Science.gov

Sample records for selective brain cooling

  1. Selective brain cooling in mammals and birds.

    PubMed

    Jessen, C

    2001-06-01

    Artiodactyls and felids have a carotid rete that can cool the blood destined for the brain and consequently the brain itself if the cavernous sinus receives cool blood returning from the nose. This condition is usually fulfilled in resting and moderately hyperthermic animals. During severe exercise hyperthermia, however, the venous return from the nose bypasses the cavernous sinus so that brain cooling is suppressed. This is irreconcilable with the assumption that the purpose of selective brain cooling (SBC) is to protect the brain from thermal damage. Alternatively, SBC is seen as a mechanism engaging the thermoregulatory system in a water-saving economy mode in which evaporative heat loss is inhibited by the effects of SBC on brain temperature sensors. In nonhuman mammals that do not have a carotid rete, no evidence exists of whole-brain cooling. However, the surface of the cavernous sinus is in close contact with the base of the brain and is the likely source of unregulated regional cooling of the rostral brain stem in some species. In humans, the cortical regions next to the inner surface of the cranium are very likely to receive some regional cooling via the scalp-sinus pathway, and the rostral base of the brain can be cooled by conduction to the nearby respiratory tract; mechanisms capable of cooling the brain as a whole have not been found. Studies using conventional laboratory techniques suggest that SBC exists in birds and is determined by the physical conditions of heat transfer from the head to the environment instead of physiological control mechanisms. Thus except for species possessing a carotid rete, neither a coherent pattern of SBC nor a unifying concept of its biological significance in mammals and birds has evolved.

  2. Selective Brain Cooling Reduces Water Turnover in Dehydrated Sheep

    PubMed Central

    Strauss, W. Maartin; Hetem, Robyn S.; Mitchell, Duncan; Maloney, Shane K.; Meyer, Leith C. R.; Fuller, Andrea

    2015-01-01

    In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls. PMID:25675092

  3. Selective brain cooling reduces water turnover in dehydrated sheep.

    PubMed

    Strauss, W Maartin; Hetem, Robyn S; Mitchell, Duncan; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2015-01-01

    In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40 ◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50 kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls.

  4. Selective Brain Cooling after Traumatic Brain Injury: Effects of Three Different Cooling Methods-Case Report.

    PubMed

    Westermaier, Thomas; Nickl, Robert; Koehler, Stefan; Fricke, Patrick; Stetter, Christian; Rueckriegel, Stefan Mark; Ernestus, Ralf-Ingo

    2017-07-01

    Background In experimental models of neuronal damage, therapeutic hypothermia proved to be a powerful neuroprotective method. In clinical studies of traumatic brain injury (TBI), this very distinct effect was not reproducible. Several meta-analyses draw different conclusions about whether therapeutic hypothermia can improve outcome after TBI. Adverse side effects of systemic hypothermia, such as severe pneumonia, have been held responsible by some authors to counteract the neuroprotective effect. Selective brain cooling (SBC) attempts to take advantage of the protective effects of therapeutic hypothermia without the adverse side effects of systemic hypothermia. Methods Three different methods of SBC were applied in a patient who had severe TBI with recurrent increases of intracranial pressure (ICP) refractory to conventional forms of treatment: (1) external cooling of the scalp and neck using ice packs prior to hemicraniectomy, (2) external cooling of the craniectomy defect using ice packs after hemicraniectomy, and (3) cooling by epidural irrigation with cold Ringer solution after hemicraniectomy. Results External scalp cooling before hemicraniectomy, external cooling of the craniectomy defect, and epidural irrigation with cold fluid resulted in temperature differences (brain temperature to body temperature) of - 0.2°, - 0.7°, and - 3.6°C, respectively. ICP declined with decreasing brain temperature. Conclusion Previous external cooling attempts for SBC faced the problem that brain temperature could not be lowered without a simultaneous decrease of systemic temperature. After hemicraniectomy, epidural irrigation with cold fluid may be a simple and effective way to lower ICP and apply one of the most powerful methods of cerebroprotection after severe TBI. Georg Thieme Verlag KG Stuttgart · New York.

  5. Selective brain cooling and its vascular basis in diving seals.

    PubMed

    Blix, Arnoldus Schytte; Walløe, Lars; Messelt, Edward B; Folkow, Lars P

    2010-08-01

    Brain (T(brain)), intra-aorta (T(aorta)), latissimus dorsi muscle (T(m)) and rectal temperature (T(r)) were measured in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals during experimental dives in 4 degrees C water. The median brain cooling was about 1 degrees C during 15 min diving, but in some cases it was as much as 2.5 degrees C. Cooling rates were slow for the first couple of minutes, but increased significantly after about 5 min of diving. The onset of cooling sometimes occurred before the start of the dive, confirming that the cooling is under cortical control, like the rest of the diving responses. T(aorta) also fell significantly, and was always lower than T(brain), while T(m) was fairly stable during dives. Detailed studies of the vascular anatomy of front flippers revealed that brachial arterial blood can be routed either through flipper skin capillaries for nutritive purposes and return through sophisticated vascular heat exchangers to avoid heat loss to the environment, or, alternatively, through numerous arterio-venous shunts in the skin and return by way of large superficial veins, which then carry cold blood to the heart. In the latter situation the extent to which the brain is cooled is determined by the ratio of carotid to brachial arterial blood flow, and water temperature, and the cooling is selective in that only those organs that are circulated will be cooled. It is concluded that T(brain) is actively down-regulated during diving, sometimes by as much as 2.5 degrees C, whereby cerebral oxygen requirements may be reduced by as much as 25% during extended dives.

  6. Three African antelope species with varying water dependencies exhibit similar selective brain cooling.

    PubMed

    Strauss, W Maartin; Hetem, Robyn S; Mitchell, Duncan; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2016-05-01

    The use of selective brain cooling, where warm arterial blood destined for the brain is cooled in the carotid rete via counter-current heat exchange when in close proximity to cooler venous blood, contributes to the conservation of body water. We simultaneously measured carotid blood and hypothalamic temperature in four gemsbok, five red hartebeest and six blue wildebeest to assess the extent to which these free-living animals, with varying water dependency, routinely rely on selective brain cooling. We investigated the hypothesis that innate differences in selective brain cooling exist in large, sympatric artiodactyls with varying water dependency. All three species used selective brain cooling, without any discernible differences in three selective brain cooling indices. GLMMs revealed no species differences in the threshold temperature for selective brain cooling (z = 0.79, P = 0.43), the magnitude (z = -0.51, P = 0.61), or the frequency of selective brain cooling use (z = -0.47, P = 0.64), after controlling for carotid blood temperature and black globe temperature. Comparison of anatomical attributes of the carotid retes of the three species revealed that the volume (F 2,9 = 5.54, P = 0.03) and height (F 2,9 = 5.43, P = 0.03) of the carotid rete, per kilogram body mass, were greater in the red hartebeest than in the blue wildebeest. Nevertheless, intraspecific variability in the magnitude, the frequency of use, and the threshold temperature for selective brain cooling exceeded any interspecific variability in the three indices of selective brain cooling. We conclude that the three species have similar underlying ability to make use of selective brain cooling in an environment with freely available water. It remains to be seen to what extent these three species would rely on selective brain cooling, as a water conservation mechanism, when challenged by aridity, a condition likely to become prevalent throughout much of southern Africa under future climate change

  7. Selective brain cooling in Arabian oryx (Oryx leucoryx): a physiological mechanism for coping with aridity?

    PubMed

    Hetem, Robyn S; Strauss, W Maartin; Fick, Linda G; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea; Shobrak, Mohammed; Mitchell, Duncan

    2012-11-15

    Selective brain cooling is a thermoregulatory effector proposed to conserve body water and, as such, may help artiodactyls cope with aridity. We measured brain and carotid blood temperature, using implanted data loggers, in five Arabian oryx (Oryx leucoryx) in the desert of Saudi Arabia. On average, brain temperature was 0.24±0.05°C lower than carotid blood temperature for four oryx in April. Selective brain cooling was enhanced in our Arabian oryx compared with another species from the same genus (gemsbok Oryx gazella gazella) exposed to similar ambient temperatures but less aridity. Arabian oryx displayed a lower threshold (37.8±0.1°C vs 39.8±0.4°C), a higher frequency (87±6% vs 15±15%) and a higher maximum magnitude (1.2±0.2°C vs 0.5±0.3°C) of selective brain cooling than did gemsbok. The dominant male oryx displayed less selective brain cooling than did any of the other oryx, but selective brain cooling was enhanced in this oryx as conditions became hotter and drier. Enhanced selective brain cooling in Arabian oryx supports the hypothesis that selective brain cooling would bestow survival advantages for artiodactyl species inhabiting hot hyper-arid environments.

  8. Neuroprotection of Selective Brain Cooling After Penetrating Ballistic-like Brain Injury in Rats.

    PubMed

    Wei, Guo; Lu, Xi-Chun M; Shear, Deborah A; Yang, Xiaofang; Tortella, Frank C

    2011-01-01

    Induced hypothermia has been reported to provide neuroprotection against traumatic brain injury. We recently developed a novel method of selective brain cooling (SBC) and demonstrated its safety and neuroprotection efficacy in a rat model of ischemic brain injury. The primary focus of the current study was to evaluate the potential neuroprotective efficacy of SBC in a rat model of penetrating ballistic-like brain injury (PBBI) with a particular focus on the acute cerebral pathophysiology, neurofunction, and cognition. SBC (34°C) was induced immediately after PBBI, and maintained for 2 hours, followed by a spontaneous re-warming. Intracranial pressure (ICP) and regional cerebral blood flow were monitored continuously for 3 hours, and the ICP was measured again at 24 hours postinjury. Brain swelling, blood-brain barrier permeability, intracerebral hemorrhage, lesion size, and neurological status were assessed at 24 hours postinjury. Cognitive abilities were evaluated in a Morris water maze task at 12-16 days postinjury. Results showed that SBC significantly attenuated PBBI-induced elevation of ICP (PBBI = 33.2 ± 10.4; PBBI + SBC = 18.8 ± 6.7 mmHg) and reduced brain swelling, blood-brain barrier leakage, intracerebral hemorrhage, and lesion volume by 40%-45% for each matrix, and significantly improved neurologic function. However, these acute neuroprotective benefits of SBC did not translate into improved cognitive performance in the Morris water maze task. These results indicate that 34°C SBC is effective in protecting against acute brain damage and related neurological dysfunction. Further studies are required to establish the optimal treatment conditions (i.e., duration of cooling and/or combined therapeutic approaches) needed to achieve significant neurocognitive benefits.

  9. Dehydration increases the magnitude of selective brain cooling independently of core temperature in sheep.

    PubMed

    Fuller, Andrea; Meyer, Leith C R; Mitchell, Duncan; Maloney, Shane K

    2007-07-01

    By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.

  10. Distribution and severity of hypoxic-ischaemic lesions on brain MRI following therapeutic cooling: selective head versus whole body cooling.

    PubMed

    Sarkar, Subrata; Donn, Steven M; Bapuraj, Jayapalli R; Bhagat, Indira; Barks, John D

    2012-09-01

    Whole body cooling (WBC) cools different parts of the brain uniformly, and selective head cooling (SHC) cools the superficial brain more than the deeper brain structures. In this study, the authors hypothesised that the hypoxic-ischaemic lesions on brain MRI following cooling would differ between modalities of cooling. To compare the frequency, distribution and severity of hypoxic-ischaemic lesions on brain MRI between SHC or WBC. In a single centre retrospective study, 83 infants consecutively cooled using either SHC (n=34) or WBC (n=49) underwent brain MRI. MRI images were evaluated by a neuroradiologist, who was masked to clinical parameters and outcomes, using a basal ganglia/watershed (BG/W) scoring system. Higher scores (on a scale of 0 to 4) were given for more extensive injury. The score has been reported to be predictive of neuromotor and cognitive outcome at 12 months. The two groups were similar for severity of depression as assessed by a history of an intrapartum sentinel event, Apgar scores, initial blood pH and base deficit and early neurological examination. However, abnormal MRI was more frequent in the SHC group (SHC 25 of 34, 74% vs WBC 22 of 49, 45%; p=0.0132, OR 3.4, 95% CI 1.3 to 8.8). Infants from the SHC group also had more severe hypoxic-ischaemic lesions (median BG/W score: SHC 2 vs WBC 0, p=0.0014). Hypoxic-ischaemic lesions on brain MRI following therapeutic cooling were more frequent and more severe with SHC compared with WBC.

  11. A New Method of Selective, Rapid Cooling of the Brain: An Experimental Study

    SciTech Connect

    Allers, Mats; Boris-Moeller, Fredrik; Lunderquist, Anders; Wieloch, Tadeusz

    2006-04-15

    Purpose. To determine whether retrograde perfusion of cooled blood into one internal jugular vein (IJV) in the pig can selectively reduce the brain temperature without affecting the core body temperature (CBT). Methods. In 7 domestic pigs, the left IJV was catheterized on one side and a catheter placed with the tip immediately below the rete mirabile. Thermistors were placed in both brain hemispheres and the brain temperature continuously registered. Thermistors placed in the rectum registered the CBT. From a catheter in the right femoral vein blood was aspirated with the aid of a roller pump, passed through a cooling device, and infused into the catheter in the left IJV at an initial rate of 200 ml/min. Results. Immediately after the start of the infusion of cooled blood (13.8 deg. C) into the IJV, the right brain temperature started to drop from its initial 37.9 deg. C and reached 32 deg. C within 5 min. By increasing the temperature of the perfusate a further drop in the brain temperature was avoided and the brain temperature could be kept around 32 deg. C during the experiment. In 4 of the animals a heating blanket was sufficient to compensate for the slight drop in CBT during the cooling period. Conclusions. We conclude that brain temperature can be reduced in the pig by retrograde perfusion of the internal jugular vein with cooled blood and that the core body temperature can be maintained with the aid of a heating blanket.

  12. The critical limiting temperature and selective brain cooling: neuroprotection during exercise?

    PubMed

    Marino, Frank E

    2011-01-01

    There is wide consensus that long duration exercise in the heat is impaired compared with cooler conditions. A common observation when examining exercise tolerance in the heat in laboratory studies is the critical limiting core temperature (CLT) and the apparent attenuation in central nervous system (CNS) drive leading to premature fatigue. Selective brain cooling (SBC) purportedly confers neuroprotection during exercise heat stress by attenuating the increase in brain temperature. As the CLT is dependent on heating to invoke a reduction in efferent drive, it is thus not compatible with SBC which supposedly attenuates the rise in brain temperature. Therefore, the CLT and SBC hypotheses cannot be complimentary if the goal is to confer neuroprotection from thermal insult as it is counter-intuitive to selectively cool the brain if the purpose of rising brain temperature is to down-regulate skeletal muscle recruitment. This presents a circular model for which there is no apparent end to the ultimate physiological outcome; a 'hot brain' selectively cooled in order to reduce the CNS drive to skeletal muscle. This review will examine the postulates of the CLT and SBC with their relationship to the avoidance of a 'hot brain' which together argue for a theoretical position against neuroprotection as the key physiological strategy in exercise-induced hyperthermia.

  13. Tympanic temperature is not suited to indicate selective brain cooling in humans: a re-evaluation of the thermophysiological basics.

    PubMed

    Simon, Eckhart

    2007-09-01

    Selective brain cooling in humans, with venous blood returning from the head surface as the relevant heat sink, was proposed more than two decades ago as a mechanism protecting the brain against damage in hyperthermic conditions. Brain cooling was inferred from decreases of tympanic temperature under the premise that it reflected brain temperature closely, even in conditions of external head cooling. In mammals with a well-developed carotid rete selective brain cooling and its quantitative relevance are experimentally well established by directly monitoring brain temperature. For humans, however, the dispute about the existence and physiological relevance of selective brain cooling has remained unsettled, especially, as far as arguments have been exchanged on the basis of thermophysiological data and model calculations considering brain metabolism, brain hemodynamics and the anatomical preconditions for arterio-venous heat exchange. In this essay two seminal studies in support of the existence of human selective brain cooling in the condition of exercise hyperthermia, with and without dehydration, are re-examined from two points of view: first the stringency of the working hypotheses underlying data evaluation and their subsequent fate. Second the minimum theoretical requirements for data interpretation. The working hypotheses supporting data interpretation in favor of selective brain cooling in humans were heuristic and/or had become questionable at the dates of their application; today, they may be considered as outdated. Data interpretation becomes most conclusive, if tympanic temperature simply is not taken into account.

  14. A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain.

    PubMed

    Konstas, Angelos-Aristeidis; Neimark, Matthew A; Laine, Andrew F; Pile-Spellman, John

    2007-04-01

    A three-dimensional mathematical model was developed to examine the transient and steady-state temperature distribution in the human brain during selective brain cooling (SBC) by unilateral intracarotid freezing-cold saline infusion. To determine the combined effect of hemodilution and hypothermia from the cold saline infusion, data from studies investigating the effect of these two parameters on cerebral blood flow (CBF) were pooled, and an analytic expression describing the combined effect of the two factors was derived. The Pennes bioheat equation used the thermal properties of the different cranial layers and the effect of cold saline infusion on CBF to propagate the evolution of brain temperature. A healthy brain and a brain with stroke (ischemic core and penumbra) were modeled. CBF and metabolic rate data were reduced to simulate the core and penumbra. Simulations using different saline flow rates were performed. The results suggested that a flow rate of 30 ml/min is sufficient to induce moderate hypothermia within 10 min in the ipsilateral hemisphere. The brain with stroke cooled to lower temperatures than the healthy brain, mainly because the stroke limited the total intracarotid blood flow. Gray matter cooled twice as fast as white matter. The continuously falling hematocrit was the main time-limiting factor, restricting the SBC to a maximum of 3 h. The study demonstrated that SBC by intracarotid saline infusion is feasible in humans and may be the fastest method of hypothermia induction.

  15. Brain thermal inertia, but no evidence for selective brain cooling, in free-ranging western grey kangaroos (Macropus fuliginosus).

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2009-04-01

    Marsupials reportedly can implement selective brain cooling despite lacking a carotid rete. We measured brain (hypothalamic) and carotid arterial blood temperatures every 5 min for 5, 17, and 63 days in spring in three free-living western grey kangaroos. Body temperature was highest during the night, and decreased rapidly early in the morning, reaching a nadir at 10:00. The highest body temperatures recorded occurred sporadically in the afternoon, presumably associated with exercise. Hypothalamic temperature consistently exceeded arterial blood temperature, by an average 0.3 degrees C, except during these afternoon events when hypothalamic temperature lagged behind, and was occasionally lower than, the simultaneous arterial blood temperature. The reversal in temperatures resulted from the thermal inertia of the brain; changes in the brain to arterial blood temperature difference were related to the rate of change of arterial blood temperature on both heating and cooling (P < 0.001 for all three kangaroos). We conclude that these data are not evidence for active selective brain cooling in kangaroos. The effect of thermal inertia on brain temperature is larger than might be expected in the grey kangaroo, a discrepancy that we speculate derives from the unique vascular anatomy of the marsupial brain.

  16. In cold blood: intraarteral cold infusions for selective brain cooling in stroke.

    PubMed

    Esposito, Elga; Ebner, Matthias; Ziemann, Ulf; Poli, Sven

    2014-05-01

    Hypothermia is a promising therapeutic option for stroke patients and an established neuroprotective treatment for global cerebral ischemia after cardiac arrest. While whole body cooling is a feasible approach in intubated and sedated patients, its application in awake stroke patients is limited by severe side effects: Strong shivering rewarms the body and potentially worsens ischemic conditions because of increased O2 consumption. Drugs used for shivering control frequently cause sedation that increases the risk of aspiration and pneumonia. Selective brain cooling by intraarterial cold infusions (IACIs) has been proposed as an alternative strategy for patients suffering from acute ischemic stroke. Preclinical studies and early clinical experience indicate that IACI induce a highly selective brain temperature decrease within minutes and reach targeted hypothermia 10 to 30 times faster than conventional cooling methods. At the same time, body core temperature remains largely unaffected, thus systemic side effects are potentially diminished. This review critically discusses the limitations and side effects of current cooling techniques for neuroprotection from ischemic brain damage and summarizes the available evidence regarding advantages and potential risks of IACI.

  17. In cold blood: intraarteral cold infusions for selective brain cooling in stroke

    PubMed Central

    Esposito, Elga; Ebner, Matthias; Ziemann, Ulf; Poli, Sven

    2014-01-01

    Hypothermia is a promising therapeutic option for stroke patients and an established neuroprotective treatment for global cerebral ischemia after cardiac arrest. While whole body cooling is a feasible approach in intubated and sedated patients, its application in awake stroke patients is limited by severe side effects: Strong shivering rewarms the body and potentially worsens ischemic conditions because of increased O2 consumption. Drugs used for shivering control frequently cause sedation that increases the risk of aspiration and pneumonia. Selective brain cooling by intraarterial cold infusions (IACIs) has been proposed as an alternative strategy for patients suffering from acute ischemic stroke. Preclinical studies and early clinical experience indicate that IACI induce a highly selective brain temperature decrease within minutes and reach targeted hypothermia 10 to 30 times faster than conventional cooling methods. At the same time, body core temperature remains largely unaffected, thus systemic side effects are potentially diminished. This review critically discusses the limitations and side effects of current cooling techniques for neuroprotection from ischemic brain damage and summarizes the available evidence regarding advantages and potential risks of IACI. PMID:24517972

  18. Brain cooling therapy.

    PubMed

    Gancia, P; Pomero, G

    2010-06-01

    Therapeutic hypothermia (whole body or selective head cooling) is becoming standard of care for brain injury in infants with perinatal hypoxic ischemic encephalopathy (HIE). Brain cooling reduces the rate of apoptosis and early necrosis, reduces cerebral metabolic rate and the release of nitric oxide and free radicals. Animal models of perinatal brain injury show histological and functional improvement due to of early hypothermia. The brain protection depends on the temperature and time delay between insult and beginning of treatment (more effective with cooling to 33 +/- 0.5 degrees C, and less than 6 hours after hypoxic-ischemic insult). Recent meta-analyses and systematic reviews in human neonates show reduction in mortality and long-term neurodevelopmental disability at 12-24 months of age, with more favourable effects in the less severe forms of HIE. The authors describe their experience in 53 term newborns with moderate-severe HIE treated with whole body cooling between 2001 and 2009, and studied with magnetic resonance imaging (MRI) and general movements (GMs) assessment. The creation of a network connecting the Neonatal Intensive Care Unit with the level I-II hospitals of the reference area, as part of regional network, is of paramount importance to enroll potential candidates and to start therapeutic hypothermia within optimal time window.

  19. Human paranasal sinuses and selective brain cooling: a ventilation system activated by yawning?

    PubMed

    Gallup, Andrew C; Hack, Gary D

    2011-12-01

    The function of the paranasal sinuses has been a controversial subject since the time of Galen, with many different theories advanced about their biological significance. For one, the paranasal sinuses have been regarded as warmers of respiratory air, when in actuality these structures appear to function in cooling the blood. In fact, human paranasal sinuses have been shown to have higher volumes in individuals living in warmer climates, and thus may be considered radiators of the brain. The literature suggests that the transfer of cool venous blood from the paranasal sinuses to the dura mater may provide a mechanism for the convection process of cooling produced by the evaporation of mucus within human sinuses. In turn, the dura mater may transmit these temperature changes, initiated by the cool venous blood from the heat-dissipating surfaces of the sinuses, to the cerebrospinal fluid compartments. Furthermore, it has recently been demonstrated in cadaveric dissections that the thin bony posterior wall of the maxillary sinus serves as an origin for both medial and lateral pterygoid muscle segments, an anatomic finding that had been previously underappreciated in the literature. The present authors hypothesize that the thin posterior wall of the maxillary sinus may flex during yawning, operating like a bellows pump, actively ventilating the sinus system, and thus facilitating brain cooling. Such a powered ventilation system has not previously been described in humans, although an analogous system has been reported in birds.

  20. Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions.

    PubMed

    Irmak, M K; Korkmaz, A; Erogul, O

    2004-01-01

    Selective brain cooling (SBC) can occur in hyperthermic humans despite the fact that humans have no carotid rete, a vascular structure that facilitates countercurrent heat exchange located at the base of the skull in some mammals. Emissary and angular veins, upper respiratory tract, tympanic cavity and cerebrospinal fluid are major components of SBC system in humans. The efficiency of SBC is increased by evaporation of sweat on the head and by ventilation through the nose, but it is surprising to find out that mammals do not display SBC during exercise hyperthermia. What is the explanation then for the SBC at high body temperatures? Our hypothesis is that selective brain cooling protects the brain from thermal damage in a long-standing manner by allowing adaptive mechanisms to change the craniofacial morphology appropriate for different environmental conditions. Since the brain can only be as big that can cool, it is not surprising to find a lower (below 1300 cm(3)) cranial volume in Australian Aborigines with respect to the one (over 1450 cm(3)) in Eskimos. In addition to lower brain volume, other craniofacial features such as thick everted lips, broader nasal cavity and bigger paranasal sinuses that provide more evaporating surfaces seem to be anatomical variations developed in time for an effective SBC in hot climates. It was reported previously that these biological adaptations result from the tissues of neural crest origin. Among the crest derivatives, leptomeninges (pia and arachnoid mater), skeletal and connective tissues of the face and much of the skull seem to be structures upon which environment operates to produce more convenient craniofacial morphology for an effective SBC. In conclusion, selective brain cooling seems to be a mechanism leading to adaptive craniofacial diversity observed in different geographical regions. Thus, SBC is necessary for long-term biological adaptation, not for protecting the brain from acute thermal damage.

  1. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Delayed hypothermia as selective head cooling or whole body cooling does not protect brain or body in newborn pig subjected to hypoxia-ischemia.

    PubMed

    Karlsson, Mathias; Tooley, James R; Satas, Saulius; Hobbs, Catherine E; Chakkarapani, Ela; Stone, Janet; Porter, Helen; Thoresen, Marianne

    2008-07-01

    The neuroprotective efficacy of hypothermia (HT) after hypoxia-ischemia (HI) falls dramatically the longer the delay in initiating HT. Knowledge is scarce regarding protective or adverse effects of HT in organs beyond the brain. In addition, the relative effectiveness of selective head cooling (SHC) and whole body cooling (WBC) has not been studied. We aimed to examine whether 24 h HT, initiated 3 h after global HI is brain- and/or organ-protective using pathology, neurology, and biochemical markers. Fifty, brain injury. Animals were randomized to normothermia (NT), (Trectal) 39.0 degrees C, SHCTrectal 34.5 degrees C, or WBCTrectal 34.5 degrees C for 24 h, all followed by 48 h NT. There was no difference in injury to the brain or organs between groups. There was no gender difference in brain injury but females had significantly more organs injured [2.3 (+/- 1.3) [mean +/- SD] vs. 1.4 +/- (1.0)]. The postinsult decline in lactate was temperature independent. However, HT animals normalized their plasma-calcium, magnesium, and potassium significantly faster than NT. Delayed SHC or WBC, initiated 3 h after HI, does not reduce pathology in the brain nor in organs. Delayed HT improves postinsult recovery of plasma-calcium, magnesium, and potassium. There were no differences in adverse effects across groups.

  3. Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury

    PubMed Central

    Shear, Deborah A.; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C.

    2016-01-01

    Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7–21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13–17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple

  4. Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury.

    PubMed

    Lu, Xi-Chun May; Shear, Deborah A; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C

    2016-03-01

    Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7-21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13-17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple

  5. [Changes in MLS-BAEP in newborn piglets with hypoxic-ischemic brain damage during selective moderate head cooling therapy].

    PubMed

    Wang, Ji-Mei; Zhou, Wen-Hao; Cheng, Guo-Qiang; Wang, Lai-Shuang; Jiang, Ze-Dong; Shao, Xiao-Mei

    2013-06-01

    To study the effect of selective moderate head cooling therapy on maximum length sequences brainstem auditory evoked potential (MLS-BAEP) in newborn piglets with hypoxic-ischemic brain damage. Sixteen newborn piglets aged 5-7 day old were randomly divided into three groups: normothermic control (n=4), HI (n=6) and mild hypothermia-treated (n=6). HI was induced through temporary occlusion of both carotid arteries, followed by mechanical ventilation with low concentration of oxygen (FiO2=0.06) for 30 minutes. Mild hypothermia was induced by equipment via circulating water. MLS-BAER was recorded before HI and at 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, 4 days, 7 days, 10 days, 13 days and 15 days after HI. Compared with the normothermic control group, all latencies and intervals tended to increase significantly at 72 hours in the HI group and reached peak values on day 7. From day 10, all latencies and intervals tended to decrease, but apart from wave I latency, still differed significantly from those of the normothermic control group. MLS-BAER variables did not reach normal values until day 15. Ⅲ latency, Ⅰ-Ⅲ interval and Ⅰ-Ⅴ interval were significantly reduced in the hypothermia-treated group between 60 and 7 days after HI compared with the HI group (P<0.05). V latency and Ⅲ-Ⅴ interval in the hypothermia-treated group were also reduced compared with the HI group between 72 hours and 7 days after HI (P<0.05). Both peripheral and central auditory systems are disturbed by HI, which shows as a significant increase in MLS-BAER variables (all latencies and intervals) in newborn piglets. Involvement in central brainstem auditory system reaches a peak on day 7 after injury. MLS-BAER variables still cannot reach to normal values until day 15. Selective moderate head cooling therapy can significantly reduce brainstem damage induced by HI.

  6. Angularis oculi vein blood flow modulates the magnitude but not the control of selective brain cooling in sheep.

    PubMed

    Fuller, Andrea; Hetem, Robyn S; Meyer, Leith C R; Maloney, Shane K

    2011-06-01

    To investigate the role of the angularis oculi vein (AOV) in selective brain cooling (SBC), we measured brain and carotid blood temperatures in six adult female Dorper sheep. Halfway through the study, a section of the AOV, just caudal to its junction with the dorsal nasal vein, was extirpated on both sides. Before and after AOV surgery, the sheep were housed outdoors at 21-22°C and were exposed in a climatic chamber to daytime heat (40°C) and water deprivation for 5 days. In sheep outdoors, SBC was significantly lower after the AOV had been cut, with its 24-h mean reduced from 0.25 to 0.01°C (t(5) = 3.06, P = 0.03). Carotid blood temperature also was lower (by 0.28°C) at all times of day (t(5) = 3.68, P = 0.01), but the pattern of brain temperature was unchanged. The mean threshold temperature for SBC was not different before (38.85 ± 0.28°C) and after (38.85 ± 0.39°C) AOV surgery (t(5) =0.00, P = 1.00), but above the threshold, SBC magnitude was about twofold less after surgery. SBC after AOV surgery also was less during heat exposure and water deprivation. However, SBC increased progressively by the same magnitude (0.4°C) over the period of water deprivation, and return of drinking water led to rapid cessation of SBC in sheep before and after AOV surgery. We conclude that the AOV is not the only conduit for venous drainage contributing to SBC in sheep and that, contrary to widely held opinion, control of SBC does not involve changes in the vasomotor state of the AOV.

  7. Local control of temperature in a theoretical human model of selective brain cooling.

    PubMed

    Neimark, Matthew A; Konstas, Angelos-Aristeidis; Choi, Jae H; Laine, Andrew F; Pile-Spellman, John

    2007-01-01

    A method of feedback control of local brain temperature during therapeutic intracarotid cold saline infusion is presented and tested on a theoretical cerebral heat transfer model based on the Pennes bioheat equation. In this temperature control method, the infusion rate of cold saline is varied based on the rate of temperature change, and the deviation of temperature to a target, within a voxel in the treated region of brain. This control method is tested in cases where the head is exposed to ambient room temperature, and where the head is packed in ice. In both the ice and non-ice cases, target temperature (33 degrees C) is achieved in the voxel according to the desired time constant (2 minutes). Two hours of treatment decreased the required inflow of ice-cold saline from 30 ml/min to 21 and 7 ml/min in the non-ice and ice cases, respectively. Intracarotid hematocrit had higher values in the non-ice case.

  8. Theoretical limits on brain cooling by external head cooling devices

    PubMed Central

    Sukstanskii, A. L.; Yablonskiy, D. A.

    2007-01-01

    Numerous experimental studies have demonstrated that mild hypothermia is a rather promising therapy for acute brain injury in neonates. Because measurement of the resultant cooling of human brain in vivo is beyond current technology, an understanding of physical factors limiting the possible brain cooling would be a substantial achievement. Herein brain cooling by external head cooling devices is studied within the framework of an analytical model of temperature distribution in the brain. Theoretical limits on brain hypothermia induced by such devices are established. Analytical expressions are obtained that allow evaluation of changes in brain temperature under the influence of measurable input parameters. We show that a mild hypothermia can be successfully induced in neonates only if two necessary conditions are fulfilled: sufficiently low cerebral blood flow and sufficiently high value of the heat transfer coefficient describing the heat exchange between the head surface and a cooling device. PMID:17429678

  9. Comparison of whole-body cooling and selective head cooling on changes in urinary 8-hydroxy-2-deoxyguanosine levels in patients with global brain ischemia undergoing mild hypothermia therapy.

    PubMed

    Ikeda, Kazumi; Ikeda, Toshiaki; Taniuchi, Hitoshi; Suda, Shingo

    2012-07-01

    We evaluated changes in the levels of urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) in patients undergoing mild hypothermia therapy and compared 8-OHdG expressions in those receiving whole-body cooling or selective head cooling. The subjects were 15 patients undergoing mild hypothermia therapy following resuscitation after cardiac arrest in our intensive care unit. We divided the patients into 2 groups receiving either whole-body cooling or selective head cooling, according to their circulatory stability. We examined urinary 8-OHdG level for 1 week and neurological outcomes 28 days after admission. We observed significant decreases in urinary 8-OHdG levels on days 6 and 7 compared with that on day 1 in the whole-body cooling group. Furthermore, we noted significantly lower urinary 8-OHdG levels after days 5, 6 and 7 in the whole-body cooling group than in the selective head-cooling group. Neurological outcomes were similar in both groups. Mild hypothermia therapy with whole-body cooling had a greater effect on the suppression of free radical production than selective head cooling. However, selective head cooling might be an appropriate indication for patients with circulatory instability after resuscitation, because it provides neuroprotection similar to that of whole-body cooling.

  10. Comparison of whole-body cooling and selective head cooling on changes in urinary 8-hydroxy-2-deoxyguanosine levels in patients with global brain ischemia undergoing mild hypothermia therapy

    PubMed Central

    Ikeda, Kazumi; Ikeda, Toshiaki; Taniuchi, Hitoshi; Suda, Shingo

    2012-01-01

    Summary Background We evaluated changes in the levels of urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) in patients undergoing mild hypothermia therapy and compared 8-OHdG expressions in those receiving whole-body cooling or selective head cooling. Material/Methods The subjects were 15 patients undergoing mild hypothermia therapy following resuscitation after cardiac arrest in our intensive care unit. We divided the patients into 2 groups receiving either whole-body cooling or selective head cooling, according to their circulatory stability. We examined urinary 8-OHdG level for 1 week and neurological outcomes 28 days after admission. Results We observed significant decreases in urinary 8-OHdG levels on days 6 and 7 compared with that on day 1 in the whole-body cooling group. Furthermore, we noted significantly lower urinary 8-OHdG levels after days 5, 6 and 7 in the whole-body cooling group than in the selective head-cooling group. Neurological outcomes were similar in both groups. Conclusions Mild hypothermia therapy with whole-body cooling had a greater effect on the suppression of free radical production than selective head cooling. However, selective head cooling might be an appropriate indication for patients with circulatory instability after resuscitation, because it provides neuroprotection similar to that of whole-body cooling. PMID:22739730

  11. Influence of selective brain cooling on the expression of ICAM-1 mRNA and infiltration of PMNLs and monocytes/macrophages in rats suffering from global brain ischemia/reperfusion injury.

    PubMed

    Cao, Jianping; Xu, Jianguo; Li, Weiyan; Liu, Jian

    2008-12-01

    This study sought to evaluate the effects of selective brain cooling on the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and infiltration of polymorphonuclear leukocytes (PMNLs) and monocytes/macrophages (MPhi) during global cerebral ischemia/ reperfusion (I/R). Global ischemia of the brain was produced by four-vessel occlusion for 30 min followed by reperfusion for 240 min. Thirty-five SD rats were randomly divided into five groups: group I had no ischemia and reperfusion; groups II, III, IV, and V were subjected to ischemia for 30 min at 37 degrees C and reperfusion for 240 min at 37, 35, 32, and 28 degrees C, respectively. Cerebral tissue samples were taken for pathological examination of the infiltration of PMNLs and MPhi and to detect ICAM-1 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR). The expression of ICAM-1 mRNA and infiltration of PMNLs and MPhi increased more markedly in group II than in group I (p < 0.01), suggesting that hypothermia evidently inhibited ICAM-1 mRNA expression and PMNL and MPhi infiltration in the damaged cerebral tissue. In addition, significant differences were also found between group III and group II (p < 0.05) and among groups IV, V, and II (p < 0.01). These results suggest that I/R injury induces ICAM-1 mRNA expression and PMNL and MPhi infiltration in SD rats and that selective brain cooling, and especially moderate hypothermia (28-32 degrees C), may provide better cerebral protection by markedly inhibiting the expression of ICAM-1 mRNA while decreasing the infiltration of PMNLs and MPhi in the brain.

  12. Modelling Brain Temperature and Cerebral Cooling Methods

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2014-11-01

    Direct measurement of cerebral temperature is invasive and impractical meaning treatments for reduction of core brain temperature rely on predictive mathematical models. Current models rely on continuum equations which heavily simplify thermal interactions between blood and tissue. A novel two-phase 3D porous-fluid model is developed to address these limitations. The model solves porous flow equations in 3D along with energy transport equation in both the blood and tissue phases including metabolic generation. By incorporating geometry data extracted from MRI scans, 3D vasculature can be inserted into a porous brain structure to realistically represent blood distribution within the brain. Therefore, thermal transport and convective heat transfer of blood are solved by means of direct numerical simulations. In application, results show that external scalp cooling has a higher impact on both maximum and average core brain temperatures than previously predicted. Additionally, the extent of alternative treatment methods such as pharyngeal cooling and carotid infusion can be investigated using this model. Acknowledgement: EPSRC DTA.

  13. Brain cooling maintenance with cooling cap following induction with intracarotid cold saline infusion: a quantitative model.

    PubMed

    Neimark, Matthew A; Konstas, Angelos-Aristeidis; Choi, Jae H; Laine, Andrew F; Pile-Spellman, John

    2008-07-21

    Intracarotid cold saline infusion (ICSI) is potentially much faster than whole-body cooling and more effective than cooling caps in inducing therapeutic brain cooling. One drawback of ICSI is hemodilution and volume loading. We hypothesized that cooling caps could enhance brain cooling with ICSI and minimize hemodilution and volume loading. Six-hour-long simulations were performed in a 3D mathematical brain model. The Pennes bioheat equation was used to propagate brain temperature. Convective heat transfer through jugular venous return and the circle of Willis was simulated. Hemodilution and volume loading were modeled using a two-compartment saline infusion model. A feedback method of local brain temperature control was developed where ICSI flow rate was varied based on the rate of temperature change and the deviation of temperature to a target (32 degrees C) within a voxel in the treated region of brain. The simulations confirmed the inability of cooling caps alone to induce hypothermia. In the ICSI and the combination models (ICSI and cap), the control algorithm guided ICSI to quickly achieve and maintain the target temperature. The combination model had lower ICSI flow rates than the ICSI model resulting in a 55% reduction of infusion volume over a 6h period and higher hematocrit values compared to the ICSI model. Moreover, in the combination model, the ICSI flow rate decreased to zero after 4h, and hypothermia was subsequently maintained solely by the cooling cap. This is the first study supporting a role of cooling caps in therapeutic hypothermia in adults.

  14. Brain temperature in volunteers subjected to intranasal cooling.

    PubMed

    Covaciu, L; Weis, J; Bengtsson, C; Allers, M; Lunderquist, A; Ahlström, H; Rubertsson, S

    2011-08-01

    Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods. Intranasal balloons catheters circulated with saline at 20°C were applied for 60 min in ten awake volunteers. No sedation was used. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects' personal experience were completed after the experiment. Brain temperature decrease measured by MRSI was -1.7 ± 0.8°C and by phase-mapping -1.8 ± 0.9°C (n = 9) at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 ± 0.3°C (n = 5). The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent in the MMSE test. Postcooling nasal examination detected increased nasal secretion in nine of the ten volunteers. Volunteers' acceptance of the method was good. Both MR techniques revealed brain temperature reductions after 60 min of intranasal cooling with balloons circulated with saline at 20°C in awake, unsedated volunteers.

  15. Pharmacological brain cooling with indomethacin in acute hemorrhagic stroke: antiinflammatory cytokines and antioxidative effects.

    PubMed

    Dohi, K; Jimbo, H; Ikeda, Y; Fujita, S; Ohtaki, H; Shioda, S; Abe, T; Aruga, T

    2006-01-01

    We evaluated the effects of a novel pharmacological brain cooling (PBC) method with indomethacin (IND), a nonselective cyclooxygenase inhibitor, without the use of cooling blankets in patients with hemorrhagic stroke. Forty-six patients with hemorrhagic stroke (subarachnoid hemorrhage; n = 35, intracerebral hemorrhage; n = 11) were enrolled in this study. Brain temperature was measured directly with a temperature sensor. Patients were cooled by administering transrectal IND (100 mg) and a modified nasopharyngeal cooling method (positive selective brain cooling) initially. Brain temperature was controlled with IND 6 mg/kg/day for 14 days. Cerebrospinal fluid concentrations of interleukin-1beta (CSF IL-1beta) and serum bilirubin levels were measured at 1, 2, 4, and 7 days. The incidence of complicating symptomatic vasospasm after subarachnoid hemorrhage was lower than in non-PBC patients. CSF IL-1beta and serum bilirubin levels were suppressed in treated patients. IND has several beneficial effects on damaged brain tissues (anticytokine, free radical scavenger, antiprostaglandin effects, etc.) and prevents initial and secondary brain damage. PBC treatment for hemorrhagic stroke in patients appears to yield favorable results by acting as an antiinflammatory cytokine and reducing oxidative stress.

  16. Brain temperature changes during selective cooling with endovascular intracarotid cold saline infusion: simulation using human data fitted with an integrated mathematical model.

    PubMed

    Neimark, Matthew Aaron Harold; Konstas, Angelos Aristeidis; Lee, Leslie; Laine, Andrew Francis; Pile-Spellman, John; Choi, Jae

    2013-03-01

    The feasibility of rapid cerebral hypothermia induction in humans with intracarotid cold saline infusion (ICSI) was investigated using a hybrid approach of jugular venous bulb temperature (JVBT) sampling and mathematical modeling of transient and steady state brain temperature distribution. This study utilized both forward mathematical modeling, in which brain temperatures were predicted based on input saline temperatures, and inverse modeling, where brain temperatures were inferred based on JVBT. Changes in ipsilateral anterior circulation territory temperature (IACT) were estimated in eight patients as a result of 10 min of a cold saline infusion of 33 ml/min. During ICSI, the measured JVBT dropped by 0.76±0.18°C while the modeled JVBT decreased by 0.86±0.18°C. The modeled IACT decreased by 2.1±0.23°C. In the inverse model, IACT decreased by 1.9±0.23°C. The results of this study suggest that mild cerebral hypothermia can be induced rapidly and safely with ICSI in the neuroangiographical setting. The JVBT corrected mathematical model can be used as a non-invasive estimate of transient and steady state cerebral temperature changes.

  17. Spatially-selective optical pumping cooling and Two-Isotope Collision-Assisted Zeeman cooling

    NASA Astrophysics Data System (ADS)

    Wilson, Rebekah Ferrier

    In this thesis I describe two non-evaporative cooling schemes for cooling Rb atoms. The first is a Sisyphus-like ultracold gas cooling scheme called Spatially-selecTive Optical Pumping (STOP) cooling. In principle, STOP cooling has wide applicability to both atoms and molecules. STOP cooling works by exploiting the fact that atoms or molecules in a confining potential can be optically pumped out of an otherwise dark state in a spatially-selective way. Selecting atoms or molecules for optical pumping out of a dark state in a region of high potential energy and then waiting a fixed time after the optical pumping allows for the creation of a group of high kinetic energy atoms or molecules moving in a known direction. These can then be slowed using external fields (such as the scattering force from a resonant laser beam) and optically pumped back into the dark state, cooling the gas and closing the cooling cycle. I present theoretical modeling of the STOP cooling technique, including predictions of achievable cooling rates. I have conducted an experimental study of the cooling technique for a single cooling cycle, observing one dimensional cooling rates in excess of 100 micro-K per second in an ultracold gas of 87 Rb atoms. I will also comment on the prospects for improving the cooling performance beyond that presented in this work. The second cooling scheme I investigated is called Two-Isotope Collision Assisted Zeeman (2-CAZ) cooling. Through a combination of spin-exchange collisions in a magnetic field and optical pumping, it is possible to cool a gas of atoms without requiring the loss of atoms from the gas. I investigated 2-CAZ cooling using 85Rb and 87Rb. I was able to experimentally confirm that the measured 2-CAZ cooling rate agreed with a cooling rate predicted though a simple analytic model. As part of the measured cooling rate, I quantitatively characterized the heating rates associated with our actual implementation of this cooling technique and found

  18. Eclipse cooling of selected lunar features

    NASA Technical Reports Server (NTRS)

    Shorthill, R. W.; Saari, J. M.; Baird, F. E.; Lecompte, J. R.

    1970-01-01

    Thermal measurements were made in the 10 to 12 micron band of the lunar surface during the total eclipse of December19, 1964. A normalized differential thermal contour map is included, showing the location of the thermal anomalies or hot spots on the disk and the eclipse cooling curves of 400 sites, of which more than 300 were hot spots. The eclipse cooling data is compared to a particulate thermophysical model of the soil.

  19. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  20. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, Joseph C.

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  1. Phase-difference and spectroscopic imaging for monitoring of human brain temperature during cooling.

    PubMed

    Weis, Jan; Covaciu, Lucian; Rubertsson, Sten; Allers, Mats; Lunderquist, Anders; Ortiz-Nieto, Francisco; Ahlström, Håkan

    2012-12-01

    Decrease of the human brain temperature was induced by intranasal cooling. The main purpose of this study was to compare the two magnetic resonance methods for monitoring brain temperature changes during cooling: phase-difference and magnetic resonance spectroscopic imaging (MRSI) with high spatial resolution. Ten healthy volunteers were measured. Selective brain cooling was performed through nasal cavities using saline-cooled balloon catheters. MRSI was based on a radiofrequency spoiled gradient echo sequence. The spectral information was encoded by incrementing the echo time of the subsequent eight image records. Reconstructed voxel size was 1×1×5 mm(3). Relative brain temperature was computed from the positions of water spectral lines. Phase maps were obtained from the first image record of the MRSI sequence. Mild hypothermia was achieved in 15-20 min. Mean brain temperature reduction varied in the interval <-3.0; -0.6>°C and <-2.7; -0.7>°C as measured by the MRSI and phase-difference methods, respectively. Very good correlation was found in all locations between the temperatures measured by both techniques except in the frontal lobe. Measurements in the transversal slices were more robust to the movement artifacts than those in the sagittal planes. Good agreement was found between the MRSI and phase-difference techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Liquid cooled data center design selection

    DOEpatents

    Chainer, Timothy J.; Iyengar, Madhusudan K.; Parida, Pritish R.

    2016-09-13

    Input data, specifying aspects of a thermal design of a liquid cooled data center, is obtained. The input data includes data indicative of ambient outdoor temperature for a location of the data center; and/or data representing workload power dissipation for the data center. The input data is evaluated to obtain performance of the data center thermal design. The performance includes cooling energy usage; and/or one pertinent temperature associated with the data center. The performance of the data center thermal design is output.

  3. An objective method for screening and selecting personal cooling systems based on cooling properties.

    PubMed

    Elson, John; Eckels, Steve

    2015-05-01

    A method is proposed for evaluation and selection of a personal cooling system (PCS) incorporating PCS, subject, and equipment weights; PCS run time; user task time; PCS cooling power; and average metabolic rate. The cooling effectiveness method presented is derived from first principles and allows those who select PCSs for specific applications to compare systems based on their projected use. This can lower testing costs by screening for the most applicable system. Methods to predict cooling power of PCSs are presented and are compared to data taken through standard manikin testing. The cooling effectiveness ranking is presented and validated against human subject test data. The proposed method provides significant insight into the application of PCS on humans. However, the interaction a humans with a PCS is complex, especially considering the range of clothing ensembles, physiological issues, and end use scenarios, and requires additional analysis.

  4. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  5. Selective head cooling during neonatal seizures prevents postictal cerebral vascular dysfunction without reducing epileptiform activity.

    PubMed

    Harsono, Mimily; Pourcyrous, Massroor; Jolly, Elliott J; de Jongh Curry, Amy; Fedinec, Alexander L; Liu, Jianxiong; Basuroy, Shyamali; Zhuang, Daming; Leffler, Charles W; Parfenova, Helena

    2016-11-01

    Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ∼2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2-4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the head-cooled groups. During the delayed postictal period, endothelium-dependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity. Copyright © 2016 the American Physiological Society.

  6. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    NASA Astrophysics Data System (ADS)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  7. Natural cooling of the brain during outdoor bicycling?

    PubMed

    Nielsen, B

    1988-04-01

    Tympanic membrane temperature (Ttymp) and deep esophageal temperature (Tes) were measured in 8 subjects during normal outdoor bicycling. Metabolic rate (VO2) was determined by the Douglas bag method. Heart rate was sampled continuously. Skin surface temperatures were measured at the forehead, chest and shoulder, and core temperatures in the deep esophagus and at the tympanic membrane using a radio telemetry system. For each outdoor experiment an indoor experiment in a climatic chamber, adjusted to the same air temperature but in still air, was performed. The subjects exercised at the same VO2 as in the outdoor trial on a stationary bicycle ergometer. Measurements were taken with the same equipment as in the outdoor experiments. O2-consumption (l.min-1) and heart rates (beats.min-1) were similar during outdoor and indoor bicycling, averaging 2.38 +/- 0.018 (SE) and 2.26 +/- 0.07, 141 +/- 7 and 147 +/- 8, respectively. During steady state Tes was the same during outdoor and indoor bicycling (37.95 degrees C), while Ttymp was significantly lower during outdoor bicycling. delta (Tes-Ttymp) was 1.25 degrees C during outdoor and 0.5 degrees C during indoor exercise. It is concluded that, if tympanic temperature is lowered by counter-current cooling of its arterial supply, then cooling of the brain may also take place in humans during physical activity under normal outdoor conditions with convective air movements. But the magnitude of a possible brain cooling cannot be deduced from the fall in tympanic temperature.

  8. A mathematical model of endovascular heat transfer for human brain cooling

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Lasheras, Juan Carlos; Yon, Steven; Magers, Mike; Dobak, John

    2000-11-01

    Selective cooling of the brain has been shown to exhibit protective effects in cerebral ischemia, trauma, and spinal injury/ischemia. A multi-compartment, unsteady thermal model of the response of the human brain to endovascular cooling is discussed and its results compared to recent experimental data conducted with sheep and other mammals. The model formulation is based on the extension of the bioheat equation, originally proposed by Pennes(1) and later modified by Wissler(2), Stolwijk(3) and Werner and Webb(4). The temporal response of the brain temperature and that of the various body compartments to the cooling of the blood flowing through the common carotid artery is calculated under various scenarios. The effect of the boundary conditions as well as the closure assumptions used in the model, i.e. perfusion rate, metabolism heat production, etc. on the cooling rate of the brain are systematically investigated. (1) Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting forearm.” J. Appl. Physiol. 1: 93-122, 1948. (2) Wissler E. H., “Steady-state temperature distribution in man”, J. Appl. Physiol., 16: 764-740, 1961. (3) Stolwick J. A. J., “Mathematical model of thermoregulation” in “Physiological and behavioral temperature regulation”, edited by J. D. Hardy, A. P. Gagge and A. J. Stolwijk, Charles C. Thomas Publisher, Springfiels, Ill., 703-721, 1971. (4) Werner J., Webb P., “A six-cylinder model of human thermoregulation for general use on personal computers”, Ann. Physiol. Anthrop., 12(3): 123-134, 1993.

  9. Significant selective head cooling can be maintained long-term after global hypoxia ischemia in newborn piglets.

    PubMed

    Tooley, James; Satas, Saulius; Eagle, Rebecca; Silver, Ian A; Thoresen, Marianne

    2002-04-01

    Selective head cooling (SHC) combined with mild body cooling is currently being evaluated as a potentially therapeutic option in the management of neonatal hypoxic-ischemic encephalopathy. It is proposed that SHC enables local hypothermic neuroprotection while minimizing the deleterious side effects of systemic hypothermia. However, there is little evidence that it is possible to cool the brain more than the body for a prolonged period of time. The aim of this study was to examine whether the brain (T(deep brain)) could be cooled to below the rectal temperature (T(rectal)) in our piglet hypoxia ischemia (HI) model for a period of 24 hours, using a head-cooling cap. Eight anesthetized piglets (median age: 15 hours) had subdural and intracerebral basal ganglia temperature probes inserted. After a 45-minute global HI insult (known to produce permanent brain damage), SHC using a cap perfused with cold water (5 degrees C-24 degrees C) combined with overhead body heating to maintain T(rectal) at 34 to 35 degrees C was performed for 24 hours. The piglets were cooled to a median T(rectal) of 35.0 degrees C (interquartile range [IQR]: 34.7-35.3) for 24 hours. During this time, the median T(deep brain) was 31.4 degrees C (IQR: 30 degrees C-32.2 degrees C), with a median T(rectal) to T(deep brain) gradient of 3.4 degrees C (IQR: 2.7 degrees C-4.8 degrees C). At the end of the cooling period, this gradient was still maintained at a median of 3.3 degrees C (IQR: 2.9 degrees C-3.7 degrees C). The ability to obtain the gradient was not influenced by the size of the piglet (1300-1840 g). Cap cooling lowered scalp temperature (T(scalp)) to a median of 24.9 degrees C (IQR: 22.2 degrees C-29.2 degrees C) and subdural temperature to a median of 28.1 degrees C (IQR: 25.8 degrees C-29.5 degrees C) but did not result in either skin injury or superficial brain hemorrhage. There was no clinically useful correlation between T(scalp) and T(deep brain) or between T(scalp) and T

  10. Comparison of selective head cooling therapy and whole body cooling therapy in newborns with hypoxic ischemic encephalopathy: short term results

    PubMed Central

    Atıcı, Aytuğ; Çelik, Yalçın; Gülaşı, Selvi; Turhan, Ali Haydar; Okuyaz, Çetin; Sungur, Mehmet Ali

    2015-01-01

    Aim: In this study, it was aimed to investigate which method was superior by applying selective head cooling or whole body cooling therapy in newborns diagnosed with moderate or severe hypoxic ischemic encephalopathy. Materials and Method: Newborns above the 35th gestational age diagnosed with moderate or severe hypoxic ischemic encephalopathy were included in the study and selective head cooling or whole body cooling therapy was performed randomly. The newborns who were treated by both methods were compared in terms of adverse effects in the early stage and in terms of short-term results. Ethics committee approval was obtained for the study (06.01.2010/35). Results: Fifty three babies diagnosed with hypoxic ischemic encephalopathy were studied. Selective head cooling was applied to 17 babies and whole body cooling was applied to 12 babies. There was no significant difference in terms of adverse effects related to cooling therapy between the two groups. When the short-term results were examined, it was found that the hospitalization time was 34 (7–65) days in the selective head cooling group and 18 (7–57) days in the whole body cooling group and there was no significant difference between the two groups (p=0.097). Four patients in the selective head cooling group and two patients in the whole body cooling group were discharged with tracheostomy because of the need for prolonged mechanical ventilation and there was no difference between the groups in terms of discharge with tracheostomy (p=0.528). Five patients in the selective head cooling group and three patients in the whole body cooling group were discharged with a gastrostomy tube because they could not be fed orally and there was no difference between the groups in terms of discharge with a gastrostomy tube (p=0.586). One patient who was applied selective head cooling and one patient who was applied whole body cooling died during hospitalization and there was no difference between the groups in terms of

  11. On how high performers keep cool brains in situations of cognitive overload.

    PubMed

    Jaeggi, Susanne M; Buschkuehl, Martin; Etienne, Alex; Ozdoba, Christoph; Perrig, Walter J; Nirkko, Arto C

    2007-06-01

    What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.

  12. Sub-recoil Cooling with Velocity-Selective Resonances

    NASA Astrophysics Data System (ADS)

    Bellanca, M. J.; Liu, L.; Cashen, M.; Metcalf, H.

    2000-04-01

    We have observed atomic velocity distributions with rms widths below the recoil velocity vr ≡ hbar k/M. This was done using velocity selective resonances(S-Q. Shang et al., Phys. Rev. Lett. 65), 317 (1990) (vsr) on both J = 1 arrow 1 and J = 1 arrow 2 transitions of metastable He at λ = 1.083 μm. They are produced by laser cooling in a magnetic field B, and are centered at a velocity v_vsr=μB g B /hbar k instead of v=0, where v_vsr is typically several times larger than v_r. Such narrow widths cannot derive from any optical cooling process(H. Metcalf and P. van der Straten, \\underlineLaser Cooling and Trapping), Springer, 1999 and therefore must arise another way. We attribute them to population of a quasi-dark state that is related to VSCPT. A classical model of this phenomenon is associated with Larmor precession that is both velocity-matched to the Doppler shifted laser light and phase-matched to atomic precession in the B-field and the optical standing wave. A quantum mechanical description in terms of the eigenstates of the full Hamiltonian, including the kinetic energy, will be given. Numerical calculations, the quantum mechanical dark state model, and the measurements are all self-consistent.

  13. Sub-recoil Cooling with Velocity-Selective Resonances

    NASA Astrophysics Data System (ADS)

    Liu, L.; Bellanca, M. J.; Cashen, M.; Metcalf, H.

    2000-06-01

    We have observed atomic velocity distributions with rms widths below the recoil velocity vr ≡ hbar k/M. This was done using velocity selective resonances(S-Q. Shang et al., Phys. Rev. Lett. 65), 317 (1990) (vsr) on both J = 1 arrow 1 and J = 1 arrow 2 transitions of metastable He at λ = 1.083 μm. The vsr are produced by laser cooling in a magnetic field B, and are centered at a velocity v_vsr=μB g B /hbar k instead of v=0, where v_vsr is typically several times larger than v_r. Such narrow widths cannot derive from any optical cooling process(H. Metcalf and P. van der Straten, \\underlineLaser Cooling and Trapping), Springer, 1999 and therefore must arise another way. We attribute them to population of a family of quasi-dark states that are each related to VSCPT states. A quantum mechanical description in terms of the eigenstates of the full Hamiltonian, including the kinetic energy, will be given. A classical model of this phenomenon is associated with Larmor precession that is both velocity-matched to the Doppler shifted laser light and phase-matched to atomic precession in the B-field and the optical standing wave. Our numerical calculations, the dark state description, and the measurements are all self-consistent.

  14. Epidermal cooling during pulsed laser treatment of selected dermatoses

    NASA Astrophysics Data System (ADS)

    Nelson, J. Stuart; Anvari, Bahman; Tanenbaum, B. S.; Milner, Thomas E.; Kimel, Sol; Svaasand, Lars O.

    1996-01-01

    The clinical objective in laser treatment of selected dermatoses such as port wine stain (PWS), hemangioma and telangiectasia is to maximize thermal damage to the blood vessels, while at the same time minimizing nonspecific injury to the normal overlying epidermis. 'Dynamic' cooling of skin, whereby a cryogen is sprayed onto the surface for an appropriately short period of time (on the order of tens of milliseconds), may offer an effective method for eliminating epidermal thermal injury during laser treatment. We present theoretical and experimental investigations of the thermal response of skin to dynamic cooling in conjunction with pulsed laser irradiation at 585 nm. Computed temperature distributions indicate that cooling the skin immediately prior to pulsed laser irradiation with a cryogen spurt of tetrafluoroethane is an effective method for eliminating epidermal thermal injury during laser treatment of PWS. Experimental results show rapid reduction of skin surface temperature is obtained when using tetrafluoroethane spurts of 20 - 100 ms duration. Successful blanching of PWS without thermal injury to the overlying epidermis is accomplished.

  15. Comparing Cool Cores in the Planck SZ Selected Samples of Clusters of Galaxies with Cool Cores in X-ray Selected Cluster Samples

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Santos, Felipe A.; Forman, William R.; Kraft, Ralph P.; Lovisari, Lorenzo; Arnaud, Monique; Mazzotta, Pasquale; Van Weeren, Reinout J.; Churazov, Eugene; Ferrari, Chiara; Borgani, Stefano; Chandra-Planck Collaboration

    2016-06-01

    The Planck mission provided a representative sample of clusters of galaxies over the entire sky. With completed Chandra observations of 165 Planck ESZ and cosmology sample clusters at z<0.35, we can now characterize each cluster in terms of its X-ray luminosity, gas temperature, gas mass, total mass, gas entropy, gas central cooling time, presence of active AGN, gas cavities, radio emission, and cluster morphology. In this presentation we compare the percentages of cool core and non-cool core clusters in the Planck-selected clusters with the percentages in X-ray selected cluster samples. We find a significantly smaller percentage of cool core clusters in the Planck sample than in X-ray selected cluster samples. We will discuss the primary reasons for this smaller percentage of cool-core clusters in the Planck-selected cluster sample than in X-ray-selected samples.

  16. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Diagnosis, and Staging Survival Rates for Selected Childhood Brain and Spinal Cord Tumors Survival rates are often ... Childhood Brain and Spinal Cord Tumors More In Brain and Spinal Cord Tumors in Children About Brain ...

  17. Transpulmonary hypothermia: a novel method of rapid brain cooling through augmented heat extraction from the lungs.

    PubMed

    Kumar, Matthew M; Goldberg, Andrew D; Kashiouris, Markos; Keenan, Lawrence R; Rabinstein, Alejandro A; Afessa, Bekele; Johnson, Larry D; Atkinson, John L D; Nayagam, Vedha

    2014-10-01

    Delay in instituting neuroprotective measures after cardiac arrest increases death and decreases neuronal recovery. Current hypothermia methods are slow, ineffective, unreliable, or highly invasive. We report the feasibility of rapid hypothermia induction in swine through augmented heat extraction from the lungs. Twenty-four domestic crossbred pigs (weight, 50-55kg) were ventilated with room air. Intraparenchymal brain temperature and core temperatures from pulmonary artery, lower esophagus, bladder, rectum, nasopharynx, and tympanum were recorded. In eight animals, ventilation was switched to cooled helium-oxygen mixture (heliox) and perfluorocarbon (PFC) aerosol and continued for 90min or until target brain temperature of 32°C was reached. Eight animals received body-surface cooling with water-circulating blankets; eight control animals continued to be ventilated with room air. Brain and core temperatures declined rapidly with cooled heliox-PFC ventilation. The brain reached target temperature within the study period (mean [SD], 66 [7.6]min) in only the transpulmonary cooling group. Cardiopulmonary functions and poststudy histopathological examination of the lungs were normal. Transpulmonary cooling is novel, rapid, minimally invasive, and an effective technique to induce therapeutic hypothermia. High thermal conductivity of helium and vaporization of PFC produces rapid cooling of alveolar gases. The thinness and large surface area of alveolar membrane facilitate rapid cooling of the pulmonary circulation. Because of differences in thermogenesis, blood flow, insulation, and exposure to the external environment, the brain cools at a different rate than other organs. Transpulmonary hypothermia was significantly faster than body surface cooling in reaching target brain temperature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Cooling treatment transiently increases the permeability of brain capillary endothelial cells through translocation of claudin-5.

    PubMed

    Inamura, Akinori; Adachi, Yasuhiro; Inoue, Takao; He, Yeting; Tokuda, Nobuko; Nawata, Takashi; Shirao, Satoshi; Nomura, Sadahiro; Fujii, Masami; Ikeda, Eiji; Owada, Yuji; Suzuki, Michiyasu

    2013-08-01

    The blood-brain-barrier (BBB) is formed by different cell types, of which brain microvascular endothelial cells are major structural constituents. The goal of this study was to examine the effects of cooling on the permeability of the BBB with reference to tight junction formation of brain microendothelial cells. The sensorimotor cortex above the dura mater in adult male Wistar rats was focally cooled to a temperature of 5 °C for 1 h, then immunostaining for immunoglobulin G (IgG) was performed to evaluate the permeability of the BBB. Permeability produced by cooling was also evaluated in cultured murine brain endothelial cells (bEnd3) based on measurement of trans-epithelial electric resistance (TEER). Immunocytochemistry and Western blotting of proteins associated with tight junctions in bEnd3 were performed to determine protein distribution before and after cooling. After focal cooling of the rat brain cortex, diffuse immunostaining for IgG was observed primarily around the small vasculature and in the extracellular spaces of parenchyma of the cortex. In cultured bEnd3, TEER significantly decreased during cooling (15 °C) and recovered to normal levels after rewarming to 37 °C. Immunocytochemistry and Western blotting showed that claudin-5, a critical regulatory protein for tight junctions, was translocated from the membrane to the cytoplasm after cooling in cultured bEnd3 cells. These results suggest that focal brain cooling may open the BBB transiently through an effect on tight junctions of brain microendothelial cells, and that therapeutically this approach may allow control of BBB function and drug delivery through the BBB.

  19. Minimal systemic hypothermia combined with selective head cooling evaluated in a pig model of hypoxia-ischemia.

    PubMed

    Hoque, Nicholas; Liu, Xun; Chakkarapani, Ela; Thoresen, Marianne

    2015-05-01

    Selective head cooling (SHC) with moderate hypothermia (HT) and whole-body cooling are beneficial following perinatal asphyxia. SHC with systemic normothermia (NT) or minimal HT is under-investigated, could obviate systemic complications of moderate HT, and be applicable to preterm infants. We hypothesized that minimal systemic HT with SHC following hypoxia-ischemia (HI) would be neuroprotective compared with systemic NT. Newborn pigs underwent global HI causing permanent brain injury before being randomized to NT (rectal temperature (Trectal) 38.5 °C) or minimal HT (Trectal 37.0 °C) with SHC (cooling cap and body wrap) for 48 h followed by 24-h NT with 72-h survival. SHC did not reduce global or regional neuropathology score when correcting for insult severity or compared with a NT group matched for HI severity but increased mortality by 26%. During 48 h, the SHC mean ± SD Trectal was 37.0 ± 0.2 °C, and Tdeep brain and Tsuperficial brain were 35.0 ± 1.1 °C and 31.5 ± 1.6 °C, respectively, with stable Tbrain achieved ≥ 3 h after starting cooling. This is the first study in newborn pigs of minimal systemic HT with SHC for 48 h and a further 24 h of NT following HI. Mortality was increased in the cooled group with no neuroprotection in survivors.

  20. Effects of selective head cooling on cerebral blood flow and metabolism in newborn piglets after hypoxia-ischemia.

    PubMed

    Cheng, Guoqiang; Sun, Jinqiao; Wang, Laishuan; Shao, Xiaomei; Zhou, Wenhao

    2011-02-01

    the effect of selective head cooling on cerebral blood flow (CBF) and cerebral metabolism rate (CMR) was investigated in newborn piglets. seven days old newborn piglets were randomly assigned to one of the following three groups: Selective head cooling in normal piglets (n=4), selective head cooling after HI (n=6) and normal temperature after HI (n=6). CBF was measured with color microspheres. Cerebral oxygenation metabolism rate (CMRO(2)), Cerebral glucose consumption (CMR(Glu)) and Cerebral lactate production (CMR(lac)) were calculated. in normal piglets, CBF, CMRO(2) and CMR(glu) were significantly decreased at both 35°C (P<0.05) and 32°C (P<0.01), while CMR(lac) did not change. Compared to baseline, CBF and CMRO(2) were significantly reduced (P<0.05), while CMR(glu) and CMR(lac) were significantly increased (P<0.01), AVDO(2) was decreased (P<0.05), while AVD(glu) and AVD(lac) were significantly increased (P<0.01 respectively) in HI piglets with normal temperature respectively. Compared to normal temperature after HI, selective head cooling after HI significantly reduced CMR(glu) and CMR(lac), and AVDO(2), AVD(glu), AVD(lac) were improved at 35°C. selective head cooling not only reduced energy consumption, but also improve brain oxygen metabolism in newborn after HI. 2010 Elsevier Ltd. All rights reserved.

  1. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia.

    PubMed

    Mokrushin, Anatoly A; Pavlinova, Larisa I; Borovikov, Sergey E

    2014-08-01

    Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.

  2. The influence of focal brain cooling on neurophysiopathology: validation for clinical application.

    PubMed

    Oku, Takayuki; Fujii, Masami; Tanaka, Nobuhiro; Imoto, Hirochika; Uchiyama, Joji; Oka, Fumiaki; Kunitsugu, Ichiro; Fujioka, Hiroshi; Nomura, Sadahiro; Kajiwara, Koji; Fujisawa, Hirosuke; Kato, Shoichi; Saito, Takashi; Suzuki, Michiyasu

    2009-06-01

    Focal brain cooling has been recognized to have a suppressive effect on epileptiform discharges or a protective effect on brain tissue. However, the precise influence of brain cooling on normal brain function and histology has not yet been thoroughly investigated. The aim of this study was to investigate the neurophysiopathological consequences of focal cooling and to detect the threshold temperature that causes irreversible histological change and motor dysfunction. The experiments were performed in adult male Sprague-Dawley rats (weighing 250-350 g) after induction of halothane anesthesia. A thermoelectric chip (6 x 6 x 2 mm) was used as a cooling device and was placed on the surface of the sensorimotor cortex after a 10 x 8-mm craniotomy. A thermocouple was placed between the chip and the brain surface. Focal cooling of the cortex was performed at the temperatures of 20, 15, 10, 5, 0, and -5 degrees C for 1 hour (5 rats in each group). Thereafter, the cranial window was repaired. Motor function was evaluated using the beam-walking scale (BWS) every day for 7 days. The rats were killed 7 days after the operation for histological examination with H & E, Klüver-Barrera, glial fibrillary acidic protein, and terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick-end labeling stainings. The authors also euthanized some rats 24 hours after cooling and obtained brain sections by the same methods. The BWS score was decreased on the day after cooling only in the -5 degrees C group (p < 0.05), whereas the score did not change in the other temperature groups. Histologically, the appearance of cryoinjury such as necrosis, apoptosis, loss of neurons, and marked proliferation of astrocytes at the periphery of the lesion was observed only in the -5 degrees C group, while no apparent changes were observed in the other temperature groups. The present study confirmed that the focal cooling of the cortex for 1 hour above the temperature of 0 degrees C did not

  3. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    PubMed

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  4. Evaporative cooling feature selection for genotypic data involving interactions

    PubMed Central

    McKinney, B.A.; Reif, D.M.; White, B.C.; Crowe, J.E.; Moore, J.H.

    2007-01-01

    Motivation: The development of genome-wide capabilities for genotyping has led to the practical problem of identifying the minimum subset of genetic variants relevant to the classification of a phenotype. This challenge is especially difficult in the presence of attribute interactions, noise and small sample size. Methods: Analogous to the physical mechanism of evaporation, we introduce an evaporative cooling (EC) feature selection algorithm that seeks to obtain a subset of attributes with the optimum information temperature (i.e. the least noise). EC uses an attribute quality measure analogous to thermodynamic free energy that combines Relief-F and mutual information to evaporate (i.e. remove) noise features, leaving behind a subset of attributes that contain DNA sequence variations associated with a given phenotype. Results: EC is able to identify functional sequence variations that involve interactions (epistasis) between other sequence variations that influence their association with the phenotype. This ability is demonstrated on simulated genotypic data with attribute interactions and on real genotypic data from individuals who experienced adverse events following smallpox vaccination. The EC formalism allows us to combine information entropy, energy and temperature into a single information free energy attribute quality measure that balances interaction and main effects. Availability: Open source software, written in Java, is freely available upon request. Contact: brett.mckinney@gmail.com PMID:17586549

  5. The effect of selective head-neck cooling on physiological and cognitive functions in healthy volunteers

    PubMed Central

    Jackson, Kevin; Rubin, Rachael; Van Hoeck, Nicole; Hauert, Tommy; Lana, Valentina; Wang, Huan

    2015-01-01

    In general, brain temperatures are elevated during physical sporting activities; therefore, reducing brain temperature shortly after a sports-related concussion (SRC) could be a promising intervention technique. The main objective of this study was to examine the effects of head and neck cooling on physiological and cognitive function in normal healthy volunteers. Twelve healthy volunteers underwent two different sessions of combined head and neck cooling, one session with a cold pack and one session with a room temperature pack. Physiological measurements included: systolic/diastolic blood pressure, pulse oximetry, heart rate, and sublingual and tympanic temperature. Cognitive assessment included: processing speed, executive function, and working memory tasks. Physiological measurements were taken pre-, mid- and post-cooling, while cognitive assessments were done before and after cooling. The order of the sessions was randomized. There was a significant decrease in tympanic temperature across both sessions; however more cooling occurred when the cold pack was in the device. There was no significant decrease in sublingual temperature across either session. The observed heart rates, pulse oximetry, systolic and diastolic blood pressure during the sessions were all within range of a normal healthy adult. Cognitive assessment remained stable across each session for both pre- and post-cooling. We propose that optimizing brain temperature management after brain injury using head and neck cooling technology may represent a sensible, practical, and effective strategy to potentially enhance recovery and perhaps minimize the subsequent short and long term consequences from SRC. PMID:28123796

  6. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  7. Cold Blooded: Evaluating Brain Temperature by MRI During Surface Cooling of Human Subjects.

    PubMed

    Curran, Eric J; Wolfson, Daniel L; Watts, Richard; Freeman, Kalev

    2017-03-28

    Targeted temperature management (TTM) confers neurological and survival benefits for post-cardiac arrest patients with return of spontaneous circulation (ROSC) who remain comatose. Specialized equipment for induction of hypothermia is not available in the prehospital setting, and there are no reliable methods for emergency medical services personnel to initiate TTM. We hypothesized that the application of surface cooling elements to the neck will decrease brain temperature and act as initiators of TTM. Magnetic resonance (MR) spectroscopy was used to evaluate the effect of a carotid surface cooling element on brain temperature in healthy adults. Six individuals completed this study. We measured a temperature drop of 0.69 ± 0.38 °C (95% CI) in the cortex of the brain following the application of the cooling element. Application of a room temperature element also caused a measurable decrease in brain temperature of 0.66 ± 0.41 °C (95% CI) which may be attributable to baroreceptor activation. The application of surface cooling elements to the neck decreased brain temperature and may serve as a method to initiate TTM in the prehospital setting.

  8. Regional brain responses in humans during body heating and cooling

    PubMed Central

    Farrell, Michael J.

    2016-01-01

    ABSTRACT Functional brain imaging of responses to thermal challenge in humans provides a viable method to implicate widespread neuroanatomical regions in the processes of thermoregulation. Thus far, functional neuroimaging techniques have been used infrequently in humans to investigate thermoregulation, although preliminary outcomes have been informative and certainly encourage further forays into this field of enquiry. At this juncture, sustained regional brain activations in response to prolonged changes in body temperature are yet to be definitively characterized, but it would appear that thermoregulatory regions are widely distributed throughout the hemispheres of the human brain. Of those autonomic responses to thermal challenge investigated so far, the loci of associated brainstem responses in human are homologous with other species. However, human imaging studies have also implicated a wide range of forebrain regions in thermal sensations and autonomic responses that extend beyond outcomes reported in other species. There is considerable impetus to continue human functional neuroimaging of thermoregulatory responses because of the unique opportunities presented by the method to survey regions across the whole brain in compliant, conscious participants. PMID:27857952

  9. Evolution of brain region volumes during artificial selection for relative brain size.

    PubMed

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-10-06

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use micro-CT to investigate how the volumes of 11 main brain regions respond to selection for larger vs. smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Residual brain injury after early discontinuation of cooling therapy in mild neonatal encephalopathy.

    PubMed

    Lally, Peter J; Montaldo, Paolo; Oliveira, Vânia; Swamy, Ravi Shankar; Soe, Aung; Shankaran, Seetha; Thayyil, Sudhin

    2017-09-21

    We examined the brain injury and neurodevelopmental outcomes in a prospective cohort of 10 babies with mild encephalopathy who had early cessation of cooling therapy. All babies had MRI and spectroscopy within 2 weeks after birth and neurodevelopmental assessment at 2 years. Cooling was prematurely discontinued at a median age of 9 hours (IQR 5-13) due to rapid clinical improvement. Five (50%) had injury on MRI or spectroscopy, and two (20%) had an abnormal neurodevelopmental outcome at 2 years. Premature cessation of cooling therapy in babies with mild neonatal encephalopathy does not exclude residual brain injury and adverse long-term neurodevelopmental outcomes. This study refers to babies recruited into the MARBLE study (NCT01309711, pre-results stage). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Analgesics, sedatives, anticonvulsant drugs, and the cooled brain.

    PubMed

    Wassink, Guido; Lear, Christopher A; Gunn, Katherine C; Dean, Justin M; Bennet, Laura; Gunn, Alistair J

    2015-04-01

    Multiple randomized controlled trials have shown that prolonged, moderate cerebral hypothermia initiated within a few hours after severe hypoxia-ischemia and continued until resolution of the acute phase of delayed cell death reduces mortality and improves neurodevelopmental outcome in term infants. The challenge is now to find ways to further improve outcomes. In the present review, we critically examine the evidence that conventional analgesic, sedative, or anticonvulsant agents might improve outcomes, in relation to the known window of opportunity for effective protection with hypothermia. This review strongly indicates that there is insufficient evidence to recommend routine use of these agents during therapeutic hypothermia. Further systematic research into the effects of pain and stress on the injured brain, and their treatment during hypothermia, is essential to guide the rational development of clinical treatment protocols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A pilot study to assess the feasibility of prior scalp cooling with palliative whole brain radiotherapy.

    PubMed

    Shah, N; Groom, N; Jackson, S; Sibtain, A; Hoskin, P

    2000-05-01

    The objective of this work was to perform a feasibility study on the use of scalp cooling during palliative whole brain radiotherapy. Seven patients (1 male, 6 female) with good performance status underwent scalp cooling prior to and during radiotherapy for cerebral metastases. Five patients were prescribed 12 Gy in two fractions and two patients were prescribed 20 Gy in five fractions. Phantom thermoluminescent dosemeter (TLD) studies to assess the build-up effect from the scalp cap were performed. Seven out of eight patients that were offered scalp cooling completed treatment uneventfully. One patient reported discomfort on application of the scalp cap and continued treatment without scalp cooling. No patients reported other adverse effects from use of the cap during treatment or at follow-up. TLD studies demonstrated a 55-80% increase in dose to the scalp after application of the scalp cap. All patients experienced hair loss. Scalp cooling caps are well tolerated through a course of palliative whole brain radiotherapy. The scalp dose is significantly increased owing to a bolus effect from the scalp cap.

  13. Sexual selection impacts brain anatomy in frogs and toads.

    PubMed

    Zeng, Yu; Lou, Shang Ling; Liao, Wen Bo; Jehle, Robert; Kotrschal, Alexander

    2016-10-01

    Natural selection is a major force in the evolution of vertebrate brain size, but the role of sexual selection in brain size evolution remains enigmatic. At least two opposing schools of thought predict a relationship between sexual selection and brain size. Sexual selection should facilitate the evolution of larger brains because better cognitive abilities may aid the competition for mates. However, it may also restrict brain size evolution due to energetic trade-offs between brain tissue and sexually selected traits. Here, we examined the patterns of selection on brain size and brain anatomy in male anurans (frogs and toads), a group where the strength of sexual selection differs markedly among species, using a phylogenetically controlled generalized least-squared (PGLS) regression analyses. The analysis revealed that in 43 Chinese anuran species, neither mating system, nor type of courtship, or testes mass was significantly associated with relative brain size. While none of those factors related to the relative size of olfactory nerves, optic tecta, telencephalon, and cerebellum, the olfactory bulbs were relatively larger in monogamous species and those using calls during courtship. Our findings support the mosaic model of brain evolution and suggest that while the investigated aspects of sexual selection do not seem to play a prominent role in the evolution of brain size of anurans, they do impact their brain anatomy.

  14. Epidural focal brain cooling abolishes neocortical seizures in cats and non-human primates.

    PubMed

    Inoue, Takao; Fujii, Masami; Kida, Hiroyuki; Yamakawa, Toshitaka; Maruta, Yuichi; Tokiwa, Tatsuji; He, Yeting; Nomura, Sadahiro; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2017-09-01

    Focal brain cooling (FBC) is under investigation in preclinical trials of intractable epilepsy (IE), including status epilepticus (SE). This method has been studied in rodents as a possible treatment for epileptic disorders, but more evidence from large animal studies is required. To provide evidence that FBC is a safe and effective therapy for IE, we investigated if FBC using a titanium cooling plate can reduce or terminate focal neocortical seizures without having a significant impact on brain tissue. Two cats and two macaque monkeys were chronically implanted with an epidural FBC device over the somatosensory and motor cortex. Penicillin G was delivered via the intracranial cannula for induction of local seizures. Repetitive FBC was performed using a cooling device implanted for a medium-term period (FBC for 30min at least twice every week; 3 months total) in three of the four animals. The animals exhibited seizures with repetitive epileptiform discharges (EDs) after administration of penicillin G, and these discharges decreased at less than 20°C cooling with no adverse histological effects. The results of this study suggest that epidural FBC is a safe and effective potential treatment for IE and SE. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    SciTech Connect

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  16. Active cooling in traumatic brain-injured patients: a questionable therapy?

    PubMed

    Grände, P-O; Reinstrup, P; Romner, B

    2009-11-01

    Hypothermia is shown to be beneficial for the outcome after a transient global brain ischaemia through its neuroprotective effect. Whether this is also the case after focal ischaemia, such as following a severe traumatic brain injury (TBI), has been investigated in numerous studies, some of which have shown a tendency towards an improved outcome, whereas others have not been able to demonstrate any beneficial effect. A Cochrane report concluded that the majority of the trials that have already been published have been of low quality, with unclear allocation concealment. If only high-quality trials are considered, TBI patients treated with active cooling were more likely to die, a conclusion supported by a recent high-quality Canadian trial on children. Still, there is a belief that a modified protocol with a shorter time from the accident to the start of active cooling, longer cooling and rewarming time and better control of blood pressure and intracranial pressure would be beneficial for TBI patients. This belief has led to the instigation of new trials in adults and in children, including these types of protocol adjustments. The present review provides a short summary of our present knowledge of the use of active cooling in TBI patients, and presents some tentative explanations as to why active cooling has not been shown to be effective for outcome after TBI. We focus particularly on the compromised circulation of the penumbra zone, which may be further reduced by the stress caused by the difference in thermostat and body temperature and by the hypothermia-induced more frequent use of vasoconstrictors, and by the increased risk of contusional bleedings under hypothermia. We suggest that high fever should be reduced pharmacologically.

  17. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs.

    PubMed Central

    Gunn, A J; Gunn, T R; de Haan, H H; Williams, C E; Gluckman, P D

    1997-01-01

    Hypothermia has been proposed as a neuroprotective strategy. However, short-term cooling after hypoxia-ischemia is effective only if started immediately during resuscitation. The aim of this study was to determine whether prolonged head cooling, delayed into the late postinsult period, improves outcome from severe ischemia. Unanesthetized near term fetal sheep were subject to 30 min of cerebral ischemia. 90 min later they were randomized to either cooling (n = 9) or sham cooling (n = 7) for 72 h. Intrauterine cooling was induced by a coil around the fetal head, leading initially to a fall in extradural temperature of 5-10 degrees C, and a fall in esophageal temperature of 1.5-3 degrees C. Cooling was associated with mild transient systemic metabolic effects, but not with hypotension or altered fetal heart rate. Cerebral cooling reduced secondary cortical cytotoxic edema (P < 0.001). After 5 d of recovery there was greater residual electroencephalogram activity (-5.2+/-1.6 vs. -15.5+/-1.5 dB, P < 0.001) and a dramatic reduction in the extent of cortical infarction and neuronal loss in all regions assessed (e.g., 40 vs. 99% in the parasagittal cortex, P < 0.001). Selective head cooling, maintained throughout the secondary phase of injury, is noninvasive and safe and shows potential for improving neonatal outcome after perinatal asphyxia. PMID:9005993

  18. Brain neurochemistry and macronutrient selection: a role for serotonin feedback?

    PubMed

    1992-01-01

    Experimental manipulations that clearly affected brain serotonin concentrations had no effect on diet selection. These findings challenge the importance of serotonin as part of a negative-feedback loop modulating macronutrient selection.

  19. A Novel Approach to Thermal Design of Solar Modules: Selective-Spectral and Radiative Cooling

    SciTech Connect

    Sun, Xingshu; Dubey, Rajiv; Chattopadhyay, Shashwata; Khan, Mohammad Ryyan; Chavali, Raghu Vamsi; Silverman, Timothy J.; Kottantharayil, Anil; Vasi, Juzer; Alam, Muhammad Ashraful

    2016-11-21

    For commercial solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 degrees C higher than the ambient. In the long run, extreme self-heating may erode efficiency and shorten lifetime, thereby, dramatically reducing the total energy output by almost ~10% Therefore, it is critically important to develop effective and practical cooling methods to combat PV self-heating. In this paper, we explore two fundamental sources of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical and thermal properties of the solar module to eliminate the parasitic absorption (selective-spectral cooling) and enhance the thermal emission to the cold cosmos (radiative cooling). The proposed technique should cool the module by ~10 degrees C, to be reflected in significant long-term energy gain (~ 3% to 8% over 25 years) for PV systems under different climatic conditions.

  20. CoolSim: using industrial modeling techniques to examine the impact of selective head cooling in a model of perinatal regionalization.

    PubMed

    Gray, James; Geva, Alon; Zheng, Zheng; Zupancic, John A F

    2008-01-01

    A selective head-cooling device for the treatment of moderate to severe hypoxic-ischemic encephalopathy has been approved by the Food and Drug Administration for use in the United States. To reflect the complexity of health care delivery at the systems level, we used the industrial modeling technique of discrete event simulation to analyze the impact of various deployment strategies for selective head cooling and its partner technology, amplitude-integrated electroencephalography. We modeled the course through the perinatal system of all births in Massachusetts over a 1-year period. Cohort and care characteristics were drawn from existing databases. Results of a recently published trial were used to estimate the effects of selective head cooling. One thousand cohort replications were conducted to assess uncertainty. Several policy alternatives were examined, including no use of selective head cooling and scenarios that altered the number and placement of selective head-cooling and amplitude-integrated electroencephalography units throughout the state. Patient-level outcome and cost data were assessed. For all scenarios tested, the use of amplitude-integrated electroencephalography/selective head cooling resulted in better outcomes at lower cost. However, substantial differences in transfer rates, failure-to-cool rates, and total costs were seen across scenarios. Optimal decision-making regarding the number and placement of devices led to a 16% improvement in cost savings and a 10-fold decrease in failure-to-cool rates, compared with other deployment scenarios. These results were insensitive to significant changes in model inputs. On the basis of currently available data, the package of amplitude-integrated electroencephalography and selective head cooling seems to be an economically desirable intervention. Quantifiable techniques to assess system-wide technology performance provide a powerful approach to informing decisions regarding the structure and function of

  1. 'Cool and quiet' therapy for malignant hyperthermia following severe traumatic brain injury: A preliminary clinical approach.

    PubMed

    Liu, Yu-He; Shang, Zhen-DE; Chen, Chao; Lu, Nan; Liu, Qi-Feng; Liu, Ming; Yan, Jing

    2015-02-01

    Malignant hyperthermia increases mortality and disability in patients with brain trauma. A clinical treatment for malignant hyperthermia following severe traumatic brain injury, termed 'cool and quiet' therapy by the authors of the current study, was investigated. Between June 2003 and June 2013, 110 consecutive patients with malignant hyperthermia following severe traumatic brain injury were treated using mild hypothermia (35-36°C) associated with small doses of sedative and muscle relaxant. Physiological parameters and intracranial pressure were monitored, and the patients slowly rewarmed following the maintenance of mild hypothermia for 3-12 days. Consecutive patients who had undergone normothermia therapy were retrospectively analyzed as the control. In the mild hypothermia group, the recovery rate was 54.5%, the mortality rate was 22.7%, and the severe and mild disability rates were 11.8 and 10.9%, respectively. The mortality rate of the patients, particularly that of patients with a Glasgow Coma Scale (GCS) score of between 3 and 5 differed significantly between the hypothermia group and the normothermia group (P<0.05). The mortality of patients with a GCS score of between 6 and 8 was not significantly different between the two groups (P> 0.05). The therapy using mild hypothermia with a combination of sedative and muscle relaxant was beneficial in decreasing the mortality of patients with malignant hyperthermia following severe traumatic brain injury, particularly in patients with a GCS score within the range 3-5 on admission. The therapy was found to be safe, effective and convenient. However, rigorous clinical trials are required to provide evidence of the effectiveness of 'cool and quiet' therapy for hyperthermia.

  2. Wireless and batteryless biomedical microsystem for neural recording and epilepsy suppression based on brain focal cooling.

    PubMed

    Hou, K-C; Chang, C-W; Chiou, J-C; Huang, Y-H; Shaw, F-Z

    2011-12-01

    This work presents a biomedical microsystem with a wireless radiofrequency (RF)-powered electronics and versatile sensors/actuators for use in nanomedicinal diagnosis and therapy. The cooling of brain tissue has the potential to reduce the frequency and severity of epilepsy. Miniaturised spiral coils as a wireless power module with low-dropout linear regulator circuit convert RF signals into a DC voltage, can be implanted without a battery in monitoring free behaviour. A thermoelectric (TE) cooler is an actuator that is employed to cool down brain tissue to suppress epilepsy. Electroencephalogram (EEG) electrodes and TE coolers are integrated to form module that is placed inside the head of a rat and fastened with a bio-compatible material. EEG signals are used to identify waveforms associated with epilepsy and are measured using readout circuits. The wireless part of the presented design achieves a low quiescent current and line/load regulation and high antenna/current efficiency with thermal protection to avoid damage to the implanted tissue. Epilepsy is suppressed by reducing the temperature to reduce the duration of this epileptic episode. Related characterisations demonstrate that the proposed design can be adopted in an effective nanomedicine microsystem.

  3. Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report

    SciTech Connect

    Smith, M J; Suo, M

    1981-04-01

    The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

  4. Guidelines for selecting a solar heating, cooling or hot water design

    SciTech Connect

    Kelly, C.J. Jr.

    1981-12-01

    Guidelines are presented for the professional who may have to choose between competing solar heating and cooling designs for buildings. The experience of the National Solar Data Network in monitoring over 100 solar installations are drawn upon. Three basic principles and a design selection checklist are developed which will aid in choosing the most cost effective design.

  5. Treatments (12 and 48 h) with systemic and brain-selective hypothermia techniques after permanent focal cerebral ischemia in rat.

    PubMed

    Clark, Darren L; Penner, Mark; Wowk, Shannon; Orellana-Jordan, Ian; Colbourne, Frederick

    2009-12-01

    Mild hypothermia lessens brain injury when initiated after the onset of global or focal ischemia. The present study sought to determine whether cooling to approximately 33 degrees C provides enduring benefit when initiated 1 h after permanent middle cerebral artery occlusion (pMCAO, via electrocautery) in adult rats and whether protection depends upon treatment duration and cooling technique. In the first experiment, systemic cooling was induced in non-anesthetized rats through a whole-body exposure technique that used fans and water mist. In comparison to normothermic controls, 12- and 48-h bouts of hypothermia significantly lessened functional impairment, such as skilled reaching ability, and lesion volume out to a 1-month survival. In the second experiment, brain-selective cooling was induced in awake rats via a water-cooled metal strip implanted underneath the temporalis muscle overlying the ischemic territory. Use of a 48-h cooling treatment significantly mitigated injury and behavioral impairment whereas a 12-h treatment did not. These findings show that while systemic and focal techniques are effective when initiated after the onset of pMCAO, they differ in efficacy depending upon the treatment duration. A direct and uncomplicated comparison between methods is problematic, however, due to unknown gradients in brain temperature and the use of two separate experiments. In summary, prolonged cooling, even when delayed after onset of pMCAO, provides enduring behavioral and histological protection sufficient to suggest that it will be clinically effective. Nonetheless, further pre-clinical work is needed to improve treatment protocols, such as identifying the optimal depth of cooling, and how these factors interact with cooling method.

  6. Burning issues: early cooling of the brain after resuscitation using burn dressings. A proof of concept observation.

    PubMed

    Adams, R; Koster, R W

    2008-08-01

    Early cooling of resuscitated patients improves neurological outcome. Out-of hospital initiation of cooling is uncommon however for mainly practical reasons. Using burn dressings in the out-of-hospital care could initiate brain cooling in an early stage and therefore be of value; the method is easily adaptable by ambulance crews. The influence of burn dressings on brain temperature is however unknown. We determined tympanic temperature changes as proxy for brain temperature in healthy volunteers after the application of cooling dressings to face and neck as a proof of concept study. In 10 healthy human volunteers tympanic temperatures were measured in 30s intervals before, during and after the application of burn-dressings, special trauma burn-care dressings that are designed for the acute treatment of skin burns (Burnshield emergency burn care sterile trauma burn dressings, Burnshield Ltd., Wadefield, South Africa) for the duration of 20min for each episode. In all study subjects the tympanic temperature was significantly lowered after 20min of the application of the burnshields. The mean difference between baseline and 2nd half of the exposure period was 0.43 degrees C (p<0.0001), ranging from 0.10 to 1.18 degrees C. Burn dressings could be of value in the early initiation of brain cooling in resuscitated patients. This study warrants further research to the effect of burnshield dressings on neurological activity and the effect on outcome after resuscitation.

  7. Sexual selection predicts brain structure in dragon lizards.

    PubMed

    Hoops, D; Ullmann, J F P; Janke, A L; Vidal-Garcia, M; Stait-Gardner, T; Dwihapsari, Y; Merkling, T; Price, W S; Endler, J A; Whiting, M J; Keogh, J S

    2017-02-01

    Phenotypic traits such as ornaments and armaments are generally shaped by sexual selection, which often favours larger and more elaborate males compared to females. But can sexual selection also influence the brain? Previous studies in vertebrates report contradictory results with no consistent pattern between variation in brain structure and the strength of sexual selection. We hypothesize that sexual selection will act in a consistent way on two vertebrate brain regions that directly regulate sexual behaviour: the medial preoptic nucleus (MPON) and the ventromedial hypothalamic nucleus (VMN). The MPON regulates male reproductive behaviour whereas the VMN regulates female reproductive behaviour and is also involved in male aggression. To test our hypothesis, we used high-resolution magnetic resonance imaging combined with traditional histology of brains in 14 dragon lizard species of the genus Ctenophorus that vary in the strength of precopulatory sexual selection. Males belonging to species that experience greater sexual selection had a larger MPON and a smaller VMN. Conversely, females did not show any patterns of variation in these brain regions. As the volumes of both these regions also correlated with brain volume (BV) in our models, we tested whether they show the same pattern of evolution in response to changes in BV and found that the do. Therefore, we show that the primary brain nuclei underlying reproductive behaviour in vertebrates can evolve in a mosaic fashion, differently between males and females, likely in response to sexual selection, and that these same regions are simultaneously evolving in concert in relation to overall brain size. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  8. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  9. Ethnography of Cool Roof Retrofits: The Role of Rebates in the Materials Selection Process

    SciTech Connect

    Mazur-Stommen, Susan

    2011-02-01

    In the summer of 2010, ethnographic research was conducted with nine households in the Bay Area and Sacramento region. The purpose of this task was to collect methodologically grounded insights into how and why consumers chose the cool roofing material they selected. These nine households comprised fifteen respondents, and their dependents. They were selected from among a pool of respondents to a mail solicitation of all Sacramento Municipal Utility District and Pacific Gas and Electric customers who had received a rebate for their cool roof retrofit. Consumers are uniformly happy with their cool roof retrofits. Consumers typically stayed very close to the aesthetic of the original roof style. Price was not a primary concern, while longevity was paramount. Consumers did not use roofing price, nor energy savings (with one exception), in tracking return on investment through energy savings. The utility rebate had little role to play in terms of incentivizing customers to choose cool materials. Contractors were critical partners in the decision-­making process.

  10. Forced convective head cooling device reduces human cross-sectional brain temperature measured by magnetic resonance: a non-randomized healthy volunteer pilot study.

    PubMed

    Harris, B A; Andrews, P J D; Marshall, I; Robinson, T M; Murray, G D

    2008-03-01

    This pilot study in five healthy adult humans forms the pre-clinical assessment of the effect of a forced convective head cooling device on intracranial temperature, measured non-invasively by magnetic resonance spectroscopy (MRS). After a 10 min baseline with no cooling, subjects received 30 min of head cooling followed by 30 min of head and neck cooling via a hood and neck collar delivering 14.5 degrees C air at 42.5 litre s(-1). Over baseline and at the end of both cooling periods, MRS was performed, using chemical shift imaging, to measure brain temperature simultaneously across a single slice of brain at the level of the basal ganglia. Oesophageal temperature was measured continuously using a fluoroptic thermometer. MRS brain temperature was calculated for baseline and the last 10 min of each cooling period. The net brain temperature reduction with head cooling was 0.45 degrees C (SD 0.23 degrees C, P=0.01, 95% CI 0.17-0.74 degrees C) and with head and neck cooling was 0.37 degrees C (SD 0.30 degrees C, P=0.049, 95% CI 0.00-0.74 degrees C). The equivalent net reductions in oesophageal temperature were 0.16 degrees C (SD 0.04 degrees C) and 0.36 degrees C (SD 0.12 degrees C). Baseline-corrected brain temperature gradients from outer through intermediate to core voxels were not significant for either head cooling (P=0.43) or head and neck cooling (P=0.07), indicating that there was not a significant reduction in cooling with progressive depth into the brain. Convective head cooling reduced MRS brain temperature and core brain was cooled.

  11. Spatially selective photocoagulation of biological tissues: feasibility study utilizing cryogen spray cooling

    SciTech Connect

    Anvari, B. |; Tanenbaum, B.S.; Milner, T.E.; Tang, K.; Liaw, L.; Kalafus, K.; Kimel, S.; Nelson, J.S.

    1996-07-01

    Successful laser treatment of selected dermatoses such as hemangiomas requires thermally induced damage to blood vessels while protecting the epidermis. We present and test a procedure in a rabbit liver tissue model that utilizes cryogen spray cooling during continuous Nd:YAG laser irradiation to induce deep photocoagulation necrosis while protecting superficial tissues from thermal injury. Gross and histologic observations are consistent with calculated thicknesses of protected and photocoagulated tissues and demonstrate the feasibility of inducing spatially selective photocoagulation when cryogen spray cooling is used in conjunction with laser irradiation. This procedure may be useful in the thermal treatment of some pathological conditions for which it is desired that deep photocoagulation be induced while protecting superficial tissues. {copyright} {ital 1996 Optical Society of America.}

  12. Spatially selective photocoagulation of biological tissues: feasibility study utilizing cryogen spray cooling

    NASA Astrophysics Data System (ADS)

    Anvari, Bahman; Tanenbaum, B. Samuel; Milner, Thomas E.; Tang, Kimberly; Liaw, Lih-Huei; Kalafus, Ken; Kimel, Sol; Nelson, J. Stuart

    1996-07-01

    Successful laser treatment of selected dermatoses such as hemangiomas requires thermally induced damage to blood vessels while protecting the epidermis. We present and test a procedure in a rabbit liver tissue model that utilizes cryogen spray cooling during continuous Nd:YAG laser irradiation to induce deep photocoagulation necrosis while protecting superficial tissues from thermal injury. Gross and histologic observations are consistent with calculated thicknesses of protected and photocoagulated tissues and demonstrate the feasibility of inducing spatially selective photocoagulation when cryogen spray cooling is used in conjunction with laser irradiation. This procedure may be useful in the thermal treatment of some pathological conditions for which it is desired that deep photocoagulation be induced while protecting superficial tissues. infrared radiometry, laser, microwave, thermal-damage confinement.

  13. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

  14. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  15. A thermal window for yawning in humans: yawning as a brain cooling mechanism.

    PubMed

    Massen, Jorg J M; Dusch, Kim; Eldakar, Omar Tonsi; Gallup, Andrew C

    2014-05-10

    The thermoregulatory theory of yawning posits that yawns function to cool the brain in part due to counter-current heat exchange with the deep inhalation of ambient air. Consequently, yawning should be constrained to an optimal thermal zone or range of temperature, i.e., a thermal window, in which we should expect a lower frequency at extreme temperatures. Previous research shows that yawn frequency diminishes as ambient temperatures rise and approach body temperature, but a lower bound to the thermal window has not been demonstrated. To test this, a total of 120 pedestrians were sampled for susceptibly to self-reported yawn contagion during distinct temperature ranges and seasons (winter: 1.4°C, n=60; summer: 19.4°C, n=60). As predicted, the proportion of pedestrians reporting yawning was significantly lower during winter than in summer (18.3% vs. 41.7%), with temperature being the only significant predictor of these differences across seasons. The underlying mechanism for yawning in humans, both spontaneous and contagious, appears to be involved in brain thermoregulation. Copyright © 2014. Published by Elsevier Inc.

  16. Sexual selection and the evolution of brain size in primates.

    PubMed

    Schillaci, Michael A

    2006-12-20

    Reproductive competition among males has long been considered a powerful force in the evolution of primates. The evolution of brain size and complexity in the Order Primates has been widely regarded as the hallmark of primate evolutionary history. Despite their importance to our understanding of primate evolution, the relationship between sexual selection and the evolutionary development of brain size is not well studied. The present research examines the evolutionary relationship between brain size and two components of primate sexual selection, sperm competition and male competition for mates. Results indicate that there is not a significant relationship between relative brain size and sperm competition as measured by relative testis size in primates, suggesting sperm competition has not played an important role in the evolution of brain size in the primate order. There is, however, a significant negative evolutionary relationship between relative brain size and the level of male competition for mates. The present study shows that the largest relative brain sizes among primate species are associated with monogamous mating systems, suggesting primate monogamy may require greater social acuity and abilities of deception.

  17. The effects of selective head cooling versus whole-body cooling on some neural and inflammatory biomarkers: a randomized controlled pilot study.

    PubMed

    Çelik, Yalçın; Atıcı, Aytuğ; Gülaşı, Selvi; Makharoblıdze, Khatuna; Eskandari, Gülçin; Sungur, Mehmet Ali; Akbayır, Serin

    2015-10-15

    Therapeutic hypothermia (TH) has become standard care in newborns with moderate to severe hypoxic ischemic encephalopathy (HIE), and the 2 most commonly used methods are selective head cooling (SHC) and whole body cooling (WBC). This study aimed to determine if the effects of the 2 methods on some neural and inflammatory biomarkers differ. This prospective randomized pilot study included newborns delivered after >36 weeks of gestation. SHC or WBC was administered randomly to newborns with moderate to severe HIE that were prescribed TH. The serum interleukin (IL)-1β, IL-6, neuron-specific enolase (NSE), brain-specific creatine kinase (CK-BB), tumor necrosis factor-alpha (TNF-α), and protein S100 levels, the urine S100B level, and the urine lactate/creatinine (L/C) ratio were evaluated 6 and 72 h after birth. The Bayley Scales of Infant and Toddler Development-III was administered at month 12 for assessment of neurodevelopmental findings. The SHC group included 14 newborns, the WBC group included 10, the mild HIE group included 7, and the control group included 9. All the biomarker levels in the SHC and WBC groups at 6 and 72 h were similar, and all the changes in the biomarker levels between 6 and 72 h were similar in both groups. The serum IL-6 and protein S100 levels at 6 h in the SHC and WBC groups were significantly higher than in the control group. The urine L/C ratio at 6 h in the SHC and WBC groups was significantly higher than in the mild HIE and control groups. The IL-6 level and L/C ratio at 6 and 72 h in the patients that had died or had disability at month 12 were significantly higher than in the patients without disability at month 12. The effects of SHC and WBC on the biomarkers evaluated did not differ. The urine L/C ratio might be useful for differentiating newborns with moderate and severe HIE from those with mild HIE. Furthermore, the serum IL-6 level and the L/C ratio might be useful for predicting disability and mortality in newborns with HIE.

  18. Neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: analysis from a neurophysiological perspective.

    PubMed

    He, Yeting; Fujii, Masami; Inoue, Takao; Nomura, Sadahiro; Maruta, Yuichi; Oka, Fumiaki; Shirao, Satoshi; Owada, Yuji; Kida, Hiroyuki; Kunitsugu, Ichiro; Yamakawa, Toshitaka; Tokiwa, Tatsuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2013-02-25

    Although systemic hypothermia provides favorable outcomes in stroke patients, it has only been adopted in a limited number of patients because of fatal complications. To resolve these issues, focal brain cooling (FBC) has recently drawn attention as a less-invasive treatment for brain injuries. Therefore, we investigated whether FBC has a favorable effect on focal cerebral ischemia (FCI). Male-adult-Wistar rats were used. Under general anesthesia, a small burr hole was made and FCI was induced in the primary sensorimotor area (SI-MI) using photothrombosis. An additional craniotomy was made over the SI-MI and FBC was performed at a temperature of 15°C for 5h. Electrocorticograms (ECoG) were recorded on the border cortex of the ischemic focus. Thereafter, rats were sacrificed and the infarct area was measured. In another experiment, rats were allowed to recover for 5 days after cooling and neurobehavioral function was evaluated. FBC suppressed all ECoG frequency bands during and after cooling (p<0.05), except for the delta frequency band in the precooling versus rewarming periods. The injured areas in the cooling and non-cooling groups were 0.99±0.30 and 1.71±0.54 mm(2), respectively (p<0.03). The grip strength at 2 days after surgery was preserved in the cooling group (p<0.05). We report the novel finding that epileptiform discharges were suppressed in the ischemic border, the infarct area was reduced and neurobehaviour was preserved by FBC. These results indicate that FBC is neuroprotective in the ischemic brain and has demonstrated therapeutic potential for cerebral infarction. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The icehouse effect is a hypothesized climate feedback mechanism which could result in human-caused surface cooling trends in polar regions. Once understood in detail, it becomes apparent that these trends, which are discernable in the literature, but have been largely dismissed, do not conflict with the consensus assessment of the evidence, which infers century-scale Arctic warming. In fact, confirmation of the hypothesis would substantially strengthen the argument that there is a detectable human influence on today's climate. This apparent enigma is resolved only through careful attention to the detail of the hypothesis and the data supporting it. The posited surface cooling is entirely dependent on the existence of climate warming in layers capping the stable boundary layer. Also, the cooling is not pandemic, but is selective. It is readily revealed in properly sorted data by making use of the principles of micrometeorological similarity. Specifically, the cooling is manifest under a range of favorable turbulence conditions which can develop and disappear locally on time scales of minutes to hours because of the intrinsically intermittent nature of stable boundary layer turbulence. Because of the fine-scale nature of the processes which produce the cooling, modeling it is a difficult proposition. Vertical resolution on the order of 1 meter is required. Adequate models of intermittent surface fluxes coupled with radiation exchange do not currently exist, not as parameterizations for aggregated systems, nor in large eddy simulation (LES) models. This presentation will introduce the theory. An important testable null hypothesis emerges: the icehouse effect produces a unique signature or "fingerprint" which could not be produced by any other known process. The presence of this signature will be demonstrated using nearly all available Arctic temperature observations. Its aggregate effect is clearly found in Arctic monthly surface temperature trends when sorted by

  20. Brain Cooling With Ventilation of Cold Air Over Respiratory Tract in Newborn Piglets: An Experimental and Numerical Study

    PubMed Central

    Bakhsheshi, Mohammad Fazel; Moradi, Hadi Vafadar; Stewart, Errol E.; Keenliside, Lynn; Lee, Ting-Yim

    2015-01-01

    We investigate thermal effects of pulmonary cooling which was induced by cold air through an endotracheal tube via a ventilator on newborn piglets. A mathematical model was initially employed to compare the thermal impact of two different gas mixtures, O2-medical air (1:2) and O2-Xe (1:2), across the respiratory tract and within the brain. Following mathematical simulations, we examined the theoretical predictions with O2-medical air condition on nine anesthetized piglets which were randomized to two treatment groups: 1) control group (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n = 4$ \\end{document}) and 2) pulmonary cooling group (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$n = 5$ \\end{document}). Numerical and experimental results using O2-medical air mixture show that brain temperature fell from 38.5 °C and 38.3 °C ± 0.3 °C to 35.7 °C ± 0.9 °C and 36.5 °C ± 0.6 °C during 3 h cooling which corresponded to a mean cooling rate of 0.9 °C/h ± 0.2 °C/h and 0.6 °C/h ± 0.1 °C/h, respectively. According to the numerical results, decreasing the metabolic rate and increasing air velocity are helpful to maximize the cooling effect. We demonstrated that pulmonary cooling by cooling of inhalation gases immediately before they enter the trachea can slowly reduce brain and core body temperature of newborn piglets. Numerical simulations show no significant differences between two different inhaled conditions, i.e., O2-medical air (1:2) and O2-Xe (1:2) with respect to cooling rate. PMID:27170888

  1. Prediction of Future Epilepsy in Neonates With Hypoxic-Ischemic Encephalopathy Who Received Selective Head Cooling.

    PubMed

    McDonough, Tiffani L; Paolicchi, Juliann M; Heier, Linda A; Das, Nikkan; Engel, Murray; Perlman, Jeffrey M; Grinspan, Zachary M

    2017-01-01

    Epilepsy outcomes after therapeutic hypothermia for neonates with hypoxic-ischemic encephalopathy are understudied. The authors used multivariable logistic regression to predict epilepsy in neonates after selective head cooling. Sensitivity analyses used magnetic resonance imaging (MRI) and electroencephalogram (EEG) interpretations by different clinicians. Fifty neonates had 2-year follow-up. Nine developed epilepsy. Predictors included pH ≤6.8 on day of birth (adjusted odds ratio [OR] 19 [95% confidence interval (CI) 1-371]), burst suppression on EEG on day 4 (8.2 [1.3-59]), and MRI deep gray matter injury (OR 33 [2.4-460]). These factors stratify neonates into low (0-1 factors; 3% [0%-14%] risk), medium (2 factors; 56% [21%-86%] risk), and high-risk groups (3 factors; 100% [29%-100%] risk) for epilepsy. The stratification was robust to varying clinical interpretations of the MRI and EEG. Neonates with hypoxic-ischemic encephalopathy who undergo selective head cooling appear at risk of epilepsy if they have 2 to 3 identified factors. If validated, this rule may help counsel families and identify children for close clinical follow-up.

  2. Spectrally selective glazings for residential retrofits in cooling-dominated climates

    SciTech Connect

    Lee, E.S.; Hopkins, D.; Rubin, M.; Arasteh, D.; Selkowitz, S.

    1993-04-01

    Spectrally selective glazings can substantially reduce energy consumption and peak demand in residences by significantly reducing solar gains with minimal loss of illumination and view. In cooling-dominated climates, solar gains contribute 24--31% to electricity consumption and 40--43% to peak demand in homes with single pane clear glazing - standard practice for residential construction built before the implementation of building energy efficiency standards. The existing residential housing stock therefore offers a prime opportunity for significant demand-side management (DSM),but the energy and cost savings must be weighed against retrofit first costs in order for the technology to achieve full market penetration. Using DOE-2.1D for numerical simulation of building energy performance, we quantify the energy and peak demand reductions, cost savings, and HVAC capacity reductions using spectrally selective glazings for five cooling-dominated climates in California. The cost-effectiveness of various material and installation retrofit options is discussed. Glazing material improvements for retrofit applications that are needed to achieve a prescribed cost savings are also given.

  3. Selective Neuronal Vulnerability to Oxidative Stress in the Brain

    PubMed Central

    Wang, Xinkun; Michaelis, Elias K.

    2010-01-01

    Oxidative stress (OS), caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS), plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer's disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV) to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed. PMID:20552050

  4. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  5. Brain dynamics of meal size selection in humans.

    PubMed

    Toepel, Ulrike; Bielser, Marie-Laure; Forde, Ciaran; Martin, Nathalie; Voirin, Alexandre; le Coutre, Johannes; Murray, Micah M; Hudry, Julie

    2015-06-01

    Although neuroimaging research has evidenced specific responses to visual food stimuli based on their nutritional quality (e.g., energy density, fat content), brain processes underlying portion size selection remain largely unexplored. We identified spatio-temporal brain dynamics in response to meal images varying in portion size during a task of ideal portion selection for prospective lunch intake and expected satiety. Brain responses to meal portions judged by the participants as 'too small', 'ideal' and 'too big' were measured by means of electro-encephalographic (EEG) recordings in 21 normal-weight women. During an early stage of meal viewing (105-145 ms), data showed an incremental increase of the head-surface global electric field strength (quantified via global field power; GFP) as portion judgments ranged from 'too small' to 'too big'. Estimations of neural source activity revealed that brain regions underlying this effect were located in the insula, middle frontal gyrus and middle temporal gyrus, and are similar to those reported in previous studies investigating responses to changes in food nutritional content. In contrast, during a later stage (230-270 ms), GFP was maximal for the 'ideal' relative to the 'non-ideal' portion sizes. Greater neural source activity to 'ideal' vs. 'non-ideal' portion sizes was observed in the inferior parietal lobule, superior temporal gyrus and mid-posterior cingulate gyrus. Collectively, our results provide evidence that several brain regions involved in attention and adaptive behavior track 'ideal' meal portion sizes as early as 230 ms during visual encounter. That is, responses do not show an increase paralleling the amount of food viewed (and, in extension, the amount of reward), but are shaped by regulatory mechanisms.

  6. A statistically selected Chandra sample of 20 galaxy clusters - II. Gas properties and cool core/non-cool core bimodality

    NASA Astrophysics Data System (ADS)

    Sanderson, Alastair J. R.; O'Sullivan, Ewan; Ponman, Trevor J.

    2009-05-01

    We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density, metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters (Z ~ r-0.31), outside ~0.02r500. The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a distinct population in which heating from feedback is required in addition to conduction. Under the assumption that non-CC clusters are thermally stabilized by conduction alone, we find the distribution of Spitzer conduction suppression factors, fc, to be lognormal, with a log (base 10) mean of -1.50 +/- 0.03 (i.e. fc = 0.032) and log standard deviation 0.39 +/- 0.02.

  7. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    NASA Astrophysics Data System (ADS)

    1980-09-01

    An assessment is made of four applications of biomass and solar energy conversion technologies. The first is an energy self-sufficient farm that provides all of its space heating and hot water needs by burning wood obtained by selective timber cutting on the farm acreage. The heating system is a commerical boiler furnace. A Purox gasification system is described which uses wood feedstock with a capacity of 850 dry tons/day. This system requires 2,000 farms, each with 30 acres of wooded land having a sustainable capacity of 5 dry tons/day per acre. The efficiency of silviculture plantations is then addressed in regard to different conversion strategies. Finally, a solar heat and cooling system designed for a one story school building is assessed. Land and materials requirements, climatology, and economic factors are discussed.

  8. Brain activity associated with selective attention, divided attention and distraction.

    PubMed

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-03-28

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks.

  9. Quantitative analysis of task selection for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Llera, Alberto; Gómez, Vicenç; Kappen, Hilbert J.

    2014-10-01

    Objective. To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). Approach. We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection on a large-scale basis (109 users) and evaluate the possibility of transferring task-pair information across days for a given subject. Main results. Selecting the subject-dependent optimal task-pair among three different imagery movement tasks results in approximately 20% potential increase in the number of users that can be expected to control a binary BCI. The improvement is observed with respect to the best task-pair fixed across subjects. The best task-pair selected for each subject individually during a first day of recordings is generally a good task-pair in subsequent days. In general, task learning from the user side has a positive influence in the generalization of the optimal task-pair, but special attention should be given to inexperienced subjects. Significance. These results add significant evidence to existing literature that advocates task selection as a necessary step towards usable BCIs. This contribution motivates further research focused on deriving adaptive methods for task selection on larger sets of mental tasks in practical online scenarios.

  10. Brain networks supporting perceptual grouping and contour selection.

    PubMed

    Volberg, Gregor; Greenlee, Mark W

    2014-01-01

    The human visual system groups local elements into global objects seemingly without effort. Using a contour integration task and EEG source level analyses, we tested the hypothesis that perceptual grouping requires a top-down selection, rather than a passive pooling, of neural information that codes local elements in the visual image. The participants were presented visual displays with or without a hidden contour. Two tasks were performed: a central luminance-change detection task and a peripheral contour detection task. Only in the contour-detection task could we find differential brain activity between contour and non-contour conditions, within a distributed brain network including parietal, lateral occipital and primary visual areas. Contour processing was associated with an inflow of information from lateral occipital into primary visual regions, as revealed from the slope of phase differences between source level oscillations within these areas. The findings suggest that contour integration results from a selection of neural information from lower visual areas, and that this selection is driven by the lateral occipital cortex.

  11. Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites

    NASA Technical Reports Server (NTRS)

    Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.

    2017-01-01

    We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).

  12. Selective brain penetrable Nurr1 transactivator for treating Parkinson's disease.

    PubMed

    Wang, Jun; Bi, Weina; Zhao, Wei; Varghese, Merina; Koch, Rick J; Walker, Ruth H; Chandraratna, Roshantha A; Sanders, Martin E; Janesick, Amanda; Blumberg, Bruce; Ward, Libby; Ho, Lap; Pasinetti, Giulio M

    2016-02-16

    Parkinson's disease (PD) is one of the most common movement disorders, and currently there is no effective treatment that can slow disease progression. Preserving and enhancing DA neuron survival is increasingly regarded as the most promising therapeutic strategy for treating PD. IRX4204 is a second generation retinoid X receptor (RXR) agonist that has no cross reactivity with retinoic acid receptors, farnesoid X receptor, liver X receptors or peroxisome proliferator-activated receptor PPARγ. We found that IRX4204 promotes the survival and maintenance of nigral dopaminergic (DA) neurons in a dose-dependent manner in primary mesencephalic cultures. Brain bioavailability studies demonstrate that IRX4204 can cross the blood brain barrier and reach the brain at nM concentration. Oral administration of IRX4204 can activate nuclear receptor Nurr1 downstream signaling in the substantia nigra (SN) andattenuate neurochemical and motor deficits in a rat model of PD. Our study suggests that IRX4204 represents a novel, potent and selective pharmacological means to activate cellular RXR-Nurr1 signaling and promote SN DA neuron survival in PD prevention and/or treatment.

  13. Selective brain penetrable Nurr1 transactivator for treating Parkinson's disease

    PubMed Central

    Wang, Jun; Bi, Weina; Zhao, Wei; Varghese, Merina; Koch, Rick J.; Walker, Ruth H.; Chandraratna, Roshantha A.; Sanders, Martin E.; Janesick, Amanda; Blumberg, Bruce; Ward, Libby; Ho, Lap; Pasinetti, Giulio M.

    2016-01-01

    Parkinson's disease (PD) is one of the most common movement disorders, and currently there is no effective treatment that can slow disease progression. Preserving and enhancing DA neuron survival is increasingly regarded as the most promising therapeutic strategy for treating PD. IRX4204 is a second generation retinoid X receptor (RXR) agonist that has no cross reactivity with retinoic acid receptors, farnesoid X receptor, liver X receptors or peroxisome proliferator-activated receptor PPARγ. We found that IRX4204 promotes the survival and maintenance of nigral dopaminergic (DA) neurons in a dose-dependent manner in primary mesencephalic cultures. Brain bioavailability studies demonstrate that IRX4204 can cross the blood brain barrier and reach the brain at nM concentration. Oral administration of IRX4204 can activate nuclear receptor Nurr1 downstream signaling in the substantia nigra (SN) andattenuate neurochemical and motor deficits in a rat model of PD. Our study suggests that IRX4204 represents a novel, potent and selective pharmacological means to activate cellular RXR-Nurr1 signaling and promote SN DA neuron survival in PD prevention and/or treatment. PMID:26862735

  14. Sexual selection uncouples the evolution of brain and body size in pinnipeds.

    PubMed

    Fitzpatrick, J L; Almbro, M; Gonzalez-Voyer, A; Hamada, S; Pennington, C; Scanlan, J; Kolm, N

    2012-07-01

    The size of the vertebrate brain is shaped by a variety of selective forces. Although larger brains (correcting for body size) are thought to confer fitness advantages, energetic limitations of this costly organ may lead to trade-offs, for example as recently suggested between sexual traits and neural tissue. Here, we examine the patterns of selection on male and female brain size in pinnipeds, a group where the strength of sexual selection differs markedly among species and between the sexes. Relative brain size was negatively associated with the intensity of sexual selection in males but not females. However, analyses of the rates of body and brain size evolution showed that this apparent trade-off between sexual selection and brain mass is driven by selection for increasing body mass rather than by an actual reduction in male brain size. Our results suggest that sexual selection has important effects on the allometric relationships of neural development.

  15. Statistical feature selection for enhanced detection of brain tumor

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Colen, Rivka R.

    2014-09-01

    Feature-based methods are widely used in the brain tumor recognition system. Robust of early cancer detection is one of the most powerful image processing tools. Specifically, statistical features, such as geometric mean, harmonic mean, mean excluding outliers, median, percentiles, skewness and kurtosis, have been extracted from brain tumor glioma to aid in discriminating two levels namely, Level I and Level II using fluid attenuated inversion recovery (FLAIR) sequence in the diagnosis of brain tumor. Statistical feature describes the major characteristics of each level from glioma which is an important step to evaluate heterogeneity of cancer area pixels. In this paper, we address the task of feature selection to identify the relevant subset of features in the statistical domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between Level I and Level II. We apply a Decision Structure algorithm to find the optimal combination of nonhomogeneity based statistical features for the problem at hand. We employ a Naïve Bayes classifier to evaluate the performance of the optimal statistical feature based scheme in terms of its glioma Level I and Level II discrimination capability and use real-data collected from 17 patients have a glioblastoma multiforme (GBM). Dataset provided from 3 Tesla MR imaging system by MD Anderson Cancer Center. For the specific data analyzed, it is shown that the identified dominant features yield higher classification accuracy, with lower number of false alarms and missed detections, compared to the full statistical based feature set. This work has been proposed and analyzed specific GBM types which Level I and Level II and the dominant features were considered as feature aid to prognostic indicators. These features were selected automatically to be better able to determine prognosis from classical imaging studies.

  16. The brain's silent messenger: using selective attention to decode human thought for brain-based communication.

    PubMed

    Naci, Lorina; Cusack, Rhodri; Jia, Vivian Z; Owen, Adrian M

    2013-05-29

    The interpretation of human thought from brain activity, without recourse to speech or action, is one of the most provoking and challenging frontiers of modern neuroscience. In particular, patients who are fully conscious and awake, yet, due to brain damage, are unable to show any behavioral responsivity, expose the limits of the neuromuscular system and the necessity for alternate forms of communication. Although it is well established that selective attention can significantly enhance the neural representation of attended sounds, it remains, thus far, untested as a response modality for brain-based communication. We asked whether its effect could be reliably used to decode answers to binary (yes/no) questions. Fifteen healthy volunteers answered questions (e.g., "Do you have brothers or sisters?") in the fMRI scanner, by selectively attending to the appropriate word ("yes" or "no"). Ninety percent of the answers were decoded correctly based on activity changes within the attention network. The majority of volunteers conveyed their answers with less than 3 min of scanning, suggesting that this technique is suited for communication in a reasonable amount of time. Formal comparison with the current best-established fMRI technique for binary communication revealed improved individual success rates and scanning times required to detect responses. This novel fMRI technique is intuitive, easy to use in untrained participants, and reliably robust within brief scanning times. Possible applications include communication with behaviorally nonresponsive patients.

  17. Artificial Selection on Relative Brain Size in the Guppy Reveals Costs and Benefits of Evolving a Larger Brain

    PubMed Central

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A.; Kolm, Niclas

    2013-01-01

    Summary The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the “expensive-tissue hypothesis” [1]). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence [2], and the theory remains controversial [3, 4]. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis [1], and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. PMID:23290552

  18. Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size.

    PubMed

    Kotrschal, A; Corral-Lopez, A; Zajitschek, S; Immler, S; Maklakov, A A; Kolm, N

    2015-04-01

    Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade-offs between brain size and sexual traits. Instead, larger-brained males had higher expression of several primary and precopulatory sexual traits--they had longer genitalia, were more colourful and developed longer tails than smaller-brained males. Larger-brained males were also in better body condition when housed in single-sex groups. There was no difference in post-copulatory sexual traits between males from the large- and small-brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  19. Target coverage and selectivity in field steering brain stimulation.

    PubMed

    Cubo, Ruben; Åstrom, Mattias; Medvedev, Alexander

    2014-01-01

    Deep Brain Stimulation (DBS) is an established treatment in Parkinson's Disease. The target area is defined based on the state and brain anatomy of the patient. The stimulation delivered via state-of-the-art DBS leads that are currently in clinical use is difficult to individualize to the patient particularities. Furthermore, the electric field generated by such a lead has a limited selectivity, resulting in stimulation of areas adjacent to the target and thus causing undesirable side effects. The goal of this study is, using actual clinical data, to compare in silico the stimulation performance of a symmetrical generic lead to a more versatile and adaptable one allowing, in particular, for asymmetric stimulation. The fraction of the volume of activated tissue in the target area and the fraction of the stimulation field that spreads beyond it are computed for a clinical data set of patients in order to quantify the lead performance. The obtained results suggest that using more versatile DBS leads might reduce the stimulation area beyond the target and thus lessen side effects for the same achieved therapeutical effect.

  20. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling.

    PubMed

    Soriano, Jaymar; Kubo, Takatomi; Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu; Ikeda, Kazushi

    2017-10-01

    Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is

  1. Increased ubiquinone concentration after intracerebroventricularly-administered ubiquinol to selected rat brain regions.

    PubMed

    Gvozdjáková, Anna; Mravec, Boris; Kucharská, Jarmila; Lackovičová, Lubica; Ondičová, Katarína; Tkačov, Martin; Singh, Ram B

    2012-12-01

    Brain coenzyme Q10 (CoQ10) concentration can influence the activity of several brain regions, including those which participate in the regulation of cardiovascular circadian rhythms, food intake, neuroendocrine stress response, activity and sleep regulation. However, the effect of supplemented ubiquinol (reduced CoQ) into brain regions is not known. This study determined baseline levels of ubiquinone (oxidized CoQ) in various rat brain regions and proved the bioavailability of the liposomal ubiquinol to selected brain regions after its administration into right brain ventricle. Our data indicate that administration of ubiquinol may create the basis for modulation of neuronal activities in specific brain regions.

  2. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  3. Selection of Cooling Water Treatment at Military Installations to Prevent Scaling and Corrosion.

    DTIC Science & Technology

    1980-06-01

    only. For cooling towers of 20 to 50 tons (18.1 to 45.3 MT), 3 cycles of concentration with sodium hexametaphos- phate (0.5 to 5 ppm) should be used...Liquid Cooling Tower Treatment Blend M mainly of adding sodium zeolite softening or blended (item 8), consists of 9.5 percent disphosphonic acid...2.8 percent sodium pyrophosphate (as Item 10), the harder waters. Recently, superior organic scale 1.4 percent causticized mercaptobenzothiazole, and

  4. Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems.

    PubMed

    Kirstein, Karol; Dobrzyński, Maciej; Kosior, Piotr; Chrószcz, Aleksander; Dudek, Krzysztof; Fita, Katarzyna; Parulska, Olga; Rybak, Zbigniew; Skalec, Aleksandra; Szklarz, Magdalena; Janeczek, Maciej

    2016-01-01

    The excessive temperature fluctuations during dental implant site preparation may affect the process of bone-implant osseointegration. In the presented studies, we aimed to assess the quality of cooling during the use of 3 different dental implant systems (BEGO®, NEO BIOTECH®, and BIOMET 3i®). The swine rib was chosen as a study model. The preparation of dental implant site was performed with the use of 3 different speeds of rotation (800, 1,200, and 1,500 rpm) and three types of cooling: with saline solution at room temperature, with saline solution cooled down to 3°C, and without cooling. A statistically significant difference in temperature fluctuations was observed between BEGO and NEO BIOTECH dental systems when cooling with saline solution at 3°C was used (22.3°C versus 21.8°C). In case of all three evaluated dental implant systems, the highest temperature fluctuations occurred when pilot drills were used for implant site preparation. The critical temperature, defined in the available literature, was exceeded only in case of pilot drills (of all 3 systems) used at rotation speed of 1,500 rpm without cooling.

  5. Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems

    PubMed Central

    Kirstein, Karol; Dobrzyński, Maciej; Kosior, Piotr; Chrószcz, Aleksander; Dudek, Krzysztof; Fita, Katarzyna; Parulska, Olga; Rybak, Zbigniew; Skalec, Aleksandra; Szklarz, Magdalena; Janeczek, Maciej

    2016-01-01

    The excessive temperature fluctuations during dental implant site preparation may affect the process of bone-implant osseointegration. In the presented studies, we aimed to assess the quality of cooling during the use of 3 different dental implant systems (BEGO®, NEO BIOTECH®, and BIOMET 3i®). The swine rib was chosen as a study model. The preparation of dental implant site was performed with the use of 3 different speeds of rotation (800, 1,200, and 1,500 rpm) and three types of cooling: with saline solution at room temperature, with saline solution cooled down to 3°C, and without cooling. A statistically significant difference in temperature fluctuations was observed between BEGO and NEO BIOTECH dental systems when cooling with saline solution at 3°C was used (22.3°C versus 21.8°C). In case of all three evaluated dental implant systems, the highest temperature fluctuations occurred when pilot drills were used for implant site preparation. The critical temperature, defined in the available literature, was exceeded only in case of pilot drills (of all 3 systems) used at rotation speed of 1,500 rpm without cooling. PMID:27110558

  6. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    PubMed Central

    Kim, Eun Soo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    Objective The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Materials and Methods Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Results Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min-1 vs. 0.07 ± 0.02 min-1, p = 0.661 for Ktrans; 0.30 ± 0.05 min-1 vs. 0.37 ± 0.11 min-1, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Conclusion Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group. PMID:27587960

  7. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats.

    PubMed

    Kim, Eun Soo; Lee, Seung-Koo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min(-1) vs. 0.07 ± 0.02 min(-1), p = 0.661 for K(trans); 0.30 ± 0.05 min(-1) vs. 0.37 ± 0.11 min(-1), p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.

  8. Brain imaging in cooled encephalopathic neonates does not differ between four and 11 days after birth.

    PubMed

    Skranes, Janne Helen; Cowan, Frances Mary; Stiris, Tom; Fugelseth, Drude; Thoresen, Marianne; Server, Andres

    2015-08-01

    The optimal timing of magnetic resonance imaging (MRI) in encephalopathic infants treated with hypothermia is unknown, and this study examined whether early scans differed from later scans. We assessed paired MRI scans carried out on 41 cooled encephalopathic infants at a median of four and 11 days using two scoring systems: the Rutherford injury scores for the basal ganglia and thalami (BGT), white matter and the posterior limb of the internal capsule, and the Bonifacio injury scores for the BGT and watershed area. Both systems produced consistent injury severity scores in 37 of 41 infants on both days, with Rutherford scores predicting poor outcome in six early scans and seven later scans (K = 0.91) and Bonifacio doing the same in seven and nine scans (K = 0.85). A white matter/watershed score of two or a BGT score of one indicated severe changes by day 11 in three infants, but lower scores did not. Magnetic resonance imaging scans indicated that the Rutherford and Bonifacio systems produced similar scores in 37 of 41 cooled encephalopathic infants at a median of four and 11 days. Infants with an early white matter/watershed scores of two or a BGT score of one may worsen and should be rescanned. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  10. Selective entrainment of brain oscillations drives auditory perceptual organization.

    PubMed

    Costa-Faidella, Jordi; Sussman, Elyse S; Escera, Carles

    2017-07-27

    Perceptual sound organization supports our ability to make sense of the complex acoustic environment, to understand speech and to enjoy music. However, the neuronal mechanisms underlying the subjective experience of perceiving univocal auditory patterns that can be listened to, despite hearing all sounds in a scene, are poorly understood. We hereby investigated the manner in which competing sound organizations are simultaneously represented by specific brain activity patterns and the way attention and task demands prime the internal model generating the current percept. Using a selective attention task on ambiguous auditory stimulation coupled with EEG recordings, we found that the phase of low-frequency oscillatory activity dynamically tracks multiple sound organizations concurrently. However, whereas the representation of ignored sound patterns is circumscribed to auditory regions, large-scale oscillatory entrainment in auditory, sensory-motor and executive-control network areas reflects the active perceptual organization, thereby giving rise to the subjective experience of a unitary percept. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long-term environmental trends: selection of sampling locations in a reactor-aquatic cooling system.

    PubMed

    Revsin, B K; Watson, J E

    1993-02-01

    The study objective was to determine whether environmental radionuclide accumulations were occurring in an aquatic system with a 13-y history of supplying a power plant with reactor-cooling water as well as receiving plant discharge. The aquatic system consisted of the following: 1) a reactor-cooling lake; 2) a secondary lake approximately 8 km downstream; and 3) a small stream that interfaced with the two lakes. Gamma-emitting radionuclides were identified and quantified in samples of benthic sediments obtained from representative areas of the aquatic system. This study demonstrated that in a reactor-aquatic cooling system, the component of the aquatic system most likely to experience radionuclide accumulation will not necessarily be the reactor-cooling lake, but will be that component of the aquatic system whose benthic sediments contain the highest concentrations of organic matter. Further, it was shown that the quantity of oxidizable organic matter present in a sediment is a good predictor or marker for potential sites of radionuclide accumulation (i.e., 60Co and 137Cs).

  12. Effectiveness of an air-cooled vest using selected air temperature and humidity combinations.

    PubMed

    Pimental, N A; Cosimini, H M; Sawka, M N; Wenger, C B

    1987-02-01

    We evaluated the effectiveness of an air-cooled vest in reducing thermal strain of subjects exercising in the heat (49 degrees C dry bulb (db), 20 degrees C dew point (dp] in chemical protective clothing. Four male subjects attempted 300-min heat exposures at two metabolic rates (175 and 315 W) with six cooling combinations--control (no vest) and five different db and dp combinations. Air supplied to the vest at 15 scfm ranged from 20-27 degrees C db, 7-18 degrees C dp; theoretical cooling capacities were 498-687 W. Without the vest, endurance times were 118 min (175 W) and 73 min (315 W). Endurance times with the vest were 300 min (175 W) and 242-300 min (315 W). The five cooling combinations were similarly effective in reducing thermal strain and extending endurance time, although there was a trend for the vest to be more effective when supplied with air at the lower dry bulb temperature. At 175 W, subjects maintained a constant body temperature; at 315 W, the vest's ability to extend endurance is limited to about 5 hours.

  13. FROM SELECTIVE VULNERABILITY TO CONNECTIVITY: INSIGHTS FROM NEWBORN BRAIN IMAGING

    PubMed Central

    Miller, Steven P.; Ferriero, Donna M

    2009-01-01

    The ability to image the newborn brain during development has provided new information regarding the effects of injury on brain development at different vulnerable time periods. Studies in animal models of brain injury correlate beautifully with what is now observed in the human newborn. We now know that injury at term results in a predilection for gray matter injury while injury in the premature brain results in a white matter predominant pattern although recent evidence suggests a blurring of this distinction. These injuries affect how the brain matures subsequently and again, imaging has led to new insights that allow us to match function and structure. This review will focus on these patterns of injury that are so critically determined by age at insult. In addition, this review will highlight how the brain responds to these insults with changes in connectivity that have profound functional consequences. PMID:19712981

  14. The Growth of Cool Cores and Evolution of Cooling Properties in a Sample of 83 Galaxy Clusters at 0.3 < z < 1.2 Selected from the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Benson, B. A.; Vikhlinin, A.; Stalder, B.; Bleem, L. E.; de Haan, T.; Lin, H. W.; Aird, K. A.; Ashby, M. L. N.; Bautz, M. W.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; Forman, W. R.; George, E. M.; Gettings, D.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Miller, E. D.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Song, J.; Šuhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.; Zenteno, A.

    2013-09-01

    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z ~ 0 to z ~ 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner ~100 kpc has not changed dramatically since z ~ 1, implying that feedback must be providing nearly constant energy injection to maintain the observed "entropy floor" at ~10 keV cm2. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density (ρ g, 0/ρcrit) increasing by an order of magnitude from z ~ 1 to z ~ 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, ~150 M ⊙ yr-1 cooling flow that is unable to cool below entropies of 10 keV cm2 and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z_{cool}=1.0^{+1.0}_{-0.2}, which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z >~ 0.75), galaxy clusters may be classified as "cooling flows" (low central entropy, cooling time) but not "cool cores" (cuspy surface brightness profile), meaning that care must be taken when classifying these high-z systems

  15. THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY

    SciTech Connect

    McDonald, M.; Bautz, M. W.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Vikhlinin, A.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; De Haan, T.; Lin, H. W.; Aird, K. A.; Bocquet, S.; Desai, S.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; and others

    2013-09-01

    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z {approx} 0 to z {approx} 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner {approx}100 kpc has not changed dramatically since z {approx} 1, implying that feedback must be providing nearly constant energy injection to maintain the observed ''entropy floor'' at {approx}10 keV cm{sup 2}. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density ({rho}{sub g,0}/{rho}{sub crit}) increasing by an order of magnitude from z {approx} 1 to z {approx} 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, {approx}150 M{sub Sun} yr{sup -1} cooling flow that is unable to cool below entropies of 10 keV cm{sup 2} and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z{sub cool}=1.0{sup +1.0}{sub -0.2}, which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z {approx}> 0.75), galaxy clusters may be classified as ''cooling flows'' (low central entropy, cooling time) but not

  16. Site selection for MSFC operational tests of solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The criteria, methodology, and sequence aspects of the site selection process are presented. This report organized the logical thought process that should be applied to the site selection process, but final decisions are highly selective.

  17. ARTIFICIAL SELECTION ON RELATIVE BRAIN SIZE REVEALS A POSITIVE GENETIC CORRELATION BETWEEN BRAIN SIZE AND PROACTIVE PERSONALITY IN THE GUPPY

    PubMed Central

    Kotrschal, Alexander; Lievens, Eva JP; Dahlbom, Josefin; Bundsen, Andreas; Semenova, Svetlana; Sundvik, Maria; Maklakov, Alexei A; Winberg, Svante; Panula, Pertti; Kolm, Niclas; Morrow, E

    2014-01-01

    Animal personalities range from individuals that are shy, cautious, and easily stressed (a “reactive” personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a “proactive” personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large- and small-brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large-brained animals were faster to habituate to, and more exploratory in, open field tests. Large-brained females were also bolder. Second, large-brained animals excreted less cortisol in a stressful situation (confinement). Third, large-brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large-brained lines. Overall, the results point toward a more proactive personality type in large-brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness-related aspects of ecology such as dispersal and niche exploration. PMID:24359469

  18. Artificial selection on relative brain size reveals a positive genetic correlation between brain size and proactive personality in the guppy.

    PubMed

    Kotrschal, Alexander; Lievens, Eva J P; Dahlbom, Josefin; Bundsen, Andreas; Semenova, Svetlana; Sundvik, Maria; Maklakov, Alexei A; Winberg, Svante; Panula, Pertti; Kolm, Niclas

    2014-04-01

    Animal personalities range from individuals that are shy, cautious, and easily stressed (a "reactive" personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a "proactive" personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large- and small-brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large-brained animals were faster to habituate to, and more exploratory in, open field tests. Large-brained females were also bolder. Second, large-brained animals excreted less cortisol in a stressful situation (confinement). Third, large-brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large-brained lines. Overall, the results point toward a more proactive personality type in large-brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness-related aspects of ecology such as dispersal and niche exploration.

  19. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.

    1989-01-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  20. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    SciTech Connect

    Nesci, R.; Perola, G.C.; Gioia, I.M.; Maccacaro, T.; Morris, S.L.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; CNR, Istituto di Radioastronomia, Bologna; Mount Wilson and Las Campanas Observatories, Pasadena, CA )

    1989-09-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date. 28 refs.

  1. Development and selection of heat-resistant tool steels for water-cooled dies

    NASA Astrophysics Data System (ADS)

    Kremney, L. S.; Zabezhinskii, A. Ya.

    1980-02-01

    Alloying and heat treatment of tool steels for water-cooled dies to improve the service life in high-speed automatic presses must ensure: 1) The lowest but still sufficient level of hardening during precipitation hardening; 2) the smallest amount of carbide not dissolved during quenching; 3) prevention of the decomposition of martensite in grain boundaries during tempering; 4) a structure of lath martensite.

  2. Selection of Cool-Season Grasses for Revegetating Well-Drained Fill Materials

    DTIC Science & Technology

    1993-06-01

    most persistent species were Jamestown chewings fescue ( Festuca rubra L. ssp. commutata Gaud.) and Canada bluegrass (Poa compressa L.). Refertilization... Festuca rubra L. ssp. rubra ) and colonial bent- United States. Low-maintenance sites in cool, grass for revegetating sand heaps. humid areas usually...nitrogen, 1.96%; phosphorus, 0.29%; potassium, "* Jamestown chewings fescue ( Festuca rubra L. 2.39%; calcium, 0.41%; magnesium, 0.15%; and sul- ssp

  3. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    PubMed

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  4. Functional brain imaging in schizophrenia: selected results and methods.

    PubMed

    Brown, Gregory G; Thompson, Wesley K

    2010-01-01

    Functional brain imaging studies of patients with schizophrenia may be grouped into those that assume that the signs and symptoms of schizophrenia are due to disordered circuitry within a critical brain region and studies that assume that the signs and symptoms are due to disordered connections among brain regions. Studies have investigated the disordered functional brain anatomy of both the positive and negative symptoms of schizophrenia. Studies of spontaneous hallucinations find that although hallucinations are associated with abnormal brain activity in primary and secondary sensory areas, disordered brain activation associated with hallucinations is not limited to sensory systems. Disordered activation in non-sensory regions appear to contribute to the emotional strength and valence of hallucinations, to be a factor underlying an inability to distinguish ongoing mental processing from memories, and to reflect the brain's attempt to modulate the intensity of hallucinations and resolve conflicts with other processing demands. Brain activation studies support the view that auditory/verbal hallucinations are associated with an impaired ability of internal speech plans to modulate neural activation in sensory language areas. In early studies, negative symptoms of schizophrenia were hypothesized to be associated with impaired function in frontal brain areas. In support of this hypothesis meta-analytical studies have found that resting blood flow or metabolism in frontal cortex is reduced in schizophrenia, though the magnitude of the effect is only small to moderate. Brain activation studies of working memory (WM) functioning are typically associated with large effect sizes in the frontal cortex, whereas studies of functions other than WM generally reveal smaller effects. Findings from some functional connectivity studies have supported the hypothesis that schizophrenia patients experience impaired functional connections between frontal and temporal cortex, although

  5. Selective feeding in birds depends on combined processing in the left and right brain hemisphere.

    PubMed

    Prior, Helmut; Wilzeck, Christiane

    2008-01-15

    During visually guided foraging birds tend to select certain types of food from a mixed diet. This selectivity is ecologically relevant. During scanning for food birds spot the surroundings mainly with the monocular lateral visual field of the one or other eye and then control pecking with their small binocular frontal visual field. As the visual systems of the avian left and right brain hemisphere are supposed to work largely independently in the short term, the problem arises of how the avian brain handles a task that requires coordinated activity of the left and right brain hemisphere for efficient processing. Here we report that chicks exhibit strong selective feeding when both of the brain hemispheres are involved. With the left or right hemisphere alone selectivity is reduced or completely absent. Our findings reveal a marked qualitative difference between unilateral and bilateral processing. They highlight an important but so far unexplored selection pressure for the evolution of hemispheric cooperation.

  6. Tympanic temperatures during hemiface cooling.

    PubMed

    Cabanac, M; Germain, M; Brinnel, H

    1987-01-01

    In adult men the left half of the head was covered with thick heat insulation, and the right hemiface was cooled by spraying a mist of water, and vigorous fanning. The subjects were immersed up to the waist in warm water (42 degrees) to achieve hyperthermia. In control sessions the subjects were rendered slightly hypothermic by preliminary exposure to cold. Under the hypothermic condition during right skin cooling, the right Tty remained low as compared with oesophageal temperature, while the left Tty was raised. Under the hyperthermic condition right hemiface cooling maintained not only the right Tty lower than oesophageal but also, to a lesser extent the left Tty, while the skin on the left side was close to core temperature. This latter result cannot be explained by conductive cooling from the skin to the tympanic membrane and implies a vascular cooling of the left Tty originating from the other side of the head. It is concluded that selective cooling of the brain takes place during hyperthermia. The main mechanism is forced vascular convection, but conductive cooling also occurs.

  7. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke

    PubMed Central

    Szalay, Gergely; Martinecz, Bernadett; Lénárt, Nikolett; Környei, Zsuzsanna; Orsolits, Barbara; Judák, Linda; Császár, Eszter; Fekete, Rebeka; West, Brian L.; Katona, Gergely; Rózsa, Balázs; Dénes, Ádám

    2016-01-01

    Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation. We show that selective elimination of microglia leads to a striking, 60% increase in infarct size, which is reversed by microglial repopulation. Microglia-mediated protection includes reduction of excitotoxic injury, since an absence of microglia leads to dysregulated neuronal calcium responses, calcium overload and increased neuronal death. Furthermore, the incidence of spreading depolarization (SD) is markedly reduced in the absence of microglia. Thus, microglia are involved in changes in neuronal network activity and SD after brain injury in vivo that could have important implications for common brain diseases. PMID:27139776

  8. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier.

    PubMed

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

  9. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier

    PubMed Central

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis. PMID:26536593

  10. Brain cell death is reduced with cooling by 3.5°C to 5°C but increased with cooling by 8.5°C in a piglet asphyxia model.

    PubMed

    Alonso-Alconada, Daniel; Broad, Kevin D; Bainbridge, Alan; Chandrasekaran, Manigandan; Faulkner, Stuart D; Kerenyi, Áron; Hassell, Jane; Rocha-Ferreira, Eridan; Hristova, Mariya; Fleiss, Bobbi; Bennett, Kate; Kelen, Dorottya; Cady, Ernest; Gressens, Pierre; Golay, Xavier; Robertson, Nicola J

    2015-01-01

    In infants with moderate to severe neonatal encephalopathy, whole-body cooling at 33°C to 34°C for 72 hours is standard care with a number needed to treat to prevent a adverse outcome of 6 to 7. The precise brain temperature providing optimal neuroprotection is unknown. After a quantified global cerebral hypoxic-ischemic insult, 28 piglets aged <24 hours were randomized (each group, n=7) to (1) normothermia (38.5°C throughout) or whole-body cooling 2 to 26 hours after insult to (2) 35°C, (3) 33.5°C, or (4) 30°C. At 48 hours after hypoxia-ischemia, delayed cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and cleaved caspase 3) and microglial ramification (ionized calcium-binding adapter molecule 1) were evaluated. At 48 hours after hypoxia-ischemia, substantial cerebral injury was found in the normothermia and 30°C hypothermia groups. However, with 35°C and 33.5°C cooling, a clear reduction in delayed cell death and microglial activation was observed in most brain regions (P<0.05), with no differences between 35°C and 33.5°C cooling groups. A protective pattern was observed, with U-shaped temperature dependence in delayed cell death in periventricular white matter, caudate nucleus, putamen, hippocampus, and thalamus. A microglial activation pattern was also seen, with inverted U-shaped temperature dependence in periventricular white matter, caudate nucleus, internal capsule, and hippocampus (all P<0.05). Cooling to 35°C (an absolute drop of 3.5°C as in therapeutic hypothermia protocols) or to 33.5°C provided protection in most brain regions after a cerebral hypoxic-ischemic insult in the newborn piglet. Although the relatively wide therapeutic range of a 3.5°C to 5°C drop in temperature reassured, overcooling (an 8.5°C drop) was clearly detrimental in some brain regions. © 2014 American Heart Association, Inc.

  11. Cryogen spray cooling for spatially selective photocoagulation: a feasibility study with potential application for treatment of hemangiomas

    NASA Astrophysics Data System (ADS)

    Anvari, Bahman; Tanenbaum, B. S.; Milner, Thomas E.; Hoffman, Wendy; Said, Samireh; Chang, Cheng-Jen; Liaw, Lih-Huei L.; Kimel, Sol; Nelson, J. Stuart

    1996-12-01

    The clinical objective in laser treatment of hemangiomas is to photocoagulate the dilated cutaneous blood vessels, while at the same time minimizing nonspecific thermal injury to the overlying epidermis. We present an in-vivo experimental procedure, using a chicken comb animal model, and an infrared feedback system to deliver repetitive cryogen spurts during continuous Nd:YAG laser irradiation. Gross and histologic observations are consistent with calculated thicknesses of protected and damaged tissues, and demonstrate the feasibility of inducing spatially selective photocoagulation when using cryogen spray cooling in conjunction with laser irradiation. Experimental observation of epidermal protection in the chicken comb model suggests selective photocoagulation of subsurface targeted blood vessels for successful treatment of hemangiomas can be achieved by repetitive applications of a cryogen spurt during continuous Nd:YAG laser irradiation.

  12. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport.

    PubMed

    Ruderisch, Nadine; Schlatter, Daniel; Kuglstatter, Andreas; Guba, Wolfgang; Huber, Sylwia; Cusulin, Carlo; Benz, Jörg; Rufer, Arne Christian; Hoernschemeyer, Joerg; Schweitzer, Christophe; Bülau, Tina; Gärtner, Achim; Hoffmann, Eike; Niewoehner, Jens; Patsch, Christoph; Baumann, Karlheinz; Loetscher, Hansruedi; Kitas, Eric; Freskgård, Per-Ola

    2017-09-07

    Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Brain MRI in global hypoxia-ischemia: a map of selective vulnerability.

    PubMed

    Luigetti, Marco; Goldsberry, Grant T; Cianfoni, Alessandro

    2012-03-01

    Hypoxic-ischemic injury to the brain is a devastating occurrence that frequently results in death or profound long-term neurologic disability. In this report, we describe the neuroradiological findings of a patient suffering from a global brain hypoxic-ischemic injury. Our findings clearly display that the areas of the brain with the highest metabolic activity, such as basal ganglia, thalami, and occipital and perirolandic cortex, are most susceptible to hypoxic injury. The MRI images delineate a map of the brain areas with selective vulnerability to hypoxia.

  14. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  15. Methods of association and dissociation for establishing selective brain-behavior relations.

    PubMed

    Fama, Rosemary; Sullivan, Edith V

    2014-01-01

    Methods for identifying and understanding brain structure-function relations have evolved over the past century, from astute observations of selective impairments associated with focal brain damage to dissociations measured by combining quantitative neuropsychologic assessment and brain imaging. Enhanced spatial and temporal resolution in brain imaging modalities has led to refined visualization and quantification of the brain's substructures, microstructural integrity, and functional connectivity of neural networks. The double dissociation model has been a gold standard used to demonstrate that a particular cognitive, emotional, sensory, or motor process is selectively related to a particular brain region or neural network and not to others. This model has provided a fruitful means for testing hypotheses of functional localization and enabled examination and establishment of component processes contributing to complex cognitive and motor functions, parsing multifactorial behaviors and identifying brain regions, and networks subserving these complex abilities. In this chapter we discuss the evolution of the dissociation model and highlight how the modifications of this model are used presently to establish selective brain-behavior relationships in disorders such as chronic alcoholism with a neuropathologic signature but no localizable, space-occupying lesion. © 2014 Elsevier B.V. All rights reserved.

  16. Selection for brain size impairs innate, but not adaptive immune responses

    PubMed Central

    Kotrschal, Alexander; Kolm, Niclas; Penn, Dustin J.

    2016-01-01

    Both the brain and the immune system are energetically demanding organs, and when natural selection favours increased investment into one, then the size or performance of the other should be reduced. While comparative analyses have attempted to test this potential evolutionary trade-off, the results remain inconclusive. To test this hypothesis, we compared the tissue graft rejection (an assay for measuring innate and acquired immune responses) in guppies (Poecilia reticulata) artificially selected for large and small relative brain size. Individual scales were transplanted between pairs of fish, creating reciprocal allografts, and the rejection reaction was scored over 8 days (before acquired immunity develops). Acquired immune responses were tested two weeks later, when the same pairs of fish received a second set of allografts and were scored again. Compared with large-brained animals, small-brained animals of both sexes mounted a significantly stronger rejection response to the first allograft. The rejection response to the second set of allografts did not differ between large- and small-brained fish. Our results show that selection for large brain size reduced innate immune responses to an allograft, which supports the hypothesis that there is a selective trade-off between investing into brain size and innate immunity. PMID:26962144

  17. Radioreceptor assay of opioid peptides in selected canine brain regions

    SciTech Connect

    Desiderio, D.M.; Takeshita, H.

    1985-09-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D-/sup 2/ala, D-/sup 5/leu leucine enkephalin (/sup 3/H-DADL) and the broader-specificity ligand /sup 3/H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex.

  18. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling

    SciTech Connect

    Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K.

    2010-08-15

    A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

  19. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  20. Individual brain-frequency responses to self-selected music.

    PubMed

    Höller, Yvonne; Thomschewski, Aljoscha; Schmid, Elisabeth Verena; Höller, Peter; Crone, Julia Sophia; Trinka, Eugen

    2012-12-01

    Music is a stimulus which may give rise to a wide range of emotional and cognitive responses. Therefore, brain reactivity to music has become a focus of interest in cognitive neuroscience. It is possible that individual preference moderates the effectof music on the brain. In the present study we examined whether there are common effects of listening to music even if each subject in a sample chooses their own piece of music. We invited 18 subjects to bring along their favorite relaxing music, and their favourite stimulating music. Additionally, a condition with tactile stimulation on the foot and a baseline condition (rest) without stimulation were used. The tactile stimulation was chosen to provide a simple, non-auditory condition which would be identical for all subjects. The electroencephalogram was recorded for each of the 3 conditions and during rest. We found responses in the alpha range mainly on parietal and occipital sites that were significant compared to baseline in 13 subjects during relaxing music, 15 subjects during activating music, and 16 subjects during tactile stimulation. Most subjects showed an alpha desynchronization in a lower alpha range followed by a synchronization in an upper frequency range. However, some subjects showed an increase in this area, whereas others showed a decrease only. In addition, many subjects showed reactivity in the beta range. Beta activity was especially increased while listening to activating music and during tactile stimulation in most subjects. We found interindividual differences in the response patterns even though the stimuli provoked comparable subjective emotions (relaxation, activation), and even if the stimulus was the same for all subjects (somatosensory stimulation). We suggest that brain responsivity to music should be examined individually by considering individual characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of Cyclosporin A on the Uptake of D3-Selective PET Radiotracers in Rat Brain

    PubMed Central

    Tu, Zhude; Li, Shihong; Xu, Jinbin; Chu, Wenhua; Jones, Lynne A.; Luedtke, Robert R.; Mach, Robert H.

    2011-01-01

    Introduction Four benzamide analogs having a high affinity and selectivity for D3 versus D2 receptors were radiolabeled with 11C or 18F for in vivo evaluation. Methods Precursors were synthesized and the four D3 selective benzamide analogs were radiolabeled. The tissue distribution and brain uptake of the four compounds were evaluated in control rats and rats pretreated with cyclosporin A, a modulator of P-glycoprotein and an inhibitor of other ABC efflux transporters that contribute to the blood brain barrier. MicroPET imaging was carried out for [11C]6 in a control and a cyclosporin A pre-treated rat. Results All four compounds showed low brain uptake in control rats at 5 and 30 min post-injection; despite recently reported rat behavioral studies conducted on analogs 6 (WC-10) and 7 (WC-44). Following administration of cyclosporin A, increased brain uptake was observed with all four PET radiotracers at both 5 and 30 min post-i.v. injection. An increase in brain uptake following modulation/inhibition of the ABC transporters was also observed in the microPET study. Conclusions These data suggest that D3 selective conformationally-flexible benzamide analogs which contain a N-2-methoxyphenylpiperazine moiety are substrates for P-glycoprotein or other ABC transporters expressed at the blood-brain barrier, and that PET radiotracers containing this pharmacophore may display low brain uptake in rodents due to the action of these efflux transporters. PMID:21718948

  2. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents.

    PubMed

    Zhou, June; Keenan, Michael J; Fernandez-Kim, Sun Ok; Pistell, Paul J; Ingram, Donald K; Li, Bing; Raggio, Anne M; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T; Blackman, Marc R; Keller, Jeffrey N; Martin, Roy J

    2013-11-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast.

  3. Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery.

    PubMed

    Loryan, Irena; Sinha, Vikash; Mackie, Claire; Van Peer, Achiel; Drinkenburg, Wilhelmus; Vermeulen, An; Morrison, Denise; Monshouwer, Mario; Heald, Donald; Hammarlund-Udenaes, Margareta

    2014-08-01

    The current project was undertaken with the aim to propose and test an in-depth integrative analysis of neuropharmacokinetic (neuroPK) properties of new chemical entities (NCEs), thereby optimizing the routine of evaluation and selection of novel neurotherapeutics. Forty compounds covering a wide range of physicochemical properties and various CNS targets were investigated. The combinatory mapping approach was used for the assessment of the extent of blood-brain and cellular barriers transport via estimation of unbound-compound brain (Kp,uu,brain) and cell (Kp,uu,cell) partitioning coefficients. Intra-brain distribution was evaluated using the brain slice method. Intra- and sub-cellular distribution was estimated via calculation of unbound-drug cytosolic and lysosomal partitioning coefficients. Assessment of Kp,uu,brain revealed extensive variability in the brain penetration properties across compounds, with a prevalence of compounds actively effluxed at the blood-brain barrier. Kp,uu,cell was valuable for identification of compounds with a tendency to accumulate intracellularly. Prediction of cytosolic and lysosomal partitioning provided insight into the subcellular accumulation. Integration of the neuroPK parameters with pharmacodynamic readouts demonstrated the value of the proposed approach in the evaluation of target engagement and NCE selection. With the rather easily-performed combinatory mapping approach, it was possible to provide quantitative information supporting the decision making in the drug discovery setting.

  4. Functional brain networks for sensory maintenance in top-down selective attention to audiovisual inputs.

    PubMed

    Hong, Xiangfei; Sun, Junfeng; Tong, Shanbao

    2013-09-01

    Sensory maintenance in top-down selective attention to audiovisual inputs involves distributed cortical activations, while the connectivity between the widespread cortical regions has not been well understood. Graph theory has been demonstrated to be a useful tool in the analysis of brain networks. In this study, we used graph theoretical analysis to investigate the functional brain networks for sensory maintenance in top-down selective attention to audiovisual inputs. Electroencephalograms (EEGs) of 30 channels were recorded from 13 young healthy subjects during a passive view task and a top-down intersensory selective attention task. Phase synchronization indices of EEG signals in pair were computed to construct weighted brain networks. We found small-world properties of the brain networks during both passive view state and top-down selective attentional state in α, β, and γ bands. In addition, the significantly increased clustering coefficient and decreased characteristic path length were observed for brain networks during attentional state compared with passive view state in both β band and γ band. Our results suggest that functional brain networks in higher frequency bands, i.e., β band and γ band, are integrated in different ways during attentional state compared with passive view state.

  5. Individual Differences in Cognitive Function in Older Adults Predicted by Neuronal Selectivity at Corresponding Brain Regions.

    PubMed

    Jiang, Xiong; Petok, Jessica R; Howard, Darlene V; Howard, James H

    2017-01-01

    Relating individual differences in cognitive abilities to neural substrates in older adults is of significant scientific and clinical interest, but remains a major challenge. Previous functional magnetic resonance imaging (fMRI) studies of cognitive aging have mainly focused on the amplitude of fMRI response, which does not measure neuronal selectivity and has led to some conflicting findings. Here, using local regional heterogeneity analysis, or Hcorr , a novel fMRI analysis technique developed to probe the sparseness of neuronal activations as an indirect measure of neuronal selectivity, we found that individual differences in two different cognitive functions, episodic memory and letter verbal fluency, are selectively related to Hcorr -estimated neuronal selectivity at their corresponding brain regions (hippocampus and visual-word form area, respectively). This suggests a direct relationship between cognitive function and neuronal selectivity at the corresponding brain regions in healthy older adults, which in turn suggests that age-related neural dedifferentiation might contribute to rather than compensate for cognitive decline in healthy older adults. Additionally, the capability to estimate neuronal selectivity across brain regions with a single data set and link them to cognitive performance suggests that, compared to fMRI-adaptation-the established fMRI technique to assess neuronal selectivity, Hcorr might be a better alternative in studying normal aging and neurodegenerative diseases, both of which are associated with widespread changes across the brain.

  6. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers

    PubMed Central

    Hirvonen, J; Goodwin, RS; Li, C-T; Terry, GE; Zoghbi, SS; Morse, C; Pike, VW; Volkow, ND; Huestis, MA; Innis, RB

    2011-01-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB1 (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ~4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB1 receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB1 receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain. PMID:21747398

  7. A SELECTIVE BIBLIOGRAPHY ON BRAIN-DAMAGED CHILDREN.

    ERIC Educational Resources Information Center

    Woods School for Exceptional Children, Langhorne, PA.

    THIS SELECTIVE BIBLIOGRAPHY INCLUDES 317 ANNOTATED REFERENCES DEALING DIRECTLY WITH THE BEHAVIORAL CHARCTERISTICS OF CHILDREN WITH CEREBRAL DYSFUNCTION. REFERENCES HAVE APPEARED IN JOURNALS OR OTHER SOURCES AVAILABLE IN UNIVERSITY LIBRARIES. THE BIBLIOGRAPHY IS CLASSIFIED INTO SIX MAJOR DIVISIONS--(1) THE ENTITY AND ITS DESCRIPTION, (2) CLINICAL…

  8. [The shrinking brain: result of normal aging or of selection bias in research?].

    PubMed

    Burgmans, S; van Boxtel, M P J

    2012-02-01

    The volume of our brain decreases as we age. This has been demonstrated by several large studies on normal aging. A recent study indicates, however, that the extent of this decline in normal aging probably has been overestimated because these studies have included subjects with preclinical disorders. In this article, an example from science is used to describe what effect selection bias may have on our model of the aging brain.

  9. Review of the effects of the Clean Water Act on cooling-system selection by the steam-electric industry

    SciTech Connect

    Paddock, R.A.; McCown, D.L.

    1982-06-01

    A review of surveys of the steam-electric industry in general and the nuclear industry in particular has shown a significant trend away from open-cycle cooling and toward closed-cycle cooling that is at least in part a consequence of the Clean Water Act and subsequent EPA guidelines and standards. Among older plants, which are not significantly affected by the Clean Water Act, nearly 85% use some form of open-cycle cooling. However, among plants that are under construction or planned, only 10 to 15% plan to use open-cycle cooling. Most of this trend is apparently due to anticipation of restrictions on open-cycle cooling rather than to direct action by the EPA prohibiting open-cycle cooling at specific sites, because requests for permission to operate open-cycle cooling systems have been denied for less than 1% of all existing and new capacity. A review was made of the potential environmental effects, water consumption rates, capital and generating costs, and energy usage associated with open-cycle and closed-cycle cooling systems. No evidence was found that clearly supports a general preference for any type of cooling system over another. However, on a case-by-cae basis, site-specific conditions may indicate a preferred cooling technology. It is concluded that the opportunity for the use of all available cooling options should be retained and that an effort should be made to assure the steam-electric industry that the options are indeed available.

  10. An opiate binding site in the rat brain is highly selective for 4,5-epoxymorphinans.

    PubMed

    Grevel, J; Sadée, W

    1983-09-16

    In vitro binding studies have demonstrated the existence of multiple opiate receptor types. An additional site in the rat brain (termed the lambda site) is distinct from the established types by its selectivity for 4,5-epoxymorphinans (such as naloxone and morphine). While the lambda site displays a high affinity for naloxone in vivo and in vitro in fresh brain membrane homogenates, these sites rapidly convert in vitro to a state of low affinity. The regional distribution of the lambda site in the brain is strikingly different from that of the classic opiate receptor types.

  11. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment.

    PubMed

    Syvänen, Stina; Edén, Desirée; Sehlin, Dag

    2017-11-04

    Antibodies and fragments thereof are, because of high selectivity for their targets, considered as potential therapeutics and biomarkers for several neurological disorders. However, due to their large molecular size, antibodies/fragments do not easily penetrate into the brain. The aim of the present study was to improve the brain distribution via adsorptive-mediated transcytosis of an amyloid-beta (Aβ) protofibril selective F(ab')2 fragment (F(ab')2-h158). F(ab')2-h158 was cationized to different extents and the specific and unspecific binding was studied in vitro. Next, cationized F(ab')2-h158 was labelled with iodine-125 and its brain distribution and pharmacokinetics was studied in mice. Cationization did not alter the in vitro affinity to Aβ protofibrils, but increased the unspecific binding somewhat. Ex vivo experiments revealed a doubling of brain concentrations compared with unmodified F(ab')2-h158 and in vivo imaging with single photon emission computed tomography (SPECT) showed that the cationized F(ab')2-h158, but not the unmodified F(ab')2-h158 could be visualized in the brain. To conclude, cationization is a means to increase brain concentrations of therapeutic antibodies or fragments and may facilitate the use of antibodies/fragments as imaging biomarkers in the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A fast atlas pre-selection procedure for multi-atlas based brain segmentation.

    PubMed

    Ma, Jingbo; Ma, Heather T; Li, Hengtong; Ye, Chenfei; Wu, Dan; Tang, Xiaoying; Miller, Michael; Mori, Susumu

    2015-01-01

    Multi-atlas based MR image segmentation has been recognized as a quantitative analysis approach for brain. For such purpose, atlas databases keep increasing to include various anatomical characteristics of human brain. Atlas pre-selection becomes a necessary step for efficient and accurate automated segmentation of human brain images. In this study, we proposed a method of atlas pre-selection for target image segmentation on the MriCloud platform, which is a state-of-the-art multi-atlas based segmentation tool. In the MRIcloud pipeline, segmentation of lateral ventricle (LV) label is generated as an additional input in the segmentation pipeline. Under this circumstance, similarity of the LV label between target image and atlases was adopted as the atlas ranking scheme. Dice overlap coefficient was calculated and taken as the quantitative measure for atlas ranking. Segmentation results based on the proposed method were compared with that based on atlas pre-selection by mutual information (MI) between images. The final segmentation results showed a comparable accuracy of the proposed method with that from MI based atlas pre-selection. However, the computation load for the atlas pre-selection was speeded up by about 20 times compared to MI based pre-selection. The proposed method provides a promising assistance for quantitative analysis of brain images.

  13. Spectrum Synthesis of Hot Water in Sunspots and Selected Cool Stars

    NASA Technical Reports Server (NTRS)

    Carbon, D. F.; Goorvitch, D.; Witteborn, Fred (Technical Monitor)

    1996-01-01

    Very recently, Partridge and Schwenke completed an elaborate theoretical computation of the potential energy surface and dipole moment function for H2O. They have used their results to predict the positions and strengths of nearly 308 million lines. This line tabulation is the most complete now available. It extends to sufficiently high excitations that the spectra of M-stars may be modelled with greater accuracy than ever before provided the predicted line parameters of Partridge and Schwenke are themselves accurate. We have computed synthetic sunspot spectra using the Partridge and Schwenke line list and the sunspot umbral models of Maltby et al. In this display, we compare these synthetic spectra with published high resolution sunspot atlases. We demonstrate the extent to which the new line list successfully predicts the sunspot spectrum and suggest where improvements are necessary. Using the new tabulation, we also illustrate the extent to which hot stellar blankets the H, K and L passbands for select K and M star model atmospheres.

  14. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis.

    PubMed

    Theofilopoulos, Spyridon; Wang, Yuqin; Kitambi, Satish Srinivas; Sacchetti, Paola; Sousa, Kyle M; Bodin, Karl; Kirk, Jayne; Saltó, Carmen; Gustafsson, Magnus; Toledo, Enrique M; Karu, Kersti; Gustafsson, Jan-Åke; Steffensen, Knut R; Ernfors, Patrik; Sjövall, Jan; Griffiths, William J; Arenas, Ernest

    2013-02-01

    Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.

  15. A discriminative feature selection approach for shape analysis: Application to fetal brain cortical folding.

    PubMed

    Pontabry, J; Rousseau, F; Studholme, C; Koob, M; Dietemann, J-L

    2017-01-01

    The development of post-processing reconstruction techniques has opened new possibilities for the study of in-utero fetal brain MRI data. Recent cortical surface analysis have led to the computation of quantitative maps characterizing brain folding of the developing brain. In this paper, we describe a novel feature selection-based approach that is used to extract the most discriminative and sparse set of features of a given dataset. The proposed method is used to sparsely characterize cortical folding patterns of an in-utero fetal MR dataset, labeled with heterogeneous gestational age ranging from 26 weeks to 34 weeks. The proposed algorithm is validated on a synthetic dataset with both linear and non-linear dynamics, supporting its ability to capture deformation patterns across the dataset within only a few features. Results on the fetal brain dataset show that the temporal process of cortical folding related to brain maturation can be characterized by a very small set of points, located in anatomical regions changing across time. Quantitative measurements of growth against time are extracted from the set selected features to compare multiple brain regions (e.g. lobes and hemispheres) during the considered period of gestation.

  16. Legionella pneumophila in cooling water systems. Report of a survey of cooling towers in London and a pilot trial of selected biocides.

    PubMed Central

    Kurtz, J. B.; Bartlett, C. L.; Newton, U. A.; White, R. A.; Jones, N. L.

    1982-01-01

    Fourteen recirculating cooling water systems were surveyed during the summer, 1981, to see what factors might influence the prevalence of Legionella pneumophila. The effect on the organism of three anti-microbials was studied, each in two systems, by intermittent treatment at two week intervals. L. pneumophila was isolated from six of the 14 cooling systems at the beginning of the trial but by the end was present in ten. An association was found between the presence of the organism and the concentration of dissolved solids, and chlorides and the pH. There also appeared to be associations with exclusion of light and higher water temperatures. Repeated tests on eight untreated systems showed that two were consistently infected, three became and remained infected, one was infected on a single occasion and two were never infected with L. pneumophila. Treatment of a contaminated system, either with a 10 p.p.m mixture of a quaternary ammonium compound and tributyltinoxide or slow release chlorine briquettes (maximum recorded free chlorine level 1.2 p.p.m.), did not eliminated legionellae. Treatment of two infected towers with a chlorinated phenol (100 p.p.m.) eliminated legionellae for at least three days, but after 14 days the organism was again found. PMID:7086112

  17. Alteration of Selected Neurotrophic Factors and their Receptor Expression in Mouse Brain Response to Whole-Brain Irradiation.

    PubMed

    Pius-Sadowska, Ewa; Kawa, Miłosz Piotr; Kłos, Patrycja; Rogińska, Dorota; Rudnicki, Michał; Boehlke, Marek; Waloszczyk, Piotr; Machaliński, Bogusław

    2016-11-01

    Ionizing radiation can significantly affect brain function in children and young adults, particularly in the hippocampus where neurogenic niches are located. Injury to normal tissue is a major concern when whole-brain irradiation (WBI) is used to treat central nervous system (CNS) tumors, and the pathogenesis of this injury remains poorly understood. We assessed the expression of selected neurotrophins (NTs) and NT receptors (NTRs) in brains of young mice after a single 10 Gy gamma-ray exposure using morphological and molecular analyses [qRT-PCR, Western blot, immunohistochemistry (IHC)] to evaluate WBI-induced injury in its acute phase. Activity of the NT-NTR axes was examined by analysis of ERK and Akt phosphorylation. Using Nissl staining of hippocampus slices to visualize morphological changes, and TUNEL assay and active caspase-3 detection to assess apoptotic cell death, we found evidence of apoptosis and degenerative changes in hippocampal tissue after WBI. Shortly after WBI, we also observed significant overexpression of several NTs (BDNF, NT-3, NGF and GDNF) and NTRs (TrkA, TrkB, TrkC, GFRα-1, and p75NTR) compared to control animals. The upregulated NT and NTR proteins, in part, originated from two analyzed neurogenic areas: the subgranular zone of the hippocampal dentate gyrus and the subventricular zone, as confirmed by IHC. Finally, components of intracellular signaling pathways, including Akt and MAPK, were activated in acute phase after WBI. Given the role of NTs in diverse biological mechanisms, including maintenance and growth of neurons in the adult brain, our findings of altered expression of neurotrophins and their receptors in brain tissue shortly after irradiation suggest that these molecules play a vital role in the pathophysiology of the acute phase of WBI-induced injury.

  18. Selective atrophy of left hemisphere and frontal lobe of the brain in old men.

    PubMed

    Shan, Zu Y; Liu, Jing Z; Sahgal, Vinod; Wang, Bin; Yue, Guang H

    2005-02-01

    In this study, volumes of the whole brain, hemispheres, and frontal lobes of young and elderly adults were quantified by an automated method. Effects of age, sex, and side on absolute and relative volumes of the brain structures were evaluated. Compared with the young group, elderly participants showed a 15% volume loss in the whole brain and hemispheres, and a 22% volume loss in the frontal lobes. The relative volume of the left hemisphere in the elderly group decreased more than that of the right hemisphere. Elderly men showed significantly greater left hemisphere and left frontal lobe volume losses than did elderly women, indicating that the larger left hemisphere relative volume reduction is largely contributed to by selective atrophy of the left frontal lobe volume in elderly men. These results may reflect age- and sex-related functional deterioration in the left brain.

  19. Relationship between brain serotonin transporter binding, plasma concentration and behavioural effect of selective serotonin reuptake inhibitors.

    PubMed

    Hirano, Kazufumi; Kimura, Ryohei; Sugimoto, Yumi; Yamada, Jun; Uchida, Shinya; Kato, Yasuhiro; Hashimoto, Hisakuni; Yamada, Shizuo

    2005-03-01

    1. The present study was undertaken to characterise the relationship between in vivo brain serotonin transporter (SERT) binding, plasma concentration and pharmacological effect of selective serotonin reuptake inhibitors (SSRIs) in mice. Oral administration of fluvoxamine, fluoxetine, paroxetine and sertraline at pharmacologically relevant doses exerted dose- and time-dependent binding activity of brain SERT as revealed by significant increases in KD for specific [3H]paroxetine binding, and the in vivo SERT-binding potency was in the order of paroxetine>fluoxetine, sertraline>fluvoxamine. 2. The time courses of brain SERT binding by SSRIs in mice were mostly in parallel to those of their plasma concentrations. Also, norfluoxetine (active metabolite) has been suggested to contribute largely to the long-lasting binding activity of brain SERT after the fluoxetine administration. 3. Oral administration of each SSRI suppressed significantly the marble-burying behaviour with no change in locomotor activity in mice, and the extent and time course of suppression agreed well with those of brain SERT binding. Thus, the pharmacological potencies of SSRIs in the attenuation of marble-burying behaviour correlated significantly with their brain SERT binding activities. 4. In conclusion, the present study has provided the first in vivo evidences to support that fluvoxamine, fluoxetine, paroxetine and sertraline orally administered bind to the pharmacologically relevant brain SERT in mice and that their SERT-binding characteristics is closely associated with the pharmacokinetics and inhibition of marble-burying behaviour.

  20. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes

    PubMed Central

    Stengel, Andreas; Rivier, Jean; Taché, Yvette

    2013-01-01

    Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst1–5) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-CRF related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. PMID:23287111

  1. [Serotonin receptors in the brain of animals selected for their domesticated type of behavior].

    PubMed

    Maslova, G B; Avgustinovich, D F

    1989-01-01

    Participation was studied of central serotonin receptors of the first and second types in behaviour change of animals selected by the character of defensive reaction to man. Serotonin receptors were determined by radioligand method by binding of the brain preparations 3H-serotonin and 3H-spiperone. An increase of C2 receptors number was found in the frontal brain cortex of the tame brown rats in comparison with the aggressive ones. Differences were not found in specific C1-receptor binding in the frontal brain cortex of tame and aggressive brown rats, silver foxes and American minks in various relatively early selection stages. It is supposed that disappearance of aggressive reaction to man at domestication is connected with an increase of C2 receptors number.

  2. Methylmercury induces the expression of TNF-α selectively in the brain of mice

    PubMed Central

    Iwai-Shimada, Miyuki; Takahashi, Tsutomu; Kim, Min-Seok; Fujimura, Masatake; Ito, Hitoyasu; Toyama, Takashi; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    Methylmercury selectively damages the central nervous system (CNS). The tumor necrosis factor (TNF) superfamily includes representative cytokines that participate in the inflammatory response as well as cell survival, and apoptosis. In this study, we found that administration of methylmercury selectively induced TNF-α expression in the brain of mice. Although the accumulated mercury concentration in the liver and kidneys was greater than in the brain, TNF-α expression was induced to a greater extent in brain. Thus, it is possible that there may exist a selective mechanism by which methylmercury induces TNF-α expression in the brain. We also found that TNF-α expression was induced by methylmercury in C17.2 cells (mouse neural stem cells) and NF-κB may participate as a transcription factor in that induction. Further, we showed that the addition of TNF-α antagonist (WP9QY) reduced the toxicity of methylmercury to C17.2 cells. In contrast, the addition of recombinant TNF-α to the culture medium decreased the cell viability. We suggest that TNF-α may play a part in the selective damage of the CNS by methylmercury. Furthermore, our results indicate that the higher TNF-α expression induced by methylmercury maybe the cause of cell death, as TNF-α binds to its receptor after being released extracellularly. PMID:27910896

  3. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates.

    PubMed

    Cooke, Dylan F; Goldring, Adam B; Yamayoshi, Itsukyo; Tsourkas, Phillippos; Recanzone, Gregg H; Tiriac, Alex; Pan, Tingrui; Simon, Scott I; Krubitzer, Leah

    2012-06-01

    We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the "cooling chip," consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm(3)) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates.

  4. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Yamayoshi, Itsukyo; Tsourkas, Phillippos; Recanzone, Gregg H.; Tiriac, Alex; Pan, Tingrui; Simon, Scott I.

    2012-01-01

    We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the “cooling chip,” consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm3) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates. PMID:22402651

  5. The identification of a selective dopamine D2 partial agonist, D3 antagonist displaying high levels of brain exposure.

    PubMed

    Holmes, Ian P; Blunt, Richard J; Lorthioir, Olivier E; Blowers, Stephen M; Gribble, Andy; Payne, Andrew H; Stansfield, Ian G; Wood, Martyn; Woollard, Patrick M; Reavill, Charlie; Howes, Claire M; Micheli, Fabrizio; Di Fabio, Romano; Donati, Daniele; Terreni, Silvia; Hamprecht, Dieter; Arista, Luca; Worby, Angela; Watson, Steve P

    2010-03-15

    The identification of a highly selective D(2) partial agonist, D(3) antagonist tool molecule which demonstrates high levels of brain exposure and selectivity against an extensive range of dopamine, serotonin, adrenergic, histamine, and muscarinic receptors is described.

  6. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  7. Positive selection at the ASPM gene coincides with brain size enlargements in cetaceans.

    PubMed

    Xu, Shixia; Chen, Yuan; Cheng, Yuefeng; Yang, Dan; Zhou, Xuming; Xu, Junxiao; Zhou, Kaiya; Yang, Guang

    2012-11-07

    The enlargement of cetacean brain size represents an enigmatic event in mammalian evolution, yet its genetic basis remains poorly explored. One candidate gene associated with brain size evolution is the abnormal spindle-like microcephaly associated (ASPM), as mutations in this gene cause severe reductions in the cortical size of humans. Here, we investigated the ASPM gene in representative cetacean lineages and previously published sequences from other mammals to test whether the expansion of the cetacean brain matched adaptive ASPM evolution patterns. Our analyses yielded significant evidence of positive selection on the ASPM gene during cetacean evolution, especially for the Odontoceti and Delphinoidea lineages. These molecular patterns were associated with two major events of relative brain size enlargement in odontocetes and delphinoids. It is of particular interest to find that positive selection was restricted to cetaceans and primates, two distant lineages both characterized by a massive expansion of brain size. This result is suggestive of convergent molecular evolution, although no site-specific convergence at the amino acid level was found.

  8. CHRONIC FETAL HYPOXIA PRODUCES SELECTIVE BRAIN INJURY ASSOCIATED WITH ALTERED NITRIC OXIDE SYNTHASES

    PubMed Central

    DONG, Yafeng; YU, Zhiyong; SUN, Yan; ZHOU, Hui; STITES, Josh; NEWELL, Katherine; WEINER, Carl P.

    2011-01-01

    OBJECTIVE The impact of chronic hypoxia on the nitric oxide synthase isoenzymes (NOSs) in specific brain structures is unknown. STUDY DESIGN Time-mated pregnant guinea pigs were exposed to 10.5% O2 for 14d (HPX) or room air (NMX); L-NIL (an iNOS inhibitor, 1mg/kg/day) was administered to HPX animals for 14d (L-NIL+HPX). Fetal brains were harvested at term. Multi-labeled immunofluorescence was used to generate a brain injury map. Laser capture microdissection and quantitative PCR were applied and cell injury markers, apoptosis activation, neuron loss, total NO, and the levels of individual NOSs quantified. RESULTS Chronic hypoxia causes selective fetal brain injury rather than globally. Injury is associated with differentially affected NO synthases in both neurons and glial cells, with iNOS up regulated at all injury sites. L-NIL attenuated the injury despite continued hypoxia. CONCLUSIONS These studies demonstrate chronic hypoxia selectively injures the fetal brain in part by the differential regulation of NOSs in an anatomic and cell specific manner. PMID:21272843

  9. Localization of neural efficiency of the mathematically gifted brain through a feature subset selection method.

    PubMed

    Zhang, Li; Gan, John Q; Wang, Haixian

    2015-10-01

    Based on the neural efficiency hypothesis and task-induced EEG gamma-band response (GBR), this study investigated the brain regions where neural resource could be most efficiently recruited by the math-gifted adolescents in response to varying cognitive demands. In this experiment, various GBR-based mental states were generated with three factors (level of mathematical ability, task complexity, and short-term learning) modulating the level of neural activation. A feature subset selection method based on the sequential forward floating search algorithm was used to identify an "optimal" combination of EEG channel locations, where the corresponding GBR feature subset could obtain the highest accuracy in discriminating pairwise mental states influenced by each experiment factor. The integrative results from multi-factor selections suggest that the right-lateral fronto-parietal system is highly involved in neural efficiency of the math-gifted brain, primarily including the bilateral superior frontal, right inferior frontal, right-lateral central and right temporal regions. By means of the localization method based on single-trial classification of mental states, new GBR features and EEG channel-based brain regions related to mathematical giftedness were identified, which could be useful for the brain function improvement of children/adolescents in mathematical learning through brain-computer interface systems.

  10. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    PubMed Central

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  11. The influence of intrinsic sympathomimetic activity and beta-1 receptor selectivity on the recovery of finger skin temperature after finger cooling in normotensive subjects.

    PubMed

    Lenders, J W; Salemans, J; de Boo, T; Lemmens, W A; Thien, T; van't Laar, A

    1986-03-01

    A double-blind randomized study was designed to investigate differences in the recovery of finger skin temperature after finger cooling during dosing with placebo or one of four beta-blockers: propranolol, atenolol, pindolol, and acebutolol. In 11 normotensive nonsmoking subjects, finger skin temperature was measured with a thermocouple before and 20 minutes after immersion of one hand in a water bath at 16 degrees C. This finger cooling test caused no significant changes in systemic hemodynamics such as arterial blood pressure, heart rate, and forearm blood flow. The recovery of finger skin temperature during propranolol dosing was better than that during pindolol and atenolol dosing. There were no differences between the recoveries of skin temperature during pindolol, atenolol, and acebutolol dosing. Thus we could demonstrate no favorable effect of intrinsic sympathomimetic activity or beta 1-selectivity on the recovery of finger skin temperature after finger cooling.

  12. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  13. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    PubMed

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  14. Brain histamine levels in the hamster during the estrous cycle and on selected days of pregnancy.

    PubMed

    Hine, R J; Orsini, M W; Hegstrand, L R

    1986-01-01

    Brain histamine levels were determined in golden hamster hypothalamus and 'brain minus hypothalamus' on each of the 4 days of the estrous cycle and on selected days of pregnancy. The highest histamine content of the hypothalamus was observed on day 3 of the estrous cycle. The highest histamine content of the hypothalamus was observed on day 3 of the estrous cycle, which is the day prior to recurrence of heat on day 4. Day 4 terminates in ovulation. The histamine level in the remainder of the brain peaked on day 2. During gestation the histamine content of the 'brain minus hypothalamus' was greatest on day 5, while the maximum content of histamine in the hypothalamus was not reached until day 8. After the 8th day of pregnancy, there was an overall decline in brain histamine that continued until parturition. The hypothalamic histamine level in nonpregnant females was not different from that of males. However, in the remainder of the brain, histamine levels in females on days 1 and 2 of the estrous cycle were higher than in males.

  15. Oscillatory multiplexing of population codes for selective communication in the mammalian brain

    PubMed Central

    Akam, Thomas; Kullmann, Dimitri M

    2016-01-01

    Mammalian brains exhibit population oscillations whose structures vary in time and space according to behavioural state. A proposed function of these oscillations is to control the flow of signals among anatomically connected networks. However, the nature of neural coding that may support oscillatory selective communication has received relatively little attention. Here we consider the role of multiplexing, whereby multiple information streams share a common neural substrate. We suggest that multiplexing implemented through periodic modulation of firing rate population codes enables flexible reconfiguration of effective connectivity among brain areas. PMID:24434912

  16. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.

    PubMed

    Aljabar, P; Heckemann, R A; Hammers, A; Hajnal, J V; Rueckert, D

    2009-07-01

    Quantitative research in neuroimaging often relies on anatomical segmentation of human brain MR images. Recent multi-atlas based approaches provide highly accurate structural segmentations of the brain by propagating manual delineations from multiple atlases in a database to a query subject and combining them. The atlas databases which can be used for these purposes are growing steadily. We present a framework to address the consequent problems of scale in multi-atlas segmentation. We show that selecting a custom subset of atlases for each query subject provides more accurate subcortical segmentations than those given by non-selective combination of random atlas subsets. Using a database of 275 atlases, we tested an image-based similarity criterion as well as a demographic criterion (age) in a leave-one-out cross-validation study. Using a custom ranking of the database for each subject, we combined a varying number n of atlases from the top of the ranked list. The resulting segmentations were compared with manual reference segmentations using Dice overlap. Image-based selection provided better segmentations than random subsets (mean Dice overlap 0.854 vs. 0.811 for the estimated optimal subset size, n=20). Age-based selection resulted in a similar marked improvement. We conclude that selecting atlases from large databases for atlas-based brain image segmentation improves the accuracy of the segmentations achieved. We show that image similarity is a suitable selection criterion and give results based on selecting atlases by age that demonstrate the value of meta-information for selection.

  17. Effects of selective cooling of the facial area on physiological and metabolic output during graded maximal or prolonged submaximal exercise

    NASA Astrophysics Data System (ADS)

    Quirion, A.; Boisvert, P.; Brisson, G. R.; Decarufel, D.; Laurencelle, L.; Dulac, S.; Vogelaere, P.; Therminarias, A.

    1989-06-01

    Physiological and metabolic output responses to facial cooling during a graded maximal exercise and a prolonged submaximal exercise lasting 30 min at 65%dot VO_2 max were investigated in five male subjects. Pedalling on a cycle ergometer was performed both with and without facial cooling (10°C, 4.6 m s-1). Facial cooling at the end of graded maximal exercise apparently had no effect on plasma lactate (LA), maximal oxygen consumption (dot VO_2 max), maximal heart rate (HR max), rectal temperature ( T re), work-load, lactate threshold (LT), ventilatory threshold (VT) and onset of blood lactate accumulation (OBLA). However, the response to facial cooling after prolonged submaximal exercise is significantly different for heart rate and work-load. The results suggest that facial wind stimulation during maximal exercise does not produce a stress high enough to alter the metabolic and physiological responses.

  18. Free Language Selection in the Bilingual Brain: An Event-Related fMRI Study.

    PubMed

    Zhang, Yong; Wang, Tao; Huang, Peiyu; Li, Dan; Qiu, Jiang; Shen, Tong; Xie, Peng

    2015-07-16

    Bilingual speakers may select between two languages either on demand (forced language selection) or on their own volition (free language selection). However, the neural substrates underlying free and forced language selection may differ. While the neural substrates underlying forced language selection have been well-explored with language switching paradigms, those underlying free language selection have remained unclear. Using a modified digit-naming switching paradigm, we addressed the neural substrates underlying free language selection by contrasting free language switching with forced language switching. For a digit-pair trial, Chinese-English bilinguals named each digit in Chinese or English either on demand under forced language selection condition or on their own volition under free language selection condition. The results revealed activation in the frontoparietal regions that mediate volition of language selection. Furthermore, a comparison of free and forced language switching demonstrated differences in the patterns of brain activation. Additionally, free language switching showed reduced switching costs as compared to forced language switching. These findings suggest differences between the mechanism(s) underlying free and forced language switching. As such, the current study suggests interactivity between control of volition and control of language switching in free language selection, providing insights into a model of bilingual language control.

  19. Free Language Selection in the Bilingual Brain: An Event-Related fMRI Study

    PubMed Central

    Zhang, Yong; Wang, Tao; Huang, Peiyu; Li, Dan; Qiu, Jiang; Shen, Tong; Xie, Peng

    2015-01-01

    Bilingual speakers may select between two languages either on demand (forced language selection) or on their own volition (free language selection). However, the neural substrates underlying free and forced language selection may differ. While the neural substrates underlying forced language selection have been well-explored with language switching paradigms, those underlying free language selection have remained unclear. Using a modified digit-naming switching paradigm, we addressed the neural substrates underlying free language selection by contrasting free language switching with forced language switching. For a digit-pair trial, Chinese-English bilinguals named each digit in Chinese or English either on demand under forced language selection condition or on their own volition under free language selection condition. The results revealed activation in the frontoparietal regions that mediate volition of language selection. Furthermore, a comparison of free and forced language switching demonstrated differences in the patterns of brain activation. Additionally, free language switching showed reduced switching costs as compared to forced language switching. These findings suggest differences between the mechanism(s) underlying free and forced language switching. As such, the current study suggests interactivity between control of volition and control of language switching in free language selection, providing insights into a model of bilingual language control. PMID:26177885

  20. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection

    PubMed Central

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-01-01

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype. PMID:26861347

  1. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  2. Discovery of a Highly Selective, Brain-Penetrant Aminopyrazole LRRK2 Inhibitor.

    PubMed

    Chan, Bryan K; Estrada, Anthony A; Chen, Huifen; Atherall, John; Baker-Glenn, Charles; Beresford, Alan; Burdick, Daniel J; Chambers, Mark; Dominguez, Sara L; Drummond, Jason; Gill, Andrew; Kleinheinz, Tracy; Le Pichon, Claire E; Medhurst, Andrew D; Liu, Xingrong; Moffat, John G; Nash, Kevin; Scearce-Levie, Kimberly; Sheng, Zejuan; Shore, Daniel G; Van de Poël, Hervé; Zhang, Shuo; Zhu, Haitao; Sweeney, Zachary K

    2013-01-10

    The modulation of LRRK2 kinase activity by a selective small molecule inhibitor has been proposed as a potentially viable treatment for Parkinson's disease. By using aminopyrazoles as aniline bioisosteres, we discovered a novel series of LRRK2 inhibitors. Herein, we describe our optimization effort that resulted in the identification of a highly potent, brain-penetrant aminopyrazole LRRK2 inhibitor (18) that addressed the liabilities (e.g., poor solubility and metabolic soft spots) of our previously disclosed anilino-aminopyrimidine inhibitors. In in vivo rodent PKPD studies, 18 demonstrated good brain exposure and engendered significant reduction in brain pLRRK2 levels post-ip administration. The strategies of bioisosteric substitution of aminopyrazoles for anilines and attenuation of CYP1A2 inhibition described herein have potential applications to other drug discovery programs.

  3. Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement

    PubMed Central

    Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm

    2016-01-01

    Abstract: Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart–lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart–lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart–lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures. PMID:27729705

  4. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors

    PubMed Central

    Blanco, Víctor M.; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D.; Sulaiman, Mahaboob K.; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E.; Franco, Robert S.; Qi, Xiaoyang

    2014-01-01

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors. PMID:25051370

  5. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment

    PubMed Central

    Dal Ben, Matteo; Bottin, Cristina; Zanconati, Fabrizio; Tiribelli, Claudio; Gazzin, Silvia

    2017-01-01

    The neurologic manifestations of neonatal hyperbilirubinemia in the central nervous system (CNS) exhibit high variations in the severity and appearance of motor, auditory and cognitive symptoms, which is suggestive of a still unexplained selective topography of bilirubin-induced damage. By applying the organotypic brain culture (OBC: preserving in vitro the cellular complexity, connection and architecture of the in vivo brain) technique to study hyperbilirubinemia, we mapped the regional target of bilirubin-induced damage, demonstrated a multifactorial toxic action of bilirubin, and used this information to evaluate the efficacy of drugs applicable to newborns to protect the brain. OBCs from 8-day-old rat pups showed a 2–13 fold higher sensitivity to bilirubin damage than 2-day-old preparations. The hippocampus, inferior colliculus and cerebral cortex were the only brain regions affected, presenting a mixed inflammatory-oxidative mechanism. Glutamate excitotoxicity was appreciable in only the hippocampus and inferior colliculus. Single drug treatment (indomethacin, curcumin, MgCl2) significantly improved cell viability in all regions, while the combined (cocktail) administration of the three drugs almost completely prevented damage in the most affected area (hippocampus). Our data may supports an innovative (complementary to phototherapy) approach for directly protecting the newborn brain from bilirubin neurotoxicity. PMID:28102362

  6. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D; Sulaiman, Mahaboob K; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E; Franco, Robert S; Qi, Xiaoyang

    2014-08-30

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.

  7. New conceptual method for directly cooling the target biological tissues

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Liu, Jing

    2005-01-01

    Hypothermia is a commonly adopted strategy to decrease the cerebral oxygen demands, which is critical for the patient to sustain longer time when subjected to a hypoxia. However, when circulatory arrest occurs, the traditional approaches such as selective brain cooling (SBC), systemic body cooling or perfusing cool blood are often not very helpful due to their slow cooling rates in preventing the tendency of a slight cerebral temperature increase at the onset of circulatory arrest. To resolve such difficult issue, a new conceptual volumetric cooling method (VCM) through minimally invasive injection of physiological coolant was proposed in this study. A heat and fluid transport model based on porous medium configuration was established to describe the thermal responses of brain tissues during hypothermia resuscitation. Theoretical calculations indicated that VCM could significantly improve the cooling rate in the deep part of the biological tissues within a desired period of time. To further test this approach, a series of either in vitro or in vivo animal experiments were performed, which also strongly supported the theoretical predictions and indicated that VCM was well appropriate for the localized cooling of target tissues. The concept of the present VCM could also possibly be extended to more wide clinical situations, when an instant and highly localized cooling for the specific organs or tissues are urgently requested. It also raised challenging issues such as injury or negative effect for the clinical operation of this VCM, which need to be addressed in the coming study.

  8. Antidepressant-Like Properties of Novel HDAC6-Selective Inhibitors with Improved Brain Bioavailability

    PubMed Central

    Jochems, Jeanine; Boulden, Janette; Lee, Bridgin G; Blendy, Julie A; Jarpe, Matthew; Mazitschek, Ralph; Van Duzer, John H; Jones, Simon; Berton, Olivier

    2014-01-01

    HDAC inhibitors have been reported to produce antidepressant and pro-cognitive effects in animal models, however, poor brain bioavailability or lack of isoform selectivity of current probes has limited our understanding of their mode of action. We report the characterization of novel pyrimidine hydroxyl amide small molecule inhibitors of HDAC6, brain bioavailable upon systemic administration. We show that two compounds in this family, ACY-738 and ACY-775, inhibit HDAC6 with low nanomolar potency and a selectivity of 60- to 1500-fold over class I HDACs. In contrast to tubastatin A, a reference HDAC6 inhibitor with similar potency and peripheral activity, but more limited brain bioavailability, ACY-738 and ACY-775 induce dramatic increases in α-tubulin acetylation in brain and stimulate mouse exploratory behaviors in novel, but not familiar environments. Interestingly, despite a lack of detectable effect on histone acetylation, we show that ACY-738 and ACY-775 share the antidepressant-like properties of other HDAC inhibitors, such as SAHA and MS-275, in the tail suspension test and social defeat paradigm. These effects of ACY-738 and ACY-775 are directly attributable to the inhibition of HDAC6 expressed centrally, as they are fully abrogated in mice with a neural-specific loss of function of HDAC6. Furthermore, administered in combination, a behaviorally inactive dose of ACY-738 markedly potentiates the anti-immobility activity of a subactive dose of the selective serotonin reuptake inhibitor citalopram. Our results validate new isoform-selective probes for in vivo pharmacological studies of HDAC6 in the CNS and reinforce the viability of this HDAC isoform as a potential target for antidepressant development. PMID:23954848

  9. Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain?

    PubMed Central

    Widomska, Justyna; Zareba, Mariusz; Subczynski, Witold Karol

    2016-01-01

    Epidemiological studies demonstrate that a high dietary intake of carotenoids may offer protection against age-related macular degeneration, cancer and cardiovascular and neurodegenerative diseases. Humans cannot synthesize carotenoids and depend on their dietary intake. Major carotenoids that have been found in human plasma can be divided into two groups, carotenes (nonpolar molecules, such as β-carotene, α-carotene or lycopene) and xanthophylls (polar carotenoids that include an oxygen atom in their structure, such as lutein, zeaxanthin and β-cryptoxanthin). Only two dietary carotenoids, namely lutein and zeaxanthin (macular xanthophylls), are selectively accumulated in the human retina. A third carotenoid, meso-zeaxanthin, is formed directly in the human retina from lutein. Additionally, xanthophylls account for about 70% of total carotenoids in all brain regions. Some specific properties of these polar carotenoids must explain why they, among other available carotenoids, were selected during evolution to protect the retina and brain. It is also likely that the selective uptake and deposition of macular xanthophylls in the retina and brain are enhanced by specific xanthophyll-binding proteins. We hypothesize that the high membrane solubility and preferential transmembrane orientation of macular xanthophylls distinguish them from other dietary carotenoids, enhance their chemical and physical stability in retina and brain membranes and maximize their protective action in these organs. Most importantly, xanthophylls are selectively concentrated in the most vulnerable regions of lipid bilayer membranes enriched in polyunsaturated lipids. This localization is ideal if macular xanthophylls are to act as lipid-soluble antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect neural tissue against degenerative diseases. PMID:27030822

  10. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  11. Left Brain/Right Brain: Research and Learning. Focused Access to Selected Topics (FAST) Bibliography No. 12.

    ERIC Educational Resources Information Center

    Eppele, Ruth

    This 27-item bibliography represents the variety of articles added to the ERIC database from 1983 through 1988 on left-brain/right-brain research, theory, and application as it relates to classroom incorporation. Included are conflicting opinions as to the usefulness of left-brain/right-brain studies and their application in the learning…

  12. Genomic approach to selective vulnerability of the hippocampus in brain ischemia-hypoxia.

    PubMed

    Schmidt-Kastner, Rainald

    2015-11-19

    Transient global ischemia selectively damages neurons in specific brain areas. A reproducible pattern of selective vulnerability is observed in the dorsal hippocampus of rodents where ischemic damage typically affects neurons in the CA1 area while sparing neurons in CA3 and granule cells. The "neuronal factors" underlying the differential vulnerability of CA1 versus CA3 have been of great interest. This review first provides on overview of the histological pattern of ischemic-hypoxic damage, the phenomenon of delayed neuronal death, the necrosis-apoptosis discussion, and multiple molecular mechanisms studied in the hippocampus. Subsequently, genomic studies of basal gene expression in CA1 and CA3 are summarized and changes in gene expression in response to global brain ischemia are surveyed. A formal analysis is presented for the overlap between genes expressed under basal conditions in the hippocampus and genes responding to ischemia-hypoxia in general. A possible role of the elusive vascular factors in selective vulnerability is reviewed, and a gene set for angiogenesis is then shown to be enriched in the CA3 gene set. A survey of selective vulnerability in the human hippocampus in relation to genomic studies in ischemia-hypoxia is presented, and neurodegeneration genes with high expression in CA1 are highlighted (e.g. WFS1). It is concluded that neuronal factors dominate the selective vulnerability of CA1 but that vascular factors also deserve more systematic studies. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar

    PubMed Central

    Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E.; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J.; Langley, Robert R.

    2011-01-01

    An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44+ and CD133+ and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice. PMID:21514446

  14. Selection of brain metastasis-initiating breast cancer cells determined by growth on hard agar.

    PubMed

    Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J; Langley, Robert R

    2011-05-01

    An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44(+) and CD133(+) and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice.

  15. Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 Tesla.

    PubMed

    Choi, Changho; Coupland, Nicholas J; Bhardwaj, Paramjit P; Malykhin, Nikolai; Gheorghiu, Dan; Allen, Peter S

    2006-05-01

    A new single-voxel proton NMR spectrally-selective refocusing method for measuring glutamate (Glu) and glutamine (Gln) in the human brain in vivo at 3T is reported. Triple-resonance selective 180 degrees RF pulses with a bandwidth of 12 Hz were implemented within point-resolved spectroscopy (PRESS) for selective detection of Glu or Gln, and simultaneous acquisition of creatine singlets for use as a reference in phase correction. The carriers of the spectrally-selective 180 degrees pulses and the echo times (TEs) were optimized with both numerical and experimental analyses of the filtering performance, which enabled measurements of the target metabolites with negligible contamination from N-acetylaspartate and glutathione. The concentrations of Glu and Gln in the prefrontal cortex were estimated to be 9.7+/-0.5 and 3.0+/-0.7 mM (mean+/-SD, N=7), with reference to Cr at 8 mM.

  16. Electrode subset selection methods for an EEG-based P300 brain-computer interface.

    PubMed

    McCann, Michael T; Thompson, David E; Syed, Zeeshan H; Huggins, Jane E

    2015-05-01

    An electroencephalography (EEG)-based P300 speller is a type of brain-computer interface (BCI) that uses EEG to allow a user to select characters without physical movement. In general, using fewer electrodes for such a system makes it easier to set up and less expensive. This study addresses the question of electrode selection for EEG-based P300 systems. Data from 13 subjects collected with a 16-electrode cap was analyzed. The optimal subsets of electrodes of sizes 1-15 were calculated for each subject and for the group as a whole. The methods of exhaustive search, forward selection, and backward elimination were then compared to each other and to these optimal subsets. The results show that, while none of the methods consistently picked the best-performing electrode subsets, all methods were able to find small electrode subsets that provided acceptable accuracy both for individuals and for the whole group. The computationally intensive exhaustive search method provided no statistically significant increase in performance over the much quicker forward and backward selection methods. The forward and backward selection methods are preferred for electrode selection. A P300 speller is a type of brain-computer interface that allows a user to select characters without physical movement. Using fewer electrodes reduces setup time and cost for an EEG-based P300 speller. We show that acceptable P300 speller performance can be achieved with as few as four electrodes. We compare methods of selecting electrode sets and identify fast and efficient methods for customizing electrode sets for individuals.

  17. Positive selection on NIN, a gene involved in neurogenesis, and primate brain evolution.

    PubMed

    Montgomery, S H; Mundy, N I

    2012-11-01

    A long-held dogma in comparative neurobiology has been that the number of neurons under a given area of cortical surface is constant. As such, the attention of those seeking to understand the genetic basis of brain evolution has focused on genes with functions in the lateral expansion of the developing cerebral cortex. However, new data suggest that cortical cytoarchitecture is not constant across primates, raising the possibility that changes in radial cortical development played a role in primate brain evolution. We present the first analysis of a gene with functions relevant to this dimension of brain evolution. We show that NIN, a gene necessary for maintaining asymmetric, neurogenic divisions of radial glial cells (RGCs), evolved adaptively during anthropoid evolution. We explored how this selection relates to neural phenotypes and find a significant association between selection on NIN and neonatal brain size in catarrhines. Our analyses suggest a relationship with prenatal neurogenesis and identify the human data point as an outlier, possibly explained by postnatal changes in development on the human lineage. A similar pattern is found in platyrrhines, but the highly encephalized genus Cebus departs from the general trend. We further show that the evolution of NIN may be associated with variation in neuron number not explained by increases in surface area, a result consistent with NIN's role in neurogenic divisions of RGCs. Our combined results suggest a role for NIN in the evolution of cortical development. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  18. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice

    PubMed Central

    Waters, R.Parrish; Pringle, R.B.; Forster, G.L.; Renner, K.J.; Malisch, J.L.; Garland, T.; Swallow, J.G.

    2013-01-01

    Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. PMID:23352668

  19. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice.

    PubMed

    Waters, R Parrish; Pringle, R B; Forster, G L; Renner, K J; Malisch, J L; Garland, T; Swallow, J G

    2013-05-01

    Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. Published by Elsevier B.V.

  20. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.

    PubMed

    Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D

    2016-12-01

    The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.

  1. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain.

    PubMed

    Campbell, A; Becaria, A; Lahiri, D K; Sharman, K; Bondy, S C

    2004-02-15

    A link between aluminum (Al) exposure and age-related neurological disorders has long been proposed. Although the exact mechanism by which the metal may influence disease processes is unknown, there is evidence that exposure to Al causes an increase in both oxidative stress and inflammatory events. These processes have also been suggested to play a role in Alzheimer's disease (AD), and exposure to the metal may contribute to the disorder by potentiating these events. Al lactate (0.01, 0.1, and 1 mM) in drinking water for 10 weeks increased inflammatory processes in the brains of mice. The lowest of these levels is in the range found to increase the prevalence of AD in regions where the concentrations of the metal are elevated in residential drinking water (Flaten [2001] Brain Res. Bull. 55:187-196). Nuclear factor-kappaB as well as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1alpha (IL-1alpha) levels were increased in the brains of treated animals. The mRNA for TNF-alpha was also up-regulated following treatment. Enhancement of glial fibrillary acidic protein levels and reactive microglia was seen in the striatum of Al-treated animals. The level of amyloid beta (Abeta40) was not significantly altered in the brains of exposed animals. Insofar as no parallel changes were observed in the serum or liver of treated animals, the proinflammatory effects of the metal may be selective to the brain. Al exposure may not be sufficient to cause abnormal production of the principal component of senile plaques directly but does exacerbate underlying events associated with brain aging and thus could contribute to progression of neurodegeneration.

  2. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.

    PubMed

    Brown, Andrew D; Marotta, Thomas R

    2017-02-01

    Incorrect imaging protocol selection can contribute to increased healthcare cost and waste. To help healthcare providers improve the quality and safety of medical imaging services, we developed and evaluated three natural language processing (NLP) models to determine whether NLP techniques could be employed to aid in clinical decision support for protocoling and prioritization of magnetic resonance imaging (MRI) brain examinations. To test the feasibility of using an NLP model to support clinical decision making for MRI brain examinations, we designed three different medical imaging prediction tasks, each with a unique outcome: selecting an examination protocol, evaluating the need for contrast administration, and determining priority. We created three models for each prediction task, each using a different classification algorithm-random forest, support vector machine, or k-nearest neighbor-to predict outcomes based on the narrative clinical indications and demographic data associated with 13,982 MRI brain examinations performed from January 1, 2013 to June 30, 2015. Test datasets were used to calculate the accuracy, sensitivity and specificity, predictive values, and the area under the curve. Our optimal results show an accuracy of 82.9%, 83.0%, and 88.2% for the protocol selection, contrast administration, and prioritization tasks, respectively, demonstrating that predictive algorithms can be used to aid in clinical decision support for examination protocoling. NLP models developed from the narrative clinical information provided by referring clinicians and demographic data are feasible methods to predict the protocol and priority of MRI brain examinations. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks.

    PubMed

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.

  4. Toward high performance, weakly invasive brain computer interfaces using selective visual attention.

    PubMed

    Rotermund, David; Ernst, Udo A; Mandon, Sunita; Taylor, Katja; Smiyukha, Yulia; Kreiter, Andreas K; Pawelzik, Klaus R

    2013-04-03

    Brain-computer interfaces have been proposed as a solution for paralyzed persons to communicate and interact with their environment. However, the neural signals used for controlling such prostheses are often noisy and unreliable, resulting in a low performance of real-world applications. Here we propose neural signatures of selective visual attention in epidural recordings as a fast, reliable, and high-performance control signal for brain prostheses. We recorded epidural field potentials with chronically implanted electrode arrays from two macaque monkeys engaged in a shape-tracking task. For single trials, we classified the direction of attention to one of two visual stimuli based on spectral amplitude, coherence, and phase difference in time windows fixed relative to stimulus onset. Classification performances reached up to 99.9%, and the information about attentional states could be transferred at rates exceeding 580 bits/min. Good classification can already be achieved in time windows as short as 200 ms. The classification performance changed dynamically over the trial and modulated with the task's varying demands for attention. For all three signal features, the information about the direction of attention was contained in the γ-band. The most informative feature was spectral amplitude. Together, these findings establish a novel paradigm for constructing brain prostheses as, for example, virtual spelling boards, promising a major gain in performance and robustness for human brain-computer interfaces.

  5. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection.

    PubMed

    Kinnecom, Katie; Pachter, Joel S

    2005-12-01

    Laser capture microdissection (LCM) of the major cell types comprising brain microvessels offers a powerful technology to explore the molecular basis of the blood-brain barrier in health and disease. However, the ability to selectively retrieve endothelial or perivascular cells, without cross-contamination from the other, has proven difficult. Additionally, histochemical methods previously described for use with LCM have not allowed for identification of all the different size branches of the microvascular tree. Here, we describe a double immunostaining method, combining bright-field and fluorescence microscopy, and using an extensive dehydration with xylene, to clearly identify and spatially resolve endothelial from perivascular cells within all size microvascular branches in frozen brain sections. LCM of these sections, coupled with RNA analysis by reverse-transcription polymerase chain reaction, revealed that captured endothelial cells show endothelial markers but no detectable markers for astrocytes or smooth muscle cells/pericytes. Conversely, captured astrocytes or smooth muscle cells/pericytes demonstrate their respective markers, but not those of endothelial cells. This approach has applicability to microarray analysis, thereby enabling global gene profiling of the different cell types along the entirety of the brain microvascular tree.

  6. Evidence of critical cooling rates in the nonisothermal crystallization of triacylglycerols: a case for the existence and selection of growth modes of a lipid crystal network.

    PubMed

    Bouzidi, Laziz; Narine, Suresh S

    2010-03-16

    The isoconversional method, a model-free analysis of the kinetics of liquid-solid transformations, was used to determine the effective activation energy of the nonisothermal crystallization of melts of pure and complex systems of triacylglycerols (TAGs). The method was applied to data from differential scanning calorimetry (DSC) measurements of the heat of crystallization of purified 1,3-dilauroyl-2-stearoyl-sn-glycerol (LSL) and commercially available cocoa butter melts. The method conclusively demonstrated the existence of specific growth modes and critical rates of cooling at specific degrees of conversion. The existence of critical rates suggests that the crystallization mechanism is composed of growth modes that can be effectively treated as mutually exclusive, each being predominant for one range of cooling rates and extent of conversion. Importantly, the data suggests that knowledge of the critical cooling rates at specific rates of conversion can be exploited to select preferred growth modes for lipid networks, with concomitant benefits of structural organization and resultant physical functionality. Differences in transport phenomena induced by different cooling rates suggest the existence of thresholds for particular growth mechanisms and help to explain the overall complexity of lipid crystallization. The results of this model-free analysis may be attributed to the relative importance of nucleation and growth at different stages of crystallization. A mechanistic explanation based on the competing effects of the thermodynamic driving force and limiting heat and transport phenomena is provided to explain the observed behavior. This work, furthermore, offers satisfactory explanations for the noted effect of cooling-rate-induced changes in the physical functionality of lipid networks.

  7. Goal selection versus process control while learning to use a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Royer, Audrey S.; Rose, Minn L.; He, Bin

    2011-06-01

    A brain-computer interface (BCI) can be used to accomplish a task without requiring motor output. Two major control strategies used by BCIs during task completion are process control and goal selection. In process control, the user exerts continuous control and independently executes the given task. In goal selection, the user communicates their goal to the BCI and then receives assistance executing the task. A previous study has shown that goal selection is more accurate and faster in use. An unanswered question is, which control strategy is easier to learn? This study directly compares goal selection and process control while learning to use a sensorimotor rhythm-based BCI. Twenty young healthy human subjects were randomly assigned either to a goal selection or a process control-based paradigm for eight sessions. At the end of the study, the best user from each paradigm completed two additional sessions using all paradigms randomly mixed. The results of this study were that goal selection required a shorter training period for increased speed, accuracy, and information transfer over process control. These results held for the best subjects as well as in the general subject population. The demonstrated characteristics of goal selection make it a promising option to increase the utility of BCIs intended for both disabled and able-bodied users.

  8. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  9. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  10. Selection of electrode positions for an EEG-based brain computer interface (BCI).

    PubMed

    Pregenzer, M; Pfurtscheller, G; Flotzinger, D

    1994-10-01

    One major question in designing an EEG-based Brain Computer Interface to bypass the normal motor pathways is the selection of proper electrode positions. This study investigates electrode selection with a Distinction Sensitive Learning Vector Quantizer (DSLVQ). DSLVQ is an extended Learning Vector Quantizer (LVQ) which employs a weighted distance function for dynamical scaling and feature selection. The data analysed and classified were 56-channel EEG recordings over sensorimotor areas during preparation for discrete left or right index finger flexions. Data from 3 subjects are reported. It was found by DSLVQ that the most important electrode positions for differentiation between planning of left and right finger movement overlie cortical finger/hand areas over both hemispheres.

  11. Perinatal selective serotonin reuptake inhibitor exposure: impact on brain development and neural plasticity.

    PubMed

    Pawluski, Jodi L

    2012-01-01

    Selective serotonin reuptake inhibitor (SSRI) medications are the most common antidepressant treatment used during pregnancy and the postpartum period. Up to 10% of pregnant women are prescribed SSRIs. Serotonin plays an integral part in neurodevelopment, and questions have been raised about the placental transfer of SSRIs and the effects of preventing reuptake of presynaptic serotonin on fetal neurodevelopment. Preclinical data is beginning to document a role of early exposure to SSRIs in long-term developmental outcomes related to a number of brain regions, such as the hippocampus, cortex and cerebellum. To date, the majority of preclinical work has investigated the developmental effects of SSRIs in the offspring of healthy mothers; however, more research is needed on the effects of these medications in the face of maternal adversity. This minireview will highlight emerging evidence from clinical and preclinical studies investigating the impact of perinatal SSRI exposure on brain development and neural plasticity.

  12. Organ selective regulation of sympathetic outflow by the brain Angiotensin system.

    PubMed

    Ramchandra, Rohit; Yao, Song T; May, Clive N

    2013-08-01

    Angiotensin II (Ang II) has actions on the sympathetic nervous system both as a circulating hormone acting on the circumventricular organs and also as a neurotransmitter/ neuromodulator acting within the brain. Administration of Ang II into the cerebral ventricles has diverse effects on sympathetic nerve activity (SNA), causing an increase in cardiac and splanchnic and a decrease in renal SNA. Similar contrasting effects on cardiac and renal SNA are seen with administration of hypertonic saline, which is thought to act centrally through angiotensinergic pathways. In heart failure there is compelling evidence that central angiotensinergic mechanisms contribute to the increases in cardiac and renal SNA, which have numerous detrimental effects. Although there is evidence that Ang II regulates sympathetic activity, and contributes to excess SNA in disease, the exact sites in the brain at which Ang II acts to selectively control SNA to individual organs are not well defined.

  13. Phencyclidine in low doses selectively blocks a presynaptic voltage-regulated potassium channel in rat brain.

    PubMed Central

    Bartschat, D K; Blaustein, M P

    1986-01-01

    Phencylidine (PCP) is a major drug of abuse in the United States. It produces a toxic confusional psychosis in man. We show here that nanomolar to micromolar concentrations of PCP and behaviorally active congeners selectively block voltage-regulated noninactivating (or very slowly inactivating) presynaptic K channels in the brain. The rank order of potency for blockage of these K channels parallels both the relative ability of these agents to produce characteristic behavioral deficits in rats and their ability to displace [3H]PCP from its high-affinity binding sites in brain. In view of the enhanced voltage-gated Ca influx that would be expected to accompany blockage of presynaptic K channels, this mechanism could explain the excessive neurotransmitter release that is characteristic of PCP intoxication. PMID:2417237

  14. Artificial selection on brain-expressed genes during the domestication of dog.

    PubMed

    Li, Yan; Vonholdt, Bridgett M; Reynolds, Andy; Boyko, Adam R; Wayne, Robert K; Wu, Dong-Dong; Zhang, Ya-Ping

    2013-08-01

    Domesticated dogs have many unique behaviors not found in gray wolves that have augmented their interaction and communication with humans. The genetic basis of such unique behaviors in dogs remains poorly understood. We found that genes within regions highly differentiated between outbred Chinese native dogs (CNs) and wolves show high bias for expression localized to brain tissues, particularly the prefrontal cortex, a specific region responsible for complex cognitive behaviors. In contrast, candidate genes showing high population differentiation between CNs and German Shepherd dogs (GSs) did not demonstrate significant expression bias. These observations indicate that these candidate genes highly expressed in the brain have rapidly evolved. This rapid evolution was probably driven by artificial selection during the primary transition from wolves to ancient dogs and was consistent with the evolution of dog-specific characteristics, such as behavior transformation, for thousands of years.

  15. Automatic motor task selection via a bandit algorithm for a brain-controlled button.

    PubMed

    Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen

    2013-02-01

    Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing 'BCI illiteracy'.

  16. Automatic motor task selection via a bandit algorithm for a brain-controlled button

    NASA Astrophysics Data System (ADS)

    Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen

    2013-02-01

    Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.

  17. Selective cerebral perfusion: real-time evidence of brain oxygen and energy metabolism preservation.

    PubMed

    Salazar, Jorge D; Coleman, Ryan D; Griffith, Stephen; McNeil, Jeffrey D; Steigelman, Megan; Young, Haven; Hensler, Bart; Dixon, Patricia; Calhoon, John; Serrano, Faridis; DiGeronimo, Robert

    2009-07-01

    Deep hypothermic circulatory arrest (DHCA) is commonly used for complex cardiac operations in children, often with selective cerebral perfusion (SCP). Little data exist concerning the real-time effects of DHCA with or without SCP on cerebral metabolism. Our objective was to better define these effects, focusing on brain oxygenation and energy metabolism. Piglets undergoing cardiopulmonary bypass were assigned to either 60 minutes of DHCA at 18 degrees C (n = 9) or DHCA with SCP at 18 degrees C (n = 8), using pH-stat management. SCP was administered at 10 mL/kg/min. A cerebral microdialysis catheter was implanted into the cortex for monitoring of cellular ischemia and energy stores. Cerebral oxygen tension and intracranial pressure also were monitored. After DHCA with or without SCP, animals were recovered for 4 hours off cardiopulmonary bypass. With SCP, brain oxygen tension was preserved in contrast to DHCA alone (p < 0.01). Deep hypothermic circulatory arrest was associated with marked elevations of lactate (p < 0.01), glycerol (p < 0.01), and the lactate to pyruvate ratio (p < 0.001), as well as profound depletion of the energy substrates glucose (p < 0.001) and pyruvate (p < 0.001). These changes persisted well into recovery. With SCP, no significant cerebral microdialysis changes were observed. A strong correlation was demonstrated between cerebral oxygen levels and cerebral microdialysis markers (p < 0.001). Selective cerebral perfusion preserves cerebral oxygenation and attenuates derangements in cerebral metabolism associated with DHCA. Cerebral microdialysis provides real-time metabolic feedback that correlates with changes in brain tissue oxygenation. This model enables further study and refinement of strategies aiming to limit brain injury in children requiring complex cardiac operations.

  18. Novel insect orcokinins: characterization and neuronal distribution in the brains of selected dicondylian insects.

    PubMed

    Hofer, Sabine; Dircksen, Heinrich; Tollbäck, Petter; Homberg, Uwe

    2005-09-12

    Orcokinins are a family of myotropic neuropeptides identified in various decapod crustaceans and recently in a cockroach. Their presence in the crustacean nervous system and hemolymph suggests that they act as hormones and as locally acting neuromodulators. To provide further evidence for the existence of orcokinins in insects, we identified a novel orcokinin-related peptide in the locust Schistocerca gregaria and used an antiserum against Asn13-orcokinin for immunostaining in the brains of selected dicondylian insects, including a silverfish, three polyneopteran species (a cockroach and two locusts), and three endopterygote species (a moth, a bee, and a fly). As analyzed by MALDI-TOF spectrometry and nanoelectrospray Q-TOF, the locust orcokinin is a novel tetradecapeptide with striking sequence similarity to crustacean orcokinins. Orcokinin immunostaining was widespread and occurred in similar patterns in the brain of the silverfish and the polyneopteran species. Prominent immunostaining was detected in the optic lobe, especially in the medulla and in the accessory medulla, in local interneurons of the antennal lobe, and in extrinsic and intrinsic mushroom-body neurons. All parts of the central complex and many other areas of the brains were densely stained. In the silverfish, the cockroach, and the locusts, processes in the corpora cardiaca showed orcokinin immunoreactivity, suggesting that orcokinins also serve a hormonal role. In contrast to the case in polyneopteran species, immunostaining was completely lacking in the brains of the honeybee, fruitfly, and sphinx moth. This indicates that orcokinins either are modified considerably or may be completely absent in the brains of endopterygote insects. Copyright (c) 2005 Wiley-Liss, Inc.

  19. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy.

    PubMed

    Panier, Thomas; Romano, Sebastián A; Olive, Raphaël; Pietri, Thomas; Sumbre, Germán; Candelier, Raphaël; Debrégeas, Georges

    2013-01-01

    The optical transparency and the small dimensions of zebrafish at the larval stage make it a vertebrate model of choice for brain-wide in-vivo functional imaging. However, current point-scanning imaging techniques, such as two-photon or confocal microscopy, impose a strong limit on acquisition speed which in turn sets the number of neurons that can be simultaneously recorded. At 5 Hz, this number is of the order of one thousand, i.e., approximately 1-2% of the brain. Here we demonstrate that this limitation can be greatly overcome by using Selective-plane Illumination Microscopy (SPIM). Zebrafish larvae expressing the genetically encoded calcium indicator GCaMP3 were illuminated with a scanned laser sheet and imaged with a camera whose optical axis was oriented orthogonally to the illumination plane. This optical sectioning approach was shown to permit functional imaging of a very large fraction of the brain volume of 5-9-day-old larvae with single- or near single-cell resolution. The spontaneous activity of up to 5,000 neurons was recorded at 20 Hz for 20-60 min. By rapidly scanning the specimen in the axial direction, the activity of 25,000 individual neurons from 5 different z-planes (approximately 30% of the entire brain) could be simultaneously monitored at 4 Hz. Compared to point-scanning techniques, this imaging strategy thus yields a ≃20-fold increase in data throughput (number of recorded neurons times acquisition rate) without compromising the signal-to-noise ratio (SNR). The extended field of view offered by the SPIM method allowed us to directly identify large scale ensembles of neurons, spanning several brain regions, that displayed correlated activity and were thus likely to participate in common neural processes. The benefits and limitations of SPIM for functional imaging in zebrafish as well as future developments are briefly discussed.

  20. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOEpatents

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  1. Salvage Radiosurgery for Brain Metastases: Prognostic Factors to Consider in Patient Selection

    SciTech Connect

    Kurtz, Goldie; Zadeh, Gelareh; Gingras-Hill, Geneviève; Millar, Barbara-Ann; Laperriere, Normand J.; Bernstein, Mark; Jiang, Haiyan; Ménard, Cynthia; Chung, Caroline

    2014-01-01

    Purpose: Stereotactic radiosurgery (SRS) is offered to patients for recurrent brain metastases after prior brain radiation therapy (RT), but few studies have evaluated the efficacy of salvage SRS or factors to consider in selecting patients for this treatment. This study reports overall survival (OS), intracranial progression-free survival (PFS), and local control (LC) after salvage SRS, and factors associated with outcomes. Methods and Materials: This is a retrospective review of patients treated from 2009 to 2011 with salvage SRS after prior brain RT for brain metastases. Survival from salvage SRS and from initial brain metastases diagnosis (IBMD) was calculated. Univariate and multivariable (MVA) analyses included age, performance status, recursive partitioning analysis (RPA) class, extracranial disease control, and time from initial RT to salvage SRS. Results: There were 106 patients included in the analysis with a median age of 56.9 years (range 32.5-82 years). A median of 2 metastases were treated per patient (range, 1-12) with a median dose of 21 Gy (range, 12-24) prescribed to the 50% isodose. With a median follow-up of 10.5 months (range, 0.1-68.2), LC was 82.8%, 60.1%, and 46.8% at 6 months, 1 year, and 3 years, respectively. Median PFS was 6.2 months (95% confidence interval [CI] = 4.9-7.6). Median OS was 11.7 months (95% CI = 8.1-13) from salvage SRS, and 22.1 months from IBMD (95% CI = 18.4-26.8). On MVA, age (P=.01; hazard ratio [HR] = 1.04; 95% CI = 1.01-1.07), extracranial disease control (P=.004; HR = 0.46; 95% CI = 0.27-0.78), and interval from initial RT to salvage SRS of at least 265 days (P=.001; HR = 2.46; 95% CI = 1.47-4.09) were predictive of OS. Conclusions: This study demonstrates that patients can have durable local control and survival after salvage SRS for recurrent brain metastases. In particular, younger patients with controlled extracranial disease and a durable response to initial brain RT are likely to benefit from salvage SRS.

  2. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    PubMed Central

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-01-01

    Objective Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45–84 % less power. Similar gains in selectivity were evident with the optimized electrodes: 50 % of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44–48 % with the standard electrode to 0–14 % with bipolar designs; 50 % of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53–55 % with the standard electrode to 1–5 % with an array of cathodes; and, 50 % of TAs could be activated while reducing activation of AOPs from 43–100 % with the standard electrode to 2–15 % with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes. PMID:26170244

  3. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.

  4. Selective enhancement of rapid eye movement sleep by deep brain stimulation of the human pons.

    PubMed

    Lim, Andrew S; Moro, Elena; Lozano, Andres M; Hamani, Clement; Dostrovsky, Jonathan O; Hutchison, William D; Lang, Anthony E; Wennberg, Richard A; Murray, Brian J

    2009-07-01

    Animal studies suggest that rapid eye movement (REM) sleep is governed by the interaction of REM-promoting and REM-inhibiting nuclei in the pontomesencephalic tegmentum. The pedunculopontine nucleus is proposed to be REM promoting. Using polysomnography, we studied sleep in five parkinsonian patients undergoing unilateral pedunculopontine nucleus deep brain stimulation (DBS). We demonstrated a near doubling of nocturnal REM sleep between the DBS "off" and DBS "on" states, without significant changes in other sleep states. This represents the first demonstration that DBS can selectively modulate human sleep, and it supports an important role for the pedunculopontine nucleus region in modulating human REM sleep. Ann Neurol 2009;66:110-114.

  5. Volumetric and Lateralized Differences in Selected Brain Regions of Chimpanzees (Pan troglodytes) and Bonobos (Pan paniscus)

    PubMed Central

    Hopkins, William D.; Lyn, Heidi; Cantalupo, Claudio

    2009-01-01

    The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills. PMID:19760676

  6. Volumetric and lateralized differences in selected brain regions of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus).

    PubMed

    Hopkins, William D; Lyn, Heidi; Cantalupo, Claudio

    2009-12-01

    The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills.

  7. Possible functional links among brain- and skull-related genes selected in modern humans

    PubMed Central

    Benítez-Burraco, Antonio; Boeckx, Cedric

    2015-01-01

    The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language. PMID:26136701

  8. Possible functional links among brain- and skull-related genes selected in modern humans.

    PubMed

    Benítez-Burraco, Antonio; Boeckx, Cedric

    2015-01-01

    The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.

  9. Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria.

    PubMed

    Samid, D; Ram, Z; Hudgins, W R; Shack, S; Liu, L; Walbridge, S; Oldfield, E H; Myers, C E

    1994-02-15

    Phenylacetate, a deaminated metabolite of phenylalanine, has been implicated in damage to immature brain in phenylketonuria. Because primary brain tumors are highly reminiscent of the immature central nervous system, these neoplasms should be equally vulnerable. We show here that sodium phenylacetate can induce cytostasis and reversal of malignant properties of cultured human glioblastoma cells, when used at pharmacological concentrations that are well tolerated by children and adults. Treated tumor cells exhibited biochemical alterations similar to those observed in phenylketonuria-like conditions, including selective decline in de novo cholesterol synthesis from mevalonate. Because gliomas, but not mature normal brain cells, are highly dependent on mevalonate for production of sterols and isoprenoids vital for cell growth, sodium phenylacetate would be expected to affect tumor growth in vivo while sparing normal tissues. Systemic treatment of rats bearing intracranial gliomas resulted in significant tumor suppression with no apparent toxicity to the host. The data indicate that phenylacetate, acting through inhibition of protein prenylation and other mechanisms, may offer a safe and effective novel approach to treatment of malignant gliomas and perhaps other neoplasms as well.

  10. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors

    PubMed Central

    Merienne, Nicolas; Douce, Juliette Le; Faivre, Emilie; Déglon, Nicole; Bonvento, Gilles

    2013-01-01

    Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain. PMID:23847471

  11. Selective Sensation Based Brain-Computer Interface via Mechanical Vibrotactile Stimulation

    PubMed Central

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects’ left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation), and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation) were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement () from near 65% in motor imagery (with and without presence of stimulation) to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system. PMID:23762253

  12. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation.

    PubMed

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    In this work, mechanical vibrotactile stimulation was applied to subjects' left and right wrist skins with equal intensity, and a selective sensation perception task was performed to achieve two types of selections similar to motor imagery Brain-Computer Interface. The proposed system was based on event-related desynchronization/synchronization (ERD/ERS), which had a correlation with processing of afferent inflow in human somatosensory system, and attentional effect which modulated the ERD/ERS. The experiments were carried out on nine subjects (without experience in selective sensation), and six of them showed a discrimination accuracy above 80%, three of them above 95%. Comparative experiments with motor imagery (with and without presence of stimulation) were also carried out, which further showed the feasibility of selective sensation as an alternative BCI task complementary to motor imagery. Specifically there was significant improvement ([Formula: see text]) from near 65% in motor imagery (with and without presence of stimulation) to above 80% in selective sensation on some subjects. The proposed BCI modality might well cooperate with existing BCI modalities in the literature in enlarging the widespread usage of BCI system.

  13. A four-dimensional virtual hand brain-machine interface using active dimension selection

    NASA Astrophysics Data System (ADS)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  14. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain.

    PubMed

    Schoofs, Andreas; Hückesfeld, Sebastian; Schlegel, Philipp; Miroschnikow, Anton; Peters, Marc; Zeymer, Malou; Spieß, Roland; Chiang, Ann-Shyn; Pankratz, Michael J

    2014-06-01

    Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors.

  15. Should we consider Vim thalamic deep brain stimulation for select cases of severe refractory dystonic tremor.

    PubMed

    Morishita, Takashi; Foote, Kelly D; Haq, Ihtsham U; Zeilman, Pamela; Jacobson, Charles E; Okun, Michael S

    2010-01-01

    Dystonic tremor, which may present with many different clinical presentations (rhythmic oscillations, abnormal posture, pain, and/or a null point) has proven to be a challenge for the clinician to effectively treat. Although recent studies have demonstrated excellent outcomes in select cases following deep brain stimulation (DBS) of the internal globus pallidus, the optimal target for dystonia and particularly for dystonic tremor remains unknown. We report 3 cases of dystonic tremor which were successfully addressed through the use of ventral intermediate nucleus (Vim) DBS. We also review the literature concerning the efficacy of Vim DBS for addressing dystonia. This case series illustrates the potential use of Vim DBS for select cases of dystonic tremor. (c) 2010 S. Karger AG, Basel.

  16. Impact of spatial filters during sensor selection in a visual P300 brain-computer interface.

    PubMed

    Rivet, B; Cecotti, H; Maby, E; Mattout, J

    2012-01-01

    A challenge in designing a Brain-Computer Interface (BCI) is the choice of the channels, e.g. the most relevant sensors. Although a setup with many sensors can be more efficient for the detection of Event-Related Potential (ERP) like the P300, it is relevant to consider only a low number of sensors for a commercial or clinical BCI application. Indeed, a reduced number of sensors can naturally increase the user comfort by reducing the time required for the installation of the EEG (electroencephalogram) cap and can decrease the price of the device. In this study, the influence of spatial filtering during the process of sensor selection is addressed. Two of them maximize the Signal to Signal-plus-Noise Ratio (SSNR) for the different sensor subsets while the third one maximizes the differences between the averaged P300 waveform and the non P300 waveform. We show that the locations of the most relevant sensors subsets for the detection of the P300 are highly dependent on the use of spatial filtering. Applied on data from 20 healthy subjects, this study proves that subsets obtained where sensors are suppressed in relation to their individual SSNR are less efficient than when sensors are suppressed in relation to their contribution once the different selected sensors are combined for enhancing the signal. In other words, it highlights the difference between estimating the P300 projection on the scalp and evaluating the more efficient sensor subsets for a P300-BCI. Finally, this study explores the issue of channel commonality across subjects. The results support the conclusion that spatial filters during the sensor selection procedure allow selecting better sensors for a visual P300 Brain-Computer Interface.

  17. Surface modification of RGD-liposomes for selective drug delivery to monocytes/neutrophils in brain.

    PubMed

    Qin, Jing; Chen, DaWei; Hu, HaiYang; Cui, Qiao; Qiao, MingXi; Chen, BaoYu

    2007-08-01

    In the present study, RGD peptide was coupled with ferulic acid (FA) liposomes for binding to monocytes and neutrophils in peripheral blood for brain targeting in response to leukocyte recruitment. Cholesterol (Ch) was esterified with succinic anhydride to introduce a carboxylic end group (Ch-COOH). Soybean phosphatidylcholine, cholesterol and Ch-COOH were in a molar ratio of 1 : 0.23 : 0.05. FA was loaded into liposomes with 80.2+/-5.2% entrapment efficiency (EE) using a calcium acetate gradient method since it was difficult to load FA by other methods. RGD peptide was a novel compound coupled with Ch-COOH via carbodiimide and N-hydroxysulfosuccinimide. The results of the in vitro flow cytometric study showed that RGD conjugation liposomes (RGD-liposomes) could bind to monocytes/neutrophils efficiently. The rats were subjected to intrastriatal microinjections of 100 microl of human recombinant IL-1beta to produce brain inflammation and subsequently sacrificed after 15, 30, 60 and 120 min of administration of three formulations (FA solution, FA liposome, RGD-coated FA liposome). The body distribution results showed that RGD-liposomes could be directed to the target site, i.e. the brain, by cell selectivity in case of an inflammatory response. For RGD coated liposomes, the concentration of FA in brain was 6-fold higher than that of FA solution and 3-fold higher than that of uncoated liposomes. MTT assay and flow cytometry were used in the pharmacodynamic studies where it was found that FA liposomes exhibited greater antioxidant activity to FA solution on U937 cell.

  18. Brain Regional and Cortical Laminar Effects of Selective D3 Agonists and Antagonists

    PubMed Central

    Choi, Ji-Kyung; Mandeville, Joseph B.; Chen, Y. Iris; Grundt, Peter; Sarkar, Susanta; Newman, Amy Hauck; Jenkins, Bruce G.

    2013-01-01

    Dopamine receptors are divided into two families: D1 including D1 and D5 receptors and D2 including D2, D3 and D4 receptors. The role of dopamine D3 receptors in the brain remains controversial. We found that highly selective D3 antagonists induced positive cerebral blood volume (CBV) changes whereas D3 agonism using 7-OH-DPAT induced negative CBV changes in brain regions including nucleus accumbens, antero-medial striatum, cingulate cortex, thalamus, interpeduncular region and hypothalamus. There was pronounced activation in the hippocampus restricted to the subiculum – the output from the infralimbic cortex and dentate gyrus. At higher doses of D3 agonist, functional changes were differentiated across cortical lamina, with layer V–VI yielding positive CBV changes and layer IV yielding negative CBV changes. These results are consistent with differential D1 and D3 innervation in these layers respectively and provide evidence of D1–D3 receptor interactions. Further, the use of MRI provides a new tool for testing the in vivo selectivity of novel dopaminergic ligands where radiolabels are not available - as in the case of D3 receptors. PMID:20628733

  19. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism.

    PubMed

    Ke, Zun-Ji; Gibson, Gary E

    2004-01-01

    Age-related neurodegenerative diseases are characterized by selective neuron loss, glial activation, inflammation and abnormalities in oxidative metabolism. Thiamine deficiency (TD) is a model of neurodegeneration induced by impairment of oxidative metabolism. TD produces a time-dependent, selective neuronal death in specific brain regions, while other cell types are either activated or unaffected. TD-induced neurodegeneration occurs first in a small, well-defined brain region, the submedial thalamic nucleus (SmTN). This discrete localization permits careful analysis of the relationship between neuronal loss and the response of other cell types. The temporal analysis of the changes in the region in combination with the use of transgenic mice permits testing of proposed mechanisms of how the interaction of neurons with other cell types produces neurodegeneration. Loss of neurons and elevation in markers of neurodegeneration are accompanied by changes in microglia including increased redox active iron, the induction of nitric oxide synthase (NOS) and hemeoxygenase-1, a marker of oxidative stress. Endothelial cells also show changes in early stages of TD including induction of intracellular adhesion molecule-1 (ICAM-1) and endothelial NOS. The number of degranulating mast cells also increases in early stages of TD. Alterations in astrocytes and neutrophils occur at later stages of TD. Studies with transgenic knockouts indicate that the endothelial cell changes are particularly important. We hypothesize that TD-induced abnormalities in oxidative metabolism promote release of neuronal inflammatory signals that activate microglia, astrocytes and endothelial cells. Although at early stages the responses of non-neuronal cells may be neuroprotective, at late phases they lead to entry of peripheral inflammatory cells into the brain and promote neurodegeneration.

  20. Face and Word Recognition Can Be Selectively Affected by Brain Injury or Developmental Disorders.

    PubMed

    Robotham, Ro J; Starrfelt, Randi

    2017-01-01

    Face and word recognition have traditionally been thought to rely on highly specialised and relatively independent cognitive processes. Some of the strongest evidence for this has come from patients with seemingly category-specific visual perceptual deficits such as pure prosopagnosia, a selective face recognition deficit, and pure alexia, a selective word recognition deficit. Together, the patterns of impaired reading with preserved face recognition and impaired face recognition with preserved reading constitute a double dissociation. The existence of these selective deficits has been questioned over the past decade. It has been suggested that studies describing patients with these pure deficits have failed to measure the supposedly preserved functions using sensitive enough measures, and that if tested using sensitive measurements, all patients with deficits in one visual category would also have deficits in the other. The implications of this would be immense, with most textbooks in cognitive neuropsychology requiring drastic revisions. In order to evaluate the evidence for dissociations, we review studies that specifically investigate whether face or word recognition can be selectively affected by acquired brain injury or developmental disorders. We only include studies published since 2004, as comprehensive reviews of earlier studies are available. Most of the studies assess the supposedly preserved functions using sensitive measurements. We found convincing evidence that reading can be preserved in acquired and developmental prosopagnosia and also evidence (though weaker) that face recognition can be preserved in acquired or developmental dyslexia, suggesting that face and word recognition are at least in part supported by independent processes.

  1. Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma.

    PubMed

    Wang, Xiangyang; Yang, Jie; Jensen, Richard; Liu, Xiaojun

    2006-08-01

    The degree of malignancy in brain glioma is assessed based on magnetic resonance imaging (MRI) findings and clinical data before operation. These data contain irrelevant features, while uncertainties and missing values also exist. Rough set theory can deal with vagueness and uncertainty in data analysis, and can efficiently remove redundant information. In this paper, a rough set method is applied to predict the degree of malignancy. As feature selection can improve the classification accuracy effectively, rough set feature selection algorithms are employed to select features. The selected feature subsets are used to generate decision rules for the classification task. A rough set attribute reduction algorithm that employs a search method based on particle swarm optimization (PSO) is proposed in this paper and compared with other rough set reduction algorithms. Experimental results show that reducts found by the proposed algorithm are more efficient and can generate decision rules with better classification performance. The rough set rule-based method can achieve higher classification accuracy than other intelligent analysis methods such as neural networks, decision trees and a fuzzy rule extraction algorithm based on Fuzzy Min-Max Neural Networks (FRE-FMMNN). Moreover, the decision rules induced by rough set rule induction algorithm can reveal regular and interpretable patterns of the relations between glioma MRI features and the degree of malignancy, which are helpful for medical experts.

  2. A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials

    PubMed Central

    Jonas, Jacques; Jacques, Corentin; Liu-Shuang, Joan; Brissart, Hélène; Colnat-Coulbois, Sophie; Maillard, Louis; Rossion, Bruno

    2016-01-01

    Human neuroimaging studies have identified a network of distinct face-selective regions in the ventral occipito-temporal cortex (VOTC), with a right hemispheric dominance. To date, there is no evidence for this hemispheric and regional specialization with direct measures of brain activity. To address this gap in knowledge, we recorded local neurophysiological activity from 1,678 contact electrodes implanted in the VOTC of a large group of epileptic patients (n = 28). They were presented with natural images of objects at a rapid fixed rate (six images per second: 6 Hz), with faces interleaved as every fifth stimulus (i.e., 1.2 Hz). High signal-to-noise ratio face-selective responses were objectively (i.e., exactly at the face stimulation frequency) identified and quantified throughout the whole VOTC. Face-selective responses were widely distributed across the whole VOTC, but also spatially clustered in specific regions. Among these regions, the lateral section of the right middle fusiform gyrus showed the largest face-selective response by far, offering, to our knowledge, the first supporting evidence of two decades of neuroimaging observations with direct neural measures. In addition, three distinct regions with a high proportion of face-selective responses were disclosed in the right ventral anterior temporal lobe, a region that is undersampled in neuroimaging because of magnetic susceptibility artifacts. A high proportion of contacts responding only to faces (i.e., “face-exclusive” responses) were found in these regions, suggesting that they contain populations of neurons involved in dedicated face-processing functions. Overall, these observations provide a comprehensive mapping of visual category selectivity in the whole human VOTC with direct neural measures. PMID:27354526

  3. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  4. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury.

    PubMed

    Hadass, Orr; Tomlinson, Brittany N; Gooyit, Major; Chen, Shanyan; Purdy, Justin J; Walker, Jennifer M; Zhang, Chunyang; Giritharan, Andrew B; Purnell, Whitley; Robinson, Christopher R; Shin, Dmitriy; Schroeder, Valerie A; Suckow, Mark A; Simonyi, Agnes; Sun, Grace Y; Mobashery, Shahriar; Cui, Jiankun; Chang, Mayland; Gu, Zezong

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor-with such desirable pharmacokinetic properties-holds considerable promise as a potential pharmacological treatment of TBI.

  5. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors‘ Behavioral and Neurochemical Effects

    PubMed Central

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato

    2015-01-01

    Backgound: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Methods: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC-/-) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. Results: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC-/- mice, as administration of 8-bromoadenosine 3’, 5’-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Conclusions: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. PMID:25899065

  7. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors' Behavioral and Neurochemical Effects.

    PubMed

    Munari, Leonardo; Provensi, Gustavo; Passani, Maria Beatrice; Galeotti, Nicoletta; Cassano, Tommaso; Benetti, Fernando; Corradetti, Renato; Blandina, Patrizio

    2015-04-21

    The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC(-/-)) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC(-/-) mice, as administration of 8-bromoadenosine 3', 5'-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  8. A simple method to induce focal brain hypothermia in rats.

    PubMed

    Clark, Darren L; Colbourne, Frederick

    2007-01-01

    Hypothermia reduces cell death and promotes recovery in models of cerebral ischemia, intracerebral hemorrhage and trauma. Clinical studies report significant benefit for treating cardiac arrest and studies are investigating hypothermia for stroke and related conditions. Both local (head) and generalized hypothermia have been used. However, selective brain cooling has fewer side effects than systemic cooling. In this study, we developed a method to induce local (hemispheric) brain hypothermia in rats. The method involves using a small metal coil implanted between the Temporalis muscle and adjacent skull. This coil is then cooled by flushing it with cold water. In our first experiment, we tested whether this method induces focal brain hypothermia in anesthetized rats. Brain temperature was assessed in the ipsilateral cortex and striatum, and contralateral striatum, while body temperature was kept normothermic. Focal, ipsilateral cooling was successfully produced, while the other locations remained normothermic. In the second experiment, we implanted the coil, and brain and body temperature telemetry probes. The coil was connected via overhead swivel to a cold-water source. Brain hypothermia was produced for 24 h, while body temperature remained normothermic. A third experiment measured brain and body temperature along with heart rate and blood pressure. Brain cooling was produced for 24 h without significant alterations in pressure, heart rate or body temperature. In summary, our simple method allows for focal brain hypothermia to be safely induced in anesthetized or conscious rats, and is, therefore, ideally suited to stroke and trauma studies.

  9. Genetic influences on brain gene expression in rats selected for tameness and aggression.

    PubMed

    Heyne, Henrike O; Lautenschläger, Susann; Nelson, Ronald; Besnier, François; Rotival, Maxime; Cagan, Alexander; Kozhemyakina, Rimma; Plyusnina, Irina Z; Trut, Lyudmila; Carlborg, Örjan; Petretto, Enrico; Kruglyak, Leonid; Pääbo, Svante; Schöneberg, Torsten; Albert, Frank W

    2014-11-01

    Interindividual differences in many behaviors are partly due to genetic differences, but the identification of the genes and variants that influence behavior remains challenging. Here, we studied an F2 intercross of two outbred lines of rats selected for tame and aggressive behavior toward humans for >64 generations. By using a mapping approach that is able to identify genetic loci segregating within the lines, we identified four times more loci influencing tameness and aggression than by an approach that assumes fixation of causative alleles, suggesting that many causative loci were not driven to fixation by the selection. We used RNA sequencing in 150 F2 animals to identify hundreds of loci that influence brain gene expression. Several of these loci colocalize with tameness loci and may reflect the same genetic variants. Through analyses of correlations between allele effects on behavior and gene expression, differential expression between the tame and aggressive rat selection lines, and correlations between gene expression and tameness in F2 animals, we identify the genes Gltscr2, Lgi4, Zfp40, and Slc17a7 as candidate contributors to the strikingly different behavior of the tame and aggressive animals. Copyright © 2014 by the Genetics Society of America.

  10. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain

    PubMed Central

    Schrider, Daniel R.; Kern, Andrew D.

    2015-01-01

    The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods. PMID:26590212

  11. Ultra-High Field Template-Assisted Target Selection for Deep Brain Stimulation Surgery.

    PubMed

    Lau, Jonathan C; MacDougall, Keith W; Arango, Miguel F; Peters, Terry M; Parrent, Andrew G; Khan, Ali R

    2017-07-01

    Template and atlas guidance are fundamental aspects of stereotactic neurosurgery. The recent availability of ultra-high field (7 Tesla) magnetic resonance imaging has enabled in vivo visualization at the submillimeter scale. In this Doing More with Less article, we describe our experiences with integrating ultra-high field template data into the clinical workflow to assist with target selection in deep brain stimulation (DBS) surgical planning. The creation of a high-resolution 7T template is described, generated from group data acquired at our center. A computational workflow was developed for spatially aligning the 7T template with standard clinical data and furthermore, integrating the derived imaging volumes into the surgical planning workstation. We demonstrate that our methodology can be effective for assisting with target selection in 2 cases: unilateral internal pallidum DBS for painful dystonia and bilateral subthalamic nucleus DBS for Parkinson's disease. In this article, we have described a workflow for the integration of high-resolution in vivo ultra-high field templates into the surgical navigation system as a means to assist with DBS planning. The method does not require any additional cost or time to the patient. Future work will include prospectively evaluating different templates and their impact on target selection. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  12. Tensor-based Multi-view Feature Selection with Applications to Brain Diseases

    PubMed Central

    Cao, Bokai; He, Lifang; Kong, Xiangnan; Yu, Philip S.; Hao, Zhifeng; Ragin, Ann B.

    2015-01-01

    In the era of big data, we can easily access information from multiple views which may be obtained from different sources or feature subsets. Generally, different views provide complementary information for learning tasks. Thus, multi-view learning can facilitate the learning process and is prevalent in a wide range of application domains. For example, in medical science, measurements from a series of medical examinations are documented for each subject, including clinical, imaging, immunologic, serologic and cognitive measures which are obtained from multiple sources. Specifically, for brain diagnosis, we can have different quantitative analysis which can be seen as different feature subsets of a subject. It is desirable to combine all these features in an effective way for disease diagnosis. However, some measurements from less relevant medical examinations can introduce irrelevant information which can even be exaggerated after view combinations. Feature selection should therefore be incorporated in the process of multi-view learning. In this paper, we explore tensor product to bring different views together in a joint space, and present a dual method of tensor-based multi-view feature selection (dual-Tmfs) based on the idea of support vector machine recursive feature elimination. Experiments conducted on datasets derived from neurological disorder demonstrate the features selected by our proposed method yield better classification performance and are relevant to disease diagnosis. PMID:25937823

  13. Genetic Influences on Brain Gene Expression in Rats Selected for Tameness and Aggression

    PubMed Central

    Heyne, Henrike O.; Lautenschläger, Susann; Nelson, Ronald; Besnier, François; Rotival, Maxime; Cagan, Alexander; Kozhemyakina, Rimma; Plyusnina, Irina Z.; Trut, Lyudmila; Carlborg, Örjan; Petretto, Enrico; Kruglyak, Leonid; Pääbo, Svante; Schöneberg, Torsten; Albert, Frank W.

    2014-01-01

    Interindividual differences in many behaviors are partly due to genetic differences, but the identification of the genes and variants that influence behavior remains challenging. Here, we studied an F2 intercross of two outbred lines of rats selected for tame and aggressive behavior toward humans for >64 generations. By using a mapping approach that is able to identify genetic loci segregating within the lines, we identified four times more loci influencing tameness and aggression than by an approach that assumes fixation of causative alleles, suggesting that many causative loci were not driven to fixation by the selection. We used RNA sequencing in 150 F2 animals to identify hundreds of loci that influence brain gene expression. Several of these loci colocalize with tameness loci and may reflect the same genetic variants. Through analyses of correlations between allele effects on behavior and gene expression, differential expression between the tame and aggressive rat selection lines, and correlations between gene expression and tameness in F2 animals, we identify the genes Gltscr2, Lgi4, Zfp40, and Slc17a7 as candidate contributors to the strikingly different behavior of the tame and aggressive animals. PMID:25189874

  14. Firefly Luciferase Mutants Allow Substrate-Selective Bioluminescence Imaging in the Mouse Brain.

    PubMed

    Adams, Spencer T; Mofford, David M; Reddy, G S Kiran Kumar; Miller, Stephen C

    2016-04-11

    Bioluminescence imaging is a powerful approach for visualizing specific events occurring inside live mice. Animals can be made to glow in response to the expression of a gene, the activity of an enzyme, or the growth of a tumor. But bioluminescence requires the interaction of a luciferase enzyme with a small-molecule luciferin, and its scope has been limited by the mere handful of natural combinations. Herein, we show that mutants of firefly luciferase can discriminate between natural and synthetic substrates in the brains of live mice. When using adeno-associated viral (AAV) vectors to express luciferases in the brain, we found that mutant luciferases that are inactive or weakly active with d-luciferin can light up brightly when treated with the aminoluciferins CycLuc1 and CycLuc2 or their respective FAAH-sensitive luciferin amides. Further development of selective luciferases promises to expand the power of bioluminescence and allow multiple events to be imaged in the same live animal.

  15. Inducible and Selective Erasure of Memories in the Mouse Brain via Chemical-Genetic Manipulation

    PubMed Central

    Cao, Xiaohua; Wang, Huimin; Mei, Bing; An, Shuming; Yin, Liang; Wang, L. Phillip; Tsien, Joe Z.

    2010-01-01

    SUMMARY Rapid and selective erasures of certain types of memories in the brain would be desirable under certain clinical circumstances. By employing an inducible and reversible chemical-genetic technique, we find that transient αCaMKII overexpression at the time of recall impairs the retrieval of both newly formed one-hour object recognition memory and fear memories, as well as 1-month-old fear memories. Systematic analyses suggest that excessive αCaMKII activity-induced recall deficits are not caused by disrupting the retrieval access to the stored information but are, rather, due to the active erasure of the stored memories. Further experiments show that the recall-induced erasure of fear memories is highly restricted to the memory being retrieved while leaving other memories intact. Therefore, our study reveals a molecular genetic paradigm through which a given memory, such as new or old fear memory, can be rapidly and specifically erased in a controlled and inducible manner in the brain. PMID:18957226

  16. Threshold selection for classification of MR brain images by clustering method

    SciTech Connect

    Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita

    2015-12-07

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  17. Threshold selection for classification of MR brain images by clustering method

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita

    2015-12-01

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  18. Quantitative EEG Brain Mapping In Psychotropic Drug Development, Drug Treatment Selection, and Monitoring.

    PubMed

    Itil, Turan M.; Itil, Kurt Z.

    1995-05-01

    Quantification of standard electroencephalogram (EEG) by digital computers [computer-analyzed EEG (CEEG)] has transformed the subjective analog EEG into an objective scientific method. Until a few years ago, CEEG was only used to assist in the development of psychotropic drugs by means of the quantitative pharmaco EEG. Thanks to the computer revolution and the accompanying reductions in cost of quantification, CEEG can now also be applied in psychiatric practice. CEEG can assist the physician in confirming clinical diagnoses, selecting psychotropic drugs for treatment, and drug treatment monitoring. Advancements in communications technology allow physicians and researchers to reduce the costs of acquiring a high-technology CEEG brain mapping system by utilizing the more economical telephonic services.

  19. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    PubMed

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  20. Bilingualism trains specific brain circuits involved in flexible rule selection and application.

    PubMed

    Stocco, Andrea; Prat, Chantel S

    2014-10-01

    Bilingual individuals have been shown to outperform monolinguals on a variety of tasks that measure non-linguistic executive functioning, suggesting that some facets of the bilingual experience give rise to generalized improvements in cognitive performance. The current study investigated the hypothesis that such advantage in executive functioning arises from the need to flexibly select and apply rules when speaking multiple languages. Such flexible behavior may strengthen the functioning of the fronto-striatal loops that direct signals to the prefrontal cortex. To test this hypothesis, we compared behavioral and brain data from proficient bilinguals and monolinguals who performed a Rapid Instructed Task Learning paradigm, which requires behaving according to ever-changing rules. Consistent with our hypothesis, bilinguals were faster than monolinguals when executing novel rules, and this improvement was associated with greater modulation of activity in the basal ganglia. The implications of these findings for language and executive function research are discussed herein. Published by Elsevier Inc.

  1. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  2. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    PubMed

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-09-26

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  3. Cytotoxic and genotoxic effect in RTG-2 cell line exposed to selected biocides used in the disinfection of cooling towers.

    PubMed

    Sánchez-Fortún, S; Llorente, M T; Castaño, A

    2008-05-01

    The cytotoxic and genotoxic effects induced by trichloroisocyanuric acid, Oxone, and sodium bromide, active principles included in formulations for cleaning and disinfection of cooling towers, were studied on RTG-2 cell line. Neutral red assay was used to determine the cellular viability. Toxicity ranking based on IC(50) values found that trichloroisocyanuric acid was the most cytotoxic biocide tested followed by Oxone, whereas sodium bromide resulted in a very low cytotoxicity. DNA damage has been evaluated on RTG-2 cultures by means of an in vitro assay based on the ability of PicoGreen fluorochrome to interact preferentially with dsDNA, and the results indicated that trichloroisocyanuric acid induced DNA strand breaks at concentrations above 1.2 mg/l, equivalent to 1/50-EC(50(48)), whereas exposures to Oxone and sodium bromide did not induce DNA damage at the maximal concentrations tested (1/10-EC(50(48))). These results confirm the suitability of this method for the screening of genotoxic effects of this type of aquatic pollutants, and we suggest their use in environmental risk assessment procedures.

  4. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  5. Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation

    PubMed Central

    Nybo, Lars; Wanscher, Michael; Secher, Niels H.

    2014-01-01

    The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood temperatures were measured to assess the cerebral heat balance and corresponding paired blood samples were obtained to evaluate cerebral metabolism and oxygenation at rest, following 60 min of intranasal cooling, 5 min of nasal ventilation, and 15 min with carotid cooling. Intranasal cooling induced a parallel drop in jugular venous and arterial blood temperatures by 0.30 ± 0.08°C (mean ± SD), whereas nasal ventilation and carotid cooling failed to lower the jugular venous blood temperature. The magnitude of the arterio-venous temperature difference across the brain remained unchanged at −0.33 ± 0.05°C following intranasal and carotid cooling, but increased to −0.44 ± 0.11°C (P < 0.05) following nasal ventilation. Calculated cerebral capillary oxygen tension was 43 ± 3 mmHg at rest and remained unchanged during intranasal and carotid cooling, but decreased to 38 ± 2 mmHg (P < 0.05) following increased nasal ventilation. In conclusion, percutaneous cooling of the carotid arteries and intranasal cooling with balloon catheters are insufficient to influence cerebral oxygenation in normothermic subjects as the cooling rate is only 0.3°C per hour and neither intranasal nor carotid cooling is capable of inducing selective brain cooling. PMID:24578693

  6. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions.

    PubMed

    Botterill, J J; Nogovitsyn, N; Caruncho, H J; Kalynchuk, L E

    2017-02-01

    The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long-Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron-selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin-immunoreactive (-ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron-selective calretinin-ir cells in the dentate gyrus of hippocampal-kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67-cells in caudate-kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield-selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389-406, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Interventional magnetic resonance imaging-guided subthalamic nucleus deep brain stimulation for Parkinson's disease: Patient selection.

    PubMed

    Azmi, Hooman; Gupta, Fiona; Vukic, Mario; Kreitner, Jason; Kera, Elizabeth; Nicola, Gregory; Pierce, Sean; Panush, David; Cohen, Randy

    2016-01-01

    Interventional magnetic resonance imaging (iMRI) guided deep brain stimulation (DBS) for Parkinson's disease (PD) has been shown to be effective. The costs of a dedicated intraoperative MRI may be prohibitive. The procedure can also be performed in a diagnostic scanner, however this presents challenges for utilization of time when the scanner is used both as a diagnostic and an interventional unit. This report outlines our novel methodology for patient selection for implantation in a diagnostic MR scanner, as an attempt to streamline the use of resources. A retrospective review of our outcomes is also presented. DBS candidacy evaluation included a PD questionnaire-39. Anxiety, age, difficulties in communication and body habitus were factors that were assessed in selecting patients for this technique. Eleven patients underwent iMRI-guided DBS implantation in the subthalamic nucleus. All patients were implanted bilaterally. Unified PD rating scale (UPDRS) part III and L-dopa dose were compared pre- and post-stimulation. A cohort of 11 DBS patients not selected for iMRI-guided DBS were also reported for comparison. For the iMRI-guided patients, mean "Off" UPDRS III score was 47.6 (standard deviation [SD] 8.26). Postoperative "On" medication, "On" stimulation UPDRS III was 13.6 (SD 5.23). Mean preoperative L-dopa dose was 1060 mg (SD 474.3) and mean postoperative L-dopa dose was 320 (SD 298.3). iMRI-guided DBS is a newly emerging technique for surgical treatment of patients with PD. We present a novel scoring system for patient selection assessing anxiety, age, ability to communicate, and body habitus to identify patients who will be benefited most from this technique.

  8. Evaluation of Interactive Visualization on Mobile Computing Platforms for Selection of Deep Brain Stimulation Parameters.

    PubMed

    Butson, Christopher R; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens

    2013-01-01

    In recent years, there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson's disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independent of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS.

  9. [Diffusion weighted MR: principles and clinical use in selected brain diseases].

    PubMed

    Nistri, M; Mascalchi, M; Moretti, M; Tessa, C; Politi, L S; Orlandi, I; Pellicanò, G; Villari, N

    2000-12-01

    To define the principles and technical bases of diffusion weighted MR imaging of the brain and report our experience in the evaluation of selected brain disorders including age-related ischemic white matter changes (leukoaraiosis), neoplastic and infective cysts and wallerian degeneration. Between May 1999 and June 2000 we examined seventeen patients: 10 patients with leukoaraiosis and deterioration of cognitive and motor function, 5 patients with focal cystic lesions (one anaplastic astrocytoma, one glioblastoma, one metastasis from squamous cell lung carcinoma, one pyogenic abscess and one case with cerebral tubercolosis) and 2 patients with wallerian degeneration (one with post-hemorrhagic degeneration of right corticospinal tract and one with post-traumatic degeneration of left optic tract). All patients underwent a standard cranial MR examination including SE T1-, proton density, T2-weighted, FLAIR and diffusion weighted images. Post-contrast T1-weighted sequences were also obtained in the patients with cystic lesions. Diffusion weighted images were acquired with double shot echoplanar sequences. Diffusion sensitizing gradient along the x, y and z axes and b values ranging 800 to 1200 s/mm2 were used. For each slice a set of three orthogonal diffusion "anisotropic" images, an "isotropic" image and a standard T2-weighted image were reconstructed. Postprocessing included generation of the apparent diffusion coefficient maps and of the "trace" image that reflects pixel by pixel the diffusional properties of water particles only. Values of mean diffusivity within regions of interest were computed in the "trace" image and compared with those obtained in contralateral brain areas. In patients with leukoaraiosis the diffusivity in posterior periventricular white matter was compared with that measured in 10 age-matched control subjects without leukoaraiosis. In patients with leukoaraiosis the areas of increased periventricular signal intensity on T2-weighted images

  10. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  11. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  12. Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding

    PubMed Central

    Baldassarre, Luca; Pontil, Massimiliano; Mourão-Miranda, Janaina

    2017-01-01

    Structured sparse methods have received significant attention in neuroimaging. These methods allow the incorporation of domain knowledge through additional spatial and temporal constraints in the predictive model and carry the promise of being more interpretable than non-structured sparse methods, such as LASSO or Elastic Net methods. However, although sparsity has often been advocated as leading to more interpretable models it can also lead to unstable models under subsampling or slight changes of the experimental conditions. In the present work we investigate the impact of using stability/reproducibility as an additional model selection criterion1 on several different sparse (and structured sparse) methods that have been recently applied for fMRI brain decoding. We compare three different model selection criteria: (i) classification accuracy alone; (ii) classification accuracy and overlap between the solutions; (iii) classification accuracy and correlation between the solutions. The methods we consider include LASSO, Elastic Net, Total Variation, sparse Total Variation, Laplacian and Graph Laplacian Elastic Net (GraphNET). Our results show that explicitly accounting for stability/reproducibility during the model optimization can mitigate some of the instability inherent in sparse methods. In particular, using accuracy and overlap between the solutions as a joint optimization criterion can lead to solutions that are more similar in terms of accuracy, sparsity levels and coefficient maps even when different sparsity methods are considered. PMID:28261042

  13. Selection of Motor Programs for Suppressing Food Intake and Inducing Locomotion in the Drosophila Brain

    PubMed Central

    Schoofs, Andreas; Hückesfeld, Sebastian; Schlegel, Philipp; Miroschnikow, Anton; Peters, Marc; Zeymer, Malou; Spieß, Roland; Chiang, Ann-Shyn; Pankratz, Michael J.

    2014-01-01

    Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors. PMID:24960360

  14. Planning for selective amygdalohippocampectomy involving less neuronal fiber damage based on brain connectivity using tractography

    PubMed Central

    Lee, Seung-Hak; Kim, Mansu; Park, Hyunjin

    2015-01-01

    Temporal lobe resection is an important treatment option for epilepsy that involves removal of potentially essential brain regions. Selective amygdalohippocampectomy is a widely performed temporal lobe surgery. We suggest starting the incision for selective amygdalohippocampectomy at the inferior temporal gyrus based on diffusion magnetic resonance imaging (MRI) tractography. Diffusion MRI data from 20 normal participants were obtained from Parkinson's Progression Markers Initiative (PPMI) database (www.ppmi-info.org). A tractography algorithm was applied to extract neuronal fiber information for the temporal lobe, hippocampus, and amygdala. Fiber information was analyzed in terms of the number of fibers and betweenness centrality. Distances between starting incisions and surgical target regions were also considered to explore the length of the surgical path. Middle temporal and superior temporal gyrus regions have higher connectivity values than the inferior temporal gyrus and thus are not good candidates for starting the incision. The distances between inferior temporal gyrus and surgical target regions were shorter than those between middle temporal gyrus and target regions. Thus, the inferior temporal gyrus is a good candidate for starting the incision. Starting the incision from the inferior temporal gyrus would spare the important (in terms of betweenness centrality values) middle region and shorten the distance to the target regions of the hippocampus and amygdala. PMID:26330834

  15. Design and Evaluation of Fusion Approach for Combining Brain and Gaze Inputs for Target Selection

    PubMed Central

    Évain, Andéol; Argelaguet, Ferran; Casiez, Géry; Roussel, Nicolas; Lécuyer, Anatole

    2016-01-01

    Gaze-based interfaces and Brain-Computer Interfaces (BCIs) allow for hands-free human–computer interaction. In this paper, we investigate the combination of gaze and BCIs. We propose a novel selection technique for 2D target acquisition based on input fusion. This new approach combines the probabilistic models for each input, in order to better estimate the intent of the user. We evaluated its performance against the existing gaze and brain–computer interaction techniques. Twelve participants took part in our study, in which they had to search and select 2D targets with each of the evaluated techniques. Our fusion-based hybrid interaction technique was found to be more reliable than the previous gaze and BCI hybrid interaction techniques for 10 participants over 12, while being 29% faster on average. However, similarly to what has been observed in hybrid gaze-and-speech interaction, gaze-only interaction technique still provides the best performance. Our results should encourage the use of input fusion, as opposed to sequential interaction, in order to design better hybrid interfaces. PMID:27774048

  16. Event-related brain potentials to irrelevant auditory stimuli during selective listening: effects of channel probability.

    PubMed

    Akai, Toshiyuki

    2004-03-01

    The purpose of this study was to identify the cognitive process reflected by a positive deflection to irrelevant auditory stimuli (Pdi) during selective listening. Event-related brain potentials were recorded from 9 participants in a two-channel (left/right ears) selective listening task. Relative event probabilities of the relevant/irrelevant channels were 25%/75%, 50%/50%, and 75%/25%. With increasing probability of the relevant channel, behavioral performances (the reaction time and hit rate) for the targets within the relevant channel improved, reflecting development of a more robust attentional trace. At the same time, the amplitude of the early Pdi (200-300 ms after stimulus onset) elicited by the stimuli in the irrelevant channel with a decreased probability was enhanced in the central region. This positive relation between the strength of the attentional trace and the amplitude of the early Pdi suggests that the early Pdi is elicited by a mismatching between an incoming irrelevant stimulus and an attentional trace.

  17. Response of face-selective brain regions to trustworthiness and gender of faces.

    PubMed

    Mattavelli, Giulia; Andrews, Timothy J; Asghar, Aziz U R; Towler, John R; Young, Andrew W

    2012-07-01

    Neuropsychological and neuroimaging studies have demonstrated a role for the amygdala in processing the perceived trustworthiness of faces, but it remains uncertain whether its responses are linear (with the greatest response to the least trustworthy-looking faces), or quadratic (with increased fMRI signal for the dimension extremes). It is also unclear whether the trustworthiness of the stimuli is crucial or if the same response pattern can be found for faces varying along other dimensions. In addition, the responses to perceived trustworthiness of face-selective regions other than the amygdala are seldom reported. The present study addressed these issues using a novel set of stimuli created through computer image-manipulation both to maximise the presence of naturally occurring cues that underpin trustworthiness judgments and to allow systematic manipulation of these cues. With a block-design fMRI paradigm, we investigated neural responses to computer-manipulated trustworthiness in the amygdala and core face-selective regions in the occipital and temporal lobes. We asked whether the activation pattern is specific for differences in trustworthiness or whether it would also track variation along an orthogonal male-female gender dimension. The main findings were quadratic responses to changes in both trustworthiness and gender in all regions. These results are consistent with the idea that face-responsive brain regions are sensitive to face distinctiveness as well as the social meaning of the face features. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. When the Brain Changes Its Mind: Flexibility of Action Selection in Instructed and Free Choices

    PubMed Central

    Mars, Rogier B.; Gladwin, Thomas E.; Haggard, Patrick

    2009-01-01

    The neural mechanisms underlying the selection and initiation of voluntary actions in the absence of external instructions are poorly understood. These mechanisms are usually investigated using a paradigm where different movement choices are self-generated by a participant on each trial. These “free choices” are compared with “instructed choices,” in which a stimulus informs subjects which action to make on each trial. Here, we introduce a novel paradigm to investigate these modes of action selection, by measuring brain processes evoked by an instruction to either reverse or maintain free and instructed choices in the period before a “go” signal. An unpredictable instruction to change a response plan had different effects on free and instructed choices. In instructed trials, change cues evoked a larger P300 than no-change cues, leading to a significant interaction of choice and change condition. Free-choice trials displayed a trend toward the opposite pattern. These results suggest a difference between updating of free and instructed action choices. We propose a theoretical framework for internally generated action in which representations of alternative actions remain available until a late stage in motor preparation. This framework emphasizes the high modifiability of voluntary action. PMID:19211661

  19. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  20. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  1. Inferring Selective Constraint from Population Genomic Data Suggests Recent Regulatory Turnover in the Human Brain.

    PubMed

    Schrider, Daniel R; Kern, Andrew D

    2015-11-19

    The comparative genomics revolution of the past decade has enabled the discovery of functional elements in the human genome via sequence comparison. While that is so, an important class of elements, those specific to humans, is entirely missed by searching for sequence conservation across species. Here we present an analysis based on variation data among human genomes that utilizes a supervised machine learning approach for the identification of human-specific purifying selection in the genome. Using only allele frequency information from the complete low-coverage 1000 Genomes Project data set in conjunction with a support vector machine trained from known functional and nonfunctional portions of the genome, we are able to accurately identify portions of the genome constrained by purifying selection. Our method identifies previously known human-specific gains or losses of function and uncovers many novel candidates. Candidate targets for gain and loss of function along the human lineage include numerous putative regulatory regions of genes essential for normal development of the central nervous system, including a significant enrichment of gain of function events near neurotransmitter receptor genes. These results are consistent with regulatory turnover being a key mechanism in the evolution of human-specific characteristics of brain development. Finally, we show that the majority of the genome is unconstrained by natural selection currently, in agreement with what has been estimated from phylogenetic methods but in sharp contrast to estimates based on transcriptomics or other high-throughput functional methods. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Selective Lifelong Destruction of Brain Monoaminergic Nerves Through Perinatal DSP-4 Treatment.

    PubMed

    Nowak, Przemysław

    2016-01-01

    N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) is a highly selective neurotoxin for noradrenergic projections originating from the locus coeruleus (LC). The outcome of the systemic DSP-4 treatment of newborn rats is an alteration in postnatal development of the noradrenergic system, involving the permanent denervation of distal noradrenergic projection areas (neocortex, hippocampus, spinal cord), accompanied by noradrenergic hyperinnervation in regions proximal to the LC cell bodies (cerebellum, pons-medulla). DSP-4 is well tolerated by developing rats and does not increase the mortality rate. Permanent noradrenergic denervation in the cerebral cortex and spinal cord is present at all developmental stages, although this effect is more pronounced in rats treated with DSP-4 at an early age, i.e., up to postnatal day 5 (PND 5). Notably, regional hyperinnervation is a hallmark of neonatal DSP-4 treatment, which is not observed after either prenatal or adult DSP-4 application. In contrast to robust biochemical changes in the brain, DSP-4 treatment of newborn rats has a marginal effect on arousal and cognition functions assessed in adulthood, and these processes are critically influenced by the action of the noradrenergic neurotransmitter, norepinephrine (NE). Conversely, neonatal DSP-4 does not significantly affect 5-hydroxytryptamine (serotonin; 5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and histamine levels in brain. However, as a consequence of altering the functional efficacy of 5-HT1A, 5-HT1B, DA, and GABA receptors, these neurotransmitter systems are profoundly affected in adulthood. Thus, the noradrenergic lesion obtained with neonatal DSP-4 treatment represents a unique neurobiological technique for exploring the interplay between various neuronal phenotypes and examining the pathomechanism of neurodevelopmental disorders.

  3. [Methods of data selection from the French medical information system program for trauma patient's analysis: Burns and traumatic brain injuries].

    PubMed

    Paget, L-M; Dupont, A; Pédrono, G; Lasbeur, L; Thélot, B

    2017-10-01

    Data from the French medical information system program in medicine, surgery, obstetrics and dentistry can be adapted in some cases and under certain conditions, to account for hospitalizations for injuries. Two areas have been explored: burn and traumatic brain injury victims. An algorithm selecting data from the Medical information system program was established and implemented for several years for the study of burn victims. The methods of selection of stays for traumatic brain injuries, which are the subject of a more recent exploration, are described. Production of results in routine on the hospitalization for burns. Expected production of results on the hospitalization for traumatic brain injuries. In both cases, the knowledge obtained from these utilizations of the Medical information system program contributes to epidemiological surveillance and prevention and are useful for health care organization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Effective suppression of hippocampal seizures in rats by direct hippocampal cooling with a Peltier chip.

    PubMed

    Tanaka, Nobuhiro; Fujii, Masami; Imoto, Hirochika; Uchiyama, Joji; Nakano, Kimihiko; Nomura, Sadahiro; Fujisawa, Hirosuke; Kunitsugu, Ichiro; Saito, Takashi; Suzuki, Michiyasu

    2008-04-01

    The use of focal brain cooling to eliminate epileptic discharges (EDs) has attracted increasing attention in the scientific community. In this study, the inhibitory effect of selective hippocampal cooling on experimental hippocampal seizures was investigated using a newly devised cooling system with a thermoelectric (Peltier) chip. A copper needle coated with silicone and attached to the Peltier chip was used for the cooling device. The experiments were performed first in a phantom model with thermography and second in adult male Sprague-Dawley rats in a state of halothane anesthesia. The cooling needle, a thermocouple, and a needle electrode for electroencephalography recording were inserted into the right hippocampus. Kainic acid (KA) was injected into the right hippocampus to provoke the EDs. The animals were divided into hippocampal cooling (10 rats) and noncooling (control, 10 rats) groups. In the phantom study, the cooling effects (9 degrees C) occurred in the spherical areas around the needle tip. In the rats the temperature of the cooled hippocampus decreased below 20 degrees C within a 1.6-mm radius and below 25 degrees C within a 2.4-mm radius from the cooling center. The temperature at the needle tip decreased below 20 degrees C within 1 minute and was maintained at the same level until the end of the cooling process. The amplitude of the EDs was suppressed to 68.1 +/- 4.8% of the precooling value and remained low thereafter. No histological damage due to cooling was observed in the rat hippocampus. Selective hippocampal cooling effectively suppresses the KA-induced hippocampal EDs. Direct hippocampal cooling with a permanently implantable system is potentially useful as a minimally invasive therapy for temporal lobe epilepsy and therefore could be an alternative to the temporal lobectomy.

  5. Electron Cooling

    NASA Astrophysics Data System (ADS)

    Ellison, Timothy J. P.

    1991-08-01

    Electron cooling is a method of reducing the 6 -dimensional phase space volume of a stored ion beam. The technique was invented by Budker and first developed by him and his colleagues at the Institute for Nuclear Physics in Novosibirsk. Further studies of electron cooling were subsequently performed at CERN and Fermilab. At the Indiana University Cyclotron Facility (IUCF) an electron cooling system was designed, built, and commissioned in 1988. This was the highest energy system built to date (270 keV for cooling 500 MeV protons) and the first such system to be used as an instrument for performing nuclear and atomic physics experiments. This dissertation summarizes the design principles; measurements of the longitudinal drag rate (cooling force), equilibrium cooled beam properties and effective longitudinal electron beam temperature. These measurements are compared with theory and with the measured performance of other cooling systems. In addition the feasibility of extending this technology to energies an order of magnitude higher are discussed.

  6. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  7. Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing Raman spectrum signals of selected regions in the eye

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2003-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier. Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam (e.g., at a wavelength of 600 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  8. Selective disruption of the blood-brain barrier by photochemical internalization

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Zhang, Michelle J.; Gach, Michael H.; Uzal, Francisco A.; Chighvinadze, David; Madsen, Steen J.

    2009-02-01

    Introduction: Failure to eradicate infiltrating glioma cells using conventional treatment regimens results in tumor recurrence and is responsible for the dismal prognosis of patients with glioblastoma multiforme (GBM). This is due to the fact that these migratory cells are protected by the blood-brain barrier (BBB) which prevents the delivery of most anti-cancer agents. We have evaluated the ability of photochemical internalization (PCI) to selectively disrupt the BBB in rats. This will permit access of anti-cancer drugs to effectively target the infiltrating tumor cells, and potentially improve the treatment effectiveness for malignant gliomas. Materials and Methods: PCI treatment, coupling a macromolecule therapy of Clostridium perfringens (Cl p) epsilon prototoxin with AlPcS2a-PDT, was performed on non-tumor bearing inbred Fisher rats. T1-weighted post-contrast magnetic resonance imaging (MRI) scans were used to evaluate the extent of BBB disruption which can be inferred from the volume contrast enhancement. Results: The synergistic effect of PCI to disrupt the BBB was observed at a fluence level of 1 J with an intraperitoneal injection of Cl p prototoxin. At the fluence level of 2.5J, the extent of BBB opening induced by PCI was similar to the result of PDT suggesting no synergistic effect evoked under these conditions. Conclusion: PCI was found to be highly effective and efficient for inducing selective and localized disruption of the BBB. The extent of BBB opening peaked on day 3 and the BBB was completed restored by day 18 post treatment.

  9. Collaborative Filtering for Brain-Computer Interaction Using Transfer Learning and Active Class Selection

    PubMed Central

    Wu, Dongrui; Lance, Brent J.; Parsons, Thomas D.

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188

  10. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    PubMed

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  11. Altered characteristic of brain networks in mild cognitive impairment during a selective attention task: An EEG study.

    PubMed

    Wei, Ling; Li, Yingjie; Yang, Xiaoli; Xue, Qing; Wang, Yuping

    2015-10-01

    The present study evaluated the topological properties of whole brain networks using graph theoretical concepts and investigated the time-evolution characteristic of brain network in mild cognitive impairment patients during a selective attention task. Electroencephalography (EEG) activities were recorded in 10 MCI patients and 17 healthy subjects when they performed a color match task. We calculated the phase synchrony index between each possible pairs of EEG channels in alpha and beta frequency bands and analyzed the local interconnectedness, overall connectedness and small-world characteristic of brain network in different degree for two groups. Relative to healthy normal controls, the properties of cortical networks in MCI patients tend to be a shift of randomization. Lower σ of MCI had suggested that patients had a further loss of small-world attribute both during active and resting states. Our results provide evidence for the functional disconnection of brain regions in MCI. Furthermore, we found the properties of cortical networks could reflect the processing of conflict information in the selective attention task. The human brain tends to be a more regular and efficient neural architecture in the late stage of information processing. In addition, the processing of conflict information needs stronger information integration and transfer between cortical areas.

  12. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan

    2014-12-01

    Objective. We propose a new hybrid brain-computer interface (BCI) system that integrates two different EEG tasks: tactile selective attention (TSA) using a vibro-tactile stimulator on the left/right finger and motor imagery (MI) of left/right hand movement. Event-related desynchronization (ERD) from the MI task and steady-state somatosensory evoked potential (SSSEP) from the TSA task are retrieved and combined into two hybrid senses. Approach. One hybrid approach is to measure two tasks simultaneously; the features of each task are combined for testing. Another hybrid approach is to measure two tasks consecutively (TSA first and MI next) using only MI features. For comparison with the hybrid approaches, the TSA and MI tasks are measured independently. Main results. Using a total of 16 subject datasets, we analyzed the BCI classification performance for MI, TSA and two hybrid approaches in a comparative manner; we found that the consecutive hybrid approach outperformed the others, yielding about a 10% improvement in classification accuracy relative to MI alone. It is understood that TSA may play a crucial role as a prestimulus in that it helps to generate earlier ERD prior to MI and thus sustains ERD longer and to a stronger degree; this ERD may give more discriminative information than ERD in MI alone. Significance. Overall, our proposed consecutive hybrid approach is very promising for the development of advanced BCI systems.

  13. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma

    PubMed Central

    Kabadi, Shruti V; Stoica, Bogdan A; Byrnes, Kimberly R; Hanscom, Marie; Loane, David J; Faden, Alan I

    2012-01-01

    Traumatic brain injury (TBI) induces secondary injury mechanisms, including cell-cycle activation (CCA), which lead to neuronal cell death, microglial activation, and neurologic dysfunction. Here, we show progressive neurodegeneration associated with microglial activation after TBI induced by controlled cortical impact (CCI), and also show that delayed treatment with the selective cyclin-dependent kinase inhibitor roscovitine attenuates posttraumatic neurodegeneration and neuroinflammation. CCI resulted in increased cyclin A and D1 expressions and fodrin cleavage in the injured cortex at 6 hours after injury and significant neurodegeneration by 24 hours after injury. Progressive neuronal loss occurred in the injured hippocampus through 21 days after injury and correlated with a decline in cognitive function. Microglial activation associated with a reactive microglial phenotype peaked at 7 days after injury with sustained increases at 21 days. Central administration of roscovitine at 3 hours after CCI reduced subsequent cyclin A and D1 expressions and fodrin cleavage, improved functional recovery, decreased lesion volume, and attenuated hippocampal and cortical neuronal cell loss and cortical microglial activation. Furthermore, delayed systemic administration of roscovitine improved motor recovery and attenuated microglial activation after CCI. These findings suggest that CCA contributes to progressive neurodegeneration and related neurologic dysfunction after TBI, likely in part related to its induction of microglial activation. PMID:21829212

  14. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

  15. Sensorimotor rhythm-based brain computer interface (BCI): model order selection for autoregressive spectral analysis

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Wolpaw, Jonathan R.

    2008-06-01

    People can learn to control EEG features consisting of sensorimotor rhythm amplitudes and can use this control to move a cursor in one or two dimensions to a target on a screen. Cursor movement depends on the estimate of the amplitudes of sensorimotor rhythms. Autoregressive models are often used to provide these estimates. The order of the autoregressive model has varied widely among studies. Through analyses of both simulated and actual EEG data, the present study examines the effects of model order on sensorimotor rhythm measurements and BCI performance. The results show that resolution of lower frequency signals requires higher model orders and that this requirement reflects the temporal span of the model coefficients. This is true for both simulated EEG data and actual EEG data during brain-computer interface (BCI) operation. Increasing model order, and decimating the signal were similarly effective in increasing spectral resolution. Furthermore, for BCI control of two-dimensional cursor movement, higher model orders produced better performance in each dimension and greater independence between horizontal and vertical movements. In sum, these results show that autoregressive model order selection is an important determinant of BCI performance and should be based on criteria that reflect system performance.

  16. Selection and visualisation of outcome measures for complex post-acute acquired brain injury rehabilitation interventions

    PubMed Central

    Ford, Catherine Elaine Longworth; Malley, Donna; Bateman, Andrew; Clare, Isabel C.H.; Wagner, Adam P.; Gracey, Fergus

    2016-01-01

    Background Outcome measurement challenges rehabilitation services to select tools that promote stakeholder engagement in measuring complex interventions. Objectives To examine the suitability of outcome measures for complex post-acute acquired brain injury (ABI) rehabilitation interventions, report outcomes of a holistic, neuropsychological ABI rehabilitation program and propose a simple way of visualizing complex outcomes. Methods Patient/carer reported outcome measures (PROMS), experience measures (PREMS) and staff-rated measures were collected for consecutive admissions over 1 year to an 18-week holistic, neuropsychological rehabilitation programme at baseline, 18 weeks and 3- and 6-month follow-up. Results Engagement with outcome measurement was poorest for carers and at follow-up for all stakeholders. Dependence, abilities, adjustment, unmet needs, symptomatology including executive dysfunction, and self-reassurance showed improvements at 18 weeks. Adjustment, social participation, perceived health, symptomatology including dysexecutive difficulties, and anxiety were worse at baseline for those who did not complete rehabilitation, than those who did. A radar plot facilitated outcome visualization. Conclusions Engagement with outcome measurement was best when time and support were provided. Supplementing patient- with staff-rated and attendance measures may explain missing data and help quantify healthcare needs. The MPAI4, EBIQ and DEX-R appeared suitable measures to evaluate outcomes and distinguish those completing and not completing neuropsychological rehabilitation. PMID:27341362

  17. Feature Selection and Blind Source Separation in an EEG-Based Brain-Computer Interface

    NASA Astrophysics Data System (ADS)

    Peterson, David A.; Knight, James N.; Kirby, Michael J.; Anderson, Charles W.; Thaut, Michael H.

    2005-12-01

    Most EEG-based BCI systems make use of well-studied patterns of brain activity. However, those systems involve tasks that indirectly map to simple binary commands such as "yes" or "no" or require many weeks of biofeedback training. We hypothesized that signal processing and machine learning methods can be used to discriminate EEG in a direct "yes"/"no" BCI from a single session. Blind source separation (BSS) and spectral transformations of the EEG produced a 180-dimensional feature space. We used a modified genetic algorithm (GA) wrapped around a support vector machine (SVM) classifier to search the space of feature subsets. The GA-based search found feature subsets that outperform full feature sets and random feature subsets. Also, BSS transformations of the EEG outperformed the original time series, particularly in conjunction with a subset search of both spaces. The results suggest that BSS and feature selection can be used to improve the performance of even a "direct," single-session BCI.

  18. A vision-free brain-computer interface (BCI) paradigm based on auditory selective attention.

    PubMed

    Kim, Do-Won; Cho, Jae-Hyun; Hwang, Han-Jeong; Lim, Jeong-Hwan; Im, Chang-Hwan

    2011-01-01

    Majority of the recently developed brain computer interface (BCI) systems have been using visual stimuli or visual feedbacks. However, the BCI paradigms based on visual perception might not be applicable to severe locked-in patients who have lost their ability to control their eye movement or even their vision. In the present study, we investigated the feasibility of a vision-free BCI paradigm based on auditory selective attention. We used the power difference of auditory steady-state responses (ASSRs) when the participant modulates his/her attention to the target auditory stimulus. The auditory stimuli were constructed as two pure-tone burst trains with different beat frequencies (37 and 43 Hz) which were generated simultaneously from two speakers located at different positions (left and right). Our experimental results showed high classification accuracies (64.67%, 30 commands/min, information transfer rate (ITR) = 1.89 bits/min; 74.00%, 12 commands/min, ITR = 2.08 bits/min; 82.00%, 6 commands/min, ITR = 1.92 bits/min; 84.33%, 3 commands/min, ITR = 1.12 bits/min; without any artifact rejection, inter-trial interval = 6 sec), enough to be used for a binary decision. Based on the suggested paradigm, we implemented a first online ASSR-based BCI system that demonstrated the possibility of materializing a totally vision-free BCI system.

  19. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain.

    PubMed

    Naito-Matsui, Yuko; Davies, Leela R L; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F; Verhagen, Andrea; Heyser, Charles J; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C; Paton, Adrienne W; Varki, Nissi M; Schnaar, Ronald L; Varki, Ajit

    2017-02-17

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens.

  20. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain*♦

    PubMed Central

    Naito-Matsui, Yuko; Davies, Leela R. L.; Takematsu, Hiromu; Chou, Hsun-Hua; Tangvoranuntakul, Pam; Carlin, Aaron F.; Verhagen, Andrea; Heyser, Charles J.; Yoo, Seung-Wan; Choudhury, Biswa; Paton, James C.; Paton, Adrienne W.; Varki, Nissi M.; Schnaar, Ronald L.; Varki, Ajit

    2017-01-01

    All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens. PMID:28049733

  1. Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains

    PubMed Central

    Wang, Hongjie

    2016-01-01

    Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders. PMID:27433468

  2. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  3. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  4. High-dose fractionated radiation therapy for select patients with brain metastases

    SciTech Connect

    Pezner, R.D.; Lipsett, J.A.; Archambeau, J.O.; Fine, R.M.; Moss, W.T.

    1981-08-01

    Four patients with metastases to the brain were treated by high-dose fractionated radiation therapy. In all four cases, a complete response and prolonged disease-free survival could be documented. Unlike the standard therapy for such patients (i.e., craniotomy and postoperative irradiation), high-dose fractionated radiation therapy carries no operative risk and can encompass multiple brain metastases and metastases in deep or critical intracranial sites. The risk of radiotherapy side effects in the brain is discussed.

  5. A Supplementary Grading Scale for Selecting Patients with Brain Arteriovenous Malformations for Surgery

    PubMed Central

    Lawton, Michael T.; Kim, Helen; McCulloch, Charles E.; Mikhak, Bahar; Young, William L.

    2010-01-01

    Objective Patient age, hemorrhagic presentation, nidal diffuseness, and deep perforating artery supply are important factors when selecting patients with brain arteriovenous malformations for surgery. We hypothesized that these factors outside of the Spetzler-Martin grading system could be combined into a simple, supplementary grading system that would accurately predict neurological outcome and refine patient selection. Methods A consecutive, single-surgeon series of 300 patients with AVMs treated microsurgically was analyzed in terms of change between preoperative and final postoperative Modified Rankin Scale scores. Three different multivariable logistic models (full, Spetzler-Martin, and supplementary models) were constructed to test the association of combined predictor variables with the change in MRS score. A simplified supplementary grading system was developed from the data which combined age, hemorrhagic presentation, and diffuseness in a manner analogous to the Spetzler-Martin grading system, with points assigned according to each variable and added together for a supplementary AVM grade. Results Predictive accuracy was highest for the full multivariable model (receiver operating characteristic curve area, 0.78), followed by the supplementary model (0.73), and least for the Spetzler-Martin model (0.66). Predictive accuracy of the simplified supplementary grade was significantly better than that of the Spetzler-Martin grade (P=0.042), with ROC curve areas of 0.73 and 0.65, respectively. The predictive accuracy of the supplementary grade was only slightly less than a full point score with all 7 weighted variables (P=0.364), with areas under the ROC curve of 0.73 and 0.75, respectively. Conclusions This new AVM grading system supplements rather than replaces the well established Spetzler-Martin grading system, and is a better predictor of neurological outcomes after AVM surgery. The supplementary grading scale has high predictive accuracy on its own and

  6. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.

    PubMed

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different decoding models. It shows better robustness of

  7. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different

  8. Characterization of nitrobenzylthioinosine binding to nucleoside transport sites selective for adenosine in rat brain

    SciTech Connect

    Geiger, J.D.; LaBella, F.S.; Nagy, J.I.

    1985-03-01

    Nucleoside transport sites in rat brain membrane preparations were labeled with (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H) NBI), a potent inhibitor of nucleoside transport systems. The membranes contained a single class of very high affinity binding sites with K/sub D/ and B/sub max/ values of 0.06 nM and 147 fmol/mg of protein, respectively. The displacement of (/sup 3/H)NBI binding by various nucleosides, adenosine receptor agonists and antagonists, and known nucleoside transport inhibitors was examined. The K/sub i/ values (micromolar concentration) of (/sup 3/H)NBI displacement by the nucleosides tested were: adenosine, 3.0; inosine, 160; thymidine, 240; uridine, 390; guanosine, 460; and cytidine, 1000. These nucleosides displayed parallel displacement curves indicating their interaction with a common site labeled by (/sup 3/H)NBI. The nucleobases, hypoxanthine and adenine, exhibited K/sub i/ values of 220 and 3640 microM, respectively. Adenosine receptor agonists exhibited moderate affinities for the (/sup 3/H)NBI site, whereas the adenosine receptor antagonists, caffeine, theophylline, and enprofylline, were ineffective displacers. The K/sub i/ values for cyclohexyladenosine, (+)- and (-)-phenylisopropyladenosine, 2-chloroadenosine, and adenosine 5'-ethylcarboxamide were 0.8, 0.9, 2.6, 12, and 54 microM, respectively. These affinities and the rank order of potencies indicate that (/sup 3/H)NBI does not label any known class of adenosine receptors (i.e., A1, A2, and P). The K/sub i/ values of other nucleoside transport inhibitors were: nitrobenzylthioguanosine, 0.05 nM; dipyridamole, 16 nM; papaverine, 3 microM; and 2'-deoxyadenosine, 22 microM. These results indicate that (/sup 3/H)NBI binds to a nucleoside transporter in brain which specifically recognizes adenosine as its preferred endogenous substrate. This ligand may aid in the identification of CNS neural systems that selectively accumulate adenosine and thereby control adenosinergic function.

  9. Significant head cooling can be achieved while maintaining normothermia in the newborn piglet.

    PubMed

    Tooley, J R; Eagle, R C; Satas, S; Thoresen, M

    2005-05-01

    Hypothermia has been shown to be neuroprotective in animal models of hypoxia-ischaemia. It is currently being evaluated as a potentially therapeutic option in the management of neonatal hypoxic-ischaemic encephalopathy. However, significant hypothermia has adverse systemic effects. It has also recently been found that the stress of being cold can abolish the neuroprotective effects of hypothermia. It is hypothesised that selective head cooling (SHC) while maintaining normal core temperature would enable local hypothermic neuroprotection while limiting the stress and side effects of hypothermia. To determine whether it is possible to induce moderate cerebral hypothermia in the deep brain of the piglet while maintaining the body at normothermia (39 degrees C). Six piglets (<48 hours old) were anaesthetised, and temperature probes inserted into the brain. Temperature was measured at different depths from the brain surface (21 mm (T(deep brain)) to 7 mm (T(superficial brain))). After a 45 minute global hypoxic-ischaemic insult, each piglet was head cooled for seven hours using a cap circulated with cold water (median 8.9 degrees C (interquartile range 7.5-14)) wrapped around the head. Radiant overhead heating was used to warm the body during cooling. During SHC it was possible to cool the brain while maintaining a normal core temperature. The mean (SD) T(deep brain) during the seven hour cooling period was 31.1 (4.9) degrees C while T(rectal) remained stable at 38.8 (0.4) degrees C. The mean T(rectal)-T(deep brain) difference throughout the cooling period was 9.8 (6.1) degrees C. The mean T(skin) required was 40.8 (1.1) degrees C. There was no evidence of skin damage secondary to these skin temperatures. During cooling only one piglet shivered. It is possible to maintain systemic normothermia in piglets while significantly cooling the deeper structures of the brain. This method of cooling may further limit the side effects associated with systemic hypothermia and be

  10. Effect of stocking density on performance, diet selection, total-tract digestion, and nitrogen balance among heifers grazing cool-season annual forages.

    PubMed

    Brunsvig, B R; Smart, A J; Bailey, E A; Wright, C L; Grings, E E; Brake, D W

    2017-08-01

    Grazing annual cool-season forages after oat grain harvest in South Dakota may allow an opportunity to increase efficient use of tillable land. However, data are limited regarding effects of stocking density on diet selection, nutrient digestion, performance, and N retention by cattle grazing annual cool-season forage. Heifers were blocked by initial BW (261 ± 11.7 kg) and randomly assigned to 1 of 12 paddocks (1.1 ha) to graze a mixture of grass and brassica for 48 d. Each paddock contained 3, 4, or 5 heifers to achieve 4 replicates of each stocking density treatment. Ruminally cannulated heifers were used to measure diet and nutrient intake. Effects of stocking density on diet and nutrient selection were measured after 2, 24, and 46 d of grazing, and BW was measured at the beginning, middle, and end of the experiment as the average of d 1 and 2, d 22 and 23, and d 47 and 48 BW, respectively. Measures of DMI and DM, OM, NDF, and ADF digestion were collected from d 18 to 23. Increased stocking density increased intake of brassica relative to grass on d 24 (quadratic, = 0.02), but increased stocking density decreased (linear, ≤ 0.01) intake of brassica compared with grass on d 48 (stocking density × time, < 0.01). Increased stocking density increased DM (quadratic, < 0.01), OM (quadratic, = 0.01), and NDF (quadratic, = 0.05) digestion, and stocking density tended to increase DMI (quadratic, = 0.07). Additionally, increased stocking density quadratically increased ( = 0.05) N retention but did not affect overall BW gains. Increased stocking density did, however, contribute to linearly decreased ( = 0.05) BW gains from d 1 to 22 of grazing, but BW gains during the latter half of the experiment were greater than BW gains from d 1 to 22. Ruminal concentration of acetate:propionate was least on d 24 of grazing, and ruminal nitrate concentration tended to linearly decrease ( = 0.06) with greater amounts of time on pasture. Ruminal liquid and particulate fill and

  11. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  12. Brain Development in Children. Unit for Child Studies Selected Papers Number 2.

    ERIC Educational Resources Information Center

    Watson, Charles

    This brief seminar presentation for parents and child minders points out aspects of brain development in human infants and provides answers to questions asked by seminar participants. Basic facts of anatomy, including the development of micro- and macroneurons, nerve cell migration, sprouting synapse formation and the death of brain cells are…

  13. Brain Development in Children. Unit for Child Studies Selected Papers Number 2.

    ERIC Educational Resources Information Center

    Watson, Charles

    This brief seminar presentation for parents and child minders points out aspects of brain development in human infants and provides answers to questions asked by seminar participants. Basic facts of anatomy, including the development of micro- and macroneurons, nerve cell migration, sprouting synapse formation and the death of brain cells are…

  14. The prodrug DHED selectively delivers 17β-estradiol to the brain for treating estrogen-responsive disorders

    PubMed Central

    Prokai, Laszlo; Nguyen, Vien; Szarka, Szabolcs; Garg, Puja; Sabnis, Gauri; Bimonte-Nelson, Heather A.; McLaughlin, Katie J.; Talboom, Joshua S.; Conrad, Cheryl D.; Shughrue, Paul J.; Gould, Todd D.; Brodie, Angela; Merchenthaler, Istvan; Koulen, Peter; Prokai-Tatrai, Katalin

    2015-01-01

    Many neurological and psychiatric maladies originate from the deprivation of the human brain from estrogens. However, current hormone therapies cannot be used safely to treat these conditions commonly associated with menopause because of detrimental side-effects in the periphery. The latter also prevents the use of the hormone for neuroprotection. Here we show that a small-molecule bioprecursor prodrug, 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), converts to 17β-estradiol in the brain after systemic administration, but remains inert in the rest of the body. The localized and rapid formation of estrogen from the prodrug was revealed by a series of in vivo bioanalytical assays and through in vivo imaging in rodents. DHED treatment efficiently alleviated symptoms originated from brain estrogen deficiency in animal models of surgical menopause and provided neuroprotection in a rat stroke model. Concomitantly, we determined that 17β-estradiol formed in the brain from DHED elicited changes in gene expression and neuronal morphology identical to those obtained after direct 17β-estradiol treatment. Altogether, complementary functional and mechanistic data show that our approach is highly relevant therapeutically, because administration of the prodrug selectively produces estrogen in the brain independently from the route of administration and treatment regimen. Therefore, peripheral responses associated with the use of systemic estrogens, such as stimulation of the uterus and estrogen-responsive tumor growth, were absent. Collectively, our brain-selective prodrug approach may safely provide estrogen neuroprotection and medicate neurological and psychiatric symptoms developing from estrogen deficiency, particularly those encountered after surgical menopause, without the adverse side-effects of current hormone therapies. PMID:26203081

  15. Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain.

    PubMed

    Buckholtz, N S; Zhou, D F; Freedman, D X; Potter, W Z

    1990-04-01

    A dosage regimen of lysergic acid diethylamide (LSD) that reliably produces behavioral tolerance in rats was evaluated for effects on neurotransmitter receptor binding in rat brain using a variety of radioligands selective for amine receptor subtypes. Daily administration of LSD [130 micrograms/kg (0.27 mumol/kg) intraperitoneally (IP)] for 5 days produced a decrease in serotonin2 (5-hydroxytryptamine2, 5-HT2) binding in cortex (measured 24 hours after the last drug administration) but did not affect binding to other receptor systems (5-HT1A, 5-HT1B, beta-adrenergic, alpha 1- or alpha 2-adrenergic, D2-dopaminergic) or to a recognition site for 5-HT uptake. The decrease was evident within 3 days of LSD administration but was not demonstrable after the first LSD dose. Following 5 days of LSD administration the decrease was still present 48 hours, but not 96 hours, after the last administration. The indole hallucinogen psilocybin [1.0 mg/kg (3.5 mumol/kg) for 8 days] also produced a significant decrease in 5HT2 binding, but neither the nonhallucinogenic analog bromo-LSD [1.3 mg/kg (2.4 mumol/kg) for 5 days] nor mescaline [10 mg/kg (40.3 mumol/kg) for 5 or 10 days] affected 5-HT2 binding. These observations suggest that LSD and other indole hallucinogens may act as 5-HT2 agonists at postsynaptic 5-HT2 receptors. Decreased 5-HT2 binding strikingly parallels the development and loss of behavioral tolerance seen with repeated LSD administration, but the decreased binding per se cannot explain the gamut of behavioral tolerance and cross-tolerance phenomena among the indole and phenylethylamine hallucinogens.

  16. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NASA Astrophysics Data System (ADS)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. Approach. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. Main results. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. Significance. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  17. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.

    PubMed

    van Dijk, Kees J; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C; Bour, Lo J; Heida, Ciska; Veltink, Peter H

    2015-08-01

    The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson's disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  18. Learning selectively increases protein kinase C substrate phosphorylation in specific regions of the chick brain.

    PubMed Central

    Sheu, F S; McCabe, B J; Horn, G; Routtenberg, A

    1993-01-01

    The effect of imprinting, an early form of exposure learning, on the phosphorylation state of the protein kinase C substrates myristoylated alanine-rich C-kinase substrate (MARCKS) and protein F1/43-kDa growth-associated protein (F1/GAP-43) was studied in two regions of the chick forebrain. One region, the intermediate and medial part of the hyperstriatum ventrale (IMHV), is probably a site of long-term memory; the other, the wulst, contains somatic sensory and visual projection areas. After imprinting, a significant increase in MARCKS protein phosphorylation was observed in the left IMHV but not the right IMHV. No significant alteration in F1/GAP-43 was observed in IMHV. MARCKS was resolved into two acidic components of pI approximately 5.0 and approximately 4.0. Phosphorylation of the pI approximately 5.0 MARCKS but not the pI approximately 4.0 MARCKS was significantly altered by imprinting. The partial correlation between preference score (an index of learning) and phosphorylation, holding constant the effect of approach activity during training, was significant only for the pI approximately 5.0 MARCKS in the left IMHV. A significant negative partial correlation between preference score and F1/GAP-43 phosphorylation in the right wulst was observed. Because the imprinting-induced alteration in MARCKS is selective with respect to phosphoprotein moiety, hemispheric location, and brain region, we propose that these alterations may be central to the learning process. Images Fig. 1 Fig. 2 Fig. 3 PMID:8464879

  19. Brain mitochondrial cytochromes P450: xenobiotic metabolism, presence of multiple forms and their selective inducibility.

    PubMed

    Bhagwat, S V; Boyd, M R; Ravindranath, V

    1995-06-20

    The capability of rat brain mitochondria to metabolize a variety of xenobiotics was examined. The presence of cytochrome P450 (P450) and associated monooxygenase activities were estimated in isolated rat brain mitochondria and compared with the corresponding activities in microsomes. Total P450 content in brain mitochondria from naive rats was twice that of the corresponding microsomal level. The ability of brain mitochondria to metabolize the potent carcinogen N-nitrosodimethylamine was more than twofold that of the corresponding microsomal activity, while the 7-ethoxycoumarin-O-deethylase activity was significantly lower in mitochondria. Immunoblot experiments using antisera to purified rat liver microsomal P450s, namely P450 (2B1/2B2), P4501A1, and P4502E1, and purified phenobarbital-inducible rat brain P450, revealed the presence of immunoreactive bands in isolated brain mitochondria. These various antibodies to P450 inhibited the brain mitochondrial monooxygenase activities to significant, though varying extent. The addition of antiserum to microsomal NADPH cytochrome P450 reductase did not affect the mitochondrial P450 associated monooxygenase activities, although it completely inhibited the corresponding microsomal activities. Chronic ethanol administration resulted in twofold induction of total P450 content and the monooxygenase activities known to be mediated by P4502E1, such as N-nitrosodimethylamine-N-demethylase and p-nitrophenol hydroxylase in brain mitochondria. Pretreatment of animals with phenobarbital resulted in the induction of aminopyrine N-demethylase activity in brain mitochondria. The study demonstrates the presence of multiple forms of P450 in the rat brain mitochondria, their inducibility, and their capability to metabolize xenobiotics.

  20. Selection and evaluation of reference genes for analysis of mouse (Mus musculus) sex-dimorphic brain development

    PubMed Central

    Cheung, Tanya T.; Weston, Mitchell K.

    2017-01-01

    The development of the brain is sex-dimorphic, and as a result so are many neurological disorders. One approach for studying sex-dimorphic brain development is to measure gene expression in biological samples using RT-qPCR. However, the accuracy and consistency of this technique relies on the reference gene(s) selected. We analyzed the expression of ten reference genes in male and female samples over three stages of brain development, using popular algorithms NormFinder, GeNorm and Bestkeeper. The top ranked reference genes at each time point were further used to quantify gene expression of three sex-dimorphic genes (Wnt10b, Xist and CYP7B1). When comparing gene expression between the sexes expression at specific time points the best reference gene combinations are: Sdha/Pgk1 at E11.5, RpL38/Sdha E12.5, and Actb/RpL37 at E15.5. When studying expression across time, the ideal reference gene(s) differs with sex. For XY samples a combination of Actb/Sdha. In contrast, when studying gene expression across developmental stage with XX samples, Sdha/Gapdh were the top reference genes. Our results identify the best combination of two reference genes when studying male and female brain development, and emphasize the importance of selecting the correct reference genes for comparisons between developmental stages. PMID:28133578

  1. Differential uptake of MRI contrast agents indicates charge-selective blood-brain interface in the crayfish.

    PubMed

    Otopalik, Adriane G; Shin, Jane; Beltz, Barbara S; Sandeman, David C; Kolodny, Nancy H

    2012-08-01

    This study provides a new perspective on the long-standing problem of the nature of the decapod crustacean blood-brain interface. Previous studies of crustacean blood-brain interface permeability have relied on invasive histological, immunohistochemical and electrophysiological techniques, indicating a leaky non-selective blood-brain barrier. The present investigation involves the use of magnetic resonance imaging (MRI), a method for non-invasive longitudinal tracking of tracers in real-time. Differential uptake rates of two molecularly distinct MRI contrast agents, namely manganese (Mn(II)) and Magnevist® (Gd-DTPA), were observed and quantified in the crayfish, Cherax destructor. Contrast agents were injected into the pericardium and uptake was observed with longitudinal MRI for approximately 14.5 h. Mn(II) was taken up quickly into neural tissue (within 6.5 min), whereas Gd-DTPA was not taken up into neural tissue and was instead restricted to the intracerebral vasculature or excreted into nearby sinuses. Our results provide evidence for a charge-selective intracerebral blood-brain interface in the crustacean nervous system, a structural characteristic once considered too complex for a lower-order arthropod.

  2. Perturbed iron distribution in Alzheimer's disease serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-analysis.

    PubMed

    Tao, Yunlong; Wang, Yu; Rogers, Jack T; Wang, Fudi

    2014-01-01

    The homeostasis and physiological role of iron in Alzheimer's disease (AD) has been debated for decades. Overall, it has been difficult to reach a consensus to prove marked disease-associated changes in the iron content of the AD brain, blood, or cerebrospinal fluid (CSF). We sought to contribute to resolve this issue by quantifying the iron content in serum, CSF, and sub-regions of the AD brain. We conducted a comprehensive systematic meta-analysis and review of multiple observational studies till October 2013 that investigated the iron content in AD serum, CSF, or brain tissue. 2,556 publications were screened. Forty-three eligible studies with 1,813 AD patients and 2,401 healthy controls were identified. Twenty-one studies investigated the serum iron in AD while seven and nineteen studies investigated the CSF iron and various brain regions iron respectively. Our meta-analysis showed that serum iron was significant lower in AD than healthy controls. CSF iron appeared not to be affected by AD although more studies are required due to the relative small number of CSF studies reported to date. We critically analyzed iron content in twelve selective brain regions by separated meta-analyses using cross-referenced statistical methods. We found that eight specific brain regions had higher iron concentrations that correlated with the clinical diagnosis of AD in a statistically validated manner. These data provided rigorous statistical support for the model that iron homeostasis was changed in AD patients, including the finding of lower iron in their serum and evidence for iron overload in several specific brain regions.

  3. Site-selective nitrogen isotopic ratio measurement of nitrous oxide using a TE-cooled CW-RT-QCL based spectrometer.

    PubMed

    Li, Jingsong; Zhang, Lizhu; Yu, Benli

    2014-12-10

    The feasibility of laser spectroscopic isotopic composition measurements of atmospheric N2O was demonstrated, although making them useful will require further improvements. The system relies on a thermoelectrically (TE) cooled continuous-wave (CW) room temperature (RT) quantum cascade laser source emitting wavelength of around 4.6μm, where strong fundamental absorption bands occur for the considered specie and its isotopomers. The analysis technique is based on wavelength modulation spectroscopy with second-harmonic detection and the combination of long-path absorption cell. Primary laboratory tests have been performed to estimate the achievable detection limits and the signal reproducibility levels in view of possible measurements of (15)N/(14)N and (18)O/(16)O isotope ratios. The experiment results showed that the site-selective (15)N/(14)N ratio can be measured with a precision of 3‰ with 90s averaging time using natural-abundance N2O sample of 12.7ppm. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A novel head-neck cooling device for concussion injury in contact sports.

    PubMed

    Wang, Huan; Wang, Bonnie; Jackson, Kevin; Miller, Claire M; Hasadsri, Linda; Llano, Daniel; Rubin, Rachael; Zimmerman, Jarred; Johnson, Curtis; Sutton, Brad

    2015-01-01

    Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports.

  5. A novel head-neck cooling device for concussion injury in contact sports

    PubMed Central

    Wang, Huan; Wang, Bonnie; Jackson, Kevin; Miller, Claire M.; Hasadsri, Linda; Llano, Daniel; Rubin, Rachael; Zimmerman, Jarred; Johnson, Curtis; Sutton, Brad

    2015-01-01

    Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports. PMID:28123788

  6. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  7. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  8. Use of a Peltier chip with a newly devised local brain-cooling system for neocortical seizures in the rat. Technical note.

    PubMed

    Imoto, Hirochika; Fujii, Masami; Uchiyama, Jouji; Fujisawa, Hirosuke; Nakano, Kimihiko; Kunitsugu, Ichiro; Nomura, Sadahiro; Saito, Takashi; Suzuki, Michiyasu

    2006-01-01

    Local cortical cooling for termination of epileptic discharges (EDs) has recently become a focus of research. The authors report on a newly devised cooling system that uses a thermoelectric (Peltier) chip and examine the system's performance in experimental neocortical seizures. Experiments were performed in adult male Sprague-Dawley rats after induction of halothane anesthesia. The Peltier chip was attached to a heat sink with a water channel. Two silicon tubes were connected to the heat sink, and water at 37 degrees C was circulated in the channel. The newly designed device was placed on the surface of the cortex. Kainic acid (KA) was injected into the cortex to provoke EDs. In the nonepileptic cortex, the temperature of the cortical surface decreased to 14.8 +/- 1.5 degrees C and that 2 mm below the surface to 27.1 +/- 3.1 degrees C within 30 seconds after the start of cooling. The temperature of the heated side of the chip was maintained at approximately 36.9 degrees C. Without water circulation, the temperature of the cortical surface decreased to 20 degrees C but soon began to increase, peaking at 30 degrees C. The temperature of the heated side of the chip rose to more than 60 degrees C. The EDs, which appeared within 20 minutes after KA injection, began to decrease in amplitude immediately after cooling began and continued to decrease as the temperature of the cortex was lowered. Sufficient miniaturization and good performance of the cooling device was demonstrated. Further efforts to develop implantable cooling systems and improve existing ones should be continued.

  9. An HPLC tracing of the enhancer regulation in selected discrete brain areas of food-deprived rats.

    PubMed

    Miklya, I; Knoll, B; Knoll, J

    2003-05-09

    The recent discovery of the enhancer regulation in the mammalian brain brought a different perspective to the brain-organized realization of goal-oriented behavior, which is the quintessence of plastic behavioral descriptions such as drive or motivation. According to this new approach, 'drive' means that special endogenous enhancer substances enhance the impulse-propagation-mediated release of transmitters in a proper population of enhancer-sensitive neurons, and keep these neurons in the state of enhanced excitability until the goal is reached. However, to reach any goal needs the participation of the catecholaminergic machinery, the engine of the brain. We developed a method to detect the specific enhancer effect of synthetic enhancer substances [(-)-deprenyl, (-)-PPAP, (-)-BPAP] by measuring the release of transmitters from freshly isolated selected discrete brain areas (striatum, substantia nigra, tuberculum olfactorium, locus coeruleus, raphe) by the aid of HPLC with electrochemical detection. To test the validity of the working hypothesis that in any form of goal-seeking behavior the catecholaminergic and serotonergic neurons work on a higher activity level, we compared the amount of norepinephrine, dopamine, and serotonin released from selected discrete brain areas isolated from the brain of sated and food-deprived rats. Rats were deprived of food for 48 and 72 hours, respectively, and the state of excitability of their catecholaminergic and serotonergic neurons in comparison to that of sated rats was measured. We tested the orienting-searching reflex activity of the rats in a special open field, isolated thereafter selected discrete brain areas and measured the release of norepinephrine, dopamine, and serotonin from the proper tissue samples into the organ bath. The orienting-searching reflex activity of the rats increased proportionally to the time elapsed from the last feed and the amount of dopamine released from the striatum, substantia nigra and

  10. Selective attention in an overcrowded auditory scene: implications for auditory-based brain-computer interface design.

    PubMed

    Maddox, Ross K; Cheung, Willy; Lee, Adrian K C

    2012-11-01

    Listeners are good at attending to one auditory stream in a crowded environment. However, is there an upper limit of streams present in an auditory scene at which this selective attention breaks down? Here, participants were asked to attend one stream of spoken letters amidst other letter streams. In half of the trials, an initial primer was played, cueing subjects to the sound configuration. Results indicate that performance increases with token repetitions. Priming provided a performance benefit, suggesting that stream selection, not formation, is the bottleneck associated with attention in an overcrowded scene. Results' implications for brain-computer interfaces are discussed.

  11. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease.

    PubMed

    McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J

    2015-11-01

    Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural

  12. Characterisation of element profile changes induced by long-term dietary supplementation of zinc in the brain and cerebellum of 3xTg-AD mice by alternated cool and normal plasma ICP-MS.

    PubMed

    Ciavardelli, Domenico; Consalvo, Ada; Caldaralo, Valentina; Di Vacri, Maria Laura; Nisi, Stefano; Corona, Carlo; Frazzini, Valerio; Sacchetta, Paolo; Urbani, Andrea; Di Ilio, Carmine; Sensi, Stefano L

    2012-12-01

    Metal dyshomeostasis plays a crucial role in promoting several neurodegenerative diseases including Alzheimer's disease (AD), a condition that has been linked to deregulation of brain levels of Al, Fe, Mn, Cu, and Zn. Thus, quantitative multi-element profiling of brain tissues from AD models can be of great value in assessing the pathogenic role of metals as well as the value of therapeutic interventions aimed at restoring metal homeostasis in the brain. In this study, we employed low resolution inductively coupled plasma mass spectrometry (ICP-MS) to evaluate levels of ultra-trace, trace, and major elements in brains and cerebella of 3xTg-AD mice, a well characterized transgenic (Tg) AD model. This method is based on alternated cool and hot plasma ICP-MS. The essay fulfilled analytical requirements for the quantification of 14 elements in the Central Nervous System (CNS) of our Tg model. Quantification of Li, Al, Cr, and Co, a procedure that requires a pre-concentration step, was validated by high resolution ICP-MS. Changes in element profiles occurring in 3xTg-AD mice were compared to the ones observed in wild type (WT) mice. We also investigated variations in element profiles in 3xTg-AD mice receiving a long-term (17 months) dietary supplementation of Zn. Our data indicate that, compared to WT animals, 3xTg-AD mice displayed signs of altered brain metal homeostasis. We also found that long-term Zn administration promoted decreased brain levels of some metals (K, Ca, and Fe) and restored levels of Al, Cr, and Co to values found in WT mice.

  13. A regulatory toolbox of MiniPromoters to drive selective expression in the brain

    PubMed Central

    Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.

    2010-01-01

    The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748

  14. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  15. Cool Andromeda

    NASA Image and Video Library

    2013-01-28

    In this new view of the Andromeda, also known as M31, galaxy from the Herschel space observatory, cool lanes of forming stars are revealed in the finest detail yet. M31 is the nearest major galaxy to our own Milky Way at a distance of 2.5 million light-ye

  16. Selective Endothelin-B Receptor Stimulation Increases Vascular Endothelial Growth Factor in the Rat Brain during Postnatal Development.

    PubMed

    Leonard, M G; Prazad, P; Puppala, B; Gulati, A

    2015-11-01

    Endothelin, vascular endothelial growth factor and nerve growth factor play important roles in development of the central nervous system. ET(B) receptors have been shown to promote neurovascular remodeling in the adult ischemic brain through an increase in VEGF and NGF. It is possible that ET(B) receptors may be involved in postnatal development of the brain through VEGF and NGF. In the present study, the brains of male rat pups on postnatal days 1, 7, 14 and 28 were analyzed for expression of ET(B) receptors, VEGF and NGF. In order to determine the effect of ET(B) receptor stimulation, a separate group of pups were administered saline or ET(B) receptor agonist, IRL-1620, on day 21, and their brains were analyzed on day 28. The intensity of ET(B) receptor and VEGF staining in the vasculature as well as the number of blood vessels of normal pups increased with age and was significantly higher on postnatal day 14 compared to day 1 and day 7. In contrast, both ET(B) and NGF staining intensity in the cortex and subventricular zones decreased (P<0.01) at postnatal day 14 compared to earlier time points. Stimulation of ET(B) receptors resulted in a significant increase in VEGF and ET(B) intensity both in the vasculature and the brain (P<0.05), however, IRL-1620 did not produce any change in NGF expression. Results indicate that ET(B) receptors appear to play a role in the development of the CNS and selective stimulation of ET(B) receptors enhances VEGF but not NGF in the postnatal rat brain. © Georg Thieme Verlag KG Stuttgart · New York.

  17. It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2017-03-20

    Statements regarding pleasantness, taste intensity or caloric content on a food label may influence the attention consumers pay to such characteristics during consumption. There is little research on the effects of selective attention on taste perception and associated brain activation in regular drinks. The aim of this study was to investigate the effect of selective attention on hedonics, intensity and caloric content on brain responses during tasting drinks. Using functional MRI brain responses of 27 women were measured while they paid attention to the intensity, pleasantness or caloric content of fruit juice, tomato juice and water. Brain activation during tasting largely overlapped between the three selective attention conditions and was found in the rolandic operculum, insula and overlying frontal operculum, striatum, amygdala, thalamus, anterior cingulate cortex and middle orbitofrontal cortex (OFC). Brain activation was higher during selective attention to taste intensity compared to calories in the right middle OFC and during selective attention to pleasantness compared to intensity in the right putamen, right ACC and bilateral middle insula. Intensity ratings correlated with brain activation during selective attention to taste intensity in the anterior insula and lateral OFC. Our data suggest that not only the anterior insula but also the middle and lateral OFC are involved in evaluating taste intensity. Furthermore, selective attention to pleasantness engaged regions associated with food reward. Overall, our results indicate that selective attention to food properties can alter the activation of gustatory and reward regions. This may underlie effects of food labels on the consumption experience of consumers.

  18. Clinical interrogation and application of super-selective intracranial artery infusion chemotherapy for lung cancer patients with brain metastases.

    PubMed

    Rong, J; Chunhua, M; Yuan, L; Ning, M; Jinduo, L; Bin, W; Liwei, S

    2015-11-01

    The purpose of this study was to evaluate the clinical efficacy of super-selective intracranial artery infusion chemotherapy and to determine correlated prognostic parameters for advanced lung cancer patients with brain metastases. Fifty-four lung cancer patients with brain metastasis who had no previous treatment were enrolled for the study. These patients received super-selective intracranial artery infusion chemotherapy, as well as arterial infusion chemotherapy for primary and metastatic lesions. The procedure was performed once every 4 weeks. Patients were monitored to evaluate short-term clinical outcomes 4 weeks after the first 2 treatments, and follow-up visits performed every 4 weeks after the first 4 treatments until the appearance of disease progression or intolerable toxicity. All 54 cases were treated at least 4 times. The overall response rate was 55.56% (30/54), and the disease control rate was 85.19% (46/54). The median overall survival was 7 months, with a 95% confidence interval (CI) of 5.87-8.13 months, and the median progression-free survival was 4 months, with a 95% CI of 3.20-4.80 months. The 6-month survival rate and 1-year survival rate were 81.48% (44/54) and 18.52% (10/54), respectively. Super-selective intracranial artery infusion chemotherapy provides a clinically efficacious avenue of treatment for lung cancer patients with brain metastases. Pathological classification, Karnofsky performance status, and extracranial metastases may serve as reliable prognostic parameters in determining the clinical outcomes for lung cancer patients with brain metastases.

  19. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo

    PubMed Central

    Stalmans, Sofie; Bracke, Nathalie; Wynendaele, Evelien; Gevaert, Bert; Peremans, Kathelijne; Burvenich, Christian; Polis, Ingeborgh; De Spiegeleer, Bart

    2015-01-01

    Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47–57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47–57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx. PMID:26465925

  20. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease

    PubMed Central

    Seunarine, Kiran K.; Razi, Adeel; Cole, James H.; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A. C.; Stout, Julie C.; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Clark, Chris A.; Rees, Geraint

    2015-01-01

    Huntington’s disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The ‘rich club’ is a pattern of organization established in healthy human brains, where specific hub ‘rich club’ brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington’s disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington’s disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington’s disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington’s disease and manifest Huntington’s disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic

  1. Effect of oseltamivir on catecholamines and select oxidative stress markers in the presence of oligoelements in the rat brain.

    PubMed

    Guzmán, David Calderón; García, Ernestina Hernández; Brizuela, Norma Osnaya; Jiménez, Francisca Trujillo; Mejía, Gerardo Barragán; Olguín, Hugo Juárez; del Ángel, Daniel Santamaría; Elvira, Nuñez A; Aparicio, Liliana Carmona

    2010-10-01

    The effect that osteltamivir has on the metabolism of catecholamines and oxidative damage in the brains of young patients remains unclear. The purpose of this study was to measure the effects of oseltamivir, in the presence of oligoelements, on biogenic amines and select oxidative biomarkers in the brains of uninfected, young rats under normal conditions. The study was conducted using male Wistar rats intraperitoneally treated for three days with either a control dose of 0.9 % NaCl, oseltamivir (50 mg/kg), oligoelements (50 μL/rat), or oseltamivir (50 mg/kg) and oligoelements (50 μL/rat). The brain tissue extracted from the treated rats was used to determine the concentrations of adrenaline, noradrenaline, and dopamine, as well as the levels of GSH, lipid peroxidation, and ATPase activity. An increase in the concentration of adrenaline and noradrenaline and in the level of GSH in the group treated with oligoelements (p < 0.001) was observed, while the group treated with oseltamivir and oligoelements, the levels of dopamine increased (p < 0.001), and in the groups treated with oligoelements alone or combination with oseltamivir a decrease in lipid peroxidation was observed (p < 0.001). The results of this study suggest that the consumption of oseltamivir and oligoelements induce biphasic changes in the metabolism of catecholamines; thereby, inducing a protective mechanism against oxidative damage in the brains of young rats.

  2. Zolantidine (SK&F 95282) is a potent selective brain-penetrating histamine H2-receptor antagonist.

    PubMed Central

    Calcutt, C. R.; Ganellin, C. R.; Griffiths, R.; Leigh, B. K.; Maguire, J. P.; Mitchell, R. C.; Mylek, M. E.; Parsons, M. E.; Smith, I. R.; Young, R. C.

    1988-01-01

    1. The novel benzthiazole derivative zolantidine (SK&F 95282) is a potent antagonist of histamine at H2-receptors in guinea-pig atrium and rat uterus. Only apparent pA2 values of 7.46 and 7.26 respectively could be calculated since the slopes of the Schild plots were significantly less than unity. 2. Zolantidine is equally potent as an antagonist at histamine H2-receptors in guinea-pig brain. The compound inhibited histamine stimulated adenylate cyclase (pKi 7.3) and dimaprit stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) accumulation (approx pA2 7.63), and competed with [3H]-tiotidine binding (pKi 7.17). 3. Zolantidine is at least 30 fold more potent at H2-receptors than at other peripheral and central receptors investigated. 4. Infusion of zolantidine into rats produces a brain concentration greater than the plateau blood concentration (brain/blood ratio 1.45). 5. Zolantidine is thus characterized as a potent selective brain-penetrating H2-receptor antagonist, and will be a valuable pharmacological tool for investigating possible physiological and pathological roles for histamine in the central nervous system. PMID:2894879

  3. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  4. [The role of ceramides in selected brain pathologies: ischemia/hypoxia, Alzheimer disease].

    PubMed

    Car, Halina; Zendzian-Piotrowska, Małgorzata; Fiedorowicz, Anna; Prokopiuk, Sławomir; Sadowska, Anna; Kurek, Krzysztof

    2012-05-30

     Ceramides, members of the sphingolipids, are produced in the central nervous system by de novo synthesis, sphingomyelin hydrolysis or the so-called salvage pathway. They are engaged in formation of lipid rafts that are essential in regulation and transduction of signals coming to the cell from the environment. Ceramides represent the major transmitters of the sphingomyelin pathway of signal transduction. They regulate proliferation, differentiation, programmed cell death and senescence. Ceramide overexpression, mainly as a result of sphingomyelin hydrolysis, is a component of brain damage caused by ischemia and early reperfusion. Their high concentrations induce mitochondria-dependent neuronal apoptosis, exacerbate the synthesis of reactive oxygen species, decrease ATP level, inhibit electron transport and release cytochrome c, and activate caspase-3. Reduced ceramide accumulation in the brain, dependent mainly on ceramide synthesized de novo, may exert an anti-apoptotic effect after pre-conditioning. The increase of ceramide content in the brain was observed in Alzheimer disease and its animal models. Enhanced ceramide concentration in this pathology is an effect of their synthesis de novo or sphingomyelin metabolism augmentation. The ceramide pathway can directly stimulate biochemical changes in the brain noted at the onset of disease: tau overphosphorylation and β-amyloid peptide accumulation. The higher concentration of ceramides in blood in the pre-clinical phase of the illness may mark early brain changes.

  5. Neuroproteomic profiling of human brain tissue using multidimensional separation techniques and selective enrichment of membrane proteins.

    PubMed

    Musunuri, Sravani; Shevchenko, Ganna; Bergquist, Jonas

    2012-12-01

    Hydrophobic membrane proteins (MPs) occupy a unique niche in the brain proteome research due to their important physiological roles. Therefore, the extraction, separation, and identification of MPs are of great interest in proteomic analysis. We applied various proteomic techniques to enrich, separate, and analyze the human brain proteome, including membrane proteome. Temperature-induced phase fractionation with the nonionic surfactant Triton X-114 was used to simultaneously extract, separate, and concentrate low abundant hydrophobic and high abundant hydrophilic proteins from human brain tissue. The extracted and delipidated proteins were analyzed by two-dimensional gel electrophoresis (2DE). Approximately 600 spots were detected in the gels. In-solution digestion was performed on 3 kDa spin filters. Tryptic peptides were separated using RP nano-LC and analyzed using two different high performance mass spectrometers, linear ion trap-Fourier transform and a linear ion trap-Orbitrap to reveal the low abundant MPs. In total, 837 and 780 unique proteins were identified by using linear ion trap-Fourier transform and linear ion trap-Orbitrap mass spectrometers, respectively. More than 29% of the identified proteins were classified as MPs with significant biological functions such as ion channels and transporters. Our study establishes a simple and rapid shotgun approach for the characterization of the brain proteome, and allows comprehensive analysis of brain membrane proteomes.

  6. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.

    PubMed

    Wang, Minghui; Roussos, Panos; McKenzie, Andrew; Zhou, Xianxiao; Kajiwara, Yuji; Brennand, Kristen J; De Luca, Gabriele C; Crary, John F; Casaccia, Patrizia; Buxbaum, Joseph D; Ehrlich, Michelle; Gandy, Sam; Goate, Alison; Katsel, Pavel; Schadt, Eric; Haroutunian, Vahram; Zhang, Bin

    2016-11-01

    sites associated with the greatest and earliest gene expression abnormalities. This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD.

  7. The nominal cooling tower

    SciTech Connect

    Burger, R.

    1995-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can select the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.

  8. Violence: heightened brain attentional network response is selectively muted in Down syndrome.

    PubMed

    Anderson, Jeffrey S; Treiman, Scott M; Ferguson, Michael A; Nielsen, Jared A; Edgin, Jamie O; Dai, Li; Gerig, Guido; Korenberg, Julie R

    2015-01-01

    The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activation to auditory and visual features, violence, and presence of the protagonist and antagonist were compared across cartoon segments. fMRI signal from the brain's dorsal attention network was compared to thematic and violent events within the cartoons between Down syndrome and control samples. We found that in typical development, the brain's dorsal attention network was most active during violent scenes in the cartoons and that this was significantly and specifically reduced in Down syndrome. When the antagonist was on screen, there was significantly less activation in the left medial temporal lobe of individuals with Down syndrome. As scenes represented greater relative threat, the disparity between attentional brain activation in Down syndrome and control individuals increased. There was a reduction in the temporal autocorrelation of the dorsal attention network, consistent with a shortened attention span in Down syndrome. Individuals with Down syndrome exhibited significantly reduced activation in primary sensory cortices, and such perceptual impairments may constrain their ability to respond to more complex social cues such as violence. These findings may indicate a relative deficit in emotive perception of violence in Down syndrome, possibly mediated by impaired sensory perception and hypoactivation of medial temporal structures in response to threats, with relative preservation of activity in pro-social brain regions. These findings indicate that specific genetic differences associated

  9. Recent developments in turbine blade internal cooling.

    PubMed

    Han, J C; Dutta, S

    2001-05-01

    This paper focuses on turbine blade internal cooling. Internal cooling is achieved by passing the coolant through several rib-enhanced serpentine passages inside the blade and extracting the heat from the outside of the blades. Both jet impingement and pin-fin-cooling are also used as a method of internal cooling. In the past number of years there has been considerable progress in turbine blade internal cooling research and this paper is limited to reviewing a few selected publications to reflect recent developments in turbine blade internal cooling.

  10. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  11. Cooling technique

    DOEpatents

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  12. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks.

    PubMed

    Grady, Cheryl L; Siebner, Hartwig R; Hornboll, Bettina; Macoveanu, Julian; Paulson, Olaf B; Knudsen, Gitte M

    2013-05-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender of neutral, fearful and angry faces. In three separate and counterbalanced sessions, participants received citalopram (CIT) to raise serotonin levels, underwent acute tryptophan depletion (ATD) to lower serotonin, or were studied without pharmacological challenge (Control). An analysis designed to identify distributed brain responses identified two brain networks with modulations of activity related to face emotion and serotonin level. The first network included the left amygdala, bilateral striatum, and fusiform gyri. During the Control session this network responded only to fearful faces; increasing serotonin decreased this response to fear, whereas reducing serotonin enhanced the response of this network to angry faces. The second network involved bilateral amygdala and ventrolateral prefrontal cortex, and these regions also showed increased activity to fear during the Control session. Both drug challenges enhanced the neural response of this set of regions to angry faces, relative to Control, and CIT also enhanced activity for neutral faces. The net effect of these changes in both networks was to abolish the selective response to fearful expressions. These results suggest that a normal level of serotonin is critical for maintaining a differentiated brain response to threatening face emotions. Lower serotonin leads to a broadening of a normally fear-specific response to anger, and higher levels reduce the differentiated brain response to aversive face emotions.

  13. A Discussion of Brain Hemisphere Characteristics and Creative Leadership among Selected Educational Administrators in Tennessee.

    ERIC Educational Resources Information Center

    Norris, Cynthia

    Findings from a study of 27 superintendents, 39 principals, and 37 supervisors recognized as effective leaders in Tennessee schools suggest that the highest level of educational leadership is dominated by individuals whose cognitive style is ineffective for conceptualizing the future. Analysis of the subjects' brain dominance patterns using the…

  14. Oxytocin selectively modulates brain processing of disgust in Huntington's disease gene carriers.

    PubMed

    Labuschagne, Izelle; Poudel, Govinda; Kordsachia, Catarina; Wu, Qizhu; Thomson, Hannah; Georgiou-Karistianis, Nellie; Stout, Julie C

    2017-09-23

    People with Huntington's disease (HD) exhibit altered processing of emotional information, especially disgust and other negative emotions. These impairments are likely due to the effects of the disease on underlying brain networks. We examined whether oxytocin, when given intranasally, would normalise aberrant brain reactivity to emotional faces in participants with the gene-expansion for HD. In a double-blind placebo-controlled cross-over design, we measured brain activity, using functional magnetic resonance imaging, whilst nine medication-free HD carriers, and ten control participants viewed emotional (disgust, fear, angry, sad, surprise, happy) and neutral faces, following acute intranasal oxytocin (24IU) and placebo. Subjective mood changes were assessed before and after the neuroimaging on each visit. Permutation-based non-parametric statistical testing for the whole brain, showed significant group×drug interactions (p's<0.05, TFCE corrected) in areas of the left frontal pole, superior frontal, and middle frontal gyri cortically, and left putamen and thalamus sub-cortically. Parameter estimates extracted from the middle frontal gyrus and putamen showed that, under placebo, the HD group had lower brain activity to disgust stimuli, compared with controls. After intranasal oxytocin, the pattern of activation to disgust stimuli was normalised in the HD group to similar levels as controls; eight of the nine HD carriers showed increased response in the middle frontal gyrus, and seven of the nine HD carriers showed increased response in the putamen. The observed effects of oxytocin occurred in the absence of changes in subjective mood or state anxiety. These findings provide early evidence for a physiological role of oxytocin in the neuropathology of HD. Our findings are the first reported oxytocin effects in a neurodegenerative disease. Further research should examine the therapeutic benefits of oxytocin in alleviating emotional and social cognition deficits in HD

  15. Effects of Blocking GABA Degradation on Corticotropin-Releasing Hormone Gene Expression in Selected Brain Regions

    PubMed Central

    Tran, Viet; Hatalski, Carolyn G.; Yan, Xiao-Xin; Baram, Tallie Z.

    2011-01-01

    Summary Purpose The γ-aminobutyric acid (GABA) degradation blocker γ-vinyl-GABA (VGB) is used clinically to treat seizures in both adult and immature individuals. The mechanism by which VGB controls developmental seizures is not fully understood. Specifically, whether the anticonvulsant properties of VGB arise only from its elevation of brain GABA levels and the resulting activation of GABA receptors, or also from associated mechanisms, remains unresolved. Corticotropin-releasing hormone (CRH), a neuropeptide present in many brain regions involved in developmental seizures, is a known convulsant in the immature brain and has been implicated in some developmental seizures. In certain brain regions, it has been suggested that CRH synthesis and release may be regulated by GABA. Therefore we tested the hypothesis that VGB decreases CRH gene expression in the immature rat brain, consistent with the notion that VGB may decrease seizures also by reducing the levels of the convulsant molecule, CRH. Methods VGB was administered to immature, 9-day-old rats in clinically relevant doses, whereas littermate controls received vehicle. Results In situ hybridization histochemistry demonstrated a downregulation of CRH mRNA levels in the hypothalamic paraventricular nucleus but not in other limbic regions of VGB-treated pups compared with controls. In addition, VGB-treated pups had increased CRH peptide levels in the anterior hypothalamus, as shown by radioimmunoassay. Conclusions These findings are consistent with a reduction of both CRH gene expression and secretion in the hypothalamus, but do not support an indirect anticonvulsant mechanism of VGB via downregulation of CRH levels in limbic structures. However, the data support a region-specific regulation of CRH gene expression by GABA. PMID:10487181

  16. Amygdala activation as a marker for selective attention toward neutral faces in a chronic traumatic brain injury population.

    PubMed

    Young, Leanne R; Yu, Weikei; Holloway, Michael; Rodgers, Barry N; Chapman, Sandra B; Krawczyk, Daniel C

    2017-09-01

    There has been great interest in characterizing the response of the amygdala to emotional faces, especially in the context of social cognition. Although amygdala activation is most often associated with fearful or angry stimuli, there is considerable evidence that the response of the amygdala to neutral faces is both robust and reliable. This characteristic of amygdala function is of particular interest in the context of assessing populations with executive function deficits, such as traumatic brain injuries, which can be evaluated using fMRI attention modulation tasks that evaluate prefrontal control over representations, notably faces. The current study tested the hypothesis that the amygdala may serve as a marker of selective attention to neutral faces. Using fMRI, we gathered data within a chronic traumatic brain injury population. Blood Oxygenation Level Dependent (BOLD) signal change within the left and right amygdalae and fusiform face areas was measured while participants viewed neutral faces and scenes, under conditions requiring participants to (1) categorize pictures of faces and scenes, (2) selectively attend to either faces or scenes, or (3) attend to both faces and scenes. Findings revealed that the amygdala is an effective marker for selective attention to neutral faces and, furthermore, it was more face-specific than the fusiform face area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Provisioning cooling elements for chillerless data centers

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-12-13

    Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.

  18. Use of Multichannel Near Infrared Spectroscopy to Study Relationships Between Brain Regions and Neurocognitive Tasks of Selective/Divided Attention and 2-Back Working Memory.

    PubMed

    Tomita, Nozomi; Imai, Shoji; Kanayama, Yusuke; Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    While dichotic listening (DL) was originally intended to measure bottom-up selective attention, it has also become a tool for measuring top-down selective attention. This study investigated the brain regions related to top-down selective and divided attention DL tasks and a 2-back task using alphanumeric and Japanese numeric sounds. Thirty-six healthy participants underwent near-infrared spectroscopy scanning while performing a top-down selective attentional DL task, a top-down divided attentional DL task, and a 2-back task. Pearson's correlations were calculated to show relationships between oxy-Hb concentration in each brain region and the score of each cognitive task. Different brain regions were activated during the DL and 2-back tasks. Brain regions activated in the top-down selective attention DL task were the left inferior prefrontal gyrus and left pars opercularis. The left temporopolar area was activated in the top-down divided attention DL task, and the left frontopolar area and left dorsolateral prefrontal cortex were activated in the 2-back task. As further evidence for the finding that each task measured different cognitive and brain area functions, neither the percentages of correct answers for the three tasks nor the response times for the selective attentional task and the divided attentional task were correlated to one another. Thus, the DL and 2-back tasks used in this study can assess multiple areas of cognitive, brain-related dysfunction to explore their relationship to different psychiatric and neurodevelopmental disorders.

  19. Pattern of Fos expression in the brain induced by selective activation of somatostatin receptor 2 in rats

    PubMed Central

    Goebel, Miriam; Stengel, Andreas; Wang, Lixin; Coskun, Tamer; Alsina-Fernandez, Jorge; Rivier, Jean; Taché, Yvette

    2010-01-01

    Central activation of somatostatin (sst) receptors by oligosomatostatin analogs inhibits growth hormone and stress-related rise in catecholamine plasma levels while stimulating grooming, feeding behaviors, gastric transit and acid secretion, which can be mimicked by selective sst2 receptor agonist. To evaluate the pattern of neuronal activation induced by peptide sst receptor agonists, we assessed Fos-expression in rat brain after intracerebroventricular (icv) injection of a newly developed selective sst2 agonist compared to the oligosomatostatin agonist, ODT8-SST, a pan-sst1–5 agonist. Ninety min after injection of vehicle (10µl) or previously established maximal orexigenic dose of peptides (1µg=1nmol/rat), brains were assessed for Fos-immunohistochemistry and doublelabeling. Food and water were removed after injection. The sst2 agonist and ODT8-SST induced a similar Fos distribution pattern except in the arcuate nucleus where only the sst2 agonist increased Fos. Compared to ODT8-SST, the sst2 agonist induced higher Fos-expression by 3.7-fold in the basolateral amygdaloid nucleus, 1.2-fold in the supraoptic nucleus (SON), 1.6-fold in the magnocellular paraventricular hypothalamic nucleus (mPVN), 4.1-fold in the external lateral parabrachial nucleus, and 2.6-fold in both the inferior olivary nucleus and superficial layer of the caudal spinal trigeminal nucleus. Doublelabeling in the hypothalamus showed that ODT8-SST activates 36% of oxytocin, 63% of vasopressin and 79% of sst2 immunoreactive neurons in the mPVN and 28%, 55% and 25% in the SON, respectively. Selective activation of sst2 receptor results in a more robust neuronal activation than the pan-sst1–5 agonist in various brain regions that may have relevance in sst2 mediated alterations of behavioral, autonomic and endocrine functions. PMID:20637739

  20. Metabolic impairment elicits brain cell type-selective changes in oxidative stress and cell death in culture.

    PubMed

    Park, L C; Calingasan, N Y; Uchida, K; Zhang, H; Gibson, G E

    2000-01-01

    Abnormalities in oxidative metabolism and inflammation accompany many neurodegenerative diseases. Thiamine deficiency (TD) is an animal model in which chronic oxidative stress and inflammation lead to selective neuronal death, whereas other cell types show an inflammatory response. Therefore, the current studies determined the response of different brain cell types to TD and/or inflammation in vitro and tested whether their responses reflect inherent properties of the cells. The cells that have been implicated in TD-induced neurotoxicity, including neurons, microglia, astrocytes, and brain endothelial cells, as well as neuroblastoma and BV-2 microglial cell lines, were cultured in either thiamine-depleted media or in normal culture media with amprolium, a thiamine transport inhibitor. The activity levels of a key mitochondrial enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), were uniquely distributed among different cell types: The highest activity was in the endothelial cells, and the lowest was in primary microglia and neurons. The unique distribution of the activity did not account for the selective response to TD. TD slightly inhibited general cellular dehydrogenases in all cell types, whereas it significantly reduced the activity of KGDHC exclusively in primary neurons and neuroblastoma cells. Among the cell types tested, only in neurons did TD induce apoptosis and cause the accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation product. On the other hand, chronic lipopolysaccharide-induced inflammation significantly inhibited cellular dehydrogenase and KGDHC activities in microglia and astrocytes but not in neurons or endothelial cells. The results demonstrate that the selective cell changes during TD in vivo reflect inherent properties of the different brain cell types.

  1. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  2. Selective effects of neonatal handling on rat brain N-methyl-D-aspartate receptors.

    PubMed

    Stamatakis, A; Toutountzi, E; Fragioudaki, K; Kouvelas, E D; Stylianopoulou, F; Mitsacos, A

    2009-12-29

    Neonatal handling, an experimental model of early life experiences, is known to affect the hypothalamic-pituitary-adrenal axis function thus increasing adaptability, coping with stress, cognitive abilities and in general brain plasticity-related processes. A molecule that plays a most critical role in such processes is the N-methyl-D-aspartate (NMDA) receptor, a tetramer consisting of two obligatory, channel forming NR1 subunits and two regulatory subunits, usually a combination of NR2A and NR2B. Since the subunit composition of the NMDA receptor affects brain plasticity, in the present study we investigated the effect of neonatal handling on NR1, NR2A and NR2B mRNA levels using in situ hybridization, and on NR2B binding sites, using autoradiography of in vitro binding of [(3)H]-ifenprodil, in adult rat limbic brain areas. We found that neonatal handling specifically increased NR2B mRNA and binding sites, while it had no effect on the NR1 and NR2A subunits. More specifically, neonatally handled animals, both males and females, had higher NR2B mRNA and binding sites in the dorsal CA1 hippocampal area, as well as the prelimbic, the anterior cingulate and the somatosensory cortex, compared to the non-handled. Moreover NR2B binding sites were increased in the dorsal CA3 area of handled animals of both sexes. Furthermore, neonatal handling had a sexually dimorphic effect, increasing NR2B mRNA and binding sites in the central and medial amygdaloid nuclei only of the females. The neonatal handling-induced increase in the NR2B subunit of the NMDA receptor could underlie the higher brain plasticity, which neonatally handled animals exhibit.

  3. Role of auditory brain function assessment by SPECT in cochlear implant side selection.

    PubMed

    Di Nardo, W; Giannantonio, S; Di Giuda, D; De Corso, E; Schinaia, L; Paludetti, G

    2013-02-01

    Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult

  4. Expression of alpha subunit of alpha glucosidase II in adult mouse brain regions and selective organs

    PubMed Central

    Anji, Antje; Miller, Hayley; Raman, Chandrasekar; Phillips, Mathew; Ciment, Gary; Kumari, Meena

    2014-01-01

    Alpha glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in folding of nascent glycoproteins, is heterodimeric consisting of alpha (GIIα) and beta (GIIβ) subunits. The catalytic GIIα subunit with the help of mannose 6-phosphate receptor homology (MRH) domain of GIIβ sequentially hydrolyzes two α-1-3-linked glucose residues in the 2nd step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding is crucial for protein stability, trafficking, and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies such as viral infection, cancer and diabetes. In spite of the widespread usage of GIIα inhibitory drugs and the role of GIIα in brain function little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. Using this antibody we show that the GIIα protein is highly expressed in testis, kidney, and lung, with the least amount in heart. GIIα polypeptide levels in whole brain were comparable to spleen. However, higher expression of GIIα protein was detected in cerebral cortex reflecting its continuous requirement in correct folding of cell surface proteins. PMID:25131991

  5. Selective blockade of the rat brain aqueduct with thermogelling hydrogel nanoparticle dispersion.

    PubMed

    Kramer, Phillip R; Guan, Guoqiang; Zhou, Jun; Hu, Zhibing; Bellinger, Larry L

    2008-02-27

    Experimental methods targeting molecules or drugs to specific neuronal tissue(s) can be important in determining function. In this study we focused on blockade of the small channel or aqueduct connecting the third and fourth ventricles of the rat brain. A cannula was placed into the aqueduct between the third and fourth ventricle. A second cannula was placed into the third or fourth ventricle. An aqueous dispersion of hydrogel nanoparticles, that maintains a liquid state at temperatures below 33 degrees C and solidifies near body temperature (35 degrees C), was infused into the aqueduct. Two interpenetrating polymer networks (IPN) of hydrogel nanoparticles with polymer concentrations at 2% by weight and 3% by weight were separately infused into the aqueduct to block cerebrospinal fluid (CSF) flow. Following infusion of hydrogel CSF was isolated to a particular ventricle as shown by the lack of dye movement between the ventricles. In addition, stress hormone, corticosterone, feeding behavior and blood glucose levels were measured. Results show upon reaching the aqueduct the hydrogel dispersion solidified and restricted the flow of CSF. A higher concentration of dispersion (3% wt.) was more effective in blocking the aqueduct and isolating the third from the fourth ventricle. Over the period of measurement, infusion of the dispersion had no measurable detrimental physiological effects on the animal. We conclude that isolation of ventricles in the brain can be completed for 48-h by using dispersions of hydrogel nanoparticles and the effects of drugs on certain brain tissues can be determined with this method.

  6. Anesthetics and analgesics in experimental traumatic brain injury: Selection based on experimental objectives

    PubMed Central

    Rowe, Rachel K.; Harrison, Jordan L.; Thomas, Theresa C.; Pauly, James R.; Adelson, P. David; Lifshitz, Jonathan

    2013-01-01

    The use of animal modeling in traumatic brain injury (TBI) research is justified by the lack of sufficiently comprehensive in vitro and computer modeling that incorporates all components of the neurovascular unit. Valid animal modeling of TBI requires accurate replication of both the mechanical forces and secondary injury conditions observed in human patients. Regulatory requirements for animal modeling emphasize the administration of appropriate anesthetics and analgesics unless withholding these drugs is scientifically justified. The objective of this review is to present scientific justification for standardizing the use of anesthetics and analgesics, within a study, when modeling TBI in order to preserve study validity. Evidence for the interference of anesthetics and analgesics in the natural course of brain injury calls for consistent consideration of pain management regimens when conducting TBI research. Anesthetics administered at the time of or shortly after induction of brain injury can alter cognitive, motor, and histological outcomes following TBI. A consistent anesthesia protocol based on experimental objectives within each individual study is imperative when conducting TBI studies to control for the confounding effects of anesthesia on outcome parameters. Experimental studies that replicate the clinical condition are essential to gain further understanding and evaluate possible treatments for TBI. However, with animal models of TBI it is essential that investigators assure a uniform drug delivery protocol that minimizes confounding variables, while minimizing pain and suffering. PMID:23877609

  7. Simultaneous functional MRI acquisition of distributed brain regions with high temporal resolution using a 2D-selective radiofrequency excitation.

    PubMed

    Finsterbusch, Jürgen

    2015-02-01

    To perform simultaneous functional MRI of multiple, distributed brain regions at high temporal resolution using a 2D-selective radiofrequency (2DRF) excitation. A tailored 2DRF excitation is used to excite several, small regions-of-interest distributed in the brain. They are acquired in a single projection image with an appropriately chosen orientation such that the different regions-of-interest can be discriminated by their position in the projection plane. Thus, they are excited and acquired simultaneously with a temporal resolution comparable to that of a single-slice measurement. The feasibility of this approach for functional neuroimaging (in-plane resolution 2 × 2 mm(2) ) at high temporal resolution (80 ms) is demonstrated in healthy volunteers for regions-of-interest in the visual and motor system using checkerboard and finger tapping block-design paradigms. Task-related brain activation could be observed in both the visual and the motor system simultaneously with a high temporal resolution. For an onset shift of 240 ms for half of the checkerboard, a delay of the hemodynamic response in the corresponding hemisphere of the visual cortex could be detected. Limiting the excited magnetization to the desired target regions with a 2DRF excitation reduces the imaging sampling requirements which can improve the temporal resolution significantly. © 2014 Wiley Periodicals, Inc.

  8. Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder.

    PubMed

    Uddin, Mohammed; Tammimies, Kristiina; Pellecchia, Giovanna; Alipanahi, Babak; Hu, Pingzhao; Wang, Zhuozhi; Pinto, Dalila; Lau, Lynette; Nalpathamkalam, Thomas; Marshall, Christian R; Blencowe, Benjamin J; Frey, Brendan J; Merico, Daniele; Yuen, Ryan K C; Scherer, Stephen W

    2014-07-01

    A universal challenge in genetic studies of autism spectrum disorders (ASDs) is determining whether a given DNA sequence alteration will manifest as disease. Among different population controls, we observed, for specific exons, an inverse correlation between exon expression level in brain and burden of rare missense mutations. For genes that harbor de novo mutations predicted to be deleterious, we found that specific critical exons were significantly enriched in individuals with ASD relative to their siblings without ASD (P < 1.13 × 10(-38); odds ratio (OR) = 2.40). Furthermore, our analysis of genes with high exonic expression in brain and low burden of rare mutations demonstrated enrichment for known ASD-associated genes (P < 3.40 × 10(-11); OR = 6.08) and ASD-relevant fragile-X protein targets (P < 2.91 × 10(-157); OR = 9.52). Our results suggest that brain-expressed exons under purifying selection should be prioritized in genotype-phenotype studies for ASD and related neurodevelopmental conditions.

  9. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, A. N.; Schulze, P. C.; Yaroslavsky, I. V.; Schober, R.; Ulrich, F.; Schwarzmaier, H.-J.

    2002-06-01

    Medical laser applications require knowledge about the optical properties of target tissue. In this study, the optical properties of selected native and coagulated human brain structures were determined in vitro in the spectral range between 360 and 1100 nm. The tissues investigated included white brain matter, grey brain matter, cerebellum and brainstem tissues (pons, thalamus). In addition, the optical properties of two human tumours (meningioma, astrocytoma WHO grade II) were determined. Diffuse reflectance, total transmittance and collimated transmittance of the samples were measured using an integrating-sphere technique. From these experimental data, the absorption coefficients, the scattering coefficients and the anisotropy factors of the samples were determined employing an inverse Monte Carlo technique. The tissues investigated differed from each other predominantly in their scattering properties. Thermal coagulation reduced the optical penetration depth substantially. The highest penetration depths for all tissues investigated were found in the wavelength range between 1000 and 1100 nm. A comparison with data from the literature revealed the importance of the employed tissue preparation technique and the impact of the theoretical model used to extract the optical coefficients from the measured quantities.

  10. Sorption cooling: a valid extension to passive cooling

    NASA Astrophysics Data System (ADS)

    Doornink, Jan; Burger, Johannes; ter Brake, Marcel

    2007-10-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for a number of applications, passive cooling is a good choice. At lower temperatures, the passive coolers run into limitations that prohibit accommodation on a spacecraft. The approach to this issue has been to find a technology able to supplement passive cooling for lower temperatures, which maintains as much as possible of the advantages of passive coolers. Sorption cooling employs a closed cycle Joule-Thomson expansion process to achieve the cooling effect. Sorption cells perform the compression phase in this cycle. At a low temperature and pressure, these cells adsorb the working fluid. At a higher temperature they desorb the fluid and thus produce a high-pressure flow to the restriction in the cold stage. The sorption process selected for this application is of the physical type, which is completely reversible. It does not suffer from degradation as is the case with chemical sorption of e.g. hydrogen in metal hydrides. Sorption coolers include no moving parts except for some check valves, they export neither mechanical vibrations nor electromagnetic interference, and are potentially very dependable due to their simplicity. The required cooling temperature determines the type of working fluid to be applied. Sorption coolers can be used in conjunction with passive cooling for heat rejection at different levels. This paper starts with a brief discussion on applications of passive coolers in different types of orbits and the limitations on passive cooling at low cooling temperatures. Next, the working principle of sorption cooling is summarized. The DARWIN mission is chosen as an example application of sorption and passive cooling and special attention is paid to the

  11. Sorption cooling: A valid extension to passive cooling

    NASA Astrophysics Data System (ADS)

    Doornink, D. J.; Burger, J. F.; ter Brake, H. J. M.

    2008-05-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for a number of applications, passive cooling is a good choice. At lower temperatures, the passive coolers run into limitations that prohibit accommodation on a spacecraft. The approach to this issue has been to find a technology able to supplement passive cooling for lower temperatures, which maintains as much as possible of the advantages of passive coolers. Sorption cooling employs a closed cycle Joule-Thomson expansion process to achieve the cooling effect. Sorption cells perform the compression phase in this cycle. At a low temperature and pressure, these cells adsorb the working fluid. At a higher temperature they desorb the fluid and thus produce a high-pressure flow to the expander in the cold stage. The sorption process selected for this application is of the physical type, which is completely reversible. It does not suffer from degradation as is the case with chemical sorption of, e.g., hydrogen in metal hydrides. Sorption coolers include no moving parts except for some check valves, they export neither mechanical vibrations nor electromagnetic interference, and are potentially very dependable due to their simplicity. The required cooling temperature determines the type of working fluid to be applied. Sorption coolers can be used in conjunction with passive cooling for heat rejection at different levels. This paper starts with a brief discussion on applications of passive coolers in different types of orbits and on the limitations of passive cooling for lower cooling temperatures. Next, the working principle of sorption cooling is summarized. The DARWIN mission is chosen as an example application of sorption and passive cooling and special attention is paid to the

  12. Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks.

    PubMed

    Vukelić, Mathias; Gharabaghi, Alireza

    2015-01-01

    The mechanisms of learning involved in brain self-regulation have still to be unveiled to exploit the full potential of this methodology for therapeutic interventions. This skill of volitionally changing brain activity presumably resembles motor skill learning which in turn is accompanied by plastic changes modulating resting state networks. Along these lines, we hypothesized that brain regulation and neurofeedback would similarly modify intrinsic networks at rest while presenting a distinct spatio-temporal pattern. High-resolution electroencephalography preceded and followed a single neurofeedback training intervention of modulating circumscribed sensorimotor low β-activity by kinesthetic motor imagery in eleven healthy participants. The participants were kept in the deliberative phase of skill acquisition with high demands for learning self-regulation through stepwise increases of task difficulty. By applying the corrected imaginary part of the coherency function, we observed increased functional connectivity of both the primary motor and the primary somatosensory cortex with their respective contralateral homologous cortices in the low β-frequency band which was self-regulated during feedback. At the same time, the primary motor cortex-but none of the surrounding cortical areas-showed connectivity to contralateral supplementary motor and dorsal premotor areas in the high β-band. Simultaneously, the neurofeedback target displayed a specific increase of functional connectivity with an ipsilateral fronto-parietal network in the α-band while presenting a de-coupling with contralateral primary and secondary sensorimotor areas in the very same frequency band. Brain self-regulation modifies resting state connections spatially selective to the neurofeedback target of the dominant hemisphere. These are anatomically distinct with regard to the cortico-cortical connectivity pattern and are functionally specific with regard to the time domain of coherent activity

  13. Localization of brain 5α-reductase messenger RNA in mice selectively bred for high chronic alcohol withdrawal severity.

    PubMed

    Roselli, Charles E; Finn, Timothy J; Ronnekleiv-Kelly, Sean M; Tanchuck, Michelle A; Kaufman, Katherine R; Finn, Deborah A

    2011-12-01

    Several lines of evidence suggest that fluctuations in endogenous levels of the γ-aminobutyric acid (GABA)ergic neurosteroid allopregnanolone (ALLO) represent one mechanism for regulation of GABAergic inhibitory tone in the brain, with an ultimate impact on behavior. Consistent with this idea, there was an inverse relationship between ALLO levels and symptoms of anxiety and depression in humans and convulsive activity in rodents during alcohol withdrawal. Our recent studies examined the activity and expression of 5α-reductase (Srd5a1), the rate-limiting enzyme in the biosynthesis of ALLO, during alcohol withdrawal in mice selectively bred for high chronic alcohol withdrawal (Withdrawal Seizure-Prone [WSP]) and found that Srd5a1 was downregulated in the cortex and hippocampus over the time course of dependence and withdrawal. The purpose of the present studies was to extend these findings and more discretely map the regions of Srd5a1 expression in mouse brain using radioactive in situ hybridization in WSP mice that were ethanol naïve, following exposure to 72h ethanol vapor (dependent) or during peak withdrawal. In naïve animals, expression of Srd5a1 was widely distributed throughout the mouse brain, with highest expression in specific regions of the cerebral cortex, hippocampus, thalamus, hypothalamus, and amygdala. In dependent animals and during withdrawal, there was no change in Srd5a1 expression in cortex or hippocampus, which differed from our recent findings in dissected tissues. These results suggest that local Srd5a1 mRNA expression in WSP brain may not change in parallel with local ALLO content or withdrawal severity. Published by Elsevier Inc.

  14. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.

    PubMed

    Ota, Kenichi; Oishi, Naoya; Ito, Kengo; Fukuyama, Hidenao

    2015-12-30

    The choice of biomarkers for early detection of Alzheimer's disease (AD) is important for improving the accuracy of imaging-based prediction of conversion from mild cognitive impairment (MCI) to AD. The primary goal of this study was to assess the effects of imaging modalities and brain atlases on prediction. We also investigated the influence of support vector machine recursive feature elimination (SVM-RFE) on predictive performance. Eighty individuals with amnestic MCI [40 developed AD within 3 years] underwent structural magnetic resonance imaging (MRI) and (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans at baseline. Using Automated Anatomical Labeling (AAL) and LONI Probabilistic Brain Atlas (LPBA40), we extracted features representing gray matter density and relative cerebral metabolic rate for glucose in each region of interest from the baseline MRI and FDG-PET data, respectively. We used linear SVM ensemble with bagging and computed the area under the receiver operating characteristic curve (AUC) as a measure of classification performance. We performed multiple SVM-RFE to compute feature ranking. We performed analysis of variance on the mean AUCs for eight feature sets. The interactions between atlas and modality choices were significant. The main effect of SVM-RFE was significant, but the interactions with the other factors were not significant. Multimodal features were found to be better than unimodal features to predict AD. FDG-PET was found to be better than MRI. Imaging modalities and brain atlases interact with each other and affect prediction. SVM-RFE can improve the predictive accuracy when using atlas-based features. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Collimator selection for SPECT brain imaging: the advantage of high resolution

    SciTech Connect

    Mueller, S.P.; Polak, J.F.; Kijewski, M.F.; Holman, B.L.

    1986-11-01

    We compared a prototype long-bore (LB) high-resolution collimator with a low-energy, general-purpose collimator (LEGP) using 99mTc and /sup 123/I. The LB collimator provided a 56% improvement in tomographic resolution (autocorrelation width) over the LEGP for 99mTc; for /sup 123/I, the gain was 79%, providing substantially improved contrast for small structures. The sensitivity of the LB collimator, however, is only 32% of that of the LEGP. The imaging tasks to be performed on (/sup 123/I)IMP brain scans involve localization and discrimination of small, high-contrast brain structures and detection of abnormalities in shape, size, or uptake, rather than simple detection of lesions. Observer performance in such higher-order imaging tasks is known to depend on high spatial resolution, even at the cost of sensitivity. Patient studies confirmed that, for resolution-limited tasks, the increase in resolution outweighs the increased noise due to a loss in sensitivity. When the tomographic resolution of the LB collimator was degraded by smoothing to that of the LEGP, the noise in the LB images was lower than that of the LEGP by a factor of 2.9 for the same imaging time, demonstrating the advantage of high-resolution detectors and a smooth reconstruction filter over low-resolution detectors without smoothing. Therefore, collimators designed for high resolution, even at substantial cost in sensitivity, are expected to yield significant improvements for brain SPECT. Geometric calculations show that commercially available low-energy, high-resolution cast collimators promise to meet these requirements.

  16. Frequency component selection for an ECoG-based brain-computer interface.

    PubMed

    Scherer, R; Graimann, B; Huggins, J E; Levine, S P; Pfurtscheller, G

    2003-01-01

    The aim of the present study was to investigate the most significant frequency components in electrocorticogram (ECoG) recordings in order to operate a brain computer interface (BCI). For this purpose the time-frequency ERD/ERS map and the distinction sensitive learning vector quantization (DSLVQ) are applied to ECoG from three subjects, recorded during a self-paced finger movement. The results show that the ERD/ERS pattern found in ECoG generally matches the ERD/ERS pattern found in EEG recordings, but has an increased prevalence of frequency components in the beta range.

  17. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood-Brain Barrier

    PubMed Central

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V.; Lichtenwalter, Katerina; Suckow, Mark A.; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    Brain metastasis occurs in 20% to 40% of cancer patients. Treatment is mostly palliative and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases, such as brain metastasis. PMID:24028490

  18. O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood-brain barrier.

    PubMed

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V; Lichtenwalter, Katerina; Suckow, Mark A; Schroeder, Valerie A; Wolter, William R; Mobashery, Shahriar; Chang, Mayland

    2013-10-24

    Brain metastasis occurs in 20-40% of cancer patients. Treatment is mostly palliative, and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor, were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however, higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases such as brain metastasis.

  19. Quantification of adaptive evolution of genes expressed in avian brain and the population size effect on the efficacy of selection.

    PubMed

    Axelsson, Erik; Ellegren, Hans

    2009-05-01

    Whether protein evolution is mainly due to fixation of beneficial alleles by positive selection or to random genetic drift has remained a contentious issue over the years. Here, we use two genomewide polymorphism data sets collected from chicken populations, together with divergence data from >5,000 chicken-zebra finch gene orthologs expressed in brain, to assess the amount of adaptive evolution in protein-coding genes of birds. First, we show that estimates of the fixation index (FI, the ratio of fixed nonsynonymous-to-synonymous changes over the ratio of the corresponding polymorphisms) are highly dependent on the character of the underlying data sets. Second, by using polymorphism data from high-frequency alleles, to avoid the confounding effect of slightly deleterious mutations segregating at low frequency, we estimate that about 20% of amino acid changes have been brought to fixation through positive selection during avian evolution. This estimate is intermediate to that obtained in humans (lower) and flies as well as bacteria (higher), and is consistent with population genetics theory that stipulates a positive relationship between the efficiency of selection and the effective population size. Further, by comparing the FIs for common and all alleles, we estimate that approximately 20% of nonsynonymous variation segregating in chicken populations represent slightly deleterious mutations, which is less than in Drosophila. Overall, these results highlight the link between the effective population size and positive as well as negative selection.

  20. Selective development of anticorrelated networks in the intrinsic functional organization of the human brain.

    PubMed

    Chai, Xiaoqian J; Ofen, Noa; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2014-03-01

    We examined the normal development of intrinsic functional connectivity of the default network (brain regions typically deactivated for attention-demanding tasks) as measured by resting-state fMRI in children, adolescents, and young adults ages 8-24 years. We investigated both positive and negative correlations and employed analysis methods that allowed for valid interpretation of negative correlations and that also minimized the influence of motion artifacts that are often confounds in developmental neuroimaging. As age increased, there were robust developmental increases in negative correlations, including those between medial pFC (MPFC) and dorsolateral pFC (DLPFC) and between lateral parietal cortices and brain regions associated with the dorsal attention network. Between multiple regions, these correlations reversed from being positive in children to negative in adults. Age-related changes in positive correlations within the default network were below statistical threshold after controlling for motion. Given evidence in adults that greater negative correlation between MPFC and DLPFC is associated with superior cognitive performance, the development of an intrinsic anticorrelation between MPFC and DLPFC may be a marker of the large growth of working memory and executive functions that occurs from childhood to young adulthood.

  1. Microglial brain region-dependent diversity and selective regional sensitivities to ageing

    PubMed Central

    Grabert, Kathleen; Michoel, Tom; Karavolos, Michail H; Clohisey, Sara; Baillie, J Kenneth; Stevens, Mark P; Freeman, Tom C; Summers, Kim M; McColl, Barry W

    2015-01-01

    Microglia play critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific spatially-restricted patterns, the origins of which are unknown. We performed the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse and reveal that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during ageing. Microglial diversity may enable regionally localised homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration. PMID:26780511

  2. Targeted Multifunctional Nanoparticles cure and image Brain Tumors: Selective MRI Contrast Enhancement and Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul

    2008-03-01

    Aimed at targeted therapy and imaging of brain tumors, our approach uses targeted, multi-functional nano-particles (NP). A typical nano-particle contains a biologically inert, non-toxic matrix, biodegradable and bio-eliminable over a long time period. It also contains active components, such as fluorescent chemical indicators, photo-sensitizers, MRI contrast enhancement agents and optical imaging dyes. In addition, its surface contains molecular targeting units, e.g. peptides or antibodies, as well as a cloaking agent, to prevent uptake by the immune system, i.e. enabling control of the plasma residence time. These dynamic nano-platforms (DNP) contain contrast enhancement agents for the imaging (MRI, optical, photo-acoustic) of targeted locations, i.e. tumors. Added to this are targeted therapy agents, such as photosensitizers for photodynamic therapy (PDT). A simple protocol, for rats implanted with human brain cancer, consists of tail injection with DNPs, followed by 5 min red light illumination of the tumor region. It resulted in excellent cure statistics for 9L glioblastoma.

  3. Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells.

    PubMed

    Page, Shyanne; Munsell, Alli; Al-Ahmad, Abraham J

    2016-10-11

    Cerebral hypoxia/ischemia (H/I) is an important stress factor involved in the disruption of the blood-brain barrier (BBB) following stroke injury, yet the cellular and molecular mechanisms on how the human BBB responds to such injury remains unclear. In this study, we investigated the cellular response of the human BBB to chemical and environmental H/I in vitro. In this study, we used immortalized hCMEC/D3 and IMR90 stem-cell derived human brain microvascular endothelial cell lines (IMR90-derived BMECs). Hypoxic stress was achieved by exposure to cobalt chloride (CoCl2) or by exposure to 1 % hypoxia and oxygen/glucose deprivation (OGD) was used to model ischemic injury. We assessed barrier function using both transendothelial electrical resistance (TEER) and sodium fluorescein permeability. Changes in cell junction integrity were assessed by immunocytochemistry and cell viability was assessed by trypan-blue exclusion and by MTS assays. Statistical analysis was performed using one-way analysis of variance (ANOVA). CoCl2 selectively disrupted the barrier function in IMR90-derived BMECs but not in hCMEC/D3 monolayers and cytotoxic effects did not drive such disruption. In addition, hypoxia/OGD stress significantly disrupted the barrier function by selectively disrupting tight junctions (TJs) complexes. In addition, we noted an uncoupling between cell metabolic activity and barrier integrity. In this study, we demonstrated the ability of IMR90-derived BMECs to respond to hypoxic/ischemic injury triggered by both chemical and environmental stress by showing a disruption of the barrier function. Such disruption was selectively targeting TJ complexes and was not driven by cellular apoptosis. In conclusion, this study suggests the suitability of stem cell-derived human BMECs monolayers as a model of cerebral hypoxia/ischemia in vitro.

  4. G-quadruplex DNAzymes-induced highly selective and sensitive colorimetric sensing of free heme in rat brain.

    PubMed

    Li, Ruimin; Jiang, Qin; Cheng, Hanjun; Zhang, Guoqiang; Zhen, Mingming; Chen, Daiqin; Ge, Jiechao; Mao, Lanqun; Wang, Chunru; Shu, Chunying

    2014-04-21

    Direct selective determination of free heme in the cerebral system is of great significance due to the crucial roles of free heme in physiological and pathological processes. In this work, a G-quadruplex DNAzymes-induced highly sensitive and selective colorimetric sensing of free heme in rat brain is established. Initially, the conformation of an 18-base G-rich DNA sequence, PS2.M (5'-GTGGGTAGGGCGGGTTGG-3'), in the presence of K(+), changes from a random coil to a "parallel" G-quadruplex structure, which can bind free heme in the cerebral system with high affinity through π-π stacking. The resulted heme/G-quadruplex complex exhibits high peroxidase-like activity, which can be used to catalyze the oxidation of colorless ABTS(2-) to green ABTS˙(-) by H2O2. The concentration of heme can be evaluated by the naked eye and determined by UV-vis spectroscopy. The signal output showed a linear relationship for heme within the concentration range from 1 to 120 nM with a detection limit of 0.637 nM. The assay demonstrated here was highly selective and free from the interference of physiologically important species such as dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbate acid (AA), cysteine, uric acid (UA), glucose and lactate in the cerebral system. The basal dialysate level of free heme in the microdialysate from the striatum of adult male Sprague-Dawley rats was determined to be 32.8 ± 19.5 nM (n = 3). The analytic protocol possesses many advantages, including theoretical simplicity, low-cost technical and instrumental demands, and responsible detection of heme in rat brain microdialysate.

  5. Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury.

    PubMed

    Dundon, Neil M; Dockree, Suvi P; Buckley, Vanessa; Merriman, Niamh; Carton, Mary; Clarke, Sarah; Roche, Richard A P; Lalor, Edmund C; Robertson, Ian H; Dockree, Paul M

    2015-08-01

    Patients who suffer traumatic brain injury frequently report difficulty concentrating on tasks and completing routine activities in noisy and distracting environments. Such impairments can have long-term negative psychosocial consequences. A cognitive control function that may underlie this impairment is the capacity to select a goal-relevant signal for further processing while safeguarding it from irrelevant noise. A paradigmatic investigation of this problem was undertaken using a dichotic listening task (study 1) in which comprehension of a stream of speech to one ear was measured in the context of increasing interference from a second stream of irrelevant speech to the other ear. Controls showed an initial decline in performance in the presence of competing speech but thereafter showed adaptation to increasing audibility of irrelevant speech, even at the highest levels of noise. By contrast, patients showed linear decline in performance with increasing noise. Subsequently attempts were made to ameliorate this deficit (study 2) using a cognitive training procedure based on attention process training (APT) that included graded exposure to irrelevant noise over the course of training. Patients were assigned to adaptive and non-adaptive training schedules or to a no-training control group. Results showed that both types of training drove improvements in the dichotic listening and in naturalistic tasks of performance in noise. Improvements were also seen on measures of selective attention in the visual domain suggesting transfer of training. We also observed augmentation of event-related potentials (ERPs) linked to target processing (P3b) but no change in ERPs evoked by distractor stimuli (P3a) suggesting that training heightened tuning of target signals, as opposed to gating irrelevant noise. No changes in any of the above measures were observed in a no-training control group. Together these findings present an ecologically valid approach to measure selective

  6. Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence.

    PubMed

    Meyer, Jeffrey H; Wilson, Alan A; Sagrati, Sandra; Miler, Laura; Rusjan, Pablo; Bloomfield, Peter M; Clark, Michael; Sacher, Julia; Voineskos, Aristotle N; Houle, Sylvain

    2009-12-01

    Highly significant elevations in regional brain monoamine oxidase A (MAO-A) binding were recently reported during major depressive episodes (MDEs) of major depressive disorder (MDD). The relationship between MAO-A levels and selective serotonin reuptake inhibitor (SSRI) treatment, recovery, and recurrence in MDD is unknown. To determine whether brain MAO-A binding changes after SSRI treatment, whether brain MAO-A binding normalizes in subjects with MDD in recovery, and whether there is a relationship between prefrontal and anterior cingulate cortex MAO-A binding in recovery and subsequent recurrence of MDE. Case-control study. Tertiary care psychiatric hospital. Twenty-eight healthy subjects, 16 subjects with an MDE secondary to MDD, and 18 subjects with MDD in recovery underwent carbon 11-labeled harmine positron emission tomography scans. Subjects with MDE were scanned before and after 6 weeks of SSRI treatment. All were otherwise healthy, nonsmoking, and medication free. Subjects with MDD in recovery were followed up for 6 months after MAO-A binding measurement. Monoamine oxidase A V(T), an index of MAO-A density, was measured in the prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, dorsal putamen, ventral striatum, thalamus, anterior temporal cortex, midbrain, and hippocampus. Monoamine oxidase A V(T) was significantly elevated in each brain region both during MDE and after SSRI treatment as compared with healthy controls. During recovery, MAO-A V(T) was significantly elevated in each brain region; however, those who went on to recurrence had significantly higher MAO-A V(T) in the prefrontal and anterior cingulate cortex than those who did not. Elevated MAO-A binding after SSRI treatment indicates persistence of a monoamine-lowering process not present in health. This provides a strong conceptual rationale for continuing SSRI treatment during early remission. Greater MAO-A binding in the prefrontal and anterior cingulate cortex in

  7. Mild body cooling impairs attention via distraction from skin cooling.

    PubMed

    Cheung, Stephen S; Westwood, David A; Knox, Matthew K

    2007-02-01

    Many contemporary workers are routinely exposed to mild cold stress, which may compromise mental function and lead to accidents. A study investigated the effect of mild body cooling of 1.0 degree C rectal temperature (Tre) on vigilance (i.e. sustained attention) and the orienting of spatial attention (i.e. spatially selective processing of visual information). Vigilance and spatial attention tests were administered to 14 healthy males and six females at four stages (pre-immersion, deltaTre = 0, -0.5 and - 1.0 degree C ) of a gradual, head-out immersion cooling session (18-25 deltaC water), and in four time-matched stages of a contrast session, in which participants sat in an empty tub and no cooling took place. In the spatial attention test, target discrimination times were similar for all stages of the contrast session, but increased significantly in the cooling phase upon immersion (deltaTre = 0 degrees C), with no further increases at deltaTre = -0.5 and - 1.0 degree C. Despite global response slowing, cooling did not affect the normal pattern of spatial orienting. In the vigilance test, the variability of detection time was adversely affected in the cooling but not the contrast trials: variability increased at immersion but did not increase further with additional cooling. These findings suggest that attentional impairments are more closely linked to the distracting effects of cold skin temperature than decreases in body core temperature.

  8. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  9. Bipolar electrode selection for a motor imagery based brain computer interface

    NASA Astrophysics Data System (ADS)

    Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.

  10. Selective attention and interhemispheric response competition in the split-brain.

    PubMed

    Lambert, A; Naikar, N

    2000-12-01

    The interfering effect of an unattended stimulus on processing of an attended item was studied in a single split-brain participant (LB) and in normal controls. Pairs of letters were presented to the left visual field (LVF), right visual field (RVF), or bilaterally. Participants attended to the rightmost letter while attempting to ignore the leftmost letter. Responses associated with the attended and to-be-ignored letters could be compatible or incompatible. Manual response latencies were generally slower on Response Incompatible compared to Response Compatible trials. Notably, LB displayed this effect on Bilateral trials, where target and distractor were presented to opposite visual fields. LB was unable to perform a same-different matching task with bilateral letter stimuli, but was able to name bilateral letters accurately. Hence, in the bilateral condition, the ability to cross-compare letters was dissociated from attentional interference and from letter naming. Implications of these findings are discussed. Copyright 2000 Academic Press.

  11. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar).

    PubMed

    Thörnqvist, Per-Ove; Höglund, Erik; Winberg, Svante

    2015-04-01

    In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus-pituitary-interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles.

  12. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    SciTech Connect

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  13. Selective decrease of Na+/k+ -ATPase activity in the brain of hypothyroid rats.

    PubMed

    Pacheco-Rosado, Jorge; Arias-Citalán, G; Ortiz-Butrón, R; Rodríquez-Páez, L

    2005-01-01

    The present work was performed in order to know if mild hypothyroidism in rats modifies the activity of the Na+/K+ -ATPase in different regions of the brain. Male Wistar rats (300-350 g) were randomly divided into three groups: (1) control group (n=8) drank tap water. (2) hypothyroid group (n=8) treated with 60 mg/kg of methimazole in drinking water; and (3) replaced group (n=8) treated with 60 mg/kg of methimazole plus 35 microg/kg of thyroid hormone (T3) in drinking water. After four weeks of treatment, the rats of all groups were sacrificed by decapitation. The cortex, amygdala, hippocampus and cerebellum were dissected and frozen at -70 degrees C until assay. For enzymatic assay, the tissues were homogenized. The Na+/K+ -ATPase activity was determined by quantifying inorganic phosphate after the samples were incubated with ATP in the presence and absence of 1 mM ouabain. The Na+/K+ -ATPase activity is expressed as pmoles Pi/hr/mg protein. The results showed that the Na+/K+ -ATPase activity in the cortex, amygdala and hippocampus, but not in cerebellum, was lower in hypothyroid group than in control group (p<0.05). The co-administration of methimazole and T3 avoided the decrease of Na+/K+ -ATPase activity, except in amygdala. According to the results obtained we concluded that methimazole treatment decreased the Na+/K+- ATPase activity in the brain's regions which are related to seizures onset. That decrement in enzyme activity was avoided with the coadministration of thyroid hormone.

  14. Mu opiate receptors are selectively labelled by [3H]carfentanil in human and rat brain.

    PubMed

    Titeler, M; Lyon, R A; Kuhar, M J; Frost, J F; Dannals, R F; Leonhardt, S; Bullock, A; Rydelek, L T; Price, D L; Struble, R G

    1989-08-22

    [11C]Carfentanil is a potent opioid agonist currently in use as a specific PET (position emission tomography) scan radioligand for brain mu opioid receptors. In order to investigate the receptor interactions of carfentanil in detail [3H]carfentanil was used as a radioligand for labelling receptors in rat and human brain tissue homogenates. [3H]Carfentanil was found to bind saturably and with high affinity (KD = 0.08 +/- 0.01 nM) to membranes prepared from human cortical (Bmax = 42 +/- 3 fmol/mg) and thalamic (Bmax = 84 +/- 3 fmol/mg) tissues and rat cortex (Bmax = 82 +/- 4 fmol/mg) and diencephalon (Bmax = 105 +/- 5 fmol/mg). Association (1.23 +/- 0.19 X 10(10) Mol-1 X min-1 and dissociation rate (0.19 +/- 0.03 min-1) constants were determined in human cortical tissues; results from studies in rat cortical, and rat diencephalon tissue homogenates produced similar kinetic rate constants. Competition studies with a variety of drugs indicated that [3H]carfentanil interacts primarily with mu opioid receptors in the four tissues studied; the affinities of a series of non-radioactive opioid ligands were essentially identical in the four tissues (correlation coefficients = 0.88-0.93). Naloxone, morphine, DAGO [( D-Ala2-MePhe4-Gly-ol5]enkephalin), DADL [( D-Ala2-D-Leu5]enkephalin) and EKC (ehtylketazocine) potently displaced specific [3H]carfentanil binding with nM potency while the kappa agonist U-69593, the sigma agonists (+)-SKF 10047, (+)-3-PPP [3-hydroxyphenyl)-N-propylpiperidine) and haloperidol and PCP (phencyclidine) were less potent displacing agents. The higher affinities of DAGO and morphine versus DADL for the [3H]carfentanil binding sites indicates that delta opioid receptors are not being labelled.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Autoradiographic evaluation of [3H]CUMI-101, a novel, selective 5-HT1AR ligand in human and baboon brain

    PubMed Central

    Dileep Kumar, J. S.; Parsey, Ramin V.; Kassir, Suham A.; Majo, Vattoly J.; Milak, Matthew S.; Prabhakaran, Jaya; Underwood, Mark D.; Mann, J. John; Arango, Victoria

    2014-01-01

    [11C]CUMI-101 is the first selective serotonin receptor (5-HT1AR) partial agonist radiotracer for positron emission tomography (PET) tested in vivo in nonhuman primates and humans. We evaluated specific binding of [3H]CUMI-101 by quantitative autoradiography studies in postmortem baboon and human brain sections using the 5- HT1AR antagonist WAY100635 as a displacer. The regional and laminar distributions of [3H]CUMI-101 binding in baboon and human brain sections matched the known distribution of [3H]8-OH-DPAT and [3H]WAY100635. Prazosin did not measurably displace [3H]CUMI-101 binding in baboon or human brain sections, thereby ruling out [3H]CUMI-101 binding to α1-adrenergic receptors. This study demonstrates that [11C]CUMI-101 is a selective 5-HT1AR ligand for in vivo and in vitro studies in baboon and human brain. PMID:23454434

  16. Brain bases of language selection: MEG evidence from Arabic-English bilingual language production.

    PubMed

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2015-01-01

    Much of the world's population is bilingual, hence, language selection is a core component of language processing in a significant proportion of individuals. Though language selection has been investigated using artificial cues to language choice such as color, little is known about more ecologically valid cues. We examined with MEG the neurophysiological and behavioral effects of two natural cues: script and cultural context, hypothesizing the former to trigger more automatic language selection. Twenty Arabic-English bilinguals performed a number-naming task with a Match condition, where the cue and target language of response matched, and a Mismatch condition, with opposite instruction. The latter addressed the mechanisms responsible for overriding natural cue-language associations. Early visual responses patterned according to predictions from prior object recognition literature, while at 150-300 ms, the anterior cingulate cortex showed robust sensitivity to cue-type, with enhanced amplitudes to culture trials. In contrast, a mismatch effect for both cue-types was observed at 300-400 ms in the left inferior prefrontal cortex. Our findings provide the first characterization of the spatio-temporal profile of naturally cued language selection and demonstrate that natural but less automatic language-choice, elicited by cultural cues, does not engage the same mechanisms as the clearly unnatural language-choice of our mismatch tasks.

  17. Cognitive training and selective attention in the aging brain: an electrophysiological study.

    PubMed

    O'Brien, Jennifer L; Edwards, Jerri D; Maxfield, Nathan D; Peronto, Carol L; Williams, Victoria A; Lister, Jennifer J

    2013-11-01

    Age-related deficits in selective attention are hypothesized to result from decrements in inhibition of task-irrelevant information. Speed of processing (SOP) training is an adaptive cognitive intervention designed to enhance processing speed for attention tasks. The effectiveness of SOP training to improve cognitive and everyday functional performance is well documented. However, underlying mechanisms of these training benefits are unknown. Participants completed a visual search task evaluated using event-related potentials (ERPs) before and after 10 weeks of SOP training or no contact. N2pc and P3b components were evaluated to determine SOP training effects on attentional resource allocation and capacity. Selective attention to a target was enhanced after SOP training compared to no training. N2pc and P3b amplitudes increased after training, reflecting attentional allocation and capacity enhancement, consistent with previous studies demonstrating behavioral improvements in selective attention following SOP training. Changes in ERPs related to attention allocation and capacity following SOP training support the idea that training leads to cognitive enhancement. Specifically, we provide electrophysiological evidence that SOP training may be successful in counteracting age-related declines in selective attention. This study provides important evidence of the underlying mechanisms by which SOP training improves cognitive function in older adults. Published by Elsevier Ireland Ltd.

  18. Brain bases of language selection: MEG evidence from Arabic-English bilingual language production

    PubMed Central

    Blanco-Elorrieta, Esti; Pylkkänen, Liina

    2015-01-01

    Much of the world's population is bilingual, hence, language selection is a core component of language processing in a significant proportion of individuals. Though language selection has been investigated using artificial cues to language choice such as color, little is known about more ecologically valid cues. We examined with MEG the neurophysiological and behavioral effects of two natural cues: script and cultural context, hypothesizing the former to trigger more automatic language selection. Twenty Arabic-English bilinguals performed a number-naming task with a Match condition, where the cue and target language of response matched, and a Mismatch condition, with opposite instruction. The latter addressed the mechanisms responsible for overriding natural cue-language associations. Early visual responses patterned according to predictions from prior object recognition literature, while at 150–300 ms, the anterior cingulate cortex showed robust sensitivity to cue-type, with enhanced amplitudes to culture trials. In contrast, a mismatch effect for both cue-types was observed at 300–400 ms in the left inferior prefrontal cortex. Our findings provide the first characterization of the spatio-temporal profile of naturally cued language selection and demonstrate that natural but less automatic language-choice, elicited by cultural cues, does not engage the same mechanisms as the clearly unnatural language-choice of our mismatch tasks. PMID:25698957

  19. Unilateral brain hypothermia as a method to examine efficacy and mechanisms of neuroprotection against global ischemia.

    PubMed

    Silasi, Gergely; Colbourne, Frederick

    2011-01-01

    Hypothermia, especially applied during ischemia, is the gold-standard neuroprotectant. When delayed, cooling must often be maintained for a day or more to achieve robust, permanent protection. Most animal and clinical studies use whole-body cooling-an arduous technique that can cause systemic complications. Brain-selective cooling may avoid such problems. Thus, in this rat study, we used a method that cools one hemisphere without affecting the contralateral side or the body. Localized brain hypothermia was achieved by flushing cold water through a metal tube attached to the rats' skull. First, in anesthetized rats we measured temperature in the cooled and contralateral hemisphere to demonstrate selective unilateral cooling. Subsequent telemetry recordings in awake rats confirmed that brain cooling did not cause systemic hypothermia during prolonged treatment. Additionally, we subjected rats to transient global ischemia and after recovering from anesthesia they remained at normothermia or had their right hemisphere cooled for 2 days (∼32°C-33°C). Hypothermia significantly lessened CA1 injury and microglia activation on the right side at 1 and 4 week survival times. Near-complete injury and a strong microglia response occurred in the left (normothermic) hippocampus as occurred in both hippocampi of the untreated group. Thus, this focal cooling method is suitable for evaluating the efficacy and mechanisms of hypothermic neuroprotection in global ischemia models. This method also has advantages over many current systemic cooling protocols in rodents, namely: (1) lower cost, (2) simplicity, (3) safety and suitability for long-term cooling, and (4) an internal control-the normothermic hemisphere.

  20. Trawls and cooling-water intakes as estuarine fish sampling tools: Comparisons of catch composition, trends in relative abundance, and length selectivity

    NASA Astrophysics Data System (ADS)

    Greenwood, M. F. D.

    2008-01-01

    Fish populations in estuaries are often monitored with traditional sampling gears such as trawls. Trawling is relatively expensive and may be hindered by environmental conditions such as tides and substrates. Power station cooling-water intake screens have been effectively used as estuarine fish sampling devices for many years, but very few quantitative comparisons of intake fish-catch characteristics with samples from other collection methods have been made. Fish collected at the cooling-water intake of a large power station in the lower Forth estuary, UK, were more similar in assemblage composition to fish caught by nearby pelagic trawling than to fish caught by Agassiz (demersal) trawling, mostly because the intake and pelagic-trawl catches were largely composed of clupeids ( Sprattus sprattus and Clupea harengus). The intake catch was typified by pelagic, demersal, and benthic species, however, and was less variable than the catches made by the two trawls. Monthly trends in relative abundance correlated reasonably well between the intake and trawl samples. Fish collected at the intake tended to be significantly smaller than those collected by trawling, which was probably attributable to the intake's smaller mesh size. The study highlighted the utility of a cooling-water intake as an efficient, low-cost fish sampling device, which should be considered as an alternative to trawling as the cost of the latter increases into the future.

  1. Effects of subthalamic deep brain stimulation on noun/verb generation and selection from competing alternatives in Parkinson's disease.

    PubMed

    Castner, J E; Chenery, H J; Silburn, P A; Coyne, T J; Sinclair, F; Smith, E R; Copland, D A

    2008-06-01

    Impaired generation of verbs relative to nouns has been reported in Parkinson's disease (PD) and has been associated with the frontal pathophysiology of PD. The aim of the present study was to measure noun/verb generation abilities in PD and to determine whether noun/verb generation is affected by stimulation of the subthalamic nucleus (STN). 8 participants who had been diagnosed with PD and had received surgery for deep brain stimulation (DBS) of the STN as well as 15 control participants completed a noun/verb generation task with four probe-response conditions-namely, noun-noun, verb-noun, noun-verb and verb-verb conditions. Patients with PD were assessed while receiving STN stimulation and without stimulation. During the off stimulation condition, patients with PD presented with a selective deficit in verb generation compared with control participants. However, when receiving STN stimulation, patients with PD produced significantly more errors than controls during the noun-noun and verb-verb conditions, supporting evidence from previous studies that STN stimulation modulates a frontotemporal network associated with word generation. Finally, errors during verb generation were significantly correlated with item selection constraint (ie, the degree to which a response competes with other response alternatives) in the on stimulation condition, but not the off stimulation condition. Our results suggest that STN stimulation affects the ability to select from many competing lexical alternatives during verb generation.

  2. Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces.

    PubMed

    Rodríguez-Bermúdez, German; García-Laencina, Pedro J; Roca-Dorda, Joaquín

    2013-08-01

    Discriminative features have to be properly extracted and selected from the electroencephalographic (EEG) signals of each specific subject in order to achieve an adaptive brain-computer interface (BCI) system. This work presents an efficient wrapper-based methodology for feature selection and least squares discrimination of high-dimensional EEG data with low computational complexity. Features are computed in different time segments using three widely used methods for motor imagery tasks and, then, they are concatenated or averaged in order to take into account the time course variability of the EEG signals. Once EEG features have been extracted, proposed framework comprises two stages. The first stage entails feature ranking and, in this work, two different procedures have been considered, the least angle regression (LARS) and the Wilcoxon rank sum test, to compare the performance of each one. The second stage selects the most relevant features using an efficient leave-one-out (LOO) estimation based on the Allen's PRESS statistic. Experimental comparisons with the state-of-the-art BCI methods shows that this approach gives better results than current state-of-the-art approaches in terms of recognition rates and computational requirements and, also with respect to the first ranking stage, it is confirmed that the LARS algorithm provides better results than the Wilcoxon rank sum test for these experiments.

  3. A novel selective androgen receptor modulator, NEP28, is efficacious in muscle and brain without serious side effects on prostate.

    PubMed

    Akita, Kazumasa; Harada, Koichiro; Ichihara, Junji; Takata, Naoko; Takahashi, Yasuhiko; Saito, Koichi

    2013-11-15

    Age-related androgen depletion is known to be a risk factor for various diseases, such as osteoporosis and sarcopenia. Furthermore, recent studies have demonstrated that age-related androgen depletion results in accumulation of β-amyloid protein and thereby acts as a risk factor for the development of Alzheimer's disease. Supplemental androgen therapy has been shown to be efficacious in treating osteoporosis and sarcopenia. In addition, studies in animals have demonstrated that androgens can play a protective role against Alzheimer's disease. However, androgen therapy is not used routinely for these indications, because of side effects. Selective androgen receptor modulators (SARMs) are a new class of compounds. SARMs maintain the beneficial effects of androgens on bone and muscle while reducing unwanted side effects. NEP28 is a new SARM exhibiting high selectivity for androgen receptor. To investigate the pharmacological effects of NEP28, we compared the effects on muscle, prostate, and brain with mice that were androgen depleted by orchidectomy and then treated with either placebo, NEP28, dihydrotestosterone, or methyltestosterone. We demonstrated that NEP28 showed tissue-selective effect equivalent to or higher than existing SARMs. In addition, the administration of NEP28 increased the activity of neprilysin, a known Aβ-degrading enzyme. These results indicate that SARM is efficacious for the treatment of not only osteoporosis and sarcopenia, but also Alzheimer's disease. © 2013 Published by Elsevier B.V.

  4. Frequency-selectivity of a thalamocortical relay neuron during Parkinson's disease and deep brain stimulation: a computational study.

    PubMed

    Cagnan, Hayriye; Meijer, Hil G E; van Gils, Stephan A; Krupa, Martin; Heida, Tjitske; Rudolph, Michelle; Wadman, Wytse J; Martens, Hubert C F

    2009-10-01

    In this computational study, we investigated (i) the functional importance of correlated basal ganglia (BG) activity associated with Parkinson's disease (PD) motor symptoms by analysing the effects of globus pallidus internum (GPi) bursting frequency and synchrony on a thalamocortical (TC) relay neuron, which received GABAergic projections from this nucleus; (ii) the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on the response of the TC relay neuron to synchronized GPi oscillations; and (iii) the functional basis of the inverse relationship that has been reported between DBS frequency and stimulus amplitude, required to alleviate PD motor symptoms [A. L. Benabid et al. (1991)Lancet, 337, 403-406]. The TC relay neuron selectively responded to and relayed synchronized GPi inputs bursting at a frequency located in the range 2-25 Hz. Input selectivity of the TC relay neuron is dictated by low-threshold calcium current dynamics and passive membrane properties of the neuron. STN-DBS prevented the TC relay neuron from relaying synchronized GPi oscillations to cortex. Our model indicates that DBS alters BG output and input selectivity of the TC relay neuron, providing an explanation for the clinically observed inverse relationship between DBS frequency and stimulus amplitude.

  5. Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data

    PubMed Central

    Jie, Nan-Feng; Zhu, Mao-Hu; Ma, Xiao-Ying; Osuch, Elizabeth A; Wammes, Michael; Théberge, Jean; Li, Huan-Dong; Zhang, Yu; Jiang, Tian-Zi; Sui, Jing; Calhoun, Vince D

    2015-01-01

    Discriminating between bipolar disorder (BD) and major depressive disorder (MDD) is a major clinical challenge due to the absence of known biomarkers; hence a better understanding of their pathophysiology and brain alterations is urgently needed. Given the complexity, feature selection is especially important in neuroimaging applications, however, feature dimension and model understanding present serious challenges. In this study, a novel feature selection approach based on linear support vector machine with a forward-backward search strategy (SVM-FoBa) was developed and applied to structural and resting-state functional magnetic resonance imaging data collected from 21 BD, 25 MDD and 23 healthy controls. Discriminative features were drawn from both data modalities, with which the classification of BD and MDD achieved an accuracy of 92.1% (1,000 bootstrap resamples). Weight analysis of the selected features further revealed that the inferior frontal gyrus may characterize a central role in BD-MDD differentiation, in addition to the default mode network and the cerebellum. A modality-wise comparison also suggested that functional information outweighs anatomical by a large margin when classifying the two clinical disorders. This work validated the advantages of multimodal joint analysis and the effectiveness of SVM-FoBa, which has potential for use in identifying possible biomarkers for several mental disorders. PMID:26858825

  6. Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users.

    PubMed

    Kübler, Andrea; Holz, Elisa Mira; Sellers, Eric W; Vaughan, Theresa M

    2015-03-01

    Noninvasive brain-computer interfaces (BCIs) use scalp-recorded electrical activity from the brain to control an application. Over the past 20 years, research demonstrating that BCIs can provide communication and control to individuals with severe motor impairment has increased almost exponentially. Although considerable effort has been dedicated to offline analysis for improving signal detection and translation, far less effort has been made to conduct online studies with target populations. Thus, there remains a great need for both long-term and translational BCI studies that include individuals with disabilities in their own homes. Completing these studies is the only sure means to answer questions about BCI utility and reliability. Here we suggest an algorithm for candidate selection for electroencephalographic (EEG)-based BCI home studies. This algorithm takes into account BCI end-users and their environment and should assist in study design and substantially improve subject retention rates, thereby improving the overall efficacy of BCI home studies. It is the result of a workshop at the Fifth International BCI Meeting that allowed us to leverage the expertise of multiple research laboratories and people from multiple backgrounds in BCI research.

  7. X-ray fluorescence study of the concentration of selected trace and minor elements in human brain tumours

    NASA Astrophysics Data System (ADS)

    Wandzilak, Aleksandra; Czyzycki, Mateusz; Radwanska, Edyta; Adamek, Dariusz; Geraki, Kalotina; Lankosz, Marek

    2015-12-01

    Neoplastic and healthy brain tissues were analysed to discern the changes in the spatial distribution and overall concentration of elements using micro X-ray fluorescence spectroscopy. High-resolution distribution maps of minor and trace elements such as P, S, Cl, K, Ca, Fe, Cu and Zn made it possible to distinguish between homogeneous cancerous tissue and areas where some structures could be identified, such as blood vessels and calcifications. Concentrations of the elements in the selected homogeneous areas of brain tissue were compared between tumours with various malignancy grades and with the controls. The study showed a decrease in the average concentration of Fe, P, S and Ca in tissues with high grades of malignancy as compared to the control group, whereas the concentration of Zn in these tissues was increased. The changes in the concentration were found to be correlated with the tumour malignancy grade. The efficacy of micro X-ray fluorescence spectroscopy to distinguish between various types of cancer based on the concentrations of studied elements was confirmed by multivariate discriminant analysis. Our analysis showed that the most important elements for tissue classification are Cu, K, Fe, Ca, and Zn. This method made it possible to correctly classify histopathological types in 99.93% of the cases used to build the model and in as much as 99.16% of new cases.

  8. Improvement in memory and static balance with abstinence in alcoholic men and women: selective relations with change in brain structure.

    PubMed

    Rosenbloom, Margaret J; Rohlfing, Torsten; O'Reilly, Anne W; Sassoon, Stephanie A; Pfefferbaum, Adolf; Sullivan, Edith V

    2007-07-15

    We investigated whether changes in memory or static balance in chronic alcoholics, occurring with abstinence or relapse, are associated with changes in lateral and fourth ventricular volume. Alcoholics meeting DSM-IV criteria for Alcohol Dependence (n=15) and non-alcoholic controls (n=26) were examined twice at a mean interval of 2 years with standard Wechsler Abbreviated Scale of Intelligence (WASI), Wechsler Memory Scale-Revised (WMS-R) tests, an ataxia battery, and structural MRI. At study entry, alcoholics had been abstinent on average for over 4 months and achieved lower scores than controls on WASI General IQ Index, WMS-R General Memory Index, and the ataxia battery. The 10 alcoholics who maintained sobriety at retest did not differ at study entry in socio-demographic measures, alcohol use, or WASI and WMS-R summary scores from the five relapsers. At follow-up, abstainers improved more than controls on the WMS-R General Memory Index. Ataxia tended to improve in abstainers relative to controls. Associations were observed between memory and lateral ventricular volume change and between ataxia and fourth ventricular volume change in alcoholics but not in the controls. Both memory and ataxia can improve with sustained sobriety, and brain-behavior associations suggest selective brain structural substrates for the changes observed.

  9. Radiobrominated analog of SCH 23390, a selective dopamine D1 antagonist: Synthesis and biodistribution in mouse brain

    SciTech Connect

    De Jesus, O.T.; Van Moffaert, G.J.C.; Glock, D.; Dinerstein, R.J.; Friedman, A.M.

    1985-05-01

    SCH 23390 (R-(+)-8-chloro-2,3,4, 5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) is a highly selective dopamine D1 antagonist. The authors have prepared an 8-bromo analog of SCH 23390 (BrSCH) labelled with Br-75 or Br-76 and have studied its distribution in mouse brain. Milligram quantities of BrSCH were synthesized by the reaction of its des-chloro analog with bromide in H/sub 2/O/sub 2/-glacial acetic acid. The product was purified by preparative HPLC and characterized by mass spectrometry, NMR, and a bioassay technique involving the inhibition of DA-induced vasodilation of dog renal artery. Comparison with an authentic sample confirmed that the product obtained was BrSCH. The time course of distribution of this drug in mouse brain was followed and the results showed high uptake in DA receptor-rich striatum. Striatum to cerebellum uptake ratios were observed to be as high as 25 two hours after injection. These results demonstrate that a positron-emitting radiobrominated analog of SCH 23390 would be useful in the imaging of cerebral dopamine D1 receptors.

  10. Selective Nitric Oxide Synthase Inhibitor 7-Nitroindazole Protects against Cocaine-Induced Oxidative Stress in Rat Brain

    PubMed Central

    Vitcheva, Vessela; Simeonova, Rumyana; Kondeva-Burdina, Magdalena; Mitcheva, Mitka

    2015-01-01

    One of the mechanisms involved in the development of addiction, as well as in brain toxicity, is the oxidative stress. The aim of the current study was to investigate the effects of 7-nitroindazole (7-NI), a selective inhibitor of neuronal nitric oxide synthase (nNOS), on cocaine withdrawal and neurotoxicity in male Wistar rats. The animals were divided into four groups: control; group treated with cocaine (15 mg/kg−1, i.p., 7 days); group treated with 7-NI (25 mg/kg−1, i.p., 7 days); and a combination group (7-NI + cocaine). Cocaine repeated treatment resulted in development of physical dependence, judged by withdrawal symptoms (decreased locomotion, increased salivation and breathing rate), accompanied by an increased nNOS activity and oxidative stress. The latter was discerned by an increased formation of malondialdehyde (MDA), depletion of reduced glutathione (GSH) levels, and impairment of the enzymatic antioxidant defense system measured in whole brain. In synaptosomes, isolated from cocaine-treated rats, mitochondrial activity and GSH levels were also decreased. 7-NI administered along with cocaine not only attenuated the withdrawal, due to its nNOS inhibition, but also reversed both the GSH levels and antioxidant enzyme activities near control levels. PMID:26576217

  11. Selective Nitric Oxide Synthase Inhibitor 7-Nitroindazole Protects against Cocaine-Induced Oxidative Stress in Rat Brain.

    PubMed

    Vitcheva, Vessela; Simeonova, Rumyana; Kondeva-Burdina, Magdalena; Mitcheva, Mitka

    2015-01-01

    One of the mechanisms involved in the development of addiction, as well as in brain toxicity, is the oxidative stress. The aim of the current study was to investigate the effects of 7-nitroindazole (7-NI), a selective inhibitor of neuronal nitric oxide synthase (nNOS), on cocaine withdrawal and neurotoxicity in male Wistar rats. The animals were divided into four groups: control; group treated with cocaine (15 mg/kg(-1), i.p., 7 days); group treated with 7-NI (25 mg/kg(-1), i.p., 7 days); and a combination group (7-NI + cocaine). Cocaine repeated treatment resulted in development of physical dependence, judged by withdrawal symptoms (decreased locomotion, increased salivation and breathing rate), accompanied by an increased nNOS activity and oxidative stress. The latter was discerned by an increased formation of malondialdehyde (MDA), depletion of reduced glutathione (GSH) levels, and impairment of the enzymatic antioxidant defense system measured in whole brain. In synaptosomes, isolated from cocaine-treated rats, mitochondrial activity and GSH levels were also decreased. 7-NI administered along with cocaine not only attenuated the withdrawal, due to its nNOS inhibition, but also reversed both the GSH levels and antioxidant enzyme activities near control levels.

  12. Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment.

    PubMed

    Gururajan, A; Hill, R A; van den Buuse, M

    2015-01-22

    Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin involved in neurodevelopment, neuroprotection and synaptic plasticity. It is also implicated in a range of psychiatric disorders such as schizophrenia, depression and post-traumatic stress disorder. Stress during adolescence/young adulthood can have long-term psychiatric and cognitive consequences, however it is unknown how altered BDNF signaling is involved in such effects. Here we investigated whether a congenital deficit in BDNF availability in rats increases vulnerability to the long-term effects of the stress hormone, corticosterone (CORT). Compared to wildtype (WT) littermates, BDNF heterozygous (HET) rats showed higher body weights and minor developmental changes, such as reduced relative brain and pituitary weight. These animals furthermore showed deficits in short-term spatial memory in the Y-maze and in prepulse inhibition and startle, but not in object-recognition memory. CORT treatment induced impairments in novel-object recognition memory in both genotypes but disrupted fear conditioning extinction learning in BDNF HET rats only. These results show selective behavioral changes in BDNF HET rats, at baseline or after chronic CORT treatment and add to our understanding of the role of BDNF and its interaction with stress. Importantly, this study demonstrates the utility of the BDNF HET rat in investigations into the pathophysiology of various psychiatric disorders.

  13. Effects of the selective cyclooxygenase-2 inhibitor rofecoxib on cell death following traumatic brain injury in the rat.

    PubMed

    Kunz, Tina; Marklund, Niklas; Hillered, Lars; Oliw, Ernst H

    2006-01-01

    Lateral fluid percussion brain injury (FPI) increases cyclooxygenase-2 (COX-2) expression in the cortex and hippocampus. The objective was to investigate whether the selective COX-2 inhibitor rofecoxib (10 mg/kg twice daily) reduces neuronal cell death after FPI in rats, since rofecoxib has been shown to be neuroprotective in other models of CNS injury. Rofecoxib (n = 23) or vehicle (n = 20) were administered after FPI and for up to 3 days. Cell death was evaluated by Fluoro-Jade B staining and by the TdT-mediated dUTP nick end labelling (TUNEL) assay. COX-2 immunoreactivity increased in the ipsilateral cortex and hippocampus (CA1) and bilaterally in the dentate gyri. Fluoro-Jade B- and TUNEL-positive cells were detected 12-72 h after FPI in the ipsilateral cortex and bilaterally in the dentate gyri. Fluoro-Jade B staining did not indicate a significant neuroprotective effect of rofecoxib (12-72 h) and neither did TUNEL staining. Quantificaton of the TUNEL staining in the ipsilateral cortex was approximately 50% lower in the rofecoxib group at 12 and 24 h, but this did not reach statistical significance (p = 0.06), and appeared unchanged at 72 h. Rofecoxib lacked significant protective effect on early neuronal cell death in the FPI model of traumatic brain injury.

  14. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

    PubMed

    Luo, Guanglin; Chen, Ling; Burton, Catherine R; Xiao, Hong; Sivaprakasam, Prasanna; Krause, Carol M; Cao, Yang; Liu, Nengyin; Lippy, Jonathan; Clarke, Wendy J; Snow, Kimberly; Raybon, Joseph; Arora, Vinod; Pokross, Matt; Kish, Kevin; Lewis, Hal A; Langley, David R; Macor, John E; Dubowchik, Gene M

    2016-02-11

    GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics.

  15. Attentional Selection Accompanied by Eye Vergence as Revealed by Event-Related Brain Potentials

    PubMed Central

    Sole Puig, Maria; Pallarés, Josep Marco; Perez Zapata, Laura; Puigcerver, Laura; Cañete, Josep

    2016-01-01

    Neural mechanisms of attention allow selective sensory information processing. Top-down deployment of visual-spatial attention is conveyed by cortical feedback connections from frontal regions to lower sensory areas modulating late stimulus responses. A recent study reported the occurrence of small eye vergence during orienting top-down attention. Here we assessed a possible link between vergence and attention by comparing visual event related potentials (vERPs) to a cue stimulus that induced attention to shift towards the target location to the vERPs to a no-cue stimulus that did not trigger orienting attention. The results replicate the findings of eye vergence responses during orienting attention and show that the strength and time of eye vergence coincide with the onset and strength of the vERPs when subjects oriented attention. Our findings therefore support the idea that eye vergence relates to and possibly has a role in attentional selection. PMID:27973591

  16. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Petin, A. N.

    2016-03-01

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF6 and CF3I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF6 molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation.

  17. Subject combination and electrode selection in cooperative brain-computer interface based on event related potentials.

    PubMed

    Cecotti, Hubert; Rivet, Bertrand

    2014-04-30

    New paradigms are required in Brain-Computer Interface (BCI) systems for the needs and expectations of healthy people. To solve this issue, we explore the emerging field of cooperative BCIs, which involves several users in a single BCI system. Contrary to classical BCIs that are dependent on the unique subject's will, cooperative BCIs are used for problem solving tasks where several people shall be engaged by sharing a common goal. Similarly as combining trials over time improves performance, combining trials across subjects can significantly improve performance compared with when only a single user is involved. Yet, cooperative BCIs may only be used in particular settings, and new paradigms must be proposed to efficiently use this approach. The possible benefits of using several subjects are addressed, and compared with current single-subject BCI paradigms. To show the advantages of a cooperative BCI, we evaluate the performance of combining decisions across subjects with data from an event-related potentials (ERP) based experiment where each subject observed the same sequence of visual stimuli. Furthermore, we show that it is possible to achieve a mean AUC superior to 0.95 with 10 subjects and 3 electrodes on each subject, or with 4 subjects and 6 electrodes on each subject. Several emerging challenges and possible applications are proposed to highlight how cooperative BCIs could be efficiently used with current technologies and leverage BCI applications.

  18. Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces.

    PubMed

    Wei, Qingguo; Wei, Zhonghai

    2015-01-01

    A brain-computer interface (BCI) enables people suffering from affective neurological diseases to communicate with the external world. Common spatial pattern (CSP) is an effective algorithm for feature extraction in motor imagery based BCI systems. However, many studies have proved that the performance of CSP depends heavily on the frequency band of EEG signals used for the construction of covariance matrices. The use of different frequency bands to extract signal features may lead to different classification performances, which are determined by the discriminative and complementary information they contain. In this study, the broad frequency band (8-30 Hz) is divided into 10 sub-bands of band width 4 Hz and overlapping 2 Hz. Binary particle swarm optimization (BPSO) is used to find the best sub-band set to improve the performance of CSP and subsequent classification. Experimental results demonstrate that the proposed method achieved an average improvement of 6.91% in cross-validation accuracy when compared to broad band CSP.

  19. Robust Cell Detection of Histopathological Brain Tumor Images Using Sparse Reconstruction and Adaptive Dictionary Selection

    PubMed Central

    Su, Hai; Xing, Fuyong; Yang, Lin

    2016-01-01

    Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706

  20. Experimental studies with selected light sources for NIRS of brain tissue: quantifying tissue chromophore concentration

    NASA Astrophysics Data System (ADS)

    Myllylä, Teemu; Korhonen, Vesa; Kiviniemi, Vesa; Tuchin, Valery

    2015-03-01

    Near-infrared spectroscopy (NIRS) based techniques are utilised in quantifying changes of chromophore concentrations in tissue. Particularly, non-invasive in vivo measurements of tissue oxygenation in the cerebral cortex are of interest. The measurement method is based on illuminating tissue and measuring the back-scattered light at wavelengths of interest. Tissue illumination can be realised using different techniques and various light sources. Commonly, lasers and laser diodes (LD) are utilised, but also high-power light emitting diodes (HPLED) are becoming more common. At the moment, a wide range of available narrow-band light sources exists, covering basically the entire spectrum of interest in brain tissue NIRS measurements. In this paper, in the centre of our interest are LDs and HPLEDs, because of their affordability, efficiency in terms of radiant flux versus size and easiness to adopt in in vivo medical applications. We compare characteristics of LDs and HPLEDs at specific wavelengths and their suitability for in vivo quantifying of different tissue chromophore concentration, particularly in cerebral blood flow (CBF). A special focus is on shape and width of the wavelength bands of interest, generated by the LDs and HPLEDs. Moreover, we experimentally study such effects as, spectroscopy cross talk, separability and signal-to-noise ratio (SNR) when quantifying tissue chromophore concentration. Chromophores of our interest are cytochrome, haemoglobin and water. Various LDs and HPLEDs, producing narrow-band wavelengths in the range from 500 nm to 1000 nm are tested.

  1. Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells.

    PubMed

    Zubrilov, Inna; Sagi-Assif, Orit; Izraely, Sivan; Meshel, Tsipi; Ben-Menahem, Shlomit; Ginat, Ravit; Pasmanik-Chor, Metsada; Nahmias, Clara; Couraud, Pierre-Olivier; Hoon, Dave S B; Witz, Isaac P

    2015-05-28

    V600E being the most common mutation in BRAF, leads to constitutive activation of the MAPK signaling pathway. The majority of V600E BRAF positive melanoma patients treated with the BRAF inhibitor vemurafenib showed initial good clinical responses but relapsed due to acquired resistance to the drug. The aim of the present study was to identify possible biomarkers associated with the emergence of drug resistant melanoma cells. To this end we analyzed the differential gene expression of vemurafenib-sensitive and vemurafenib resistant brain and lung metastasizing melanoma cells. The major finding of this study is that the in vitro induction of vemurafenib resistance in melanoma cells is associated with an increased malignancy phenotype of these cells. Resistant cells expressed higher levels of genes coding for cancer stem cell markers (JARID1B, CD271 and Fibronectin) as well as genes involved in drug resistance (ABCG2), cell invasion and promotion of metastasis (MMP-1 and MMP-2). We also showed that drug-resistant melanoma cells adhere better to and transmigrate more efficiently through lung endothelial cells than drug-sensitive cells. The former cells also alter their microenvironment in a different manner from that of drug-sensitive cells. Biomarkers and molecular mechanisms associated with drug resistance may serve as targets for therapy of drug-resistant cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Selective impairment of self body-parts processing in right brain-damaged patients.

    PubMed

    Frassinetti, Francesca; Maini, Manuela; Benassi, Mariagrazia; Avanzi, Stefano; Cantagallo, Anna; Farnè, Alessandro

    2010-03-01

    To investigate whether the processing of the visual appearance of one's own body, that is the corporeal self is a unified or modular function we submitted eight right brain-damaged (RBD) patients and a group of fourteen age-matched neurologically healthy subjects, to a visual matching-to-sample task testing for corporeal self processing. If corporeal self processing is a unique function (i.e., body- and face-parts are processed by the same network), patients impaired in self body-parts (i.e., showing no self-advantage) should be impaired also in self face-parts; alternatively, if corporeal self processing is a modular function (i.e., body- and face-parts are processed by different networks), patients impaired in self body-parts should be unimpaired in self face-parts, unless the face-module is also damaged by the lesion. Results showed that healthy participants were more accurate in processing pictures representing their own as compared to other people's body- and face-parts, showing the so-called self-advantage. The patients' findings revealed a simple dissociation, in that patients who were impaired in the processing of self-related body-parts showed a preserved self-advantage when processing self-related face-parts, thus providing initial evidence of a modular representation of the corporeal self. Copyright (c) 2009 Elsevier Srl. All rights reserved.

  3. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].

    PubMed

    Šaponjić, Jasna

    2011-01-01

    Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control

  4. limited potentiation of blood pressure in response to oral tyramine by the