (LOQs) ranged from 0.3 to 5.0ngmL(-1) for GC and from 0.2 to 1.0ngmL(-1) for LC. The relative standard deviation (RSD) was lower than 15% and the recoveries ranged from 92 to 114% in all cases, being slightly unfavorable the results obtained with LC. The methods were satisfactorily applied for the determination of target compounds in human milk samples from 10 randomly selected women. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence

    PubMed Central

    Schöniger, Anneli; Wöhling, Thomas; Samaniego, Luis; Nowak, Wolfgang

    2014-01-01

    Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible. PMID:25745272

  5. Analytical network process based optimum cluster head selection in wireless sensor network.

    PubMed

    Farman, Haleem; Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad

    2017-01-01

    Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process.

  6. Analytical network process based optimum cluster head selection in wireless sensor network

    PubMed Central

    Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad

    2017-01-01

    Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process. PMID:28719616

  7. Fast batch injection analysis of H(2)O(2) using an array of Pt-modified gold microelectrodes obtained from split electronic chips.

    PubMed

    Pacheco, Bruno D; Valério, Jaqueline; Angnes, Lúcio; Pedrotti, Jairo J

    2011-06-24

    A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n=14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 μmolL(-1) to 100 μmolL(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 μmolL(-1) (3σ). The anodic current peaks obtained after a series of 23 successive injections of 50 μL of 25 μmolL(-1) H(2)O(2) showed an RSD<0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmolL(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of São Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  9. Evaluation of generalized degrees of freedom for sparse estimation by replica method

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2016-12-01

    We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.

  10. Evaluation and performance of desorption electrospray ionization using a triple quadrupole mass spectrometer for quantitation of pharmaceuticals in plasma.

    PubMed

    Kennedy, Joseph H; Wiseman, Justin M

    2010-02-01

    The present work describes the methodology and investigates the performance of desorption electrospray ionization (DESI) combined with a triple quadrupole mass spectrometer for the quantitation of small drug molecules in human plasma. Amoxepine, atenolol, carbamazepine, clozapine, prazosin, propranolol and verapamil were selected as target analytes while terfenadine was selected as the internal standard common to each of the analytes. Protein precipitation of human plasma using acetonitrile was utilized for all samples. Limits of detection were determined for all analytes in plasma and shown to be in the range 0.2-40 ng/mL. Quantitative analysis of amoxepine, prazosin and verapamil was performed over the range 20-7400 ng/mL and shown to be linear in all cases with R(2) >0.99. In most cases, the precision (relative standard deviation) and accuracy (relative error) of each method were less than or equal to 20%, respectively. The performance of the combined techniques made it possible to analyze each sample in 15 s illustrating DESI tandem mass spectrometry (MS/MS) as powerful tool for the quantitation of analytes in deproteinized human plasma. Copyright 2010 John Wiley & Sons, Ltd.

  11. Analytic theory for the selection of 2-D needle crystal at arbitrary Peclet number

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh

    1989-01-01

    An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.

  12. Validation of selected analytical methods using accuracy profiles to assess the impact of a Tobacco Heating System on indoor air quality.

    PubMed

    Mottier, Nicolas; Tharin, Manuel; Cluse, Camille; Crudo, Jean-René; Lueso, María Gómez; Goujon-Ginglinger, Catherine G; Jaquier, Anne; Mitova, Maya I; Rouget, Emmanuel G R; Schaller, Mathieu; Solioz, Jennifer

    2016-09-01

    Studies in environmentally controlled rooms have been used over the years to assess the impact of environmental tobacco smoke on indoor air quality. As new tobacco products are developed, it is important to determine their impact on air quality when used indoors. Before such an assessment can take place it is essential that the analytical methods used to assess indoor air quality are validated and shown to be fit for their intended purpose. Consequently, for this assessment, an environmentally controlled room was built and seven analytical methods, representing eighteen analytes, were validated. The validations were carried out with smoking machines using a matrix-based approach applying the accuracy profile procedure. The performances of the methods were compared for all three matrices under investigation: background air samples, the environmental aerosol of Tobacco Heating System THS 2.2, a heat-not-burn tobacco product developed by Philip Morris International, and the environmental tobacco smoke of a cigarette. The environmental aerosol generated by the THS 2.2 device did not have any appreciable impact on the performances of the methods. The comparison between the background and THS 2.2 environmental aerosol samples generated by smoking machines showed that only five compounds were higher when THS 2.2 was used in the environmentally controlled room. Regarding environmental tobacco smoke from cigarettes, the yields of all analytes were clearly above those obtained with the other two air sample types. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Method for Continuous Monitoring of Electrospray Ion Formation

    NASA Astrophysics Data System (ADS)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  14. Analytical and Biological Methods for Probing the Blood-Brain Barrier

    PubMed Central

    Sloan, Courtney D. Kuhnline; Nandi, Pradyot; Linz, Thomas H.; Aldrich, Jane V.; Audus, Kenneth L.; Lunte, Susan M.

    2013-01-01

    The blood-brain barrier (BBB) is an important interface between the peripheral and central nervous systems. It protects the brain against the infiltration of harmful substances and regulates the permeation of beneficial endogenous substances from the blood into the extracellular fluid of the brain. It can also present a major obstacle in the development of drugs that are targeted for the central nervous system. Several methods have been developed to investigate the transport and metabolism of drugs, peptides, and endogenous compounds at the BBB. In vivo methods include intravenous injection, brain perfusion, positron emission tomography, and microdialysis sampling. Researchers have also developed in vitro cell-culture models that can be employed to investigate transport and metabolism at the BBB without the complication of systemic involvement. All these methods require sensitive and selective analytical methods to monitor the transport and metabolism of the compounds of interest at the BBB. PMID:22708905

  15. Recent trends in the determination of vitamin D.

    PubMed

    Gomes, Fabio P; Shaw, P Nicholas; Whitfield, Karen; Koorts, Pieter; Hewavitharana, Amitha K

    2013-12-01

    The occurrence of vitamin D deficiency has become an issue of serious concern in the worldwide population. As a result numerous analytical methods have been developed, for a variety of matrices, during the last few years to measure vitamin D analogs and metabolites. This review employs a comprehensive search of all vitamin D methods developed during the last 5 years for all applications, using ISI Web of Science(®), Scifinder(®), Science Direct, Scopus and PubMed. Particular emphasis is given to sample-preparation methods and the different forms of vitamin D measured across different fields of applications such as biological fluids, food and pharmaceutical preparations. This review compares and critically evaluates a wide range of approaches and methods, and hence it will enable readers to access developments across a number of applications and to select or develop the optimal analytical method for vitamin D for their particular application.

  16. VOLATILE ORGANIC COMPOUND DETERMINATIONS USING SURROGATE-BASED CORRECTION FOR METHOD AND MATRIX EFFECTS

    EPA Science Inventory

    The principal properties related to analyte recovery in a vacuum distillate are boiling point and relative volatility. The basis for selecting compounds to measure the relationship between these properties and recovery for a vacuum distillation is presented. Surrogates are incorp...

  17. Analysis of Fluorotelomer Alcohols in Soils: Optimization of Extraction and Chromatography

    EPA Science Inventory

    This article describes the development of an analytical method for the determination of fluorotelomer alcohols (FTOHs) in soil. The sensitive and selective determination of the telomer alcohols was performed by extraction with mthyl tert-butyl ether (MTBE) and analysis of the ext...

  18. Application of Laser Mass Spectrometry to Art and Archaeology

    NASA Technical Reports Server (NTRS)

    Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.

    2011-01-01

    REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.

  19. Selection of Malaysia School Youth Cadet Corps leader by using analytical hierarchy process: A case study at SMK Ahmad Boestamam

    NASA Astrophysics Data System (ADS)

    Mohamed, Nurul Huda; Ahmat, Norhayati; Mohamed, Nurul Akmal; Razmi, Syazwani Che; Mohamed, Nurul Farihan

    2017-05-01

    This research is a case study to identify the best criteria that a person should have as the leader of Malaysia School Youth Cadet Corps (Kadet Remaja Sekolah (KRS)) at SMK Ahmad Boestamam, Sitiawan in order to select the most appropriate person to hold the position. The approach used in this study is Analytical Hierarchy Process (AHP) which include pairwise comparison to compare the criteria and also the candidates. There are four criteria namely charisma, interpersonal communication, personality and physical. Four candidates (1, 2, 3 and 4) are being considered in this study. Purposive sampling and questionnaires are used as instruments to obtain the data which are then analyzed by using the AHP method. The final output indicates that Candidate 1 has the highest score, followed by Candidate 2, Candidate 4 and Candidate 3. It shows that this method is very helpful in the multi-criteria decision making when there are several options available.

  20. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  1. Ion-pairing HPLC methods to determine EDTA and DTPA in small molecule and biological pharmaceutical formulations.

    PubMed

    Wang, George; Tomasella, Frank P

    2016-06-01

    Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify® (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and diethylenetriaminepentaacetic acid (DTPA) in Yervoy® (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu 2+ , Fe 3+ ) which generate highly stable metallocomplexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation involving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the determination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.

  2. Measuring food intake in studies of obesity.

    PubMed

    Lissner, Lauren

    2002-12-01

    The problem of how to measure habitual food intake in studies of obesity remains an enigma in nutritional research. The existence of obesity-specific underreporting was rather controversial until the advent of the doubly labelled water technique gave credence to previously anecdotal evidence that such a bias does in fact exist. This paper reviews a number of issues relevant to interpreting dietary data in studies involving obesity. Topics covered include: participation biases, normative biases,importance of matching method to study, selective underreporting, and a brief discussion of the potential implications of generalised and selective underreporting in analytical epidemiology. It is concluded that selective underreporting of certain food types by obese individuals would produce consequences in analytical epidemiological studies that are both unpredictable and complex. Since it is becoming increasingly acknowledged that selective reporting error does occur, it is important to emphasise that correction for energy intake is not sufficient to eliminate the biases from this type of error. This is true both for obesity-related selective reporting errors and more universal types of selective underreporting, e.g. foods of low social desirability. Additional research is urgently required to examine the consequences of this type of error.

  3. Analysis of Observational Studies in the Presence of Treatment Selection Bias: Effects of Invasive Cardiac Management on AMI Survival Using Propensity Score and Instrumental Variable Methods

    PubMed Central

    Stukel, Thérèse A.; Fisher, Elliott S; Wennberg, David E.; Alter, David A.; Gottlieb, Daniel J.; Vermeulen, Marian J.

    2007-01-01

    Context Comparisons of outcomes between patients treated and untreated in observational studies may be biased due to differences in patient prognosis between groups, often because of unobserved treatment selection biases. Objective To compare 4 analytic methods for removing the effects of selection bias in observational studies: multivariable model risk adjustment, propensity score risk adjustment, propensity-based matching, and instrumental variable analysis. Design, Setting, and Patients A national cohort of 122 124 patients who were elderly (aged 65–84 years), receiving Medicare, and hospitalized with acute myocardial infarction (AMI) in 1994–1995, and who were eligible for cardiac catheterization. Baseline chart reviews were taken from the Cooperative Cardiovascular Project and linked to Medicare health administrative data to provide a rich set of prognostic variables. Patients were followed up for 7 years through December 31, 2001, to assess the association between long-term survival and cardiac catheterization within 30 days of hospital admission. Main Outcome Measure Risk-adjusted relative mortality rate using each of the analytic methods. Results Patients who received cardiac catheterization (n=73 238) were younger and had lower AMI severity than those who did not. After adjustment for prognostic factors by using standard statistical risk-adjustment methods, cardiac catheterization was associated with a 50% relative decrease in mortality (for multivariable model risk adjustment: adjusted relative risk [RR], 0.51; 95% confidence interval [CI], 0.50–0.52; for propensity score risk adjustment: adjusted RR, 0.54; 95% CI, 0.53–0.55; and for propensity-based matching: adjusted RR, 0.54; 95% CI, 0.52–0.56). Using regional catheterization rate as an instrument, instrumental variable analysis showed a 16% relative decrease in mortality (adjusted RR, 0.84; 95% CI, 0.79–0.90). The survival benefits of routine invasive care from randomized clinical trials are between 8% and 21 %. Conclusions Estimates of the observational association of cardiac catheterization with long-term AMI mortality are highly sensitive to analytic method. All standard risk-adjustment methods have the same limitations regarding removal of unmeasured treatment selection biases. Compared with standard modeling, instrumental variable analysis may produce less biased estimates of treatment effects, but is more suited to answering policy questions than specific clinical questions. PMID:17227979

  4. Recent advances in magnesium assessment: From single selective sensors to multisensory approach.

    PubMed

    Lvova, Larisa; Gonçalves, Carla Guanais; Di Natale, Corrado; Legin, Andrey; Kirsanov, Dmitry; Paolesse, Roberto

    2018-03-01

    The development of efficient analytical procedures for the selective detection of magnesium is an important analytical task, since this element is one of the most abundant metals in cells and plays an essential role in a plenty of cellular processes. Magnesium misbalance has been related to several pathologies and diseases both in plants and animals, as far as in humans, but the number of suitable methods for magnesium detection especially in life sample and biological environments is scarce. Chemical sensors, due to their high reliability, simplicity of handling and instrumentation, fast and real-time in situ and on site analysis are promising candidates for magnesium analysis and represent an attractive alternative to the standard instrumental methods. Here the recent achievements in the development of chemical sensors for magnesium ions detection over the last decade are reviewed. The working principles and the main types of sensors applied are described. Focus is placed on the optical sensors and multisensory systems applications for magnesium assessment in different media. Further, a critical outlook on the employment of multisensory approach in comparison to single selective sensors application in biological samples is presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  6. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  7. Analytical strategy for the determination of non-steroidal anti-inflammatory drugs in plasma and improved analytical strategy for the determination of authorized and non-authorized non-steroidal anti-inflammatory drugs in milk by LC-MS/MS.

    PubMed

    Dowling, Geraldine; Malone, Edward; Harbison, Tom; Martin, Sheila

    2010-07-01

    A sensitive and selective method for the determination of six non-steroidal anti-inflammatory drugs (NSAIDs) in bovine plasma was developed. An improved method for the determination of authorized and non-authorized residues of 10 non-steroidal anti-inflammatory drugs in milk was developed. Analytes were separated and acquired by high performance liquid chromatography coupled with an electrospray ionisation tandem mass spectrometer (ESI-MS/MS). Target compounds were acidified in plasma, and plasma and milk samples were extracted with acetonitrile and both extracts were purified on an improved solid phase extraction procedure utilising Evolute ABN cartridges. The accuracy of the methods for milk and plasma was between 73 and 109%. The precision of the method for authorized and non-authorized NSAIDs in milk and plasma expressed as % RSD, for the within lab reproducibility was less than 16%. The % RSD for authorized NSAIDs at their associated MRL(s) in milk was less than 10% for meloxicam, flunixin and tolfenamic acid and was less than 25% for hydroxy flunixin. The methods were validated according to Commission Decision 2002/657/EC.

  8. FIXED DOSE COMBINATIONS WITH SELECTIVE BETA-BLOCKERS: QUANTITATIVE DETERMINATION IN BIOLOGICAL FLUIDS.

    PubMed

    Mahu, Ştefania Corina; Hăncianu, Monica; Agoroaei, Luminiţa; Grigoriu, Ioana Cezara; Strugaru, Anca Monica; Butnaru, Elena

    2015-01-01

    Hypertension is one of the most common causes of death, a complex and incompletely controlled disease for millions of patients. Metoprolol, bisoprolol, nebivolol and atenolol are selective beta-blockers frequently used in the management of arterial hypertension, alone or in fixed combination with other substances. This study presents the most used analytical methods for simultaneous determination in biological fluids of fixed combinations containing selective beta-blockers. Articles in Pub-Med, Science Direct and Wiley Journals databases published between years 2004-2014 were reviewed. Methods such as liquid chromatography--mass spectrometry--mass spectrometry (LC-MS/MS), high performance liquid chromatography (HPLC) or high performance liquid chromatography--mass spectrometry (HPLC-MS) were used for determination of fixed combination with beta-blockers in human plasma, rat plasma and human breast milk. LC-MS/MS method was used for simultaneous determination of fixed combinations of metoprolol with simvastatin, hydrochlorothiazide or ramipril, combinations of nebivolol and valsartan, or atenolol and amlodipine. Biological samples were processed by protein precipitation techniques or by liquid-liquid extraction. For the determination of fixed dose combinations of felodipine and metoprolol in rat plasma liquid chromatography--electrospray ionization--mass spectrometry (LC-ESI-MS/MS) was applied, using phenacetin as internal standard. HPLC-MS method was applied for the determination of bisoprolol and hydrochlorothiazide in human plasma. For the determination of atenolol and chlorthalidone from human breast milk and human plasma the HPLC method was used. The analytical methods were validated according to the specialized guidelines, and were applied to biological samples, thing that confirms the permanent concern of researchers in this field.

  9. Intuitionistic fuzzy analytical hierarchical processes for selecting the paradigms of mangroves in municipal wastewater treatment.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2018-04-01

    Municipal wastewater discharge is widespread and one of the sources of coastal eutrophication, and is especially uncontrolled in developing and undeveloped coastal regions. Mangrove forests are natural filters of pollutants in wastewater. There are three paradigms of mangroves for municipal wastewater treatment and the selection of the optimal one is a multi-criteria decision-making problem. Combining intuitionistic fuzzy theory, the Fuzzy Delphi Method and the fuzzy analytical hierarchical process (AHP), this study develops an intuitionistic fuzzy AHP (IFAHP) method. For the Fuzzy Delphi Method, the judgments of experts and representatives on criterion weights are made by linguistic variables and quantified by intuitionistic fuzzy theory, which is also used to weight the importance of experts and representatives. This process generates the entropy weights of criteria, which are combined with indices values and weights to rank the alternatives by the fuzzy AHP method. The IFAHP method was used to select the optimal paradigm of mangroves for treating municipal wastewater. The entropy weights were entrained by the valid evaluation of 64 experts and representatives via online survey. Natural mangroves were found to be the optimal paradigm for municipal wastewater treatment. By assigning different weights to the criteria, sensitivity analysis shows that natural mangroves remain to be the optimal paradigm under most scenarios. This study stresses the importance of mangroves for wastewater treatment. Decision-makers need to contemplate mangrove reforestation projects, especially where mangroves are highly deforested but wastewater discharge is uncontrolled. The IFAHP method is expected to be applied in other multi-criteria decision-making cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-07-01

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virus infection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with P-value > 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  11. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simultaneous determination of three major lignans in rat plasma by LC-MS/MS and its application to a pharmacokinetic study after oral administration of Diphylleia sinensis extract.

    PubMed

    Zhao, Chengliang; Zhang, Nan; He, Weiyan; Li, Rui; Shi, Dan; Pang, Li; Dong, Ning; Xu, Hong; Ji, Honglei

    2014-04-01

    A sensitive and selective liquid chromatography tandem mass spectrometry was developed and validated for the simultaneous determination of three major lignans (podophyllotoxin, epipodophyllotoxin, and 4'-demethylpodophyllotoxin) in rat plasma using diphenhydramine as the internal standard. The analytes were detected using a triple quadrupole mass spectrometer that was equipped with an electrospray ionization source in the positive ion and selected reaction monitoring modes. The linearity of the calibration curve was good, with coefficients of determination (r(2) ) >0.9914 for all of the analytes. The developed method was successfully applied for the simultaneous determination of the three lignans in rat plasma following oral administration of Diphylleia sinensis extract to rats. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples.

    PubMed

    Garelnabi, Mahdi; Litvinov, Dmitry; Parthasarathy, Sampath

    2010-09-01

    Azelaic acid (AzA) is the best known dicarboxilic acid to have pharmaceutical benefits and clinical applications and also to be associated with some diseases pathophysiology. We extracted and methylesterified AzA and determined its concentration in human plasma obtained from healthy individuals and also in mice fed AzA containing diet for three months. AzA was detected in Gas Chromatography (GC) and confirmed by Liquid chromatography mass spectrometry (LCMS), and gas chromatography mass spectrometry (GCMC). Our results have shown that AzA can be determined efficiently in selected biological samples by GC method with 1nM limit of detection (LoD) and the limit of quantification (LoQ); was established at 50nM. Analytical Sensitivity as assayed by hexane demonstrated an analytical sensitivity at 0.050nM. The method has demonstrated 8-10% CV batch repeatability across the sample types and 13-18.9% CV for the Within-Lab Precision analysis. The method has shown that AzA can efficiently be recovered from various sample preparation including liver tissue homogenate (95%) and human plasma (97%). Because of its simplicity and lower limit of quantification, the present method provides a useful tool for determining AzA in various biological sample preparations.

  14. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Computing the optimal path in stochastic dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora

    2016-08-15

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less

  16. Simultaneous quantitation of 2-acetyl-4-tetrahydroxybutylimidazole, 2- and 4-methylimidazoles, and 5-hydroxymethylfurfural in beverages by ultrahigh-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Jinyuan; Schnute, William C

    2012-02-01

    An ultrahigh-performance liquid chromatography (UHPLC) tandem mass spectrometric (MS/MS) method was developed for the simultaneous quantification of 2-acetyl-4-tetrahydroxybutylimidazole (THI), 2- and 4-methylimidazoles (2-MI and 4-MI), and 5-hydroxymethylfurfural (HMF) in beverage samples. A C30 reversed-phase column was used in this method, providing sufficient retention and total resolution for all targeted analytes, with an MS/MS instrument operated in selected reaction monitoring (SRM) mode for sensitive and selective detection using isotope-labeled 4-methyl-d(3)-imidazole (4-MI-d(3)) as the internal standard (IS). This method demonstrates lower limit of quantification (LLOQ) at 1 ng/mL and coefficient of determination (r(2)) >0.999 for each analyte with a calibration range established from 1 to 500 ng/mL. This method also demonstrates excellent quantification accuracy (84.6-105% at 5 ng/mL, n = 7), precision (RSD < 7% at 5 ng/mL, n = 7), and recovery (88.8-99.5% at 10, 100, and 200 ng/mL, n = 3). Seventeen carbonated beverage samples were tested (n = 2) in this study including 13 dark-colored beverage samples with different flavors and varieties and 4 light-colored beverage samples. Three target analytes were quantified in these samples with concentrations in the range from 284 to 644 ng/mL for 4-MI and from 706 to 4940 ng/mL for HMF. THI was detected in only one sample at 6.35 ng/mL.

  17. The G-BHQ synergistic effect: Improved double quenching molecular beacons based on guanine and Black Hole Quencher for sensitive simultaneous detection of two DNAs.

    PubMed

    Xiang, Dongshan; Li, Fengquan; Wu, Chenyi; Shi, Boan; Zhai, Kun

    2017-11-01

    We designed two double quenching molecular beacons (MBs) with simple structure based on guanine (G base) and Black Hole Quencher (BHQ), and developed a new analytical method for sensitive simultaneous detection of two DNAs by synchronous fluorescence analysis. In this analytical method, carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were respectively selected as fluorophore of two MBs, Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were respectively selected as organic quencher, and three continuous nucleotides with G base were connected to organic quencher (BHQ-1 and BHQ-2). In the presence of target DNAs, the two MBs hybridize with the corresponding target DNAs, the fluorophores are separated from organic quenchers and G bases, leading to recovery of fluorescence of FAM and TAMRA. Under a certain conditions, the fluorescence intensities of FAM and TAMRA all exhibited good linear dependence on their concentration of target DNAs (T1 and T2) in the range from 4 × 10 -10 to 4 × 10 -8 molL -1 (M). The detection limit (3σ, n = 13) of T1 was 3 × 10 -10 M and that of T2 was 2×10 -10 M, respectively. Compared with the existing analysis methods for multiplex DNA with MBs, this proposed method based on double quenching MBs is not only low fluorescence background, short analytical time and low detection cost, but also easy synthesis and good stability of MB probes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  19. IDENTIFICATION OF COMPOUNDS IN SOUTH AFRICAN STREAM SAMPLES USING ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory

    Analytical methods for target compounds usually employ clean-up procedures to remove potential mass interferences and utilize selected ion recording (SIR) to provide low detection limits. Such an approach, however, could overlook non-target compounds that might be present and tha...

  20. Mapping the Diversity among Runaways: A Descriptive Multivariate Analysis of Selected Social Psychological Background Conditions.

    ERIC Educational Resources Information Center

    Brennan, Tim

    1980-01-01

    A review of prior classification systems of runaways is followed by a descriptive taxonomy of runaways developed using cluster-analytic methods. The empirical types illustrate patterns of weakness in bonds between runaways and families, schools, or peer relationships. (Author)

  1. Utility of mass spectrometry in the diagnosis of prion diseases

    USDA-ARS?s Scientific Manuscript database

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in a variety of mammalian species. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to their homologous stable isotope labeled internal standards were pre...

  2. Development of variable LRFD \\0x03C6 factors for deep foundation design due to site variability.

    DOT National Transportation Integrated Search

    2012-04-01

    The current design guidelines of Load and Resistance Factor Design (LRFD) specifies constant values : for deep foundation design, based on analytical method selected and degree of redundancy of the pier. : However, investigation of multiple sites in ...

  3. Direct analysis of ethylene glycol in human serum on the basis of analyte adduct formation and liquid chromatography-tandem mass spectrometry.

    PubMed

    Dziadosz, Marek

    2018-01-01

    The aim of this work was to develop a fast, cost-effective and time-saving liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical method for the analysis of ethylene glycol (EG) in human serum. For these purposes, the formation/fragmentation of an EG adduct ion with sodium and sodium acetate was applied in the positive electrospray mode for signal detection. Adduct identification was performed with appropriate infusion experiments based on analyte solutions prepared in different concentrations. Corresponding analyte adduct ions and adduct ion fragments could be identified both for EG and the deuterated internal standard (EG-D4). Protein precipitation was used as sample preparation. The analysis of the supernatant was performed with a Luna 5μm C18 (2) 100A, 150mm×2mm analytical column and a mobile phase consisting of 95% A (H 2 O/methanol=95/5, v/v) and 5% B (H 2 O/methanol=3/97, v/v), both with 10mmolL -1 ammonium acetate and 0.1% acetic acid. Method linearity was examined in the range of 100-4000μg/mL and the calculated limit of detection/quantification was 35/98μg/mL. However, on the basis of the signal to noise ratio, quantification was recommended at a limit of 300μg/mL. Additionally, the examined precision, accuracy, stability, selectivity and matrix effect demonstrated that the method is a practicable alternative for EG quantification in human serum. In comparison to other methods based on liquid chromatography, the strategy presented made for the first time the EG analysis without analyte derivatisation possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modelling a suitable location for Urban Solid Waste Management using AHP method and GIS -A geospatial approach and MCDM Model

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.

    2016-12-01

    Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for waste dumping site.

  5. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Surrogate biochemical markers: precise measurement for strategic drug and biologics development.

    PubMed

    Lee, J W; Hulse, J D; Colburn, W A

    1995-05-01

    More efficient drug and biologics development is necessary for future success of pharmaceutical and biotechnology companies. One way to achieve this objective is to use rationally selected surrogate markers to improve the early decision-making process. Using typical clinical chemistry methods to measure biochemical markers may not ensure adequate precision and reproducibility. In contrast, using analytical methods that meet good laboratory practices along with rational selection and validation of biochemical markers can give those who use them a competitive advantage over those who do not by providing meaningful data for earlier decision making.

  7. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  8. Biochemical Sensors Using Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor); Li, Jun (Inventor)

    2011-01-01

    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  9. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  10. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation

    USDA-ARS?s Scientific Manuscript database

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in elk and sheep. Calibration curves relating the area ratios of the selected analyte peptides and their homologous stable isotope labeled internal standards were prepared. This method was compared to the ELIS...

  11. Quantitative Method of Measuring Metastatic Activity

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1999-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated uroldnase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  12. Analytics for vaccine economics and pricing: insights and observations.

    PubMed

    Robbins, Matthew J; Jacobson, Sheldon H

    2015-04-01

    Pediatric immunization programs in the USA are a successful and cost-effective public health endeavor, profoundly reducing mortalities caused by infectious diseases. Two important issues relate to the success of the immunization programs, the selection of cost-effective vaccines and the appropriate pricing of vaccines. The recommended childhood immunization schedule, published annually by the CDC, continues to expand with respect to the number of injections required and the number of vaccines available for selection. The advent of new vaccines to meet the growing requirements of the schedule results: in a large, combinatorial number of possible vaccine formularies. The expansion of the schedule and the increase in the number of available vaccines constitutes a challenge for state health departments, large city immunization programs, private practices and other vaccine purchasers, as a cost-effective vaccine formulary must be selected from an increasingly large set of possible vaccine combinations to satisfy the schedule. The pediatric vaccine industry consists of a relatively small number of pharmaceutical firms engaged in the research, development, manufacture and distribution of pediatric vaccines. The number of vaccine manufacturers has dramatically decreased in the past few decades for a myriad of reasons, most notably due to low profitability. The contraction of the industry negatively impacts the reliable provision of pediatric vaccines. The determination of appropriate vaccine prices is an important issue and influences a vaccine manufacturer's decision to remain in the market. Operations research is a discipline that applies advanced analytical methods to improve decision making; analytics is the application of operations research to a particular problem using pertinent data to provide a practical result. Analytics provides a mechanism to resolve the challenges facing stakeholders in the vaccine development and delivery system, in particular, the selection of cost-effective vaccines and the appropriate pricing of vaccines. A review of applicable analytics papers is provided.

  13. Green material selection for sustainability: A hybrid MCDM approach.

    PubMed

    Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng

    2017-01-01

    Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection.

  14. Green material selection for sustainability: A hybrid MCDM approach

    PubMed Central

    Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng

    2017-01-01

    Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection. PMID:28498864

  15. Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of steroid sulfates.

    PubMed

    Stevenson, Bradley J; Waller, Christopher C; Ma, Paul; Li, Kunkun; Cawley, Adam T; Ollis, David L; McLeod, Malcolm D

    2015-10-01

    The hydrolysis of sulfate ester conjugates is frequently required prior to analysis for a range of analytical techniques including gas chromatography-mass spectrometry (GC-MS). Sulfate hydrolysis may be achieved with commercial crude arylsulfatase enzyme preparations such as that derived from Helix pomatia but these contain additional enzyme activities such as glucuronidase, oxidase, and reductase that make them unsuitable for many analytical applications. Strong acid can also be used to hydrolyze sulfate esters but this can lead to analyte degradation or increased matrix interference. In this work, the heterologously expressed and purified arylsulfatase from Pseudomonas aeruginosa is shown to promote the mild enzyme-catalyzed hydrolysis of a range of steroid sulfates. The substrate scope of this P. aeruginosa arylsulfatase hydrolysis is compared with commercial crude enzyme preparations such as that derived from H. pomatia. A detailed kinetic comparison is reported for selected examples. Hydrolysis in a urine matrix is demonstrated for dehydroepiandrosterone 3-sulfate and epiandrosterone 3-sulfate. The purified P. aeruginosa arylsulfatase contains only sulfatase activity allowing for the selective hydrolysis of sulfate esters in the presence of glucuronide conjugates as demonstrated in the short three-step chemoenzymatic synthesis of 5α-androstane-3β,17β-diol 17-glucuronide (ADG, 1) from epiandrosterone 3-sulfate. The P. aeruginosa arylsulfatase is readily expressed and purified (0.9 g per L of culture) and thus provides a new and selective method for the hydrolysis of steroid sulfate esters in analytical sample preparation. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells were rediscovered twenty years ago and now are a very active research area. The reasons behind this new activity are the relatively recent discovery of electrogenic or electroactive bacteria and the vision of two important practical applications, as wastewater treatment coupled with clean energy production and power supply systems for isolated low-power sensor devices. Although some analytical applications of MFCs were proposed earlier (as biochemical oxygen demand sensing) only lately a myriad of new uses of this technology are being presented by research groups around the world, which combine both biological-microbiological and electroanalytical expertises. This is the second part of a review of MFC applications in the area of analytical sciences. In Part I a general introduction to biological-based analytical methods including bioassays, biosensors, MFCs design, operating principles, as well as, perhaps the main and earlier presented application, the use as a BOD sensor was reviewed. In Part II, other proposed uses are presented and discussed. As other microbially based analytical systems, MFCs are satisfactory systems to measure and integrate complex parameters that are difficult or impossible to measure otherwise, such as water toxicity (where the toxic effect to aquatic organisms needed to be integrated). We explore here the methods proposed to measure toxicity, microbial metabolism, and, being of special interest to space exploration, life sensors. Also, some methods with higher specificity, proposed to detect a single analyte, are presented. Different possibilities to increase selectivity and sensitivity, by using molecular biology or other modern techniques are also discussed here. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Investigating the causes of low detectability of pesticides in fruits and vegetables analysed by high-performance liquid chromatography - Time-of-flight.

    PubMed

    Muehlwald, S; Buchner, N; Kroh, L W

    2018-03-23

    Because of the high number of possible pesticide residues and their chemical complexity, it is necessary to develop methods which cover a broad range of pesticides. In this work, a qualitative multi-screening method for pesticides was developed by use of HPLC-ESI-Q-TOF. 110 pesticides were chosen for the creation of a personal compound database and library (PCDL). The MassHunter Qualitative Analysis software from Agilent Technologies was used to identify the analytes. The software parameter settings were optimised to produce a low number of false positive as well as false negative results. The method was validated for 78 selected pesticides. However, the validation criteria were not fulfilled for 45 analytes. Due to this result, investigations were started to elucidate reasons for the low detectability. It could be demonstrated that the three main causes of the signal suppression were the co-eluting matrix (matrix effect), the low sensitivity of the analyte in standard solution and the fragmentation of the analyte in the ion source (in-source collision-induced dissociation). In this paper different examples are discussed showing that the impact of these three causes is different for each analyte. For example, it is possible that an analyte with low signal intensity and an intense fragmentation in the ion source is detectable in a difficult matrix, whereas an analyte with a high sensitivity and a low fragmentation is not detectable in a simple matrix. Additionally, it could be shown that in-source fragments are a helpful tool for an unambiguous identification. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Adjustment of Pesticide Concentrations for Temporal Changes in Analytical Recovery, 1992-2006

    USGS Publications Warehouse

    Martin, Jeffrey D.; Stone, Wesley W.; Wydoski, Duane S.; Sandstrom, Mark W.

    2009-01-01

    Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ('spiked' QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report examines temporal changes in the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as 'pesticides') that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 to 2006 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Temporal changes in pesticide recovery were investigated by calculating robust, locally weighted scatterplot smooths (lowess smooths) for the time series of pesticide recoveries in 5,132 laboratory reagent spikes; 1,234 stream-water matrix spikes; and 863 groundwater matrix spikes. A 10-percent smoothing window was selected to show broad, 6- to 12-month time scale changes in recovery for most of the 52 pesticides. Temporal patterns in recovery were similar (in phase) for laboratory reagent spikes and for matrix spikes for most pesticides. In-phase temporal changes among spike types support the hypothesis that temporal change in method performance is the primary cause of temporal change in recovery. Although temporal patterns of recovery were in phase for most pesticides, recovery in matrix spikes was greater than recovery in reagent spikes for nearly every pesticide. Models of recovery based on matrix spikes are deemed more appropriate for adjusting concentrations of pesticides measured in groundwater and stream-water samples than models based on laboratory reagent spikes because (1) matrix spikes are expected to more closely match the matrix of environmental water samples than are reagent spikes and (2) method performance is often matrix dependent, as was shown by higher recovery in matrix spikes for most of the pesticides. Models of recovery, based on lowess smooths of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.

  19. Selection of site specific vibration equation by using analytic hierarchy process in a quarry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalayci, Ulku, E-mail: ukalayci@istanbul.edu.tr; Ozer, Umit, E-mail: uozer@istanbul.edu.tr

    This paper presents a new approach for the selection of the most accurate SSVA (Site Specific Vibration Attenuation) equation for blasting processes in a quarry located near settlements in Istanbul, Turkey. In this context, the SSVA equations obtained from the same study area in the literature were considered in terms of distance between the shot points and buildings and the amount of explosive charge. In this purpose, 11 different SSVA equations obtained from the study area in the past 12 years, forecasting capabilities according to designated new conditions, using 102 vibration records as test data obtained from the study areamore » was investigated. In this study, AHP (Analytic Hierarchy Process) was selected as an analysis method in order to determine the most accurate equation among 11 SSAV equations, and the parameters such as year, distance, charge, and r{sup 2} of the equations were used as criteria for AHP. Finally, the most appropriate equation was selected among the existing ones, and the process of selecting according to different target criteria was presented. Furthermore, it was noted that the forecasting results of the selected equation is more accurate than that formed using the test results. - Highlights: • The optimum Site Specific Vibration Attenuation equation for blasting in a quarry located near settlements was determined. • It is indicated that SSVA equations changing over the years don’t give always accurate estimates at changing conditions. • Selection of the blast induced SSVA equation was made using AHP. • Equation selection method was highlighted based on parameters such as charge, distance, and quarry geometry changes (year).« less

  20. Using multi-attribute decision-making approaches in the selection of a hospital management system.

    PubMed

    Arasteh, Mohammad Ali; Shamshirband, Shahaboddin; Yee, Por Lip

    2018-01-01

    The most appropriate organizational software is always a real challenge for managers, especially, the IT directors. The illustration of the term "enterprise software selection", is to purchase, create, or order a software that; first, is best adapted to require of the organization; and second, has suitable price and technical support. Specifying selection criteria and ranking them, is the primary prerequisite for this action. This article provides a method to evaluate, rank, and compare the available enterprise software for choosing the apt one. The prior mentioned method is constituted of three-stage processes. First, the method identifies the organizational requires and assesses them. Second, it selects the best method throughout three possibilities; indoor-production, buying software, and ordering special software for the native use. Third, the method evaluates, compares and ranks the alternative software. The third process uses different methods of multi attribute decision making (MADM), and compares the consequent results. Based on different characteristics of the problem; several methods had been tested, namely, Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Elimination and Choice Expressing Reality (ELECTURE), and easy weight method. After all, we propose the most practical method for same problems.

  1. Rapid Method for Sodium Hydroxide Fusion of Concrete and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  2. A sensitive LC-MS/MS method for simultaneous determination of amygdalin and paeoniflorin in human plasma and its application.

    PubMed

    Li, Xiaobing; Shi, Fuguo; Gu, Pan; Liu, Lingye; He, Hua; Ding, Li

    2014-04-01

    A simple and sensitive HPLC-MS/MS method was developed and fully validated for the simultaneous determination of amygdalin (AD) and paeoniflorin (PF) in human plasma. For both analytes, the method exhibited high sensitivity (LLOQs of 0.6ng/mL) by selecting the ammonium adduct ions ([M+NH4](+)) as the precursor ions and good linearity over the concentration range of 0.6-2000ng/mL with the correlation coefficients>0.9972. The intra- and inter-day precision was lower than 10% in relation to relative standard deviation, while accuracy was within ±2.3% in terms of relative error for both analytes. The developed method was successfully applied to a pilot pharmacokinetic study of AD and PF in healthy volunteers after intravenous infusion administration of Huoxue-Tongluo lyophilized powder for injection. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Novel HPLC-UV Method for Simultaneous Determination of Fat-soluble Vitamins and Coenzyme Q10 in Medicines and Supplements.

    PubMed

    Temova-Rakuša, Žane; Srečnik, Eva; Roškar, Robert

    2017-09-01

    A precise, accurate and rapid HPLC-UV method for simultaneous determination of fat-soluble vitamins (vitamin D3, E-acetate, K1, β-carotene, A-palmitate) and coenzyme Q10 was developed and validated according to ICH guidelines. Optimal chromatographic separation of the analytes in minimal analysis time (8 min) was achieved on a Luna C18 150 × 4.6 mm column using a mixture of acetonitrile, tetrahydrofuran and water (50:45:5, v/v/v). The described reversed phase HPLC method is the first published for quantification of these five fat-soluble vitamins and coenzyme Q10 within a single chromatographic run. The method was further applied for quantification of the analytes in selected liquid and solid dosage forms, registered as nutritional supplements and prescription medicines, which confirmed its suitability for routine analysis.

  4. Methods to Assess Bioavailability of Hydrophobic Organic Contaminants: Principles, Operations, and Limitations

    PubMed Central

    Cui, Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades has seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. PMID:23064200

  5. Analytical difficulties facing today's regulatory laboratories: issues in method validation.

    PubMed

    MacNeil, James D

    2012-08-01

    The challenges facing analytical laboratories today are not unlike those faced in the past, although both the degree of complexity and the rate of change have increased. Challenges such as development and maintenance of expertise, maintenance and up-dating of equipment, and the introduction of new test methods have always been familiar themes for analytical laboratories, but international guidelines for laboratories involved in the import and export testing of food require management of such changes in a context which includes quality assurance, accreditation, and method validation considerations. Decisions as to when a change in a method requires re-validation of the method or on the design of a validation scheme for a complex multi-residue method require a well-considered strategy, based on a current knowledge of international guidance documents and regulatory requirements, as well the laboratory's quality system requirements. Validation demonstrates that a method is 'fit for purpose', so the requirement for validation should be assessed in terms of the intended use of a method and, in the case of change or modification of a method, whether that change or modification may affect a previously validated performance characteristic. In general, method validation involves method scope, calibration-related parameters, method precision, and recovery. Any method change which may affect method scope or any performance parameters will require re-validation. Some typical situations involving change in methods are discussed and a decision process proposed for selection of appropriate validation measures. © 2012 John Wiley & Sons, Ltd.

  6. Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound.

    PubMed

    Uzuriaga-Sánchez, Rosario Josefina; Wong, Ademar; Khan, Sabir; Pividori, Maria I; Picasso, Gino; Sotomayor, Maria D P T

    2017-05-01

    Molecularly imprinted polymers (MIPs) in combination with magnetic nanoparticles, in a core@shell format, were studied for selective detection of 1-chloro-2,4-dinitrobenzene (CDNB), a powerful allergenic substance. Magnetic nanoparticles were prepared by the co-precipitation method and mixed with oleic acid (OA). This material was then encapsulated in three types of hydrophobic polymeric matrix, poly-(MA-co-EDGMA), poly-(AA-co-EDGMA), and poly-(1-VN-co-EDGMA), by the mini-emulsion method. These matrices were used due to their ability to interact specifically with the functional groups of the analyte. Finally, the MIP-CDNB was obtained on the magnetic-hydrophobic surfaces using precipitation polymerization in the presence of the analyte. XRD diffraction patterns suggested the presence of magnetite in the composite and SEM analysis revealed a nanoparticle size between 10 and 18nm. Under the optimized adsorption conditions, the magnetic-MIP material showed a higher adsorption capacity (5.1mgg -1 ) than its non-magnetic counterpart (4.2mgg -1 ). In tests of the selectivity of the magnetic-MIP towards CDNB, α-values of 2.5 and 10.4, respectively, were obtained for dichlorophenol and o-nitrophenol, two structurally similar compounds, and no adsorption was observed for any other non-analogous analyte. The magnetic-MIP and magnetic-NIP were applied using water enriched with 0.5mgL -1 of CDNB, achieving recovery values of 83.8(±0.8)% and 66(±1)%, respectively, revealing the suitability of the material for detection of CDNB. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Variables selection methods in near-infrared spectroscopy.

    PubMed

    Xiaobo, Zou; Jiewen, Zhao; Povey, Malcolm J W; Holmes, Mel; Hanpin, Mao

    2010-05-14

    Near-infrared (NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields, such as the petrochemical, pharmaceutical, environmental, clinical, agricultural, food and biomedical sectors during the past 15 years. A NIR spectrum of a sample is typically measured by modern scanning instruments at hundreds of equally spaced wavelengths. The large number of spectral variables in most data sets encountered in NIR spectral chemometrics often renders the prediction of a dependent variable unreliable. Recently, considerable effort has been directed towards developing and evaluating different procedures that objectively identify variables which contribute useful information and/or eliminate variables containing mostly noise. This review focuses on the variable selection methods in NIR spectroscopy. Selection methods include some classical approaches, such as manual approach (knowledge based selection), "Univariate" and "Sequential" selection methods; sophisticated methods such as successive projections algorithm (SPA) and uninformative variable elimination (UVE), elaborate search-based strategies such as simulated annealing (SA), artificial neural networks (ANN) and genetic algorithms (GAs) and interval base algorithms such as interval partial least squares (iPLS), windows PLS and iterative PLS. Wavelength selection with B-spline, Kalman filtering, Fisher's weights and Bayesian are also mentioned. Finally, the websites of some variable selection software and toolboxes for non-commercial use are given. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Topics in Chemical Instrumentation: An Introduction to Supercritical Fluid Chromatography--Part 2. Applications and Future Trends.

    ERIC Educational Resources Information Center

    Palmieri, Margo D.

    1989-01-01

    Discussed are selected application and future trends in supercritical fluid chromatography (SFC). The greatest application for SFC involves those analytes that are difficult to separate using GC or LC methods. Optimum conditions for SFC are examined. Provided are several example chromatograms. (MVL)

  9. Selecting Evaluation Comparison Groups: A Cluster Analytic Approach.

    ERIC Educational Resources Information Center

    Davis, Todd Mclin; McLean, James E.

    A persistent problem in the evaluation of field-based projects is the lack of no-treatment comparison groups. Frequently, potential comparison groups are confounded by socioeconomic, racial, or other factors. Among the possible methods for dealing with this problem are various matching procedures, but they are cumbersome to use with multiple…

  10. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  11. Advances in Instrumental Analysis of Brominated Flame Retardants: Current Status and Future Perspectives

    PubMed Central

    2014-01-01

    This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482

  12. Automated Predictive Big Data Analytics Using Ontology Based Semantics.

    PubMed

    Nural, Mustafa V; Cotterell, Michael E; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A

    2015-10-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.

  13. Automated Predictive Big Data Analytics Using Ontology Based Semantics

    PubMed Central

    Nural, Mustafa V.; Cotterell, Michael E.; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A.

    2017-01-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology. PMID:29657954

  14. Analytical method for measuring cosmogenic 35S in natural waters

    DOE PAGES

    Uriostegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; ...

    2015-05-18

    Here, cosmogenic sulfur-35 in water as dissolved sulfate ( 35SO 4) has successfully been used as an intrinsic hydrologic tracer in low-SO 4, high-elevation basins. Its application in environmental waters containing high SO 4 concentrations has been limited because only small amounts of SO 4 can be analyzed using current liquid scintillation counting (LSC) techniques. We present a new analytical method for analyzing large amounts of BaSO 4 for 35S. We quantify efficiency gains when suspending BaSO 4 precipitate in Inta-Gel Plus cocktail, purify BaSO 4 precipitate to remove dissolved organic matter, mitigate interference of radium-226 and its daughter productsmore » by selection of high purity barium chloride, and optimize LSC counting parameters for 35S determination in larger masses of BaSO 4. Using this improved procedure, we achieved counting efficiencies that are comparable to published LSC techniques despite a 10-fold increase in the SO 4 sample load. 35SO 4 was successfully measured in high SO 4 surface waters and groundwaters containing low ratios of 35S activity to SO 4 mass demonstrating that this new analytical method expands the analytical range of 35SO 4 and broadens the utility of 35SO 4 as an intrinsic tracer in hydrologic settings.« less

  15. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection LC/MS/MS—Characterization of Municipal Wastewaters

    PubMed Central

    Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363

  16. A Mixed Prioritization Operators Strategy Using A Single Measurement Criterion For AHP Application Development

    NASA Astrophysics Data System (ADS)

    Yuen, Kevin Kam Fung

    2009-10-01

    The most appropriate prioritization method is still one of the unsettled issues of the Analytic Hierarchy Process, although many studies have been made and applied. Interestingly, many AHP applications apply only Saaty's Eigenvector method as many studies have found that this method may produce rank reversals and have proposed various prioritization methods as alternatives. Some methods have been proved to be better than the Eigenvector method. However, these methods seem not to attract the attention of researchers. In this paper, eight important prioritization methods are reviewed. A Mixed Prioritization Operators Strategy (MPOS) is developed to select a vector which is prioritized by the most appropriate prioritization operator. To verify this new method, a case study of high school selection is revised using the proposed method. The contribution is that MPOS is useful for solving prioritization problems in the AHP.

  17. Toxicologic evaluation of analytes from Tank 241-C-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlum, D.D.; Young, J.Y.; Weller, R.E.

    1994-11-01

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise,more » including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.« less

  18. Development of Validated Bioanalytical HPLC-UV Method for Simultaneous Estimation of Amlodipine and Atorvastatin in Rat Plasma

    PubMed Central

    Talele, G. S.; Porwal, P. K.

    2015-01-01

    A simple, economical and robust analytical high-performance liquid chromatography-ultraviolet method was developed and validated for simultaneous chromatographic elution of two cardiovascular drugs viz. amlodipine and atorvastatin in biological fluid for the first time. Only two liquid chromatography–mass spectrometry/mass spectrometry methods are available in literature for quantitation of selected pair of analytes. The bioanalytical method was developed in rat plasma by using Thermo beta-basic C18 (100×4.6 mm, 5 μm) and mobile phase was composed of dibasic phosphate buffer (pH 3.0):acetonitrile in the ratio of 55:45 at a flow rate of 1 ml/min with ultraviolet detection monitored at 240 nm. The selected chromatographic conditions were found to effectively separate amlodipine (5.1 min) and atorvastatin (12.1 min). The parametric statistics,i.e. correlation coefficient of 0.999, was assessed for both the drugs having linearity over the tested concentration range (0.05 to 10.0 μg/ml) in rat plasma using an unweighted calibration curve. The mean recovery (%) was more than 92.8% for both the drugs using protein precipitation method. The accuracy of samples for six replicate measurements at lower limit of quantitation level was within limit. The method was validated and was successfully applied to the nonclinical pharmacokinetic study of combination tablets containing amlodipine and atorvastatin in six Sprague Dawley rats. PMID:26997703

  19. Determination of pesticides and pesticide degradates in filtered water by direct aqueous-injection liquid chromatography-tandem mass spectrometry

    USGS Publications Warehouse

    Sandstrom, Mark W.; Kanagy, Leslie K.; Anderson, Cyrissa A.; Kanagy, Christopher J.

    2016-01-11

    Mean recoveries of most analytes (223 of 229) were within data-quality objectives of 100±30 percent at spike concentrations above method detection levels (MDLs) in all four matrices. The calculated MDLs ranged from 1 to 103 nanograms per liter (ng/L) for 182 analytes analyzed in the ESI positive mode, and from 2 to 106 ng/L for 42 analytes analyzed in the ESI negative mode. Five analytes had MDLs between 100 and 250 ng/L. The stability studies in reagent water demonstrated that the largest number of the pesticide compounds (227 of 229) were stable after 14 days of storage at 4 degrees Celsius, so these were selected as the practical holding time and storage temperature for routine sample processing. The use of antimicrobial reagent citric acid to adjust the sample pH to about 4 also resulted in lower recoveries of some analytes, so it should not be used as a routine sample preservative.

  20. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC-ESI-MS/MS: An application for pharmacokinetic studies.

    PubMed

    Chhonker, Yashpal S; Sleightholm, Richard L; Li, Jing; Oupický, David; Murry, Daryl J

    2018-01-01

    Hydroxychloroquine (HCQ) has been shown to disrupt autophagy and sensitize cancer cells to radiation and chemotherapeutic agents. However, the optimal delivery method, dose, and tumor concentrations required for these effects are not known. This is in part due to a lack of sensitive and reproducible analytical methods for HCQ quantitation in small animals. As such, we developed and validated a selective and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method for simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues. The chromatographic separation and detection of analytes were achieved on a reversed phase Thermo Aquasil C 18 (50×4.6mm, 3μ) column, with gradient elution using 0.2% formic acid and 0.1% formic acid in methanol as mobile phase at a flow rate of 0.5mL/min. Simple protein precipitation was utilized for extraction of analytes from the desired matrix. Analytes were separated and quantitated using MS/MS with an electrospray ionization source in positive multiple reaction monitoring (MRM) mode. The MS/MS response was linear over the concentration range from 1 to 2000ng/mL for all analytes with a correlation coefficient (R 2 ) of 0.998 or better. The within- and between-day precision (relative standard deviation, % RSD) and accuracy were within the acceptable limits per FDA guidelines. The validated method was successfully applied to a preclinical pharmacokinetic mouse study involving low volume blood and tissue samples for hydroxychloroquine and metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  2. On-line focusing of flavin derivatives using Dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru

    2002-08-01

    Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.

  3. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  4. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Boronic Acid vs. Folic Acid: A Comparison of the bio-recognition performances by Impedimetric Cytosensors based on Ferrocene cored dendrimer.

    PubMed

    Dervisevic, Muamer; Şenel, Mehmet; Sagir, Tugba; Isik, Sevim

    2017-05-15

    A comparative study is reported where folic acid (FA) and boronic acid (BA) based cytosensors and their analytical performances in cancer cell detection were analyzed by using electrochemical impedance spectroscopy (EIS) method. Cytosensors were fabricated using self-assembled monolayer principle by modifying Au electrode with cysteamine (Cys) and immobilization of ferrocene cored polyamidiamine dendrimers second generation (Fc-PAMAM (G2)), after which electrodes were modified with FA and BA. Au/Fc-PAMAM(G2)/FA and Au/Fc-PAMAM(G2)/BA based cytosensors showed extremely good analytical performances in cancer cell detection with linear range of 1×10 2 to 1×10 6 cellsml -1 , detection limit of 20cellsml -1 with incubation time of 20min for FA based electrode, and for BA based electrode detection limit was 28cellsml -1 with incubation time of 10min. Next to excellent analytical performances, cytosensors showed high selectivity towards cancer cells which was demonstrated in selectivity study using human embryonic kidney 293 cells (HEK 293) as normal cells and Au/Fc-PAMAM(G2)/FA electrode showed two times better selectivity than BA modified electrode. These cytosensors are promising for future applications in cancer cell diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Computer modeling of lung cancer diagnosis-to-treatment process

    PubMed Central

    Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick

    2015-01-01

    We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181

  7. Graphite nanocomposites sensor for multiplex detection of antioxidants in food.

    PubMed

    Ng, Khan Loon; Tan, Guan Huat; Khor, Sook Mei

    2017-12-15

    Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) are synthetic antioxidants used in the food industry. Herein, we describe the development of a novel graphite nanocomposite-based electrochemical sensor for the multiplex detection and measurement of BHA, BHT, and TBHQ levels in complex food samples using a linear sweep voltammetry technique. Moreover, our newly established analytical method exhibited good sensitivity, limit of detection, limit of quantitation, and selectivity. The accuracy and reliability of analytical results were challenged by method validation and comparison with the results of the liquid chromatography method, where a linear correlation of more than 0.99 was achieved. The addition of sodium dodecyl sulfate as supporting additive further enhanced the LSV response (anodic peak current, I pa ) of BHA and BHT by 2- and 20-times, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry.

    PubMed

    Valente-Campos, Simone; Yonamine, Mauricio; de Moraes Moreau, Regina Lucia; Silva, Ovandir Alves

    2006-06-02

    The objective of the present work was to compare previously published methods and provide validation data to detect simultaneously cocaine (COC), benzoylecgonine (BE) and norcocaine (NCOC) in nail. Finger and toenail samples (5mg) were cut in very small pieces and submitted to an initial procedure for external decontamination. Methanol (3 ml) was used to release analytes from the matrix. A cleanup step was performed simultaneously by solid-phase extraction (SPE) and the residue was derivatized with pentafluoropropionic anhydride/pentafluoropropanol (PFPA/PFP). Gas chromatography-mass spectrometry (GC-MS) was used to detect the analytes in selected ion monitoring mode (SIM). Confidence parameters of validation of the method were: recovery, intra- and inter-assay precision, as well as limit of detection (LOD) of the analytes. The limits of detection were: 3.5 ng/mg for NCOC and 3.0 ng/mg for COC and BE. Good intra-assay precision was observed for all detected substances (coefficient of variation (CV)<11%). The inter-assay precision for norcocaine and benzoylecgonine were <4%. For intra- and inter-assay precision deuterated internal standards were used. Toenail and fingernail samples from eight declared cocaine users were submitted to the validated method.

  9. Simulation of a model nanopore sensor: Ion competition underlies device behavior.

    PubMed

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-28

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  10. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    NASA Astrophysics Data System (ADS)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  11. Simultaneous determination of water-soluble vitamins in selected food matrices by liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Gentili, Alessandra; Caretti, Fulvia; D'Ascenzo, Giuseppe; Marchese, Stefano; Perret, Daniela; Di Corcia, Daniele; Rocca, Lucia Mainero

    2008-07-01

    A rapid, simple and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) with an electrospray ionization (ESI) source for the simultaneous analysis of fourteen water-soluble vitamins (B1, B2, two B3 vitamers, B5, five B6 vitamers, B8, B9, B12 and C) in various food matrices, i.e. maize flour, green and golden kiwi and tomato pulp, is presented here. Analytes were separated by ion-suppression reversed-phase liquid chromatography in less than 10 min and detected in positive ion mode. Sensitivity and specificity of this method allowed two important results to be achieved: (i) limits of detection of the analytes at ng g(-1) levels (except for vitamin C); (ii) development of a rapid sample treatment that minimizes analyte exposition to light, air and heat, eliminating any step of extract concentration. Analyte recovery depended on the type of matrix. In particular, recovery of the analytes in maize flour was > or =70%, with the exception of vitamin C, pyridoxal-5'-phosphate and vitamin B9 (ca 40%); with tomato pulp, recovery was > or =64%, except for vitamin C (41%); with kiwi, recovery was > or =73%, except for nicotinamide (ca. 30%).

  12. Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors.

    PubMed

    Lewis, Nathan S

    2004-09-01

    Arrays of broadly cross-reactive vapor sensors provide a man-made implementation of an olfactory system, in which an analyte elicits a response from many receptors and each receptor responds to a variety of analytes. Pattern recognition methods are then used to detect analytes based on the collective response of the sensor array. With the use of this architecture, arrays of chemically sensitive resistors made from composites of conductors and insulating organic polymers have been shown to robustly classify, identify, and quantify a diverse collection of organic vapors, even though no individual sensor responds selectively to a particular analyte. The properties and functioning of these arrays are inspired by advances in the understanding of biological olfaction, and in turn, evaluation of the performance of the man-made array provides suggestions regarding some of the fundamental odor detection principles of the mammalian olfactory system.

  13. Glycidyl fatty acid esters in food by LC-MS/MS: method development.

    PubMed

    Becalski, A; Feng, S Y; Lau, B P-Y; Zhao, T

    2012-07-01

    An improved method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the analysis of glycidyl fatty acid esters in oils was developed. The method incorporates stable isotope dilution analysis (SIDA) for quantifying the five target analytes: glycidyl esters of palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) and linolenic acid (C18:3). For the analysis, 10 mg sample of edible oil or fat is dissolved in acetone, spiked with deuterium labelled analogs of glycidyl esters and purified by a two-step chromatography on C18 and normal silica solid phase extraction (SPE) cartridges using methanol and 5% ethyl acetate in hexane, respectively. If the concentration of analytes is expected to be below 0.5 mg/kg, 0.5 g sample of oil is pre-concentrated first using a silica column. The dried final extract is re-dissolved in 250 μL of a mixture of methanol/isopropanol (1:1, v/v), 15 μL is injected on the analytical C18 LC column and analytes are eluted with 100% methanol. Detection of target glycidyl fatty acid esters is accomplished by LC-MS/MS using positive ion atmospheric pressure chemical ionization operating in Multiple Reaction Monitoring mode monitoring 2 ion transitions for each analyte. The method was tested on replicates of a virgin olive oil which was free of glycidyl esters. The method detection limit was calculated to be in the range of 70-150 μg/kg for each analyte using 10 mg sample and 1-3 μg/kg using 0.5 g sample of oil. Average recoveries of 5 glycidyl esters spiked at 10, 1 and 0.1 mg/kg were in the range 84% to 108%. The major advantage of our method is use of SIDA for all analytes using commercially available internal standards and detection limits that are lower by a factor of 5-10 from published methods when 0.5 g sample of oil is used. Additionally, MS/MS mass chromatograms offer greater specificity than liquid chromatography-mass spectrometry operated in selected ion monitoring mode. The method will be applied to the survey of glycidyl fatty acid esters in food products on the Canadian market.

  14. Quantitative method of measuring cancer cell urokinase and metastatic potential

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1993-01-01

    The metastatic potential of tumors can be evaluated by the quantitative detection of urokinase and DNA. The cell sample selected for examination is analyzed for the presence of high levels of urokinase and abnormal DNA using analytical flow cytometry and digital image analysis. Other factors such as membrane associated urokinase, increased DNA synthesis rates and certain receptors can be used in the method for detection of potentially invasive tumors.

  15. Capillary electrophoresis-based immunoassays: principles and quantitative applications.

    PubMed

    Moser, Annette C; Hage, David S

    2008-08-01

    The use of CE as a tool to conduct immunoassays has been an area of increasing interest over the last decade. This approach combines the efficiency, small sample requirements, and relatively high speed of CE with the selectivity of antibodies as binding agents. This review examines the various assay formats and detection modes that have been reported for these assays, along with some representative applications. Most CE immunoassays in the past have employed homogeneous methods in which the sample and reagents are allowed to react in solution. These homogeneous methods have been conducted as both competitive binding immunoassays and as noncompetitive binding immunoassays. Fluorescent labels are most commonly used for detection in these assays, but enzyme labels have also been utilized for such work. Some additional work has been performed in CE immunoassays with heterogeneous methods in which either antibodies or an analog of the analyte is immobilized to a solid support. These heterogeneous methods can be used for the selective isolation of analytes prior to their separation by CE or to remove a given species from a sample/reagent mixture prior to analysis by CE. These CE immunoassays can be used with a variety of detection modes, such as fluorescence, UV/Vis absorbance, chemiluminescence, electrochemical measurements, MS, and surface plasmon resonance.

  16. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools

    PubMed Central

    Łojewska, J.; Rabin, I.; Pawcenis, D.; Bagniuk, J.; Aksamit-Koperska, M. A.; Sitarz, M.; Missori, M.; Krutzsch, M.

    2017-01-01

    Ancient papyri are a written heritage of culture that flourished more than 3000 years ago in Egypt. One of the most significant collections in the world is housed in the Egyptian Museum and Papyrus Collection in Berlin, from where the samples for our investigation come. The papyrologists, curators and conservators of such collections search intensely for the analytical detail that would allow ancient papyri to be distinguished from modern fabrications, in order to detect possible forgeries, assess papyrus deterioration state, and improve the design of storage conditions and conservation methods. This has become the aim of our investigation. The samples were studied by a number of methods, including spectroscopic (FTIR, fluorescent-FS, Raman) diffractional (XRD) and chromatographic (size exclusion chromatography-SEC), selected in order to determine degradation parameters: overall oxidation of lignocellulosic material, degree of polymerization and crystallinity of cellulose. The results were correlated with those obtained from carefully selected model samples including modern papyri and paper of different composition aged at elevated temperature in humid air. The methods were classified in the order SEC > FS > FTIR > XRD, based on their effectiveness in discriminating the state of papyri degradation. However, the most trustworthy evaluation of the age of papyri samples should rely on several methods. PMID:28382971

  17. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools.

    PubMed

    Łojewska, J; Rabin, I; Pawcenis, D; Bagniuk, J; Aksamit-Koperska, M A; Sitarz, M; Missori, M; Krutzsch, M

    2017-04-06

    Ancient papyri are a written heritage of culture that flourished more than 3000 years ago in Egypt. One of the most significant collections in the world is housed in the Egyptian Museum and Papyrus Collection in Berlin, from where the samples for our investigation come. The papyrologists, curators and conservators of such collections search intensely for the analytical detail that would allow ancient papyri to be distinguished from modern fabrications, in order to detect possible forgeries, assess papyrus deterioration state, and improve the design of storage conditions and conservation methods. This has become the aim of our investigation. The samples were studied by a number of methods, including spectroscopic (FTIR, fluorescent-FS, Raman) diffractional (XRD) and chromatographic (size exclusion chromatography-SEC), selected in order to determine degradation parameters: overall oxidation of lignocellulosic material, degree of polymerization and crystallinity of cellulose. The results were correlated with those obtained from carefully selected model samples including modern papyri and paper of different composition aged at elevated temperature in humid air. The methods were classified in the order SEC > FS > FTIR > XRD, based on their effectiveness in discriminating the state of papyri degradation. However, the most trustworthy evaluation of the age of papyri samples should rely on several methods.

  18. Rapid Method for Sodium Hydroxide/Sodium Peroxide Fusion ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Plutonium-238 and plutonium-239 in water and air filters Method Selected for: SAM lists this method as a pre-treatment technique supporting analysis of refractory radioisotopic forms of plutonium in drinking water and air filters using the following qualitative techniques: • Rapid methods for acid or fusion digestion • Rapid Radiochemical Method for Plutonium-238 and Plutonium 239/240 in Building Materials for Environmental Remediation Following Radiological Incidents. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  19. Optimal design of a thermally stable composite optical bench

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.

    1985-01-01

    The Lidar Atmospheric Sensing Experiment will be performed aboard an ER-2 aircraft; the lidar system used will be mounted on a lightweight, thermally stable graphite/epoxy optical bench whose design is presently subjected to analytical study and experimental validation. Attention is given to analytical methods for the selection of such expected laminate properties as the thermal expansion coefficient, the apparent in-plane moduli, and ultimate strength. For a symmetric laminate in which one of the lamina angles remains variable, an optimal lamina angle is selected to produce a design laminate with a near-zero coefficient of thermal expansion. Finite elements are used to model the structural concept of the design, with a view to the optical bench's thermal structural response as well as the determination of the degree of success in meeting the experiment's alignment tolerances.

  20. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas.

    PubMed

    Smith, David; Španěl, Patrik

    2016-06-01

    This article reflects our observations of recent accomplishments made using selected ion flow tube MS (SIFT-MS). Only brief descriptions are given of SIFT-MS as an analytical method and of the recent extensions to the underpinning analytical ion chemistry required to realize more robust analyses. The challenge of breath analysis is given special attention because, when achieved, it renders analysis of other air media relatively straightforward. Brief overviews are given of recent SIFT-MS breath analyses by leading research groups, noting the desirability of detection and quantification of single volatile biomarkers rather than reliance on statistical analyses, if breath analysis is to be accepted into clinical practice. A 'strengths, weaknesses, opportunities and threats' analysis of SIFT-MS is made, which should help to increase its utility for trace gas analysis.

  1. Selective pressurized liquid extraction of pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in a whale earplug (earwax): a novel method for analyzing organic contaminants in lipid-rich matrices.

    PubMed

    Robinson, Eleanor M; Trumble, Stephen J; Subedi, Bikram; Sanders, Rebel; Usenko, Sascha

    2013-12-06

    Lipid-rich matrices are often sinks for lipophilic contaminants, such as pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Typically methods for contaminant extraction and cleanup for lipid-rich matrices require multiple cleanup steps; however, a selective pressurized liquid extraction (SPLE) technique requiring no additional cleanup has been developed for the simultaneous extraction and cleanup of whale earwax (cerumen; a lipid-rich matrix). Whale earwax accumulates in select whale species over their lifetime to form wax earplugs. Typically used as an aging technique in cetaceans, layers or laminae that comprise the earplug are thought to be associated with annual or semiannual migration and feeding patterns. Whale earplugs (earwax) represent a unique matrix capable of recording and archiving whales' lifetime contaminant profiles. This study reports the first analytical method developed for identifying and quantifying lipophilic persistent organic pollutants (POPs) in a whale earplug including organochlorine pesticides, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The analytical method was developed using SPLE to extract contaminants from ∼0.25 to 0.5g aliquots of each lamina of sectioned earplug. The SPLE was optimized for cleanup adsorbents (basic alumina, silica gel, and Florisil(®)), adsorbent to sample ratio, and adsorbent order. In the optimized SPLE method, the earwax homogenate was placed within the extraction cell on top of basic alumina (5g), silica gel (15g), and Florisil(®) (10g) and the target analytes were extracted from the homogenate using 1:1 (v/v) dichloromethane:hexane. POPs were analyzed using gas chromatography-mass spectrometry with electron capture negative ionization and electron impact ionization. The average percent recoveries for the POPs were 91% (±6% relative standard deviation), while limits of detection and quantification ranged from 0.00057 to 0.96ngg(-1) and 0.0017 to 2.9ngg(-1), respectively. Pesticides, PCBs, and PBDEs, were measured in a single blue whale (Balaenoptera musculus) cerumen lamina at concentrations ranging from 0.11 to 150ng g(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Simultaneous targeted analysis of trimethylamine-N-oxide, choline, betaine, and carnitine by high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Liu, Jia; Zhao, Mingming; Zhou, Juntuo; Liu, Changjie; Zheng, Lemin; Yin, Yuxin

    2016-11-01

    Trimethylamine-N-oxide (TMAO) is a metabolite generated from choline, betaine and carnitine in a gut microbiota-dependent way. This molecule is associated with development of atherosclerosis and cardiovascular events. A sensitive liquid chromatographic electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been developed and validated for the simultaneous determination of TMAO related molecules including TMAO, betaine, choline, and carnitine in mouse plasma. Analytes are extracted after protein precipitation by methanol and subjected to LC-ESI-MS/MS without preliminary derivatization. Separation of analytes was achieved on an amide column with acetonitrile-water as the mobile phase. This method has been fully validated in this study in terms of selectivity, linearity, sensitivity, precision, accuracy, and carryover effect, and the stability of the analyte under various conditions has been confirmed. This developed method has successfully been applied to plasma samples of our mouse model. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry.

    PubMed

    Echeverría, S; Borrull, F; Fontanals, N; Pocurull, E

    2013-11-15

    A method for the quantitative determination of five iodinated X-ray contrast media (ICMs) in sewage was developed by solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry. A fused-core analytical column was successfully applied for the first time for the separation of ICMs. Oasis HLB was selected from the sorbents tested because of its higher recoveries. The optimized method allowed the determination of the ICMs at low ng/L levels in both influent and effluent sewage, with detection limits of 40 ng/L and 10 ng/L for most compounds in influent and effluent sewage, respectively. The five ICMs studied were determined in all samples analysed, with iopromide being the analyte found at the highest concentration (8.9 µg/L), while iopamidol was the analyte found at lowest concentration (1.3 µg/L) in influent sewage. Effluent sewage did not show a significant decrease in ICM concentrations. © 2013 Elsevier B.V. All rights reserved.

  4. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography.

    PubMed

    Stege, Patricia W; Sombra, Lorena L; Messina, Germán A; Martinez, Luis D; Silva, María F

    2009-05-01

    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 microg L(-1) for PNP, 0.20 microg L(-1) for PAP, and 0.16 microg L(-1) for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.

  5. Establishment of a reference collection of additives and an analytical handbook of reference data to support enforcement of EU regulations on food contact plastics.

    PubMed

    van Lierop, B; Castle, L; Feigenbaum, A; Ehlert, K; Boenke, A

    1998-10-01

    A collection has been made of additives that are required as analytical standards for enforcement of European Union legislation on food contact plastics. The 100 additives have been characterized by mass spectrometry, infra-red spectroscopy and proton nuclear magnetic resonance spectroscopy to provide reference spectra. Gas chromatographic retention times have been recorded to facilitate identification by retention index. This information has been further supplemented by physico-chemical data. Finally, chromatographic methods have been used to indicate the presence of any impurities in the commercial chemicals. Samples of the reference substances are available on request and the collection of spectra and other information will be made available in printed format and on-line through the Internet. This paper gives an overview of the work done to establish the reference collection and the spectral atlas, which together will assist enforcement laboratories in the characterization of plastics and the selection of analytical methods for additives that may migrate.

  6. Direct analyte-probed nanoextraction coupled to nanospray ionization-mass spectrometry of drug residues from latent fingerprints.

    PubMed

    Clemons, Kristina; Wiley, Rachel; Waverka, Kristin; Fox, James; Dziekonski, Eric; Verbeck, Guido F

    2013-07-01

    Here, we present a method of extracting drug residues from fingerprints via Direct Analyte-Probed Nanoextraction coupled to nanospray ionization-mass spectrometry (DAPNe-NSI-MS). This instrumental technique provides higher selectivity and lower detection limits over current methods, greatly reducing sample preparation, and does not compromise the integrity of latent fingerprints. This coupled to Raman microscopy is an advantageous supplement for location and identification of trace particles. DAPNe uses a nanomanipulator for extraction and differing microscopies for localization of chemicals of interest. A capillary tip with solvent of choice is placed in a nanopositioner. The surface to be analyzed is placed under a microscope, and a particle of interest is located. Using a pressure injector, the solvent is injected onto the surface where it dissolves the analyte, and then extracted back into the capillary tip. The solution is then directly analyzed via NSI-MS. Analyses of caffeine, cocaine, crystal methamphetamine, and ecstasy have been performed successfully. © 2013 American Academy of Forensic Sciences.

  7. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orús, Román, E-mail: roman.orus@uni-mainz.de

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems aremore » also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.« less

  8. Understanding selective molecular recognition in integrated carbon nanotube-polymer sensors by simulating physical analyte binding on carbon nanotube-polymer scaffolds.

    PubMed

    Lin, Shangchao; Zhang, Jingqing; Strano, Michael S; Blankschtein, Daniel

    2014-08-28

    Macromolecular scaffolds made of polymer-wrapped single-walled carbon nanotubes (SWCNTs) have been explored recently (Zhang et al., Nature Nanotechnology, 2013) as a new class of molecular-recognition motifs. However, selective analyte recognition is still challenging and lacks the underlying fundamental understanding needed for its practical implementation in biological sensors. In this report, we combine coarse-grained molecular dynamics (CGMD) simulations, physical adsorption/binding theories, and photoluminescence (PL) experiments to provide molecular insight into the selectivity of such sensors towards a large set of biologically important analytes. We find that the physical binding affinities of the analytes on a bare SWCNT partially correlate with their distribution coefficients in a bulk water/octanol system, suggesting that the analyte hydrophobicity plays a key role in determining the binding affinities of the analytes considered, along with the various specific interactions between the analytes and the polymer anchor groups. Two distinct categories of analytes are identified to demonstrate a complex picture for the correlation between optical sensor signals and the simulated binding affinities. Specifically, a good correlation was found between the sensor signals and the physical binding affinities of the three hormones (estradiol, melatonin, and thyroxine), the neurotransmitter (dopamine), and the vitamin (riboflavin) to the SWCNT-polymer scaffold. The four amino acids (aspartate, glycine, histidine, and tryptophan) and the two monosaccharides (fructose and glucose) considered were identified as blank analytes which are unable to induce sensor signals. The results indicate great success of our physical adsorption-based model in explaining the ranking in sensor selectivities. The combined framework presented here can be used to screen and select polymers that can potentially be used for creating synthetic molecular recognition motifs.

  9. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    PubMed

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples.

    PubMed

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    PubMed

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Geospatial Analytics in Retail Site Selection and Sales Prediction.

    PubMed

    Ting, Choo-Yee; Ho, Chiung Ching; Yee, Hui Jia; Matsah, Wan Razali

    2018-03-01

    Studies have shown that certain features from geography, demography, trade area, and environment can play a vital role in retail site selection, largely due to the impact they asserted on retail performance. Although the relevant features could be elicited by domain experts, determining the optimal feature set can be intractable and labor-intensive exercise. The challenges center around (1) how to determine features that are important to a particular retail business and (2) how to estimate retail sales performance given a new location? The challenges become apparent when the features vary across time. In this light, this study proposed a nonintervening approach by employing feature selection algorithms and subsequently sales prediction through similarity-based methods. The results of prediction were validated by domain experts. In this study, data sets from different sources were transformed and aggregated before an analytics data set that is ready for analysis purpose could be obtained. The data sets included data about feature location, population count, property type, education status, and monthly sales from 96 branches of a telecommunication company in Malaysia. The finding suggested that (1) optimal retail performance can only be achieved through fulfillment of specific location features together with the surrounding trade area characteristics and (2) similarity-based method can provide solution to retail sales prediction.

  13. Mindfulness-Based Approaches in the Treatment of Disordered Gambling: A Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Maynard, Brandy R.; Wilson, Alyssa N.; Labuzienski, Elizabeth; Whiting, Seth W.

    2018-01-01

    Background and Aims: To examine the effects of mindfulness-based interventions on gambling behavior and symptoms, urges, and financial outcomes. Method: Systematic review and meta-analytic procedures were employed to search, select, code, and analyze studies conducted between 1980 and 2014, assessing the effects of mindfulness-based interventions…

  14. Picture It! The Use of Visual Methods in Psychology Teaching

    ERIC Educational Resources Information Center

    Watt, Sal; Wakefield, Caroline

    2014-01-01

    Photo elicitation theoretically located under Creative Analytic Practice was set as an assessment on a taught postgraduate programme. In groups of three to four, 30 students acted as both researcher and participant. Group topics were self-selected, each member took five photographs that group members reflected on. Topics chosen were varied and…

  15. Direct determination of neonicotinoid insecticides in an analytically challenging crop such as Chinese chives using selective ELISAs.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2018-06-05

    Easy-to-use commercial kit-based enzyme-linked immunosorbent assays (ELISAs) have been used to detect neonicotinoid dinotefuran, clothianidin and imidacloprid in Chinese chives, which are considered a troublesome matrix for chromatographic techniques. Based on their high water solubility, water was used as an extractant. Matrix interference could be avoided substantially just diluting sample extracts. Average recoveries of insecticides from spiked samples were 85-113%, with relative standard deviation of <15%. The concentrations of insecticides detected from the spiked samples with the proposed ELISA methods correlated well with those by the reference high-performance liquid chromatography (HPLC) method. The residues analyzed by the ELISA methods were consistently 1.24 times that found by the HPLC method, attributable to loss of analyte during sample clean-up for HPLC analyses. It was revealed that the ELISA methods can be applied easily to pesticide residue analysis in troublesome matrix such as Chinese chives.

  16. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.

    PubMed

    Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang

    2015-07-07

    In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekmekcioglu, Mehmet, E-mail: meceng3584@yahoo.co; Kaya, Tolga; Kahraman, Cengiz

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost,more » reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.« less

  18. Multibeam antenna study, phase 1

    NASA Technical Reports Server (NTRS)

    Bellamy, J. L.

    1972-01-01

    A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.

  19. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review.

    PubMed

    Bajoub, Aadil; Bendini, Alessandra; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

    2018-03-24

    Over the last decades, olive oil quality and authenticity control has become an issue of great importance to consumers, suppliers, retailers, and regulators in both traditional and emerging olive oil producing countries, mainly due to the increasing worldwide popularity and the trade globalization of this product. Thus, in order to ensure olive oil authentication, various national and international laws and regulations have been adopted, although some of them are actually causing an enormous debate about the risk that they can represent for the harmonization of international olive oil trade standards. Within this context, this review was designed to provide a critical overview and comparative analysis of selected regulatory frameworks for olive oil authentication, with special emphasis on the quality and purity criteria considered by these regulation systems, their thresholds and the analytical methods employed for monitoring them. To complete the general overview, recent analytical advances to overcome drawbacks and limitations of the official methods to evaluate olive oil quality and to determine possible adulterations were reviewed. Furthermore, the latest trends on analytical approaches to assess the olive oil geographical and varietal origin traceability were also examined.

  20. Evaluation of a hydrophilic interaction liquid chromatography design space for sugars and sugar alcohols.

    PubMed

    Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S

    2017-03-17

    Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modern data science for analytical chemical data - A comprehensive review.

    PubMed

    Szymańska, Ewa

    2018-10-22

    Efficient and reliable analysis of chemical analytical data is a great challenge due to the increase in data size, variety and velocity. New methodologies, approaches and methods are being proposed not only by chemometrics but also by other data scientific communities to extract relevant information from big datasets and provide their value to different applications. Besides common goal of big data analysis, different perspectives and terms on big data are being discussed in scientific literature and public media. The aim of this comprehensive review is to present common trends in the analysis of chemical analytical data across different data scientific fields together with their data type-specific and generic challenges. Firstly, common data science terms used in different data scientific fields are summarized and discussed. Secondly, systematic methodologies to plan and run big data analysis projects are presented together with their steps. Moreover, different analysis aspects like assessing data quality, selecting data pre-processing strategies, data visualization and model validation are considered in more detail. Finally, an overview of standard and new data analysis methods is provided and their suitability for big analytical chemical datasets shortly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  3. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  4. Development of the Ion Exchange-Gravimetric Method for Sodium in Serum as a Definitive Method

    PubMed Central

    Moody, John R.; Vetter, Thomas W.

    1996-01-01

    An ion exchange-gravimetric method, previously developed as a National Committee for Clinical Laboratory Standards (NCCLS) reference method for the determination of sodium in human serum, has been re-evaluated and improved. Sources of analytical error in this method have been examined more critically and the overall uncertainties decreased. Additionally, greater accuracy and repeatability have been achieved by the application of this definitive method to a sodium chloride reference material. In this method sodium in serum is ion-exchanged, selectively eluted and converted to a weighable precipitate as Na2SO4. Traces of sodium eluting before or after the main fraction, and precipitate contaminants are determined instrumentally. Co-precipitating contaminants contribute less than 0.1 % while the analyte lost to other eluted ion-exchange fractions contributes less than 0.02 % to the total precipitate mass. With improvements, the relative expanded uncertainty (k = 2) of the method, as applied to serum, is 0.3 % to 0.4 % and is less than 0.1 % when applied to a sodium chloride reference material. PMID:27805122

  5. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-01-20

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virusinfection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with <em>P</em>-value &#x003E; 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  6. The generation of criteria for selecting analytical tools for landscape management

    Treesearch

    Marilyn Duffey-Armstrong

    1979-01-01

    This paper presents an approach to generating criteria for selecting the analytical tools used to assess visual resources for various landscape management tasks. The approach begins by first establishing the overall parameters for the visual assessment task, and follows by defining the primary requirements of the various sets of analytical tools to be used. Finally,...

  7. Capillary electrophoresis with indirect UV detection for the determination of stabilizers and citrates present in human albumin solutions.

    PubMed

    Jaworska, Małgorzata; Cygan, Paulina; Wilk, Małgorzata; Anuszewska, Elzbieta

    2009-08-15

    Sodium caprylate and N-acetyltryptophan are the most frequently used stabilizers that protect the albumin from aggregation or heat induced denaturation. In turn citrates - excipients remaining after fractionation process - can be treated as by-product favoring leaching aluminum out of glass containers whilst albumin solution is stored. With ionic nature these substances have all the markings of a subject for capillary electrophoresis analysis. Thus CE methods were proposed as new approach for quality control of human albumin solution in terms of determination of stabilizers and citrates residue. Human albumin solutions both 5% and 20% from various manufacturers were tested. Indirect detection mode was set to provide sufficient detectability of analytes lacking of chromophores. As being anions analytes were separated with reversed electroosmotic flow. As a result of method optimization two background electrolytes based on p-hydroxybenzoic acid and 2,6-pyridinedicarboxylic acid were selected for stabilizers and citrates separation, respectively. The optimized methods were successfully validated. For citrates that require quantification below 100microM the method demonstrated the precision less than 4% and the limit of detection at 4microM. In order to check the new methods accuracy and applicability the samples were additionally tested with selected reference methods. The proposed methods allow reliable quantification of stabilizers and citrates in human albumin solution that was confirmed by method validation as well as result comparison with reference methods. The CE methods are considered to be suitable for quality control yet simplifying and reducing cost of analysis.

  8. Isotope-dilution gas chromatography-mass spectrometry coupled with injection-port butylation for the determination of 4-t-octylphenol, 4-nonylphenols and bisphenol A in human urine.

    PubMed

    Chung, Shuang-Hung; Ding, Wang-Hsien

    2018-02-05

    An analytical method that utilizes isotope-dilution gas chromatography-mass spectrometry (ID-GC-MS) coupled with injection-port butylation was developed. The method was validated, and confirmed to be able to determine the presence of three commonly detected endocrine-disrupting chemicals (EDCs: 4-tert-octylphenol (4-t-OP), 4-nonylphenols (4-NPs) and bisphenol A (BPA)) in human urine with high precision and accuracy. After sample preparation by solid-phase extraction, the extract was introduced into GC-MS via injection-port butylation. The butylated target analytes were identified and quantified by using ion-trap mass spectrometry operating in the selected-ion-storage mode, and employing the measurement of peak area ratios of the butylated target analytes and labeled-analogues in the samples and calibration standards. The labeled-analogues were also used to correct the variations associated with the analysis and matrix effect. The limits of quantitation (LOQs) ranged from 0.1 to 0.3ng/mL. High precisions for both intra- and inter-day analysis ranged from 1 to 6%, and excellent accuracy (mean recovery) ranged from 92 to 105% on two concentration levels. In human urine, the total concentrations of three selected EDCs varied from 1.28 to 7.14ng/mL. 4-NPs were detected within all collected samples. The developed method allows accurate analysis of trace-level of EDCs in urine, and these target EDCs could act as useful biomarkers to assess exposure in biomonitoring studies and programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  10. 3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data.

    PubMed

    Luo, Yuan; Szolovits, Peter; Dighe, Anand S; Baron, Jason M

    2018-06-01

    A key challenge in clinical data mining is that most clinical datasets contain missing data. Since many commonly used machine learning algorithms require complete datasets (no missing data), clinical analytic approaches often entail an imputation procedure to "fill in" missing data. However, although most clinical datasets contain a temporal component, most commonly used imputation methods do not adequately accommodate longitudinal time-based data. We sought to develop a new imputation algorithm, 3-dimensional multiple imputation with chained equations (3D-MICE), that can perform accurate imputation of missing clinical time series data. We extracted clinical laboratory test results for 13 commonly measured analytes (clinical laboratory tests). We imputed missing test results for the 13 analytes using 3 imputation methods: multiple imputation with chained equations (MICE), Gaussian process (GP), and 3D-MICE. 3D-MICE utilizes both MICE and GP imputation to integrate cross-sectional and longitudinal information. To evaluate imputation method performance, we randomly masked selected test results and imputed these masked results alongside results missing from our original data. We compared predicted results to measured results for masked data points. 3D-MICE performed significantly better than MICE and GP-based imputation in a composite of all 13 analytes, predicting missing results with a normalized root-mean-square error of 0.342, compared to 0.373 for MICE alone and 0.358 for GP alone. 3D-MICE offers a novel and practical approach to imputing clinical laboratory time series data. 3D-MICE may provide an additional tool for use as a foundation in clinical predictive analytics and intelligent clinical decision support.

  11. An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor.

    PubMed

    Qu, Fangfang; Ren, Dong; Wang, Jihua; Zhang, Zhong; Lu, Na; Meng, Lei

    2016-01-11

    Spectral analysis technique based on near infrared (NIR) sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA) as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA) based on a variable evaluation index (EI) for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy.

  12. Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics.

    PubMed

    Prasad, Bhagwat; Unadkat, Jashvant D

    2014-07-01

    Drug transporter expression in tissues (in vivo) usually differs from that in cell lines used to measure transporter activity (in vitro). Therefore, quantification of transporter expression in tissues and cell lines is important to develop scaling factor for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition. Since traditional immunoquantification methods are semiquantitative, targeted proteomics is now emerging as a superior method to quantify proteins, including membrane transporters. This superiority is derived from the selectivity, precision, accuracy, and speed of analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, LC-MS/MS proteomics has broader applicability because it does not require selective antibodies for individual proteins. There are a number of recent research and review papers that discuss the use of LC-MS/MS for transporter quantification. Here, we have compiled from the literature various elements of MRM proteomics to provide a comprehensive systematic strategy to quantify drug transporters. This review emphasizes practical aspects and challenges in surrogate peptide selection, peptide qualification, peptide synthesis and characterization, membrane protein isolation, protein digestion, sample preparation, LC-MS/MS parameter optimization, method validation, and sample analysis. In particular, bioinformatic tools used in method development and sample analysis are discussed in detail. Various pre-analytical and analytical sources of variability that should be considered during transporter quantification are highlighted. All these steps are illustrated using P-glycoprotein (P-gp) as a case example. Greater use of quantitative transporter proteomics will lead to a better understanding of the role of drug transporters in drug disposition.

  13. Quantitative correlations between collision induced dissociation mass spectrometry coupled with electrospray ionization or atmospheric pressure chemical ionization mass spectrometry - Experiment and theory

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2018-04-01

    The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method' evaluating the translation diffusion of charged analytes, while the theoretical modelling of MS ions and computations of theoretical diffusion coefficients are based on the Arrhenius type behavior of the charged species under ESI- and APCI-conditions. Although the study provide certain sound considerations for the quantitative relations between the reaction kinetic-thermodynamics and 3D structure of the analytes together with correlations between 3D molecular/electronic structures-quantum chemical diffusion coefficient-mass spectrometric diffusion coefficient, which contribute significantly to the structural analytical chemistry, the results have importance to other areas such as organic synthesis and catalysis as well.

  14. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range.

    PubMed

    Buccolieri, Alessandro; Hasan, Mohammed; Bettini, Simona; Bonfrate, Valentina; Salvatore, Luca; Santino, Angelo; Borovkov, Victor; Giancane, Gabriele

    2018-06-05

    Conformational switching induced in ethane-bridged bisporphyrins was used as a sensitive transduction method for revealing the presence of urea dissolved in water via nonenzymatic approach. Bisporphyrins were deposited on solid quartz slides by means of the spin-coating method. Molecular conformations of Zn and Ni monometalated bis-porphyrins were influenced by water solvated urea molecules and their fluorescence emission was modulated by the urea concentration. Absorption, fluorescence and Raman spectroscopies allowed the identification of supramolecular processes, which are responsible for host-guest interaction between the active layers and urea molecules. A high selectivity of the sensing mechanism was highlighted upon testing the spectroscopic responses of bis-porphyrin films to citrulline and glutamine used as interfering agents. Additionally, potential applicability was demonstrated by quantifying the urea concentration in real physiological samples proposing this new approach as a valuable alternative analytical procedure to the traditionally used enzymatic methods.

  15. Detection of heavy metal by paper-based microfluidics.

    PubMed

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of cocaine, benzoylecgonine and cocaethylene in human hair by solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    de Toledo, Fernanda Crossi Pereira; Yonamine, Mauricio; de Moraes Moreau, Regina Lucia; Silva, Ovandir Alves

    2003-12-25

    The present work describes a highly precise and sensitive method developed to detect cocaine (COC), benzoylecgonine (BE, its main metabolite) and cocaethylene (CE, transesterification product of the coingestion of COC with ethanol) in human head hair samples. The method was based on an alkylchloroformate derivatization of benzoylecgonine and the extraction of the analytes by solid-phase microextraction (SPME). Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring mode (SIM). The limits of quantification and detection (LOQ and LOD) were: 0.1 ng/mg for COC and CE, and 0.5 ng/mg for BE. Good inter- and intra-assay precision was observed. The dynamic range of the assay was 0.1-50 ng/mg. The method is not time consuming and was shown to be easy to perform.

  17. Methods for the analysis of azo dyes employed in food industry--A review.

    PubMed

    Yamjala, Karthik; Nainar, Meyyanathan Subramania; Ramisetti, Nageswara Rao

    2016-02-01

    A wide variety of azo dyes are generally added for coloring food products not only to make them visually aesthetic but also to reinstate the original appearance lost during the production process. However, many countries in the world have banned the use of most of the azo dyes in food and their usage is highly regulated by domestic and export food supplies. The regulatory authorities and food analysts adopt highly sensitive and selective analytical methods for monitoring as well as assuring the quality and safety of food products. The present manuscript presents a comprehensive review of various analytical techniques used in the analysis of azo dyes employed in food industries of different parts of the world. A brief description on the use of different extraction methods such as liquid-liquid, solid phase and membrane extraction has also been presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting

    PubMed Central

    LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.

    2013-01-01

    Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644

  19. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    PubMed

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples.

    PubMed

    Ellis, D A; Martin, J W; Muir, D C; Mabury, S A

    2000-02-15

    This investigation was carried out to evaluate 19F NMR as an analytical tool for the measurement of trifluoroacetic acid (TFA) and other fluorinated acids in the aquatic environment. A method based upon strong anionic exchange (SAX) chromatography was also optimized for the concentration of the fluoro acids prior to NMR analysis. Extraction of the analyte from the SAX column was carried out directly in the NMR solvent in the presence of the strong organic base, DBU. The method allowed the analysis of the acid without any prior cleanup steps being involved. Optimal NMR sensitivity based upon T1 relaxation times was investigated for seven fluorinated compounds in four different NMR solvents. The use of the relaxation agent chromium acetylacetonate, Cr(acac)3, within these solvent systems was also evaluated. Results show that the optimal NMR solvent differs for each fluorinated analyte. Cr(acac)3 was shown to have pronounced effects on the limits of detection of the analyte. Generally, the optimal sensitivity condition appears to be methanol-d4/2M DBU in the presence of 4 mg/mL of Cr-(acac)3. The method was validated through spike and recovery for five fluoro acids from environmentally relevant waters. Results are presented for the analysis of TFA in Toronto rainwater, which ranged from < 16 to 850 ng/L. The NMR results were confirmed by GC-MS selected-ion monitoring of the fluoroanalide derivative.

  1. Analytic Methods for Evaluating Patterns of Multiple Congenital Anomalies in Birth Defect Registries.

    PubMed

    Agopian, A J; Evans, Jane A; Lupo, Philip J

    2018-01-15

    It is estimated that 20 to 30% of infants with birth defects have two or more birth defects. Among these infants with multiple congenital anomalies (MCA), co-occurring anomalies may represent either chance (i.e., unrelated etiologies) or pathogenically associated patterns of anomalies. While some MCA patterns have been recognized and described (e.g., known syndromes), others have not been identified or characterized. Elucidating these patterns may result in a better understanding of the etiologies of these MCAs. This article reviews the literature with regard to analytic methods that have been used to evaluate patterns of MCAs, in particular those using birth defect registry data. A popular method for MCA assessment involves a comparison of the observed to expected ratio for a given combination of MCAs, or one of several modified versions of this comparison. Other methods include use of numerical taxonomy or other clustering techniques, multiple regression analysis, and log-linear analysis. Advantages and disadvantages of these approaches, as well as specific applications, were outlined. Despite the availability of multiple analytic approaches, relatively few MCA combinations have been assessed. The availability of large birth defects registries and computing resources that allow for automated, big data strategies for prioritizing MCA patterns may provide for new avenues for better understanding co-occurrence of birth defects. Thus, the selection of an analytic approach may depend on several considerations. Birth Defects Research 110:5-11, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.

    PubMed

    Taraji, Maryam; Haddad, Paul R; Amos, Ruth I J; Talebi, Mohammad; Szucs, Roman; Dolan, John W; Pohl, Chris A

    2017-02-07

    A design-of-experiment (DoE) model was developed, able to describe the retention times of a mixture of pharmaceutical compounds in hydrophilic interaction liquid chromatography (HILIC) under all possible combinations of acetonitrile content, salt concentration, and mobile-phase pH with R 2 > 0.95. Further, a quantitative structure-retention relationship (QSRR) model was developed to predict retention times for new analytes, based only on their chemical structures, with a root-mean-square error of prediction (RMSEP) as low as 0.81%. A compound classification based on the concept of similarity was applied prior to QSRR modeling. Finally, we utilized a combined QSRR-DoE approach to propose an optimal design space in a quality-by-design (QbD) workflow to facilitate the HILIC method development. The mathematical QSRR-DoE model was shown to be highly predictive when applied to an independent test set of unseen compounds in unseen conditions with a RMSEP value of 5.83%. The QSRR-DoE computed retention time of pharmaceutical test analytes and subsequently calculated separation selectivity was used to optimize the chromatographic conditions for efficient separation of targets. A Monte Carlo simulation was performed to evaluate the risk of uncertainty in the model's prediction, and to define the design space where the desired quality criterion was met. Experimental realization of peak selectivity between targets under the selected optimal working conditions confirmed the theoretical predictions. These results demonstrate how discovery of optimal conditions for the separation of new analytes can be accelerated by the use of appropriate theoretical tools.

  3. Researching Mental Health Disorders in the Era of Social Media: Systematic Review.

    PubMed

    Wongkoblap, Akkapon; Vadillo, Miguel A; Curcin, Vasa

    2017-06-29

    Mental illness is quickly becoming one of the most prevalent public health problems worldwide. Social network platforms, where users can express their emotions, feelings, and thoughts, are a valuable source of data for researching mental health, and techniques based on machine learning are increasingly used for this purpose. The objective of this review was to explore the scope and limits of cutting-edge techniques that researchers are using for predictive analytics in mental health and to review associated issues, such as ethical concerns, in this area of research. We performed a systematic literature review in March 2017, using keywords to search articles on data mining of social network data in the context of common mental health disorders, published between 2010 and March 8, 2017 in medical and computer science journals. The initial search returned a total of 5386 articles. Following a careful analysis of the titles, abstracts, and main texts, we selected 48 articles for review. We coded the articles according to key characteristics, techniques used for data collection, data preprocessing, feature extraction, feature selection, model construction, and model verification. The most common analytical method was text analysis, with several studies using different flavors of image analysis and social interaction graph analysis. Despite an increasing number of studies investigating mental health issues using social network data, some common problems persist. Assembling large, high-quality datasets of social media users with mental disorder is problematic, not only due to biases associated with the collection methods, but also with regard to managing consent and selecting appropriate analytics techniques. ©Akkapon Wongkoblap, Miguel A Vadillo, Vasa Curcin. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.06.2017.

  4. Quantification of 4 antidepressants and a metabolite by LC-MS for therapeutic drug monitoring.

    PubMed

    Choong, Eva; Rudaz, Serge; Kottelat, Astrid; Haldemann, Sophie; Guillarme, Davy; Veuthey, Jean-Luc; Eap, Chin B

    2011-06-01

    A liquid chromatography method coupled to mass spectrometry was developed for the quantification of bupropion, its metabolite hydroxy-bupropion, moclobemide, reboxetine and trazodone in human plasma. The validation of the analytical procedure was assessed according to Société Française des Sciences et Techniques Pharmaceutiques and the latest Food and Drug Administration guidelines. The sample preparation was performed with 0.5 mL of plasma extracted on a cation-exchange solid phase 96-well plate. The separation was achieved in 14 min on a C18 XBridge column (2.1 mm×100 mm, 3.5 μm) using a 50 mM ammonium acetate pH 9/acetonitrile mobile phase in gradient mode. The compounds of interest were analysed in the single ion monitoring mode on a single quadrupole mass spectrometer working in positive electrospray ionisation mode. Two ions were selected per molecule to increase the number of identification points and to avoid as much as possible any false positives. Since selectivity is always a critical point for routine therapeutic drug monitoring, more than sixty common comedications for the psychiatric population were tested. For each analyte, the analytical procedure was validated to cover the common range of concentrations measured in plasma samples: 1-400 ng/mL for reboxetine and bupropion, 2-2000 ng/mL for hydroxy-bupropion, moclobemide, and trazodone. For all investigated compounds, reliable performance in terms of accuracy, precision, trueness, recovery, selectivity and stability was obtained. One year after its implementation in a routine process, this method demonstrated a high robustness with accurate values over the wide concentration range commonly observed among a psychiatric population. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Determination of glycols in air: development of sampling and analytical methodology and application to theatrical smokes.

    PubMed

    Pendergrass, S M

    1999-01-01

    Glycol-based fluids are used in the production of theatrical smokes in theaters, concerts, and other stage productions. The fluids are heated and dispersed in aerosol form to create the effect of a smoke, mist, or fog. There have been reports of adverse health effects such as respiratory irritation, chest tightness, shortness of breath, asthma, and skin rashes. Previous attempts to collect and quantify the aerosolized glycols used in fogging agents have been plagued by inconsistent results, both in the efficiency of collection and in the chromatographic analysis of the glycol components. The development of improved sampling and analytical methodology for aerosolized glycols was required to assess workplace exposures more effectively. An Occupational Safety and Health Administration versatile sampler tube was selected for the collection of ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol aerosols. Analytical methodology for the separation, identification, and quantitation of the six glycols using gas chromatography/flame ionization detection is described. Limits of detection of the glycol analytes ranged from 7 to 16 micrograms/sample. Desorption efficiencies for all glycol compounds were determined over the range of study and averaged greater than 90%. Storage stability results were acceptable after 28 days for all analytes except ethylene glycol, which was stable at ambient temperature for 14 days. Based on the results of this study, the new glycol method was published in the NIOSH Manual of Analytical Methods.

  6. Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification.

    PubMed

    Li, Wenying; Yang, Yue; Chen, Jian; Zhang, Qingfeng; Wang, Yan; Wang, Fangyuan; Yu, Cong

    2014-03-15

    A DNAzyme based method for the sensitive and selective quantification of lead(II) ions has been developed. A DNAzyme that requires Pb(2+) for activation was selected. An RNA containing DNA substrate was cleaved by the DNAzyme in the presence of Pb(2+). The 2',3'-cyclic phosphate of the cleaved 5'-part of the substrate was efficiently removed by Exonuclease III. The remaining part of the single stranded DNA (9 or 13 base long) was subsequently used as the primer for the strand displacement amplification reaction (SDAR). The method is highly sensitive, 200 pM lead(II) could be easily detected. A number of interference ions were tested, and the sensor showed good selectivity. Underground water samples were also tested, which demonstrated the feasibility of the current approach for real sample applications. It is feasible that our method could be used for DNAzyme or aptazyme based new sensing method developments for the quantification of other target analytes with high sensitivity and selectivity. © 2013 Elsevier B.V. All rights reserved.

  7. Analytical Quality by Design in pharmaceutical quality assurance: Development of a capillary electrophoresis method for the analysis of zolmitriptan and its impurities.

    PubMed

    Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Del Bubba, Massimo; Pinzauti, Sergio; Furlanetto, Sandra

    2015-11-01

    A fast and selective CE method for the determination of zolmitriptan (ZOL) and its five potential impurities has been developed applying the analytical Quality by Design principles. Voltage, temperature, buffer concentration, and pH were investigated as critical process parameters that can influence the critical quality attributes, represented by critical resolution values between peak pairs, analysis time, and peak efficiency of ZOL-dimer. A symmetric screening matrix was employed for investigating the knowledge space, and a Box-Behnken design was used to evaluate the main, interaction, and quadratic effects of the critical process parameters on the critical quality attributes. Contour plots were drawn highlighting important interactions between buffer concentration and pH, and the gained information was merged into the sweet spot plots. Design space (DS) was established by the combined use of response surface methodology and Monte Carlo simulations, introducing a probability concept and thus allowing the quality of the analytical performances to be assured in a defined domain. The working conditions (with the interval defining the DS) were as follows: BGE, 138 mM (115-150 mM) phosphate buffer pH 2.74 (2.54-2.94); temperature, 25°C (24-25°C); voltage, 30 kV. A control strategy was planned based on method robustness and system suitability criteria. The main advantages of applying the Quality by Design concept consisted of a great increase of knowledge of the analytical system, obtained throughout multivariate techniques, and of the achievement of analytical assurance of quality, derived by probability-based definition of DS. The developed method was finally validated and applied to the analysis of ZOL tablets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Choosing and Using Introns in Molecular Phylogenetics

    PubMed Central

    Creer, Simon

    2007-01-01

    Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984

  9. "Cork taint" responsible compounds. Determination of haloanisoles and halophenols in cork matrix: A review.

    PubMed

    Tarasov, Andrii; Rauhut, Doris; Jung, Rainer

    2017-12-01

    Analytical methods of haloanisoles and halophenols quantification in cork matrix are summarized in the current review. Sample-preparation and sample-treatment techniques have been compared and discussed from the perspective of their efficiency, time- and extractant-optimization, easiness of performance. Primary interest of these analyses usually addresses to 2,4,6-trichloroanisole (TCA), which is a major wine contaminant among haloanisoles. Two concepts of TCA determination are described in the review: releasable TCA and total TCA analyses. Chromatographic, bioanalytical and sensorial methods were compared according to their application in the cork industry and in scientific investigations. Finally, it was shown that modern analytical techniques are able to provide required sensitivity, selectivity and repeatability for haloanisoles and halophenols determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril.

    PubMed

    Ding, Jun; Xiao, Hua-Ming; Liu, Simin; Wang, Chang; Liu, Xin; Feng, Yu-Qi

    2018-10-05

    Although several methods have realized the analysis of low molecular weight (LMW) compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by overcoming the problem of interference with MS signals in the low mass region derived from conventional organic matrices, this emerging field still requires strategies to address the issue of analyzing complex samples containing LMW components in addition to the LMW compounds of interest, and solve the problem of lack of universality. The present study proposes an integrated strategy that combines chemical labeling with the supramolecular chemistry of cucurbit [n]uril (CB [n]) for the MALDI MS analysis of LMW compounds in complex samples. In this strategy, the target LMW compounds are first labeled by introducing a series of bifunctional reagents that selectively react with the target analytes and also form stable inclusion complexes with CB [n]. Then, the labeled products act as guest molecules that readily and selectively form stable inclusion complexes with CB [n]. This strategy relocates the MS signals of the LMW compounds of interest from the low mass region suffering high interference to the high mass region where interference with low mass components is absent. Experimental results demonstrate that a wide range of LMW compounds, including carboxylic acids, aldehydes, amines, thiol, and cis-diols, can be successfully detected using the proposed strategy, and the limits of detection were in the range of 0.01-1.76 nmol/mL. In addition, the high selectivity of the labeling reagents for the target analytes in conjunction with the high selectivity of the binding between the labeled products and CB [n] ensures an absence of signal interference with the non-targeted LMW components of complex samples. Finally, the feasibility of the proposed strategy for complex sample analysis is demonstrated by the accurate and rapid quantitative analysis of aldehydes in saliva and herbal medicines. As such, this work not only provides an alternative method for the detection of various LMW compounds using MALDI MS, but also can be applied to the selective and high-throughput analysis of LMW analytes in complex samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Simultaneous determination of apatinib and its four major metabolites in human plasma using liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Ding, Juefang; Chen, Xiaoyan; Dai, Xiaojian; Zhong, Dafang

    2012-05-01

    Apatinib, also known as YN968D1, is a novel antiangiogenic agent that selectively inhibits vascular endothelial growth factor receptor-2. Currently, apatinib is undergoing phase II/III clinical trials in China for the treatment of solid tumors. Apatinib is extensively metabolized in humans, and its major metabolites in circulation include cis-3-hydroxy-apatinib (M1-1), trans-3-hydroxy-apatinib (M1-2), apatinib-25-N-oxide (M1-6), and cis-3-hydroxy-apatinib-O-glucuronide (M9-2). To investigate the pharmacokinetics of apatinib and its four major metabolites in patients with advanced colorectal cancer, a sensitive and selective liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of apatinib, M1-1, M1-2, M1-6, and M9-2 in human plasma. After a simple protein precipitation using acetonitrile as the precipitation solvent, all the analytes and the internal standard vatalanib were separated on a Zorbax Eclipse XDB C(18) column (50 mm × 4.6 mm, 1.8 μm, Agilent) using acetonitrile: 5 mmol/L ammonium acetate with 0.1% formic acid as the mobile phase with gradient elution. A chromatographic total run time of 9 min was achieved. Mass spectrometry detection was conducted through electrospray ionization in positive ion multiple reaction monitoring modes. The method was linear over the concentration range of 3.00-2000 ng/mL for each analyte. The lower limit of quantification for each analyte was 3.00 ng/mL. The intra-assay precision for all the analytes was less than 11.3%, the inter-assay precision was less than 13.8%, and the accuracy was between -5.8% and 3.3%. The validated method was successfully applied to a clinical pharmacokinetic study following oral administration of 500 mg apatinib mesylate in patients with advanced colorectal cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Molecularly imprinted polymer coupled with dispersive liquid-liquid microextraction and injector port silylation: a novel approach for the determination of 3-phenoxybenzoic acid in complex biological samples using gas chromatography-tandem mass spectrometry.

    PubMed

    Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Jain, Rajeev; Dhuriya, Yogesh Kumar; Saxena, Prem Narain; Khanna, Vinay Kumar

    2014-01-15

    A novel analytical approach based on molecularly imprinted solid phase extraction (MISPE) coupled with dispersive liquid-liquid microextraction (DLLME), and injector port silylation (IPS) has been developed for the selective preconcentration, derivatization and analysis of 3-phenoxybenzoic acid (3-PBA) using gas chromatography-tandem mass spectrometry (GC-MS/MS) in complex biological samples such as rat blood and liver. Factors affecting the synthesis of MIP were evaluated and the best monomer and cross-linker were selected based on binding affinity studies. Various parameters of MISPE, DLLME and IPS were optimized for the selective preconcentration and derivatization of 3-PBA. The developed method offers a good linearity over the calibration range of 0.02-2.5ngmg(-1) and 7.5-2000ngmL(-1) for liver and blood respectively. Under optimized conditions, the recovery of 3-PBA in liver and blood samples were found to be in the range of 83-91%. The detection limit was found to be 0.0045ngmg(-1) and 1.82ngmL(-1) in liver and blood respectively. SRM transition of 271→227 and 271→197 has been selected as quantifier and qualifier transition for 3-PBA derivative. Intra and inter-day precision for five replicates in a day and for five, successive days was found to be less than 8%. The method developed was successfully applied to real samples, i.e. rat blood and tissue for quantitative evaluation of 3-PBA. The analytical approach developed is rapid, economic, simple, eco-friendly and possess immense utility for the analysis of analytes with polar functional groups in complex biological samples by GC-MS/MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Optimization and single-laboratory validation of a method for the determination of flavonolignans in milk thistle seeds by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Mudge, Elizabeth; Paley, Lori; Schieber, Andreas; Brown, Paula N

    2015-10-01

    Seeds of milk thistle, Silybum marianum (L.) Gaertn., are used for treatment and prevention of liver disorders and were identified as a high priority ingredient requiring a validated analytical method. An AOAC International expert panel reviewed existing methods and made recommendations concerning method optimization prior to validation. A series of extraction and separation studies were undertaken on the selected method for determining flavonolignans from milk thistle seeds and finished products to address the review panel recommendations. Once optimized, a single-laboratory validation study was conducted. The method was assessed for repeatability, accuracy, selectivity, LOD, LOQ, analyte stability, and linearity. Flavonolignan content ranged from 1.40 to 52.86% in raw materials and dry finished products and ranged from 36.16 to 1570.7 μg/mL in liquid tinctures. Repeatability for the individual flavonolignans in raw materials and finished products ranged from 1.03 to 9.88% RSDr, with HorRat values between 0.21 and 1.55. Calibration curves for all flavonolignan concentrations had correlation coefficients of >99.8%. The LODs for the flavonolignans ranged from 0.20 to 0.48 μg/mL at 288 nm. Based on the results of this single-laboratory validation, this method is suitable for the quantitation of the six major flavonolignans in milk thistle raw materials and finished products, as well as multicomponent products containing dandelion, schizandra berry, and artichoke extracts. It is recommended that this method be adopted as First Action Official Method status by AOAC International.

  14. Detection and quantification of the selective EP4 receptor antagonist CJ-023423 (grapiprant) in canine plasma by HPLC with spectrofluorimetric detection.

    PubMed

    Vito, Virgina De; Saba, Alessandro; Lee, Hong-Ki; Owen, Helen; Poapolathep, Amnart; Giorgi, Mario

    2016-01-25

    Grapiprant, a novel pharmacologically active ingredient, acts as a selective EP4 receptor antagonist whose physiological ligand is prostaglandin E2 (PGE2). It is currently under development for use in humans and dogs for the control of pain and inflammation associated with osteoarthritis. The aim of the present study was to develop an easy and sensitive method to quantify grapiprant in canine plasma and to apply the method in a canine patient. Several parameters, both in the extraction and detection method were evaluated. The final mobile phase consisted of ACN:AcONH4 (20 mM) solution, pH 4 (70:30, v/v) at a flow rate of 1 mL/min. The elution of grapiprant and IS (metoclopramide) was carried out in isocratic mode through a Synergi Polar-RP 80A analytical column (150 mm × 4.6 mm). The best excitation and emission wavelengths were 320 and 365 nm, respectively. Grapiprant was extracted from the plasma using CHCl3, which gave a recovery of 88.1 ± 10.22% and a lower limit of quantification (LLOQ) of 10 ng/mL. The method was validated in terms of linearity, limit of detection (LOD), LLOQ, selectivity, accuracy and precision, extraction recovery, stability, and inter-laboratory cross validation, according to international guidelines. The chromatographic runs were specific with no interfering peaks at the retention times of the analyte and IS, as confirmed by HPLC-MS experiments. In conclusion, this was a simple and effective method using HPLC-FL to detect grapiprant in plasma, which may be useful for future pharmacokinetic studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development of an Advanced HPLC–MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma

    PubMed Central

    Hrvolová, Barbora; Martínez-Huélamo, Miriam; Colmán-Martínez, Mariel; Hurtado-Barroso, Sara; Lamuela-Raventós, Rosa Maria; Kalina, Jiří

    2016-01-01

    The concentration of carotenoids and fat-soluble vitamins in human plasma may play a significant role in numerous chronic diseases such as age-related macular degeneration and some types of cancer. Although these compounds are of utmost interest for human health, methods for their simultaneous determination are scarce. A new high pressure liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) method for the quantification of selected carotenoids and fat-soluble vitamins in human plasma was developed, validated, and then applied in a pilot dietary intervention study with healthy volunteers. In 50 min, 16 analytes were separated with an excellent resolution and suitable MS signal intensity. The proposed HPLC–MS/MS method led to improvements in the limits of detection (LOD) and quantification (LOQ) for all analyzed compounds compared to the most often used HPLC–DAD methods, in some cases being more than 100-fold lower. LOD values were between 0.001 and 0.422 µg/mL and LOQ values ranged from 0.003 to 1.406 µg/mL, according to the analyte. The accuracy, precision, and stability met with the acceptance criteria of the AOAC (Association of Official Analytical Chemists) International. According to these results, the described HPLC-MS/MS method is adequately sensitive, repeatable and suitable for the large-scale analysis of compounds in biological fluids. PMID:27754400

  16. Development of an Advanced HPLC-MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma.

    PubMed

    Hrvolová, Barbora; Martínez-Huélamo, Miriam; Colmán-Martínez, Mariel; Hurtado-Barroso, Sara; Lamuela-Raventós, Rosa Maria; Kalina, Jiří

    2016-10-14

    The concentration of carotenoids and fat-soluble vitamins in human plasma may play a significant role in numerous chronic diseases such as age-related macular degeneration and some types of cancer. Although these compounds are of utmost interest for human health, methods for their simultaneous determination are scarce. A new high pressure liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) method for the quantification of selected carotenoids and fat-soluble vitamins in human plasma was developed, validated, and then applied in a pilot dietary intervention study with healthy volunteers. In 50 min, 16 analytes were separated with an excellent resolution and suitable MS signal intensity. The proposed HPLC-MS/MS method led to improvements in the limits of detection (LOD) and quantification (LOQ) for all analyzed compounds compared to the most often used HPLC-DAD methods, in some cases being more than 100-fold lower. LOD values were between 0.001 and 0.422 µg/mL and LOQ values ranged from 0.003 to 1.406 µg/mL, according to the analyte. The accuracy, precision, and stability met with the acceptance criteria of the AOAC (Association of Official Analytical Chemists) International. According to these results, the described HPLC-MS/MS method is adequately sensitive, repeatable and suitable for the large-scale analysis of compounds in biological fluids.

  17. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    PubMed

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  18. Comparative Analysis of AHP-TOPSIS and Fuzzy AHP Models in Selecting Appropriate Nanocomposites for Environmental Noise Barrier Applications

    NASA Astrophysics Data System (ADS)

    Naderzadeh, Mahdiyeh; Arabalibeik, Hossein; Monazzam, Mohammad Reza; Ghasemi, Ismaeil

    Choosing the right material in the design of environmental noise barriers has always been a challenging issue in acoustics. In less-developed countries, the material selection is affected by many factors from various aspects, which makes the decision-making very complicated. This study attempts to compare and assign weights to the most important indices affecting the choice of appropriate noise barrier material. These criteria include absorption coefficient, transparency, tensile modulus, strength at yield, elongation at break, impact strength, flexural modulus, hardness, and cost. For this purpose, experts' opinions was gathered through a total of 13 questionnaires and used for assigning weights by Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy process (FAHP) techniques. According to the AHP results, impact strength, with only a minor difference of 0.093 compared to the AHP, was recognized as the most important criterion. Finally, the optimal composite material was selected using two different methods; first by Technique for Order-Preference by Similarity to Ideal Solution (TOPSIS) based on the weights obtained from AHP, and next by directly applying the obtained weights from FAHP to the true measured values of parameters. As the results show, in both abovementioned methods, Polycarbonate-SiO2 0.3% with roughened surface (PCSI3-R) received the highest score and was selected as the preferred composite material. Given the close similarity of the results, to determine the superiority of one method over the other, some noise was added to the original data set from the mechanical and acoustic tests and then the variance of the changes in the final orders of preferences was calculated. This indicates the robustness of the method against the measurement errors and noise. The results shows that under the same circumstances, the overall order shift variance in the classic TOPSIS is six times higher than that of the fuzzy AHP method.

  19. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    PubMed

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Do placebo based validation standards mimic real batch products behaviour? Case studies.

    PubMed

    Bouabidi, A; Talbi, M; Bouklouze, A; El Karbane, M; Bourichi, H; El Guezzar, M; Ziemons, E; Hubert, Ph; Rozet, E

    2011-06-01

    Analytical methods validation is a mandatory step to evaluate the ability of developed methods to provide accurate results for their routine application. Validation usually involves validation standards or quality control samples that are prepared in placebo or reconstituted matrix made of a mixture of all the ingredients composing the drug product except the active substance or the analyte under investigation. However, one of the main concerns that can be made with this approach is that it may lack an important source of variability that come from the manufacturing process. The question that remains at the end of the validation step is about the transferability of the quantitative performance from validation standards to real authentic drug product samples. In this work, this topic is investigated through three case studies. Three analytical methods were validated using the commonly spiked placebo validation standards at several concentration levels as well as using samples coming from authentic batch samples (tablets and syrups). The results showed that, depending on the type of response function used as calibration curve, there were various degrees of differences in the results accuracy obtained with the two types of samples. Nonetheless the use of spiked placebo validation standards was showed to mimic relatively well the quantitative behaviour of the analytical methods with authentic batch samples. Adding these authentic batch samples into the validation design may help the analyst to select and confirm the most fit for purpose calibration curve and thus increase the accuracy and reliability of the results generated by the method in routine application. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Analytical capabilities of high performance liquid chromatography - Atmospheric pressure photoionization - Orbitrap mass spectrometry (HPLC-APPI-Orbitrap-MS) for the trace determination of novel and emerging flame retardants in fish.

    PubMed

    Zacs, D; Bartkevics, V

    2015-10-22

    A new analytical method was established and validated for the analysis of 27 brominated flame retardants (BFRs), including so called "emerging" and "novel" BFRs (EBFRs and NBFRs) in fish samples. High performance liquid chromatography (HPLC) coupled to Orbitrap mass spectrometry (Orbitrap-MS) employing atmospheric pressure photoionization (APPI) interface operated in negative mode was used for the identification/quantitation of contaminants. HPLC-Orbitrap-MS analysis provided a fast separation of selected analytes within 14 min, thus demonstrating a high throughput processing of samples. The developed methodology was tested by intralaboratory validation in terms of recovery, repeatability, linear calibration ranges, instrumental and method limits of quantitation (i-LOQ and m-LOQ), and where possible, trueness was verified by analysis of certified reference materials (CRMs). Recoveries of analytes were between 80 and 119%, while the repeatability in terms of relative standard deviations (RSDs) was in the range from 1.2 to 15.5%. The measured values for both analyzed CRMs agreed with the provided consensus values, revealing the recovery of reference concentrations in 72-119% range. The elaborated method met the sensitivity criterion according to Commission Recommendation 2014/118/EU on monitoring of BFRs in food products for majority of the compounds. The concentrations of polybrominated diphenyl ethers (PBDEs) in real samples determined by HPLC-APPI-Orbitrap-MS method and validated gas chromatography-high-resolution mass spectrometry (GC-HRMS) method were found to be in a good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A new validated method for the simultaneous determination of benzocaine, propylparaben and benzyl alcohol in a bioadhesive gel by HPLC.

    PubMed

    Pérez-Lozano, P; García-Montoya, E; Orriols, A; Miñarro, M; Ticó, J R; Suñé-Negre, J M

    2005-10-04

    A new HPLC-RP method has been developed and validated for the simultaneous determination of benzocaine, two preservatives (propylparaben (nipasol) and benzyl alcohol) and degradation products of benzocaine in a semisolid pharmaceutical dosage form (benzocaine gel). The method uses a Nucleosil 120 C18 column and gradient elution. The mobile phase consisted of a mixture of methanol and glacial acetic acid (10%, v/v) at different proportion according to a time-schedule programme, pumped at a flow rate of 2.0 ml min(-1). The DAD detector was set at 258 nm. The validation study was carried out fulfilling the ICH guidelines in order to prove that the new analytical method, meets the reliability characteristics, and these characteristics showed the capacity of analytical method to keep, throughout the time, the fundamental criteria for validation: selectivity, linearity, precision, accuracy and sensitivity. The method was applied during the quality control of benzocaine gel in order to quantify the drug (benzocaine), preservatives and degraded products and proved to be suitable for rapid and reliable quality control method.

  3. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    PubMed

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.

  4. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Jack R; Ware, Anne E

    Two catalytic fast pyrolysis (CFP) oils (bottom/heavy fraction) were analyzed in various solvents that are used in common analytical methods (nuclear magnetic resonance - NMR, gas chromatography - GC, gel permeation chromatography - GPC, thermogravimetric analysis - TGA) for oil characterization and speciation. A more accurate analysis of the CFP oils can be obtained by identification and exploitation of solvent miscibility characteristics. Acetone and tetrahydrofuran can be used to completely solubilize CFP oils for analysis by GC and tetrahydrofuran can be used for traditional organic GPC analysis of the oils. DMSO-d6 can be used to solubilize CFP oils for analysismore » by 13C NMR. The fractionation of oils into solvents that did not completely solubilize the whole oils showed that miscibility can be related to the oil properties. This allows for solvent selection based on physico-chemical properties of the oils. However, based on semi-quantitative comparisons of the GC chromatograms, the organic solvent fractionation schemes did not speciate the oils based on specific analyte type. On the other hand, chlorinated solvents did fractionate the oils based on analyte size to a certain degree. Unfortunately, like raw pyrolysis oil, the matrix of the CFP oils is complicated and is not amenable to simple liquid-liquid extraction (LLE) or solvent fractionation to separate the oils based on the chemical and/or physical properties of individual components. For reliable analyses, for each analytical method used, it is critical that the bio-oil sample is both completely soluble and also not likely to react with the chosen solvent. The adoption of the standardized solvent selection protocols presented here will allow for greater reproducibility of analysis across different users and facilities.« less

  6. Application of analytical quality by design principles for the determination of alkyl p-toluenesulfonates impurities in Aprepitant by HPLC. Validation using total-error concept.

    PubMed

    Zacharis, Constantinos K; Vastardi, Elli

    2018-02-20

    In the research presented we report the development of a simple and robust liquid chromatographic method for the quantification of two genotoxic alkyl sulphonate impurities (namely methyl p-toluenesulfonate and isopropyl p-toluenesulfonate) in Aprepitant API substances using the Analytical Quality by Design (AQbD) approach. Following the steps of AQbD protocol, the selected critical method attributes (CMAs) were the separation criterions between the critical peak pairs, the analysis time and the peak efficiencies of the analytes. The critical method parameters (CMPs) included the flow rate, the gradient slope and the acetonitrile content at the first step of the gradient elution program. Multivariate experimental designs namely Plackett-Burman and Box-Behnken designs were conducted sequentially for factor screening and optimization of the method parameters. The optimal separation conditions were estimated using the desirability function. The method was fully validated in the range of 10-200% of the target concentration limit of the analytes using the "total error" approach. Accuracy profiles - a graphical decision making tool - were constructed using the results of the validation procedures. The β-expectation tolerance intervals did not exceed the acceptance criteria of±10%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between - 1.3-3.8% for both analytes, while the RSD values for repeatability and intermediate precision were less than 1.9% in all cases. The achieved limit of detection (LOD) and the limit of quantification (LOQ) were adequate for the specific purpose and found to be 0.02% (corresponding to 48μgg -1 in sample) for both methyl and isopropyl p-toluenesulfonate. As proof-of-concept, the validated method was successfully applied in the analysis of several Aprepitant batches indicating that this methodology could be used for routine quality control analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Employing Solid Phase Microextraction as Extraction Tool for Pesticide Residues in Traditional Medicinal Plants

    PubMed Central

    Gondo, Thamani T.; Mmualefe, Lesego C.; Okatch, Harriet

    2016-01-01

    HS-SPME was optimised using blank plant sample for analysis of organochlorine pesticides (OCPs) of varying polarities in selected medicinal plants obtained from northern part of Botswana, where OCPs such as DDT and endosulfan have been historically applied to control disease carrying vectors (mosquitos and tsetse fly). The optimised SPME parameters were used to isolate analytes from root samples of five medicinal plants obtained from Maun and Kasane, Botswana. The final analytes determination was done with a gas chromatograph equipped with GC-ECD and analyte was confirmed using electron ionisation mass spectrometer (GC-MS). Dieldrin was the only pesticide detected and confirmed with MS in the Terminalia sericea sample obtained from Kasane. The method was validated and the analyte recoveries ranged from 69.58 ± 7.20 to 113 ± 15.44%, with RSDs ranging from 1.19 to 17.97%. The method indicated good linearity (R 2 > 0.9900) in the range of 2 to 100 ng g−1. The method also proved to be sensitive with low limits of detection (LODs) ranging from 0.48 ± 0.16 to 1.50 ± 0.50 ng g−1. It can be concluded that SPME was successfully utilized as a sampling and extraction tool for pesticides of diverse polarities in root samples of medicinal plants. PMID:27725893

  8. Need total sulfur content? Use chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.

    Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the areamore » of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compounds. 2 figs., 2 tabs.« less

  9. Analytic hierarchy process-based approach for selecting a Pareto-optimal solution of a multi-objective, multi-site supply-chain planning problem

    NASA Astrophysics Data System (ADS)

    Ayadi, Omar; Felfel, Houssem; Masmoudi, Faouzi

    2017-07-01

    The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.

  10. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films.

    PubMed

    Geng, Yan; Ali, Mohammad A; Clulow, Andrew J; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E

    2015-09-15

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  11. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    PubMed Central

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-01-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy. PMID:26370931

  12. The Effect of Emulsion Intensity on Selected Sensory and Instrumental Texture Properties of Full-Fat Mayonnaise

    PubMed Central

    Olsson, Viktoria; Håkansson, Andreas

    2018-01-01

    Varying processing conditions can strongly affect the microstructure of mayonnaise, opening up new applications for the creation of products tailored to meet different consumer preferences. The aim of the study was to evaluate the effect of emulsification intensity on sensory and instrumental characteristics of full-fat mayonnaise. Mayonnaise, based on a standard recipe, was processed at low and high emulsification intensities, with selected sensory and instrumental properties then evaluated using an analytical panel and a back extrusion method. The evaluation also included a commercial reference mayonnaise. The overall effects of a higher emulsification intensity on the sensory and instrumental characteristics of full-fat mayonnaise were limited. However, texture was affected, with a more intense emulsification resulting in a firmer mayonnaise according to both back extrusion data and the analytical sensory panel. Appearance, taste and flavor attributes were not affected by processing. PMID:29342128

  13. Investigating noncovalent squarylium dye-protein interactions by capillary electrophoresis-frontal analysis.

    PubMed

    Yan, Weiying; Colyer, Christa L

    2006-11-24

    Noncovalent interactions between fluorescent probe molecules and protein analyte molecules, which typically occur with great speed and minimal sample handling, form the basis of many high sensitivity analytical techniques. Understanding the nature of these interactions and the composition of the resulting complexes represents an important area of study that can be facilitated by capillary electrophoresis (CE). Specifically, we will present how frontal analysis (FA) and Hummel-Dreyer (HD) methods can be implemented with CE to determine association constants and stoichiometries of noncovalent complexes of the red luminescent squarylium dye Red-1c with bovine serum albumin (BSA) and beta-lactoglobulin A. By adjusting solution conditions, such as pH or ionic strength, it is possible to selectively modify the binding process. As such, conditions for optimal selectivity for labeling reactions can be established by capillary electrophoresis-frontal analysis (CE-FA) investigations.

  14. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  15. Simultaneous quantification of lenalidomide, ibrutinib and its active metabolite PCI-45227 in rat plasma by LC-MS/MS: application to a pharmacokinetic study.

    PubMed

    Veeraraghavan, Sridhar; Viswanadha, Srikant; Thappali, Satheeshmanikandan; Govindarajulu, Babu; Vakkalanka, Swaroopkumar; Rangasamy, Manivannan

    2015-03-25

    Efficacy assessments using a combination of ibrutinib and lenalidomide necessitate the development of an analytical method for determination of both drugs in plasma with precision. A high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of lenalidomide, ibrutinib, and its active metabolite PCI45227 in rat plasma. Extraction of lenalidomide, ibrutinib, PCI45227 and tolbutamide (internal standard; IS) from 50 μl rat plasma was carried out by liquid-liquid extraction with ethyl acetate:dichloromethane (90:10) ratio. Chromatographic separation of analytes was performed on YMC pack ODS AM (150 mm × 4.6 mm, 5 μm) column under gradient conditions with acetonitrile:0.1% formic acid buffer as the mobile phases at a flow rate of 1 ml/min. Precursor ion and product ion transition for analytes and IS were monitored on a triple quadrupole mass spectrometer, operated in the selective reaction monitoring with positive ionization mode. Method was validated over a concentration range of 0.72-183.20 ng/ml for ibrutinib, 0.76-194.33 ng/ml for PCI-45227 and 1.87-479.16 ng/ml for lenalidomide. Mean extraction recovery for ibrutinib, PCI-45227, lenalidomide and IS of 75.2%, 84.5%, 97.3% and 92.3% were consistent across low, medium, and high QC levels. Precision and accuracy at low, medium and high quality control levels were less than 15% across analytes. Bench top, wet, freeze-thaw and long term stability was evaluated for all the analytes. The analytical method was applied to support a pharmacokinetic study of simultaneous estimation of lenalidomide, ibrutinib, and its active metabolite PCI-45227 in Wistar rat. Assay reproducibility was demonstrated by re-analysis of 18 incurred samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Systematic wavelength selection for improved multivariate spectral analysis

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  17. Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.

    PubMed

    Jain, Ram B

    2016-08-01

    Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.

  18. PLS and first derivative of ratio spectra methods for determination of hydrochlorothiazide and propranolol hydrochloride in tablets.

    PubMed

    Vignaduzzo, Silvana E; Maggio, Rubén M; Castellano, Patricia M; Kaufman, Teodoro S

    2006-12-01

    Two new analytical methods have been developed as convenient and useful alternatives for simultaneous determination of hydrochlorothiazide (HCT) and propranolol hydrochloride (PRO) in pharmaceutical formulations. The methods are based on the first derivative of ratio spectra (DRS) and on partial least squares (PLS) analysis of the ultraviolet absorption spectra of the samples in the 250-350-nm region. The methods were calibrated between 8.7 and 16.0 mg L(-1) for HCT and between 14.0 and 51.5 mg L(-1) for PRO. An asymmetric full-factorial design and wavelength selection (277-294 nm for HCT and 297-319 for PRO) were used for the PLS method and signal intensities at 276 and 322 nm were used in the DRS method for HCT and PRO, respectively. Performance characteristics of the analytical methods were evaluated by use of validation samples and both methods showed to be accurate and precise, furnishing near quantitative analyte recoveries (100.4 and 99.3% for HCT and PRO by use of PLS) and relative standard deviations below 2%. For PLS the lower limits of quantification were 0.37 and 0.66 mg L(-1) for HCT and PRO, respectively, whereas for DRS they were 1.15 and 3.05 mg L(-1) for HCT and PRO, respectively. The methods were used for quantification of HCT and PRO in synthetic mixtures and in two commercial tablet preparations containing different proportions of the analytes. The results of the drug content assay and the tablet dissolution test were in statistical agreement (p < 0.05) with those furnished by the official procedures of the USP 29. Preparation of dissolution profiles of the combined tablet formulations was also performed with the aid of the proposed methods. The methods are easy to apply, use relatively simple equipment, require minimum sample pre-treatment, enable high sample throughput, and generate less solvent waste than other procedures.

  19. Water-compatible molecularly imprinted polymers for efficient direct injection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma.

    PubMed

    Cobb, Zoe; Sellergren, Börje; Andersson, Lars I

    2007-12-01

    Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.

  20. Advances in aptamer screening and small molecule aptasensors.

    PubMed

    Kim, Yeon Seok; Gu, Man Bock

    2014-01-01

    It has been 20 years since aptamer and SELEX (systematic evolution of ligands by exponential enrichment) were described independently by Andrew Ellington and Larry Gold. Based on the great advantages of aptamers, there have been numerous isolated aptamers for various targets that have actively been applied as therapeutic and analytical tools. Over 2,000 papers related to aptamers or SELEX have been published, attesting to their wide usefulness and the applicability of aptamers. SELEX methods have been modified or re-created over the years to enable aptamer isolation with higher affinity and selectivity in more labor- and time-efficient manners, including automation. Initially, most of the studies about aptamers have focused on the protein targets, which have physiological functions in the body, and their applications as therapeutic agents or receptors for diagnostics. However, aptamers for small molecules such as organic or inorganic compounds, drugs, antibiotics, or metabolites have not been studied sufficiently, despite the ever-increasing need for rapid and simple analytical methods for various chemical targets in the fields of medical diagnostics, environmental monitoring, food safety, and national defense against targets including chemical warfare. This review focuses on not only recent advances in aptamer screening methods but also its analytical application for small molecules.

  1. Metrological approach to quantitative analysis of clinical samples by LA-ICP-MS: A critical review of recent studies.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Barałkiewicz, Danuta

    2018-05-15

    Analysis of clinical specimens by imaging techniques allows to determine the content and distribution of trace elements on the surface of the examined sample. In order to obtain reliable results, the developed procedure should be based not only on the properly prepared sample and performed calibration. It is also necessary to carry out all phases of the procedure in accordance with the principles of chemical metrology whose main pillars are the use of validated analytical methods, establishing the traceability of the measurement results and the estimation of the uncertainty. This review paper discusses aspects related to sampling, preparation and analysis of clinical samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with emphasis on metrological aspects, i.e. selected validation parameters of the analytical method, the traceability of the measurement result and the uncertainty of the result. This work promotes the introduction of metrology principles for chemical measurement with emphasis to the LA-ICP-MS which is the comparative method that requires studious approach to the development of the analytical procedure in order to acquire reliable quantitative results. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Application of factorial designs to study factors involved in the determination of aldehydes present in beer by on-fiber derivatization in combination with gas chromatography and mass spectrometry.

    PubMed

    Carrillo, Génesis; Bravo, Adriana; Zufall, Carsten

    2011-05-11

    With the aim of studying the factors involved in on-fiber derivatization of Strecker aldehydes, furfural, and (E)-2-nonenal with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine in beer, factorial designs were applied. The effect of the temperature, time, and NaCl addition on the analytes' derivatization/extraction efficiency was studied through a factorial 2(3) randomized-block design; all of the factors and their interactions were significant at the 95% confidence level for most of the analytes. The effect of temperature and its interactions separated the analytes in two groups. However, a single sampling condition was selected that optimized response for most aldehydes. The resulting method, combining on-fiber derivatization with gas chromatography-mass spectrometry, was validated. Limits of detections were between 0.015 and 1.60 μg/L, and relative standard deviations were between 1.1 and 12.2%. The efficacy of the internal standardization method was confirmed by recovery percentage (73-117%). The method was applied to the determination of aldehydes in fresh beer and after storage at 28 °C.

  3. A three-step approach for the derivation and validation of high-performing predictive models using an operational dataset: congestive heart failure readmission case study.

    PubMed

    AbdelRahman, Samir E; Zhang, Mingyuan; Bray, Bruce E; Kawamoto, Kensaku

    2014-05-27

    The aim of this study was to propose an analytical approach to develop high-performing predictive models for congestive heart failure (CHF) readmission using an operational dataset with incomplete records and changing data over time. Our analytical approach involves three steps: pre-processing, systematic model development, and risk factor analysis. For pre-processing, variables that were absent in >50% of records were removed. Moreover, the dataset was divided into a validation dataset and derivation datasets which were separated into three temporal subsets based on changes to the data over time. For systematic model development, using the different temporal datasets and the remaining explanatory variables, the models were developed by combining the use of various (i) statistical analyses to explore the relationships between the validation and the derivation datasets; (ii) adjustment methods for handling missing values; (iii) classifiers; (iv) feature selection methods; and (iv) discretization methods. We then selected the best derivation dataset and the models with the highest predictive performance. For risk factor analysis, factors in the highest-performing predictive models were analyzed and ranked using (i) statistical analyses of the best derivation dataset, (ii) feature rankers, and (iii) a newly developed algorithm to categorize risk factors as being strong, regular, or weak. The analysis dataset consisted of 2,787 CHF hospitalizations at University of Utah Health Care from January 2003 to June 2013. In this study, we used the complete-case analysis and mean-based imputation adjustment methods; the wrapper subset feature selection method; and four ranking strategies based on information gain, gain ratio, symmetrical uncertainty, and wrapper subset feature evaluators. The best-performing models resulted from the use of a complete-case analysis derivation dataset combined with the Class-Attribute Contingency Coefficient discretization method and a voting classifier which averaged the results of multi-nominal logistic regression and voting feature intervals classifiers. Of 42 final model risk factors, discharge disposition, discretized age, and indicators of anemia were the most significant. This model achieved a c-statistic of 86.8%. The proposed three-step analytical approach enhanced predictive model performance for CHF readmissions. It could potentially be leveraged to improve predictive model performance in other areas of clinical medicine.

  4. Multi-analyte profiling of inflammatory mediators in COPD sputum--the effects of processing.

    PubMed

    Pedersen, Frauke; Holz, Olaf; Lauer, Gereon; Quintini, Gianluca; Kiwull-Schöne, Heidrun; Kirsten, Anne-Marie; Magnussen, Helgo; Rabe, Klaus F; Goldmann, Torsten; Watz, Henrik

    2015-02-01

    Prior to using a new multi-analyte platform for the detection of markers in sputum it is advisable to assess whether sputum processing, especially mucus homogenization by dithiothreitol (DTT), affects the analysis. In this study we tested a novel Human Inflammation Multi Analyte Profiling® Kit (v1.0 Luminex platform; xMAP®). Induced sputum samples of 20 patients with stable COPD (mean FEV1, 59.2% pred.) were processed in parallel using standard processing (with DTT) and a more time consuming sputum dispersion method with phosphate buffered saline (PBS) only. A panel of 47 markers was analyzed in these sputum supernatants by the xMAP®. Twenty-five of 47 analytes have been detected in COPD sputum. Interestingly, 7 markers have been detected in sputum processed with DTT only, or significantly higher levels were observed following DTT treatment (VDBP, α-2-Macroglobulin, haptoglobin, α-1-antitrypsin, VCAM-1, and fibrinogen). However, standard DTT-processing resulted in lower detectable concentrations of ferritin, TIMP-1, MCP-1, MIP-1β, ICAM-1, and complement C3. The correlation between processing methods for the different markers indicates that DTT processing does not introduce a bias by affecting individual sputum samples differently. In conclusion, our data demonstrates that the Luminex-based xMAP® panel can be used for multi-analyte profiling of COPD sputum using the routinely applied method of sputum processing with DTT. However, researchers need to be aware that the absolute concentration of selected inflammatory markers can be affected by DTT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis.

    PubMed

    Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-06-01

    Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  7. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  8. CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila

    2015-03-10

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observedmore » galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.« less

  9. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    NASA Astrophysics Data System (ADS)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  10. HPLC-ESI-MS/MS validated method for simultaneous quantification of zopiclone and its metabolites, N-desmethyl zopiclone and zopiclone-N-oxide in human plasma.

    PubMed

    Mistri, Hiren N; Jangid, Arvind G; Pudage, Ashutosh; Shrivastav, Pranav

    2008-03-15

    A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.

  11. Where Have All the Indians Gone? American Indian Representation in Secondary History Textbooks

    ERIC Educational Resources Information Center

    Shadowwalker, Depree M.

    2012-01-01

    This dissertation used a mixed method to develop an analytical model from a random selection of one of eight secondary history textbooks for instances of Indians to determine if the textual content: (1) constructs negative or inaccurate knowledge through word choice or narratives; (2) reinforces stereotype portraits; (3) omits similar minority…

  12. Attention-Deficit, Fear and Aggression in Iranian Preschool Students with Regard to Gender Differences

    ERIC Educational Resources Information Center

    Sheikhzade, Mostafa; Assemi, Arezoo

    2013-01-01

    The cause of most adult psychopathologies or behavioural disorders can be traced back to childhood. In this study, we examine the attention-deficit, fear and aggression in Iran's preschool students in Oshnaviye city. In this analytical-descriptive study, 50 students were selected through stratified sampling method from 249 students. Data were…

  13. An Analytical Chemistry Experiment in Simultaneous Spectrophotometric Determination of Fe(III) and Cu(II) with Hexacyanoruthenate(II) Reagent.

    ERIC Educational Resources Information Center

    Mehra, M. C.; Rioux, J.

    1982-01-01

    Experimental procedures, typical observations, and results for the simultaneous analysis of Fe(III) and Cu(II) in a solution are discussed. The method is based on selective interaction between the two ions and potassium hexacyanoruthenate(II) in acid solution involving no preliminary sample preparations. (Author/JN)

  14. Determining the Number of Component Clusters in the Standard Multivariate Normal Mixture Model Using Model-Selection Criteria.

    DTIC Science & Technology

    1983-06-16

    has been advocated by Gnanadesikan and 𔃾ilk (1969), and others in the literature. This suggests that, if we use the formal signficance test type...American Statistical Asso., 62, 1159-1178. Gnanadesikan , R., and Wilk, M..B. (1969). Data Analytic Methods in Multi- variate Statistical Analysis. In

  15. Students' Commitment, Engagement and Locus of Control as Predictor of Academic Achievement at Higher Education Level

    ERIC Educational Resources Information Center

    Sarwar, Muhammad; Ashrafi, Ghulam Muhammad

    2014-01-01

    The purpose of this study was to analyze Students' Commitment, Engagement and Locus of Control as predictors of Academic Achievement at Higher Education Level. We used analytical model and conclusive research approach to conduct study and survey method for data collection. We selected 369 students using multistage sampling technique from three…

  16. A review on development of solid phase microextraction fibers by sol-gel methods and their applications.

    PubMed

    Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev

    2008-03-03

    Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.

  17. Determination of a highly selective mixed-affinity sigma receptor ligand, in rat plasma by ultra performance liquid chromatography mass spectrometry and its application to a pharmacokinetic study

    PubMed Central

    Jamalapuram, Seshulatha; Vuppala, Pradeep K.; Mesangeau, Christophe; McCurdy, Christopher R.; Avery, Bonnie A.

    2014-01-01

    A selective, rapid and sensitive ultra performance liquid chromatography mass spectrometry (UPLC/MS) method was developed and validated to quantitate a highly selective mixed-affinity sigma receptor ligand, CM156 (3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d] thiazole-2(3H)-thione), in rat plasma. CM156 and the internal standard (aripiprazole) were extracted from plasma samples by a single step liquid–liquid extraction using chloroform. The analysis was carried out on an ACQUITY UPLCTM BEH HILIC column (1.7 µm, 2.1 mm × 50 mm) with isocratic elution at flow rate of 0.2 mL/min using 10 mM ammonium formate in 0.1% formic acid and acetonitrile (10:90) as the mobile phase. The detection of the analyte was performed on a mass spectrometer operated in selected ion recording (SIR) mode with positive electrospray ionization (ESI). The validated analytical method resulted in a run time of 4 min and the retention times observed were 2.6 ± 0.1 and 2.1 ± 0.1 min for CM156 and the IS, respectively. The calibration curve exhibited excellent linearity over a concentration range of 5–4000 ng/mL with the lower limit of quantification of 5 ng/mL. The intra- and inter-day precision values were below 15% and accuracy ranged from −6.5% to 5.0%. The mean recovery of CM156 from plasma was 96.8%. The validated method was applied to a pilot intravenous pharmacokinetic study in rats. PMID:22406103

  18. The induction of mycotoxins by trichothecene producing Fusarium species.

    PubMed

    Lowe, Rohan; Jubault, Mélanie; Canning, Gail; Urban, Martin; Hammond-Kosack, Kim E

    2012-01-01

    In recent years, many Fusarium species have emerged which now threaten the productivity and safety of small grain cereal crops worldwide. During floral infection and post-harvest on stored grains the Fusarium hyphae produce various types of harmful mycotoxins which subsequently contaminate food and feed products. This article focuses specifically on the induction and production of the type B sesquiterpenoid trichothecene mycotoxins. Methods are described which permit in liquid culture the small or large scale production and detection of deoxynivalenol (DON) and its various acetylated derivatives. A wheat (Triticum aestivum L.) ear inoculation assay is also explained which allows the direct comparison of mycotoxin production by species, chemotypes and strains with different growth rates and/or disease-causing abilities. Each of these methods is robust and can be used for either detailed time-course studies or end-point analyses. Various analytical methods are available to quantify the levels of DON, 3A-DON and 15A-DON. Some criteria to be considered when making selections between the different analytical methods available are briefly discussed.

  19. Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker.

    PubMed

    Wang, Li-Li; Zhang, Yun-Bin; Sun, Xiao-Ya; Chen, Sui-Qing

    2016-05-08

    Establish a quantitative analysis of multi-components by the single marker (QAMS) method for quality evaluation and validate its feasibilities by the simultaneous quantitative assay of four main components in Linderae Reflexae Radix. Four main components of pinostrobin, pinosylvin, pinocembrin, and 3,5-dihydroxy-2-(1- p -mentheneyl)- trans -stilbene were selected as analytes to evaluate the quality by RP-HPLC coupled with a UV-detector. The method was evaluated by a comparison of the quantitative results between the external standard method and QAMS with a different HPLC system. The results showed that no significant differences were found in the quantitative results of the four contents of Linderae Reflexae Radix determined by the external standard method and QAMS (RSD <3%). The contents of four analytes (pinosylvin, pinocembrin, pinostrobin, and Reflexanbene I) in Linderae Reflexae Radix were determined by the single marker of pinosylvin. This fingerprint was the spectra determined by Shimadzu LC-20AT and Waters e2695 HPLC that were equipped with three different columns.

  20. Autism and urinary exogenous neuropeptides: development of an on-line SPE-HPLC-tandem mass spectrometry method to test the opioid excess theory.

    PubMed

    Dettmer, K; Hanna, D; Whetstone, P; Hansen, R; Hammock, B D

    2007-08-01

    Autism is a complex neurodevelopmental disorder with unknown etiology. One hypothesis regarding etiology in autism is the "opioid peptide excess" theory that postulates that excessive amounts of exogenous opioid-like peptides derived from dietary proteins are detectable in urine and that these compounds may be pathophysiologically important in autism. A selective LC-MS/MS method was developed to analyze gliadinomorphin, beta-casomorphin, deltorphin 1, and deltorphin 2 in urine. The method is based on on-line SPE extraction of the neuropeptides from urine, column switching, and subsequent HPLC analysis. A limit of detection of 0.25 ng/mL was achieved for all analytes. Analyte recovery rates from urine ranged between 78% and 94%, with relative standard deviations of 0.2-6.8%. The method was used to screen 69 urine samples from children with and without autism spectrum disorders for the occurrence of neuropeptides. The target neuropeptides were not detected above the detection limit in either sample set.

Top